Science.gov

Sample records for fine-tuning molecular energy

  1. Researchers fine-tune production of energy crops

    SciTech Connect

    Parish, D.J. )

    1990-04-01

    Renewable energy sources, plant materials that can be processed into liquid fuels, are becoming increasingly important as fossil fuel sources dwindle and environmental impacts of releasing fossilized carbon into the atmosphere become more evident. But which plant species provide the most material and can be grown on land not used to produce food, feed, and fiber Switchgrass exceeds all other herbaceous species we have tested in production of biomass on marginal sites in the Virginia Piedmont reports David J. Parrish, Virginia Tech (Blacksburg, VA) professor of crop and soil environmental sciences. In a study sponsored by the U.S. Department of Energy (DOE) at Virginia Tech, graduate student Steven Nagle, Parrish, professor Dale Wolf, and associate professor W.L. Daniels are comparing the biomass productivity of switchgrass, weeping lovegrass, and tall fescue. Since 1985, the crops - selected for their marginal crop value - have been grown on 12 sites in the Virginia Piedmont. Planting was done using no-till procedures that slice but do not turn the soil, because the sites are subject to erosion. The two warm-season grasses are harvested once a year, the fescue twice. Switchgrass has been the most productive on clay soils, and lovegrass on sandy soil. In a second DOE-sponsored study - this one by graduate student Preston Sullivan, Parish, Wolf, Daniels, and Nagle - the Virginia Tech researchers have begun to investigate planting winter-annual legumes in with switchgrass as a source of nitrogen to reduce cost of production, and as a means to increase biomass. In the fall of 1988, crimson clover, arrowleaf clover, and hairy vetch were planted into the switchgrass stubble. Other plots of switchgrass are being provided with various levels of nitrogen fertilizer to compare those yields with legume-planted plots. Crimson clover had provided the most fall growth, but by mid-May 1989, the hairy vetch had produced a dense webbing of biomass over the new switchgrass.

  2. Perspective: Extremely fine tuning of doping enabled by combinatorial molecular-beam epitaxy

    SciTech Connect

    Wu, J.; Božović, I.

    2015-06-01

    Chemical doping provides an effective method to control the electric properties of complex oxides. However, the state-of-art accuracy in controlling doping is limited to about 1%. This hampers elucidation of the precise doping dependences of physical properties and phenomena of interest, such as quantum phase transitions. Using the combinatorial molecular beam epitaxy, we improve the accuracy in tuning the doping level by two orders of magnitude. We illustrate this novel method by two examples: a systematic investigation of the doping dependence of interface superconductivity, and a study of the competing ground states in the vicinity of the insulator-to-superconductor transition.

  3. A family of enantiopure Fe(III)4 single molecule magnets: fine tuning of energy barrier by remote substituent.

    PubMed

    Zhu, Yuan-Yuan; Cui, Chang; Qian, Kang; Yin, Ji; Wang, Bing-Wu; Wang, Zhe-Ming; Gao, Song

    2014-08-21

    A new family of enantiopure star-shaped Fe(III)4 single-molecule magnets (SMMs) with the general formula [Fe4(L(K))6] (H2L = (R or S)-2-((2-hydroxy-1-phenylethylimino methyl)phenol); K = H (), Cl (), Br (), I (), and t-Bu ()), were structurally and magnetically characterized. Complex was reported in our previous paper (Chem. Commun., 2011, 47, 8049-8051). Detailed magnetic measurements and a systematic magneto-structural correlation study revealed that the SMM properties of this series of compounds can be finely tuned by the remote substituent of the ligands. Although the change in the coordination environment of the central Fe(3+) ions is very small, the properties of SMM behavior are changed considerably. All five complexes display frequency dependence of the ac susceptibility. However, the χ peaks of complexes and cannot be observed down to 0.5 K. The fitted anisotropy energy barriers (Ueff) of complexes , , and were 5.9, 7.1, and 11.0 K, respectively. Moreover, the hysteresis loops of these three complexes can be also observed around 0.5 K. Magneto-structural correlation analyses revealed that the coordination symmetry of the central Fe(3+) ion and the intermolecular interaction are two key factors affecting the SMM properties. Deviation to a trigonal prism coordination environment and the existence of intermolecular interactions between neighboring clusters may both reduce the anisotropy energy barriers.

  4. Fine tuning of optical transition energy of twisted bilayer graphene via interlayer distance modulation

    NASA Astrophysics Data System (ADS)

    del Corro, Elena; Peña-Alvarez, Miriam; Sato, Kentaro; Morales-Garcia, Angel; Bousa, Milan; Mračko, Michal; Kolman, Radek; Pacakova, Barbara; Kavan, Ladislav; Kalbac, Martin; Frank, Otakar

    2017-02-01

    Twisted bilayer graphene (tBLG) represents a family of unique materials with optoelectronic properties tuned by the rotation angle between the two layers. The presented work shows an additional way of tweaking the electronic structure of tBLG by modifying the interlayer distance, for example by a small uniaxial out-of-plane compression. We have focused on the optical transition energy, which shows a clear dependence on the interlayer distance, both experimentally and theoretically.

  5. Fine-tuning terminal solvent ligands to rationally enhance the energy barrier in dinuclear dysprosium single-molecule magnets.

    PubMed

    Zhang, Kun; Yuan, Chen; Guo, Fu-Sheng; Zhang, Yi-Quan; Wang, Yao-Yu

    2016-12-20

    In search of simple approaches to rationally enhance the energy barriers in polynuclear dysprosium single-molecule magnets, a new system containing two structurally closely related dinuclear dysprosium complexes, namely [Dy2(L)2(DBM)2(DMF)2] (1) and [Dy2(L)2(DBM)2(DMA)2]·2DMA (2) (HDBM = dibenzoylmethane, H2L = 2-hydroxy-N'-(2-hydroxy-3-methoxybenzylidene)benzohydrazide), is introduced and the structure-dependent magnetic properties are investigated. The two complexes display only slight variations in the coordination geometries of the Dy(iii) ion but display remarkably different magnetic behaviors. By replacing the DMF (dimethylformamide) ligand in complex 1 with DMA (dimethylacetamide) in 2 while retaining the same coordination atoms, we were able to create a 3-fold enhancement in the energy barrier, from 24 K for complex 1 to 77 K for complex 2. Complete-active-space self-consistent field (CASSCF) calculations revealed that the charge distribution surrounding the Dy(iii) centers in 1 and 2 is the key factor in determining the relaxation properties of the SMMs. The introduction of an electron-donating CH3 group in DMA to replace the hydrogen in DMF resulted in a larger average charge along the magnetic axes of complex 2 compared to complex 1, which resulted in a stronger easy-axis ligand field, thus increasing the energy difference between the ground and the first excited states of complex 2. This work presents a simple method to rationally enhance the energy barrier in polynuclear lanthanide SMMs through fine-tuning of the electrostatic potential of the atoms along the magnetic axis.

  6. Design of Far-Red Sensitizing Squaraine Dyes Aiming Towards the Fine Tuning of Dye Molecular Structure.

    PubMed

    Morimoto, Takuya; Fujikawa, Naotaka; Ogomi, Yuhei; Pandey, Shyam S; Ma, Tingli; Hayase, Shuzi

    2016-04-01

    Model squaraine dyes having sharp and narrow absorptions mainly in the far-red wavelength region has been logically designed, synthesized and used for their application as sensitizer in the dyesensitized solar cells (DSSC). In order to have fine control on energetics, dyes having same mother core and alkyl chain length varying only in molecular symmetry and position of substituent were designed. It has been found that even keeping all other structural factor constant, only positional variation of substituent leads to not only in the variation of energetics by 0.1 eV but affects the photovoltaic characteristics also. Optimum concentration of dye de-aggregating agent was found to be 100 times with respect to the sensitizing dye concentration. Amongst dyes utilized in this work best performance was obtained for unsymmetrical dye SQ-40 giving a photoconversion efficiency of 4.01% under simulated solar irradiation at global AM 1.5.

  7. Fine-tuning the lipogenic/lipolytic balance to optimize the metabolic requirements of cancer cell growth: molecular mechanisms and therapeutic perspectives.

    PubMed

    Menendez, Javier A

    2010-03-01

    Evolving evidence suggest that metabolic requirements for cell proliferation are identical in all normal and cancer cells. HER2 oncogene-overexpressors, a highly aggressive subtype of human cancer cells, constitute one of the best examples of how malignant cells maximize their ability to acquire and metabolize nutrients in a manner conductive to proliferation rather than efficient ATP production. HER2-overexpressors optimize their requirements of rapid cancer cell growth by fine-tuning a double [lipogenic/lipolytic]-edged metabolic sword. On the one edge, HER2 oncogene overexpression triggers redundant signaling cascades to ensure that all the major enzymes involved in de novo fatty acid (FA) synthesis will facilitate aerobic glycolysis instead of oxidative phosphorylation for energy production (Warburg effect). HER2 also establishes a positive bidirectional relationship with the key lipogenic enzyme Fatty Acid Synthase (FASN) that rapidly senses and respond to any disturbance in the flux of lipogenic substrates (e.g. NADPH and acetyl-CoA) and lipogenesis end-products (i.e. palmitate). On the other edge, HER2 overexpression arranges detoxifying mechanisms by upregulating PPARgamma, a well established positive regulator role of adipogenesis and lipid storage in cell types with active lipid metabolism. PPARgamma establishes a lipogenesis/lipolysis joining-point that enables HER2-positive cancer cells to avoid endogenous palmitate toxicity while securing palmitate into fat stores to avoid palmitate feedback on FASN functioning. The ability of HER2 to supercharge lipogenesis (by activating regulatory circuits that activate and fuel the lipogenic enzyme FASN) while averting lipotoxicity (by promoting conversion and storage of excess FAs to triglycerides in a PPARgamma-dependent manner) supports the notion that best adapted cancer phenotypes are addicted to oncogenic lipid metabolism for cell proliferation and survival. It is conceptually attractive to assume that we can

  8. Revisiting fine-tuning in the MSSM

    NASA Astrophysics Data System (ADS)

    Ross, Graham G.; Schmidt-Hoberg, Kai; Staub, Florian

    2017-03-01

    We evaluate the amount of fine-tuning in constrained versions of the minimal supersymmetric standard model (MSSM), with different boundary conditions at the GUT scale. Specifically we study the fully constrained version as well as the cases of non-universal Higgs and gaugino masses. We allow for the presence of additional non-holomorphic soft-terms which we show further relax the fine-tuning. Of particular importance is the possibility of a Higgsino mass term and we discuss possible origins for such a term in UV complete models. We point out that loop corrections typically lead to a reduction in the fine-tuning by a factor of about two compared to the estimate at tree-level, which has been overlooked in many recent works. Taking these loop corrections into account, we discuss the impact of current limits from SUSY searches and dark matter on the fine-tuning. Contrary to common lore, we find that the MSSM fine-tuning can be as small as 10 while remaining consistent with all experimental constraints. If, in addition, the dark matter abundance is fully explained by the neutralino LSP, the fine-tuning can still be as low as ˜ 20 in the presence of additional non-holomorphic soft-terms. We also discuss future prospects of these models and find that the MSSM will remain natural even in the case of a non-discovery in the foreseeable future.

  9. Approaching {lambda} without fine-tuning

    SciTech Connect

    Matarrese, Sabino; Baccigalupi, Carlo; Perrotta, Francesca

    2004-09-15

    We address the fine-tuning problem of dark energy cosmologies which arises when the dark energy density needs to initially lie in a narrow range in order for its present value to be consistent with observations. As recently noticed, this problem becomes particularly severe in canonical quintessence scenarios, when trying to reproduce the behavior of a cosmological constant, i.e., when the dark energy equation of state w{sub Q} approaches -1: these models may be reconciled with a large basin of attraction only by requiring a rapid evolution of w{sub Q} at low redshifts, which is in conflict with the most recent estimates from type Ia Supernovae discovered by Hubble space telescope. Next, we focus on scalar-tensor theories of gravity, discussing the implications of a coupling between the quintessence scalar field and the Ricci scalar ('extended quintessence'). We show that, even if the equation of state today is very close to -1, by virtue of the scalar-tensor coupling the quintessence trajectories still possess the attractive feature which allows to reach the present level of cosmic acceleration starting by a set of initial conditions which covers tens of orders of magnitude; this effect, entirely of gravitational origin, represents a new important consequence of the possible coupling between dark energy and gravity. We illustrate this effect in typical extended quintessence scenarios.

  10. Understanding the Fine Tuning in Our Universe

    ERIC Educational Resources Information Center

    Cohen, Bernard L.

    2008-01-01

    It is often stated that the physical properties of our universe are "fine tuned"--that is, they must be almost exactly as they are to make the development of intelligent life possible. The implications of this statement, called the "anthropic principle," have been widely discussed in a philosophical context, but the scientific basis for the…

  11. Fine-tuning in DBI inflationary mechanism

    SciTech Connect

    Chen, Xingang

    2008-12-15

    We show a model-independent fine-tuning issue in the DBI inflationary mechanism. DBI inflation requires a warp factor h small enough to sufficiently slow down the inflation. On the other hand, the Einstein equation in extra dimensions under the inflationary background deforms the warp space on the IR side. Generically these two locations coincide with each other, spoiling the DBI inflation. The origin and tuning of this 'h problem' is closely related, through the AdS/CFT duality, to those of the well-known '{eta} problem' in the slow-roll inflationary mechanism.

  12. Pre - big bang inflation requires fine tuning

    SciTech Connect

    Turner, Michael S.; Weinberg, Erick J.

    1997-10-01

    The pre-big-bang cosmology inspired by superstring theories has been suggested as an alternative to slow-roll inflation. We analyze, in both the Jordan and Einstein frames, the effect of spatial curvature on this scenario and show that too much curvature --- of either sign --- reduces the duration of the inflationary era to such an extent that the flatness and horizon problems are not solved. Hence, a fine-tuning of initial conditions is required to obtain enough inflation to solve the cosmological problems.

  13. Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency.

    PubMed

    Zheng, Zhong; Awartani, Omar M; Gautam, Bhoj; Liu, Delong; Qin, Yunpeng; Li, Wanning; Bataller, Alexander; Gundogdu, Kenan; Ade, Harald; Hou, Jianhui

    2017-02-01

    Fullerene-free organic solar cells show over 11% power conversion efficiency, processed by low toxic solvents. The applied donor and acceptor in the bulk heterojunction exhibit almost the same highest occupied molecular orbital level, yet exhibit very efficient charge creation.

  14. Fine tuning of cytosolic Ca 2+ oscillations

    PubMed Central

    Dupont, Geneviève; Combettes, Laurent

    2016-01-01

    Ca 2+ oscillations, a widespread mode of cell signaling, were reported in non-excitable cells for the first time more than 25 years ago. Their fundamental mechanism, based on the periodic Ca 2+ exchange between the endoplasmic reticulum and the cytoplasm, has been well characterized. However, how the kinetics of cytosolic Ca 2+ changes are related to the extent of a physiological response remains poorly understood. Here, we review data suggesting that the downstream targets of Ca 2+ are controlled not only by the frequency of Ca 2+ oscillations but also by the detailed characteristics of the oscillations, such as their duration, shape, or baseline level. Involvement of non-endoplasmic reticulum Ca 2+ stores, mainly mitochondria and the extracellular medium, participates in this fine tuning of Ca 2+ oscillations. The main characteristics of the Ca 2+ exchange fluxes with these compartments are also reviewed. PMID:27630768

  15. Nonsingular multidimensional cosmologies without fine tuning

    NASA Astrophysics Data System (ADS)

    Bronnikov, Kirill A.; Fabris, Julio C.

    2002-09-01

    Exact cosmological solutions for effective actions in D dimensions inspired by the tree-level superstring action are studied. For a certain range of free parameters existing in the model, nonsingular bouncing solutions are found. Among them, of particular interest can be open hyperbolic models, in which, without any fine tuning, the internal scale factor and the dilaton field (connected with string coupling in string theories) tend to constant values at late times. A cosmological singularity is avoided due to nonminimal dilaton-gravity coupling and, for D>11, due to pure imaginary nature of the dilaton, which conforms to currently discussed unification models. The existence of such and similar solutions supports the opinion that the Universe had never undergone a stage driven by full-scale quantum gravity.

  16. Relaxion cosmology and the price of fine-tuning

    NASA Astrophysics Data System (ADS)

    Di Chiara, Stefano; Kannike, Kristjan; Marzola, Luca; Racioppi, Antonio; Raidal, Martti; Spethmann, Christian

    2016-05-01

    The relaxion scenario presents an intriguing extension of the standard model in which the particle introduced to solve to the strong C P problem, the axion, also achieves the dynamical relaxation of the Higgs boson mass term. In this work we complete this framework by proposing a scenario of inflationary cosmology that is consistent with all the observational constraints: the relaxion hybrid inflation with an asymmetric waterfall. In our scheme, the vacuum energy of the inflaton drives inflation in a natural way while the relaxion slow rolls. The constraints on the present inflationary observables are then matched through a subsequent inflationary epoch driven by the inflaton. We quantify the amount of fine-tuning of the proposed inflation scenario, concluding that the inflaton sector severely decreases the naturalness of the theory.

  17. Fine-tuning challenges for the matter bounce scenario

    NASA Astrophysics Data System (ADS)

    Levy, Aaron M.

    2017-01-01

    A bouncing universe with a long period of contraction during which the average density is pressureless (the same equation of state as matter) as cosmologically observable scales exit the Hubble horizon has been proposed as an explanation for producing a nearly scale-invariant spectrum of adiabatic scalar perturbations. A well-known problem with this scenario is that, unless suppressed, the energy density associated with anisotropy grows to dominate that of the pressureless matter, so the matter-like phase is unstable. Previous models introduced an ekpyrotic phase after the matter-like phase to prevent the anisotropy from generating chaotic mixmaster behavior. In this work, though, we point out that, unless the anisotropy is suppressed first, the matter-like phase will never start and that suppressing the anisotropy requires extraordinary, exponential fine-tuning.

  18. Fine tuning of activity for nanoscale catalysts.

    SciTech Connect

    Strmcnik, D.; van derVliet, D.; Lucas, C.; Karapetrov, G.; Markovic, N.; Stamenkovic, V.; Materials Science Division

    2008-01-01

    similar levels of catalytic enhancement have been established for corresponding nanoscale materials. In addition to electronic properties we have found how catalytic activity could be affected by the arrangement of surface defects on nanoscale surfaces. Ability to control surface and near surface catalyst properties enables fine tuning of catalytic activity and stability of nanoscale surfaces.

  19. The Doctoral Comprehensive Examination: Fine-Tuning the Process.

    ERIC Educational Resources Information Center

    Loughead, Teri Olisky

    1997-01-01

    Uses Bloom's Taxonomy of Educational Objectives to fine-tune the process of designing, preparing for, evaluating, and providing feedback about the doctoral comprehensive examination. Examines the purpose and objectives of comprehensive examinations, curriculum design, preparation for the exam, test item development, evaluation criteria, and…

  20. Dark interactions and cosmological fine-tuning

    SciTech Connect

    Quartin, Miguel; Calvao, Mauricio O; Joras, Sergio E; Reis, Ribamar R R; Waga, Ioav E-mail: orca@if.ufrj.br E-mail: ribamar@if.ufrj.br

    2008-05-15

    Cosmological models involving an interaction between dark matter and dark energy have been proposed in order to solve the so-called coincidence problem. Different forms of coupling have been studied, but there have been claims that observational data seem to narrow (some of) them down to something annoyingly close to the {Lambda}CDM (CDM: cold dark matter) model, thus greatly reducing their ability to deal with the problem in the first place. The smallness problem of the initial energy density of dark energy has also been a target of cosmological models in recent years. Making use of a moderately general coupling scheme, this paper aims to unite these different approaches and shed some light on whether this class of models has any true perspective in suppressing the aforementioned issues that plague our current understanding of the universe, in a quantitative and unambiguous way.

  1. The Fine-Tuning of the Universe for Intelligent Life

    NASA Astrophysics Data System (ADS)

    Barnes, L. A.

    2012-06-01

    The fine-tuning of the universe for intelligent life has received a great deal of attention in recent years, both in the philosophical and scientific literature. The claim is that in the space of possible physical laws, parameters and initial conditions, the set that permits the evolution of intelligent life is very small. I present here a review of the scientific literature, outlining cases of fine-tuning in the classic works of Carter, Carr and Rees, and Barrow and Tipler, as well as more recent work. To sharpen the discussion, the role of the antagonist will be played by Victor Stenger's recent book The Fallacy of Fine-Tuning: Why the Universe is Not Designed for Us. Stenger claims that all known fine-tuning cases can be explained without the need for a multiverse. Many of Stenger's claims will be found to be highly problematic. We will touch on such issues as the logical necessity of the laws of nature; objectivity, invariance and symmetry; theoretical physics and possible universes; entropy in cosmology; cosmic inflation and initial conditions; galaxy formation; the cosmological constant; stars and their formation; the properties of elementary particles and their effect on chemistry and the macroscopic world; the origin of mass; grand unified theories; and the dimensionality of space and time. I also provide an assessment of the multiverse, noting the significant challenges that it must face. I do not attempt to defend any conclusion based on the fine-tuning of the universe for intelligent life. This paper can be viewed as a critique of Stenger's book, or read independently.

  2. Why Cosmic Fine-Tuning Needs to BE Explained

    NASA Astrophysics Data System (ADS)

    Manson, Neil Alan

    Discoveries in modern physics and Big Bang cosmology indicate that if either the initial conditions of the universe or the physical laws governing its development had differed even slightly, life could never have developed. It is for this reason that the universe is said to be ``fine-tuned'' for life. I argue that cosmic fine-tuning, which some want to dismiss as the way things just happen to be, in fact needs to be explained. In Chapter One I provide an overview of the evidence that the universe is fine-tuned for life. In Chapter Two I present a set of sufficient conditions for a fact's needing to be explained. The conditions are that the fact is improbable and that a ``tidy'' explanation of it is available. A tidy explanation of a fact is considerably less improbable than that fact and makes the obtaining of that fact considerably less improbable. Chapters Three, Four, and Five are devoted to showing that cosmic Chapter Three I argue that the universe's being finely tuned for life can meaningfully be considered improbable. In Chapter Four I claim that there is at least one tidy explanation of cosmic fine-tuning: that the universe was created by some sort of extramundane designer. In Chapters Four and Five I respond to three objections. The first is that the design hypothesis is ad hoc. The second is that we have no reason to believe a supernatural designer would prefer life-permitting cosmoi to other possible cosmoi and that our tendency to believe otherwise is the result of anthropocentrism. The third is that the design hypothesis never buys us an explanatory advantage.

  3. Cosmologically Safe QCD Axion without Fine-Tuning.

    PubMed

    Yamada, Masaki; Yanagida, Tsutomu T; Yonekura, Kazuya

    2016-02-05

    Although QCD axion models are widely studied as solutions to the strong CP problem, they generically confront severe fine-tuning problems to guarantee the anomalous Peccei-Quinn (PQ) symmetry. In this Letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop chiral symmetry breaking and the PQ symmetry is broken. In contrast to Kim's original model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of chiral symmetry breaking in Abelian gauge theory.

  4. Cosmologically Safe QCD Axion without Fine-Tuning

    NASA Astrophysics Data System (ADS)

    Yamada, Masaki; Yanagida, Tsutomu T.; Yonekura, Kazuya

    2016-02-01

    Although QCD axion models are widely studied as solutions to the strong C P problem, they generically confront severe fine-tuning problems to guarantee the anomalous Peccei-Quinn (PQ) symmetry. In this Letter, we propose a simple QCD axion model without any fine-tunings. We introduce an extra dimension and a pair of extra quarks living on two branes separately, which is also charged under a bulk Abelian gauge symmetry. We assume a monopole condensation on our brane at an intermediate scale, which implies that the extra quarks develop chiral symmetry breaking and the PQ symmetry is broken. In contrast to Kim's original model, our model explains the origin of the PQ symmetry thanks to the extra dimension and avoids the cosmological domain wall problem because of chiral symmetry breaking in Abelian gauge theory.

  5. Stop search with acceptable fine-tuning in Susy models

    NASA Astrophysics Data System (ADS)

    Ćiçi, Ali; Ün, Cem Salih; Kirca, Zerrin

    2017-02-01

    Supersymmetry (SUSY) is one of the forefront candidates for the models beyond the Standard Model (SM) in resolving the gauge hierarchy problem by proposing new supersymmetric partners for the SM fields. In SUSY, stop, the supersymmetric partner of top quark, is of a special importance, since it cancels the largest quadratic contributions to the Higgs boson mass from top quark loop. Despite heavy stop mass requirement from the Higgs boson searches and fine-tuning demands, it is still possible to find stops of mass about a few hundred GeV, even as light as top quark. In this study, we search for light stop solutions within the SUSY Grand Unified Theory (GUT) models in light of acceptable fine-tuning and current experimental constraints. Afterwards, we analyze the possible signals through which the implications can be tested at the Large Hadron Collider (LHC) experiments.

  6. Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modeling.

    PubMed

    Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B

    2014-11-10

    Following partial hepatectomy, the liver initiates a regenerative program involving hepatocyte priming and replication driven by coordinated cytokine and growth factor actions. We investigated the mechanisms underlying Adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn-/- mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn-/- mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to IL-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver. This article is protected by copyright. All rights reserved.

  7. Adiponectin fine-tuning of liver regeneration dynamics revealed through cellular network modelling.

    PubMed

    Correnti, Jason M; Cook, Daniel; Aksamitiene, Edita; Swarup, Aditi; Ogunnaike, Babatunde; Vadigepalli, Rajanikanth; Hoek, Jan B

    2015-01-15

    Following partial hepatectomy, the liver initiates a regenerative programme involving hepatocyte priming and replication driven by the coordinated actions of cytokine and growth factors. We investigated the mechanisms underlying adiponectin's (Adn) regulation of liver regeneration through modulation of these mediators. Adn(-/-) mice showed delayed onset of hepatocyte replication, but accelerated cell cycle progression relative to wild-type mice, suggesting Adn has multiple effects fine-tuning the kinetics of liver regeneration. We developed a computational model describing the molecular and physiological kinetics of liver regeneration in Adn(-/-) mice. We employed this computational model to evaluate the underlying regulatory mechanisms. Our analysis predicted that Adn is required for an efficient early cytokine response to partial hepatectomy, but is inhibitory to later growth factor actions. Consistent with this prediction, Adn knockout reduced hepatocyte responses to interleukin-6 during the priming phase, but enhanced growth factor levels through peak hepatocyte replication. By contrast, supraphysiological concentrations of Adn resulting from rosiglitazone treatment suppressed regeneration by reducing growth factor levels during S phase, consistent with computational predictions. Together, these results revealed that Adn fine-tunes the progression of liver regeneration through dynamically modulating molecular mediator networks and cellular interactions within the liver.

  8. Modern Cosmology and Anthropic Fine-Tuning: Three approaches

    NASA Astrophysics Data System (ADS)

    Collins, Robin

    The anthropic fine-tuning of the cosmos refers to the claim that the laws of nature, the constants of physics, and the initial conditions of the universe must be set to an enormous degree of precision for embodied conscious agents to exist. Three major responses have been offered to this fine-tuning: the multiverse explanation; theism; and the claim that it is just a brute fact that requires no further explanation. In this chapter, I will consider each explanation in turn, and provide some novel arguments for the superiority of a theistic or related explanation. In the last section, I will show how whether or not one adopts a theistic or related explanation can significantly influence what features of the universe one considers in need of further scientific explanation, and the type of scientific explanation that one should find satisfactory. In particular, I will argue that in some cases atheism, not theism, serves as a science stopper in discouraging a search for deeper scientific explanations of phenomena.

  9. Myosin phosphatase Fine-tunes Zebrafish Motoneuron Position during Axonogenesis

    PubMed Central

    Granato, Michael

    2016-01-01

    During embryogenesis the spinal cord shifts position along the anterior-posterior axis relative to adjacent tissues. How motor neurons whose cell bodies are located in the spinal cord while their axons reside in adjacent tissues compensate for such tissue shift is not well understood. Using live cell imaging in zebrafish, we show that as motor axons exit from the spinal cord and extend through extracellular matrix produced by adjacent notochord cells, these cells shift several cell diameters caudally. Despite this pronounced shift, individual motoneuron cell bodies stay aligned with their extending axons. We find that this alignment requires myosin phosphatase activity within motoneurons, and that mutations in the myosin phosphatase subunit mypt1 increase myosin phosphorylation causing a displacement between motoneuron cell bodies and their axons. Thus, we demonstrate that spinal motoneurons fine-tune their position during axonogenesis and we identify the myosin II regulatory network as a key regulator. PMID:27855159

  10. Fine-tuning tomato agronomic properties by computational genome redesign.

    PubMed

    Carrera, Javier; Fernández Del Carmen, Asun; Fernández-Muñoz, Rafael; Rambla, Jose Luis; Pons, Clara; Jaramillo, Alfonso; Elena, Santiago F; Granell, Antonio

    2012-01-01

    Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites.

  11. Fine-Tuning Tomato Agronomic Properties by Computational Genome Redesign

    PubMed Central

    Carrera, Javier; Fernández del Carmen, Asun; Fernández-Muñoz, Rafael; Rambla, Jose Luis; Pons, Clara; Jaramillo, Alfonso; Elena, Santiago F.; Granell, Antonio

    2012-01-01

    Considering cells as biofactories, we aimed to optimize its internal processes by using the same engineering principles that large industries are implementing nowadays: lean manufacturing. We have applied reverse engineering computational methods to transcriptomic, metabolomic and phenomic data obtained from a collection of tomato recombinant inbreed lines to formulate a kinetic and constraint-based model that efficiently describes the cellular metabolism from expression of a minimal core of genes. Based on predicted metabolic profiles, a close association with agronomic and organoleptic properties of the ripe fruit was revealed with high statistical confidence. Inspired in a synthetic biology approach, the model was used for exploring the landscape of all possible local transcriptional changes with the aim of engineering tomato fruits with fine-tuned biotechnological properties. The method was validated by the ability of the proposed genomes, engineered for modified desired agronomic traits, to recapitulate experimental correlations between associated metabolites. PMID:22685389

  12. viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence.

    PubMed

    Csorba, Tibor; Kontra, Levente; Burgyán, József

    2015-05-01

    RNA silencing is a homology-dependent gene inactivation mechanism that regulates a wide range of biological processes including antiviral defense. To deal with host antiviral responses viruses evolved mechanisms to avoid or counteract this, most notably through expression of viral suppressors of RNA silencing. Besides working as silencing suppressors, these proteins may also fulfill other functions during infection. In many cases the interplay between the suppressor function and other "unrelated" functions remains elusive. We will present host factors implicated in antiviral pathways and summarize the current status of knowledge about the diverse viral suppressors' strategies acting at various steps of antiviral silencing in plants. Besides, we will consider the multi-functionality of these versatile proteins and related biochemical processes in which they may be involved in fine-tuning the plant-virus interaction. Finally, we will present the current applications and discuss perspectives of the use of these proteins in molecular biology and biotechnology.

  13. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription.

    PubMed

    Conrad, Thomas; Akhtar, Asifa

    2012-01-18

    Dosage compensation is an epigenetic mechanism that normalizes gene expression from unequal copy numbers of sex chromosomes. Different organisms have evolved alternative molecular solutions to this task. In Drosophila melanogaster, transcription of the single male X chromosome is upregulated by twofold in a process orchestrated by the dosage compensation complex. Despite this conceptual simplicity, dosage compensation involves multiple coordinated steps to recognize and activate the entire X chromosome. We are only beginning to understand the intriguing interplay between multiple levels of local and long-range chromatin regulation required for the fine-tuned transcriptional activation of a heterogeneous gene population. This Review highlights the known facts and open questions of dosage compensation in D. melanogaster.

  14. Fine tuning points of generating function construction for linear recursions

    NASA Astrophysics Data System (ADS)

    Yolcu, Bahar; Demiralp, Metin

    2014-10-01

    Recursions are quite important mathematical tools since many systems are mathematically modelled to ultimately take us to these equations because of their rather easy algebraic natures. They fit computer programming needs quite well in many circumstances to produce solutions. However, it is generally desired to find the asymptotic behaviour of the general term in the relevant sequence for convergence and therefore practicality issues. One of the general tendencies to find the general term asymptotic behaviour, when its ordering number grows unboundedly, is the integral representation over a generating function which does not depend on individual sequence elements. This is tried to be done almost for all types of recursions, even though the linear cases gain more importance than the others because they can be more effectively investigated by using many linear algebraic tools. Despite this may seem somehow to be rather trivial, there are a lot of theoretical fine tuning issues in the construction of true integral representations over true intervals on real axis or paths in complex domains. This work is devoted to focus on this issue starting from scratch for better understanding of the matter. The example cases are chosen to best illuminate the situations to get information for future generalization even though the work can be considered at somehow introductory level.

  15. Fine-tuning of macrophage activation using synthetic rocaglate derivatives

    PubMed Central

    Bhattacharya, Bidisha; Chatterjee, Sujoy; Devine, William G.; Kobzik, Lester; Beeler, Aaron B.; Porco, John A.; Kramnik, Igor

    2016-01-01

    Drug-resistant bacteria represent a significant global threat. Given the dearth of new antibiotics, host-directed therapies (HDTs) are especially desirable. As IFN-gamma (IFNγ) plays a central role in host resistance to intracellular bacteria, including Mycobacterium tuberculosis, we searched for small molecules to augment the IFNγ response in macrophages. Using an interferon-inducible nuclear protein Ipr1 as a biomarker of macrophage activation, we performed a high-throughput screen and identified molecules that synergized with low concentration of IFNγ. Several active compounds belonged to the flavagline (rocaglate) family. In primary macrophages a subset of rocaglates 1) synergized with low concentrations of IFNγ in stimulating expression of a subset of IFN-inducible genes, including a key regulator of the IFNγ network, Irf1; 2) suppressed the expression of inducible nitric oxide synthase and type I IFN and 3) induced autophagy. These compounds may represent a basis for macrophage-directed therapies that fine-tune macrophage effector functions to combat intracellular pathogens and reduce inflammatory tissue damage. These therapies would be especially relevant to fighting drug-resistant pathogens, where improving host immunity may prove to be the ultimate resource. PMID:27086720

  16. ''Fine tuning'' programmable pacemakers using the MUGA study

    SciTech Connect

    Videen, J.S.; Huang, S.K.; Bazgan, I.D.; Mechling, E.; Patton, D.D.

    1985-05-01

    Programmable pacemakers (PPM) can be programmed to sense, stimulate, or inhibit atrial (A) and/or ventricular (V) electrical activity, and include variable A-V delays and other options. Selecting the optimum combination of settings for an individual patient can be a formidable task in the absence of noninvasive, objective, quantifiable measures of cardiac function. The authors attempt to determine whether the MUGA study could be adapted to such a task. MUGA studies were performed on 13 patients (pts) with PPM who had varying degrees of A-V block, during various settings of the PPM's. Studies were carried out 5-10 min. after pacing mode and A-V delay were changed, with the pt resting and supine. All 5 MUGA studies were carried out after a single injection of Tc-99m labeled autologous red blood cells. The results show that the VDD mode brings about a higher left ventricular ejection fraction (LVEF) and cardiac output (CO) than the DVI mode, and that either of these dual-chamber pacing modes produces a higher LVEF and CO than single-chamber pacing (VVI). Furthermore, a longer A-V delay was shown to improve LVEF and CO in patients with initially low LVEF. The MUGA study is simple, noninvasive, objective, and quantifiable, and can easily be repeated several times following a single injection. It can be used to ''fine tune'' programmable pacemakers for optimum hemodynamic performance.

  17. Pentagone internalises glypicans to fine-tune multiple signalling pathways

    PubMed Central

    Norman, Mark; Vuilleumier, Robin; Springhorn, Alexander; Gawlik, Jennifer; Pyrowolakis, George

    2016-01-01

    Tight regulation of signalling activity is crucial for proper tissue patterning and growth. Here we investigate the function of Pentagone (Pent), a secreted protein that acts in a regulatory feedback during establishment and maintenance of BMP/Dpp morphogen signalling during Drosophila wing development. We show that Pent internalises the Dpp co-receptors, the glypicans Dally and Dally-like protein (Dlp), and propose that this internalisation is important in the establishment of a long range Dpp gradient. Pent-induced endocytosis and degradation of glypicans requires dynamin- and Rab5, but not clathrin or active BMP signalling. Thus, Pent modifies the ability of cells to trap and transduce BMP by fine-tuning the levels of the BMP reception system at the plasma membrane. In addition, and in accordance with the role of glypicans in multiple signalling pathways, we establish a requirement of Pent for Wg signalling. Our data propose a novel mechanism by which morphogen signalling is regulated. DOI: http://dx.doi.org/10.7554/eLife.13301.001 PMID:27269283

  18. Zipf's Law and Criticality in Multivariate Data without Fine-Tuning

    NASA Astrophysics Data System (ADS)

    Schwab, David J.; Nemenman, Ilya; Mehta, Pankaj

    2014-08-01

    The joint probability distribution of states of many degrees of freedom in biological systems, such as firing patterns in neural networks or antibody sequence compositions, often follows Zipf's law, where a power law is observed on a rank-frequency plot. This behavior has been shown to imply that these systems reside near a unique critical point where the extensive parts of the entropy and energy are exactly equal. Here, we show analytically, and via numerical simulations, that Zipf-like probability distributions arise naturally if there is a fluctuating unobserved variable (or variables) that affects the system, such as a common input stimulus that causes individual neurons to fire at time-varying rates. In statistics and machine learning, these are called latent-variable or mixture models. We show that Zipf's law arises generically for large systems, without fine-tuning parameters to a point. Our work gives insight into the ubiquity of Zipf's law in a wide range of systems.

  19. Spectral Fine Tuning of Cyanine Dyes: Electron Donor-Acceptor Substituted Analogues of Thiazole Orange†

    PubMed Central

    Rastede, Elizabeth E.; Tanha, Matteus; Yaron, David; Watkins, Simon C.; Waggoner, Alan S.; Armitage, Bruce A.

    2015-01-01

    The introduction of electron donor and acceptor groups at strategic locations on a fluorogenic cyanine dye allows fine-tuning of the absorption and emission spectra while preserving the ability of the dye to bind to biomolecular hosts such as double-stranded DNA and a single-chain antibody fragment originally selected for binding to the parent unsubstituted dye, thiazole orange (TO). The observed spectral shifts are consistent with calculated HOMO-LUMO energy gaps and reflect electron density localization on the quinoline half of TO in the LUMO. A dye bearing donating methoxy and withdrawing trifluoromethyl groups on the benzothiazole and quinoline rings, respectively, shifts the absorption spectrum to sufficiently longer wavelengths to allow excitation at green wavelengths as opposed to the parent dye, which is optimally excited in the blue. PMID:26171668

  20. SUSY models under siege: LHC constraints and electroweak fine-tuning

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Mickelson, Dan; Padeffke-Kirkland, Maren

    2014-06-01

    Recent null results from LHC8 supersymmetry (SUSY) searches along with the discovery of a standard model (SM)-like Higgs boson with mass mh≃125.5 GeV indicates sparticle masses in the TeV range, causing tension with conventional measures of electroweak fine-tuning. We propose a simple fine-tuning rule which should be followed under any credible evaluation of fine-tuning. We believe that overestimates of electroweak fine-tuning by conventional measures all arise from violations of this rule. We show that to gain accord with the fine-tuning rule, then both the Higgs mass and the traditional ΔBG fine-tuning measures reduce to the model-independent electroweak fine-tuning measure ΔEW. This occurs by combining dependent contributions to mZ or mh into independent units. Then, using ΔEW, we evaluate EW fine-tuning for a variety of SUSY models including mSUGRA, NUHM1, NUHM2, mGMSB, mAMSB, hyper-charged AMSB, gaugino AMSB and nine cases of mixed moduli-anomaly (mirage) mediated SUSY breaking models while respecting LHC Higgs mass and B-decay constraints (we do not impose LHC8 sparticle mass constraints due to the possibility of compressed spectra within many of these models). We find mSUGRA, mGMSB and the AMSB models all to be highly fine-tuned. The NUHM1 model is moderately fine-tuned while NUHM2 which allows for radiatively driven naturalness (RNS) allows for fine-tuning at a meager 10% level in the case where m(Higgsinos)˜100-200 GeV and the TeV-scale top squarks are well mixed. Models with RNS may or may not be detectable at LHC14. A √s ˜500 GeV e+e- collider will be required to make a definitive search for the requisite light Higgsinos.

  1. Fine-tuning the metallic core-shell nanostructures for plasmonic perovskite solar cells

    NASA Astrophysics Data System (ADS)

    Tang, Mingyao; Zhou, Lin; Gu, Shuai; Zhu, Weidong; Wang, Yang; Xu, Jun; Deng, Zhengtao; Yu, Tao; Lu, Zhenda; Zhu, Jia

    2016-10-01

    Plasmonic nanostructures have been widely applied in various types of solar cells for improving light absorption and therefore energy conversion efficiency. In this work, we demonstrate that Au@SiO2 core-shell nanorods with finely tuned aspect ratios are highly beneficial for the CH3NH3PbI3 perovskite solar cell, with the simultaneous enhancement of solar absorption and external quantum efficiency across a broad range of wavelength, which can contribute to the increased cross-sectional scattering and spectrally absorbing energy density. Therefore, a 16.1% improvement (from 12.4% to 14.4%) of the maximal external quantum efficiency can be achieved by such structures, accompanied with a 13.5% improvement (from 20.0 to 22.7 mA/cm2) of the maximal short-circuit current density and little improvement of the open-circuit voltage and fill factor. Our findings also provide a general guideline to design solar cell structures with thinner absorber layers and improve the absorption in other poorly light-absorbing devices like lead free perovskite solar cells as well.

  2. Reducing the fine-tuning of gauge-mediated SUSY breaking

    NASA Astrophysics Data System (ADS)

    Casas, J. Alberto; Moreno, Jesús M.; Robles, Sandra; Rolbiecki, Krzysztof

    2016-08-01

    Despite their appealing features, models with gauge-mediated supersymmetry breaking (GMSB) typically present a high degree of fine-tuning, due to the initial absence of the top trilinear scalar couplings, A_t=0. In this paper, we carefully evaluate such a tuning, showing that is worse than per mil in the minimal model. Then, we examine some existing proposals to generate A_t≠ 0 term in this context. We find that, although the stops can be made lighter, usually the tuning does not improve (it may be even worse), with some exceptions, which involve the generation of A_t at one loop or tree level. We examine both possibilities and propose a conceptually simplified version of the latter; which is arguably the optimum GMSB setup (with minimal matter content), concerning the fine-tuning issue. The resulting fine-tuning is better than one per mil, still severe but similar to other minimal supersymmetric standard model constructions. We also explore the so-called "little A_t^2/m^2 problem", i.e. the fact that a large A_t-term is normally accompanied by a similar or larger sfermion mass, which typically implies an increase in the fine-tuning. Finally, we find the version of GMSB for which this ratio is optimized, which, nevertheless, does not minimize the fine-tuning.

  3. Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability

    PubMed Central

    Bohovych, Iryna; Fernandez, Mario R.; Rahn, Jennifer J.; Stackley, Krista D.; Bestman, Jennifer E.; Anandhan, Annadurai; Franco, Rodrigo; Claypool, Steven M.; Lewis, Robert E.; Chan, Sherine S. L.; Khalimonchuk, Oleh

    2015-01-01

    Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism – intramitochondrial quality control (IMQC) – is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the respiratory supercomplexes and thus balanced and tunable bioenergetic function. Loss of Oma1 activity leads to a specific destabilization of respiratory supercomplexes and consequently to unbalanced respiration and progressive respiratory decline in yeast. Similarly, experiments in cultured Oma1-deficient mouse embryonic fibroblasts link together impeded supercomplex stability and inability to maintain proper respiration under conditions that require maximal bioenergetic output. Finally, transient knockdown of OMA1 in zebrafish leads to impeded bioenergetics and morphological defects of the heart and eyes. Together, our biochemical and genetic studies in yeast, zebrafish and mammalian cells identify a novel and conserved physiological role for Oma1 protease in fine-tuning of respiratory function. We suggest that this unexpected physiological role is important for cellular bioenergetic plasticity and may contribute to Oma1-associated disease phenotypes in humans. PMID:26365306

  4. Fibroblast Growth Factor 21 Protects against Atherosclerosis via Fine-Tuning the Multiorgan Crosstalk

    PubMed Central

    Jin, Leigang; Lin, Zhuofeng

    2016-01-01

    Fibroblast growth factor 21 (FGF21) is a metabolic hormone with pleiotropic effects on energy metabolism and insulin sensitivity. Besides its antiobese and antidiabetic activity, FGF21 also possesses the protective effects against atherosclerosis. Circulating levels of FGF21 are elevated in patients with atherosclerosis, macrovascular and microvascular complications of diabetes, possibly due to a compensatory upregulation. In apolipoprotein E-deficient mice, formation of atherosclerotic plaques is exacerbated by genetic depletion of FGF21, but is attenuated upon replenishment with recombinant FGF21. However, the blood vessel is not the direct target of FGF21, and the antiatherosclerotic activity of FGF21 is attributed to its actions in adipose tissues and liver. In adipocytes, FGF21 promotes secretion of adiponectin, which in turn acts directly on blood vessels to reduce endothelial dysfunction, inhibit proliferation of smooth muscle cells and block conversion of macrophages to foam cells. Furthermore, FGF21 suppresses cholesterol biosynthesis and attenuates hypercholesterolemia by inhibiting the transcription factor sterol regulatory element-binding protein-2 in hepatocytes. The effects of FGF21 on elevation of adiponectin and reduction of hypercholesterolemia are also observed in a phase-1b clinical trial in patients with obesity and diabetes. Therefore, FGF21 exerts its protection against atherosclerosis by fine-tuning the interorgan crosstalk between liver, brain, adipose tissue, and blood vessels. PMID:26912152

  5. Localized electrical fine tuning of passive microwave and radio frequency devices

    DOEpatents

    Findikoglu, Alp T.

    2001-04-10

    A method and apparatus for the localized electrical fine tuning of passive multiple element microwave or RF devices in which a nonlinear dielectric material is deposited onto predetermined areas of a substrate containing the device. An appropriate electrically conductive material is deposited over predetermined areas of the nonlinear dielectric and the signal line of the device for providing electrical contact with the nonlinear dielectric. Individual, adjustable bias voltages are applied to the electrically conductive material allowing localized electrical fine tuning of the devices. The method of the present invention can be applied to manufactured devices, or can be incorporated into the design of the devices so that it is applied at the time the devices are manufactured. The invention can be configured to provide localized fine tuning for devices including but not limited to coplanar waveguides, slotline devices, stripline devices, and microstrip devices.

  6. Fine-tuned Bee-Flower Coevolutionary State Hidden within Multiple Pollination Interactions

    PubMed Central

    Shimizu, Akira; Dohzono, Ikumi; Nakaji, Masayoshi; Roff, Derek A.; Miller III, Donald G.; Osato, Sara; Yajima, Takuya; Niitsu, Shûhei; Utsugi, Nozomu; Sugawara, Takashi; Yoshimura, Jin

    2014-01-01

    Relationships between flowers and pollinators are generally considered cases of mutualism since both agents gain benefits. Fine-tuned adaptations are usually found in the form of strict one-to-one coevolution between species. Many insect pollinators are, however, considered generalists, visiting numerous kinds of flowers, and many flower species (angiosperms) are also considered generalists, visited by many insect pollinators. We here describe a fine-tuned coevolutionary state of a flower-visiting bee that collects both nectar and pollen from an early spring flower visited by multiple pollinators. Detailed morphology of the bee proboscis is shown to be finely adjusted to the floral morphology and nectar production of the flower. Behavioral observations also confirm the precision of this mutualism. Our results suggest that a fine-tuned one-to-one coevolutionary state between a flower species and a pollinator species might be common, but frequently overlooked, in multiple flower-pollinator interactions. PMID:24496444

  7. Fine-tuning in GGM and the 126 GeV Higgs particle

    NASA Astrophysics Data System (ADS)

    Lalak, Zygmunt; Lewicki, Marek

    2013-05-01

    In this paper we reanalyze the issue of fine-tuning in supersymmetric models which feature Generalized Gauge Mediation (GGM) in the light of recent measurement of the mass of the light Higgs particle and taking into account available data on the value of the muon magnetic moment {g_{μ }}-2 . We consider GGM models with 3, 5 and 6 input parameters and reduce the fine-tuning by assuming simple relations between them at the high scale. We are able to find solutions which give the correct value of the light Higgs mass and are less fine-tuned than models with standard gauge mediation (and with gravity mediation), however one never finds fine-tung measure lower than about 102 if one neglects the data on {g_{μ }}-2 and and about four times more if one takes the constraint given by {g_{μ }}-2 into account. In general the current {g_{μ }}-2 data push the models towards the high fine-tuning region. It is interesting to note, that once one removes the contributions to the finetuning induced by μ and B μ , then in the case with neglected {g_{μ }}-2 constraint one can easily find realistic vacua with fine-tuning of order 1 or lower, while the fine-tung remains always large when the {g_{μ }}-2 constraint is enforced. One should note, that in the last case even a small shift of the light Higgs mass towards smaller values both reduces fine-tuning and helps to improve agreement of a model with {g_{μ }}-2 data.

  8. Fine-Tuning Language Policy in Hong Kong Education: Stakeholders' Perceptions, Practices and Challenges

    ERIC Educational Resources Information Center

    Chan, Jim Y. H.

    2014-01-01

    The present study evaluates the impact of the fine-tuning medium of instruction (MOI) policy in Hong Kong in the early stages of its implementation. It explores the key stakeholders' perspectives on a school-based policy via a case study, which gathered multiple sources of qualitative data (i.e. focus groups/interviews, open-ended questionnaires,…

  9. Cdc5-Dependent Asymmetric Localization of Bfa1 Fine-Tunes Timely Mitotic Exit

    PubMed Central

    Bahk, Young Yil; Song, Kiwon

    2012-01-01

    In budding yeast, the major regulator of the mitotic exit network (MEN) is Tem1, a GTPase, which is inhibited by the GTPase-activating protein (GAP), Bfa1/Bub2. Asymmetric Bfa1 localization to the bud-directed spindle pole body (SPB) during metaphase also controls mitotic exit, but the molecular mechanism and function of this localization are not well understood, particularly in unperturbed cells. We identified four novel Cdc5 target residues within the Bfa1 C-terminus: 452S, 453S, 454S, and 559S. A Bfa1 mutant in which all of these residues had been changed to alanine (Bfa14A) persisted on both SPBs at anaphase and was hypo-phosphorylated, despite retaining its GAP activity for Tem1. A Bfa1 phospho-mimetic mutant in which all of these residues were switched to aspartate (Bfa14D) always localized asymmetrically to the SPB. These observations demonstrate that asymmetric localization of Bfa1 is tightly linked to its Cdc5-dependent phosphorylation, but not to its GAP activity. Consistent with this, in kinase-defective cdc5-2 cells Bfa1 was not phosphorylated and localized to both SPBs, whereas Bfa14D was asymmetrically localized. BFA14A cells progressed through anaphase normally but displayed delayed mitotic exit in unperturbed cell cycles, while BFA14D cells underwent mitotic exit with the same kinetics as wild-type cells. We suggest that Cdc5 induces the asymmetric distribution of Bfa1 to the bud-directed SPB independently of Bfa1 GAP activity at anaphase and that Bfa1 asymmetry fine-tunes the timing of MEN activation in unperturbed cell cycles. PMID:22253605

  10. A versatile apparatus for the fine-tuned synthesis of cluster-based materials

    SciTech Connect

    Fischer, A. Kruk, R.; Hahn, H.

    2015-02-15

    In this paper, a custom-designed experimental setup for the fine-tuned synthesis of various cluster–based materials is presented. Providing custom-designed deposition stages and special sample holders it offers a high degree of control over the sample characteristics such as the cluster size, cluster amounts, and sample homogeneity in combination with high sample purity. The system is capable of producing thin films of pure clusters and various cluster-matrix combinations with cluster sizes ranging from single atoms up to aggregates of several thousand atoms. Two custom-designed deposition stages are available, one utilizes the full cluster beam, yielding micrograms of pure clusters within a few hours and the second one uses mass-separated clusters (mass-resolution between 2% and 10%), yielding nanograms of pure clusters in the same timescale. Furthermore, at the second deposition stage, a variety of matrix materials can be co-deposited at a controlled sample temperature between 153 K and 673 K. In order to prove the capabilities of the apparatus, a series of experiments with Fe clusters embedded in Ag matrices with different volume fractions of clusters were carried out. Energy dispersive X-ray spectroscopy measurements revealed that the amount of deposited clusters as well as the sample homogeneity can be controlled with an outstanding accuracy of 10%. Additional measurements of the magnetic properties indicated the presence of separated clusters for volume fractions of clusters around 2 volume percent (vol. %), while above this concentration (10 vol. %) a partial aggregation of the clusters was observed. It was also shown that the resulting thin films are nearly oxygen free, which ascertains that oxygen sensitive materials can be safely handled in this newly developed apparatus.

  11. Novel players fine-tune plant trade-offs.

    PubMed

    Gimenez-Ibanez, Selena; Boter, Marta; Solano, Roberto

    2015-01-01

    Jasmonates (JAs) are essential signalling molecules that co-ordinate the plant response to biotic and abiotic challenges, as well as co-ordinating several developmental processes. Huge progress has been made over the last decade in understanding the components and mechanisms that govern JA perception and signalling. The bioactive form of the hormone, (+)-7-iso-jasmonyl-L-isoleucine (JA-Ile), is perceived by the COI1-JAZ co-receptor complex. JASMONATE ZIM DOMAIN (JAZ) proteins also act as direct repressors of transcriptional activators such as MYC2. In the emerging picture of JA-Ile perception and signalling, COI1 operates as an E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ repressors for degradation by the 26S proteasome, thereby derepressing transcription factors such as MYC2, which in turn activate JA-Ile-dependent transcriptional reprogramming. It is noteworthy that MYCs and different spliced variants of the JAZ proteins are involved in a negative regulatory feedback loop, which suggests a model that rapidly turns the transcriptional JA-Ile responses on and off and thereby avoids a detrimental overactivation of the pathway. This chapter highlights the most recent advances in our understanding of JA-Ile signalling, focusing on the latest repertoire of new targets of JAZ proteins to control different sets of JA-Ile-mediated responses, novel mechanisms of negative regulation of JA-Ile signalling, and hormonal cross-talk at the molecular level that ultimately determines plant adaptability and survival.

  12. Carbohydrate-binding modules: fine-tuning polysaccharide recognition

    PubMed Central

    2004-01-01

    The enzymic degradation of insoluble polysaccharides is one of the most important reactions on earth. Despite this, glycoside hydrolases attack such polysaccharides relatively inefficiently as their target glycosidic bonds are often inaccessible to the active site of the appropriate enzymes. In order to overcome these problems, many of the glycoside hydrolases that utilize insoluble substrates are modular, comprising catalytic modules appended to one or more non-catalytic CBMs (carbohydrate-binding modules). CBMs promote the association of the enzyme with the substrate. In view of the central role that CBMs play in the enzymic hydrolysis of plant structural and storage polysaccharides, the ligand specificity displayed by these protein modules and the mechanism by which they recognize their target carbohydrates have received considerable attention since their discovery almost 20 years ago. In the last few years, CBM research has harnessed structural, functional and bioinformatic approaches to elucidate the molecular determinants that drive CBM–carbohydrate recognition. The present review summarizes the impact structural biology has had on our understanding of the mechanisms by which CBMs bind to their target ligands. PMID:15214846

  13. Fine-tuning criteria for inflation and the search for primordial gravitational waves

    SciTech Connect

    Bird, Simeon; Peiris, Hiranya V.; Easther, Richard

    2008-10-15

    We revisit arguments that simple models of inflation with a small red tilt in the scalar power spectrum generically yield an observable tensor spectrum. We show that criteria for fine-tuning based upon the algebraic simplicity of the potential depend strongly upon the explicit assumptions they incorporate, particularly regarding the end of inflation. In addition, some models with algebraically simple potentials require carefully tuned initial field configurations, and not all types of fine-tuning are identifiable via the algebraic simplicity of the potential. Conversely, in the absence of a strong prior on the mechanism that ends inflation, we demonstrate the existence of potentials with vanishingly small tensor amplitudes which are natural in terms of both their algebraic form and initial conditions. We thus argue that proposed experiments (CMBPol or BBO) which make highly sensitive measurements of the tensor amplitude cannot definitively rule out the inflationary paradigm.

  14. An Undecanuclear Ferrimagnetic Cu9Dy2 Single Molecule Magnet Achieved through Ligand Fine-Tuning.

    PubMed

    Kühne, Irina A; Kostakis, George E; Anson, Christopher E; Powell, Annie K

    2016-05-02

    We describe the concept of increasing the nuclearity of a previously reported high-spin Cu5Gd2 core using a "fine-tuning" ligand approach. Thus, two Cu9Ln2 coordination clusters, with Ln = Dy (1) and Gd (2), were synthesized with the Gd compound having a ground spin state of (17)/2 and the Dy analogue showing single-molecule-magnet behavior in zero field.

  15. Controlling the fine-tuning problem with singlet scalar dark matter

    NASA Astrophysics Data System (ADS)

    Chakraborty, Indrani; Kundu, Anirban

    2013-03-01

    Assuming that no other conventional new physics is found immediately at the LHC, we investigate how just the consistent solution of the scalar mass hierarchy problem points towards the minimal necessary field content. We show that to ameliorate the fine-tuning problem, one needs to introduce more scalar degrees of freedom. The simplest solution is one or more real singlets (with the possibility of combining two of them in a complex singlet), which may act as viable cold dark matter candidates, because the constraints on the scalar potential disfavor any mixing between the new scalar(s) with the SM doublet. Furthermore, the fine-tuning problem of the new scalars necessitates the introduction of vectorlike fermions. Thus, singlet scalar(s) and vector fermions are minimal enhancements over the Standard Model to alleviate the fine-tuning problem. We also show that the model predicts Landau poles for all the scalar couplings, whose positions depend only on the number of such singlets. Thus, introduction of some new physics at that scale becomes inevitable. We also discuss how the model confronts the LHC constraints and the latest XENON100 data.

  16. How conventional measures overestimate electroweak fine-tuning in supersymmetric theory

    NASA Astrophysics Data System (ADS)

    Baer, Howard; Barger, Vernon; Mickelson, Dan

    2013-11-01

    The lack of evidence for superparticles at the CERN LHC, along with the rather high value of the Higgs boson mass, has sharpened the perception that what remains of supersymmetric model parameter space suffers a high degree of electroweak fine-tuning (EWFT). We compare three different measures of fine-tuning in supersymmetric models. First, ΔHS measures a subset of terms containing large log contributions to mZ (and mh) that are inevitable in models defined at scales much higher than the electroweak scale. Second, the traditional ΔBG measures fractional variation in mZ against fractional variation of model parameters and allows for correlations among high scale parameters which are not included in ΔHS. Third, the model-independent ΔEW measures how naturally a model can generate the measured value of mZ=91.2GeV (or mh) in terms of weak scale parameters alone. We hypothesize an overarching ultimate theory (UTH) wherein the high scale soft terms are all correlated. The UTH might be contained within the more general effective supersymmetry theories which are popular in the literature. In the case of ΔHS, EWFT can be grossly overestimated by neglecting additional nonindependent terms which lead to large cancellations. In the case of ΔBG, EWFT can be overestimated by applying the measure to the effective theories instead of to the UTH. The measure ΔEW allows for the possibility of parameter correlations which should be present in the UTH and, since it is model independent, provides the same value of EWFT for the effective theories as should occur for the UTH. We find that the well-known minimal supergravity model/constrained minimal supersymmetric model is fine-tuned under all three measures so that it is unlikely to contain the UTH. The nonuniversal Higgs model NUHM2 appears fine-tuned with ΔHS,BG≳103. But since ΔEW can be as small as 7 (corresponding to 14% fine-tuning), it may contain the UTH for parameter ranges which allow for low true EWFT.

  17. Fine-tuning and vacuum stability in the Wilsonian effective action

    NASA Astrophysics Data System (ADS)

    Krajewski, Tomasz; Lalak, Zygmunt

    2015-10-01

    We have computed the Wilsonian effective action in a simple model with a spontaneously broken chiral parity. The Wilsonian running of relevant parameters makes it possible to discuss in a consistent manner the issues of fine-tuning and the stability of the scalar potential. This has been compared with the standard picture based on a Gell-Mann-Low running. Since the Wilsonian running automatically includes integration of heavy degrees of freedom, the running differs markedly from the Gell-Mann-Low version. Similar behavior can be observed: the scalar mass-squared parameter and the quartic coupling can change sign from a positive to a negative one, due to the running which causes a spontaneous symmetry breaking or an instability in the renormalizable part of the potential for a given range of scales. However, care must be taken when drawing conclusions, because of the truncation of higher-dimension operators. Taking the scalar field's amplitude near the cutoff Λ may cancel the suppression due to the scale, and only the suppression due to small couplings partially justifies the truncation in this region. Also, when taking the cutoff higher, to include larger amplitudes of the fields, the higher-order irrelevant operators, whose coefficients grow with the scale, may affect the conclusion about the stability. The Gell-Mann-Low running allows one to resume relatively easily a class of operators corresponding to large logarithms to the form of the renormalization group equation improved effective potential which is valid over a huge range of scales. In the Wilsonian approach this would correspond to following the running of a large number of irrelevant operators, which is technically problematic. As for the issue of the fine-tuning, since in the Wilsonian approach power-law terms are not subtracted, one can clearly observe the quadratic sensitivity of a fine-tuning measure to the change of the cutoff scale. The Wilsonian version of the radiative symmetry

  18. An Ensemble of Fine-Tuned Convolutional Neural Networks for Medical Image Classification.

    PubMed

    Kumar, Ashnil; Kim, Jinman; Lyndon, David; Fulham, Michael; Feng, Dagan

    2017-01-01

    The availability of medical imaging data from clinical archives, research literature, and clinical manuals, coupled with recent advances in computer vision offer the opportunity for image-based diagnosis, teaching, and biomedical research. However, the content and semantics of an image can vary depending on its modality and as such the identification of image modality is an important preliminary step. The key challenge for automatically classifying the modality of a medical image is due to the visual characteristics of different modalities: some are visually distinct while others may have only subtle differences. This challenge is compounded by variations in the appearance of images based on the diseases depicted and a lack of sufficient training data for some modalities. In this paper, we introduce a new method for classifying medical images that uses an ensemble of different convolutional neural network (CNN) architectures. CNNs are a state-of-the-art image classification technique that learns the optimal image features for a given classification task. We hypothesise that different CNN architectures learn different levels of semantic image representation and thus an ensemble of CNNs will enable higher quality features to be extracted. Our method develops a new feature extractor by fine-tuning CNNs that have been initialized on a large dataset of natural images. The fine-tuning process leverages the generic image features from natural images that are fundamental for all images and optimizes them for the variety of medical imaging modalities. These features are used to train numerous multiclass classifiers whose posterior probabilities are fused to predict the modalities of unseen images. Our experiments on the ImageCLEF 2016 medical image public dataset (30 modalities; 6776 training images, and 4166 test images) show that our ensemble of fine-tuned CNNs achieves a higher accuracy than established CNNs. Our ensemble also achieves a higher accuracy than methods in

  19. Group I Metabotropic Glutamate Receptor Interacting Proteins: Fine-Tuning Receptor Functions in Health and Disease

    PubMed Central

    Kalinowska, Magdalena; Francesconi, Anna

    2016-01-01

    Group I metabotropic glutamate receptors mediate slow excitatory neurotransmission in the central nervous system and are critical to activity-dependent synaptic plasticity, a cellular substrate of learning and memory. Dysregulated receptor signaling is implicated in neuropsychiatric conditions ranging from neurodevelopmental to neurodegenerative disorders. Importantly, group I metabotropic glutamate receptor signaling functions can be modulated by interacting proteins that mediate receptor trafficking, expression and coupling efficiency to signaling effectors. These interactions afford cell- or pathway-specific modulation to fine-tune receptor function, thus representing a potential target for pharmacological interventions in pathological conditions. PMID:27296642

  20. Anthropic Reasoning about Fine-Tuning, and Neoclassical Cosmology: Providence, Omnipresence, and Observation Selection Theory

    NASA Astrophysics Data System (ADS)

    Walker, Theodore, Jr.

    2011-10-01

    Anthropic reasoning about observation selection effects upon the appearance of cosmic providential fine-tuning (fine-tuning that provides for life) is often motivated by a desire to avoid theological implications (implications favoring the idea of a divine cosmic provider) without appealing to sheer lucky-for-us-cosmic-jackpot happenstance and coincidence. Cosmic coincidence can be rendered less incredible by appealing to a multiverse context. Cosmic providence can be rendered non-theological by appealing to an agent-less providential purpose, or by appealing to less-than-omnipresent/local providers, such as alien intelligences creating life- providing baby universes. Instead of choosing either cosmic coincidence or cosmic providence, as though they were mutually exclusive; it is better to accept both. Neoclassical thought accepts coincidence and providence, plus many local providers and one omnipresent provider. Moreover, fundamental observation selection theory should distinguish the many local observers of some events from the one omnipresent observer of all events. Accepting both coincidence and providence avoids classical theology (providence without coincidence) and classical atheism (coincidence without providence), but not neoclassical theology (providence with coincidence). Cosmology cannot avoid the idea of an all-inclusive omnipresent providential dice-throwing living-creative whole of reality, an idea essential to neoclassical theology, and to neoclassical cosmology.

  1. Nonparametric Fine Tuning of Mixtures: Application to Non-Life Insurance Claims Distribution Estimation

    NASA Astrophysics Data System (ADS)

    Sardet, Laure; Patilea, Valentin

    When pricing a specific insurance premium, actuary needs to evaluate the claims cost distribution for the warranty. Traditional actuarial methods use parametric specifications to model claims distribution, like lognormal, Weibull and Pareto laws. Mixtures of such distributions allow to improve the flexibility of the parametric approach and seem to be quite well-adapted to capture the skewness, the long tails as well as the unobserved heterogeneity among the claims. In this paper, instead of looking for a finely tuned mixture with many components, we choose a parsimonious mixture modeling, typically a two or three-component mixture. Next, we use the mixture cumulative distribution function (CDF) to transform data into the unit interval where we apply a beta-kernel smoothing procedure. A bandwidth rule adapted to our methodology is proposed. Finally, the beta-kernel density estimate is back-transformed to recover an estimate of the original claims density. The beta-kernel smoothing provides an automatic fine-tuning of the parsimonious mixture and thus avoids inference in more complex mixture models with many parameters. We investigate the empirical performance of the new method in the estimation of the quantiles with simulated nonnegative data and the quantiles of the individual claims distribution in a non-life insurance application.

  2. Fine-tuning with brane-localized flux in 6D supergravity

    NASA Astrophysics Data System (ADS)

    Niedermann, Florian; Schneider, Robert

    2016-02-01

    There are claims in the literature that the cosmological constant problem could be solved in a braneworld model with two large (micron-sized) supersymmetric extra dimensions. The mechanism relies on two basic ingredients: first, the cosmological constant only curves the compact bulk geometry into a rugby shape while the 4D curvature stays flat. Second, a brane-localized flux term is introduced in order to circumvent Weinberg's fine-tuning argument, which otherwise enters here through a backdoor via the flux quantization condition. In this paper, we show that the latter mechanism does not work in the way it was designed: the only localized flux coupling that guarantees a flat on-brane geometry is one which preserves the scale invariance of the bulk theory. Consequently, Weinberg's argument applies, making a fine-tuning necessary again. The only remaining window of opportunity lies within scale invariance breaking brane couplings, for which the tuning could be avoided. Whether the corresponding 4D curvature could be kept under control and in agreement with the observed value will be answered in our companion paper [1].

  3. Activation of oxygen-mediating pathway using copper ions: fine-tuning of growth kinetics in gold nanorod overgrowth.

    PubMed

    Liu, Wenqi; Zhang, Hui; Wen, Tao; Yan, Jiao; Hou, Shuai; Shi, Xiaowei; Hu, Zhijian; Ji, Yinglu; Wu, Xiaochun

    2014-10-21

    Growth kinetics plays an important role in the shape control of nanocrystals (NCs). Herein, we presented a unique way to fine-tune the growth kinetics via oxidative etching activated by copper ions. For the overgrowth of gold nanorods (Au NRs), competitive adsorption of dissolved oxygen on rod surface was found to slow down the overgrowth rate. Copper ions were able to remove the adsorbed oxygen species from the Au surface via oxidative etching, thus exposing more reaction sites for Au deposition. In this way, copper ions facilitated the overgrowth process. Furthermore, Cu(2+) rather than Cu(+) acted as the catalyst for the oxidative etching. Comparative study with Ag(+) indicated that Cu(2+) cannot regulate NC shapes via an underpotential deposition mechanism. In contrast, Ag(+) led to the formation of Au tetrahexahedra (THH) and a slight decrease of the growth rate at similar growth conditions. Combining the distinct roles of the two ions enabled elongated THH to be produced. Copper ions activating the O2 pathway suggested that dissolved oxygen has a strong affinity for the Au surface. Moreover, the results of NC-sensitized singlet oxygen ((1)O2) indicated that the absorbed oxygen species on the surface of Au NCs bounded with low-index facets mainly existed in the form of molecular O2.

  4. A voltage-dependent chloride channel fine-tunes photosynthesis in plants

    PubMed Central

    Herdean, Andrei; Teardo, Enrico; Nilsson, Anders K.; Pfeil, Bernard E.; Johansson, Oskar N.; Ünnep, Renáta; Nagy, Gergely; Zsiros, Ottó; Dana, Somnath; Solymosi, Katalin; Garab, Győző; Szabó, Ildikó; Spetea, Cornelia; Lundin, Björn

    2016-01-01

    In natural habitats, plants frequently experience rapid changes in the intensity of sunlight. To cope with these changes and maximize growth, plants adjust photosynthetic light utilization in electron transport and photoprotective mechanisms. This involves a proton motive force (PMF) across the thylakoid membrane, postulated to be affected by unknown anion (Cl−) channels. Here we report that a bestrophin-like protein from Arabidopsis thaliana functions as a voltage-dependent Cl− channel in electrophysiological experiments. AtVCCN1 localizes to the thylakoid membrane, and fine-tunes PMF by anion influx into the lumen during illumination, adjusting electron transport and the photoprotective mechanisms. The activity of AtVCCN1 accelerates the activation of photoprotective mechanisms on sudden shifts to high light. Our results reveal that AtVCCN1, a member of a conserved anion channel family, acts as an early component in the rapid adjustment of photosynthesis in variable light environments. PMID:27216227

  5. How SUMOylation Fine-Tunes the Fanconi Anemia DNA Repair Pathway

    PubMed Central

    Coleman, Kate E.; Huang, Tony T.

    2016-01-01

    Fanconi anemia (FA) is a rare human genetic disorder characterized by developmental defects, bone marrow failure and cancer predisposition, primarily due to a deficiency in the repair of DNA interstrand crosslinks (ICLs). ICL repair through the FA DNA repair pathway is a complicated multi-step process, involving at least 19 FANC proteins and coordination of multiple DNA repair activities, including homologous recombination, nucleotide excision repair and translesion synthesis (TLS). SUMOylation is a critical regulator of several DNA repair pathways, however, the role of this modification in controlling the FA pathway is poorly understood. Here, we summarize recent advances in the fine-tuning of the FA pathway by small ubiquitin-like modifier (SUMO)-targeted ubiquitin ligases (STUbLs) and other SUMO-related interactions, and discuss the implications of these findings in the design of novel therapeutics for alleviating FA-associated condition, including cancer. PMID:27148358

  6. Fine-Tuning the Properties of Doped Multifunctional Materials by Controlled Reduction of Dopants.

    PubMed

    Barroux, Hugo; Jiang, Tengfei; Paul, Camille; Massuyeau, Florian; Génois, Romain; Gordon, Elijah E; Whangbo, Myung-Hwan; Jobic, Stéphane; Gautier, Romain

    2017-03-02

    The physical properties of doped multifunctional compounds are commonly tuned by controlling the amount of dopants, but this control is limited because all the properties are influenced simultaneously by this single parameter. Here, we present a strategy that enables the fine-tuning of a specific combination of properties by controlling the reduction of dopants. The feasibility of this approach was demonstrated by optimizing the near-IR photoluminescence of strontium titanate SrTiO3 :Ni for potential applications in biomedicine for a range of absorbance in the visible/near-IR region. We discussed how material properties, such as luminescence, conductivity, or photocatalytic properties can be designed by carefully controlling the ratio of dopants in different oxidation states.

  7. Fine-tuning by strigolactones of root response to low phosphate.

    PubMed

    Kapulnik, Yoram; Koltai, Hinanit

    2016-03-01

    Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.

  8. Phenotypic flexibility of gape anatomy fine-tunes the aquatic prey-capture system of newts.

    PubMed

    Van Wassenbergh, Sam; Heiss, Egon

    2016-07-07

    A unique example of phenotypic flexibility of the oral apparatus is present in newts (Salamandridae) that seasonally change between an aquatic and a terrestrial habitat. Newts grow flaps of skin between their upper and lower jaws, the labial lobes, to partly close the corners of the mouth when they adopt an aquatic lifestyle during their breeding season. Using hydrodynamic simulations based on μCT-scans and cranial kinematics during prey-capture in the smooth newt (Lissotriton vulgaris), we showed that this phenotypic flexibility is an adaptive solution to improve aquatic feeding performance: both suction distance and suction force increase by approximately 15% due to the labial lobes. As the subsequent freeing of the corners of the mouth by resorption of the labial lobes is assumed beneficial for the terrestrial capture of prey by the tongue, this flexibility of the mouth fine-tunes the process of capturing prey throughout the seasonal switching between water and land.

  9. Phenotypic flexibility of gape anatomy fine-tunes the aquatic prey-capture system of newts

    PubMed Central

    Van Wassenbergh, Sam; Heiss, Egon

    2016-01-01

    A unique example of phenotypic flexibility of the oral apparatus is present in newts (Salamandridae) that seasonally change between an aquatic and a terrestrial habitat. Newts grow flaps of skin between their upper and lower jaws, the labial lobes, to partly close the corners of the mouth when they adopt an aquatic lifestyle during their breeding season. Using hydrodynamic simulations based on μCT-scans and cranial kinematics during prey-capture in the smooth newt (Lissotriton vulgaris), we showed that this phenotypic flexibility is an adaptive solution to improve aquatic feeding performance: both suction distance and suction force increase by approximately 15% due to the labial lobes. As the subsequent freeing of the corners of the mouth by resorption of the labial lobes is assumed beneficial for the terrestrial capture of prey by the tongue, this flexibility of the mouth fine-tunes the process of capturing prey throughout the seasonal switching between water and land. PMID:27383663

  10. Phenotypic flexibility of gape anatomy fine-tunes the aquatic prey-capture system of newts

    NASA Astrophysics Data System (ADS)

    van Wassenbergh, Sam; Heiss, Egon

    2016-07-01

    A unique example of phenotypic flexibility of the oral apparatus is present in newts (Salamandridae) that seasonally change between an aquatic and a terrestrial habitat. Newts grow flaps of skin between their upper and lower jaws, the labial lobes, to partly close the corners of the mouth when they adopt an aquatic lifestyle during their breeding season. Using hydrodynamic simulations based on μCT-scans and cranial kinematics during prey-capture in the smooth newt (Lissotriton vulgaris), we showed that this phenotypic flexibility is an adaptive solution to improve aquatic feeding performance: both suction distance and suction force increase by approximately 15% due to the labial lobes. As the subsequent freeing of the corners of the mouth by resorption of the labial lobes is assumed beneficial for the terrestrial capture of prey by the tongue, this flexibility of the mouth fine-tunes the process of capturing prey throughout the seasonal switching between water and land.

  11. Lorentz invariance and quantum gravity: an additional fine-tuning problem?

    PubMed

    Collins, John; Perez, Alejandro; Sudarsky, Daniel; Urrutia, Luis; Vucetich, Héctor

    2004-11-05

    Trying to combine standard quantum field theories with gravity leads to a breakdown of the usual structure of space time at around the Planck length, 1.6x10(-35) m, with possible violations of Lorentz invariance. Calculations of preferred-frame effects in quantum gravity have further motivated high precision searches for Lorentz violation. Here, we explain that combining known elementary particle interactions with a Planck-scale preferred frame gives rise to Lorentz violation at the percent level, some 20 orders of magnitude higher than earlier estimates, unless the bare parameters of the theory are unnaturally strongly fine tuned. Therefore an important task is not just the improvement of the precision of searches for violations of Lorentz invariance, but also the search for theoretical mechanisms for automatically preserving Lorentz invariance.

  12. Post-fabrication fine-tuning of photonic crystal quantum well infrared photodetectors

    NASA Astrophysics Data System (ADS)

    Schartner, S.; Kalchmair, S.; Andrews, A. M.; Klang, P.; Schrenk, W.; Strasser, G.

    2009-06-01

    Photonic crystal (PC) devices require high fabrication accuracy for on demand positioning of resonances. We describe post-fabrication fine-tuning of a PC quantum well infrared photodetector (QWIP) by sidewall-deposition of silicon nitride. The PC resonance was shifted over a bandwidth of 43 cm-1. From photoresponse measurements we calculated a tuning coefficient of ∂ν/∂dSiN=-0.06 cm-1/nm. The QWIP responsivity did not suffer from nitride absorption while the PC resonance increased by a factor of 1.6. This shows that post-fabrication tuning by dielectric deposition with, e.g., silicon nitride is a feasible method to achieve precise implementations of PC devices.

  13. Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species

    PubMed Central

    2016-01-01

    Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5′ untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool. PMID:27973777

  14. Improved transgene expression fine-tuning in mammalian cells using a novel transcription-translation network.

    PubMed

    Malphettes, Laetitia; Fussenegger, Martin

    2006-08-05

    Following the discovery of RNA interference (RNAi) and related phenomena, novel regulatory processes, attributable to small non-protein-coding RNAs, continue to emerge. Capitalizing on the ability of artificial short interfering RNAs (siRNAs) to trigger degradation of specific target transcripts, and thereby silence desired gene expression, we designed and characterized a generic transcription-translation network in which it is possible to fine-tune heterologous protein production by coordinated transcription and translation interventions using macrolide and tetracycline antibiotics. Integration of siRNA-specific target sequences (TAGs) into the 5' or 3' untranslated regions (5'UTR, 3'UTR) of a desired constitutive transcription unit rendered transgene-encoded protein (erythropoietin, EPO; human placental alkaline phosphatase, SEAP; human vascular endothelial growth factor 121, VEGF(121)) production in mammalian cells responsive to siRNA levels that can be fine-tuned by macrolide-adjustable RNA polymerase II- or III-dependent promoters. Coupling of such macrolide-responsive siRNA-triggered translation control with tetracycline-responsive transcription of tagged transgene mRNAs created an antibiotic-adjustable two-input transcription-translation network characterized by elimination of detectable leaky expression with no reduction in maximum protein production levels. This transcription-translation network revealed transgene mRNA depletion to be dependent on siRNA and mRNA levels and that translation control was able to eliminate basal expression inherent to current transcription control modalities. Coupled transcription-translation circuitries have the potential to lead the way towards composite artificial regulatory networks, to enable complex therapeutic interventions in future biopharmaceutical manufacturing, gene therapy and tissue engineering initiatives.

  15. Synthetic Core Promoters as Universal Parts for Fine-Tuning Expression in Different Yeast Species.

    PubMed

    Portela, Rui M C; Vogl, Thomas; Kniely, Claudia; Fischer, Jasmin E; Oliveira, Rui; Glieder, Anton

    2017-03-17

    Synthetic biology and metabolic engineering experiments frequently require the fine-tuning of gene expression to balance and optimize protein levels of regulators or metabolic enzymes. A key concept of synthetic biology is the development of modular parts that can be used in different contexts. Here, we have applied a computational multifactor design approach to generate de novo synthetic core promoters and 5' untranslated regions (UTRs) for yeast cells. In contrast to upstream cis-regulatory modules (CRMs), core promoters are typically not subject to specific regulation, making them ideal engineering targets for gene expression fine-tuning. 112 synthetic core promoter sequences were designed on the basis of the sequence/function relationship of natural core promoters, nucleosome occupancy and the presence of short motifs. The synthetic core promoters were fused to the Pichia pastoris AOX1 CRM, and the resulting activity spanned more than a 200-fold range (0.3% to 70.6% of the wild type AOX1 level). The top-ten synthetic core promoters with highest activity were fused to six additional CRMs (three in P. pastoris and three in Saccharomyces cerevisiae). Inducible CRM constructs showed significantly higher activity than constitutive CRMs, reaching up to 176% of natural core promoters. Comparing the activity of the same synthetic core promoters fused to different CRMs revealed high correlations only for CRMs within the same organism. These data suggest that modularity is maintained to some extent but only within the same organism. Due to the conserved role of eukaryotic core promoters, this rational design concept may be transferred to other organisms as a generic engineering tool.

  16. Fine-Tuning Medium-of-Instruction Policy in Hong Kong: Acquisition of Language and Content-Based Subject Knowledge

    ERIC Educational Resources Information Center

    Poon, Anita Y. K.; Lau, Connie M. Y.

    2016-01-01

    Facing a dramatic decline in English standards over the past decade, the Hong Kong Government introduced the "Fine-tuning Medium of Instruction (MOI) policy" in 2010 to address the grievances arising from different sectors in the community. Integrating content and language has become popular in second/foreign language teaching in recent…

  17. Fine-tuning the ubiquitin code at DNA double-strand breaks: deubiquitinating enzymes at work

    PubMed Central

    Citterio, Elisabetta

    2015-01-01

    Ubiquitination is a reversible protein modification broadly implicated in cellular functions. Signaling processes mediated by ubiquitin (ub) are crucial for the cellular response to DNA double-strand breaks (DSBs), one of the most dangerous types of DNA lesions. In particular, the DSB response critically relies on active ubiquitination by the RNF8 and RNF168 ub ligases at the chromatin, which is essential for proper DSB signaling and repair. How this pathway is fine-tuned and what the functional consequences are of its deregulation for genome integrity and tissue homeostasis are subject of intense investigation. One important regulatory mechanism is by reversal of substrate ubiquitination through the activity of specific deubiquitinating enzymes (DUBs), as supported by the implication of a growing number of DUBs in DNA damage response processes. Here, we discuss the current knowledge of how ub-mediated signaling at DSBs is controlled by DUBs, with main focus on DUBs targeting histone H2A and on their recent implication in stem cell biology and cancer. PMID:26442100

  18. The Parametric Study and Fine-Tuning of Bow-Tie Slot Antenna with Loaded Stub

    PubMed Central

    2017-01-01

    A printed Bow-Tie slot antenna with loaded stub is proposed and the effects of changing the dimensions of the slot area, the stub and load sizes are considered in this paper. These parameters have a considerable effect on the antenna characteristics as well as its performance. An in-depth parametric study of these dimensions is presented. This paper proposes the necessary conditions for initial approximation of dimensions needed to design this antenna. In order to achieve the desired performance of the antenna fine tuning of all sizes of these parameters is required. The parametric studies used in this paper provide proper trends for initiation and tuning the design. A prototype of the antenna for 1.7GHz to 2.6GHz band is fabricated. Measurements conducted verify that the designed antenna has wideband characteristics with 50% bandwidth around the center frequency of 2.1GHz. Conducted measurements for reflection coefficient (S11) and radiation pattern also validate our simulation results. PMID:28114354

  19. Community-integrated omics links dominance of a microbial generalist to fine-tuned resource usage

    PubMed Central

    Muller, Emilie E. L.; Pinel, Nicolás; Laczny, Cédric C.; Hoopmann, Michael R.; Narayanasamy, Shaman; Lebrun, Laura A.; Roume, Hugo; Lin, Jake; May, Patrick; Hicks, Nathan D.; Heintz-Buschart, Anna; Wampach, Linda; Liu, Cindy M.; Price, Lance B.; Gillece, John D.; Guignard, Cédric; Schupp, James M.; Vlassis, Nikos; Baliga, Nitin S.; Moritz, Robert L.; Keim, Paul S.; Wilmes, Paul

    2014-01-01

    Microbial communities are complex and dynamic systems that are primarily structured according to their members’ ecological niches. To investigate how niche breadth (generalist versus specialist lifestyle strategies) relates to ecological success, we develop and apply an integrative workflow for the multi-omic analysis of oleaginous mixed microbial communities from a biological wastewater treatment plant. Time- and space-resolved coupled metabolomic and taxonomic analyses demonstrate that the community-wide lipid accumulation phenotype is associated with the dominance of the generalist bacterium Candidatus Microthrix spp. By integrating population-level genomic reconstructions (reflecting fundamental niches) with transcriptomic and proteomic data (realised niches), we identify finely tuned gene expression governing resource usage by Candidatus Microthrix parvicella over time. Moreover, our results indicate that the fluctuating environmental conditions constrain the accumulation of genetic variation in Candidatus Microthrix parvicella likely due to fitness trade-offs. Based on our observations, niche breadth has to be considered as an important factor for understanding the evolutionary processes governing (microbial) population sizes and structures in situ. PMID:25424998

  20. Redirecting abiraterone metabolism to fine-tune prostate cancer anti-androgen therapy.

    PubMed

    Li, Zhenfei; Alyamani, Mohammad; Li, Jianneng; Rogacki, Kevin; Abazeed, Mohamed; Upadhyay, Sunil K; Balk, Steven P; Taplin, Mary-Ellen; Auchus, Richard J; Sharifi, Nima

    2016-05-26

    Abiraterone blocks androgen synthesis and prolongs survival in patients with castration-resistant prostate cancer, which is otherwise driven by intratumoral androgen synthesis. Abiraterone is metabolized in patients to Δ(4)-abiraterone (D4A), which has even greater anti-tumour activity and is structurally similar to endogenous steroidal 5α-reductase substrates, such as testosterone. Here, we show that D4A is converted to at least three 5α-reduced and three 5β-reduced metabolites in human serum. The initial 5α-reduced metabolite, 3-keto-5α-abiraterone, is present at higher concentrations than D4A in patients with prostate cancer taking abiraterone, and is an androgen receptor agonist, which promotes prostate cancer progression. In a clinical trial of abiraterone alone, followed by abiraterone plus dutasteride (a 5α-reductase inhibitor), 3-keto-5α-abiraterone and downstream metabolites were depleted by the addition of dutasteride, while D4A concentrations rose, showing that dutasteride effectively blocks production of a tumour-promoting metabolite and permits D4A accumulation. Furthermore, dutasteride did not deplete the three 5β-reduced metabolites, which were also clinically detectable, demonstrating the specific biochemical effects of pharmacological 5α-reductase inhibition on abiraterone metabolism. Our findings suggest a previously unappreciated and biochemically specific method of clinically fine-tuning abiraterone metabolism to optimize therapy.

  1. Statistical-Mechanical Analysis of Pre-training and Fine Tuning in Deep Learning

    NASA Astrophysics Data System (ADS)

    Ohzeki, Masayuki

    2015-03-01

    In this paper, we present a statistical-mechanical analysis of deep learning. We elucidate some of the essential components of deep learning — pre-training by unsupervised learning and fine tuning by supervised learning. We formulate the extraction of features from the training data as a margin criterion in a high-dimensional feature-vector space. The self-organized classifier is then supplied with small amounts of labelled data, as in deep learning. Although we employ a simple single-layer perceptron model, rather than directly analyzing a multi-layer neural network, we find a nontrivial phase transition that is dependent on the number of unlabelled data in the generalization error of the resultant classifier. In this sense, we evaluate the efficacy of the unsupervised learning component of deep learning. The analysis is performed by the replica method, which is a sophisticated tool in statistical mechanics. We validate our result in the manner of deep learning, using a simple iterative algorithm to learn the weight vector on the basis of belief propagation.

  2. Finely tuned response of native prey to an invasive predator in a freshwater system.

    PubMed

    Bourdeau, Paul E; Pangle, Kevin L; Reed, Emily M; Peacor, Scott D

    2013-07-01

    Lack of shared evolutionary history reduces the expectation that native prey will detect and respond to invasive predators. Four mechanisms may explain the adaptive response that is nevertheless seen in various systems: prey may perceive the invasive predator through cue similarity with preexisting predators, cues of conspecifics eaten by the invasive predator, a learned response based on experience with the invasive predator (e.g., cue association), and cues from the invasive predator that are specific to it. We performed laboratory experiments in which zooplankton (Daphnia mendotae) responded adaptively to the zooplanktivore Bythotrephes longimanus (migrating downward), showed no response to taxonomically similar predatory cladocerans, and responded adaptively to more taxonomically distant native fish (migrating downward) and native shrimp (migrating upward). Conspecific cues associated with Bythotrephes predation actually reduced the response of D. mendotae to Bythotrephes. Combined with previous experiments that rule out learning, our experiments rule out the first three mechanisms above, demonstrating that D. mendotae respond to cues specific to and produced directly by Bythotrephes. This finely tuned response may be retained from an ancestral species that coevolved with Bythotrephes in its native range, or may have rapidly evolved due to strong selection by the invasive predator.

  3. Fungal Endophytes as a Metabolic Fine-Tuning Regulator for Wine Grape

    PubMed Central

    Huang, Zhi-Yu; Yang, Wei-Xi; Zhang, Han-Bo; Huang, Li-Hua; Ren, An-Yun; Shan, Hui

    2016-01-01

    Endophytes proved to exert multiple effects on host plants, including growth promotion, stress resistance. However, whether endophytes have a role in metabolites shaping of grape has not been fully understood. Eight endophytic fungal strains which originally isolated from grapevines were re-inoculated to field-grown grapevines in this study, and their effects on both leaves and berries of grapevines at maturity stage were assessed, with special focused on secondary metabolites and antioxidant activities. High-density inoculation of all these endophytic fungal strains modified the physio-chemical status of grapevine to different degrees. Fungal inoculations promoted the content of reducing sugar (RS), total flavonoids (TF), total phenols (TPh), trans-resveratrol (Res) and activities of phenylalanine ammonia-lyase (PAL), in both leaves and berries of grapevine. Inoculation of endophytic fungal strains, CXB-11 (Nigrospora sp.) and CXC-13 (Fusarium sp.) conferred greater promotion effects in grape metabolic re-shaping, compared to other used fungal strains. Additionally, inoculation of different strains of fungal endophytes led to establish different metabolites patterns of wine grape. The work implies the possibility of using endophytic fungi as fine-tuning regulator to shape the quality and character of wine grape. PMID:27656886

  4. Fine-tuned Remote Laser Welding of Aluminum to Copper with Local Beam Oscillation

    NASA Astrophysics Data System (ADS)

    Fetzer, Florian; Jarwitz, Michael; Stritt, Peter; Weber, Rudolf; Graf, Thomas

    Local beam oscillation in remote laser welding of aluminum to copper was investigated. Sheets of 1 mm thickness were welded in overlap configuration with aluminum as top material. The laser beam was scanned in a sinusoidal mode perpendicular to the direction of feed and the influence of the oscillation parameters frequency and amplitude on the weld geometry was investigated. Scanning frequencies up to 1 kHz and oscillation amplitudes in the range from 0.25 mm to 1 mm were examined. Throughout the experiments the laser power and the feed rate were kept constant. A decrease of welding depth with amplitude and frequency is found. The scanning amplitude had a strong influence and allowed coarse setting of the welding depth into the lower material, while the frequency allowed fine tuning in the order of 10% of the obtained depth. The oscillation parameters were found to act differently on the aluminum sheet compared to copper sheet regarding the amount of fused material. It is possible to influence the geometry of the fused zones separately for both sheets. Therefore the average composition in the weld can be set with high precision via the oscillation parameters. A setting of the generated intermetallics in the weld zone is possible without adjustment of laser power and feed rate.

  5. Drosophila SETDB1 and caspase cooperatively fine-tune cell fate determination of sensory organ precursor.

    PubMed

    Shinoda, Natsuki; Obata, Fumiaki; Zhang, Liu; Miura, Masayuki

    2016-04-01

    Drosophila produce a constant number of mechanosensory bristles called macrochaetae (MC), which develop from sensory organ precursor (SOP) cells within a proneural cluster (PNC). However, what ensures the precise determination of SOP cells remains to be elucidated. In this study, we conducted RNAi screening in PNC for genes involved in epigenetic regulation. We identified a H3K9 histone methyltransferase, SETDB1/eggless, as a regulator of SOP development. Knockdown of SETDB1 in PNC led to additional SOPs. We further tested the relationship between SETDB1 and non-apoptotic function of caspase on SOP development. Reinforcing caspase activation by heterozygous Drosophila inhibitor of apoptosis protein 1 (DIAP1) mutation rescued ectopic SOP development caused by SETDB1 knockdown. Knockdown of SETDB1, however, had little effect on caspase activity. Simultaneous loss of SETDB1 and caspase activity resulted in further increase in MC, indicating that the two components work cooperatively. Our study suggests the fine-tuning mechanisms for SOP development by epigenetic methyltransferase and non-apoptotic caspase function.

  6. Fine-tuned PEGylation of chitosan to maintain optimal siRNA-nanoplex bioactivity.

    PubMed

    Guţoaia, Andra; Schuster, Liane; Margutti, Simona; Laufer, Stefan; Schlosshauer, Burkhard; Krastev, Rumen; Stoll, Dieter; Hartmann, Hanna

    2016-06-05

    Polyethylene glycol (PEG) is a widely used modification for drug delivery systems. It reduces undesired interaction with biological components, aggregation of complexes and serves as a hydrophilic linker of ligands for targeted drug delivery. However, PEGylation can also lead to undesired changes in physicochemical characteristics of chitosan/siRNA nanoplexes and hamper gene silencing. To address this conflicting issue, PEG-chitosan copolymers were synthesized with stepwise increasing degrees of PEG substitution (1.5% to 8.0%). Subsequently formed PEG-chitosan/siRNA nanoplexes were characterized physicochemically and biologically. The results showed that small ratios of chitosan PEGylation did not affect nanoplex stability and density. However, higher PEGylation ratios reduced nanoplex size and charge, as well as cell uptake and final siRNA knockdown efficiency. Therefore, we recommend fine-tuning of PEGylation ratios to generate PEG-chitosan/siRNA delivery systems with maximum bioactivity. The degree of PEGylation for chitosan/siRNA nanoplexes should be kept low in order to maintain optimal nanoplex efficiency.

  7. The Parametric Study and Fine-Tuning of Bow-Tie Slot Antenna with Loaded Stub.

    PubMed

    Shafiei, M M; Moghavvemi, Mahmoud; Wan Mahadi, Wan Nor Liza

    2017-01-01

    A printed Bow-Tie slot antenna with loaded stub is proposed and the effects of changing the dimensions of the slot area, the stub and load sizes are considered in this paper. These parameters have a considerable effect on the antenna characteristics as well as its performance. An in-depth parametric study of these dimensions is presented. This paper proposes the necessary conditions for initial approximation of dimensions needed to design this antenna. In order to achieve the desired performance of the antenna fine tuning of all sizes of these parameters is required. The parametric studies used in this paper provide proper trends for initiation and tuning the design. A prototype of the antenna for 1.7GHz to 2.6GHz band is fabricated. Measurements conducted verify that the designed antenna has wideband characteristics with 50% bandwidth around the center frequency of 2.1GHz. Conducted measurements for reflection coefficient (S11) and radiation pattern also validate our simulation results.

  8. Fine tuning of social integration by two myrmecophiles of the ponerine army ant, Leptogenys distinguenda.

    PubMed

    Witte, Volker; Foitzik, Susanne; Hashim, Rosli; Maschwitz, Ulrich; Schulz, Stefan

    2009-03-01

    Myrmecophiles are animals that live in close association with ants and that frequently develop elaborate mechanisms to infiltrate their well-defended host societies. We compare the social integration strategies of two myrmecophilic species, the spider, Gamasomorpha maschwitzi, and the newly described silverfish, Malayatelura ponerophila gen. n. sp. n., into colonies of the ponerine army ant, Leptogenys distinguenda (Emery) (Hymenoptera: Formicidae). Both symbionts use chemical mimicry through adoption of host cuticular hydrocarbons. Exchange experiments between L. distinguenda and an undetermined Leptogenys species demonstrate that reduced aggression toward alien ants and increased social acceptance occurred with individuals of higher chemical similarity in their cuticular hydrocarbon profiles. We found striking differences in chemical and behavioral strategies between the two myrmecophiles. Spider cuticular hydrocarbon profiles were chemically less similar to the host than silverfish profiles were. Nevertheless, spiders received significantly fewer attacks from host ants and survived longer in laboratory colonies, whereas silverfish were treated with high aggression and were killed more frequently. When discovered and confronted by the host, silverfish tended to escape and were chased aggressively, whereas spiders remained in contact with the confronting host ant until aggression ceased. Thus, spiders relied less on chemical mimicry but were nevertheless accepted more frequently by the host on the basis of behavioral mechanisms. These findings give insights into the fine tuning of social integration mechanisms and show the significance of qualitative differences among strategies.

  9. Finely tuning MOFs towards high-performance post-combustion CO2 capture materials.

    PubMed

    Wang, Qian; Bai, Junfeng; Lu, Zhiyong; Pan, Yi; You, Xiaozeng

    2016-01-11

    CO2 capture science and technology, particularly for the post-combustion CO2 capture, has become one of very important research fields, due to great concern of global warming. Metal-organic frameworks (MOFs) with a unique feature of structural fine-tunability, unlike the traditional porous solid materials, can provide many and powerful platforms to explore high-performance adsorbents for post-combustion CO2 capture. Until now, several strategies for finely tuning MOF structures have been developed, in which either the larger quadrupole moment and polarizability of CO2 are considered: metal ion change (I), functional groups attachment (II) and functional group insertion (III), vary the electronic nature of the pore surface; or targeting the smaller kinetic diameter of CO2 over N2 is focused on: framework interpenetration (IV), ligand shortening (V) and coordination site shifting (VI) contract the pore size of frameworks to improve their CO2 capture properties. In this review, from the viewpoint of synthetic materials scientists/chemists, we would like to introduce and summarize these strategies based upon recent work published by other groups and ourselves.

  10. Tissue-Specific Regulation of Gibberellin Signaling Fine-Tunes Arabidopsis Iron-Deficiency Responses.

    PubMed

    Wild, Michael; Davière, Jean-Michel; Regnault, Thomas; Sakvarelidze-Achard, Lali; Carrera, Esther; Lopez Diaz, Isabel; Cayrel, Anne; Dubeaux, Guillaume; Vert, Grégory; Achard, Patrick

    2016-04-18

    Iron is an essential element for most living organisms. Plants acquire iron from the rhizosphere and have evolved different biochemical and developmental responses to adapt to a low-iron environment. In Arabidopsis, FIT encodes a basic helix-loop-helix transcription factor that activates the expression of iron-uptake genes in root epidermis upon iron deficiency. Here, we report that the gibberellin (GA)-signaling DELLA repressors contribute substantially in the adaptive responses to iron-deficient conditions. When iron availability decreases, DELLAs accumulate in the root meristem, thereby restraining root growth, while being progressively excluded from epidermal cells in the root differentiation zone. Such DELLA exclusion from the site of iron acquisition relieves FIT from DELLA-dependent inhibition and therefore promotes iron uptake. Consistent with this mechanism, expression of a non-GA-degradable DELLA mutant protein in root epidermis interferes with iron acquisition. Hence, spatial distribution of DELLAs in roots is essential to fine-tune the adaptive responses to iron availability.

  11. Maternal expression of communicative intentions and pragmatic fine tuning in early infancy.

    PubMed

    Rivero, Magda

    2010-12-01

    This study focuses on pragmatic characteristics of infant-directed speech and pragmatic fine tuning during the first 18 months of life. The subjects of the study were a mother-child dyad involved in a longitudinal/observational study in a familial context. Audiovisual recordings were transcribed according to the conventions of the Child Language Data Exchange System (MacWhinney, 2000; MacWhinney & Snow, 1990). The Ninio and Wheeler's (1988) system for coding communicative intentions was adapted. The results of this research show that most of the communicative exchanges identified at 14, 20 and 32 months by Snow, Pan, Imbens-Bailey, and Herman (1996) appear in mother-child interaction from the beginning, while other communicative interchanges appear later. With respect to speech acts, the results highlight, from an early age, the general tendencies discussed by Snow et al. and some novelties. Interestingly, changes in some pragmatic measures were identified around 8 months of age, and the appearance of new communicative interchanges also took place around this age. These changes are interpreted as maternal adjustments to the child's communicative competence.

  12. Redirecting abiraterone metabolism to fine tune prostate cancer anti-androgen therapy

    PubMed Central

    Li, Zhenfei; Alyamani, Mohammad; Li, Jianneng; Rogacki, Kevin; Abazeed, Mohamed; Upadhyay, Sunil K.; Balk, Steven P.; Taplin, Mary-Ellen; Auchus, Richard J.; Sharifi, Nima

    2016-01-01

    Abiraterone blocks androgen synthesis and prolongs survival in castration-resistant prostate cancer, which is otherwise driven by intratumoral androgen synthesis1,2. Abiraterone is metabolized in patients to D4A, which has even greater anti-tumor activity and structural similarities to endogenous steroidal 5α-reductase substrates, such as testosterone3. Here, we show that D4A is converted to at least 3 5α-reduced and 3 5β-reduced metabolites. The initial 5α-reduced metabolite, 3-keto-5α-abi, is more abundant than D4A in patients with prostate cancer taking abiraterone, and is an androgen receptor (AR) agonist, which promotes prostate cancer progression. In a clinical trial of abiraterone alone, followed by abiraterone plus dutasteride (a 5α-reductase inhibitor), 3-keto-5α-abi and downstream metabolites are depleted, while D4A concentrations rise, effectively blocking production of a tumor-promoting metabolite and permitting D4A accumulation. Furthermore, dutasteride does not deplete three 5β-reduced metabolites, which were also clinically detectable, demonstrating the specific biochemical effects of pharmacologic 5α-reductase inhibition on abiraterone metabolism. Our findings suggest a previously unappreciated and biochemically specific method of clinically fine-tuning abiraterone metabolism to optimize therapy. PMID:27225130

  13. Maximizing T2-exchange in Dy3+DOTA-(amide)X chelates: Fine-tuning the water molecule exchange rate for enhanced T2 contrast in MRI

    PubMed Central

    Soesbe, Todd C.; Ratnakar, S. James; Milne, Mark; Zhang, Shanrong; Do, Quyen N.; Kovacs, Zoltan; Sherry, A. Dean

    2014-01-01

    Purpose The water molecule exchange rates in a series of DyDOTA-(amide)X chelates were fine-tuned to maximize the effects of T2-exchange line broadening and improve T2 contrast. Methods Four DyDOTA-(amide)X chelates having a variable number of glycinate side-arms were prepared and characterized as T2-exchange agents. The non-exchanging DyTETA chelate was also used to measure the bulk water T2 reduction due solely to T2*. The total transverse relaxivity (r2tot) at 22, 37, and 52 °C for each chelate was measured in vitro at 9.4 T (400 MHz) by fitting plots of total T2−1 versus concentration. The water molecule exchange rates for each complex were measured by fitting 17O line-width versus temperature data taken at 9.4 T (54.3 MHz). Results The measured transverse relaxivities due to water molecule exchange (r2ex) and bound water lifetimes (τM) were in excellent agreement with Swift-Connick theory, with DyDOTA-(gly)3 giving the largest r2ex = 11.8 s−1 mM−1 at 37 °C. Conclusion By fine-tuning the water molecule exchange rate at 37 °C, the transverse relaxivity has been increased by 2 to 30 times compared to previously studied Dy3+-based chelates. Polymerization or dendrimerization of the optimal chelate could yield a highly sensitive, molecule-sized T2 contrast agent for improved molecular imaging applications. PMID:24390729

  14. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry

    SciTech Connect

    Bose, Sayantan; Jardetzky, Theodore S.; Lamb, Robert A.

    2015-05-15

    The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. - Highlights: • New structural and functional insights into paramyxovirus entry mechanisms. • Current data on paramyxovirus glycoproteins suggest a core conserved entry mechanism. • Diverse mechanisms preventing premature fusion activation exist in these viruses. • Precise spacio-temporal interplay between paramyxovirus glycoproteins initiate entry.

  15. Timing is everything: Fine-tuned molecular machines orchestrate paramyxovirus entry

    PubMed Central

    Bose, Sayantan; Jardetzky, Theodore S.; Lamb, Robert A.

    2015-01-01

    The Paramyxoviridae include some of the great and ubiquitous disease-causing viruses of humans and animals. In most paramyxoviruses, two viral membrane glycoproteins, fusion protein (F) and receptor binding protein (HN, H or G) mediate a concerted process of recognition of host cell surface molecules followed by fusion of viral and cellular membranes, resulting in viral nucleocapsid entry into the cytoplasm. The interactions between the F and HN, H or G viral glycoproteins and host molecules are critical in determining host range, virulence and spread of these viruses. Recently, atomic structures, together with biochemical and biophysical studies, have provided major insights into how these two viral glycoproteins successfully interact with host receptors on cellular membranes and initiate the membrane fusion process to gain entry into cells. These studies highlight the conserved core mechanisms of paramyxovirus entry that provide the fundamental basis for rational anti-viral drug design and vaccine development. PMID:25771804

  16. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly

    NASA Astrophysics Data System (ADS)

    Tseng, Yu-Ting; Cherng, Rochelle; Harroun, Scott G.; Yuan, Zhiqin; Lin, Tai-Yuan; Wu, Chien-Wei; Chang, Huan-Tsung; Huang, Chih-Ching

    2016-05-01

    In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region

  17. Lysine succinylation of Mycobacterium tuberculosis isocitrate lyase (ICL) fine-tunes the microbial resistance to antibiotics.

    PubMed

    Zhou, Mingliang; Xie, Longxiang; Yang, Zhaozhen; Zhou, Jiahai; Xie, Jianping

    2017-04-01

    Lysine succinylation (Ksucc) is a newly identified protein posttranslational modification (PTM), which may play an important role in cellular physiology. However, the role of lysine succinylation in antibiotic resistance remains elusive. Isocitrate lyase (ICL) is crucial for broad-spectrum antibiotics tolerance in Mycobacterium tuberculosis (Mtb). We previously found that MtbICL (Rv0467) has at least three succinylated lysine residues, namely K189, K322, and K334.To explore the effect of succinylation on the activity of MtbICL, mutants' mimicry of the lysine succinylation were generated by site-directed mutagenesis. ICL-K189E mutant strain is more sensitive than the wild-type to rifampicin and streptomycin, but not isoniazid. For the in vitro activity of the purified isocitrate lyase, only K189E mutant showed significantly decreased activity. Crystal structure analysis showed that Lys189 Glu dramatically increased the pKa of Glu188 and decreased the pKa of Lys190, whereas had negligible effect on other residues within 5 Å as well as disruption of the electrostatic interaction between Lys189 and Glu182, which might prevent the closure of the active site loop and cause severe reduction of the enzyme activity. Considering the genetic, biochemical, and crystallographical evidences together, the succinylation of specific ICL residue can fine-tune the bacterial resistance to selected antibiotics. The decreased enzymatic activity resulting from the succinylation-changed electrostatic interaction might underlie this phenotype. This study provided the first insight into the link between lysine succinylation and antibiotic resistance.

  18. Causes and consequences of repeatability, flexibility and individual fine-tuning of migratory timing in pike.

    PubMed

    Tibblin, Petter; Forsman, Anders; Borger, Tobias; Larsson, Per

    2016-01-01

    Many organisms undertake migrations between foraging and breeding habitats and while it is assumed that reproductive timing affects fitness, little is known about the degree of individual consistency, and about the causes and consequences of individual variation in migratory timing in organisms other than birds. Here, we report on a 6-year mark-recapture study, including 2048 individuals, of breeding migration in anadromous pike (Esox lucius), an iteroparous top-predatory fish that displays homing behaviour. By repeated sampling across years at a breeding site, we first quantify individual variation both within and between breeding events and then investigate phenotypic correlates and fitness consequences of arrival timing to the breeding site. Our data demonstrate that males arrive before females, that large males arrive later than small males, that the timing of breeding migration varies among years and that individuals are consistent in their timing across years relative to other individuals in the population. Furthermore, data on return rates indicate that arrival time is under stabilizing viability selection, and that individuals who are more flexible in their timing of arrival during the first reproductive years survive longer compared with less flexible individuals. Finally, longitudinal data demonstrate that individuals consistently fine-tune their arrival timing across years, showing that the timing of arrival to breeding sites is influenced by experience. These findings represent rare evidence of how between- and within-individual variations in migratory timing across breeding events are correlated with phenotypic and fitness traits in an ecologically important keystone species. Our results emphasize the importance of considering variation in migratory timing both between and within individuals in studies investigating the fitness consequences of migratory behaviour and have implications for future management.

  19. Cell-Specific Fine-Tuning of Neuronal Excitability by Differential Expression of Modulator Protein Isoforms

    PubMed Central

    Jepson, James; Sheldon, Amanda; Shahidullah, Mohammad; Fei, Hong; Koh, Kyunghee

    2013-01-01

    SLOB (SLOWPOKE-binding protein) modulates the Drosophila SLOWPOKE calcium-activated potassium channel. We have shown previously that SLOB deletion or RNAi knockdown decreases excitability of neurosecretory pars intercerebralis (PI) neurons in the adult Drosophila brain. In contrast, we found that SLOB deletion/knockdown enhances neurotransmitter release from motor neurons at the fly larval neuromuscular junction, suggesting an increase in excitability. Because two prominent SLOB isoforms, SLOB57 and SLOB71, modulate SLOWPOKE channels in opposite directions in vitro, we investigated whether divergent expression patterns of these two isoforms might underlie the differential modulation of excitability in PI and motor neurons. By performing detailed in vitro and in vivo analysis, we found strikingly different modes of regulatory control by the slob57 and slob71 promoters. The slob71, but not slob57, promoter contains binding sites for the Hunchback and Mirror transcriptional repressors. Furthermore, several core promoter elements that are absent in the slob57 promoter coordinately drive robust expression of a luciferase vector by the slob71 promoter in vitro. In addition, we visualized the expression patterns of the slob57 and slob71 promoters in vivo and found clear spatiotemporal differences in promoter activity. SLOB57 is expressed prominently in adult PI neurons, whereas larval motor neurons exclusively express SLOB71. In contrast, at the larval neuromuscular junction, SLOB57 expression appears to be restricted mainly to a subset of glial cells. Our results illustrate how the use of alternative transcriptional start sites within an ion channel modulator locus coupled with functionally relevant alternative splicing can be used to fine-tune neuronal excitability in a cell-specific manner. PMID:24133277

  20. Leaf color is fine-tuned on the solar spectra to avoid strand direct solar radiation.

    PubMed

    Kume, Atsushi; Akitsu, Tomoko; Nasahara, Kenlo Nishida

    2016-07-01

    The spectral distributions of light absorption rates by intact leaves are notably different from the incident solar radiation spectra, for reasons that remain elusive. Incident global radiation comprises two main components; direct radiation from the direction of the sun, and diffuse radiation, which is sunlight scattered by molecules, aerosols and clouds. Both irradiance and photon flux density spectra differ between direct and diffuse radiation in their magnitude and profile. However, most research has assumed that the spectra of photosynthetically active radiation (PAR) can be averaged, without considering the radiation classes. We used paired spectroradiometers to sample direct and diffuse solar radiation, and obtained relationships between the PAR spectra and the absorption spectra of photosynthetic pigments and organs. As monomers in solvent, the spectral absorbance of Chl a decreased with the increased spectral irradiance (W m(-2) nm(-1)) of global PAR at noon (R(2) = 0.76), and was suitable to avoid strong spectral irradiance (λmax = 480 nm) rather than absorb photon flux density (μmol m(-2) s(-1) nm(-1)) efficiently. The spectral absorption of photosystems and the intact thallus and leaves decreased linearly with the increased spectral irradiance of direct PAR at noon (I dir-max), where the wavelength was within the 450-650 nm range (R(2) = 0.81). The higher-order structure of photosystems systematically avoided the strong spectral irradiance of I dir-max. However, when whole leaves were considered, leaf anatomical structure and light scattering in leaf tissues made the leaves grey bodies for PAR and enabled high PAR use efficiency. Terrestrial green plants are fine-tuned to spectral dynamics of incident solar radiation and PAR absorption is increased in various structural hierarchies.

  1. A role for TRIANGULAR HULL1 in fine-tuning spikelet morphogenesis in rice.

    PubMed

    Sato, Dai-Suke; Ohmori, Yoshihiro; Nagashima, Haruka; Toriba, Taiyo; Hirano, Hiro-Yuki

    2014-01-01

    The lemma and palea, which enclose the pistil, stamens, and lodicules, are the most conspicuous organs in the rice spikelet. We isolated a mutant line (ng6569) in which the lemma and palea were narrower than those of the wild type, and found that the mutant had a defect in TRIANGULAR HULL1 (TH1), which encodes a nuclear protein with an ALOG domain. Detailed morphological analysis indicated that the th1 mutation caused a reduction in the size of tubercles, which are convex structures on the surface of the lemma and palea. This reduction was more pronounced in the apical region of the lemma than in the basal region, resulting in the formation of a beak-like spikelet. By contrast, the number of tubercle rows and their spatial distribution on the lemma were not affected in the th1 mutant. Thus, the TH1 gene seems to be involved in fine-tuning the morphogenesis of the lemma and palea. In situ hybridization analysis revealed that TH1 was highly expressed in the primordia of the lemma and palea, but only weakly expressed in the primordia of the sterile lemma and rudimentary glume. We then examined the effect of th1 mutation on the lemma-like structure formed in the long sterile lemma/glume1 (g1) and extra glume1 (eg1) mutants. The result showed that the th1 mutation strongly affected the morphology of the extra lemma of eg1, but had no significant effect on the transformed lemma of g1.

  2. Finely tuned regulation of the aromatic amine degradation pathway in Escherichia coli.

    PubMed

    Zeng, Ji; Spiro, Stephen

    2013-11-01

    FeaR is an AraC family regulator that activates transcription of the tynA and feaB genes in Escherichia coli. TynA is a periplasmic topaquinone- and copper-containing amine oxidase, and FeaB is a cytosolic NAD-linked aldehyde dehydrogenase. Phenylethylamine, tyramine, and dopamine are oxidized by TynA to the corresponding aldehydes, releasing one equivalent of H2O2 and NH3. The aldehydes can be oxidized to carboxylic acids by FeaB, and (in the case of phenylacetate) can be further degraded to enter central metabolism. Thus, phenylethylamine can be used as a carbon and nitrogen source, while tyramine and dopamine can be used only as sources of nitrogen. Using genetic, biochemical and computational approaches, we show that the FeaR binding site is a TGNCA-N8-AAA motif that occurs in 2 copies in the tynA and feaB promoters. We show that the coactivator for FeaR is the product rather than the substrate of the TynA reaction. The feaR gene is upregulated by carbon or nitrogen limitation, which we propose reflects regulation of feaR by the cyclic AMP receptor protein (CRP) and the nitrogen assimilation control protein (NAC), respectively. In carbon-limited cells grown in the presence of a TynA substrate, tynA and feaB are induced, whereas in nitrogen-limited cells, only the tynA promoter is induced. We propose that tynA and feaB expression is finely tuned to provide the FeaB activity that is required for carbon source utilization and the TynA activity required for nitrogen and carbon source utilization.

  3. Quasi-Yukawa unification and fine-tuning in U(1) extended SSM

    NASA Astrophysics Data System (ADS)

    Hiçyılmaz, Yaşar; Ceylan, Meltem; Altaş, Aslı; Solmaz, Levent; Ün, Cem Salih

    2016-11-01

    We consider the low scale implications in the U(1 ) ' extended minimal supersymmetric Standard Model (UMSSM). We restrict the parameter space such that the lightest supersymmetric particle (LSP) is always the lightest neutralino. In addition, we impose quasi-Yukawa unification (QYU) at the grand unification scale (MGUT). QYU strictly requires the ratios among the Yukawa couplings as yt/yb˜1.2 , yτ/yb˜1.4 , and yt/yτ˜0.8 . We find that the need for fine-tuning over the fundamental parameter space of QYU is in the acceptable range (ΔEW≤1 03), even if the universal boundary conditions are imposed at MGUT, in contrast to CMSSM and nonuniversal Higgs masses. The UMSSM with universal boundary conditions yields heavy stops (mt ˜≳2.5 TeV ), gluinos (mg ˜≳2 TeV ), and squarks from the first two families (mq ˜≳4 TeV ). Similarly, the stau mass is bounded from below at about 1.5 TeV. Despite this heavy spectrum, we find ΔEW≳300 , which is much lower than that needed for the minimal supersymmetric models. In addition, the UMSSM yields a relatively small μ term, and the LSP neutralino is mostly formed by the Higgsinos of mass ≳700 GeV . We also obtain bino-like dark matter of mass about 400 GeV. The wino is usually found to be heavier than Higgsinos and binos, but there is a small region where μ ˜M1˜M2˜1 TeV . We also identify a chargino-neutralino coannihilation channel and A -resonance solutions which reduce the relic abundance of LSP neutralinos down to the ranges compatible with the current WMAP and Planck measurements.

  4. Selective loss of fine tuning of Gq/11 signaling by RGS2 protein exacerbates cardiomyocyte hypertrophy.

    PubMed

    Zhang, Wei; Anger, Thomas; Su, Jialin; Hao, Jianming; Xu, Xiaomei; Zhu, Ming; Gach, Agnieszka; Cui, Lei; Liao, Ronglih; Mende, Ulrike

    2006-03-03

    Alterations in cardiac G protein-mediated signaling, most prominently G(q/11) signaling, are centrally involved in hypertrophy and heart failure development. Several RGS proteins that can act as negative regulators of G protein signaling are expressed in the heart, but their functional roles are still poorly understood. RGS expression changes have been described in hypertrophic and failing hearts. In this study, we report a marked decrease in RGS2 (but not other major cardiac RGS proteins (RGS3-RGS5)) that occurs prior to hypertrophy development in different models with enhanced G(q/11) signaling (transgenic expression of activated Galpha(q)(*) and pressure overload due to aortic constriction). To assess functional consequences of selective down-regulation of endogenous RGS2, we identified targeting sequences for effective RGS2 RNA interference and used lipid-based transfection to achieve uptake of fluorescently labeled RGS2 small interfering RNA in >90% of neonatal and adult ventricular myocytes. Endogenous RGS2 expression was dose-dependently suppressed (up to 90%) with no major change in RGS3-RGS5. RGS2 knockdown increased phenylephrine- and endothelin-1-induced phospholipase Cbeta stimulation in both cell types and exacerbated the hypertrophic effect (increase in cell size and radiolabeled protein) in neonatal myocytes, with no major change in G(q/11)-mediated ERK1/2, p38, or JNK activation. Taken together, this study demonstrates that endogenous RGS2 exerts functionally important inhibitory restraint on G(q/11)-mediated phospholipase Cbeta activation and hypertrophy in ventricular myocytes. Our findings point toward a potential pathophysiological role of loss of fine tuning due to selective RGS2 down-regulation in G(q/11)-mediated remodeling. Furthermore, this study shows the feasibility of effective RNA interference in cardiomyocytes using lipid-based small interfering RNA transfection.

  5. Fine-tuning of NADH oxidase decreases byproduct accumulation in respiration deficient xylose metabolic Saccharomyces cerevisiae

    PubMed Central

    2014-01-01

    Background Efficiently utilizing all available carbon from lignocellulosic feedstock presents a major barrier to the production of economically feasible biofuel. Previously, to enable xylose utilization, we introduced a cofactor-dependent xylose reductase (XR) and xylitol dehydrogenase (XDH) pathway, or a cofactor-independent xylose isomerase (XI) pathway, into Saccharomyces cerevisiae. The resulting strains metabolized xylose with high efficiency. However, in both pathway recombinant strains, the cofactor imbalance caused accumulation of the byproducts glycerol and/or xylitol and reduced the ethanol production efficiency. Results In this study, we introduced NADH oxidase from Lactococcus lactis into both XI and XR-XDH pathway recombinant strains. To reduce byproduct accumulation while maintaining xylose metabolism, we optimized the expression level of NADH oxidase by comparing its expression under the control of different promoters and plasmids. In recombinant XI strains, NADH oxidase was expressed at different levels, regulated by the GPD2 promoter or TEF1 promoter in the 2 μ plasmid. The expression under the control of GPD2 promoter decreased glycerol production by 84% and increased the ethanol yield and specific growth rate by 8% and 12%, respectively. In contrast, in the recombinant XR-XDH strains, such expression level was not efficient enough to decrease the byproduct accumulation. Therefore, higher NADH oxidase expression levels were tested. In the strain expressing NADH oxidase under the control of the TEF1 promoter in the centromeric plasmids, xylitol and glycerol production were reduced by 60% and 83%, respectively, without significantly affecting xylose consumption. Conclusions By fine-tuning NADH oxidase expression, we decreased the glycerol or/and xylitol production in both recombinant XI and XR-XDH xylose-metabolizing yeast strains. The optimal NADH oxidase expression levels depend on metabolic pathways. Similar cofactor engineering strategies

  6. Molecular vibrational energy flow

    NASA Astrophysics Data System (ADS)

    Gruebele, M.; Bigwood, R.

    This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.

  7. Fine-tuning of whispering gallery modes in on-chip silica microdisk resonators within a full spectral range

    NASA Astrophysics Data System (ADS)

    Henze, Rico; Pyrlik, Christoph; Thies, Andreas; Ward, Jonathan M.; Wicht, Andreas; Benson, Oliver

    2013-01-01

    We investigate an efficient method for fine-tuning whispering gallery mode resonances in disk-type silica microresonators to reach an arbitrary frequency within the free spectral range of the system. This method is based on a post-production hydrofluoric acid etching process to precisely resize the radius of such microresonators. We show the effectiveness of this approach by tuning their resonance frequency within 10 GHz of specific hydrogen cyanide reference lines (P16, P18). This technique allows for simple and exact matching of narrow-linewidth lasers or spectroscopic lines with the high-Q resonances of on-chip silica microresonators.

  8. The CCR4 deadenylase acts with Nanos and Pumilio in the fine-tuning of Mei-P26 expression to promote germline stem cell self-renewal.

    PubMed

    Joly, Willy; Chartier, Aymeric; Rojas-Rios, Patricia; Busseau, Isabelle; Simonelig, Martine

    2013-01-01

    Translational regulation plays an essential role in Drosophila ovarian germline stem cell (GSC) biology. GSC self-renewal requires two translational repressors, Nanos (Nos) and Pumilio (Pum), which repress the expression of differentiation factors in the stem cells. The molecular mechanisms underlying this translational repression remain unknown. Here, we show that the CCR4 deadenylase is required for GSC self-renewal and that Nos and Pum act through its recruitment onto specific mRNAs. We identify mei-P26 mRNA as a direct and major target of Nos/Pum/CCR4 translational repression in the GSCs. mei-P26 encodes a protein of the Trim-NHL tumor suppressor family that has conserved functions in stem cell lineages. We show that fine-tuning Mei-P26 expression by CCR4 plays a key role in GSC self-renewal. These results identify the molecular mechanism of Nos/Pum function in GSC self-renewal and reveal the role of CCR4-NOT-mediated deadenylation in regulating the balance between GSC self-renewal and differentiation.

  9. Fine-tuning of xylose metabolism in genetically engineered Saccharomyces cerevisiae by scattered integration of xylose assimilation genes.

    PubMed

    Zuo, Qi; Zhao, Xin-Qing; Xiong, Liang; Liu, Hai-Jun; Xu, You-Hai; Hu, Shi-Yang; Ma, Zhong-Yi; Zhu, Qing-Wei; Bai, Feng-Wu

    2013-10-18

    Manipulation of multiple genes is a common experience in metabolic engineering and synthetic biology studies. Chromosome integration of multiple genes in one single position is always performed, however, there is so far no study on the integration of multiple genes separately in various positions (here in after referred to as "scattered integration") and its effect on fine-tuning of cellular metabolism. In this study, scattered integration of the xylose assimilation genes PsXR, PsXDH and ScXK was investigated in Saccharomyces cerevisiae, and transcription analysis of these genes as well as their enzyme activities were compared with those observed when the genes were integrated into one single site (defined as "tandem integration" here). Not only notable differences in transcription levels and enzyme activities were observed when the genes were integrated by the two strategies, but also change of the cofactor preference of PsXR gene was validated. Xylose fermentation was further studied with the strains developed with these strategies, and elevated xylose utilization rate was obtained in the scattered integration strain. These results proved that by positioning multiple genes on different chromosomes, fine-tuning of cellular metabolism could be achieved in recombinant S. cerevisiae.

  10. Expression analysis of aquaporins from desert truffle mycorrhizal symbiosis reveals a fine-tuned regulation under drought.

    PubMed

    Navarro-Ródenas, Alfonso; Bárzana, Gloria; Nicolás, Emilio; Carra, Andrea; Schubert, Andrea; Morte, Asunción

    2013-09-01

    We have performed the isolation, functional characterization, and expression analysis of aquaporins in roots and leaves of Helianthemum almeriense, in order to evaluate their roles in tolerance to water deficit. Five cDNAs, named HaPIP1;1, HaPIP1;2, HaPIP2;1, HaPIP2;2, and HaTIP1;1, were isolated from H. almeriense. A phylogenetic analysis of deduced proteins confirmed that they belong to the water channel proteins family. The HaPIP1;1, HaPIP2;1, and HaTIP1;1 genes encode functional water channel proteins, as indicated by expression assays in Saccharomyces cerevisiae, showing divergent roles in the transport of water, CO2, and NH3. The expression patterns of the genes isolated from H. almeriense and of a previously described gene from Terfezia claveryi (TcAQP1) were analyzed in mycorrhizal and nonmycorrhizal plants cultivated under well-watered or drought-stress conditions. Some of the studied aquaporins were subjected to fine-tuned expression only under drought-stress conditions. A beneficial effect on plant physiological parameters was observed in mycorrhizal plants with respect to nonmycorrhizal ones. Moreover, stress induced a change in the mycorrhizal type formed, which was more intracellular under drought stress. The combination of a high intracellular colonization, together with the fine-tuned expression of aquaporins could result in a morphophysiological adaptation of this symbiosis to drought conditions.

  11. The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning

    NASA Astrophysics Data System (ADS)

    Wood, Christopher J.; Spekkens, Robert W.

    2015-03-01

    An active area of research in the fields of machine learning and statistics is the development of causal discovery algorithms, the purpose of which is to infer the causal relations that hold among a set of variables from the correlations that these exhibit . We apply some of these algorithms to the correlations that arise for entangled quantum systems. We show that they cannot distinguish correlations that satisfy Bell inequalities from correlations that violate Bell inequalities, and consequently that they cannot do justice to the challenges of explaining certain quantum correlations causally. Nonetheless, by adapting the conceptual tools of causal inference, we can show that any attempt to provide a causal explanation of nonsignalling correlations that violate a Bell inequality must contradict a core principle of these algorithms, namely, that an observed statistical independence between variables should not be explained by fine-tuning of the causal parameters. In particular, we demonstrate the need for such fine-tuning for most of the causal mechanisms that have been proposed to underlie Bell correlations, including superluminal causal influences, superdeterminism (that is, a denial of freedom of choice of settings), and retrocausal influences which do not introduce causal cycles.

  12. The WD40 Domain Protein MSI1 Functions in a Histone Deacetylase Complex to Fine-Tune Abscisic Acid Signaling

    PubMed Central

    Bergquist, Jonas

    2016-01-01

    MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and provide evidence that MSI1 and HDA19 associate into the same complex in vivo. These data suggest that MSI1, HDA19, and HISTONE DEACETYLATION COMPLEX1 protein form a core complex that can integrate various SIN3-like proteins. We found that reduction of MSI1 or HDA19 causes upregulation of abscisic acid (ABA) receptor genes and hypersensitivity of ABA-responsive genes. The MSI1-HDA19 complex fine-tunes ABA signaling by binding to the chromatin of ABA receptor genes and by maintaining low levels of acetylation of histone H3 at lysine 9, thereby affecting the expression levels of ABA receptor genes. Reduced MSI1 or HDA19 levels led to increased tolerance to salt stress corresponding to the increased ABA sensitivity of gene expression. Together, our results reveal the presence of an MSI1-HDA19 complex that fine-tunes ABA signaling in Arabidopsis. PMID:26704384

  13. The WD40 Domain Protein MSI1 Functions in a Histone Deacetylase Complex to Fine-Tune Abscisic Acid Signaling.

    PubMed

    Mehdi, Saher; Derkacheva, Maria; Ramström, Margareta; Kralemann, Lejon; Bergquist, Jonas; Hennig, Lars

    2016-01-01

    MSI1 belongs to a family of histone binding WD40-repeat proteins. Arabidopsis thaliana contains five genes encoding MSI1-like proteins, but their functions in diverse chromatin-associated complexes are poorly understood. Here, we show that MSI1 is part of a histone deacetylase complex. We copurified HISTONE DEACETYLASE19 (HDA19) with MSI1 and transcriptional regulatory SIN3-like proteins and provide evidence that MSI1 and HDA19 associate into the same complex in vivo. These data suggest that MSI1, HDA19, and HISTONE DEACETYLATION COMPLEX1 protein form a core complex that can integrate various SIN3-like proteins. We found that reduction of MSI1 or HDA19 causes upregulation of abscisic acid (ABA) receptor genes and hypersensitivity of ABA-responsive genes. The MSI1-HDA19 complex fine-tunes ABA signaling by binding to the chromatin of ABA receptor genes and by maintaining low levels of acetylation of histone H3 at lysine 9, thereby affecting the expression levels of ABA receptor genes. Reduced MSI1 or HDA19 levels led to increased tolerance to salt stress corresponding to the increased ABA sensitivity of gene expression. Together, our results reveal the presence of an MSI1-HDA19 complex that fine-tunes ABA signaling in Arabidopsis.

  14. Using membrane composition to fine-tune the pKa of an optical liposome pH sensor.

    PubMed

    Clear, Kasey J; Virga, Katelyn; Gray, Lawrence; Smith, Bradley D

    2016-04-14

    Liposomes containing membrane-anchored pH-sensitive optical probes are valuable sensors for monitoring pH in various biomedical samples. The dynamic range of the sensor is maximized when the probe pKa is close to the expected sample pH. While some biomedical samples are close to neutral pH there are several circumstances where the pH is 1 or 2 units lower. Thus, there is a need to fine-tune the probe pKa in a predictable way. This investigation examined two lipid-conjugated optical probes, each with appended deep-red cyanine dyes containing indoline nitrogen atoms that are protonated in acid. The presence of anionic phospholipids in the liposomes stabilized the protonated probes and increased the probe pKa values by < 1 unit. The results show that rational modification of the membrane composition is a general non-covalent way to fine-tune the pKa of an optical liposome sensor for optimal pH sensing performance.

  15. Fine tuning a well-oiled machine: Influence of NK1.1 and NKG2D on NKT cell development and function

    PubMed Central

    Joshi, Sunil K.; Lang, Mark L.

    2013-01-01

    Natural Killer T cells (NKT) represent a group of CD1d-restricted T-lineage cells that that provide a functional interface between innate and adaptive immune responses in infectious disease, cancer, allergy and autoimmunity. There have been remarkable advances in understanding the molecular events that underpin NKT development in the thymus and in the complex array of functions in the periphery. Most functional studies have focused on activation of T cell antigen receptors expressed by NKT cells and their responses to CD1d presentation of glycolipid and related antigens. Receiving less attention has been several molecules that are hallmarks of Natural Killer (NK) cells, but nonetheless expressed by NKT cells. These include several activating and inhibitory receptors that may fine-tune NKT development and survival, as well as activation via antigen receptors. Herein, we review the possible roles of the NK1.1 and NKG2D receptors in regulating development and function of NKT cells in health and disease. We suggest that pharmacological alteration of NKT activity should consider the potential complexities commensurate with NK1.1 and NKG2D expression. PMID:23800654

  16. Direct flow cytometry measurements reveal a fine-tuning of symbiotic cell dynamics according to the host developmental needs in aphid symbiosis

    PubMed Central

    Simonet, Pierre; Duport, Gabrielle; Gaget, Karen; Weiss-Gayet, Michèle; Colella, Stefano; Febvay, Gérard; Charles, Hubert; Viñuelas, José; Heddi, Abdelaziz; Calevro, Federica

    2016-01-01

    Endosymbiotic associations constitute a driving force in the ecological and evolutionary diversification of metazoan organisms. Little is known about whether and how symbiotic cells are coordinated according to host physiology. Here, we use the nutritional symbiosis between the insect pest, Acyrthosiphon pisum, and its obligate symbiont, Buchnera aphidicola, as a model system. We have developed a novel approach for unculturable bacteria, based on flow cytometry, and used this method to estimate the absolute numbers of symbionts at key stages of aphid life. The endosymbiont population increases exponentially throughout nymphal development, showing a growing rate which has never been characterized by indirect molecular techniques. Using histology and imaging techniques, we have shown that the endosymbiont-bearing cells (bacteriocytes) increase significantly in number and size during the nymphal development, and clustering in the insect abdomen. Once adulthood is reached and the laying period has begun, the dynamics of symbiont and host cells is reversed: the number of endosymbionts decreases progressively and the bacteriocyte structure degenerates during insect aging. In summary, these results show a coordination of the cellular dynamics between bacteriocytes and primary symbionts and reveal a fine-tuning of aphid symbiotic cells to the nutritional demand imposed by the host physiology throughout development. PMID:26822159

  17. MicroRNA-29 fine-tunes the expression of key FOXA2-activated lipid metabolism genes and is dysregulated in animal models of insulin resistance and diabetes.

    PubMed

    Kurtz, C Lisa; Peck, Bailey C E; Fannin, Emily E; Beysen, Carine; Miao, Ji; Landstreet, Stuart R; Ding, Shengli; Turaga, Vandana; Lund, P Kay; Turner, Scott; Biddinger, Sudha B; Vickers, Kasey C; Sethupathy, Praveen

    2014-09-01

    MicroRNAs (miRNAs) have emerged as biomarkers of metabolic status, etiological factors in complex disease, and promising drug targets. Recent reports suggest that miRNAs are critical regulators of pathways underlying the pathophysiology of type 2 diabetes. In this study, we demonstrate by deep sequencing and real-time quantitative PCR that hepatic levels of Foxa2 mRNA and miR-29 are elevated in a mouse model of diet-induced insulin resistance. We also show that Foxa2 and miR-29 are significantly upregulated in the livers of Zucker diabetic fatty (fa/fa) rats and that the levels of both returned to normal upon treatment with the insulin-sensitizing agent pioglitazone. We present evidence that miR-29 expression in human hepatoma cells is controlled in part by FOXA2, which is known to play a critical role in hepatic energy homeostasis. Moreover, we demonstrate that miR-29 fine-tunes FOXA2-mediated activation of key lipid metabolism genes, including PPARGC1A, HMGCS2, and ABHD5. These results suggest that miR-29 is an important regulatory factor in normal metabolism and may represent a novel therapeutic target in type 2 diabetes and related metabolic syndromes.

  18. Knowledge based functions for routine use at a German university hospital setting: the issue of fine tuning.

    PubMed Central

    Bürkle, T.; Prokosch, H. U.; Hussak, G.; Dudeck, J.

    1997-01-01

    In this paper we present the introduction of knowledge based functions into clinical routine at Giessen University Hospital. For this purpose a therapy planning module at the medical intensive care unit has been extensively redesigned in order to support the structured documentation of drug prescriptions. After introduction of this new HIS component in January 1996 research has been initiated to establish a basic drug therapy knowledge base. The main components of a knowledge based system have been fully incorporated into the hospital information system WING and are in routine use since December 1996. During a pre-production phase warnings of reminder functions were logged and reviewed by an interdisciplinary team in order to adapt the system to the actual clinical environment. The paper describes experiences during this fine tuning and adaptation process which was necessary to bring a small set of knowledge modules into clinical routine. PMID:9357589

  19. Fine-tuning of process conditions to improve product uniformity of polystyrene particles used for wind tunnel velocimetry

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1990-01-01

    Monodisperse polymer particles (having uniform diameter) were used for the last two decades in physical, biological, and chemical sciences. In NASA Langley Research Center monodisperse polystyrene particles are used in wind tunnel laser velocimeters. These polystyrene (PS) particles in latex form were formulated at the Engineering Laboratory of FENGD using emulsion-free emulsion polymerization. Monodisperse PS latices particles having different particle diameters were formulated and useful experimental data involving effects of process conditions on particle size were accumulated. However, similar process conditions and chemical recipes for polymerization of styrene monomer have often yielded monodisperse particles having varying diameters. The purpose was to improve the PS latex product uniformity by fine-tuning the process parameters based on the knowledge of suspension and emulsion polymerization.

  20. Single Heteroatom Fine-Tuning of the Emissive Properties in Organoboron Complexes with 7-(Azaheteroaryl)indole Systems.

    PubMed

    Más-Montoya, Miriam; Usea, Laura; Espinosa Ferao, Arturo; Montenegro, María F; Ramírez de Arellano, Carmen; Tárraga, Alberto; Rodríguez-López, José N; Curiel, David

    2016-04-15

    The application of organoboron compounds as light-absorbing or light-emitting species in areas as relevant as organic electronics or biomedicine has motivated the search for new materials which contribute to the progress of those applications. This article reports the synthesis of four-coordinate boron complexes based on the unexplored 7-(azaheteroaryl)indole ligands. An easy synthetic approach has enabled the fine-tuning of the electronic structure of the organoboron species by modifying a heteroaromatic component in the conjugated system. Furthermore, a comprehensive characterization by X-ray diffraction, absorption and emission spectroscopy, both in solution and in the solid state, cyclic voltammetry, and computational methods has evidenced the utility of this simple strategy. Large Stokes shifts have been achieved in solid thin-films which show a range of emitted light from blue to orange. The synthesized compounds have been used as biocompatible fluorophores in cell bioimaging.

  1. Functional Role of PPARs in Ruminants: Potential Targets for Fine-Tuning Metabolism during Growth and Lactation

    PubMed Central

    Chen, Shuowen; Khan, Muhammad J.; Loor, Juan J.

    2013-01-01

    Characterization and biological roles of the peroxisome proliferator-activated receptor (PPAR) isotypes are well known in monogastrics, but not in ruminants. However, a wealth of information has accumulated in little more than a decade on ruminant PPARs including isotype tissue distribution, response to synthetic and natural agonists, gene targets, and factors affecting their expression. Functional characterization demonstrated that, as in monogastrics, the PPAR isotypes control expression of genes involved in lipid metabolism, anti-inflammatory response, development, and growth. Contrary to mouse, however, the PPARγ gene network appears to controls milk fat synthesis in lactating ruminants. As in monogastrics, PPAR isotypes in ruminants are activated by long-chain fatty acids, therefore, making them ideal candidates for fine-tuning metabolism in this species via nutrients. In this regard, using information accumulated in ruminants and monogastrics, we propose a model of PPAR isotype-driven biological functions encompassing key tissues during the peripartal period in dairy cattle. PMID:23737762

  2. A low-phase-noise ring oscillator with coarse and fine tuning in a standard CMOS process

    NASA Astrophysics Data System (ADS)

    Haijun, Gao; Lingling, Sun; Xiaofei, Kuang; Liheng, Lou

    2012-07-01

    A low-phase-noise wideband ring oscillator with coarse and fine tuning techniques implemented in a standard 65 nm CMOS process is presented. Direct frequency modulation in the ring oscillator is analyzed and a switched capacitor array is introduced to produce the lower VCO gain required to suppress this effect. A two-dimensional high-density stacked MOM-capacitor was adopted as the switched capacitor to make the proposed ring VCO compatible with standard CMOS processes. The designed ring VCO exhibits an output frequency from 480 to 1100 MHz, resulting in a tuning range of 78%, and the measured phase noise is -120 dBc/Hz @ 1 MHz at 495 MHz output. The VCO core consumes 3.84 mW under a 1.2 V supply voltage and the corresponding FOM is -169 dBc/Hz.

  3. Fine-tuning of magnetic and microfluidic viscous forces for specific magnetic bead-based immunocomplex formation

    NASA Astrophysics Data System (ADS)

    Cornaglia, M.; Tekin, H. C.; Lehnert, T.; Gijs, M. A. M.

    2013-08-01

    We investigate the working principle of a novel type of microfluidic sandwich immunoassay, as used for the detection of biomarkers. The heterogeneous assay is based on the specific interactions between an array of functionalized superparamagnetic beads and a flow of secondary superparamagnetic beads that carry the antigens and are simultaneously used as detection labels. We identify the main forces governing the immunoassay performance and develop a combined finite element method/analytical model to predict and control these forces. The clue for the improved assay specificity is in the fine-tuning of inter-bead magnetic dipolar and microfluidic viscous forces, which allows strongly reducing non-specific interactions, while enhancing the specific formation of immunocomplexes. We exploit our theoretical model to explain the enhanced sensitivity of magnetic bead-based immunoassay experiments performed in microfluidic chips.

  4. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle

    PubMed Central

    del Rosario, Ricardo C. H.; Damasco, Joseph Ray Clarence G.; Aguda, Baltazar D.

    2016-01-01

    The restriction point marks a switch in G1 from growth factor-dependent to growth factor-independent progression of the cell cycle. The proper regulation of this switch is important for normal cell processes; aberrations could result in a number of diseases such as cancer, neurodegenerative disorders, stroke and myocardial infarction. To further understand the regulation of the restriction point, we extended a mathematical model of the Rb-E2F pathway to include members of the microRNA cluster miR-17-92. Our mathematical analysis shows that microRNAs play an essential role in fine-tuning and providing robustness to the switch. We also demonstrate how microRNA regulation can steer cells in or out of cancer states. PMID:27610602

  5. Fine-tuning the onset of myogenesis by homeobox proteins that interact with the Myf5 limb enhancer.

    PubMed

    Daubas, Philippe; Duval, Nathalie; Bajard, Lola; Langa Vives, Francina; Robert, Benoît; Mankoo, Baljinder S; Buckingham, Margaret

    2015-11-04

    Skeletal myogenesis in vertebrates is initiated at different sites of skeletal muscle formation during development, by activation of specific control elements of the myogenic regulatory genes. In the mouse embryo, Myf5 is the first myogenic determination gene to be expressed and its spatiotemporal regulation requires multiple enhancer sequences, extending over 120 kb upstream of the Mrf4-Myf5 locus. An enhancer, located at -57/-58 kb from Myf5, is responsible for its activation in myogenic cells derived from the hypaxial domain of the somite, that will form limb muscles. Pax3 and Six1/4 transcription factors are essential activators of this enhancer, acting on a 145-bp core element. Myogenic progenitor cells that will form the future muscle masses of the limbs express the factors necessary for Myf5 activation when they delaminate from the hypaxial dermomyotome and migrate into the forelimb bud, however they do not activate Myf5 and the myogenic programme until they have populated the prospective muscle masses. We show that Msx1 and Meox2 homeodomain-containing transcription factors bind in vitro and in vivo to specific sites in the 145-bp element, and are implicated in fine-tuning activation of Myf5 in the forelimb. Msx1, when bound between Pax and Six sites, prevents the binding of these key activators, thus inhibiting transcription of Myf5 and consequent premature myogenic differentiation. Meox2 is required for Myf5 activation at the onset of myogenesis via direct binding to other homeodomain sites in this sequence. Thus, these homeodomain factors, acting in addition to Pax3 and Six1/4, fine-tune the entry of progenitor cells into myogenesis at early stages of forelimb development.

  6. Investigation of double-mode operation and fast fine tuning properties of a grating-coupled external cavity diode laser configuration

    NASA Astrophysics Data System (ADS)

    Bayrakli, Ismail

    2017-01-01

    Double-mode operation and fast piezo fine tuning properties of a gain chip on a thermoelectric cooler in an external cavity are investigated. A widely course double-mode tuning range of 120 nm for the spectral range between 1470 and 1590 nm is achieved by rotating the diffraction gratings forming a double Littrow-type configuration. A fast piezo fine tuning range over 7cm-1 (1.5 nm, 210 GHz) in a single-mode operation is obtained by scanning the external cavity length with scan rates up to 0.5 kHz.

  7. In response to partial plant shading, the lack of phytochrome A does not directly induce leaf senescence but alters the fine-tuning of chlorophyll biosynthesis.

    PubMed

    Brouwer, Bastiaan; Gardeström, Per; Keech, Olivier

    2014-07-01

    Phytochrome is thought to control the induction of leaf senescence directly, however, the signalling and molecular mechanisms remain unclear. In the present study, an ecophysiological approach was used to establish a functional connection between phytochrome signalling and the physiological processes underlying the induction of leaf senescence in response to shade. With shade it is important to distinguish between complete and partial shading, during which either the whole or only a part of the plant is shaded, respectively. It is first shown here that, while PHYB is required to maintain chlorophyll content in a completely shaded plant, only PHYA is involved in maintaining the leaf chlorophyll content in response to partial plant shading. Second, it is shown that leaf yellowing associated with strong partial shading in phyA-mutant plants actually correlates to a decreased biosynthesis of chlorophyll rather than to an increase of its degradation. Third, it is shown that the physiological impact of this decreased biosynthesis of chlorophyll in strongly shaded phyA-mutant leaves is accompanied by a decreased capacity to adjust the Light Compensation Point. However, the increased leaf yellowing in phyA-mutant plants is not accompanied by an increase of senescence-specific molecular markers, which argues against a direct role of PHYA in inducing leaf senescence in response to partial shade. In conclusion, it is proposed that PHYA, but not PHYB, is essential for fine-tuning the chlorophyll biosynthetic pathway in response to partial shading. In turn, this mechanism allows the shaded leaf to adjust its photosynthetic machinery to very low irradiances, thus maintaining a positive carbon balance and repressing the induction of leaf senescence, which can occur under prolonged periods of shade.

  8. 9-fluorenemethanol: an internal electron donor to fine tune olefin polymerization activity.

    PubMed

    Gnanakumar, Edwin S; Rao Chokkapu, Eswara; Kunjir, Shrikant; Ajithkumar, T G; Rajamohanan, P R; Chakraborty, Debashis; Gopinath, Chinnakonda S

    2014-06-28

    A new MgCl2 based molecular adduct has been synthesized with 9-fluorenemethanol (9FM) as a novel internal electron donor (IED), along with ethanol (EtOH) (MgCl2·n9FM·xEtOH). The above molecular adduct has been subjected to a variety of structural, spectroscopic and morphological characterization techniques. The results of the solid state (13)C CPMAS NMR technique suggests the coordination of 9FM to MgCl2. Observation of a low angle diffraction peak at 2θ = 5.7° (d = 15.5 Å) underscores the coordination of 9FM along the z-axis, and ethanol in the molecular adduct. Active Ziegler-Natta catalysts were prepared by two different synthesis methods; the conventional method to obtain a high surface area active catalyst, and other one with 9FM as an integral part of the active catalyst in order to study the influence of 9FM as an IED over the active sites. The active catalysts were also characterized thoroughly with different analytical tools. The XRD results show (003) facets of δ-MgCl2 (α-MgCl2) for the conventional (non-conventional) titanated catalyst. Results of the ethylene polymerization activity study reveals that the conventionally prepared highly porous active catalyst shows 1.7-2.5 times higher activity than the non-conventional prepared catalyst; however, the latter shows a low molecular weight distribution and confirms the role of the Lewis base as an IED.

  9. Over 11% Efficiency in Tandem Polymer Solar Cells Featured by a Low-Band-Gap Polymer with Fine-Tuned Properties.

    PubMed

    Zheng, Zhong; Zhang, Shaoqing; Zhang, Jianqi; Qin, Yunpeng; Li, Wanning; Yu, Runnan; Wei, Zhixiang; Hou, Jianhui

    2016-07-01

    Highly efficient polymer solar cells with tandem structure are fabricated by using two excellent photovoltaic polymers and a highly transparent intermediate recombination layer. Power conversion efficiencies over 11% can be realized featured by a low-band-gap polymer with fine-tuned properties.

  10. MicroRNA-15a fine-tunes the level of Delta-like 1 homolog (DLK1) in proliferating 3T3-L1 preadipocytes

    SciTech Connect

    Andersen, Ditte C.; Schneider, Mikael; Eskildsen, Tilde; Teisner, Borge; and others

    2010-06-10

    Delta like 1 homolog (Dlk1) exists in both transmembrane and soluble molecular forms, and is implicated in cellular growth and plays multiple roles in development, tissue regeneration, and cancer. Thus, DLK1 levels are critical for cell function, and abnormal DLK1 expression can be lethal; however, little is known about the underlying mechanisms. We here report that miR-15a modulates DLK1 levels in preadipocytes thus providing a mechanism for DLK1 regulation that further links it to cell cycle arrest and cancer since miR-15a is deregulated in these processes. In preadipocytes, miR-15a increases with cell density, and peaks at the same stage where membrane DLK1{sup M} and soluble DLK1{sup S} are found at maximum levels. Remarkably, miR-15a represses the amount of all Dlk1 variants at the mRNA level but also the level of DLK1{sup M} protein while it increases the amount of DLK1{sup S} supporting a direct repression of DLK1 and a parallel effect on the protease that cleaves off the DLK1 from the membrane. In agreement with previous studies, we found that miR-15a represses cell numbers, but additionally, we report that miR-15a also increases cell size. Conversely, anti-miR-15a treatment decreases cell size while increasing cell numbers, scenarios that were completely rescued by addition of purified DLK1{sup S}. Our data thus imply that miR-15a regulates cell size and proliferation by fine-tuning Dlk1 among others, and further emphasize miR-15a and DLK1 levels to play important roles in growth signaling networks.

  11. Fine tuning the ionic liquid-vacuum outer atomic surface using ion mixtures.

    PubMed

    Villar-Garcia, Ignacio J; Fearn, Sarah; Ismail, Nur L; McIntosh, Alastair J S; Lovelock, Kevin R J

    2015-03-28

    Ionic liquid-vacuum outer atomic surfaces can be created that are remarkably different from the bulk composition. In this communication we demonstrate, using low-energy ion scattering (LEIS), that for ionic liquid mixtures the outer atomic surface shows significantly more atoms from anions with weaker cation-anion interactions (and vice versa).

  12. Stellar helium burning in other universes: A solution to the triple alpha fine-tuning problem

    NASA Astrophysics Data System (ADS)

    Adams, Fred C.; Grohs, Evan

    2017-01-01

    Motivated by the possible existence of other universes, with different values for the fundamental constants, this paper considers stellar models in universes where 8Be is stable. Many previous authors have noted that stars in our universe would have difficulty producing carbon and other heavy elements in the absence of the well-known 12C resonance at 7.6 MeV. This resonance is necessary because 8Be is unstable in our universe, so that carbon must be produced via the triple alpha reaction to achieve the requisite abundance. Although a moderate change in the energy of the resonance (200-300 keV) will indeed affect carbon production, an even smaller change in the binding energy of beryllium (∼100 keV) would allow 8Be to be stable. A stable isotope with A = 8 would obviate the need for the triple alpha process in general, and the 12C resonance in particular, for carbon production. This paper explores the possibility that 8Be can be stable in other universes. Simple nuclear considerations indicate that bound states can be realized, with binding energy ∼ 0.1 - 1 MeV, if the fundamental constants vary by a ∼ few - 10 %. In such cases, 8Be can be synthesized through helium burning, and 12C can be produced later through nuclear burning of beryllium. This paper focuses on stellar models that burn helium into beryllium; once the universe in question has a supply of stable beryllium, carbon production can take place during subsequent evolution in the same star or in later stellar generations. Using both a semi-analytic stellar structure model as well as a state-of-the-art stellar evolution code, we find that viable stellar configurations that produce beryllium exist over a wide range of parameter space. Finally, we demonstrate that carbon can be produced during later evolutionary stages.

  13. Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing

    PubMed Central

    Ferreira, Pedro G.; Oti, Martin; Barann, Matthias; Wieland, Thomas; Ezquina, Suzana; Friedländer, Marc R.; Rivas, Manuel A.; Esteve-Codina, Anna; Estivill, Xavier; Guigó, Roderic; Dermitzakis, Emmanouil; Antonarakis, Stylianos; Meitinger, Thomas; Strom, Tim M; Palotie, Aarno; François Deleuze, Jean; Sudbrak, Ralf; Lerach, Hans; Gut, Ivo; Syvänen, Ann-Christine; Gyllensten, Ulf; Schreiber, Stefan; Rosenstiel, Philip; Brunner, Han; Veltman, Joris; Hoen, Peter A.C.T; Jan van Ommen, Gert; Carracedo, Angel; Brazma, Alvis; Flicek, Paul; Cambon-Thomsen, Anne; Mangion, Jonathan; Bentley, David; Hamosh, Ada; Rosenstiel, Philip; Strom, Tim M; Lappalainen, Tuuli; Guigó, Roderic; Sammeth, Michael

    2016-01-01

    Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing—alternative splice sites, introns, and cleavage sites—which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts. PMID:27617755

  14. Fine tuning of reactive oxygen species homeostasis regulates primed immune responses in Arabidopsis.

    PubMed

    Pastor, Victoria; Luna, Estrella; Ton, Jurriaan; Cerezo, Miguel; García-Agustín, Pilar; Flors, Victor

    2013-11-01

    Selected stimuli can prime the plant immune system for a faster and stronger defense reaction to pathogen attack. Pretreatment of Arabidopsis with the chemical agent β-aminobutyric acid (BABA) augmented H2O2 and callose production after induction with the pathogen-associated molecular pattern (PAMP) chitosan, or inoculation with the necrotrophic fungus Plectosphaerella cucumerina. However, BABA failed to prime H2O2 and callose production after challenge with the bacterial PAMP Flg22. Analysis of Arabidopsis mutants in reactive oxygen species (ROS) production (rbohD) or ROS scavenging (pad2, vtc1, and cat2) suggested a regulatory role for ROS homeostasis in priming of chitosan- and P. cucumerina-inducible callose and ROS. Moreover, rbohD and pad2 were both impaired in BABA-induced resistance against P. cucumerina. Gene expression analysis revealed direct induction of NADPH/respiratory burst oxidase protein D (RBOHD), γ-glutamylcysteine synthetase 1 (GSH1), and vitamin C defective 1 (VTC1) genes after BABA treatment. Conversely, ascorbate peroxidase 1 (APX1) transcription was repressed by BABA after challenge with chitosan or P. cucumerina, probably to provide a more oxidized environment in the cell and facilitate augmented ROS accumulation. Measuring ratios between reduced and oxidized glutathione confirmed that augmented defense expression in primed plants is associated with a more oxidized cellular status. Together, our data indicate that an altered ROS equilibrium is required for augmented defense expression in primed plants.

  15. Fine tuning of the temporal expression of HTLV-1 and HTLV-2

    PubMed Central

    Cavallari, Ilaria; Rende, Francesca; Bender, Cecilia; Romanelli, Maria G.; D'Agostino, Donna M.; Ciminale, Vincenzo

    2013-01-01

    Human T-cell leukemia virus types 1 and 2 (HTLV-1 and HTLV-2) are delta retroviruses that share a common overall genetic organization, splicing pattern, and ability to infect and immortalize T-cells in vitro. However, HTLV-1 and HTLV-2 exhibit a clearly distinct pathogenic potential in infected patients. To find clues to the possible viral determinants of the biology of these viruses, recent studies investigated the timing of expression and the intracellular compartmentalization of viral transcripts in ex-vivo samples from infected patients. Results of these studies revealed a common overall pattern of expression of HTLV-1 and -2 with a two-phase kinetics of expression and a nuclear accumulation of minus-strand transcripts. Studies in cells transfected with HTLV-1 molecular clones demonstrated the strict Rex-dependency of this “two-phase” kinetics. These studies also highlighted interesting differences in the relative abundance of transcripts encoding the Tax and Rex regulatory proteins, and that of the accessory proteins controlling Rex expression and function, thus suggesting a potential basis for the different pathobiology of the two viruses. PMID:24032027

  16. EARLY FLOWERING3 Redundancy Fine-Tunes Photoperiod Sensitivity1[OPEN

    PubMed Central

    Rubenach, Andrew J.S.; Vander Schoor, Jacqueline K.; Aubert, Gregoire; Burstin, Judith

    2017-01-01

    Three pea (Pisum sativum) loci controlling photoperiod sensitivity, HIGH RESPONSE (HR), DIE NEUTRALIS (DNE), and STERILE NODES (SN), have recently been shown to correspond to orthologs of Arabidopsis (Arabidopsis thaliana) circadian clock genes EARLY FLOWERING3 (ELF3), ELF4, and LUX ARRHYTHMO, respectively. A fourth pea locus, PHOTOPERIOD (PPD), also contributes to the photoperiod response in a similar manner to SN and DNE, and recessive ppd mutants on a spring-flowering hr mutant background show early, photoperiod-insensitive flowering. However, the molecular identity of PPD has so far remained elusive. Here, we show that the PPD locus also has a role in maintenance of diurnal and circadian gene expression rhythms and identify PPD as an ELF3 co-ortholog, termed ELF3b. Genetic interactions between pea ELF3 genes suggest that loss of PPD function does not affect flowering time in the presence of functional HR, whereas PPD can compensate only partially for the lack of HR. These results provide an illustration of how gene duplication and divergence can generate potential for the emergence of more subtle variations in phenotype that may be adaptively significant. PMID:28202598

  17. Sequence variation between 462 human individuals fine-tunes functional sites of RNA processing

    NASA Astrophysics Data System (ADS)

    Ferreira, Pedro G.; Oti, Martin; Barann, Matthias; Wieland, Thomas; Ezquina, Suzana; Friedländer, Marc R.; Rivas, Manuel A.; Esteve-Codina, Anna; Estivill, Xavier; Guigó, Roderic; Dermitzakis, Emmanouil; Antonarakis, Stylianos; Meitinger, Thomas; Strom, Tim M.; Palotie, Aarno; François Deleuze, Jean; Sudbrak, Ralf; Lerach, Hans; Gut, Ivo; Syvänen, Ann-Christine; Gyllensten, Ulf; Schreiber, Stefan; Rosenstiel, Philip; Brunner, Han; Veltman, Joris; Hoen, Peter A. C. T.; Jan van Ommen, Gert; Carracedo, Angel; Brazma, Alvis; Flicek, Paul; Cambon-Thomsen, Anne; Mangion, Jonathan; Bentley, David; Hamosh, Ada; Rosenstiel, Philip; Strom, Tim M.; Lappalainen, Tuuli; Guigó, Roderic; Sammeth, Michael

    2016-09-01

    Recent advances in the cost-efficiency of sequencing technologies enabled the combined DNA- and RNA-sequencing of human individuals at the population-scale, making genome-wide investigations of the inter-individual genetic impact on gene expression viable. Employing mRNA-sequencing data from the Geuvadis Project and genome sequencing data from the 1000 Genomes Project we show that the computational analysis of DNA sequences around splice sites and poly-A signals is able to explain several observations in the phenotype data. In contrast to widespread assessments of statistically significant associations between DNA polymorphisms and quantitative traits, we developed a computational tool to pinpoint the molecular mechanisms by which genetic markers drive variation in RNA-processing, cataloguing and classifying alleles that change the affinity of core RNA elements to their recognizing factors. The in silico models we employ further suggest RNA editing can moonlight as a splicing-modulator, albeit less frequently than genomic sequence diversity. Beyond existing annotations, we demonstrate that the ultra-high resolution of RNA-Seq combined from 462 individuals also provides evidence for thousands of bona fide novel elements of RNA processing—alternative splice sites, introns, and cleavage sites—which are often rare and lowly expressed but in other characteristics similar to their annotated counterparts.

  18. Fnr (EtrA) acts as a fine-tuning regulator of anaerobic metabolism in Shewanella oneidensis MR-1

    SciTech Connect

    Cruz-Garza, Claribel; Murray, Alison E.; Rodrigues, Jorge L.M.; Gralnick, Jeffrey A.; McCue, Lee Ann; Romine, Margaret F.; Loffler, F. E.; Tiedje, James M.

    2011-03-30

    EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is not well understood. The expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down regulated at least 2-fold and the EtrA7-1 mutant grew poorly with fumarate and dimethyl sulfoxide (DMSO), suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down regulation of genes implicated in aerobic metabolism. In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and confers physiological advantages to strain MR-1 under certain growth conditions. In conjunction with other regulators, EtrA fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1.

  19. Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF)

    PubMed Central

    Reiland, Sonja; Finazzi, Giovanni; Endler, Anne; Willig, Adrian; Baerenfaller, Katja; Grossmann, Jonas; Gerrits, Bertran; Rutishauser, Dorothea; Gruissem, Wilhelm; Rochaix, Jean-David; Baginsky, Sacha

    2011-01-01

    Important aspects of photosynthetic electron transport efficiency in chloroplasts are controlled by protein phosphorylation. Two thylakoid-associated kinases, STN7 and STN8, have distinct roles in short- and long-term photosynthetic acclimation to changes in light quality and quantity. Although some substrates of STN7 and STN8 are known, the complexity of this regulatory kinase system implies that currently unknown substrates connect photosynthetic performance with the regulation of metabolic and regulatory functions. We performed an unbiased phosphoproteome-wide screen with Arabidopsis WT and stn8 mutant plants to identify unique STN8 targets. The phosphorylation status of STN7 was not affected in stn8, indicating that kinases other than STN8 phosphorylate STN7 under standard growth conditions. Among several putative STN8 substrates, PGRL1-A is of particular importance because of its possible role in the modulation of cyclic electron transfer. The STN8 phosphorylation site on PGRL1-A is absent in both monocotyledonous plants and algae. In dicots, spectroscopic measurements with Arabidopsis WT, stn7, stn8, and stn7/stn8 double-mutant plants indicate a STN8-mediated slowing down of the transition from cyclic to linear electron flow at the onset of illumination. This finding suggests a possible link between protein phosphorylation by STN8 and fine-tuning of cyclic electron flow during this critical step of photosynthesis, when the carbon assimilation is not commensurate to the electron flow capacity of the chloroplast. PMID:21768351

  20. The role of post-translational modifications in fine-tuning BLM helicase function during DNA repair

    PubMed Central

    Böhm, Stefanie; Bernstein, Kara Anne

    2014-01-01

    RecQ-like helicases are a highly conserved family of proteins which are critical for preserving genome integrity. Genome instability is considered a hallmark of cancer and mutations within three of the five human RECQ genes cause hereditary syndromes that are associated with cancer predisposition. The human RecQ-like helicase BLM has a central role in DNA damage signaling, repair, replication, and telomere maintenance. BLM and its budding yeast orthologue Sgs1 unwind double-stranded DNA intermediates. Intriguingly, BLM functions in both a pro- and anti-recombinogenic manner upon replicative damage, acting on similar substrates. Thus, BLM activity must be intricately controlled to prevent illegitimate recombination events that could have detrimental effects on genome integrity. In recent years it has become evident that post-translational modifications (PTMs) of BLM allow a fine-tuning of its function. To date, BLM phosphorylation, ubiquitination, and SUMOylation have been identified, in turn regulating its subcellular localization, protein-protein interactions, and protein stability. In this review, we will discuss the cellular context of when and how these different modifications of BLM occur. We will reflect on the current model of how PTMs control BLM function during DNA damage repair and compare this to what is known about post-translational regulation of the budding yeast orthologue Sgs1. Finally, we will provide an outlook towards future research, in particular to dissect the cross-talk between the individual PTMs on BLM. PMID:25150915

  1. Disulfide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank–Starling response

    PubMed Central

    Scotcher, Jenna; Prysyazhna, Oleksandra; Boguslavskyi, Andrii; Kistamas, Kornel; Hadgraft, Natasha; Martin, Eva D.; Worthington, Jenny; Rudyk, Olena; Rodriguez Cutillas, Pedro; Cuello, Friederike; Shattock, Michael J.; Marber, Michael S.; Conte, Maria R.; Greenstein, Adam; Greensmith, David J.; Venetucci, Luigi; Timms, John F.; Eaton, Philip

    2016-01-01

    The Frank–Starling mechanism allows the amount of blood entering the heart from the veins to be precisely matched with the amount pumped out to the arterial circulation. As the heart fills with blood during diastole, the myocardium is stretched and oxidants are produced. Here we show that protein kinase G Iα (PKGIα) is oxidant-activated during stretch and this form of the kinase selectively phosphorylates cardiac phospholamban Ser16—a site important for diastolic relaxation. We find that hearts of Cys42Ser PKGIα knock-in (KI) mice, which are resistant to PKGIα oxidation, have diastolic dysfunction and a diminished ability to couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent with impaired relaxation and contractile function. We conclude that oxidation of PKGIα during myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank–Starling response. PMID:27782102

  2. Large-Scale Phenomics Identifies Primary and Fine-Tuning Roles for CRKs in Responses Related to Oxidative Stress

    PubMed Central

    Rayapuram, Channabasavangowda; Idänheimo, Niina; Hunter, Kerri; Kimura, Sachie; Merilo, Ebe; Vaattovaara, Aleksia; Oracz, Krystyna; Kaufholdt, David; Pallon, Andres; Anggoro, Damar Tri; Glów, Dawid; Lowe, Jennifer; Zhou, Ji; Mohammadi, Omid; Puukko, Tuomas; Albert, Andreas; Lang, Hans; Ernst, Dieter; Kollist, Hannes; Brosché, Mikael; Durner, Jörg; Borst, Jan Willem; Collinge, David B.; Karpiński, Stanisław; Lyngkjær, Michael F.; Robatzek, Silke; Wrzaczek, Michael; Kangasjärvi, Jaakko

    2015-01-01

    Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins characterized by the presence of two domains of unknown function 26 (DUF26) in their ectodomain. The CRKs form one of the largest groups of receptor-like protein kinases in plants, but their biological functions have so far remained largely uncharacterized. We conducted a large-scale phenotyping approach of a nearly complete crk T-DNA insertion line collection showing that CRKs control important aspects of plant development and stress adaptation in response to biotic and abiotic stimuli in a non-redundant fashion. In particular, the analysis of reactive oxygen species (ROS)-related stress responses, such as regulation of the stomatal aperture, suggests that CRKs participate in ROS/redox signalling and sensing. CRKs play general and fine-tuning roles in the regulation of stomatal closure induced by microbial and abiotic cues. Despite their great number and high similarity, large-scale phenotyping identified specific functions in diverse processes for many CRKs and indicated that CRK2 and CRK5 play predominant roles in growth regulation and stress adaptation, respectively. As a whole, the CRKs contribute to specificity in ROS signalling. Individual CRKs control distinct responses in an antagonistic fashion suggesting future potential for using CRKs in genetic approaches to improve plant performance and stress tolerance. PMID:26197346

  3. Disulfide-activated protein kinase G Iα regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response.

    PubMed

    Scotcher, Jenna; Prysyazhna, Oleksandra; Boguslavskyi, Andrii; Kistamas, Kornel; Hadgraft, Natasha; Martin, Eva D; Worthington, Jenny; Rudyk, Olena; Rodriguez Cutillas, Pedro; Cuello, Friederike; Shattock, Michael J; Marber, Michael S; Conte, Maria R; Greenstein, Adam; Greensmith, David J; Venetucci, Luigi; Timms, John F; Eaton, Philip

    2016-10-26

    The Frank-Starling mechanism allows the amount of blood entering the heart from the veins to be precisely matched with the amount pumped out to the arterial circulation. As the heart fills with blood during diastole, the myocardium is stretched and oxidants are produced. Here we show that protein kinase G Iα (PKGIα) is oxidant-activated during stretch and this form of the kinase selectively phosphorylates cardiac phospholamban Ser16-a site important for diastolic relaxation. We find that hearts of Cys42Ser PKGIα knock-in (KI) mice, which are resistant to PKGIα oxidation, have diastolic dysfunction and a diminished ability to couple ventricular filling with cardiac output on a beat-to-beat basis. Intracellular calcium dynamics of ventricular myocytes isolated from KI hearts are altered in a manner consistent with impaired relaxation and contractile function. We conclude that oxidation of PKGIα during myocardial stretch is crucial for diastolic relaxation and fine-tunes the Frank-Starling response.

  4. Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression.

    PubMed

    Wu, Bo-Tsung; Wen, Shih-Hsien; Hwang, Sheng-Ping L; Huang, Chang-Jen; Kuan, Yung-Shu

    2015-06-15

    Wnts and Fgfs regulate various tissues development in vertebrates. However, how regional Wnt or Fgf activities are established and how they interact in any given developmental event is elusive. Here, we investigated the Wnt-mediated craniofacial cartilage development in zebrafish and found that fgf3 expression in the pharyngeal pouches is differentially reduced along the anteroposterior axis in wnt5b mutants and wntless (wls) morphants, but its expression is normal in wnt9a and wnt11 morphants. Introducing fgf3 mRNAs rescued the cartilage defects in Wnt5b- and Wls-deficient larvae. In wls morphants, endogenous Wls expression is not detectable but maternally deposited Wls is present in eggs, which might account for the lack of axis defects in wls morphants. Secretion of endogenous Wnt5b but not Wnt11 was affected in the pharyngeal tissue of Wls morphants, indicating that Wls is not involved in every Wnt secretion event. Furthermore, cell proliferation but not apoptosis in the developing jaw was affected in Wnt5b- and Wls-deficient embryos. Therefore, Wnt5b requires Wls for its secretion and regulates the proliferation of chondrogenic cells through fine-tuning the expression of fgf3 during jaw cartilage development.

  5. Transcriptional control of flavonoid biosynthesis: fine-tuning of the MYB-bHLH-WD40 (MBW) complex.

    PubMed

    Li, Shutian

    2014-01-01

    Flavonoids are plant secondary polyphenolic metabolites and fulfil many vital biological functions, offering a valuable metabolic and genetic model for studying transcriptional control of gene expression. Arabidopsis thaliana mainly accumulates 3 types of flavonoids, including flavonols, anthocyanins, and proanthocyanidins (PAs). Flavonoid biosynthesis involves a multitude of well-characterized enzymatic and regulatory proteins. Three R2R3-MYB proteins (MYB11, MYB12, and MYB111) control flavonol biosynthesis via activating the early biosynthetic steps, whereas the production of anthocyanins and PAs requires the MYB-bHLH-WD40 (MBW) complex to activate the late biosynthetic genes. Additional regulators of flavonoid biosynthesis have recently come to light, which interact with R2R3-MYBs or bHLHs to organize or disrupt the formation of the MBW complex, leading to enhanced or compromised flavonoid production. This mini-review gives an overview of how these novel players modulate flavonoid metabolism and thus plant developmental processes and further proposes a fine-tuning mechanism to complete the complex regulatory network controlling flavonoid biosynthesis.

  6. A Negative Feedback Loop between PHYTOCHROME INTERACTING FACTORs and HECATE Proteins Fine-Tunes Photomorphogenesis in Arabidopsis

    PubMed Central

    Zhu, Ling; Bu, Qingyun; Shen, Hui; Dang, Jonathan

    2016-01-01

    The phytochrome interacting factors (PIFs), a small group of basic helix-loop-helix transcription factors, repress photomorphogenesis both in the dark and light. Light signals perceived by the phytochrome family of photoreceptors induce rapid degradation of PIFs to promote photomorphogenesis. Here, we show that HECATE (HEC) proteins, another small group of HLH proteins, antagonistically regulate PIFs to promote photomorphogenesis. HEC1 and HEC2 heterodimerize with PIF family members. PIF1, HEC1, and HEC2 genes are spatially and temporally coexpressed, and HEC2 is localized in the nucleus. hec1, hec2, and hec3 single mutants and the hec1 hec2 double mutant showed hyposensitivity to light-induced seed germination and accumulation of chlorophyll and carotenoids, hallmark processes oppositely regulated by PIF1. HEC2 inhibits PIF1 target gene expression by directly heterodimerizing with PIF1 and preventing DNA binding and transcriptional activation activity of PIF1. Conversely, PIFs directly activate the expression of HEC1 and HEC2 in the dark, and light reduces the expression of these HECs possibly by degrading PIFs. HEC2 is partially degraded in the dark through the ubiquitin/26S-proteasome pathway and is stabilized by light. HEC2 overexpression also reduces the light-induced degradation of PIF1. Taken together, these data suggest that PIFs and HECs constitute a negative feedback loop to fine-tune photomorphogenesis in Arabidopsis thaliana. PMID:27073231

  7. The TORC1 effector kinase Npr1 fine tunes the inherent activity of the Mep2 ammonium transport protein.

    PubMed

    Boeckstaens, Mélanie; Llinares, Elisa; Van Vooren, Pascale; Marini, Anna Maria

    2014-01-01

    The TORC1 complex controls cell growth upon integrating nutritional signals including amino-acid availability. TORC1 notably adapts the plasma membrane protein content by regulating arrestin-mediated endocytosis of amino-acid transporters. Here we demonstrate that TORC1 further fine tunes the inherent activity of the ammonium transport protein, Mep2, a yeast homologue of mammalian Rhesus factors, independently of arrestin-mediated endocytosis. The TORC1 effector kinase Npr1 and the upstream TORC1 regulator Npr2 control Mep2 transport activity by phospho-silencing a carboxy-terminal autoinhibitory domain. Under poor nitrogen supply, Npr1 enables Mep2 S457 phosphorylation and thus ammonium transport activity. Supplementation of the preferred nitrogen source glutamine leads to Mep2 inactivation and instant S457 dephosphorylation via plasma membrane Psr1 and Psr2 redundant phosphatases. This study underscores that TORC1 also adjusts nutrient permeability to regulate cell growth in a fast and flexible response to environmental perturbation, establishing a hierarchy in the transporters to be degraded, inactivated or maintained active at the plasma membrane.

  8. Fine-tuning of DDES and IDDES formulations to the k-ω shear stress transport model

    NASA Astrophysics Data System (ADS)

    Gritskevich, M. S.; Garbaruk, A. V.; Menter, F. R.

    2013-06-01

    Modifications are proposed of two recently developed hybrid CFD (computational fluid dynamics) strategies, Delayed Detached Eddy Simulation (DDES), and DDES with Improved wall-modeling capability (IDDES). The modifications are aimed at fine-tuning of these approaches to the k-ω SST (shear stress transport) background RANS (Reynolds-averaged Navier-Stokes) model. The first one includes recalibrated empirical constants in the shielding function of the Spalart-Allmaras (SA) based DDES which are shown to be suboptimal (not providing a needed level of elimination of the Model Stress Depletion (MSD)) for the SST-based DDES model. For the SST-IDDES variant, in addition to that, a simplification of the original SA-based formulation is proposed, which does not cause any visible degradation of the model performance. Both modifications are extensively tested on a range of attached and separated flows (developed channel, backward-facing step, periodic hills, wall-mounted hump, and hydrofoil with trailing edge separation).

  9. miR-17-92 fine-tunes MYC expression and function to ensure optimal B cell lymphoma growth

    PubMed Central

    Mihailovich, Marija; Bremang, Michael; Spadotto, Valeria; Musiani, Daniele; Vitale, Elena; Varano, Gabriele; Zambelli, Federico; Mancuso, Francesco M.; Cairns, David A.; Pavesi, Giulio; Casola, Stefano; Bonaldi, Tiziana

    2015-01-01

    The synergism between c-MYC and miR-17-19b, a truncated version of the miR-17-92 cluster, is well-documented during tumor initiation. However, little is known about miR-17-19b function in established cancers. Here we investigate the role of miR-17-19b in c-MYC-driven lymphomas by integrating SILAC-based quantitative proteomics, transcriptomics and 3′ untranslated region (UTR) analysis upon miR-17-19b overexpression. We identify over one hundred miR-17-19b targets, of which 40% are co-regulated by c-MYC. Downregulation of a new miR-17/20 target, checkpoint kinase 2 (Chek2), increases the recruitment of HuR to c-MYC transcripts, resulting in the inhibition of c-MYC translation and thus interfering with in vivo tumor growth. Hence, in established lymphomas, miR-17-19b fine-tunes c-MYC activity through a tight control of its function and expression, ultimately ensuring cancer cell homeostasis. Our data highlight the plasticity of miRNA function, reflecting changes in the mRNA landscape and 3′ UTR shortening at different stages of tumorigenesis. PMID:26555894

  10. 5-Azacytidine-induced Protein 2 (AZI2) Regulates Bone Mass by Fine-tuning Osteoclast Survival*

    PubMed Central

    Maruyama, Kenta; Fukasaka, Masahiro; Uematsu, Satoshi; Takeuchi, Osamu; Kondo, Takeshi; Saitoh, Tatsuya; Martino, Mikaël M.; Akira, Shizuo

    2015-01-01

    5-Azacytidine-induced protein 2 (AZI2) is a TNF receptor (TNFR)-associated factor family member-associated NF-κB activator-binding kinase 1-binding protein that regulates the production of IFNs. A previous in vitro study showed that AZI2 is involved in dendritic cell differentiation. However, the roles of AZI2 in immunity and its pleiotropic functions are unknown in vivo. Here we report that AZI2 knock-out mice exhibit normal dendritic cell differentiation in vivo. However, we found that adult AZI2 knock-out mice have severe osteoporosis due to increased osteoclast longevity. We revealed that the higher longevity of AZI2-deficient osteoclasts is due to an augmented activation of proto-oncogene tyrosine-protein kinase Src (c-Src), which is a critical player in osteoclast survival. We found that AZI2 inhibits c-Src activity by regulating the activation of heat shock protein 90 (Hsp90), a chaperone involved in c-Src dephosphorylation. Furthermore, we demonstrated that AZI2 indirectly inhibits c-Src by interacting with the Hsp90 co-chaperone Cdc37. Strikingly, administration of a c-Src inhibitor markedly prevented bone loss in AZI2 knock-out mice. Together, these findings indicate that AZI2 regulates bone mass by fine-tuning osteoclast survival. PMID:25691576

  11. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic

    SciTech Connect

    Avdic, Vanja; Zhang, Pamela; Lanouette, Sylvain; Voronova, Anastassia; Skerjanc, Ilona; Couture, Jean-Francois

    2011-08-24

    The SET1 family of methyltransferases carries out the bulk of histone H3 Lys-4 methylation in vivo. One of the common features of this family is the regulation of their methyltransferase activity by a tripartite complex composed of WDR5, RbBP5, and Ash2L. To selectively probe the role of the SET1 family of methyltransferases, we have developed a library of histone H3 peptide mimetics and report herein the characterization of an N{alpha} acetylated form of histone H3 peptide (N{alpha}H3). Binding and inhibition studies reveal that the addition of an acetyl moiety to the N terminus of histone H3 significantly enhances its binding to WDR5 and prevents the stimulation of MLL1 methyltransferase activity by the WDR5-RbBP5-Ash2L complex. The crystal structure of N{alpha}H3 in complex with WDR5 reveals that a high-affinity hydrophobic pocket accommodates the binding of the acetyl moiety. These results provide the structural basis to control WDR5-RbBP5-Ash2L-MLL1 activity and a tool to manipulate stem cell differentiation programs.-Avdic, V., Zhang, P., Lanouette, S., Voronova, A., Skerjanc, I., Couture, J.-F. Fine-tuning the stimulation of MLL1 methyltransferase activity by a histone H3-based peptide mimetic.

  12. Fine tuning of Rac1 and RhoA alters cuspal shapes by remolding the cellular geometry

    PubMed Central

    Li, Liwen; Tang, Qinghuang; Nakamura, Takashi; Suh, Jun-Gyo; Ohshima, Hayato; Jung, Han-Sung

    2016-01-01

    The anatomic and functional combinations of cusps and lophs (ridges) define the tooth shape of rodent molars, which distinguishes species. The species-specific cusp patterns result from the spatiotemporal induction of enamel knots (EKs), which require precisely controlled cellular behavior to control the epithelial invagination. Despite the well-defined roles of EK in cusp patterning, the determinants of the ultimate cuspal shapes and involvement of epithelial cellular geometry are unknown. Using two typical tooth patterns, the lophodont in gerbils and the bunodont in mice, we showed that the cuspal shape is determined by the dental epithelium at the cap stage, whereas the cellular geometry in the inner dental epithelium (IDE) is correlated with the cuspal shape. Intriguingly, fine tuning Rac1 and RhoA interconvert cuspal shapes between two species by remolding the cellular geometry. Either inhibition of Rac1 or ectopic expression of RhoA could region-distinctively change the columnar shape of IDE cells in gerbils to drive invagination to produce cusps. Conversely, RhoA reduction in mice inhibited invagination and developed lophs. Furthermore, we found that Rac1 and RhoA modulate the choices of cuspal shape by coordinating adhesion junctions, actin distribution, and fibronectin localization to drive IDE invagination. PMID:27892530

  13. Ethylene-Regulated Glutamate Dehydrogenase Fine-Tunes Metabolism during Anoxia-Reoxygenation.

    PubMed

    Tsai, Kuen-Jin; Lin, Chih-Yu; Ting, Chen-Yun; Shih, Ming-Che

    2016-11-01

    Ethylene is an essential hormone in plants that is involved in low-oxygen and reoxygenation responses. As a key transcription factor in ethylene signaling, ETHYLENE INSENSITIVE3 (EIN3) activates targets that trigger various responses. However, most of these targets are still poorly characterized. Through analyses of our microarray data and the published Arabidopsis (Arabidopsis thaliana) EIN3 chromatin immunoprecipitation sequencing data set, we inferred the putative targets of EIN3 during anoxia-reoxygenation. Among them, GDH2, which encodes one subunit of glutamate dehydrogenase (GDH), was chosen for further studies for its role in tricarboxylic acid cycle replenishment. We demonstrated that both GDH1 and GDH2 are induced during anoxia and reoxygenation and that this induction is mediated via ethylene signaling. In addition, the results of enzymatic assays showed that the level of GDH during anoxia-reoxygenation decreased in the ethylene-insensitive mutants ein2-5 and ein3eil1 Global metabolite analysis indicated that the deamination activity of GDH might regenerate 2-oxoglutarate, which is a cosubstrate that facilitates the breakdown of alanine by alanine aminotransferase when reoxygenation occurs. Moreover, ineffective tricarboxylic acid cycle replenishment, disturbed carbohydrate metabolism, reduced phytosterol biosynthesis, and delayed energy regeneration were found in gdh1gdh2 and ethylene mutants during reoxygenation. Taken together, these data illustrate the essential role of EIN3-regulated GDH activity in metabolic adjustment during anoxia-reoxygenation.

  14. Fine-Tuning Motile Cilia and Flagella: Evolution of the Dynein Motor Proteins from Plants to Humans at High Resolution

    PubMed Central

    Kollmar, Martin

    2016-01-01

    The flagellum is a key innovation linked to eukaryogenesis. It provides motility by regulated cycles of bending and bend propagation, which are thought to be controlled by a complex arrangement of seven distinct dyneins in repeated patterns of outer- (OAD) and inner-arm dynein (IAD) complexes. Electron tomography showed high similarity of this axonemal repeat pattern across ciliates, algae, and animals, but the diversity of dynein sequences across the eukaryotes has not yet comprehensively been resolved and correlated with structural data. To shed light on the evolution of the axoneme I performed an exhaustive analysis of dyneins using the available sequenced genome data. Evidence from motor domain phylogeny allowed expanding the current set of nine dynein subtypes by eight additional isoforms with, however, restricted taxonomic distributions. I confirmed the presence of the nine dyneins in all eukaryotic super-groups indicating their origin predating the last eukaryotic common ancestor. The comparison of the N-terminal tail domains revealed a most likely axonemal dynein origin of the new classes, a group of chimeric dyneins in plants/algae and Stramenopiles, and the unique domain architecture and origin of the outermost OADs present in green algae and ciliates but not animals. The correlation of sequence and structural data suggests the single-headed class-8 and class-9 dyneins to localize to the distal end of the axonemal repeat and the class-7 dyneins filling the region up to the proximal heterodimeric IAD. Tracing dynein gene duplications across the eukaryotes indicated ongoing diversification and fine-tuning of flagellar functions in extant taxa and species. PMID:27880711

  15. Fine-tuning of Hh signaling by the RNA-binding protein Quaking to control muscle development.

    PubMed

    Lobbardi, Riadh; Lambert, Guillaume; Zhao, Jue; Geisler, Robert; Kim, Hyejeong R; Rosa, Frederic M

    2011-05-01

    The development of the different muscles within the somite is a complex process that involves the Hedgehog (Hh) signaling pathway. To specify the proper number of muscle cells and organize them spatially and temporally, the Hh signaling pathway needs to be precisely regulated at different levels, but only a few factors external to the pathway have been described. Here, we report for the first time the role of the STAR family RNA-binding protein Quaking A (QkA) in somite muscle development. We show in zebrafish that the loss of QkA function affects fast muscle fiber maturation as well as Hh-induced muscle derivative specification and/or morphogenesis. Mosaic analysis reveals that fast fiber maturation depends on the activity of QkA in the environment of fast fiber progenitors. We further show that Hh signaling requires QkA activity for muscle development. By an in silico approach, we screened the 3'UTRs of known Hh signaling component mRNAs for the Quaking response element and found the transcription factor Gli2a, a known regulator of muscle fate development. Using destabilized GFP as a reporter, we show that the gli2a mRNA 3'UTR is a functional QkA target. Consistent with this notion, the loss of QkA function rescued slow muscle fibers in yot mutant embryos, which express a dominant-negative Gli2a isoform. Thus, our results reveal a new mechanism to ensure muscle cell fate diversity by fine-tuning of the Hh signaling pathway via RNA-binding proteins.

  16. The S1 Helix Critically Regulates the Finely-tuned Gating of Kv11.1 Channels.

    PubMed

    Phan, Kevin; Ng, Chai Ann; David, Erikka; Shishmarev, Dmitry; Kuchel, Philip W; Vandenberg, Jamie I; Perry, Matthew D

    2017-03-09

    Congenital mutations in the cardiac Kv11.1 channel can cause long QT syndrome type 2 (LQTS2), a heart rhythm disorder associated with sudden cardiac death. Mutations act either by reducing protein expression at the membrane, and/or by perturbing the intricate gating properties of Kv11.1 channels. A number of clinical LQTS2-associated mutations have been reported in the first transmembrane segment (S1) of Kv11.1 channels but the role of this region of the channel is largely unexplored. In part this is due to problems defining the extent of the S1 helix, as a consequence of its low sequence homology with other Kv family members. Here we used NMR spectroscopy and electrophysiological characterization to show that the S1 of Kv11.1 channels extends seven helical turns, from Pro405 to Phe431, and is flanked by unstructured loops. Functional analysis suggests that pre-S1 loop residues His402 and Tyr403 play an important role in regulating the kinetics and voltage dependence of channel activation and deactivation. Multiple residues within the S1 helix also play an important role in fine-tuning the voltage dependence of activation, regulating slow deactivation, and modulating C-type inactivation of Kv11.1 channels. Analyses of LQTS2-associated mutations in the pre-S1 loop or S1 helix of Kv11.1 channels demonstrate perturbations to both protein expression and most gating transitions. Thus S1 region mutations would reduce both the action potential repolarizing current passed by Kv11.1 channels in cardiac myocytes, as well as the current passed in response to premature depolarizations that normally helps protect against the formation of ectopic beats.

  17. Catecholamines as immunomodulators: a role for adrenoceptor-mediated mechanisms in fine tuning of T-cell development.

    PubMed

    Leposavić, Gordana; Pilipović, Ivan; Radojević, Katarina; Pesić, Vesna; Perisić, Milica; Kosec, Dusko

    2008-12-15

    In its simplest form, effective T cell-mediated immunity emanates from the expansion of specific T cells activated in response to antigen. In establishing and maintaining the peripheral T-cell pool, the thymus plays a critical role. It does so by providing a microenvironment within which T-cell precursors proliferate, differentiate and undergo selection processes to create a fully functional population of major histocompatibility complex restricted, self-tolerant T cells. The control of the thymic function involves intrathymic, as well as sympathetic nervous and endocrine system signalling. In addition to postganglionic noradrenergic fibres, both thymic lymphoid and non-lymphoid cells, including epithelial cells and macrophages, have been demonstrated to express tyrosine hydroxylase (TH), and suggested to form a local non-neural catecholaminergic cell network. A higher level of noradrenaline has been found in male than in female rat thymi, and a role of gonadal hormones in providing this dimorphism has been demonstrated. In addition, thymic lymphoid and non-lymphoid cells, including those expressing TH, have been found to bear beta- and alpha1-adrenoceptors (ARs) and a role of gonadal hormones in regulation of, at least, beta-AR density and signalling has been suggested. These findings have also entailed conclusion that catecholamines (CAs) influence T-cell development, not only via neurocrine/endocrine, but also via autocrine/paracrine action. Generally, CAs have been shown to exert an inhibitory influence on thymopoiesis. Role of alpha1- and beta-AR-mediated mechanisms in maintaining thymic homeostasis and in fine tuning of both conventional and regulatory T-cell development is discussed in the manuscript.

  18. Fine-Tuning of the Cpx Envelope Stress Response Is Required for Cell Wall Homeostasis in Escherichia coli

    PubMed Central

    Delhaye, Antoine; Collet, Jean-François

    2016-01-01

    ABSTRACT The envelope of Gram-negative bacteria is an essential compartment that constitutes a protective and permeability barrier between the cell and its environment. The envelope also hosts the cell wall, a mesh-like structure made of peptidoglycan (PG) that determines cell shape and provides osmotic protection. Since the PG must grow and divide in a cell-cycle-synchronized manner, its synthesis and remodeling are tightly regulated. Here, we discovered that PG homeostasis is intimately linked to the levels of activation of the Cpx system, an envelope stress response system traditionally viewed as being involved in protein quality control in the envelope. We first show that Cpx is activated when PG integrity is challenged and that this activation provides protection to cells exposed to antibiotics inhibiting PG synthesis. By rerouting the outer membrane lipoprotein NlpE, a known Cpx activator, to a different envelope subcompartment, we managed to manipulate Cpx activation levels. We found that Cpx overactivation leads to aberrant cellular morphologies, to an increased sensitivity to β-lactams, and to dramatic division and growth defects, consistent with a loss of PG homeostasis. Remarkably, these phenotypes were largely abrogated by the deletion of ldtD, a Cpx-induced gene involved in noncanonical PG cross-linkage, suggesting that this transpeptidase is an important link between PG homeostasis and the Cpx system. Altogether our data show that fine-tuning of an envelope quality control system constitutes an important layer of regulation of the highly organized cell wall structure. PMID:26908573

  19. Fine-tune optical absorption and light emitting behavior of the CdS/PVA hybridized film nanocomposite

    NASA Astrophysics Data System (ADS)

    Heiba, Z. K.; Mohamed, Mohamed Bakr; Imam, N. G.

    2017-05-01

    CdS nanoparticles (NPs) nucleated at different temperatures were composited with PVA to control and fine-tune optical absorption and emission of the nano-hybrid composite by varying the sizes of the CdS NPs which in turn depends on the nucleation temperature. The implanting of CdS NPs into PVA matrix was confirmed by XRD hand in hand with absorption and photoluminescence spectroscopic techniques. UV/VIS absorption spectra confirm the formation of hybridized film CdS/PVA nanocomposite with refractive index in the range of 2-4. UV/VIS measurements were also used in calculating different optical and dielectric parameters such as refractive index, extinction coefficient, dielectric constants, and optical conductivity. The optical parameters varied with the incorporation of CdS NPs within PVA matrix; accordingly, the optical constants of the nanocomposite films could be controlled by size of CdS content. Tauc's relation was used to determine the optical band gap and to determine the type of electronic transition. It is found that the direct allowed transition is more probable in CdS/PVA nanocomposite film of direct band gap around 3.8 eV. Blue and green light emissions from CdS/PVA nanocomposite film have been observed. Further, the PL studies indicated the emission peak observed at UV band represents band to band transition, while the blue and green emissions could be assigned to the optical transition of the first excitonic state of the CdS NPs and emission from interstitial sulfur respectively. The blue shift in the PL spectra was parallel to the shift observed in UV/VIS spectra. Because of its excellent fluorescence and highly transparent performance, the composite film of CdS nucleated at 200 °C was found to be suitable for bio-related applications such as bio-labeling, bio-imaging, drug delivery, and LEDs as well as a window layer in solar cell.

  20. Tomato Yield Heterosis Is Triggered by a Dosage Sensitivity of the Florigen Pathway That Fine-Tunes Shoot Architecture

    PubMed Central

    Jiang, Ke; Liberatore, Katie L.; Park, Soon Ju; Alvarez, John P.; Lippman, Zachary B.

    2013-01-01

    The superiority of hybrids has long been exploited in agriculture, and although many models explaining “heterosis” have been put forth, direct empirical support is limited. Particularly elusive have been cases of heterozygosity for single gene mutations causing heterosis under a genetic model known as overdominance. In tomato (Solanum lycopersicum), plants carrying mutations in SINGLE FLOWER TRUSS (SFT) encoding the flowering hormone florigen are severely delayed in flowering, become extremely large, and produce few flowers and fruits, but when heterozygous, yields are dramatically increased. Curiously, this overdominance is evident only in the background of “determinate” plants, in which the continuous production of side shoots and inflorescences gradually halts due to a defect in the flowering repressor SELF PRUNING (SP). How sp facilitates sft overdominance is unclear, but is thought to relate to the opposing functions these genes have on flowering time and shoot architecture. We show that sft mutant heterozygosity (sft/+) causes weak semi-dominant delays in flowering of both primary and side shoots. Using transcriptome sequencing of shoot meristems, we demonstrate that this delay begins before seedling meristems become reproductive, followed by delays in subsequent side shoot meristems that, in turn, postpone the arrest of shoot and inflorescence production. Reducing SFT levels in sp plants by artificial microRNAs recapitulates the dose-dependent modification of shoot and inflorescence production of sft/+ heterozygotes, confirming that fine-tuning levels of functional SFT transcripts provides a foundation for higher yields. Finally, we show that although flowering delays by florigen mutant heterozygosity are conserved in Arabidopsis, increased yield is not, likely because cyclical flowering is absent. We suggest sft heterozygosity triggers a yield improvement by optimizing plant architecture via its dosage response in the florigen pathway. Exploiting

  1. Improving putrescine production by Corynebacterium glutamicum by fine-tuning ornithine transcarbamoylase activity using a plasmid addiction system.

    PubMed

    Schneider, Jens; Eberhardt, Dorit; Wendisch, Volker F

    2012-07-01

    Corynebacterium glutamicum shows a great potential for the production of the polyamide monomer putrescine (1,4-diaminobutane). Previously, we constructed the putrescine-producing strain PUT1 by deletion of argF, the gene for ornithine transcarbamoylase (OTC), and argR, encoding the L-arginine repressor, combined with heterologous expression of the Escherichia coli gene for L-ornithine decarboxylase SpeC. As a consequence of argF deletion, this strain requires supplementation of L-arginine and shows growth-decoupled putrescine production. To avoid costly supplementation with L-arginine and the strong feedback inhibition of the key enzyme N-acetylglutamate kinase (ArgB) by L-arginine, a plasmid addiction system for low-level argF expression was developed. By fine-tuning argF expression through modifications of the promoter, the translational start codon and/or the ribosome binding site, high productivity and titer could be obtained. OTC activity varied almost thousandfold between 960 and 1 mU mg⁻¹ resulting in putrescine yields on glucose from less than 0.001 up to 0.26 g g⁻¹, the highest yield in bacteria reported to date. The most promising strain, designated PUT21, was characterized comprehensively. PUT21 strain grew with a rate of 0.19 h⁻¹ in mineral salt medium without the need for L-arginine supplementation and produced putrescine with a yield of 0.16 g g⁻¹ glucose at a volumetric productivity of 0.57 g L⁻¹ h⁻¹ and a specific productivity of 0.042 g g⁻¹ h⁻¹. The carbon balance suggested that no major unidentified by-product was produced. Compared to the first-generation strain PUT1, the putrescine yield observed with PUT21 was increased by 60%. In fed-batch cultivation with C. glutamicum PUT21, a putrescine titer of 19 g L⁻¹ at a volumetric productivity of 0.55 g L⁻¹ h⁻¹ and a yield of 0.16 g g⁻¹ glucose could be achieved. Moreover, while plasmid segregation of the initial strain required antibiotic selection

  2. Listeria monocytogenes 10403S Arginine Repressor ArgR Finely Tunes Arginine Metabolism Regulation under Acidic Conditions

    PubMed Central

    Cheng, Changyong; Dong, Zhimei; Han, Xiao; Sun, Jing; Wang, Hang; Jiang, Li; Yang, Yongchun; Ma, Tiantian; Chen, Zhongwei; Yu, Jing; Fang, Weihuan; Song, Houhui

    2017-01-01

    Listeria monocytogenes is able to colonize human and animal intestinal tracts and to subsequently cross the intestinal barrier, causing systemic infection. For successful establishment of infection, L. monocytogenes must survive the low pH environment of the stomach. L. monocytogenes encodes a functional ArgR, a transcriptional regulator belonging to the ArgR/AhrC arginine repressor family. We aimed at clarifying the specific functions of ArgR in arginine metabolism regulation, and more importantly, in acid tolerance of L. monocytogenes. We showed that ArgR in the presence of 10 mM arginine represses transcription and expression of the argGH and argCJBDF operons, indicating that L. monocytogenes ArgR plays the classical role of ArgR/AhrC family proteins in feedback inhibition of the arginine biosynthetic pathway. Notably, transcription and expression of arcA (encoding arginine deiminase) and sigB (encoding an alternative sigma factor B) were also markedly repressed by ArgR when bacteria were exposed to pH 5.5 in the absence of arginine. However, addition of arginine enabled ArgR to derepress the transcription and expression of these two genes. Electrophoretic mobility shift assays showed that ArgR binds to the putative ARG boxes in the promoter regions of argC, argG, arcA, and sigB. Reporter gene analysis with gfp under control of the argG promoter demonstrated that ArgR was able to activate the argG promoter. Unexpectedly, deletion of argR significantly increased bacterial survival in BHI medium adjusted to pH 3.5 with lactic acid. We conclude that this phenomenon is due to activation of arcA and sigB. Collectively, our results show that L. monocytogenes ArgR finely tunes arginine metabolism through negative transcriptional regulation of the arginine biosynthetic operons and of the catabolic arcA gene in an arginine-independent manner during lactic acid-induced acid stress. ArgR also appears to activate catabolism as well as sigB transcription by anti

  3. Energy Ordering of Molecular Orbitals

    PubMed Central

    2016-01-01

    Orbitals are invaluable in providing a model of bonding in molecules or between molecules and surfaces. Most present-day methods in computational chemistry begin by calculating the molecular orbitals of the system. To what extent have these mathematical objects analogues in the real world? To shed light on this intriguing question, we employ a photoemission tomography study on monolayers of 3,4,9,10-perylene-tetracarboxylic acid dianhydride (PTCDA) grown on three Ag surfaces. The characteristic photoelectron angular distribution enables us to assign individual molecular orbitals to the emission features. When comparing the resulting energy positions to density functional calculations, we observe deviations in the energy ordering. By performing complete active space calculations (CASSCF), we can explain the experimentally observed orbital ordering, suggesting the importance of static electron correlation beyond a (semi)local approximation. On the other hand, our results also show reality and robustness of the orbital concept, thereby making molecular orbitals accessible to experimental observations. PMID:27935313

  4. Fine Tuning of Redox Networks on Multiheme Cytochromes from Geobacter sulfurreducens Drives Physiological Electron/Proton Energy Transduction

    PubMed Central

    Morgado, Leonor; Dantas, Joana M.; Bruix, Marta; Londer, Yuri Y.; Salgueiro, Carlos A.

    2012-01-01

    The bacterium Geobacter sulfurreducens (Gs) can grow in the presence of extracellular terminal acceptors, a property that is currently explored to harvest electricity from aquatic sediments and waste organic matter into microbial fuel cells. A family composed of five triheme cytochromes (PpcA-E) was identified in Gs. These cytochromes play a crucial role by bridging the electron transfer from oxidation of cytoplasmic donors to the cell exterior and assisting the reduction of extracellular terminal acceptors. The detailed thermodynamic characterization of such proteins showed that PpcA and PpcD have an important redox-Bohr effect that might implicate these proteins in the e−/H+ coupling mechanisms to sustain cellular growth. The physiological relevance of the redox-Bohr effect in these proteins was studied by determining the fractional contribution of each individual redox-microstate at different pH values. For both proteins, oxidation progresses from a particular protonated microstate to a particular deprotonated one, over specific pH ranges. The preferred e−/H+ transfer pathway established by the selected microstates indicates that both proteins are functionally designed to couple e−/H+ transfer at the physiological pH range for cellular growth. PMID:22899897

  5. Experimental Profiling of a Non-truncated Focused Gaussian Beam and Fine-tuning of the Quadratic Phase in the Fresnel Gaussian Shape Invariant

    SciTech Connect

    S., Juan Manuel Franco; Cywiak, Moises; Cywiak, David; Mourad, Idir

    2015-06-24

    A homodyne profiler is used for recording the intensity distribution of focused non-truncated Gaussian beams. The spatial distributions are obtained at planes in the vicinity of the back-focal plane of a focusing lens placed at different distances from a He–Ne laser beam with a Gaussian intensity profile. Comparisons of the experimental data with those obtained from the analytical equations for an ideal focusing lens allow us to propose formulae to fine-tune the quadratic term in the Fresnel Gaussian shape invariant at each interface of the propagated field. Furthermore, we give analytical expressions to calculate adequately the propagation of the field through an optical system.

  6. Enhancement of magnetic domain topologies in Co/Pt thin films by fine tuning the magnetic field path throughout the hysteresis loop

    NASA Astrophysics Data System (ADS)

    Westover, Andrew S.; Chesnel, Karine; Hatch, Kelsey; Salter, Philip; Hellwig, Olav

    2016-02-01

    We have studied the influence of magnetic history on the topology of perpendicular magnetic domains in a thin ferromagnetic film made of [Co(8 Å)/Pt(7 Å)]50 multilayers. More specifically, we have followed the morphological changes in the domain pattern when applying a magnetic field perpendicular to the layer, throughout minor and major magnetization loops, and in the resulting remanent state. We carried out this study by using MFM microscopy with an in-situ magnetic field. We find that the morphology of the magnetic domain pattern is greatly influenced by the magnetic history of the material and that some features, such as the degree of bubbliness (i.e., the extent of bubble domain formation) and density of isolated domains can be enhanced by fine tuning the magnetic field path within the major hysteresis loop towards different remanent states. In particular, we see how hysteresis is correlated to irreversible changes in the domain morphology. More interestingly, we find that the magnetic domain morphology at remanence can be changed from an interconnected labyrinthine stripe state to a state of many separated bubble domains by fine tuning the magnitude of the field previously applied to the material. These results agree well with other findings, such as the magnetic reversal behavior and magnetic memory effects in Co/Pt multilayers, and provide opportunities for potential technological applications.

  7. Fine Tuning of the Anisotropy Barrier by Ligand Substitution Observed in Linear {Dy2 Ni2 } Clusters.

    PubMed

    Li, Yan; Shang, Qiu; Zhang, Yi-Quan; Yang, En-Cui; Zhao, Xiao-Jun

    2016-12-23

    Three new heterometallic single-molecule magnets (SMMs), [Dy2 Ni2 (bipy)2 (RC6 H4 COO)10 ] [bipy=2,2'-bipyridine, R=H (1), CH3 (2), and NO2 (3)], are synthesized solvothermally with different 3-substituted benzoate ligands (RC6 H4 COO(-) ), and are characterized both structurally and magnetically. Structural analyses reveal that the three entities are structurally analogous, exhibiting an approximately linear {Dy2 Ni2 } core bridged by ten carboxylate moieties from the RC6 H4 COO(-) ligands. A noncoordinating substituent group attached on the phenyl ring results in minor geometry distortions of 1-3, but causes a significant decrease in the Mulliken atomic charge on the axially shortest O donor through inductive and/or conjugative effects. Weak intramolecular ferromagnetic (for Dy(III) ⋅⋅⋅Dy(III) ) and antiferromagnetic (for Dy(III) ⋅⋅⋅Ni(II) ) interactions with slightly different coupling strengths are observed in 1-3 at low temperatures, and the effective anisotropy barriers to block the magnetization reversal are 39.9, 25.9, and 2.8 cm(-1) , respectively, under zero direct-current field. Ab initio calculations reveal that ligand substitution by the noncoordinating electron-withdrawing/electron-donating group can give rise to good modulation of the energy gap between the two lowest Kramers doublets, as well as the orientation of the local easy axis of the Dy(III) ion magnetization. The directions of the local easy axis of the Dy(III) ion can further influence the dipole spin-spin interaction and the molecular anisotropy of the entire molecule, which, together with the energy separation between the ground and first excited ground states, become the significant factors determining the effective anisotropy barrier heights of 1-3. These important results demonstrate that the charge distributions of the ligand-field environments play essential roles in SMM performance, which should be considered seriously and utilized efficiently during the rational

  8. Applying high-resolution sequence stratigraphic tools to the Texas continental margin to fine-tune conventional sequence stratigraphic models and improve reservoir prediction

    SciTech Connect

    Anderson, J.A.; Banfield, L.A.; Eckles, B.J.

    1996-12-31

    A regional sequence stratigraphic study of the Texas continental margin resulted in an improved understanding of Pleistocene-Holocene eustatic sea level fluctuations and their influence on depositional environments associated with several distinct systems: the Colorado/Brazos system, the Texas interfluve region, and the Rio Grande system. The dataset consists of approximately 7500 kilometers of high-resolution seismic profiloes, 200 borehole descriptions, and 12 sediment cores. The study involved analysis of three independent variables to better constrain Pleistocene-Holocene sea level history: coastal onlap derived from high-resolution seismic profiles; oxygen isotope data determined from selected sediment cores; and paleoenvironmental data developed from high-resolution micropaleontologic analyses. Combined lithologic data and seismic facies analysis is used to map the distribution of major depositional systems on the shelf during one complete glacial eustatic cycle. Our study provided anopportunity to fine tune conventional stratigraphic models with regard to the distribution of potential reservoirs relative to regionally mappable stratigraphic surfaces.

  9. Applying high-resolution sequence stratigraphic tools to the Texas continental margin to fine-tune conventional sequence stratigraphic models and improve reservoir prediction

    SciTech Connect

    Anderson, J.A.; Banfield, L.A.; Eckles, B.J. )

    1996-01-01

    A regional sequence stratigraphic study of the Texas continental margin resulted in an improved understanding of Pleistocene-Holocene eustatic sea level fluctuations and their influence on depositional environments associated with several distinct systems: the Colorado/Brazos system, the Texas interfluve region, and the Rio Grande system. The dataset consists of approximately 7500 kilometers of high-resolution seismic profiloes, 200 borehole descriptions, and 12 sediment cores. The study involved analysis of three independent variables to better constrain Pleistocene-Holocene sea level history: coastal onlap derived from high-resolution seismic profiles; oxygen isotope data determined from selected sediment cores; and paleoenvironmental data developed from high-resolution micropaleontologic analyses. Combined lithologic data and seismic facies analysis is used to map the distribution of major depositional systems on the shelf during one complete glacial eustatic cycle. Our study provided anopportunity to fine tune conventional stratigraphic models with regard to the distribution of potential reservoirs relative to regionally mappable stratigraphic surfaces.

  10. Metabolic control of respiratory levels in coenzyme Q biosynthesis-deficient Escherichia coli strains leading to fine-tune aerobic lactate fermentation.

    PubMed

    Wu, Hui; Bennett, George N; San, Ka-Yiu

    2015-08-01

    A novel strategy to finely control the electron transfer chain (ETC) activity of Escherichia coli was established. In this study, the fine-tuning of the ubiquinone biosynthesis pathway was applied to further controlling ETC function in coenzyme Q8 biosynthesis-deficient E. coli strains, HW108 and HW109, which contain mutations in ubiE and ubiG, respectively. A competing pathway on the intermediate substrates of the Q8 synthesis pathway, catalyzed by diphosphate:4-hydroxybenzoate geranyltransferase (PGT-1) of Lithospermum erythrorhizon, was introduced into these mutant strains. A nearly theoretical yield of lactate production can be achieved under fully aerobic conditions via an in vivo, genetically fine-tunable means to further control the activity of the ETC of the Q8 biosynthesis-deficient E. coli strains.

  11. SpxA1 and SpxA2 Act Coordinately To Fine-Tune Stress Responses and Virulence in Streptococcus pyogenes

    PubMed Central

    Port, Gary C.; Cusumano, Zachary T.; Tumminello, Paul R.

    2017-01-01

    ABSTRACT SpxA is a unique transcriptional regulator highly conserved among members of the phylum Firmicutes that binds RNA polymerase and can act as an antiactivator. Why some Firmicutes members have two highly similar SpxA paralogs is not understood. Here, we show that the SpxA paralogs of the pathogen Streptococcus pyogenes, SpxA1 and SpxA2, act coordinately to regulate virulence by fine-tuning toxin expression and stress resistance. Construction and analysis of mutants revealed that SpxA1− mutants were defective for growth under aerobic conditions, while SpxA2− mutants had severely attenuated responses to multiple stresses, including thermal and oxidative stresses. SpxA1− mutants had enhanced resistance to the cationic antimicrobial molecule polymyxin B, while SpxA2− mutants were more sensitive. In a murine model of soft tissue infection, a SpxA1− mutant was highly attenuated. In contrast, the highly stress-sensitive SpxA2− mutant was hypervirulent, exhibiting more extensive tissue damage and a greater bacterial burden than the wild-type strain. SpxA1− attenuation was associated with reduced expression of several toxins, including the SpeB cysteine protease. In contrast, SpxA2− hypervirulence correlated with toxin overexpression and could be suppressed to wild-type levels by deletion of speB. These data show that SpxA1 and SpxA2 have opposing roles in virulence and stress resistance, suggesting that they act coordinately to fine-tune toxin expression in response to stress. SpxA2− hypervirulence also shows that stress resistance is not always essential for S. pyogenes pathogenesis in soft tissue. PMID:28351920

  12. Conference on Children and Television: Worldwide Fine Tuning for Children, University of Miami, Parts I and II. Transcript of the Panel Discussion on the Television Series "Big Blue Marble"

    ERIC Educational Resources Information Center

    Brown, Les; And Others

    This paper describes the proceedings of a conference on children and television, "Worldwide Fine Tuning for Children," held on 11 February 1977 by the University of Miami Department of Communications. The purpose of the conference was to survey the world of television as experienced by children and to explore how communications experts,…

  13. Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt-Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy

    SciTech Connect

    Zhou, Wei-Ping; Yang, Xiaofang; Vukmirovic, Miomir B.; Koel, Bruce E.; Jiao, Jiao; Peng, Guowen; Mavrikakis, Manos; Adzic, Radoslav R.

    2009-09-09

    We improved the effectiveness of Pt monolayer electrocatalysts for the oxygen-reduction reaction (ORR) using a novel approach to fine-tuning the Pt monolayer interaction with its support, exemplified by an annealed Pd3Fe(111) single-crystal alloy support having a segregated Pd layer. Low-energy ion scattering and low-energy electron diffraction studies revealed that a segregated Pd layer, with the same structure as Pd (111), is formed on the surface of high-temperature-annealed Pd3Fe(111). This Pd layer is considerably more active than Pd(111); its ORR kinetics is comparable to that of a Pt(111) surface. The enhanced catalytic activity of the segregated Pd layer compared to that of bulk Pd apparently reflects the modification of Pd surface’s electronic properties by underlying Fe. The Pd3Fe(111) suffers a large loss in ORR activity when the subsurface Fe is depleted by potential cycling (i.e., repeated excursions to high potentials in acid solutions). The Pd3Fe(111) surface is an excellent substrate for a Pt monolayer ORR catalyst, as verified by its enhanced ORR kinetics on PTML/Pd/Pd3Fe(111). Our density functional theory studies suggest that the observed enhancement of ORR activity originates mainly from the destabilization of OH binding and the decreased Pt-OH coverage on the Pt/Pd/Pd3Fe(111) surface. The activity of PtML/Pd(111) and Pt(111) is limited by OH removal, whereas the activity of PtML/Pd/Pd3Fe(111) is limited by the O-O bond scission, which places these two surfaces on the two sides of the volcano plot.

  14. Improving Electrocatalysts for O2 Reduction by Fine-Tuning the Pt-Support Interaction: Pt Monolayer on the Surfaces of a Pd3Fe(111) Single-Crystal Alloy

    SciTech Connect

    Zhou, W.P.; Yang, X.; Vukmirovic, M.B.; Koel, B.E.; Jiao, J.; Peng, G.; Mavrikakis, M.; Adzic, R.R.

    2009-09-09

    We improved the effectiveness of Pt monolayer electrocatalysts for the oxygen-reduction reaction (ORR) using a novel approach to fine-tuning the Pt monolayer interaction with its support, exemplified by an annealed Pd{sub 3}Fe(111) single-crystal alloy support having a segregated Pd layer. Low-energy ion scattering and low-energy electron diffraction studies revealed that a segregated Pd layer, with the same structure as Pd (111), is formed on the surface of high-temperature-annealed Pd{sub 3}Fe(111). This Pd layer is considerably more active than Pd(111); its ORR kinetics is comparable to that of a Pt(111) surface. The enhanced catalytic activity of the segregated Pd layer compared to that of bulk Pd apparently reflects the modification of Pd surface's electronic properties by underlying Fe. The Pd{sub 3}Fe(111) suffers a large loss in ORR activity when the subsurface Fe is depleted by potential cycling (i.e., repeated excursions to high potentials in acid solutions). The Pd{sub 3}Fe(111) surface is an excellent substrate for a Pt monolayer ORR catalyst, as verified by its enhanced ORR kinetics on PT{sub ML}/Pd/Pd{sub 3}Fe(111). Our density functional theory studies suggest that the observed enhancement of ORR activity originates mainly from the destabilization of OH binding and the decreased Pt-OH coverage on the Pt/Pd/Pd{sub 3}Fe(111) surface. The activity of Pt{sub ML}/Pd(111) and Pt(111) is limited by OH removal, whereas the activity of Pt{sub ML}/Pd/Pd{sub 3}Fe(111) is limited by the O-O bond scission, which places these two surfaces on the two sides of the volcano plot.

  15. Mean excitation energies for molecular ions

    NASA Astrophysics Data System (ADS)

    Jensen, Phillip W. K.; Sauer, Stephan P. A.; Oddershede, Jens; Sabin, John R.

    2017-03-01

    The essential material constant that determines the bulk of the stopping power of high energy projectiles, the mean excitation energy, is calculated for a range of smaller molecular ions using the RPA method. It is demonstrated that the mean excitation energy of both molecules and atoms increase with ionic charge. However, while the mean excitation energies of atoms also increase with atomic number, the opposite is the case for mean excitation energies for molecules and molecular ions. The origin of these effects is explained by considering the spectral representation of the excited state contributing to the mean excitation energy.

  16. Multipotent Genetic Suppression of Retrotransposon-Induced Mutations by Nxf1 through Fine-Tuning of Alternative Splicing

    PubMed Central

    Concepcion, Dorothy; Flores-García, Lisbeth; Hamilton, Bruce A.

    2009-01-01

    Cellular gene expression machinery has coevolved with molecular parasites, such as viruses and transposons, which rely on host cells for their expression and reproduction. We previously reported that a wild-derived allele of mouse Nxf1 (Tap), a key component of the host mRNA nuclear export machinery, suppresses two endogenous retrovirus-induced mutations and shows suggestive evidence of positive selection. Here we show that Nxf1CAST suppresses a specific and frequent class of intracisternal A particle (IAP)-induced mutations, including Ap3d1mh2J, a model for Hermansky-Pudlak syndrome, and Atcayhes, an orthologous gene model for Cayman ataxia, among others. The molecular phenotype of suppression includes ∼two-fold increase in the level of correctly-spliced mRNA and a decrease in mutant-specific, alternatively-processed RNA accumulating from the inserted allele. Insertional mutations involving ETn and LINE elements are not suppressed, demonstrating a high degree of specificity to this suppression mechanism. These results implicate Nxf1 in some instances of pre-mRNA processing, demonstrate the useful range of Nxf1CAST alleles for manipulating existing mouse models of disease, and specifically imply a low functional threshold for therapeutic benefit in Cayman ataxia. PMID:19436707

  17. Manipulation of peptide conformations by fine-tuning of the environment and/or the primary sequence.

    PubMed

    Li, S C; Kim, P K; Deber, C M

    1995-06-01

    The widely observed phenomenon that peptides are capable of adopting multiple conformations in different environments suggests that secondary structure formation in a peptide segment is a process involving not only the peptide itself but also the surrounding solvent media. The influence of the primary sequence and the molecular environment on peptide conformations are now investigated using synthetic peptides of amino acid sequence H2N-(Ser-Lys)2-Ala-X-Gly-Ala-X-Gly-Trp-Ala-X-Gly-(Lys-Ser)3-OH, where X = Ile or Val. These two peptides, namely 3I (X = Ile) and 3V (X = Val), are found to lack defined secondary structure in aqueous buffer. However, discrete conformational states, e.g., alpha-helices and beta-sheets, are readily generated and interconverted for both peptides when the buffer is modulated with the addition of methanol, sodium dodecyl sulfate (SDS) micelles, or phospholipid vesicles. The role of the primary sequence in affecting peptide conformations is manifested in that peptides 3I and 3V, which differ respectively in their content of beta-branched Ile or Val residues, differ in their secondary structures at monomeric concentrations in 2 mM SDS and in mixed lipid vesicles of phosphatidic acid and phosphatidylcholine. The overall results suggest that peptide segments can be conformationally flexible entities poised to react to minor modulation in either the molecular environment or the primary sequence, a circumstance that may be relevant to protein functioning and folding.

  18. A Fine-Tuned Fluorinated MOF Addresses the Needs for Trace CO2 Removal and Air Capture Using Physisorption.

    PubMed

    Bhatt, Prashant M; Belmabkhout, Youssef; Cadiau, Amandine; Adil, Karim; Shekhah, Osama; Shkurenko, Aleksander; Barbour, Leonard J; Eddaoudi, Mohamed

    2016-07-27

    The development of functional solid-state materials for carbon capture at low carbon dioxide (CO2) concentrations, namely, from confined spaces (<0.5%) and in particular from air (400 ppm), is of prime importance with respect to energy and environment sustainability. Herein, we report the deliberate construction of a hydrolytically stable fluorinated metal-organic framework (MOF), NbOFFIVE-1-Ni, with the appropriate pore system (size, shape, and functionality), ideal for the effective and energy-efficient removal of trace carbon dioxide. Markedly, the CO2-selective NbOFFIVE-1-Ni exhibits the highest CO2 gravimetric and volumetric uptake (ca. 1.3 mmol/g and 51.4 cm(3) (STP) cm(-3)) for a physical adsorbent at 400 ppm of CO2 and 298 K. Practically, NbOFFIVE-1-Ni offers the complete CO2 desorption at 328 K under vacuum with an associated moderate energy input of 54 kJ/mol, typical for the full CO2 desorption in conventional physical adsorbents but considerably lower than chemical sorbents. Noticeably, the contracted square-like channels, affording the close proximity of the fluorine centers, permitted the enhancement of the CO2-framework interactions and subsequently the attainment of an unprecedented CO2 selectivity at very low CO2 concentrations. The precise localization of the adsorbed CO2 at the vicinity of the periodically aligned fluorine centers, promoting the selective adsorption of CO2, is evidenced by the single-crystal X-ray diffraction study on NbOFFIVE-1-Ni hosting CO2 molecules. Cyclic CO2/N2 mixed-gas column breakthrough experiments under dry and humid conditions corroborate the excellent CO2 selectivity under practical carbon capture conditions. Pertinently, the notable hydrolytic stability positions NbOFFIVE-1-Ni as the new benchmark adsorbent for direct air capture and CO2 removal from confined spaces.

  19. A new direction in dye-sensitized solar cells redox mediator development: in situ fine-tuning of the cobalt(II)/(III) redox potential through Lewis base interactions.

    PubMed

    Kashif, Muhammad K; Axelson, Jordan C; Duffy, Noel W; Forsyth, Craig M; Chang, Christopher J; Long, Jeffrey R; Spiccia, Leone; Bach, Udo

    2012-10-10

    Dye-sensitized solar cells (DSCs) are an attractive renewable energy technology currently under intense investigation. In recent years, one area of major interest has been the exploration of alternatives to the classical iodide/triiodide redox shuttle, with particular attention focused on cobalt complexes with the general formula [Co(L)(n)](2+/3+). We introduce a new approach to designing redox mediators that involves the application of [Co(PY5Me(2))(MeCN)](2+/3+) complexes, where PY5Me(2) is the pentadentate ligand, 2,6-bis(1,1-bis(2-pyridyl)ethyl)pyridine. It is shown, by X-ray crystallography, that the axial acetonitrile (MeCN) ligand can be replaced by more strongly coordinating Lewis bases (B) to give complexes with the general formula [Co(PY5Me(2))(B)](2+/3+), where B = 4-tert-butylpyridine (tBP) or N-methylbenzimidazole (NMBI). These commonly applied DSC electrolyte components are used for the first time to fine-tune the potential of the redox couple to the requirements of the dye through coordinative interactions with the Co(II/III) centers. Application of electrolytes based on the [Co(PY5Me(2))(NMBI)](2+/3+) complex in combination with a commercially available organic sensitizer has enabled us to attain DSC efficiencies of 8.4% and 9.2% at a simulated light intensity of 100% sun (1000 W m(-2) AM1.5 G) and at 10% sun, respectively, higher than analogous devices applying the [Co(bpy)(3)](2+/3+) redox couple, and an open circuit voltage (V(oc)) of almost 1.0 V at 100% sun for devices constructed with the tBP complex.

  20. Positive and Negative Regulatory Mechanisms for Fine-Tuning Cellularity and Functions of Medullary Thymic Epithelial Cells

    PubMed Central

    Akiyama, Taishin; Tateishi, Ryosuke; Akiyama, Nobuko; Yoshinaga, Riko; Kobayashi, Tetsuya J.

    2015-01-01

    Self-tolerant T cells and regulatory T cells develop in the thymus. A wide variety of cell–cell interactions in the thymus is required for the differentiation, proliferation, and repertoire selection of T cells. Various secreted and cell surface molecules expressed in thymic epithelial cells (TECs) mediate these processes. Moreover, cytokines expressed by cells of hematopoietic origin regulate the cellularity of TECs. Tumor necrosis factor (TNF) family RANK ligand, lymphotoxin, and CD40 ligand, expressed in T cells and innate lymphoid cells (ILCs), promote the differentiation and proliferation of medullary TECs (mTECs) that play critical roles in the induction of immune tolerance. A recent study suggests that interleukin-22 (IL-22) produced by ILCs promotes regeneration of TECs after irradiation. Intriguingly, tumor growth factor-β and osteoprotegerin limit cellularity of mTECs, thereby attenuating regulatory T cell generation. We will review recent insights into the molecular basis for cell–cell interactions regulating differentiation and proliferation of mTECs and also discuss about a perspective on use of mathematical models for understanding this complicated system. PMID:26441966

  1. Fine-tuning Nanocarriers Specifically toward Cargo: A Competitive Study on Solubilizing Related Photosensitizers for Photodynamic Therapy.

    PubMed

    Wieczorek, Sebastian; Remmler, Dario; Masini, Tiziana; Kochovski, Zdravko; Hirsch, Anna K H; Börner, Hans G

    2017-03-15

    Tailor-made drug solubilizers are studied based on peptide-poly(ethylene glycol) conjugates, which exhibit peptide segments constituting binding motifs for the small-molecule drugs of interest to render them water-soluble. Suitable 7mer peptides are selected via combinatorial means by screening large one-bead-one-compound (OBOC) peptide libraries. The capability of the screening method to read out structural detail of the drugs is investigated by comparing three related photosensitizers (Chlorin E6 (Ce6), Pheophorbide A (Pba) and meta-tetra(hydroxyphenyl)chlorin (m-THPC), which are applicable for photodynamic cancer therapy. The screening procedure delivers de novo solubilizers that show the best solubilization efficiency for the drug the screening is performed with. While molecular recognition events between peptide and drug are not expected to be found, significant binding capacity differences of, e.g., the Ce6-solubilizer for Pba are suggesting selectivity in drug binding, even among structurally closely related drugs. Cyro-Electron microscopy revealed the formation of colloidal aggregates between drug moieties and peptide conjugates. Insights into relevant amino acids in the identified peptide sequences are gained by studying capacities of systematic point mutations (alanine scans), enabling understanding of drug-binding motifs. These reveal the importance of sequence positioning of appropriate H-bonding between polar functional groups of the peptide and the drugs, which agrees well with computational binding studies performed on drug/peptide model complexes.

  2. Identification of key phosphorylation sites in PTH1R that determine arrestin3 binding and fine-tune receptor signaling

    PubMed Central

    Zindel, Diana; Engel, Sandra; Bottrill, Andrew R.; Pin, Jean-Philippe; Prézeau, Laurent; Tobin, Andrew B.; Bünemann, Moritz; Krasel, Cornelius; Butcher, Adrian J.

    2016-01-01

    The parathyroid hormone receptor 1 (PTH1R) is a member of family B of G-protein-coupled receptors (GPCRs), predominantly expressed in bone and kidney where it modulates extracellular Ca2+ homeostasis and bone turnover. It is well established that phosphorylation of GPCRs constitutes a key event in regulating receptor function by promoting arrestin recruitment and coupling to G-protein-independent signaling pathways. Mapping phosphorylation sites on PTH1R would provide insights into how phosphorylation at specific sites regulates cell signaling responses and also open the possibility of developing therapeutic agents that could target specific receptor functions. Here, we have used mass spectrometry to identify nine sites of phosphorylation in the C-terminal tail of PTH1R. Mutational analysis revealed identified two clusters of serine and threonine residues (Ser489–Ser495 and Ser501–Thr506) specifically responsible for the majority of PTH(1–34)-induced receptor phosphorylation. Mutation of these residues to alanine did not affect negatively on the ability of the receptor to couple to G-proteins or activate extracellular-signal-regulated kinase 1/2. Using fluorescence resonance energy transfer and bioluminescence resonance energy transfer to monitor PTH(1–34)-induced interaction of PTH1R with arrestin3, we show that the first cluster Ser489–Ser495 and the second cluster Ser501–Thr506 operated in concert to mediate both the efficacy and potency of ligand-induced arrestin3 recruitment. We further demonstrate that Ser503 and Thr504 in the second cluster are responsible for 70% of arrestin3 recruitment and are key determinants for interaction of arrestin with the receptor. Our data are consistent with the hypothesis that the pattern of C-terminal tail phosphorylation on PTH1R may determine the signaling outcome following receptor activation. PMID:27623777

  3. Nicotinic modulation of glutamate receptor function at nerve terminal level: a fine-tuning of synaptic signals.

    PubMed

    Marchi, Mario; Grilli, Massimo; Pittaluga, Anna M

    2015-01-01

    This review focuses on a specific interaction occurring between the nicotinic cholinergic receptors (nAChRs) and the glutamatergic receptors (GluRs) at the nerve endings level. We have employed synaptosomes in superfusion and supplemented and integrated our findings with data obtained using techniques from molecular biology and immuno-cytochemistry, and the assessment of receptor trafficking. In particular, we characterize the following: (1) the direct and unequivocal localization of native α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-D-aspartate (NMDA) glutamatergic receptors on specific nerve terminals, (2) their pharmacological characterization and functional co-localization with nAChRs on the same nerve endings, and (3) the existence of synergistic or antagonistic interactions among them. Indeed, in the rat nucleus accumbens (NAc), the function of some AMPA and NMDA receptors present on the dopaminergic and glutamatergic nerve terminals can be regulated negatively or positively in response to a brief activation of nAChRs. This effect occurs rapidly and involves the trafficking of AMPA and NMDA receptors. The event takes place also at very low concentrations of nicotine and involves the activation of several nAChRs subtypes. This dynamic control by cholinergic nicotinic system of glutamatergic NMDA and AMPA receptors might therefore represent an important neuronal presynaptic adaptation associated with nicotine administration. The understanding of the role of these nicotine-induced functional changes might open new and interesting perspectives both in terms of explaining the mechanisms that underlie some of the effects of nicotine addiction and in the development of new drugs for smoking cessation.

  4. Sox2 in the dermal papilla niche controls hair growth by fine-tuning BMP signaling in differentiating hair shaft progenitors.

    PubMed

    Clavel, Carlos; Grisanti, Laura; Zemla, Roland; Rezza, Amelie; Barros, Rita; Sennett, Rachel; Mazloom, Amin Reza; Chung, Chi-Yeh; Cai, Xiaoqiang; Cai, Chen-Leng; Pevny, Larysa; Nicolis, Silvia; Ma'ayan, Avi; Rendl, Michael

    2012-11-13

    How dermal papilla (DP) niche cells regulate hair follicle progenitors to control hair growth remains unclear. Using Tbx18(Cre) to target embryonic DP precursors, we ablate the transcription factor Sox2 early and efficiently, resulting in diminished hair shaft outgrowth. We find that DP niche expression of Sox2 controls the migration speed of differentiating hair shaft progenitors. Transcriptional profiling of Sox2 null DPs reveals increased Bmp6 and decreased BMP inhibitor Sostdc1, a direct Sox2 transcriptional target. Subsequently, we identify upregulated BMP signaling in knockout hair shaft progenitors and demonstrate that Bmp6 inhibits cell migration, an effect that can be attenuated by Sostdc1. A shorter and Sox2-negative hair type lacks Sostdc1 in the DP and shows reduced migration and increased BMP activity of hair shaft progenitors. Collectively, our data identify Sox2 as a key regulator of hair growth that controls progenitor migration by fine-tuning BMP-mediated mesenchymal-epithelial crosstalk.

  5. The Catalytic and Non-catalytic Functions of the Brahma Chromatin-Remodeling Protein Collaborate to Fine-Tune Circadian Transcription in Drosophila

    PubMed Central

    Kwok, Rosanna S.; Li, Ying H.; Lei, Anna J.; Edery, Isaac; Chiu, Joanna C.

    2015-01-01

    Daily rhythms in gene expression play a critical role in the progression of circadian clocks, and are under regulation by transcription factor binding, histone modifications, RNA polymerase II (RNAPII) recruitment and elongation, and post-transcriptional mechanisms. Although previous studies have shown that clock-controlled genes exhibit rhythmic chromatin modifications, less is known about the functions performed by chromatin remodelers in animal clockwork. Here we have identified the Brahma (Brm) complex as a regulator of the Drosophila clock. In Drosophila, CLOCK (CLK) is the master transcriptional activator driving cyclical gene expression by participating in an auto-inhibitory feedback loop that involves stimulating the expression of the main negative regulators, period (per) and timeless (tim). BRM functions catalytically to increase nucleosome density at the promoters of per and tim, creating an overall restrictive chromatin landscape to limit transcriptional output during the active phase of cycling gene expression. In addition, the non-catalytic function of BRM regulates the level and binding of CLK to target promoters and maintains transient RNAPII stalling at the per promoter, likely by recruiting repressive and pausing factors. By disentangling its catalytic versus non-catalytic functions at the promoters of CLK target genes, we uncovered a multi-leveled mechanism in which BRM fine-tunes circadian transcription. PMID:26132408

  6. Fine-Tuning of the Actin Cytoskeleton and Cell Adhesion During Drosophila Development by the Unconventional Guanine Nucleotide Exchange Factors Myoblast City and Sponge

    PubMed Central

    Biersmith, Bridget; Wang, Zong-Heng; Geisbrecht, Erika R.

    2015-01-01

    The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock–ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis. PMID:25908317

  7. Fine tuning of emission property of white light-emitting diodes by quantum-dot-coating on YAG:Ce nanophosphors

    NASA Astrophysics Data System (ADS)

    Kong, Dal Sung; Kim, Min Jeong; Song, Hee Jo; Cho, In Sun; Jeong, Sohee; Shin, Hyunjung; Lee, Sangwook; Jung, Hyun Suk

    2016-08-01

    We report fine tuning of emission color of Ce-doped yttrium aluminum garnet (Y3Al5O12:Ce3+, YAG:Ce) nanophosphor-based white light-emitting diodes (WLED), by coating CdSe/CdS/ZnS quantum dots (QDs) onto the surface of the YAG:Ce nanoparticles via surface functionalization of both the QDs and the YAG:Ce. Mixture of bromo-functionalized QDs and amino-functionalized YAG:Ce nanoparticles results in conformal coating of the QDs onto the YAG:Ce nanoparticles (QD@YAG:Ce). By varying the QD to YAG:Ce weight ratios, the luminescence spectra of the QD@YAG:Ce are tuned. A high-quality warm-white-light emission is achieved by appropriate combination of the yellow and red emissions from the QD@YAG:Ce, and the blue emission from InGaN LED chip. However, without surface functionalization, irregular mixtures of YAG:Ce and QDs are formed, which consequently make it hard to control the emission spectra. This study demonstrates a promising way to prepare uniformly QD-coated nanophosphors and an approach to control the emission spectra the nanophosphors.

  8. 3′-UTR engineering to improve soluble expression and fine-tuning of activity of cascade enzymes in Escherichia coli

    PubMed Central

    Song, Ji-Won; Woo, Ji-Min; Jung, Gyoo Yeol; Bornscheuer, Uwe T.; Park, Jin-Byung

    2016-01-01

    3′-Untranslated region (3′UTR) engineering was investigated to improve solubility of heterologous proteins (e.g., Baeyer-Villiger monooxygenases (BVMOs)) in Escherichia coli. Insertion of gene fragments containing putative RNase E recognition sites into the 3′UTR of the BVMO genes led to the reduction of mRNA levels in E. coli. Importantly, the amounts of soluble BVMOs were remarkably enhanced resulting in a proportional increase of in vivo catalytic activities. Notably, this increase in biocatalytic activity correlated to the number of putative RNase E endonucleolytic cleavage sites in the 3′UTR. For instance, the biotransformation activity of the BVMO BmoF1 (from Pseudomonas fluorescens DSM50106) in E. coli was linear to the number of RNase E cleavage sites in the 3′UTR. In summary, 3′UTR engineering can be used to improve the soluble expression of heterologous enzymes, thereby fine-tuning the enzyme activity in microbial cells. PMID:27406241

  9. Fine-Tuning of the Actin Cytoskeleton and Cell Adhesion During Drosophila Development by the Unconventional Guanine Nucleotide Exchange Factors Myoblast City and Sponge.

    PubMed

    Biersmith, Bridget; Wang, Zong-Heng; Geisbrecht, Erika R

    2015-06-01

    The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock-ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis.

  10. Fine-tuning of NFκB by Glycogen Synthase Kinase 3β directs the fate of glomerular podocytes upon injury

    PubMed Central

    Bao, Hui; Ge, Yan; Peng, Ai; Gong, Rujun

    2014-01-01

    NFκB is regulated by a myriad of signaling cascades including glycogen synthase kinase (GSK) 3β and plays a Janus role in podocyte injury. In vitro, lipopolysaccharide or adriamycin elicited podocyte injury and cytoskeletal disruption, associated with NFκB activation and induced expression of NFκB target molecules, including pro-survival Bcl-xL and podocytopathic mediators like MCP-1, cathepsin L and B7-1. Broad range inhibition of NFκB diminished the expression of all NFκB target genes, restored cytoskeleton integrity, but potentiated apoptosis. In contrast, blockade of GSK3β by lithium or TDZD-8, mitigated the expression of podocytopathic mediators, ameliorated podocyte injury, but barely affected Bcl-xL expression or sensitized apoptosis. Mechanistically, GSK3β was sufficient and essential for RelA/p65 phosphorylation specifically at serine 467, which specifies the expression of selective NFκB target molecules, including podocytopathic mediators, but not Bcl-xL. In vivo, lithium or TDZD-8 therapy improved podocyte injury and proteinuria in mice treated with lipopolysaccharide or adriamycin, concomitant with suppression of podocytopathic mediators but retained Bcl-xL in glomerulus. Broad range inhibition of NFκB conferred similar but much weakened antiproteinuric and podoprotective effects accompanied with a blunted glomerular expression of Bcl-xL and marked podocyte apoptosis. Thus, the GSK3β dictated fine-tuning of NFκB may serve as a novel therapeutic target for podocytopathy. PMID:25629551

  11. Listeria monocytogenes CadC regulates cadmium efflux and fine-tunes lipoprotein localization to escape the host immune response and promote infection.

    PubMed

    Pombinho, Rita; Camejo, Ana; Vieira, Ana; Reis, Olga; Carvalho, Filipe; Almeida, Maria Teresa; Pinheiro, Jorge Campos; Sousa, Sandra; Cabanes, Didier

    2017-03-23

    Listeria monocytogenes (Lm) is a major intracellular human foodborne bacterial pathogen. We previously revealed Lm-cadC as highly expressed during mouse infection. Here we show that Lm-CadC is a sequence-specific, DNA-binding and cadmium-dependent regulator of CadA, an efflux pump conferring cadmium resistance. CadC, but not CadA, is required for Lm infection in vivo. Interestingly, CadC also directly represses lspB, a gene encoding a lipoprotein signal peptidase whose expression appears detrimental for infection. lspB overexpression promotes the release of the LpeA lipoprotein to the extracellular medium, inducing TNF- and IL-6 expression, thus impairing Lm survival in macrophages. We propose that Lm uses CadC to repress lspB expression during infection to avoid LpeA exposure to the host immune system, diminishing inflammatory cytokine expression and promoting intramacrophage survival and virulence. CadC appears as the first metal efflux pump regulator repurposed during infection to fine-tune lipoprotein processing and host responses.

  12. Pore radius fine tuning of a silica matrix (MCM-41) based on the synthesis of alumina nanolayers with different thicknesses by atomic layer deposition

    SciTech Connect

    Zemtsova, Elena G. Arbenin, Andrei Yu.; Plotnikov, Alexander F.; Smirnov, Vladimir M.

    2015-03-15

    The authors investigated a new approach to modify the surface of the mesoporous silica matrix MCM-41. This approach is based on manipulating the chemical composition of the porous surface layer and also on fine tuning the pore radius by applying the atomic layer deposition (ALD) technique. The synthesis of alumina nanolayers was performed on the planar and the porous matrix (MCM-41) by the ALD technique using aluminum tri-sec-butoxide and water as precursors. The authors show that one cycle on silicon, using aluminum tri-sec-butoxide and water as precursors, results in a 1–1.2 Å increase in alumina nanolayer thickness. This is comparable to the increase in thickness per cycle for other precursors such as trimethylaluminum and aluminum chloride. The authors show that the synthesis of an Al{sub 2}O{sub 3} nanolayer on the pore surface of the mesoporous silica matrix MCM-41 by the ALD technique results in a regular change in the porous structure of the samples. The specific porosity (ml/g) of the MCM-41 was 0.95 and that of MCM-41 after 5 ALD cycles was 0.39. The pore diameter (nm) of MCM-41 was 3.3 and that of MCM-41 after 5 ALD cycles was 2.3.

  13. Fine-Tuning of the Coordination Environment To Regulate the Magnetic Behavior in Solvent/Anion-Dependent Dy(III) Compounds: Synthesis, Structure, Magnetism, and Ab Initio Calculations.

    PubMed

    Sun, Lin; Zhang, Sheng; Qiao, Chengfang; Chen, Sanping; Yin, Bing; Wang, Wenyuan; Wei, Qing; Xie, Gang; Gao, Shengli

    2016-10-17

    It is crucial to understand and elucidate the self-assembly mechanism in solution systems for the construction of Dy(III)-based single-molecule magnets (SMMs). Herein, through fine-tuning of the anion and solvent, we prepared three nine-coordinate mononuclear dysprosium compounds, [Dy(2,3'-pcad)(NO3)2(CH3OH)2] (1), [Dy(2,3'-Hpcad)2(H2O)3]·3Cl·5H2O (2), and [Dy(2,3'-pcad)(NO3)(H2O)4]·NO3·H2O (3) [2,3'-Hpcad = N(3)-(2-pyridoyl)-3-pyridinecarboxamidrazone]. The reactions of formation for 1-3 are in situ thermodynamically monitored by isothermal titration calorimetry. Magnetic data analysis reveals that 2 shows SMM behavior under a zero direct-current (dc) field, whereas 1 and 3 exhibit distinct slow magnetic relaxation processes upon a 1200 Oe dc field. To deeply understand the different magnetic behaviors, the magnetic anisotropy of 1-3 has been systematically studied by ab initio calculations, which is consistent with the experimental observations. Moreover, the semiconductor behaviors of 1-3 have been investigated by experimental measurements of UV-vis spectroscopy.

  14. Preserved fine-tuning of face perception and memory: evidence from the own-race bias in high- and low-performing older adults

    PubMed Central

    Komes, Jessica; Schweinberger, Stefan R.; Wiese, Holger

    2014-01-01

    Previous research suggests specific deficits in face perception and memory in older adults, which could reflect a dedifferentiation in the context of a general broadening of cognitive architecture with advanced age. Such dedifferentiation could manifest in a less specialized face processing system. A promising tool to investigate the fine-tuning of face processing in older age is the own-race bias (ORB), a phenomenon reflecting more accurate memory for own-relative to other-race faces, which is related to an expertise-based specialization of early perceptual stages. To investigate whether poor face memory in older age is accompanied by reduced expertise-based specialization of face processing, we assessed event-related brain potential correlates of the ORB in high- vs. low-performing older adults (mean age = 69 years; N = 24 per group). Intriguingly, both older groups demonstrated an equivalent pattern of a behavioral ORB, and a parallel increase in N170 for other-race faces, reflecting less efficient early perceptual processing for this face category. Group differences only emerged independent of face ethnicity: whereas low-performers exhibited a right-lateralized N170, high-performers showed a more bilateral response. This finding may suggest a compensatory mechanism counteracting age-related decline in face perception enabling more efficient encoding into memory in high performers. Overall, our results demonstrate that even a less efficient face processing system in older adults can exhibit preserved expertise-related specialization toward own-race faces. PMID:24772080

  15. Plasma Membrane CRPK1-Mediated Phosphorylation of 14-3-3 Proteins Induces Their Nuclear Import to Fine-Tune CBF Signaling during Cold Response.

    PubMed

    Liu, Ziyan; Jia, Yuxin; Ding, Yanglin; Shi, Yiting; Li, Zhen; Guo, Yan; Gong, Zhizhong; Yang, Shuhua

    2017-04-06

    In plant cells, changes in fluidity of the plasma membrane may serve as the primary sensor of cold stress; however, the precise mechanism and how the cell transduces and fine-tunes cold signals remain elusive. Here we show that the cold-activated plasma membrane protein cold-responsive protein kinase 1 (CRPK1) phosphorylates 14-3-3 proteins. The phosphorylated 14-3-3 proteins shuttle from the cytosol to the nucleus, where they interact with and destabilize the key cold-responsive C-repeat-binding factor (CBF) proteins. Consistent with this, the crpk1 and 14-3-3κλ mutants show enhanced freezing tolerance, and transgenic plants overexpressing 14-3-3λ show reduced freezing tolerance. Further study shows that CRPK1 is essential for the nuclear translocation of 14-3-3 proteins and for 14-3-3 function in freezing tolerance. Thus, our study reveals that the CRPK1-14-3-3 module transduces the cold signal from the plasma membrane to the nucleus to modulate CBF stability, which ensures a faithfully adjusted response to cold stress of plants.

  16. Fine-Tuning of the Carbon Dioxide Capture Capability of Diamine-Grafted Metal-Organic Framework Adsorbents Through Amine Functionalization.

    PubMed

    Jo, Hyuna; Lee, Woo Ram; Kim, Nam Woo; Jung, Hyun; Lim, Kwang Soo; Kim, Jeong Eun; Kang, Dong Won; Lee, Hanyeong; Hiremath, Vishwanath; Seo, Jeong Gil; Jin, Hailian; Moon, Dohyun; Han, Sang Soo; Hong, Chang Seop

    2017-02-08

    A combined sonication and microwave irradiation procedure provides the most effective functionalization of ethylenediamine (en) and branched primary diamines of 1-methylethylenediamine (men) and 1,1-dimethylethylenediamine (den) onto the open metal sites of Mg2 (dobpdc) (1). The CO2 capacities of the advanced adsorbents 1-en and 1-men under simulated flue gas conditions are 19 wt % and 17.4 wt %, respectively, which are the highest values reported among amine-functionalized metal-organic frameworks (MOFs) to date. Moreover, 1-den exhibits both a significant working capacity (12.2 wt %) and superb CO2 uptake (11 wt %) at 3 % CO2 . Additionally, this framework showcases the superior recyclability; ultrahigh stability after exposure to O2 , moisture, and SO2 ; and exceptional CO2 adsorption capacity under humid conditions, which are unprecedented among MOFs. We also elucidate that the performance of CO2 adsorption can be controlled by the structure of the diamine ligands grafted such as the number of amine end groups or the presence of side groups, which provides the first systematic and comprehensive demonstration of fine-tuning of CO2 uptake capability using different amines.

  17. Listeria monocytogenes CadC regulates cadmium efflux and fine-tunes lipoprotein localization to escape the host immune response and promote infection.

    PubMed

    Pombinho, Rita; Camejo, Ana; Vieira, Ana; Reis, Olga; Carvalho, Filipe; Almeida, Maria Teresa; Pinheiro, Jorge Campos; Sousa, Sandra; Cabanes, Didier

    2017-03-09

    Listeria monocytogenes (Lm) is a major intracellular human foodborne bacterial pathogen. We previously revealed Lm-cadC as highly expressed during mouse infection. Here we show that Lm-CadC is a sequence-specific, DNA-binding and cadmium-dependent regulator of CadA, an efflux pump conferring cadmium resistance. CadC, but not CadA, is required for Lm infection in vivo. Interestingly, CadC also directly represses lspB, a gene encoding a lipoprotein signal peptidase whose expression appears detrimental for infection. lspB overexpression promotes the release of the LpeA lipoprotein to the extracellular medium, inducing TNF- and IL-6 expression, thus impairing Lm survival in macrophages. We propose that Lm uses CadC to repress lspB expression during infection to avoid LpeA exposure to the host immune system, diminishing inflammatory cytokine expression and promoting intramacrophage survival and virulence. CadC appears as the first metal efflux pump regulator repurposed during infection to fine-tune lipoprotein processing and host responses.

  18. A general and high yielding fragment coupling synthesis of heteroatom-bridged calixarenes and the unprecedented examples of calixarene cavity fine-tuned by bridging heteroatoms.

    PubMed

    Wang, Mei-Xiang; Yang, Hai-Bo

    2004-12-01

    A number of aza- and/or oxo-bridged calix[2]arene[2]triazines have been synthesized through an unusually high yielding and efficient fragment coupling approach starting from cyanuric chloride and resorcinol, 3-aminophenol, m-phenylenediamine, and N,N'-dimethyl-m-phenylenediamine. These novel macrocycles, which belong to the next generation of calixarenes or cyclophanes, form a unique cavity that is resulted from two isolated benzene planes and two bis-heteroatom-conjugated triazine planes in a 1,3-alternate fashion. The nature of the bridging heteroatoms, i.e., combination of the electronic, conjugative, and steric effects of the nitrogen and oxygen atoms, strongly regulates the cavity size, generating a set of fine-tuned cavities in which the distance between two benzene rings at the upper rim ranges from 5.011 to 7.979 A. The multiple intermolecular hydrogen bond interactions among N,N'-dimethylated tetraazacalix[2]arene[2]triazines and among tetraazacalix[2]arene[2]triazines lead to the formation of infinite one-dimensional chain structure and two-dimensional zigzag layered structure, respectively, in the solid state. The ease of preparation and further chemical manipulations, and the readily tunable cavity structures render these aza- and/or oxo-bridged calix[2]arene[2]triazines the unique platforms in the study of supramolecular chemistry.

  19. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    SciTech Connect

    Hua, Wang E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang; Su, Wenming E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu; Lin, Wenjing

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ′}-N,N{sup ′}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ′})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ′}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  20. Photoisomerization of a maleonitrile-type salen Schiff base and its application in fine-tuning infinite coordination polymers.

    PubMed

    Lin, Chun-Wei; Chou, Pi-Tai; Liao, Yong-Hong; Lin, Ying-Chih; Chen, Ching-Ting; Chen, Yu-Chun; Lai, Chin-Hung; Chen, Bo-So; Liu, Yi-Hung; Wang, Chih-Chieh; Ho, Mei-Lin

    2010-03-22

    Strategically designed salen ligand 2,3-bis[4-(di-p-tolylamino)-2-hydroxybenzylideneamino]maleonitrile (1), which has pronounced excited-state charge-transfer properties, shows a previously unrecognized form of photoisomerization. On electronic excitation (denoted by an asterisk), 1Z*-->1E isomerization takes place by rotation about the C2--C3 bond, which takes on single-bond character due to the charge-transfer reaction. The isomerization takes place nonadiabatically from the excited-state (1Z) to the ground-state (1E) potential-energy surface in the singlet manifold; 1Z and 1E are neither thermally inconvertible at ambient temperature (25-30 degrees C), nor does photoinduced reverse 1E*-->1Z (or 1Z*) isomerization occur. Isomers 1Z and 1E show very different coordination chemistry towards a Zn(II) precursor. More prominent coordination chemistry is evidenced by a derivative of 1 bearing a carboxyl group, namely, N,N'-dicyanoethenebis(salicylideneimine)dicarboxylic acid (2). Applying 2Z and its photoinduced isomer 2E as building blocks, we then demonstrate remarkable differences in morphology (sphere- and needlelike nanostructure, respectively) of their infinite coordination polymers with Zn(II).

  1. Potential energy hypersurface and molecular flexibility

    NASA Astrophysics Data System (ADS)

    Koča, Jaroslav

    1993-02-01

    The molecular flexibility phenomenon is discussed from the conformational potential energy(hyper) surface (PES) point of view. Flexibility is considered as a product of three terms: thermodynamic, kinetic and geometrical. Several expressions characterizing absolute and relative molecular flexibility are introduced, depending on a subspace studied of the entire conformational space, energy level E of PES as well as absolute temperature. Results obtained by programs DAISY, CICADA and PANIC in conjunction with molecular mechanics program MMX for flexibility analysis of isopentane, 2,2-dimethylpentane and isohexane molecules are introduced.

  2. Fine-Tuning Teacher Evaluation

    ERIC Educational Resources Information Center

    Marshall, Kim

    2012-01-01

    As many states and districts rethink teacher supervision and evaluation, the team at the Measures of Effective Teaching (MET) Project, funded by the Bill and Melinda Gates Foundation, has analyzed thousands of lesson videotapes and studied the shortcomings of current practices. The tentative conclusion: Teachers should be evaluated on three…

  3. Fine Tuning of CaV1.3 Ca2+ Channel Properties in Adult Inner Hair Cells Positioned in the Most Sensitive Region of the Gerbil Cochlea

    PubMed Central

    Zampini, Valeria; Johnson, Stuart L.; Franz, Christoph; Knipper, Marlies; Holley, Matthew C.; Magistretti, Jacopo; Russo, Giancarlo; Marcotti, Walter; Masetto, Sergio

    2014-01-01

    Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca2+ inflow through CaV1.3 (L-type) Ca2+ channels. We investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca2+ currents in IHCs positioned at the middle turn (frequency ∼2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near physiological recordings conditions (body temperature and a Na+ based extracellular solution), we found that the macroscopic Ca2+ current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a very low steady-state open probability (Po: 0.024 in response to 500-ms depolarizing steps at ∼−18 mV). The value of Po was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca2+ channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the Po and the mean burst duration were smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to express about 4 times more Ca2+ channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune CaV1.3 Ca2+ channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds. PMID:25409445

  4. Enhancing signal to noise ratio by fine-tuning tapers of cladded/uncladded buffer rods in ultrasonic time domain reflectometry in smelters.

    PubMed

    Viumdal, Håkon; Mylvaganam, Saba

    2014-03-01

    Buffer rods (BR) as waveguides in ultrasonic time domain reflectometry (TDR) can somewhat extend the range of industrial applications of ultrasonics. Level, temperature and flow measurements involving elevated temperatures, corrosive fluids and generally harsh environments are some of the applications in which conventional ultrasonic transducers cannot be used directly in contact with the media. In such cases, BRs with some design modifications can make ultrasonic TDR measurements possible with limited success. This paper deals with TDR in conjunction with distance measurements in extremely hot fluids, using conventional ultrasonic transducers in combination with BRs. When using BRs in the ultrasonic measurement systems in extreme temperatures, problems associated with size and the material of the buffer, have to be addressed. The resonant frequency of the transducer and the relative size of the transducer with respect to the diameter of BR are also important parameters influencing the signal to noise ratio (SNR) of the signal processing system used in the ultrasonic TDR. This paper gives an overview of design aspects related to the BRs with special emphasis on tapers and cladding used on BRs. As protective cladding, zirconium oxide-yttrium oxide composite was used, with its proven thermal stability in withstanding temperatures in rocket and jet engines up to 1650 °C. In general a BR should guide the signals through to the medium and from and back to the transducer without excessive attenuation and at the same time not exacerbate the noise in the measurement system. The SNR is the decisive performance indicator to consider in the design of BR based ultrasonic TDR, along with appropriate transducer, with suitable size and operating frequency. This work presents and analyses results from extensive experiments related to fine-tuning both geometry of and signals in cladded/uncladded BRs used in high temperature ultrasonic TDR with focus on overall performance based on

  5. The weak, fine-tuned binding of ubiquitous transcription factors to the Il-2 enhancer contributes to its T cell-restricted activity.

    PubMed Central

    Hentsch, B; Mouzaki, A; Pfeuffer, I; Rungger, D; Serfling, E

    1992-01-01

    The T lymphocyte-specific enhancers of the murine and human Interleukin 2 (Il-2) genes harbour several binding sites for ubiquitous transcription factors. All these sites for the binding of AP-1, NF-kB or Oct-1 are non-canonical sites, i.e. they differ in one or a few base pairs from consensus sequences for the optimal binding of these factors. Although the factors bind weakly to these sites, the latter are functionally important because their mutation to non-binding sites results in a decrease of inducible activity of the Il-2 enhancer. Conversion of three sites to canonical binding sites of Octamer factors, AP-1 and NF-kB results in a drastic increase in enhancer activity and the induction of the Il-2 enhancer in non-T cells, such as B cell lines, murine L cells and human HeLa cells. The introduction of two or three canonical sites into the enhancer leads to a further increase of its activity. Il-2 enhancer induction is also observed in B cells when the concentration of AP-1 and Oct factors increases as a result of cotransfections with FosB and Octamer expression plasmids. When Il-2 enhancer constructs carrying canonical factor binding sites were injected into Xenopus oocytes the strong binding of ubiquitous factors substantially overcomes the silencing effect of negatively acting factors present in resting primary T lymphocytes. These results suggest a fine-tuned interplay between ubiquitous and lymphoid-specific factors binding to and transactivating the Il-2 enhancer and show that the binding affinity of ubiquitous factors to the enhancer contributes to its cell-type specific activity. Moreover, we believe that a dramatic increase of transcriptional activity brought about by single point mutations at strategic important factor binding sites may also have relevance to the activation of nuclear oncogenes. Images PMID:1614851

  6. Fine Tuning of CaV1.3 Ca2+ channel properties in adult inner hair cells positioned in the most sensitive region of the Gerbil Cochlea.

    PubMed

    Zampini, Valeria; Johnson, Stuart L; Franz, Christoph; Knipper, Marlies; Holley, Matthew C; Magistretti, Jacopo; Russo, Giancarlo; Marcotti, Walter; Masetto, Sergio

    2014-01-01

    Hearing relies on faithful signal transmission by cochlear inner hair cells (IHCs) onto auditory fibres over a wide frequency and intensity range. Exocytosis at IHC ribbon synapses is triggered by Ca(2+) inflow through Ca(V)1.3 (L-type) Ca(2+) channels. We investigated the macroscopic (whole-cell) and elementary (cell-attached) properties of Ca(2+) currents in IHCs positioned at the middle turn (frequency ∼ 2 kHz) of the adult gerbil cochlea, which is their most sensitive hearing region. Using near physiological recordings conditions (body temperature and a Na(+) based extracellular solution), we found that the macroscopic Ca(2+) current activates and deactivates very rapidly (time constant below 1 ms) and inactivates slowly and only partially. Single-channel recordings showed an elementary conductance of 15 pS, a sub-ms latency to first opening, and a very low steady-state open probability (Po: 0.024 in response to 500-ms depolarizing steps at ∼-18 mV). The value of Po was significantly larger (0.06) in the first 40 ms of membrane depolarization, which corresponds to the time when most Ca(2+) channel openings occurred clustered in bursts (mean burst duration: 19 ms). Both the Po and the mean burst duration were smaller than those previously reported in high-frequency basal IHCs. Finally, we found that middle turn IHCs are likely to express about 4 times more Ca(2+) channels per ribbon than basal cells. We propose that middle-turn IHCs finely-tune Ca(V)1.3 Ca(2+) channel gating in order to provide reliable information upon timing and intensity of lower-frequency sounds.

  7. Surface charge fine tuning of reversed-phase/weak anion-exchange type mixed-mode stationary phases for milder elution conditions.

    PubMed

    Zimmermann, Aleksandra; Horak, Jeannie; Sánchez-Muñoz, Orlando L; Lämmerhofer, Michael

    2015-08-28

    A series of new mixed-mode reversed-phase/weak anion-exchange (RP/WAX) phases have been synthesized by immobilization of N-undecenyl-3-α-aminotropane onto thiol-modified silica gel by thiol-ene click chemistry and subsequent introduction of acidic thiol-endcapping functionalities of different type and surface densities. Click chemistry allowed to adjust a controlled surface concentration of the RP/WAX ligand in such a way that a sufficient quantity of residual thiols remained unmodified which have been capped by thiol click with either 3-butenoic acid or allylsulfonic acid as co-ligands. In another embodiment, performic acid oxidation of N-undecenyl-3-α-aminotropane-derivatized thiol-modified silica gave a RP/WAX phase with high density of sulfonic acid end-capping groups. ζ-Potential determinations confirmed the fine-tuned pI of these mixed-mode stationary phases which was shifted from 9.5 to 8.2, 7.8, and 6.5 with 3-butenoic acid and allylsulfonic acid end-capping as well as performic acid oxidation. For acidic solutes, the co-ionic endcapping leads to strongly reduced retention times and clearly allowed elution of these analytes under lower ionic strength thus milder elution conditions. In spite of the acidic endcapping, the new mixed-mode phases maintained their hydrophobic and anion-exchange selectivity as well as their multimodal nature featuring RP and HILIC elution domains at acetonitrile percentages below and above 50%, respectively. Column classification by principal component analysis of an extended retention map in comparison to a set of polar commercial and in-house synthesized stationary phases confirmed complementarity of the new mixed-mode phases with respect to HILIC, polar RP, amino and commercial mixed-mode phases.

  8. Molecular Motion and Energy Migration in Polymers.

    DTIC Science & Technology

    1985-06-01

    A EDUUNI MAR 8 STOK ISEXHASTED " LOAN, 0 - LO 00 MOLECULAR MOTION AND ENERGY MIGRATION IN POLYMERS Professor David Phillips June 1985 US Army...and Energy Migration in Final Technical Report Polymers 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s) Professor David...acenaphthylene, poly(diacetylenes),4h,4’ - diphenylene diphenyl vinylene, energy transfer, migration, segmental motion, rotational relaxation. 20. ABSTRACT

  9. Vibrational energy transfer in shocked molecular crystals.

    PubMed

    Hooper, Joe

    2010-01-07

    We consider the process of establishing thermal equilibrium behind an ideal shock front in molecular crystals and its possible role in initiating chemical reaction at high shock pressures. A new theory of equilibration via multiphonon energy transfer is developed to treat the scattering of shock-induced phonons into internal molecular vibrations. Simple analytic forms are derived for the change in this energy transfer at different Hugoniot end states following shock compression. The total time required for thermal equilibration is found to be an order of magnitude or faster than proposed in previous work; in materials representative of explosive molecular crystals, equilibration is predicted to occur within a few picoseconds following the passage of an ideal shock wave. Recent molecular dynamics calculations are consistent with these time scales. The possibility of defect-induced temperature localization due purely to nonequilibrium phonon processes is studied by means of a simple model of the strain field around an inhomogeneity. The specific case of immobile straight dislocations is studied, and a region of enhanced energy transfer on the order of 5 nm is found. Due to the rapid establishment of thermal equilibrium, these regions are unrelated to the shock sensitivity of a material but may allow temperature localization at high shock pressures. Results also suggest that if any decomposition due to molecular collisions is occurring within the shock front itself, these collisions are not enhanced by any nonequilibrium thermal state.

  10. Gene expression analyses in tomato near isogenic lines provide evidence for ethylene and abscisic acid biosynthesis fine-tuning during arbuscular mycorrhiza development.

    PubMed

    Fracetto, Giselle Gomes Monteiro; Peres, Lázaro Eustáquio Pereira; Lambais, Marcio Rodrigues

    2017-03-11

    colonization in tomato roots, indicating that, besides hormonal interactions, a fine-tuning of each hormone level is required for AM development.

  11. Codon optimization of xylA gene for recombinant glucose isomerase production in Pichia pastoris and fed-batch feeding strategies to fine-tune bioreactor performance.

    PubMed

    Ata, Özge; Boy, Erdem; Güneş, Hande; Çalık, Pınar

    2015-05-01

    The objectives of this work are the optimization of the codons of xylA gene from Thermus thermophilus to enhance the production of recombinant glucose isomerase (rGI) in P. pastoris and to investigate the effects of feeding strategies on rGI production. Codons of xylA gene from T. thermophilus were optimized, ca. 30 % of the codons were replaced with those with higher frequencies according to the codon usage bias of P. pastoris, codon optimization resulted in a 2.4-fold higher rGI activity. To fine-tune bioreactor performance, fed-batch bioreactor feeding strategies were designed as continuous exponential methanol feeding with pre-calculated feeding rate based on the pre-determined specific growth rate, and fed-batch methanol-stat feeding. Six feeding strategies were designed, as follows: (S1) continuous exponential methanol- and pulse- sorbitol feeding; (S2) continuous exponential methanol- and peptone- feeding; (S3) continuous exponential methanol- and pulse- mannitol feeding; (S4) continuous exponential methanol- and peptone- feeding and pulse-mannitol feeding; (S5) methanol-stat feeding by keeping methanol concentration at 5 g L(-1); and, (S6) methanol-stat feeding by keeping methanol concentration at 5 g L(-1) and pulse-mannitol feeding. The highest cell and rGI activity was attained as 117 g L(-1) at t = 66 h and 32530 U L(-1) at t = 53 h, in strategy-S5. The use of the co-substrate mannitol does not increase the rGI activity in methanol-stat feeding, where 4.1-fold lower rGI activity was obtained in strategy-S6. The overall cell yield on total substrate was determined at t = 53 h as 0.21 g g(-1) in S5 strategy.

  12. Inadequate fine-tuning of protein synthesis and failure of amino acid homeostasis following inhibition of the ATPase VCP/p97

    PubMed Central

    Parzych, K; Chinn, T M; Chen, Z; Loaiza, S; Porsch, F; Valbuena, G N; Kleijnen, M F; Karadimitris, A; Gentleman, E; Keun, H C; Auner, H W

    2015-01-01

    The cellular mechanisms that control protein degradation may constitute a non-oncogenic cancer cell vulnerability and, therefore, a therapeutic target. Although this proposition is supported by the clinical success of proteasome inhibitors in some malignancies, most cancers are resistant to proteasome inhibition. The ATPase valosin-containing protein (VCP; p97) is an essential regulator of protein degradation in multiple pathways and has emerged as a target for cancer therapy. We found that pharmacological depletion of VCP enzymatic activity with mechanistically different inhibitors robustly induced proteotoxic stress in solid cancer and multiple myeloma cells, including cells that were insensitive, adapted, or clinically resistant to proteasome inhibition. VCP inhibition had an impact on two key regulators of protein synthesis, eukaryotic initiation factor 2α (eIF2α) and mechanistic target of rapamycin complex 1 (mTORC1), and attenuated global protein synthesis. However, a block on protein translation that was itself cytotoxic alleviated stress signaling and reduced cell death triggered by VCP inhibition. Some of the proteotoxic effects of VCP depletion depended on the eIF2α phosphatase, protein phosphatase 1 regulatory subunit 15A (PPP1R15A)/PP1c, but not on mTORC1, although there appeared to be cross-talk between them. Thus, cancer cell death following VCP inhibition was linked to inadequate fine-tuning of protein synthesis and activity of PPP1R15A/PP1c. VCP inhibitors also perturbed intracellular amino acid levels, activated eukaryotic translation initiation factor 2α kinase 4 (EIF2AK4), and enhanced cellular dependence on amino acid supplies, consistent with a failure of amino acid homeostasis. Many of the observed effects of VCP inhibition differed from the effects triggered by proteasome inhibition or by protein misfolding. Thus, depletion of VCP enzymatic activity triggers cancer cell death in part through inadequate regulation of protein synthesis and

  13. Modulation of the Substitution Pattern of 5-Aryl-2-Aminoimidazoles Allows Fine-Tuning of Their Antibiofilm Activity Spectrum and Toxicity

    PubMed Central

    Peeters, Elien; Hooyberghs, Geert; Robijns, Stijn; Waldrant, Kai; De Weerdt, Ami; Delattin, Nicolas; Liebens, Veerle; Kucharíková, Soňa; Tournu, Hélène; Verstraeten, Natalie; Dovgan, Barbara; Girandon, Lenart; Fröhlich, Mirjam; De Brucker, Katrijn; Michiels, Jan; Cammue, Bruno P. A.; Thevissen, Karin; Vanderleyden, Jozef; Van der Eycken, Erik

    2016-01-01

    We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the

  14. Inadequate fine-tuning of protein synthesis and failure of amino acid homeostasis following inhibition of the ATPase VCP/p97.

    PubMed

    Parzych, K; Chinn, T M; Chen, Z; Loaiza, S; Porsch, F; Valbuena, G N; Kleijnen, M F; Karadimitris, A; Gentleman, E; Keun, H C; Auner, H W

    2015-12-31

    The cellular mechanisms that control protein degradation may constitute a non-oncogenic cancer cell vulnerability and, therefore, a therapeutic target. Although this proposition is supported by the clinical success of proteasome inhibitors in some malignancies, most cancers are resistant to proteasome inhibition. The ATPase valosin-containing protein (VCP; p97) is an essential regulator of protein degradation in multiple pathways and has emerged as a target for cancer therapy. We found that pharmacological depletion of VCP enzymatic activity with mechanistically different inhibitors robustly induced proteotoxic stress in solid cancer and multiple myeloma cells, including cells that were insensitive, adapted, or clinically resistant to proteasome inhibition. VCP inhibition had an impact on two key regulators of protein synthesis, eukaryotic initiation factor 2α (eIF2α) and mechanistic target of rapamycin complex 1 (mTORC1), and attenuated global protein synthesis. However, a block on protein translation that was itself cytotoxic alleviated stress signaling and reduced cell death triggered by VCP inhibition. Some of the proteotoxic effects of VCP depletion depended on the eIF2α phosphatase, protein phosphatase 1 regulatory subunit 15A (PPP1R15A)/PP1c, but not on mTORC1, although there appeared to be cross-talk between them. Thus, cancer cell death following VCP inhibition was linked to inadequate fine-tuning of protein synthesis and activity of PPP1R15A/PP1c. VCP inhibitors also perturbed intracellular amino acid levels, activated eukaryotic translation initiation factor 2α kinase 4 (EIF2AK4), and enhanced cellular dependence on amino acid supplies, consistent with a failure of amino acid homeostasis. Many of the observed effects of VCP inhibition differed from the effects triggered by proteasome inhibition or by protein misfolding. Thus, depletion of VCP enzymatic activity triggers cancer cell death in part through inadequate regulation of protein synthesis and

  15. Functional Characterization of MODY2 Mutations Highlights the Importance of the Fine-Tuning of Glucokinase and Its Role in Glucose Sensing

    PubMed Central

    García-Herrero, Carmen-María; Rubio-Cabezas, Oscar; Azriel, Sharona; Gutierrez-Nogués, Angel; Aragonés, Angel; Vincent, Olivier; Campos-Barros, Angel; Argente, Jesús; Navas, María-Angeles

    2012-01-01

    Glucokinase (GK) acts as a glucose sensor in the pancreatic beta-cell and regulates insulin secretion. Heterozygous mutations in the human GK-encoding GCK gene that reduce the activity index increase the glucose-stimulated insulin secretion threshold and cause familial, mild fasting hyperglycaemia, also known as Maturity Onset Diabetes of the Young type 2 (MODY2). Here we describe the biochemical characterization of five missense GK mutations: p.Ile130Thr, p.Asp205His, p.Gly223Ser, p.His416Arg and p.Ala449Thr. The enzymatic analysis of the corresponding bacterially expressed GST-GK mutant proteins show that all of them impair the kinetic characteristics of the enzyme. In keeping with their position within the protein, mutations p.Ile130Thr, p.Asp205His, p.Gly223Ser, and p.His416Arg strongly decrease the activity index of GK, affecting to one or more kinetic parameters. In contrast, the p.Ala449Thr mutation, which is located in the allosteric activator site, does not affect significantly the activity index of GK, but dramatically modifies the main kinetic parameters responsible for the function of this enzyme as a glucose sensor. The reduced Kcat of the mutant (3.21±0.28 s−1 vs 47.86±2.78 s−1) is balanced by an increased glucose affinity (S0.5 = 1.33±0.08 mM vs 7.86±0.09 mM) and loss of cooperativity for this substrate. We further studied the mechanism by which this mutation impaired GK kinetics by measuring the differential effects of several competitive inhibitors and one allosteric activator on the mutant protein. Our results suggest that this mutation alters the equilibrium between the conformational states of glucokinase and highlights the importance of the fine-tuning of GK and its role in glucose sensing. PMID:22291974

  16. Development of Molecular Electrocatalysts for Energy Storage

    SciTech Connect

    DuBois, Daniel L.

    2014-02-20

    Molecular electrocatalysts can play an important role in energy storage and utilization reactions needed for intermittent renewable energy sources. This manuscript describes three general themes that our laboratories have found useful in the development of molecular electrocatalysts for reduction of CO2 to CO and for H2 oxidation and production. The first theme involves a conceptual partitioning of catalysts into first, second, and outer coordination spheres. This is illustrated with the design of electrocatalysts for CO2 reduction to CO using first and second coordination spheres and for H2 production catalysts using all three coordination spheres. The second theme focuses on the development of thermodynamic models that can be used to design catalysts to avoid high energy and low energy intermediates. In this research, new approaches to the measurement of thermodynamic hydride donor and acceptor abilities of transition metal complexes were developed. Combining this information with other thermodynamic information such as pKa values and redox potentials led to more complete thermodynamic descriptions of transition metal hydride, dihydride, and related species. Relationships extracted from this information were then used to develop models that are powerful tools for predicting and understanding the relative free energies of intermediates in catalytic reactions. The third theme is the control of proton movement during electrochemical fuel generation and utilization reactions. This research involves the incorporation of pendant amines in the second coordination sphere that can facilitate H-H bond heterolysis and heteroformation, intramolecular and intermolecular proton transfer steps, and the coupling of proton and electron transfer steps. Studies also indicate an important role for outer coordination sphere in the delivery of protons to the second coordination sphere. Understanding these proton transfer reactions and their

  17. Molecularly Engineered Energy Materials, an Energy Frontier Research Center

    SciTech Connect

    Ozolins, Vidvuds

    2016-09-28

    Molecularly Engineered Energy Materials (MEEM) was established as an interdisciplinary cutting-edge UCLA-based research center uniquely equipped to attack the challenge of rationally designing, synthesizing and testing revolutionary new energy materials. Our mission was to achieve transformational improvements in the performance of materials via controlling the nano-and mesoscale structure using selectively designed, earth-abundant, inexpensive molecular building blocks. MEEM has focused on materials that are inherently abundant, can be easily assembled from intelligently designed building blocks (molecules, nanoparticles), and have the potential to deliver transformative economic benefits in comparison with the current crystalline-and polycrystalline-based energy technologies. MEEM addressed basic science issues related to the fundamental mechanisms of carrier generation, energy conversion, as well as transport and storage of charge and mass in tunable, architectonically complex materials. Fundamental understanding of these processes will enable rational design, efficient synthesis and effective deployment of novel three-dimensional material architectures for energy applications. Three interrelated research directions were initially identified where these novel architectures hold great promise for high-reward research: solar energy generation, electrochemical energy storage, and materials for CO2 capture. Of these, the first two remained throughout the project performance period, while carbon capture was been phased out in consultation and with approval from BES program manager.

  18. Learning molecular energies using localized graph kernels

    NASA Astrophysics Data System (ADS)

    Ferré, Grégoire; Haut, Terry; Barros, Kipton

    2017-03-01

    Recent machine learning methods make it possible to model potential energy of atomic configurations with chemical-level accuracy (as calculated from ab initio calculations) and at speeds suitable for molecular dynamics simulation. Best performance is achieved when the known physical constraints are encoded in the machine learning models. For example, the atomic energy is invariant under global translations and rotations; it is also invariant to permutations of same-species atoms. Although simple to state, these symmetries are complicated to encode into machine learning algorithms. In this paper, we present a machine learning approach based on graph theory that naturally incorporates translation, rotation, and permutation symmetries. Specifically, we use a random walk graph kernel to measure the similarity of two adjacency matrices, each of which represents a local atomic environment. This Graph Approximated Energy (GRAPE) approach is flexible and admits many possible extensions. We benchmark a simple version of GRAPE by predicting atomization energies on a standard dataset of organic molecules.

  19. Fine-tuning of age integrating magnetostratigraphy, radiocarbon dating, and carbonate cyclicity: Example of lacustrine sediments from Heqing basin (Yunnan, China) covering the past 1 Myr

    NASA Astrophysics Data System (ADS)

    Hu, Shouyun; Goddu, Srinivasa Rao; Appel, Erwin; Verosub, Ken

    2007-05-01

    convincing Milankovitch spectrum of whole-core carbonate data. The Fourier spectra of whole-core carbonate and susceptibility time series calibrated by the optimum age model show clear Milankovitch cyclicities (95, 41, 23, and 19 kyr) indicating that a global palaeoclimatic signal is recorded. According to this result the Heqing core spans almost the complete past 1 Myr (5-1001 ka). Detailed depth-to-age conversion is listed. The optimum age model can be used as a fine-tuned time basis for interpreting the existing data set of palaeoclimatic proxies which have been already measured for this sequence.

  20. Molecular Mechanisms of Taste Recognition: Considerations about the Role of Saliva

    PubMed Central

    Fábián, Tibor Károly; Beck, Anita; Fejérdy, Pál; Hermann, Péter; Fábián, Gábor

    2015-01-01

    The gustatory system plays a critical role in determining food preferences and food intake, in addition to nutritive, energy and electrolyte balance. Fine tuning of the gustatory system is also crucial in this respect. The exact mechanisms that fine tune taste sensitivity are as of yet poorly defined, but it is clear that various effects of saliva on taste recognition are also involved. Specifically those metabolic polypeptides present in the saliva that were classically considered to be gut and appetite hormones (i.e., leptin, ghrelin, insulin, neuropeptide Y, peptide YY) were considered to play a pivotal role. Besides these, data clearly indicate the major role of several other salivary proteins, such as salivary carbonic anhydrase (gustin), proline-rich proteins, cystatins, alpha-amylases, histatins, salivary albumin and mucins. Other proteins like glucagon-like peptide-1, salivary immunoglobulin-A, zinc-α-2-glycoprotein, salivary lactoperoxidase, salivary prolactin-inducible protein and salivary molecular chaperone HSP70/HSPAs were also expected to play an important role. Furthermore, factors including salivary flow rate, buffer capacity and ionic composition of saliva should also be considered. In this paper, the current state of research related to the above and the overall emerging field of taste-related salivary research alongside basic principles of taste perception is reviewed. PMID:25782158

  1. Scalable Quantum Simulation of Molecular Energies

    NASA Astrophysics Data System (ADS)

    O'Malley, P. J. J.; Babbush, R.; Kivlichan, I. D.; Romero, J.; McClean, J. R.; Barends, R.; Kelly, J.; Roushan, P.; Tranter, A.; Ding, N.; Campbell, B.; Chen, Y.; Chen, Z.; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Jeffrey, E.; Lucero, E.; Megrant, A.; Mutus, J. Y.; Neeley, M.; Neill, C.; Quintana, C.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T. C.; Coveney, P. V.; Love, P. J.; Neven, H.; Aspuru-Guzik, A.; Martinis, J. M.

    2016-07-01

    We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two distinct quantum algorithms. First, we experimentally execute the unitary coupled cluster method using the variational quantum eigensolver. Our efficient implementation predicts the correct dissociation energy to within chemical accuracy of the numerically exact result. Second, we experimentally demonstrate the canonical quantum algorithm for chemistry, which consists of Trotterization and quantum phase estimation. We compare the experimental performance of these approaches to show clear evidence that the variational quantum eigensolver is robust to certain errors. This error tolerance inspires hope that variational quantum simulations of classically intractable molecules may be viable in the near future.

  2. Energy transformation in molecular electronic systems

    SciTech Connect

    Kasha, M.

    1985-07-25

    Our new optical pumping spectroscopy (steady state, and double-laser pulse) allows the production and study of the unstable rare tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole (model for biological purines), 3-hydroxyflavone (model for plant flavones), lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worth of industrial development. The excited and highly reactive singlet molecular oxygen species /sup 1/..delta../sub g/) has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of tris - dibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on ..pi..-electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved. 18 refs., 4 figs.

  3. Energy transformation in molecular electronic systems

    NASA Astrophysics Data System (ADS)

    Kasha, M.

    1985-07-01

    Our new optical pumping spectroscopy allows the production and study of the unstable rate tautomer in its ground and excited states, including picosecond dynamic studies. Molecules under study here included 7-azaindole 3-hydroxyflavone, lumichrome, and other heterocyclics. New detailed molecular mechanisms for proton transfer are derived, especially with catalytic assisting molecules. A new proton-transfer laser of extraordinary efficiency has become a side dividend, possibly worthy of industrial development. The excited and highly reactive singlet molecular oxygen species (1) DELTA sub g has proven to be ubiquitous in chemical peroxide systems and in physically excited sensitizer-oxygen systems. Hyperbaric oxygen mechanisms in biology probably involve singlet oxygen. We have undertaken a spectroscopic study of trisdibenzoylmethane chelates of Al, Gd, Eu, and Yb trivalent ions. These chelates offer a variety of electronic behaviors, from Z-effects on (PI)--electron spin-orbital coupling (Al, Gd) to Weissman intramolecular energy transfer to 4f mestable levels (Eu, Gd). Elegant new spectroscopic resolution at 77K permits separation of tautomeric, parasitic self-absorption, dissociation, and cage effects to be resolved.

  4. Metal-organic Frameworks as A Tunable Platform for Designing Functional Molecular Materials

    PubMed Central

    Wang, Cheng; Liu, Demin

    2013-01-01

    Metal-organic frameworks (MOFs), also known as coordination polymers, represent an interesting class of crystalline molecular materials that are synthesized by combining metal-connecting points and bridging ligands. The modular nature of and mild conditions for MOF synthesis have permitted the rational structural design of numerous MOFs and the incorporation of various functionalities via constituent building blocks. The resulting designer MOFs have shown promise for applications in a number of areas, including gas storage/separation, nonlinear optics/ferroelectricity, catalysis, energy conversion/storage, chemical sensing, biomedical imaging, and drug delivery. The structure-property relationships of MOFs can also be readily established by taking advantage of the knowledge of their detailed atomic structures, which enables fine-tuning of their functionalities for desired applications. Through the combination of molecular synthesis and crystal engineering MOFs thus present an unprecedented opportunity for the rational and precise design of functional materials. PMID:23944646

  5. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics.

    PubMed

    Meng, Bin; Fang, Gang; Fu, Yingying; Xie, Zhiyuan; Wang, Lixiang

    2013-12-06

    Solution-processable polymer solar cells show great promise for providing a cost-effective route to create lightweight and flexible solar energy conversion devices. The photoactive layer comprising the conjugated polymer donor and fullerene derivative acceptor must be optimized to form bicontinuous nanoscale phase separation in order for efficient exciton dissociation and charge collection due to the short exciton diffusion length of organic semiconductors. The donor polymer poly[9-(heptadecan-9-yl)-9H-carbazole- 2,7-diyl-alt-(5,6-bis(hexyloxy)-4,7-di(thiophen-2- yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-OR) has a deeper highest occupied molecular orbital level compared to its counterpart PCDTBT, and shows promise in increasing the open-circuit voltage and power conversion efficiency (PCE) of polymer solar cells. The phase separation evolution of the PCDTBT-OR:PC71BM blend with various weight ratios under tetrahydrofuran (THF) vapor annealing and its influence on the photovoltaic performance is investigated in detail. It is found that THF vapor annealing can promote the acceptor PC71BM aggregation from the donor PCDTBT-OR matrix to form nanoscale donor/acceptor phase separation for efficient exciton dissociation and charge collection depending on the donor/acceptor weight ratio and the annealing time. The THF vapor-annealed PCDTBT-OR:PC71BM solar cells exhibit remarkable enhancement, with a PCE of 7.01% compared to 3.25% of the as-cast solar cells with the same active layer thickness. This work provides a general methodology to construct nano-interpenetrating networks for homogeneous polymer/fullerene blends and is potentially applicable to the roll-to-roll manufacturing of polymer solar cells.

  6. Fine tuning of the PCDTBT-OR:PC71BM blend nanoscale phase separation via selective solvent annealing toward high-performance polymer photovoltaics

    NASA Astrophysics Data System (ADS)

    Meng, Bin; Fang, Gang; Fu, Yingying; Xie, Zhiyuan; Wang, Lixiang

    2013-12-01

    Solution-processable polymer solar cells show great promise for providing a cost-effective route to create lightweight and flexible solar energy conversion devices. The photoactive layer comprising the conjugated polymer donor and fullerene derivative acceptor must be optimized to form bicontinuous nanoscale phase separation in order for efficient exciton dissociation and charge collection due to the short exciton diffusion length of organic semiconductors. The donor polymer poly[9-(heptadecan-9-yl)-9H-carbazole- 2,7-diyl-alt-(5,6-bis(hexyloxy)-4,7-di(thiophen-2- yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-OR) has a deeper highest occupied molecular orbital level compared to its counterpart PCDTBT, and shows promise in increasing the open-circuit voltage and power conversion efficiency (PCE) of polymer solar cells. The phase separation evolution of the PCDTBT-OR:PC71BM blend with various weight ratios under tetrahydrofuran (THF) vapor annealing and its influence on the photovoltaic performance is investigated in detail. It is found that THF vapor annealing can promote the acceptor PC71BM aggregation from the donor PCDTBT-OR matrix to form nanoscale donor/acceptor phase separation for efficient exciton dissociation and charge collection depending on the donor/acceptor weight ratio and the annealing time. The THF vapor-annealed PCDTBT-OR:PC71BM solar cells exhibit remarkable enhancement, with a PCE of 7.01% compared to 3.25% of the as-cast solar cells with the same active layer thickness. This work provides a general methodology to construct nano-interpenetrating networks for homogeneous polymer/fullerene blends and is potentially applicable to the roll-to-roll manufacturing of polymer solar cells.

  7. Orbital Energy Levels in Molecular Hydrogen. A Simple Approach.

    ERIC Educational Resources Information Center

    Willis, Christopher J.

    1988-01-01

    Described are the energetics involved in the formation of molecular hydrogen using concepts that should be familiar to students beginning the study of molecular orbital theory. Emphasized are experimental data on ionization energies. Included are two-electron atomic and molecular systems. (CW)

  8. The Ratio of 2-AG to Its Isomer 1-AG as an Intrinsic Fine Tuning Mechanism of CB1 Receptor Activation

    PubMed Central

    Dócs, Klaudia; Mészár, Zoltán; Gonda, Sándor; Kiss-Szikszai, Attila; Holló, Krisztina; Antal, Miklós; Hegyi, Zoltán

    2017-01-01

    Endocannabinoids are pleiotropic lipid messengers that play pro-homeostatic role in cellular physiology by strongly influencing intracellular Ca2+ concentration through the activation of cannabinoid receptors. One of the best-known endocannabinoid ‘2-AG’ is chemically unstable in aqueous solutions, thus its molecular rearrangement, resulting in the formation of 1-AG, may influence 2-AG-mediated signaling depending on the relative concentration and potency of the two isomers. To predict whether this molecular rearrangement may be relevant in physiological processes and in experiments with 2-AG, here we studied if isomerization of 2-AG has an impact on 2-AG-induced, CB1-mediated Ca2+ signaling in vitro. We found that the isomerization-dependent drop in effective 2-AG concentration caused only a weak diminution of Ca2+ signaling in CB1 transfected COS7 cells. We also found that 1-AG induces Ca2+ transients through the activation of CB1, but its working concentration is threefold higher than that of 2-AG. Decreasing the concentration of 2-AG in parallel to the prevention of 1-AG formation by rapid preparation of 2-AG solutions, caused a significant diminution of Ca2+ signals. However, various mixtures of the two isomers in a fix total concentration – mimicking the process of isomerization over time – attenuated the drop in 2-AG potency, resulting in a minor decrease in CB1 mediated Ca2+ transients. Our results indicate that release of 2-AG into aqueous medium is accompanied by its isomerization, resulting in a drop of 2-AG concentration and simultaneous formation of the similarly bioactive isomer 1-AG. Thus, the relative concentration of the two isomers with different potency and efficacy may influence CB1 activation and the consequent biological responses. In addition, our results suggest that 1-AG may play role in stabilizing the strength of cannabinoid signal in case of prolonged 2-AG dependent cannabinoid mechanisms. PMID:28265242

  9. The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis.

    PubMed

    Lepetit, Bernard; Gélin, Gautier; Lepetit, Mariana; Sturm, Sabine; Vugrinec, Sascha; Rogato, Alessandra; Kroth, Peter G; Falciatore, Angela; Lavaud, Johann

    2017-04-01

    Diatoms contain a highly flexible capacity to dissipate excessively absorbed light by nonphotochemical fluorescence quenching (NPQ) based on the light-induced conversion of diadinoxanthin (Dd) into diatoxanthin (Dt) and the presence of Lhcx proteins. Their NPQ fine regulation on the molecular level upon a shift to dynamic light conditions is unknown. We investigated the regulation of Dd + Dt amount, Lhcx gene and protein synthesis and NPQ capacity in the diatom Phaeodactylum tricornutum after a change from continuous low light to 3 d of sine (SL) or fluctuating (FL) light conditions. Four P. tricornutum strains with different NPQ capacities due to different expression of Lhcx1 were included. All strains responded to dynamic light comparably, independently of initial NPQ capacity. During SL, NPQ capacity was strongly enhanced due to a gradual increase of Lhcx2 and Dd + Dt amount. During FL, cells enhanced their NPQ capacity on the first day due to increased Dd + Dt, Lhcx2 and Lhcx3; already by the second day light acclimation was accomplished. While quenching efficiency of Dt was strongly lowered during SL conditions, it remained high throughout the whole FL exposure. Our results highlight a more balanced and cost-effective photoacclimation strategy of P. tricornutum under FL than under SL conditions.

  10. Fine tuning of emission color of iridium(III) complexes from yellow to red via substituent effect on 2-phenylbenzothiazole ligands: synthesis, photophysical, electrochemical and DFT study.

    PubMed

    Li, Ming; Zeng, Hui; Meng, Yanyan; Sun, Huiqin; Liu, Song; Lu, Zhiyun; Huang, Yan; Pu, Xuemei

    2011-07-21

    Four novel iridium(III) complexes bearing biphenyl (7a-7c) or fluorenyl (7d) modified benzothiazole cyclometallate ligands are synthesized. In comparison with the yellow parent complex, bis(2-phenylbenzothiozolato-N,C(2')) iridium(III) (acetylacetonate) [(pbt)(2)Ir(acac)] (λ(PLmax) = 557 nm, φ(PL) = 0.26), 7a-7d show 20-43 nm bathochromic shifted orange or red phosphorescence in solution, with maximum photoluminescence (PL) quantum yield of 0.62, and PL lifetime of 1.8-2.0 μs. Meanwhile, the resulting complexes also exhibit intense orange or red phosphorescence of λ(PLmax) = 588-611 nm in solid films. The complex 7c with two tert-butyl substituents possesses the highest phosphorescent efficiency both in dilute solution and thin solid films, therefore may be a prospective candidate for both doping and host emitting electrophosphorescent material. Furthermore, despite the observation of severe oxygen quenching for 7a-7d in solution, 7a and 7c even show efficient emission intensity quenching by oxygen in their solid state due to the existence of void channels in crystals; consequently, they are promising molecular oxygen sensor reagents. Electrochemical measurement and DFT calculation results suggest that all these chelates own declined LUMOs of 0.1 eV relative to that of (pbt)(2)Ir(acac) owing to the contribution of the phenyl substituents; whereas only 7d shows a more destabilized HOMO (∼0.1 eV) compared with the parent chelate.

  11. Molecular Slater Integrals for Electronic Energy Calculations

    DTIC Science & Technology

    2010-10-15

    Facultad de Ciencias . Departamento de Quı́mica Fı́sica Aplicada. C-XIV. Abstract The algorithms for computing molecular integrals with Slater functions...and propulsion sciences research programs. This extension requires a thorough revision on the performance of the algorithms currently available and

  12. Localization of energy on the molecular scale

    SciTech Connect

    Lindenberg, K.; Brown, D.W.

    1997-12-31

    We discuss the spontaneous localization of vibrational energy in translationally invariant anharmonic chains at finite temperatures. In addition to the familiar energy-driven coherent mechanisms, which are rapidly degraded by thermal fluctuations, we identify the entropy-driven phenomenon we call {open_quotes}stochastic localization{close_quotes}, within which we include a number of characteristics of soft anharmonic oscillators in thermal equilibrium. Principal among these are a tendency for soft oscillators to spend more time at higher energies than comparable harmonic oscillators, and for high-energy fluctuations in soft oscillators to persist for longer times than lower-energy fluctuations, leading to a tendency for energy fluctuations to be organized into {open_quotes}bursts{close_quotes} separated by intervals of relative quiet. We illustrate the effects of stochastic localization on a bistable impurity embedded in a chain of soft oscillators by comparing it to an impurity embedded in a harmonic chain. Effects on transition rates at a given system energy can be quite dramatic.

  13. Dynamics of Dark Energy

    SciTech Connect

    Copeland, Edmund J.

    2007-11-20

    I briefly review attempts that have been made to model dark energy. These include models of a cosmological constant, dynamical models where a scalar field may be responsible for the observed late time acceleration through to the possibility that we are not fully in control of the gravity sector and the acceleration may be some manifestation of modified gravity. In all cases we will see some degree of fine tuning is required with the current models.

  14. Fine-Tuning of Photoautotrophic Protein Production by Combining Promoters and Neutral Sites in the Cyanobacterium Synechocystis sp. Strain PCC 6803

    PubMed Central

    Berla, Bertram M.

    2015-01-01

    Cyanobacteria are photosynthetic cell factories that use solar energy to convert CO2 into useful products. Despite this attractive feature, the development of tools for engineering cyanobacterial chassis has lagged behind that for heterotrophs such as Escherichia coli or Saccharomyces cerevisiae. Heterologous genes in cyanobacteria are often integrated at presumptively “neutral” chromosomal sites, with unknown effects. We used transcriptome sequencing (RNA-seq) data for the model cyanobacterium Synechocystis sp. strain PCC 6803 to identify neutral sites from which no transcripts are expressed. We characterized the two largest such sites on the chromosome, a site on an endogenous plasmid, and a shuttle vector by integrating an enhanced yellow fluorescent protein (EYFP) expression cassette expressed from either the Pcpc560 or the Ptrc1O promoter into each locus. Expression from the endogenous plasmid was as much as 14-fold higher than that from the chromosome, with intermediate expression from the shuttle vector. The expression characteristics of each locus correlated predictably with the promoters used. These findings provide novel, characterized tools for synthetic biology and metabolic engineering in cyanobacteria. PMID:26209663

  15. Fine-tuning the fruit-tracking hypothesis: spatiotemporal links between fruit availability and fruit consumption by birds in Andean mountain forests.

    PubMed

    Blendinger, Pedro G; Ruggera, Román A; Núñez Montellano, M Gabriela; Macchi, Leandro; Zelaya, Patricia V; Álvarez, M Eva; Martín, Eduardo; Acosta, Oriana Osinaga; Sánchez, Rocío; Haedo, Josefina; Boots, Mike

    2012-11-01

    described fruit-frugivore relationships better than traditional measurements. Moreover, we show that covariation between frugivore abundance, frequency of fruit consumption and fruit availability must be included in the fruit-tracking hypothesis framework to demonstrate (or reject) spatiotemporal fruit tracking. We propose that estimation of nutrient and energy availability in fruits could be a new frontier to understanding the forces driving foraging decisions that lead to fruit tracking.

  16. Surface Immobilization of Molecular Electrocatalysts for Energy Conversions.

    PubMed

    Bullock, Morris; Das, Atanu K; Appel, Aaron M

    2017-02-08

    Electrocatalysts are critically important for a secure energy future, as they facilitate the conversion between electrical and chemical energy. Molecular catalysts offer precise control of structure that enables understanding of structure-reactivity relationships, which can be difficult to achieve with heterogeneous catalysts. Molecular electrocatalysts can be immobilized on surfaces by covalent bonds or through non-covalent interactions. Advantages of surface immobilization include the need for less catalyst, avoidance of bimolecular decomposition pathways, and easier determination of catalyst lifetime. This mini-review highlights surface immobilization of molecular electrocatalysts for reduction of O2, oxidation of H2O, production of H2, and reduction of CO2.

  17. Nondynamical correlation energy in model molecular systems

    NASA Astrophysics Data System (ADS)

    Chojnacki, Henryk

    The hypersurfaces for the deprotonation processes have been studied at the nonempirical level for H3O+, NH+4, PH+4, and H3S+ cations within their correlation consistent basis set. The potential energy curves were calculated and nondynamical correlation energies analyzed. We have found that the restricted Hartree-Fock wavefunction leads to the improper dissociation limit and, in the three latest cases requires multireference description. We conclude that these systems may be treated as a good models for interpretation of the proton transfer mechanism as well as for testing one-determinantal or multireference cases.

  18. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    PubMed

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  19. Molecular Beam Studies of Low Energy Reactions.

    DTIC Science & Technology

    1983-03-31

    COMPLETING PORN . REPORT NUMBER 1 2. GOVT ACCESSION NO. S. RECIPIENT’S CATALOG NUMBER A D A Oaq J- 4. TITLE (And Subtitle) . TYPE OF REPORT & PERIOD COVERED...Gatlinburg, Tenn . in 1981. 2+ c) Studies were made of the charge transfer reaction Ar + Ar 4 2+ Ar + Ar at relative energies from 2 to 1000 eV. Reasons for

  20. Hydration Free Energies of Molecular Ions from Theory and Simulation.

    PubMed

    Misin, Maksim; Fedorov, Maxim V; Palmer, David S

    2016-02-11

    We present a theoretical/computational framework for accurate calculation of hydration free energies of ionized molecular species. The method is based on a molecular theory, 3D-RISM, combined with a recently developed pressure correction (PC+). The 3D-RISM/PC+ model can provide ∼3 kcal/mol hydration free energy accuracy for a large variety of ionic compounds, provided that the Galvani potential of water is taken into account. The results are compared with direct atomistic simulations. Several methodological aspects of hydration free energy calculations for charged species are discussed.

  1. Energy Transformation in Molecular Electronic Systems

    SciTech Connect

    Kasha, Michael

    1999-05-17

    This laboratory has developed many new ideas and methods in the electronic spectroscopy of molecules. This report covers the contract period 1993-1995. A number of the projects were completed in 1996, and those papers are included in the report. The DOE contract was terminated at the end of 1995 owing to a reorganizational change eliminating nationally the projects under the Office of Health and Environmental Research, U. S. Department of Energy.

  2. Resistive Fine Tuning of Resonant Circuit

    NASA Technical Reports Server (NTRS)

    Mclyman, C. W.

    1985-01-01

    Simple fixed-inductance/fixed-capacitance tank circuit modified for fine adjustment of resonant frequency by addition of small inductance with potentiometer across it. Additional winding built into full winding as integral part or added externally. Technique provides quick way of tuning reactance out of power-transformer circuit to maximize power transfer or to adjust frequency of oscillator. Applications include rotary transformers, servo amplifiers, and analog computer modules.

  3. Strigolactones fine-tune the root system.

    PubMed

    Rasmussen, Amanda; Depuydt, Stephen; Goormachtig, Sofie; Geelen, Danny

    2013-10-01

    Strigolactones were originally discovered to be involved in parasitic weed germination, in mycorrhizal association and in the control of shoot architecture. Despite their clear role in rhizosphere signaling, comparatively less attention has been given to the belowground function of strigolactones on plant development. However, research has revealed that strigolactones play a key role in the regulation of the root system including adventitious roots, primary root length, lateral roots, root hairs and nodulation. Here, we review the recent progress regarding strigolactone regulation of the root system and the antagonism and interplay with other hormones.

  4. Riboregulators: Fine-Tuning Virulence in Shigella.

    PubMed

    Fris, Megan E; Murphy, Erin R

    2016-01-01

    Within the past several years, RNA-mediated regulation (ribo-regulation) has become increasingly recognized for its importance in controlling critical bacterial processes. Regulatory RNA molecules, or riboregulators, are perpetually responsive to changes within the micro-environment of a bacterium. Notably, several characterized riboregulators control virulence in pathogenic bacteria, as is the case for each riboregulator characterized to date in Shigella. The timing of virulence gene expression and the ability of the pathogen to adapt to rapidly changing environmental conditions is critical to the establishment and progression of infection by Shigella species; ribo-regulators mediate each of these important processes. This mini review will present the current state of knowledge regarding RNA-mediated regulation in Shigella by detailing the characterization and function of each identified riboregulator in these pathogens.

  5. Fine-Tuning Your Ensemble's Jazz Style.

    ERIC Educational Resources Information Center

    Garcia, Antonio J.

    1991-01-01

    Proposes instructional strategies for directors of jazz groups, including guidelines for developing of skills necessary for good performance. Includes effective methods for positive changes in ensemble style. Addresses jazz group problems such as beat, tempo, staying in tune, wind power, and solo/ensemble lines. Discusses percussionists, bassists,…

  6. Transcriptomics of the interaction between the monopartite phloem-limited geminivirus tomato yellow leaf curl Sardinia virus and Solanum lycopersicum highlights a role for plant hormones, autophagy and plant immune system fine tuning during infection.

    PubMed

    Miozzi, Laura; Napoli, Chiara; Sardo, Luca; Accotto, Gian Paolo

    2014-01-01

    Tomato yellow leaf curl Sardinia virus (TYLCSV), a DNA virus belonging to the genus Begomovirus, causes severe losses in tomato crops. It infects only a limited number of cells in the vascular tissues, making difficult to detect changes in host gene expression linked to its presence. Here we present the first microarray study of transcriptional changes induced by the phloem-limited geminivirus TYLCSV infecting tomato, its natural host. The analysis was performed on the midrib of mature leaves, a material naturally enriched in vascular tissues. A total of 2206 genes were up-regulated and 1398 were down-regulated in infected plants, with an overrepresentation of genes involved in hormone metabolism and responses, nucleic acid metabolism, regulation of transcription, ubiquitin-proteasome pathway and autophagy among those up-regulated, and in primary and secondary metabolism, phosphorylation, transcription and methylation-dependent chromatin silencing among those down-regulated. Our analysis showed a series of responses, such as the induction of GA- and ABA-responsive genes, the activation of the autophagic process and the fine tuning of the plant immune system, observed only in TYLCSV-tomato compatible interaction so far. On the other hand, comparisons with transcriptional changes observed in other geminivirus-plant interactions highlighted common host responses consisting in the deregulation of biotic stress responsive genes, key enzymes in the ethylene biosynthesis and methylation cycle, components of the ubiquitin proteasome system and DNA polymerases II. The involvement of conserved miRNAs and of solanaceous- and tomato-specific miRNAs in geminivirus infection, investigated by integrating differential gene expression data with miRNA targeting data, is discussed.

  7. Mechanism of Fine-tuning pH Sensors in Proprotein Convertases: IDENTIFICATION OF A pH-SENSING HISTIDINE PAIR IN THE PROPEPTIDE OF PROPROTEIN CONVERTASE 1/3.

    PubMed

    Williamson, Danielle M; Elferich, Johannes; Shinde, Ujwal

    2015-09-18

    The propeptides of proprotein convertases (PCs) regulate activation of cognate protease domains by sensing pH of their organellar compartments as they transit the secretory pathway. Earlier experimental work identified a conserved histidine-encoded pH sensor within the propeptide of the canonical PC, furin. To date, whether protonation of this conserved histidine is solely responsible for PC activation has remained unclear because of the observation that various PC paralogues are activated at different organellar pH values. To ascertain additional determinants of PC activation, we analyzed PC1/3, a paralogue of furin that is activated at a pH of ∼5.4. Using biophysical, biochemical, and cell-based methods, we mimicked the protonation status of various histidines within the propeptide of PC1/3 and examined how such alterations can modulate pH-dependent protease activation. Our results indicate that whereas the conserved histidine plays a crucial role in pH sensing and activation of this protease an additional histidine acts as a "gatekeeper" that fine-tunes the sensitivity of the PC1/3 propeptide to facilitate the release inhibition at higher proton concentrations when compared with furin. Coupled with earlier analyses that highlighted the enrichment of the amino acid histidine within propeptides of secreted eukaryotic proteases, our work elucidates how secreted proteases have evolved to exploit the pH of the secretory pathway by altering the spatial juxtaposition of titratable groups to regulate their activity in a spatiotemporal fashion.

  8. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

    PubMed

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl; Moth-Poulsen, Kasper

    2016-09-05

    Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules.

  9. Low Molecular Weight Norbornadiene Derivatives for Molecular Solar‐Thermal Energy Storage

    PubMed Central

    Quant, Maria; Lennartson, Anders; Dreos, Ambra; Kuisma, Mikael; Erhart, Paul; Börjesson, Karl

    2016-01-01

    Abstract Molecular solar‐thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193–260 g mol−1) norbornadiene–quadricyclane systems. The molecules feature cyano acceptor and ethynyl‐substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo‐thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396–629 kJ kg−1). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules. PMID:27492997

  10. Energy Aspects of Thermal Molecular Switching: Molecular Thermal Hysteresis of Helicene Oligomers.

    PubMed

    Shigeno, Masanori; Kushida, Yo; Yamaguchi, Masahiko

    2015-07-20

    Molecular switching is a phenomenon by which a molecule reversibly changes its structure and state in response to external stimuli or energy. Herein, molecular switching is discussed from thermodynamic and kinetic aspects in terms of energy supply with an emphasis on the thermal switching exhibited by helicene oligomers. It includes the inversion of relative thermodynamic stability induced by temperature changes and molecular thermal hysteresis in a closed system. The thermal phenomenon associated with the oligomers involves population/concentration changes between metastable states under nonequilibrium thermodynamic control.

  11. Energy dissipation in an adaptive molecular circuit

    NASA Astrophysics Data System (ADS)

    Wang, Shou-Wen; Lan, Yueheng; Tang, Lei-Han

    2015-07-01

    The ability to monitor nutrient and other environmental conditions with high sensitivity is crucial for cell growth and survival. Sensory adaptation allows a cell to recover its sensitivity after a transient response to a shift in the strength of extracellular stimulus. The working principles of adaptation have been established previously based on rate equations which do not consider fluctuations in a thermal environment. Recently, Lan et al (2012 Nat. Phys. 8 422-8) performed a detailed analysis of a stochastic model for the Escherichia coli sensory network. They showed that accurate adaptation is possible only when the system operates in a nonequilibrium steady-state (NESS). They further proposed an energy-speed-accuracy (ESA) trade-off relation. We present here analytic results on the NESS of the model through a mapping to a one-dimensional birth-death process. An exact expression for the entropy production rate is also derived. Based on these results, we are able to discuss the ESA relation in a more general setting. Our study suggests that the adaptation error can be reduced exponentially as the methylation range increases. Finally, we show that a nonequilibrium phase transition exists in the infinite methylation range limit, despite the fact that the model contains only two discrete variables.

  12. Molecular dynamics simulation of threshold displacement energies in zircon

    SciTech Connect

    Moreira, Pedro A.; Devanathan, Ramaswami; Yu, Jianguo; Weber, William J.

    2009-10-15

    Molecular-dynamics simulations were used to examine the displacement threshold energy (Ed) surface for Zr, Si and O in zircon using two different interatomic potentials. For each sublattice, the simulation was repeated from different initial conditions to estimate the uncertainty in the calculated value of Ed. The displacement threshold energies vary considerably with crystallographic direction and sublattice. The average displacement energy calculated with a recently developed transferable potential is about 120 and 60 eV for cations and anions, respectively. The oxygen displacement energy shows good agreement with experimental estimates in ceramics.

  13. Study on Properties of Energy Spectra of the Molecular Crystals

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Chen, Xiang-Rong

    The energy-spectra of nonlinear vibration of molecular crystals such as acetanilide have been calculated by using discrete nonlinear Schrödinger equation appropriate to the systems, containing various interactions. The energy levels including higher excited states are basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide. We further give the features of distribution of the energy-spectra for the acetanilide. Using the energy spectra we also explained well experimental results obtained by Careri et al..

  14. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  15. State-to-state dynamics of molecular energy transfer

    SciTech Connect

    Gentry, W.R.; Giese, C.F.

    1993-12-01

    The goal of this research program is to elucidate the elementary dynamical mechanisms of vibrational and rotational energy transfer between molecules, at a quantum-state resolved level of detail. Molecular beam techniques are used to isolate individual molecular collisions, and to control the kinetic energy of collision. Lasers are used both to prepare specific quantum states prior to collision by stimulated-emission pumping (SEP), and to measure the distribution of quantum states in the collision products by laser-induced fluorescence (LIF). The results are interpreted in terms of dynamical models, which may be cast in a classical, semiclassical or quantum mechanical framework, as appropriate.

  16. Photoswitchable Molecular Rings for Solar-Thermal Energy Storage.

    PubMed

    Durgun, E; Grossman, Jeffrey C

    2013-03-21

    Solar-thermal fuels reversibly store solar energy in the chemical bonds of molecules by photoconversion, and can release this stored energy in the form of heat upon activation. Many conventional photoswichable molecules could be considered as solar thermal fuels, although they suffer from low energy density or short lifetime in the photoinduced high-energy metastable state, rendering their practical use unfeasible. We present a new approach to the design of chemistries for solar thermal fuel applications, wherein well-known photoswitchable molecules are connected by different linker agents to form molecular rings. This approach allows for a significant increase in both the amount of stored energy per molecule and the stability of the fuels. Our results suggest a range of possibilities for tuning the energy density and thermal stability as a function of the type of the photoswitchable molecule, the ring size, or the type of linkers.

  17. A molecularly based theory for electron transfer reorganization energy.

    PubMed

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule's permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  18. A molecularly based theory for electron transfer reorganization energy

    SciTech Connect

    Zhuang, Bilin; Wang, Zhen-Gang

    2015-12-14

    Using field-theoretic techniques, we develop a molecularly based dipolar self-consistent-field theory (DSCFT) for charge solvation in pure solvents under equilibrium and nonequilibrium conditions and apply it to the reorganization energy of electron transfer reactions. The DSCFT uses a set of molecular parameters, such as the solvent molecule’s permanent dipole moment and polarizability, thus avoiding approximations that are inherent in treating the solvent as a linear dielectric medium. A simple, analytical expression for the free energy is obtained in terms of the equilibrium and nonequilibrium electrostatic potential profiles and electric susceptibilities, which are obtained by solving a set of self-consistent equations. With no adjustable parameters, the DSCFT predicts activation energies and reorganization energies in good agreement with previous experiments and calculations for the electron transfer between metallic ions. Because the DSCFT is able to describe the properties of the solvent in the immediate vicinity of the charges, it is unnecessary to distinguish between the inner-sphere and outer-sphere solvent molecules in the calculation of the reorganization energy as in previous work. Furthermore, examining the nonequilibrium free energy surfaces of electron transfer, we find that the nonequilibrium free energy is well approximated by a double parabola for self-exchange reactions, but the curvature of the nonequilibrium free energy surface depends on the charges of the electron-transferring species, contrary to the prediction by the linear dielectric theory.

  19. Calculation of molecular free energies in classical potentials

    NASA Astrophysics Data System (ADS)

    Farhi, Asaf; Singh, Bipin

    2016-02-01

    Free energies of molecules can be calculated by quantum chemistry computations or by normal mode classical calculations. However, the first can be computationally impractical for large molecules and the second is based on the assumption of harmonic dynamics. We present a novel, accurate and complete calculation of molecular free energies in standard classical potentials. In this method we transform the molecule by relaxing potential terms which depend on the coordinates of a group of atoms in that molecule and calculate the free energy difference associated with the transformation. Then, since the transformed molecule can be treated as non-interacting systems, the free energy associated with these atoms is analytically or numerically calculated. This two-step calculation can be applied to calculate free energies of molecules or free energy difference between (possibly large) molecules in a general environment. We demonstrate the method in free energy calculations for methanethiol and butane molecules in vacuum and solvent. We suggest the potential application of free energy calculation of chemical reactions in classical molecular simulations.

  20. Molecular ion sources for low energy semiconductor ion implantation (invited)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, A.; Gushenets, V. I.; Seleznev, D. N.; Bugaev, A. S.; Dugin, S.; Oks, E. M.; Kulevoy, T. V.; Alexeyenko, O.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Vizir, A.; Yushkov, G. Yu.

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4+ ion beams were extracted. Results from devices and some additional concepts are described.

  1. Molecular ion sources for low energy semiconductor ion implantation (invited).

    PubMed

    Hershcovitch, A; Gushenets, V I; Seleznev, D N; Bugaev, A S; Dugin, S; Oks, E M; Kulevoy, T V; Alexeyenko, O; Kozlov, A; Kropachev, G N; Kuibeda, R P; Minaev, S; Vizir, A; Yushkov, G Yu

    2016-02-01

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C4H12B10O4) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH3 = P4 + 6H2; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P4(+) ion beams were extracted. Results from devices and some additional concepts are described.

  2. Generalized Potential Energy Finite Elements for Modeling Molecular Nanostructures.

    PubMed

    Chatzieleftheriou, Stavros; Adendorff, Matthew R; Lagaros, Nikos D

    2016-10-24

    The potential energy of molecules and nanostructures is commonly calculated in the molecular mechanics formalism by superimposing bonded and nonbonded atomic energy terms, i.e. bonds between two atoms, bond angles involving three atoms, dihedral angles involving four atoms, nonbonded terms expressing the Coulomb and Lennard-Jones interactions, etc. In this work a new, generalized numerical simulation is presented for studying the mechanical behavior of three-dimensional nanostructures at the atomic scale. The energy gradient and Hessian matrix of such assemblies are usually computed numerically; a potential energy finite element model is proposed herein where these two components are expressed analytically. In particular, generalized finite elements are developed that express the interactions among atoms in a manner equivalent to that invoked in simulations performed based on the molecular dynamics method. Thus, the global tangent stiffness matrix for any nanostructure is formed as an assembly of the generalized finite elements and is directly equivalent to the Hessian matrix of the potential energy. The advantages of the proposed model are identified in terms of both accuracy and computational efficiency. In the case of popular force fields (e.g., CHARMM), the computation of the Hessian matrix by implementing the proposed method is of the same order as that of the gradient. This analysis can be used to minimize the potential energy of molecular systems under nodal loads in order to derive constitutive laws for molecular systems where the entropy and solvent effects are neglected and can be approximated as solids, such as double stranded DNA nanostructures. In this context, the sequence dependent stretch modulus for some typical base pairs step is calculated.

  3. Collision Induced Dissociation and Energy Transfer in Molecular Hydroge

    NASA Astrophysics Data System (ADS)

    Mandy, Margot E.

    2006-06-01

    Molecular hydrogen is a significant constituent in giant molecular clouds in the interstellar medium. Shocks in these clouds are associated with star formation. The cooling of the shocks is governed by competition of collisional energy transfer and dissociation with radiative cooling by quadrupole emission. Thus a detailed understanding of collisional behaviour of molecular hydrogen is needed. Work in this group has examined energy transfer and dissociation in molecular energy transfer as the result of collisions with H, D, He, and H2. Using quasiclassical trajectories and chemically accurate ab initio potentials state-to-state rate coefficients have been determined. The uncertainties of the cross sections are propagated rigourously to give uncertainties of the rate coefficients and the rate coefficients are parameterized as a function of temperature. Comparisons with quantum calculations are discussed and the proposed website is described.This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada. The calculations were carried out using the high performance computing facility jointly supported by the Canadian Foundation for Innovation, the British Columbia Knowledge Development Fund, and Silicon Graphics at the University of Northern British Columbia.

  4. Energy conserving, linear scaling Born-Oppenheimer molecular dynamics.

    PubMed

    Cawkwell, M J; Niklasson, Anders M N

    2012-10-07

    Born-Oppenheimer molecular dynamics simulations with long-term conservation of the total energy and a computational cost that scales linearly with system size have been obtained simultaneously. Linear scaling with a low pre-factor is achieved using density matrix purification with sparse matrix algebra and a numerical threshold on matrix elements. The extended Lagrangian Born-Oppenheimer molecular dynamics formalism [A. M. N. Niklasson, Phys. Rev. Lett. 100, 123004 (2008)] yields microcanonical trajectories with the approximate forces obtained from the linear scaling method that exhibit no systematic drift over hundreds of picoseconds and which are indistinguishable from trajectories computed using exact forces.

  5. Free energy landscape and molecular pathways of gas hydrate nucleation

    NASA Astrophysics Data System (ADS)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-12-01

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), pB histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the pB histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  6. Energy versus free-energy conservation in first-principles molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wentzcovitch, Renata M.; Martins, José Luís; Allen, Philip B.

    1992-05-01

    In applying first-principles molecular dynamics to metals, a fictitious temperature is usefully assigned to the electronic (Fermi-Dirac) occupation functions. This avoids instabilities associated with fluctuations in these occupations during the minimization of the energy density functional. Because these occupations vary with the ionic motion, they give rise to an extra contribution in addition to the usual Hellmann-Feynman forces. If this extra force is omitted, energy is not conserved. We point out, however, that ionic kinetic energy plus electronic free energy is conserved, and argue that this yields a sensible and realistic conservative dynamics.

  7. Monte Carlo simulation of energy deposition by low-energy electrons in molecular hydrogen

    NASA Technical Reports Server (NTRS)

    Heaps, M. G.; Furman, D. R.; Green, A. E. S.

    1975-01-01

    A set of detailed atomic cross sections has been used to obtain the spatial deposition of energy by 1-20-eV electrons in molecular hydrogen by a Monte Carlo simulation of the actual trajectories. The energy deposition curve (energy per distance traversed) is quite peaked in the forward direction about the entry point for electrons with energies above the threshold of the electronic states, but the peak decreases and broadens noticeably as the electron energy decreases below 10 eV (threshold for the lowest excitable electronic state of H2). The curve also assumes a very symmetrical shape for energies below 10 eV, indicating the increasing importance of elastic collisions in determining the shape of the curve, although not the mode of energy deposition.

  8. Energy conservation in molecular dynamics simulations of classical systems.

    PubMed

    Toxvaerd, Søren; Heilmann, Ole J; Dyre, Jeppe C

    2012-06-14

    Classical Newtonian dynamics is analytic and the energy of an isolated system is conserved. The energy of such a system, obtained by the discrete "Verlet" algorithm commonly used in molecular dynamics simulations, fluctuates but is conserved in the mean. This is explained by the existence of a "shadow Hamiltonian" H [S. Toxvaerd, Phys. Rev. E 50, 2271 (1994)], i.e., a Hamiltonian close to the original H with the property that the discrete positions of the Verlet algorithm for H lie on the analytic trajectories of H. The shadow Hamiltonian can be obtained from H by an asymptotic expansion in the time step length. Here we use the first non-trivial term in this expansion to obtain an improved estimate of the discrete values of the energy. The investigation is performed for a representative system with Lennard-Jones pair interactions. The simulations show that inclusion of this term reduces the standard deviation of the energy fluctuations by a factor of 100 for typical values of the time step length. Simulations further show that the energy is conserved for at least one hundred million time steps provided the potential and its first four derivatives are continuous at the cutoff. Finally, we show analytically as well as numerically that energy conservation is not sensitive to round-off errors.

  9. Forces on nuclei moving on autoionizing molecular potential energy surfaces.

    PubMed

    Moiseyev, Nimrod

    2017-01-14

    Autoionization of molecular systems occurs in diatomic molecules and in small biochemical systems. Quantum chemistry packages enable calculation of complex potential energy surfaces (CPESs). The imaginary part of the CPES is associated with the autoionization decay rate, which is a function of the molecular structure. Molecular dynamics simulations, within the framework of the Born-Oppenheimer approximation, require the definition of a force field. The ability to calculate the forces on the nuclei in bio-systems when autoionization takes place seems to rely on an understanding of radiative damages in RNA and DNA arising from the release of slow moving electrons which have long de Broglie wavelengths. This work addresses calculation of the real forces on the nuclei moving on the CPES. By using the transformation of the time-dependent Schrödinger equation, previously used by Madelung, we proved that the classical forces on nuclei moving on the CPES correlated with the gradient of the real part of the CPES. It was proved that the force on the nuclei of the metastable molecules is time independent although the probability to detect metastable molecules exponentially decays. The classical force is obtained from the transformed Schrödinger equation when ℏ=0 and the Schrödinger equation is reduced to the classical (Newtonian) equations of motion. The forces on the nuclei regardless on what potential energy surface they move (parent CPES or product real PESs) vary in time due to the autoionization process.

  10. Selective excitation, relaxation, and energy channeling in molecular systems

    SciTech Connect

    Rhodes, W.C.

    1993-08-01

    Research involves theoretical studies of response, relaxation, and correlated motion in time-dependent behavior of large molecular systems ranging from polyatomic molecules to protein molecules in their natural environment. Underlying theme is subsystem modulation dynamics. Main idea is that quantum mechanical correlations between components of a system develop with time, playing a major role in determining the balance between coherent and dissipative forces. Central theme is interplay of coherence and dissipation in determining the nature of dynamic structuring and energy flow in molecular transformation mechanisms. Subsystem equations of motion are being developed to show how nonlinear, dissipative dynamics of a particular subsystem arise from correlated interactions with the rest of the system (substituent groups, solvent, lattice modes, etc.); one consequence is resonance structures and networks. Quantum dynamics and thermodynamics are being applied to understand control and energy transfer mechanisms in biological functions of protein molecules; these mechanisms are both global and local. Besides the above theory, the research deals with phenomenological aspects of molecular systems.

  11. Molecular ion sources for low energy semiconductor ion implantation (invited)

    SciTech Connect

    Hershcovitch, A.; Gushenets, V. I.; Bugaev, A. S.; Oks, E. M.; Vizir, A.; Yushkov, G. Yu.; Seleznev, D. N.; Kulevoy, T. V.; Kozlov, A.; Kropachev, G. N.; Kuibeda, R. P.; Minaev, S.; Dugin, S.; Alexeyenko, O.

    2016-02-15

    Smaller semiconductors require shallow, low energy ion implantation, resulting space charge effects, which reduced beam currents and production rates. To increase production rates, molecular ions are used. Boron and phosphorous (or arsenic) implantation is needed for P-type and N-type semiconductors, respectively. Carborane, which is the most stable molecular boron ion leaves unacceptable carbon residue on extraction grids. A self-cleaning carborane acid compound (C{sub 4}H{sub 12}B{sub 10}O{sub 4}) was synthesized and utilized in the ITEP Bernas ion source resulting in large carborane ion output, without carbon residue. Pure gaseous processes are desired to enable rapid switch among ion species. Molecular phosphorous was generated by introducing phosphine in dissociators via 4PH{sub 3} = P{sub 4} + 6H{sub 2}; generated molecular phosphorous in a pure gaseous process was then injected into the HCEI Calutron-Bernas ion source, from which P{sub 4}{sup +} ion beams were extracted. Results from devices and some additional concepts are described.

  12. Ecological role of energy taxis in microorganisms.

    PubMed

    Alexandre, Gladys; Greer-Phillips, Suzanne; Zhulin, Igor B

    2004-02-01

    Motile microorganisms rapidly respond to changes in various physico-chemical gradients by directing their motility to more favorable surroundings. Energy generation is one of the most important parameters for the survival of microorganisms in their environment. Therefore it is not surprising that microorganisms are able to monitor changes in the cellular energy generating processes. The signal for this behavioral response, which is called energy taxis, originates within the electron transport system. By coupling energy metabolism and behavior, energy taxis is fine-tuned to the environment a cell finds itself in and allows efficient adaptation to changing conditions that affect cellular energy levels. Thus, energy taxis provides cells with a versatile sensory system that enables them to navigate to niches where energy generation is optimized. This behavior is likely to govern vertical species stratification and the active migration of motile cells in response to shifting gradients of electron donors and/or acceptors which are observed within microbial mats, sediments and soil pores. Energy taxis has been characterized in several species and might be widespread in the microbial world. Genome sequencing revealed that many microorganisms from aquatic and soil environments possess large numbers of chemoreceptors and are likely to be capable of energy taxis. In contrast, species that have a fewer number of chemoreceptors are often found in specific, confined environments, where relatively constant environmental conditions are expected. Future studies focusing on characterizing behavioral responses in species that are adapted to diverse environmental conditions should unravel the molecular mechanisms underlying sensory behavior in general and energy taxis in particular. Such knowledge is critical to a better understanding of the ecological role of energy taxis.

  13. Photochemical energy conversion: from molecular dyads to solar cells.

    PubMed

    Durrant, James R; Haque, Saif A; Palomares, Emilio

    2006-08-21

    Photochemical approaches to solar energy conversion are currently making rapid progress, increasing not only academic but also commercial interest in molecular-based photovoltaic solar cells. This progress has been achieved not only by increased understanding of the physics and physical chemistry of device function but also through advances in chemical and materials synthesis and processing, which now allows the design and fabrication of increasingly sophisticated device structures organised on the nanometer length scale. In this feature article, we review some progress in this field, focusing in particular upon the electron-transfer dynamics which underlie the function of dye-sensitised, nanocrystalline solar cells. The article starts by building upon the parallels between the function of such devices and the function of simple donor/acceptor molecular systems in solution. We then go on to discuss the optimisation of device function, and in particular the use of self-assembly-based strategies to control interfacial electron-transfer kinetics.

  14. Electronic excitation of molecular hydrogen by low-energy electrons

    NASA Astrophysics Data System (ADS)

    Hargreaves, Leigh

    2016-09-01

    Molecular hydrogen is the most abundant element in the universe, particularly in interstellar plasmas such as atmospheres of gas giant planets and stars. Electron collision data for hydrogen is critical to interpreting the spectroscopy of interstellar objects, as well as being of applied value for modelling technological plasmas. Hydrogen is also fundamentally interesting, as while highly accurate wave functions for this simple molecule are available, providing an accurate, ab initio, treatment the collision dynamics has proven challenging, on account of the need to have a complete description of channel coupling and polarization effects. To date, no single theoretical approach has been able to replicate experimental results across all transitions and incident energies, while the experimental database that is available is far from complete and not all available measurements are in satisfactory agreement. In this talk, we present differential and integral cross section measurements for electronic excitation cross sections for molecular hydrogen by low-energy electron impact. The data were measured at incident energies below 20eV, using a well-tested crossed beam apparatus and employing a moveable gas source approach to ensure that background contributions to the scattering are accurately accounted for. These measurements are compared with new theoretical results employing the convergent close coupling approach.

  15. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation

    NASA Astrophysics Data System (ADS)

    Polyak, Iakov; Benighaus, Tobias; Boulanger, Eliot; Thiel, Walter

    2013-08-01

    The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.

  16. Calculating Free Energies Using Scaled-Force Molecular Dynamics Algorithm

    NASA Technical Reports Server (NTRS)

    Darve, Eric; Wilson, Micahel A.; Pohorille, Andrew

    2000-01-01

    One common objective of molecular simulations in chemistry and biology is to calculate the free energy difference between different states of the system of interest. Examples of problems that have such an objective are calculations of receptor-ligand or protein-drug interactions, associations of molecules in response to hydrophobic, and electrostatic interactions or partition of molecules between immiscible liquids. Another common objective is to describe evolution of the system towards a low energy (possibly the global minimum energy), 'native' state. Perhaps the best example of such a problem is folding of proteins or short RNA molecules. Both types of problems share the same difficulty. Often, different states of the system are separated by high energy barriers, which implies that transitions between these states are rare events. This, in turn, can greatly impede exploration of phase space. In some instances this can lead to 'quasi non-ergodicity', whereby a part of phase space is inaccessible on timescales of the simulation. A host of strategies has been developed to improve efficiency of sampling the phase space. For example, some Monte Carlo techniques involve large steps which move the system between low-energy regions in phase space without the need for sampling the configurations corresponding to energy barriers (J-walking). Most strategies, however, rely on modifying probabilities of sampling low and high-energy regions in phase space such that transitions between states of interest are encouraged. Perhaps the simplest implementation of this strategy is to increase the temperature of the system. This approach was successfully used to identify denaturation pathways in several proteins, but it is clearly not applicable to protein folding. It is also not a successful method for determining free energy differences. Finally, the approach is likely to fail for systems with co-existing phases, such as water-membrane systems, because it may lead to spontaneous

  17. Neural Signaling Metabolites May Modulate Energy Use in Hibernation.

    PubMed

    Drew, Kelly L; Frare, Carla; Rice, Sarah A

    2017-01-01

    Despite an epidemic in obesity and metabolic syndrome limited means exist to effect adiposity or metabolic rate other than life style changes. Here we review evidence that neural signaling metabolites may modulate thermoregulatory pathways and offer novel means to fine tune energy use. We extend prior reviews on mechanisms that regulate thermogenesis and energy use in hibernation by focusing primarily on the neural signaling metabolites adenosine, AMP and glutamate.

  18. Molecular understanding of mutagenicity using potential energy methods

    SciTech Connect

    Broyde, S.; Shapiro, R.

    1992-07-01

    Our objective, has been to elucidate on a molecular level, at atomic resolution, the structures of DNAs modified by 2-aminofluorene and its N-acetyl derivative, 2-acetylaminofluorene (AAF). The underlying hypothesis is that DNA replicates with reduced fidelity when its normal right-handed B-structure is altered, and one result is a higher mutation rate. This change in structure may occur normally at a low incidence, for example by the formation of hairpin loops in appropriate sequences, but it may be enhanced greatly after covalent modification by a mutagenic substance. We use computational methods and have been able to incorporate the first data from NMR studies in our calculations. Computational approaches are important because x-ray and spectroscopic studies have not succeeded in producing atomic resolution views of mutagen and carcinogen-oligonucleotide adducts. The specific methods that we employ are minimized potential energy calculations using the torsion angle space molecular mechanics program DUPLEX to yield static views. Molecular dynamics simulations, with full solvent and salt, of the important static structures are carried out with the program AMBER; this yields mobile views in a medium that mimics the natural aqueous environment of the cell as well as can be done with current available computing resources.

  19. Equiparatition of energy for turbulent astrophysical fluids: Accounting for the unseen energy in molecular clouds

    NASA Technical Reports Server (NTRS)

    Zweibel, Ellen G.; Mckee, Christopher F.

    1995-01-01

    Molecular clouds are observed to be partially supported by turbulent pressure. The kinetic energy of the turbulence is directly measurable, but the potential energy, which consists of magnetic, thermal, and gravitational potential energy, is largly unseen. We have extended previous results on equipartition between kinetic and potential energy to show that it is likely to be a very good approximation in molecular clouds. We have used two separate approaches to demonstrate this result: For small-amplitude perturbations of a static equilibrium, we have used the energy principle analysis of Bernstein et al. (1958); this derivation applies to perturbations of arbitary wavelength. To treat perturbations of a nonstatic equilibrium, we have used the Lagrangian analysis of Dewar (1970); this analysis applies only to short-wavelength perturbations. Both analysis assume conservation of energy. Wave damping has only a small effect on equipartition if the wave frequency is small compared to the neutral-ion collision frequency; for the particular case we considered, radiative losses have no effect on equipartition. These results are then incorporated in a simple way into analyses of cloud equilibrium and global stability. We discuss the effect of Alfvenic turbulence on the Jeans mass and show that it has little effect on the magnetic critical mass.

  20. Ab initio molecular dynamics calculations of ion hydration free energies.

    PubMed

    Leung, Kevin; Rempe, Susan B; von Lilienfeld, O Anatole

    2009-05-28

    We apply ab initio molecular dynamics (AIMD) methods in conjunction with the thermodynamic integration or "lambda-path" technique to compute the intrinsic hydration free energies of Li(+), Cl(-), and Ag(+) ions. Using the Perdew-Burke-Ernzerhof functional, adapting methods developed for classical force field applications, and with consistent assumptions about surface potential (phi) contributions, we obtain absolute AIMD hydration free energies (DeltaG(hyd)) within a few kcal/mol, or better than 4%, of Tissandier et al.'s [J. Phys. Chem. A 102, 7787 (1998)] experimental values augmented with the SPC/E water model phi predictions. The sums of Li(+)/Cl(-) and Ag(+)/Cl(-) AIMD DeltaG(hyd), which are not affected by surface potentials, are within 2.6% and 1.2 % of experimental values, respectively. We also report the free energy changes associated with the transition metal ion redox reaction Ag(+)+Ni(+)-->Ag+Ni(2+) in water. The predictions for this reaction suggest that existing estimates of DeltaG(hyd) for unstable radiolysis intermediates such as Ni(+) may need to be extensively revised.

  1. Intramolecular vibrational energy redistribution in bridged azulene-anthracene compounds: Ballistic energy transport through molecular chains

    NASA Astrophysics Data System (ADS)

    Schwarzer, D.; Kutne, P.; Schröder, C.; Troe, J.

    2004-07-01

    Intramolecular vibrational energy flow in excited bridged azulene-anthracene compounds is investigated by time-resolved pump-probe laser spectroscopy. The bridges consist of molecular chains and are of the type (CH2)m with m up to 6 as well as (CH2OCH2)n (n=1,2) and CH2SCH2. After light absorption into the azulene S1 band and subsequent fast internal conversion, excited molecules are formed where the vibrational energy is localized at the azulene side. The vibrational energy transfer through the molecular bridge to the anthracene side and, finally, to the surrounding medium is followed by probing the red edge of the azulene S3 absorption band at 300 nm and/or the anthracene S1 absorption band at 400 nm. In order to separate the time scales for intramolecular and intermolecular energy transfer, most of the experiments were performed in supercritical xenon where vibrational energy transfer to the bath is comparably slow. The intramolecular equilibration proceeds in two steps. About 15%-20% of the excitation energy leaves the azulene side within a short period of 300 fs. This component accompanies the intramolecular vibrational energy redistribution (IVR) within the azulene chromophore and it is caused by dephasing of normal modes contributing to the initial local excitation of the azulene side and extending over large parts of the molecule. Later, IVR in the whole molecule takes place transferring vibrational energy from the azulene through the bridge to the anthracene side and thereby leading to microcanonical equilibrium. The corresponding time constants τIVR for short bridges increase with the chain length. For longer bridges consisting of more than three elements, however, τIVR is constant at around 4-5 ps. Comparison with molecular dynamics simulations suggests that the coupling of these chains to the two chromophores limits the rate of intramolecular vibrational energy transfer. Inside the bridges the energy transport is essentially ballistic and, therefore

  2. Exploring the free energy surface using ab initio molecular dynamics

    SciTech Connect

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-22

    Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method in collective variables to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hcp to fcc phase transition in Ti.

  3. Exploring the free energy surface using ab initio molecular dynamics

    DOE PAGES

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-22

    Efficient exploration of the configuration space and identification of metastable structures are challenging from both computational as well as algorithmic perspectives. Here, we extend the recently proposed orderparameter aided temperature accelerated sampling schemes to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways within the framework of density functional theory based molecular dynamics. The sampling method is applied to explore the relevant parts of the configuration space in prototypical materials SiO2 and Ti to identify the different metastable structures corresponding to different phases in these materials. In addition, we use the string method inmore » collective variables to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hcp to fcc phase transition in Ti.« less

  4. Footprinting molecular electrostatic potential surfaces for calculation of solvation energies.

    PubMed

    Calero, Christian Solis; Farwer, Jochen; Gardiner, Eleanor J; Hunter, Christopher A; Mackey, Mark; Scuderi, Serena; Thompson, Stuart; Vinter, Jeremy G

    2013-11-07

    A liquid is composed of an ensemble of molecules that populate a large number of different states, so calculation of the solvation energy of a molecule in solution requires a method for summing the interactions with the environment over all of these states. The surface site interaction model for the properties of liquids at equilibrium (SSIMPLE) simplifies the surface of a molecule to a discrete number of specific interaction sites (SSIPs). The thermodynamic properties of these interaction sites can be characterised experimentally, for example, through measurement of association constants for the formation of simple complexes that feature a single H-bonding interaction. Correlation of experimentally determined solution phase H-bond parameters with gas phase ab initio calculations of maxima and minima on molecular electrostatic potential surfaces (MEPS) provides a method for converting gas phase calculations on isolated molecules to parameters that can be used to estimate solution phase interaction free energies. This approach has been generalised using a footprinting technique that converts an MEPS into a discrete set of SSIPs (each described by a polar interaction parameter, εi). These SSIPs represent the molecular recognition properties of the entire surface of the molecule. For example, water is described by four SSIPs, two H-bond donor sites and two H-bond acceptor sites. A liquid mixture is described as an ensemble of SSIPs that represent the components of the mixture at appropriate concentrations. Individual SSIPs are assumed to be independent, so speciation of SSIP contacts can be calculated based on properties of the individual SSIP interactions, which are given by the sum of a polar (εiεj) and a non-polar (E(vdW)) interaction term. Results are presented for calculation the free energies of transfer of a range of organic molecules from the pure liquid into water, from the pure liquid into n-hexadecane, from n-hexadecane into water, from n-octanol into

  5. Calculations of Solvation Free Energy through Energy Reweighting from Molecular Mechanics to Quantum Mechanics.

    PubMed

    Jia, Xiangyu; Wang, Meiting; Shao, Yihan; König, Gerhard; Brooks, Bernard R; Zhang, John Z H; Mei, Ye

    2016-02-09

    In this work, the solvation free energies of 20 organic molecules from the 4th Statistical Assessment of the Modeling of Proteins and Ligands (SAMPL4) have been calculated. The sampling of phase space is carried out at a molecular mechanical level, and the associated free energy changes are estimated using the Bennett Acceptance Ratio (BAR). Then the quantum mechanical (QM) corrections are computed through the indirect Non-Boltzmann Bennett's acceptance ratio (NBB) or the thermodynamics perturbation (TP) method. We show that BAR+TP gives a minimum analytic variance for the calculated solvation free energy at the Gaussian limit and performs slightly better than NBB in practice. Furthermore, the expense of the QM calculations in TP is only half of that in NBB. We also show that defining the biasing potential as the difference of the solute-solvent interaction energy, instead of the total energy, can converge the calculated solvation free energies much faster but possibly to different values. Based on the experimental solvation free energies which have been published before, it is discovered in this study that BLYP yields better results than MP2 and some other later functionals such as B3LYP, M06-2X, and ωB97X-D.

  6. Origin of non-Gaussian site energy disorder in molecular aggregates

    NASA Astrophysics Data System (ADS)

    Rancova, Olga; Jakučionis, Mantas; Valkunas, Leonas; Abramavicius, Darius

    2017-04-01

    Gaussian site energy disorder is an ad hoc concept usually implemented in simulations of excitation dynamics in molecular systems. In this letter we suggest a mechanism which may cause correlated static energy disorder in a broad range of molecular systems. Our approach leads to non-Gaussian site energy distribution, which strongly affects statistical properties of exciton wavefunctions and consequently changes material functional characteristics.

  7. Molecular clock integration of brown adipose tissue formation and function

    PubMed Central

    Nam, Deokhwa; Yechoor, Vijay K.; Ma, Ke

    2016-01-01

    Abstract The circadian clock is an essential time-keeping mechanism that entrains internal physiology to environmental cues. Despite the well-established link between the molecular clock and metabolic homeostasis, an intimate interplay between the clock machinery and the metabolically active brown adipose tissue (BAT) is only emerging. Recently, we came to appreciate that the formation and metabolic functions of BAT, a key organ for body temperature maintenance, are under an orchestrated circadian clock regulation. Two complementary studies from our group uncover that the cell-intrinsic clock machinery exerts concerted control of brown adipogenesis with consequent impacts on adaptive thermogenesis, which adds a previously unappreciated temporal dimension to the regulatory mechanisms governing BAT development and function. The essential clock transcriptional activator, Bmal1, suppresses adipocyte lineage commitment and differentiation, whereas the clock repressor, Rev-erbα, promotes these processes. This newly discovered temporal mechanism in fine-tuning BAT thermogenic capacity may enable energy utilization and body temperature regulation in accordance with external timing signals during development and functional recruitment. Given the important role of BAT in whole-body metabolic homeostasis, pharmacological interventions targeting the BAT-modulatory activities of the clock circuit may offer new avenues for the prevention and treatment of metabolic disorders, particularly those associated with circadian dysregulation. PMID:27385482

  8. Molecular mimicry of photosynthetic energy and electron transfer

    SciTech Connect

    Gust, D.; Moore, T.A.; Moore, A.L. )

    1993-04-01

    Proper application of reaction design considerations can yield artificial photosynthetic devices which credibility mimic the three natural photochemical processes. One approach is to use pigments and electron donors and acceptors related to those found in natural photosynthesis (and thus presumably optimal for that system), but to replace the protein with covalent bonds as an organizing precept. Molecular pentads described herein exemplify the success of this approach. At the heart of these molecules, are two covalently linked synthetic porphyrin moieties (P-P). One of these models for chlorophyll is attached to a carotenoid polyene (C), whereas the other is linked to a rigid diquinone (Q-Q). As discussed later in this paper, excitation of such a pentad is followed by photoinitiated electron transfer steps which ultimately give a C[sup [center dot]+]-P-P-Q-Q[sup [center dot]-] charge-separated state. Depending upon the structure of the pentad and the conditions, these states are formed with quantum yields of up to 0.83, have lifetimes approaching 0.5 ms, and store about one-half of the energy of the exciting singlet state. Related photosynthesis mimics display singlet-singlet energy transfer from carotenoid polyenes to porphyrins and among porphyrin chromophores, and rapid quenching of porphyrin triplet states by attached carotenoids. How have the structures of these and other successful artificial reaction centers evolved, and what will be the next steps in their development The authors will address these questions from the point of view of photoinitiated electron transfer, and then singlet and triplet energy transfer will briefly be considered. 37 refs., 4 figs.

  9. Diffusion energy profiles in silica mesoporous molecular sieves modelled with the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Roskop, Luke; Fedorov, Dmitri G.; Gordon, Mark S.

    2013-07-01

    The fragment molecular orbital (FMO) method is used to model truncated portions of mesoporous silica nanoparticle (MSN) pores. The application of the FMO/RHF (restricted Hartree-Fock) method to MCM-41 type MSNs is discussed and an error analysis is given. The FMO/RHF method is shown to reliably approximate the RHF energy (error ∼0.2 kcal/mol), dipole moment (error ∼0.2 debye) and energy gradient (root mean square [RMS] error ∼0.2 × 10-3 a.u./bohr). Several FMO fragmentation schemes are employed to provide guidance for future applications to MSN models. An MSN pore model is functionalised with (phenyl)propyl substituents and the diffusion barrier for benzene passing through the pore is computed by the FMO/RHF-D method with the Grimme dispersion correction (RHF-D). For the reaction coordinates examined here, the maximum FMO/RHF-D interaction energies range from -0.3 to -5.8 kcal/mol.

  10. Emissive Molecular Aggregates and Energy Migration in Luminescent Solar Concentrators.

    PubMed

    Banal, James L; Zhang, Bolong; Jones, David J; Ghiggino, Kenneth P; Wong, Wallace W H

    2017-01-17

    of chromophores exhibiting aggregation-induced emission (AIE) behavior are attractive candidates for LSC applications. Strategic application of AIE chromophores has led to the development of the first organic-based transparent solar concentrator that harvests UV light as well as the demonstration of reabsorption reduction by taking advantage of energy migration processes between chromophores. Further developments led us to the application of perylene diimides using an energy migration/energy transfer approach. To prevent concentration quenching, a molecularly insulated perylene diimide with bulky substituents attached to the imide positions was designed and synthesized. By combining the insulated perylene diimide with a commercial perylene dye as an energy donor-acceptor emitter pair, detrimental luminescence reabsorption was reduced while achieving a high chromophore concentration for efficient light absorption. This Account reviews and reinspects some of our recent work and the improvements in the field of LSCs.

  11. Energy landscape of LeuT from molecular simulations

    NASA Astrophysics Data System (ADS)

    Gur, Mert; Zomot, Elia; Cheng, Mary Hongying; Bahar, Ivet

    2015-12-01

    The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na+ ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ˜40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates.

  12. Energy landscape of LeuT from molecular simulations.

    PubMed

    Gur, Mert; Zomot, Elia; Cheng, Mary Hongying; Bahar, Ivet

    2015-12-28

    The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na(+) ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ∼40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates.

  13. Energy landscape of LeuT from molecular simulations

    PubMed Central

    Gur, Mert; Zomot, Elia; Cheng, Mary Hongying; Bahar, Ivet

    2015-01-01

    The bacterial sodium-coupled leucine transporter (LeuT) has been broadly used as a structural model for understanding the structure-dynamics-function of mammalian neurotransmitter transporters as well as other solute carriers that share the same fold (LeuT fold), as the first member of the family crystallographically resolved in multiple states: outward-facing open, outward-facing occluded, and inward-facing open. Yet, a complete picture of the energy landscape of (sub)states visited along the LeuT transport cycle has been elusive. In an attempt to visualize the conformational spectrum of LeuT, we performed extensive simulations of LeuT dimer dynamics in the presence of substrate (Ala or Leu) and co-transported Na+ ions, in explicit membrane and water. We used both conventional molecular dynamics (MD) simulations (with Anton supercomputing machine) and a recently introduced method, collective MD, that takes advantage of collective modes of motions predicted by the anisotropic network model. Free energy landscapes constructed based on ∼40 μs trajectories reveal multiple substates occluded to the extracellular (EC) and/or intracellular (IC) media, varying in the levels of exposure of LeuT to EC or IC vestibules. The IC-facing transmembrane (TM) helical segment TM1a shows an opening, albeit to a smaller extent and in a slightly different direction than that observed in the inward-facing open crystal structure. The study provides insights into the spectrum of conformational substates and paths accessible to LeuT and highlights the differences between Ala- and Leu-bound substates. PMID:26723619

  14. Exploring the free energy surface using ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Samanta, Amit; Morales, Miguel A.; Schwegler, Eric

    2016-04-01

    Efficient exploration of configuration space and identification of metastable structures in condensed phase systems are challenging from both computational and algorithmic perspectives. In this regard, schemes that utilize a set of pre-defined order parameters to sample the relevant parts of the configuration space [L. Maragliano and E. Vanden-Eijnden, Chem. Phys. Lett. 426, 168 (2006); J. B. Abrams and M. E. Tuckerman, J. Phys. Chem. B 112, 15742 (2008)] have proved useful. Here, we demonstrate how these order-parameter aided temperature accelerated sampling schemes can be used within the Born-Oppenheimer and the Car-Parrinello frameworks of ab initio molecular dynamics to efficiently and systematically explore free energy surfaces, and search for metastable states and reaction pathways. We have used these methods to identify the metastable structures and reaction pathways in SiO2 and Ti. In addition, we have used the string method [W. E, W. Ren, and E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002); L. Maragliano et al., J. Chem. Phys. 125, 024106 (2006)] within the density functional theory to study the melting pathways in the high pressure cotunnite phase of SiO2 and the hexagonal closed packed to face centered cubic phase transition in Ti.

  15. Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states.

    PubMed

    Durrant, James R

    2013-08-13

    This review starts with a brief overview of the technological potential of molecular-based solar cell technologies. It then goes on to focus on the core scientific challenge associated with using molecular light-absorbing materials for solar energy conversion, namely the separation of short-lived, molecular-excited states into sufficiently long-lived, energetic, separated charges capable of generating an external photocurrent. Comparisons are made between different molecular-based solar cell technologies, with particular focus on the function of dye-sensitized photoelectrochemical solar cells as well as parallels with the function of photosynthetic reaction centres. The core theme of this review is that generating charge carriers with sufficient lifetime and a high quantum yield from molecular-excited states comes at a significant energetic cost-such that the energy stored in these charge-separated states is typically substantially less than the energy of the initially generated excited state. The role of this energetic loss in limiting the efficiency of solar energy conversion by such devices is emphasized, and strategies to minimize this energy loss are compared and contrasted.

  16. High energy particle collisions near black holes

    NASA Astrophysics Data System (ADS)

    Zaslavskii, O. B.

    2016-10-01

    If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect). The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process).

  17. Molecular effects on turbulent diffusion and energy in a low speed closed flow

    NASA Astrophysics Data System (ADS)

    Akpovo, Charlemagne C.; Johnson, Joseph A.; Chabi Orou, Jean B.

    2008-05-01

    The coefficient of turbulent diffusion and the total turbulent energy are determined during the compression phase of a motored internal combustion engine with varying flow conditions and using intake gases with varying molecular weights. These turbulent parameters change with time and with intake gas molecular weight. However, under all flow conditions, both parameters first increase and then decrease with increasing molecular weight. In addition, a direct correlation is observed between the average values of the coefficient of turbulent diffusion and the average values of the total turbulent energy, irrespective of the molecular weight.

  18. Designing metal hydride complexes for water splitting reactions: a molecular electrostatic potential approach.

    PubMed

    Sandhya, K S; Suresh, Cherumuttathu H

    2014-08-28

    The hydridic character of octahedral metal hydride complexes of groups VI, VII and VIII has been systematically studied using molecular electrostatic potential (MESP) topography. The absolute minimum of MESP at the hydride ligand (Vmin) and the MESP value at the hydride nucleus (VH) are found to be very good measures of the hydridic character of the hydride ligand. The increasing/decreasing electron donating feature of the ligand environment is clearly reflected in the increasing/decreasing negative character of Vmin and VH. The formation of an outer sphere metal hydride-water complex showing the HH dihydrogen interaction is supported by the location and the value of Vmin near the hydride ligand. A higher negative MESP suggested lower activation energy for H2 elimination. Thus, MESP features provided a way to fine-tune the ligand environment of a metal-hydride complex to achieve high hydridicity for the hydride ligand. The applicability of an MESP based hydridic descriptor in designing water splitting reactions is tested for group VI metal hydride model complexes of tungsten.

  19. Influence of Copolyester Composition on Adhesion to Soda-Lime Glass via Molecular Dynamics Simulations.

    PubMed

    Hanson, Ben; Hofmann, John; Pasquinelli, Melissa A

    2016-06-01

    Copolyesters are a subset of polymers that have the desirable properties of strength and clarity while retaining chemical resistance, and are thus potential candidates for enhancing the impact resistance of soda-lime glass. Adhesion between the polymer and the glass relates to the impact performance of the system, as well as the longevity of the bond between the polymer and the glass under various conditions. Modifying the types of diols and diacids present in the copolyester provides a method for fine-tuning the physical properties of the polymer. In this study, we used molecular dynamics (MD) simulations to examine the influence of the chemical composition of the polymers on adhesion of polymer film laminates to two soda-lime glass surfaces, one tin-rich and one oxygen-rich. By calculating properties such as adhesion energies and contact angles, these results provide insights into how the polymer-glass interaction is impacted by the polymer composition, temperature, and other factors such as the presence of free volume or pi stacking. These results can be used to optimize the adhesion of copolyester films to glass surfaces.

  20. Molecular Breeding of Sorghum bicolor, A Novel Energy Crop.

    PubMed

    Ordonio, Reynante; Ito, Yusuke; Morinaka, Yoichi; Sazuka, Takashi; Matsuoka, Makoto

    2016-01-01

    Currently, molecular breeding is regarded as an important tool for the improvement of many crop species. However, in sorghum, recently heralded as an important bioenergy crop, progress in this field has been relatively slow and limited. In this review, we present existing efforts targeted at genetic characterization of sorghum mutants. We also comprehensively review the different attempts made toward the isolation of genes involved in agronomically important traits, including the dissection of some sorghum quantitative trait loci (QTLs). We also explore the current status of the use of transgenic techniques in sorghum, which should be crucial for advancing sorghum molecular breeding. Through this report, we provide a useful benchmark to help assess how much more sorghum genomics and molecular breeding could be improved.

  1. Molecular frame Auger electron energy spectrum from N2

    NASA Astrophysics Data System (ADS)

    Cryan, J. P.; Glownia, J. M.; Andreasson, J.; Belkacem, A.; Berrah, N.; Blaga, C. I.; Bostedt, C.; Bozek, J.; Cherepkov, N. A.; DiMauro, L. F.; Fang, L.; Gessner, O.; Gühr, M.; Hajdu, J.; Hertlein, M. P.; Hoener, M.; Kornilov, O.; Marangos, J. P.; March, A. M.; McFarland, B. K.; Merdji, H.; Messerschmidt, M.; Petrović, V. S.; Raman, C.; Ray, D.; Reis, D. A.; Semenov, S. K.; Trigo, M.; White, J. L.; White, W.; Young, L.; Bucksbaum, P. H.; Coffee, R. N.

    2012-03-01

    Here we present the first angle-resolved, non-resonant (normal) Auger spectra for impulsively aligned nitrogen molecules. We have measured the angular pattern of Auger electron emission following K-shell photoionization by 1.1 keV photons from the Linac Coherent Light Source (LCLS). Using strong-field-induced molecular alignment to make molecular frame measurements is equally effective for both repulsive and quasi-bound final states. The capability to resolve Auger emission angular distributions in the molecular frame of reference provides a new tool for spectral assignments in congested Auger electron spectra that takes advantage of the symmetries of the final diction states. Based on our experimental results and theoretical predictions, we propose the assignment of the spectral features in the Auger electron spectrum.

  2. Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory

    NASA Astrophysics Data System (ADS)

    Pang, Xiao-Feng; Zhang, Huai-Wu

    We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.

  3. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    SciTech Connect

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  4. The molecular photo-cell: quantum transport and energy conversion at strong non-equilibrium.

    PubMed

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-02-09

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system.

  5. The Molecular Photo-Cell: Quantum Transport and Energy Conversion at Strong Non-Equilibrium

    PubMed Central

    Ajisaka, Shigeru; Žunkovič, Bojan; Dubi, Yonatan

    2015-01-01

    The molecular photo-cell is a single molecular donor-acceptor complex attached to electrodes and subject to external illumination. Besides the obvious relevance to molecular photo-voltaics, the molecular photo-cell is of interest being a paradigmatic example for a system that inherently operates in out-of-equilibrium conditions and typically far from the linear response regime. Moreover, this system includes electrons, phonons and photons, and environments which induce coherent and incoherent processes, making it a challenging system to address theoretically. Here, using an open quantum systems approach, we analyze the non-equilibrium transport properties and energy conversion performance of a molecular photo-cell, including both coherent and incoherent processes and treating electrons, photons, and phonons on an equal footing. We find that both the non-equilibrium conditions and decoherence play a crucial role in determining the performance of the photovoltaic conversion and the optimal energy configuration of the molecular system. PMID:25660494

  6. Energy transformation in molecular electronic systems. Progress report

    SciTech Connect

    Kasha, M.

    1984-01-01

    Intramolecular Porton Transfer: Amplified spontaneous emission and laser action has been discovered in 3-hydroxyflavone. Proton transfer is also being studied in flavins (lumichrome) and DNA purines (adenine and guanine). Singlet Molecular Oxygen Studies: Excited-state studies are underway. (DLC)

  7. Sulphur hexaflouride: low energy (e,2e) experiments and molecular three-body distorted wave theory

    NASA Astrophysics Data System (ADS)

    Nixon, Kate L.; Murray, Andrew J.; Chaluvadi, H.; Ning, C. G.; Colgan, James; Madison, Don H.

    2016-10-01

    Experimental and theoretical triple differential ionisation cross-sections (TDCSs) are presented for the highest occupied molecular orbital of sulphur hexafluoride. These measurements were performed in the low energy regime, with outgoing electron energies ranging from 5 to 40 eV in a coplanar geometry, and with energies of 10 and 20 eV in a perpendicular geometry. Complementary theoretical predictions of the TDCS were calculated using the molecular three-body distorted wave formalism. Calculations were performed using a proper average over molecular orientations as well as the orientation-averaged molecular orbital approximation. This more sophisticated model was found to be in closer agreement with the experimental data, however neither model accurately predicts the TDCS over all geometries and energies.

  8. Electron Transport Modeling of Molecular Nanoscale Bridges Used in Energy Conversion Schemes

    SciTech Connect

    Dunietz, Barry D.

    2016-08-09

    The goal of the research program is to reliably describe electron transport and transfer processes at the molecular level. Such insight is essential for improving molecular applications of solar and thermal energy conversion. We develop electronic structure models to study (1) photoinduced electron transfer and transport processes in organic semiconducting materials, and (2) charge and heat transport through molecular bridges. We seek fundamental understanding of key processes, which lead to design new experiments and ultimately to achieve systems with improved properties.

  9. Ginzburg-Landau free energy for molecular fluids: Determination and coarse-graining

    NASA Astrophysics Data System (ADS)

    Desgranges, Caroline; Delhommelle, Jerome

    2017-02-01

    Using molecular simulation, we determine Ginzburg-Landau free energy functions for molecular fluids. To this aim, we extend the Expanded Wang-Landau method to calculate the partition functions, number distributions and Landau free energies for Ar,CO2 and H2O . We then parametrize a coarse-grained free energy function of the density order parameter and assess the performance of this free energy function on its ability to model the onset of criticality in these systems. The resulting parameters can be readily used in hybrid atomistic/continuum simulations that connect the microscopic and mesoscopic length scales.

  10. Mechanochemical Energy Transduction during the Main Rotary Step in the Synthesis Cycle of F1-ATPase.

    PubMed

    Czub, Jacek; Wieczór, Miłosz; Prokopowicz, Bartosz; Grubmüller, Helmut

    2017-03-09

    F1-ATPase is a highly efficient molecular motor that can synthesize ATP driven by a mechanical torque. Its ability to function reversibly in either direction requires tight mechanochemical coupling between the catalytic domain and the rotating central shaft, as well as temporal control of substrate binding and product release. Despite great efforts and significant progress, the molecular details of this synchronized and fine-tuned energy conversion mechanism are not fully understood. Here, we use extensive molecular dynamics simulations to reconcile recent single-molecule experiments with structural data and provide a consistent thermodynamic, kinetic and mechanistic description of the main rotary substep in the synthetic cycle of mammalian ATP synthase. The calculated free energy profiles capture a discrete pattern in the rotation of the central γ-shaft, with a metastable intermediate located-consistently with recent experimental findings-at 70° relative to the X-ray position. We identify this rotary step as the ATP-dependent substep, and find that the associated free energy input supports the mechanism involving concurrent nucleotide binding and release. During the main substep, our simulations show no significant opening of the ATP-bound β subunit; instead, we observe that mechanical energy is transmitted to its nucleotide binding site, thus lowering the affinity for ATP. Simultaneously, the empty subunit assumes a conformation that enables the enzyme to harness the free energy of ADP binding to drive ATP release. Finally, we show that ligand exchange is regulated by a checkpoint mechanism, an apparent prerequisite for high efficiency in protein nanomotors.

  11. Molecular Mechanisms Regulating TGF-β-Induced Foxp3 Expression

    PubMed Central

    Xu, Lili; Kitani, Atsushi; Strober, Warren

    2013-01-01

    Molecular mechanisms regulating TGF-β induction of Foxp3 expression and thus induction of iTregs has been the focus of a great deal of study in recent years. It has become clear that this process is influenced by a number of factors as perhaps might be predicted by the fact that there is an overarching need of the immune system to fine-tune response to environmental antigens. In this review we discuss these mechanisms, with the aim of presenting a broad picture of how the various observations fit together to form an integrated regulatory regime. PMID:20404810

  12. Efficient Radioisotope Energy Transfer by Gold Nanoclusters for Molecular Imaging.

    PubMed

    Volotskova, Olga; Sun, Conroy; Stafford, Jason H; Koh, Ai Leen; Ma, Xiaowei; Cheng, Zhen; Cui, Bianxiao; Pratx, Guillem; Xing, Lei

    2015-08-26

    Beta-emitting isotopes Fluorine-18 and Yttrium-90 are tested for their potential to stimulate gold nanoclusters conjugated with blood serum proteins (AuNCs). AuNCs excited by either medical radioisotope are found to be highly effective ionizing radiation energy transfer mediators, suitable for in vivo optical imaging. AuNCs synthesized with protein templates convert beta-decaying radioisotope energy into tissue-penetrating optical signals between 620 and 800 nm. Optical signals are not detected from AuNCs incubated with Technetium-99m, a pure gamma emitter that is used as a control. Optical emission from AuNCs is not proportional to Cerenkov radiation, indicating that the energy transfer between the radionuclide and AuNC is only partially mediated by Cerenkov photons. A direct Coulombic interaction is proposed as a novel and significant mechanism of energy transfer between decaying radionuclides and AuNCs.

  13. Molecular dynamics algorithm enforcing energy conservation for microcanonical simulations.

    PubMed

    Salueña, Clara; Avalos, Josep Bonet

    2014-05-01

    A reversible algorithm [enforced energy conservation (EEC)] that enforces total energy conservation for microcanonical simulations is presented. The key point is the introduction of the discrete-gradient method to define the forces from the conservative potentials, instead of the direct use of the force field at the actual position of the particle. We have studied the performance and accuracy of the EEC in two cases, namely Lennard-Jones fluid and a simple electrolyte model. Truncated potentials that usually induce inaccuracies in energy conservation are used. In particular, the reaction field approach is used in the latter. The EEC is able to preserve energy conservation for a long time, and, in addition, it performs better than the Verlet algorithm for these kinds of simulations.

  14. Unraveling the binding mechanism of polyoxyethylene sorbitan esters with bovine serum albumin: a novel theoretical model based on molecular dynamic simulations.

    PubMed

    Delgado-Magnero, Karelia H; Valiente, Pedro A; Ruiz-Peña, Miriam; Pérez-Gramatges, Aurora; Pons, Tirso

    2014-04-01

    To gain a better understanding of the interactions governing the binding mechanism of proteins with non-ionic surfactants, the association processes of Tween 20 and Tween 80 with the bovine serum albumin (BSA) protein were investigated using molecular dynamics (MD) simulations. Protein:surfactant molar ratios were chosen according to the critical micelle concentration (CMC) of each surfactant in the presence of BSA. It was found that both the hydrophilic and the hydrophobic groups of the BSA equally contribute to the surface area of interaction with the non-ionic surfactants. A novel theoretical model for the interactions between BSA and these surfactants at the atomic level is proposed, where both surfactants bind to non-specific domains of the BSA three-dimensional structure mainly through their polyoxyethylene groups, by hydrogen bonds and van der Waals interactions. This is well supported by the strong electrostatic and van der Waals interaction energies obtained in the calculations involving surfactant polyoxyethylene groups and different protein regions. The results obtained from the MD simulations suggest that the formation of surfactant clusters over the BSA structure, due to further cooperative self-assembly of Tween molecules, could increase the protein conformational stability. These results extend the current knowledge on molecular interactions between globular proteins and non-ionic surfactants, and contribute to the fine-tuning design of protein formulations using polysorbates as excipients for minimizing the undesirable effects of protein adsorption and aggregation.

  15. Quality Assessment of Predicted Protein Models Using Energies Calculated by the Fragment Molecular Orbital Method.

    PubMed

    Simoncini, David; Nakata, Hiroya; Ogata, Koji; Nakamura, Shinichiro; Zhang, Kam Yj

    2015-02-01

    Protein structure prediction directly from sequences is a very challenging problem in computational biology. One of the most successful approaches employs stochastic conformational sampling to search an empirically derived energy function landscape for the global energy minimum state. Due to the errors in the empirically derived energy function, the lowest energy conformation may not be the best model. We have evaluated the use of energy calculated by the fragment molecular orbital method (FMO energy) to assess the quality of predicted models and its ability to identify the best model among an ensemble of predicted models. The fragment molecular orbital method implemented in GAMESS was used to calculate the FMO energy of predicted models. When tested on eight protein targets, we found that the model ranking based on FMO energies is better than that based on empirically derived energies when there is sufficient diversity among these models. This model diversity can be estimated prior to the FMO energy calculations. Our result demonstrates that the FMO energy calculated by the fragment molecular orbital method is a practical and promising measure for the assessment of protein model quality and the selection of the best protein model among many generated.

  16. Discovery and optimization of triazine derivatives as ROCK1 inhibitors: molecular docking, molecular dynamics simulations and free energy calculations.

    PubMed

    Shen, Mingyun; Zhou, Shunye; Li, Youyong; Pan, Peichen; Zhang, Liling; Hou, Tingjun

    2013-03-01

    Rho-associated protein kinases (ROCK1 and ROCK2) are promising targets for a number of diseases, including cardiovascular disorders, nervous system diseases, cancers, etc. Recently, we have successfully identified a ROCK1 inhibitor (1) with the triazine core. In order to gain a deeper insight into the microscopic binding of this inhibitor with ROCK1 and design derivatives with improved potency, the interactions between ROCK1 and a series of triazine/pyrimidine-based inhibitors were studied by using an integrated computational protocol that combines molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and binding energy decomposition analysis. First, three docking protocols, rigid receptor docking, induced fit docking, QM-polarized ligand docking, were used to determine the binding modes of the studied inhibitors in the active site of ROCK1. The results illustrate that rigid receptor docking achieves the best performance to rank the binding affinities of the studied inhibitors. Then, based on the predicted structures from molecular docking, MD simulations and MM/GBSA free energy calculations were employed to determine the dynamic binding process and compare the binding modes of the inhibitors with different activities. The binding free energies predicted by MM/GBSA are in good agreement with the experimental bioactivities, and the analysis of the individual energy terms suggests that the van der Waals interaction is the major driving force for ligand binding. In addition, the residue-inhibitor interaction spectra were obtained by the MM/GBSA free energy decomposition analysis, and the important residues for achieving strong binding were highlighted, which affords important guidance for the rational design of novel ROCK inhibitors. Finally, a variety of derivatives of inhibitor 1 were designed and four of them showed promising potency according to the predictions. We expect that our study can provide significant insight into the

  17. Electrostatically driven second-sphere ligand switch between high and low reorganization energy forms of native cytochrome c.

    PubMed

    Alvarez-Paggi, Damián; Castro, María A; Tórtora, Verónica; Castro, Laura; Radi, Rafael; Murgida, Daniel H

    2013-03-20

    We have employed a combination of protein film voltammetry, time-resolved vibrational spectroelectrochemistry and molecular dynamics simulations to evaluate the electron-transfer reorganization free energy (λ) of cytochrome c (Cyt) in electrostatic complexes that mimic some basic features of protein-protein and protein-lipid interactions. The results reveal the existence of two native-like conformations of Cyt that present significantly different λ values. Conversion from the high to the low λ forms is triggered by electrostatic interactions, and involves the rupture of a weak H-bond between first- (M80) and second-sphere (Y67) ligands of the heme iron, as a distinctive feature of the conformational switch. The two flexible Ω loops operate as transducers of the electrostatic signal. This fine-tuning effect is abolished in the Y67F Cyt mutant, which presents a λ value similar to the WT protein in electrostatic complexes. We propose that interactions of Cyt with the natural redox partner proteins activate a similar mechanism to minimize the reorganization energy of interprotein electron transfer.

  18. Quantum Mechanical Molecular Interactions for Calculating the Excitation Energy in Molecular Environments: A First-Order Interacting Space Approach

    PubMed Central

    Hasegawa, Jun-ya; Yanai, Kazuma; Ishimura, Kazuya

    2015-01-01

    Intermolecular interactions regulate the molecular properties in proteins and solutions such as solvatochromic systems. Some of the interactions have to be described at an electronic-structure level. In this study, a commutator for calculating the excitation energy is used for deriving a first-order interacting space (FOIS) to describe the environmental response to solute excitation. The FOIS wave function for a solute-in-solvent cluster is solved by second-order perturbation theory. The contributions to the excitation energy are decomposed into each interaction and for each solvent. PMID:25393373

  19. Electronic structure, molecular bonding and potential energy surfaces

    SciTech Connect

    Ruedenberg, K.

    1993-12-01

    By virtue of the universal validity of the generalized Born-Oppenheimer separation, potential energy surfaces (PES`) represent the central conceptual as well as quantitative entities of chemical physics and provide the basis for the understanding of most physicochemical phenomena in many diverse fields. The research in this group deals with the elucidation of general properties of PES` as well as with the quantitative determination of PES` for concrete systems, in particular pertaining to reactions involving carbon, oxygen, nitrogen and hydrogen molecules.

  20. Structural and energy properties of interstitial molecular hydrogen in single-crystal silicon

    SciTech Connect

    Melnikov, V. V.

    2015-06-15

    The structural and energy characteristics of interstitial molecular hydrogen in single-crystal silicon are theoretically studied. The dependence of the potential energy of the system on the position and orientation of the interstitial defect is investigated, and the mechanism of interaction of a hydrogen molecule with a silicon crystal is considered. A three-dimensional model is employed to calculate the energy spectrum of H{sub 2} in Si, and the obtained dispersion law is analyzed.

  1. Gate-controlled energy barrier at a graphene/molecular semiconductor junction

    NASA Astrophysics Data System (ADS)

    Parui, S.; Pietrobon, L.; Ciudad, D.; Velez, S.; Sun, X.; Stoliar, P.; Casanova, F.; Hueso, L. E.

    The formation of an energy barrier at a metal/molecular semiconductor junction is both a ubiquitous phenomenon as well as the subject of intense research in order to improve the performance of molecular semiconductor-based electronic and optoelectronic devices. For these devices, a junction with a large energy barrier provides rectification, leading to a diode behavior, whereas a relatively small energy barrier provides nearly-ohmic behavior, resulting in efficient carrier injection (extraction) into the molecular semiconductor. Typically, a specific metal/molecular semiconductor combination leads to a fixed energy barrier; therefore, the possibility of a gate-controlled energy barrier is very appealing for advanced applications. Here, we present a graphene/C60 junction-based vertical field-effect transistor in which we demonstrate control of the interfacial energy-barrier such that the junction switches from a highly rectifying diode at negative gate voltages to a nearly-ohmic behavior at positive gate voltages and at room temperature. We extract an energy-barrier modulation of up to 660 meV, a transconductance of up to five orders of magnitude and a gate-modulated photocurrent.

  2. Advanced Nanostructured Molecular Sieves for Energy Efficient Industrial Separations

    SciTech Connect

    Kunhao Li, Michael Beaver

    2012-01-18

    Due to the very small relative volatility difference between propane and propylene, current propane/propylene separation by distillation requires very tall distillation towers (150-250 theoretical plates) and large reflux ratios (up to 15), which is considered to be the most energy consuming large-scale separation process. Adsorptive separation processes are widely considered to be more energy-efficient alternatives to distillation. However, slow diffusion kinetics/mass transport rate through the adsorbent bed often limits the performance of such processes, so further improvements are possible if intra-particle mass transfer rates can be improved. Rive Technology, Inc. is developing and commercializing its proprietary mesoporous zeolite technology for catalysis and separation. With well-controlled intracrystalline mesoporosity, diffusion kinetics through such mesoporous zeolite based catalysts is much improved relative to conventional zeolites, leading to significantly better product selectivity. This 'proof-of-principle' project (DE-EE0003470) is intended to demonstrate that Rive mesoporous zeolite technology can be extended and applied in adsorptive propane/propylene separation and lead to significant energy saving compared to the current distillation process. In this project, the mesoporous zeolite Y synthesis technology was successfully extended to X and A zeolites that are more relevant to adsorbent applications. Mesoporosity was introduced to zeolite X and A for the first time while maintaining adequate adsorption capacity. Zeolite adsorbents were tested for liquid phase separation performance using a pulse flow test unit and the test results show that the separation selectivity of the mesoporous zeolite adsorbent is much closer to optimal for a Simulated Moving Bed (SMB) separation process and the enhanced mesoporosity lead to >100% increase of overall mass transport rate for propane and propylene. These improvements will significantly improve the

  3. 2013 MOLECULAR ENERGY TRANSFER GORDON RESEARCH CONFERENCE (JANUARY 13-18, 2013 - VENTURA BEACH MARRIOTT, VENTURA CA

    SciTech Connect

    Reid, Scott A.

    2012-10-18

    Sessions covered all areas of molecular energy transfer, with 10 sessions of talks and poster sessions covering the areas of :  Energy Transfer in Inelastic and Reactive Scattering  Energy Transfer in Photoinitiated and Unimolecular Reactions  Non-adiabatic Effects in Energy Transfer  Energy Transfer at Surfaces and Interfaces  Energy Transfer in Clusters, Droplets, and Aerosols  Energy Transfer in Solution and Solid  Energy Transfer in Complex Systems  Energy Transfer: New vistas and horizons  Molecular Energy Transfer: Where Have We Been and Where are We Going?

  4. Measurement and Analysis of Rotational Energy of Nitrogen Molecular Beam by REMPI

    NASA Astrophysics Data System (ADS)

    Mori, H.; Yamaguchi, H.; Kataoka, K.; Sugiyama, N.; Ide, K.; Niimi, T.

    2008-12-01

    Molecular beams are powerful tools for diagnoses of solid surfaces and gas-surface interaction tests. Unfortunately, there are very few reports about experimental analysis of internal energy distribution (e.g. rotational energy) of molecular beams of diatomic or polyatomic molecules, because measurement of internal energy distribution is very difficult. Spectroscopic measurement techniques based on resonantly enhanced multiphoton ionization (REMPI) is very powerful for measurement in highly rarefied gas flows. In this study, the REMPI method is applied to measurement of rotational energy distribution of nitrogen molecular beams. The REMPI spectrum of the molecular beam indicates the rotational temperature higher than the translational temperature of 7.2 K estimated by assuming isentropic flows. The O and P branches of the REMPI spectrum correspond to the rotational temperature of 30 K, but the S branch of the spectrum deviates from that at 30 K. It seems to be because the non-equilibrium rotational energy distribution of the molecular beam deviates from the Boltzmann distribution.

  5. Measurement and Analysis of Rotational Energy of Nitrogen Molecular Beam by REMPI

    SciTech Connect

    Mori, H.; Yamaguchi, H.; Kataoka, K.; Sugiyama, N.; Ide, K.; Niimi, T.

    2008-12-31

    Molecular beams are powerful tools for diagnoses of solid surfaces and gas-surface interaction tests. Unfortunately, there are very few reports about experimental analysis of internal energy distribution (e.g. rotational energy) of molecular beams of diatomic or polyatomic molecules, because measurement of internal energy distribution is very difficult. Spectroscopic measurement techniques based on resonantly enhanced multiphoton ionization (REMPI) is very powerful for measurement in highly rarefied gas flows. In this study, the REMPI method is applied to measurement of rotational energy distribution of nitrogen molecular beams. The REMPI spectrum of the molecular beam indicates the rotational temperature higher than the translational temperature of 7.2 K estimated by assuming isentropic flows. The O and P branches of the REMPI spectrum correspond to the rotational temperature of 30 K, but the S branch of the spectrum deviates from that at 30 K. It seems to be because the non-equilibrium rotational energy distribution of the molecular beam deviates from the Boltzmann distribution.

  6. Molecular design of aminopolynitroazole-based high-energy materials.

    PubMed

    Ghule, Vikas D; Srinivas, Dharavath; Sarangapani, Radhakrishnan; Jadhav, Pandurang M; Tewari, Surya P

    2012-07-01

    The density functional theory (DFT) was employed to calculate the energetic properties of several aminopolynitroazoles. The calculations were performed to study the effect of amino and nitro substituents on the heats of formation, densities, detonation performances, thermal stabilities, and sensitivity characteristics of azoles. DFT-B3LYP, DFT-B3PW91, and MP2 methods utilizing the basis sets 6-31 G* and 6-311 G (2df, 3p) were adopted to predict HOFs via designed isodesmic reactions. All of the designed aminopolynitroazoles had heats of formation of >220 kJ mol(-1). The crystal densities of the aminopolynitroazoles were predicted with the cvff force field. All of the energetic azoles had densities of >1.83 g/cm(3). The detonation velocities and pressures were evaluated using the Kamlet-Jacobs equations, utilizing the predicted densities and heats of formation. It was found that aminopolynitroazoles have a detonation velocity of about 9.1 km/s and detonation pressure of 36 GPa. The bond dissociation energies for the C-NO(2) and N-NO(2) bonds were analyzed to investigate the stabilities of the designed molecules. The charge on the nitro group was used to assess impact sensitivity in the present study. The results obtained imply that the designed molecules are stable and are expected to be candidates for high-energy materials (HEMs).

  7. Fine-Tuning the Wilson-Bappu Effect

    NASA Astrophysics Data System (ADS)

    Gomez, T.; Wallerstein, G.

    2011-12-01

    We have used the re-reduced Hipparcos parallaxes and extensive new observations from various sources to investigate the details of the Ca II emission line width vs. Mv relation first noted in Wilson & Vainu Bappu (1957). Only stars whose parallaxes exceed their probably error by at least a factor of 5 were used. The full range of Mv now extends from Mv =+14 to -5. Small but well defined deviations from a linear relationship are clearly present. The data have also been separately plotted for each luminosity class from V to Ib. Main sequence stars show significant curvature from Mv = 14 to 8. Stars of class III show a very nice linear curve. The supergiants, almost all of which are of class Ib, show the greatest scatter as originally noted by Wallerstein et al. (1999). For those stars the Wilson-Bappu Effect is not a useful method for deriving Mv. We discus the shape of the dispersion in log W0 at a given Mv and show that it is asymmetric. Individual measurements of logW0 are more likely to be above the mean rather than below it. This is probably due to intermittent activity that enhances the width of the Ca II emission line.

  8. Fine Tuning Cell Migration by a Disintegrin and Metalloproteinases

    PubMed Central

    Theodorou, K.

    2017-01-01

    Cell migration is an instrumental process involved in organ development, tissue homeostasis, and various physiological processes and also in numerous pathologies. Both basic cell migration and migration towards chemotactic stimulus consist of changes in cell polarity and cytoskeletal rearrangement, cell detachment from, invasion through, and reattachment to their neighboring cells, and numerous interactions with the extracellular matrix. The different steps of immune cell, tissue cell, or cancer cell migration are tightly coordinated in time and place by growth factors, cytokines/chemokines, adhesion molecules, and receptors for these ligands. This review describes how a disintegrin and metalloproteinases interfere with several steps of cell migration, either by proteolytic cleavage of such molecules or by functions independent of proteolytic activity. PMID:28260841

  9. Silicon quantum dots: fine-tuning to maturity.

    PubMed

    Morello, Andrea

    2015-12-18

    Quantum dots in semiconductor heterostructures provide one of the most flexible platforms for the study of quantum phenomena at the nanoscale. The surging interest in using quantum dots for quantum computation is forcing researchers to rethink fabrication and operation methods, to obtain highly tunable dots in spin-free host materials, such as silicon. Borselli and colleagues report in Nanotechnology the fabrication of a novel Si/SiGe double quantum dot device, which combines an ultra-low disorder Si/SiGe accumulation-mode heterostructure with a stack of overlapping control gates, ensuring tight confining potentials and exquisite tunability. This work signals the technological maturity of silicon quantum dots, and their readiness to be applied to challenging projects in quantum information science.

  10. Fine-Tuning the Craft of Teaching by Discussion

    ERIC Educational Resources Information Center

    Huang, Li-Shih

    2005-01-01

    Extensive research in cognitive psychology and education shows that discussion facilitates "depth of processing" (Craik & Lockhart, 1972), which in turn promotes thinking, understanding, and retaining information. It is also well recognized that an effectively facilitated discussion is one of the most valuable vehicles for learning. In MBA…

  11. Is Fine-Tuning Possible with Grade-Focused Students?

    ERIC Educational Resources Information Center

    Frost, Gail; Connolly, Maureen

    2016-01-01

    In our service-learning courses, students work with real people and record and reflect on these experiences, to learn appropriate professional behavior, how to think creatively, and how to respond to changing circumstances. Many of our students are strategic learners, characterized by alertness to assessment and intention to achieve the highest…

  12. Musicians have fine-tuned neural distinction of speech syllables

    PubMed Central

    Parbery-Clark, Alexandra; Tierney, Adam; Strait, Dana L.; Kraus, Nina

    2012-01-01

    One of the benefits musicians derive from their training is an increased ability to detect small differences between sounds. Here, we asked whether musicians’ experience discriminating sounds on the basis of small acoustic differences confers advantages in the subcortical differentiation of closely-related speech sounds (e.g., /ba/ and /ga/), distinguishable only by their harmonic spectra (i.e., their second formant trajectories). Although the second formant is particularly important for distinguishing stop consonants, auditory brainstem neurons do not phase-lock to its frequency range (above 1000 Hz). Instead, brainstem nuclei convert this high-frequency content into neural response timing differences. As such, speech tokens with higher formant frequencies elicit earlier brainstem responses than those with lower formant frequencies. By measuring the degree to which subcortical response timing differs to the speech syllables /ba/, /da/, and /ga/ in adult musicians and nonmusicians, we reveal that musicians demonstrate enhanced subcortical discrimination of closely related speech sounds. Furthermore, the extent of subcortical consonant discrimination correlates with speech-in-noise perception. Taken together, these findings show a musician enhancement for the neural processing of speech and reveal a biological mechanism contributing to musicians’ enhanced speech perception. PMID:22634507

  13. Fine-Tuning Development Through Antagonistic Peptides: An Emerging Theme.

    PubMed

    Lee, Jin Suk; De Smet, Ive

    2016-12-01

    Peptide ligand-receptor kinase interactions have emerged as a key component of plant growth and development. Now, highly related small signaling peptides have been shown to act antagonistically on the same receptor kinase, providing new insights into how plants optimize developmental processes using competitive peptides.

  14. ESP Needs Washback and the Fine Tuning of Driving Instruction

    ERIC Educational Resources Information Center

    Freiermuth, Mark R.

    2007-01-01

    Workplace needs are often difficult for English for Specific Purposes (ESP) teachers to assess due to a variety of obstacles that can restrict opportunities to analyze the existing needs. Nevertheless, the workers' needs may be recognized by employing techniques aimed at extracting information from the workers themselves. Japanese university…

  15. Fine tuning GPS clock estimation in the MCS

    NASA Technical Reports Server (NTRS)

    Hutsell, Steven T.

    1995-01-01

    With the completion of a 24 operational satellite constellation, GPS is fast approaching the critical milestone, Full Operational Capability (FOC). Although GPS is well capable of providing the timing accuracy and stability figures required by system specifications, the GPS community will continue to strive for further improvements in performance. The GPS Master Control Station (MCS) recently demonstrated that timing improvements are always composite Clock, and hence, Kalman Filter state estimation, providing a small improvement to user accuracy.

  16. Fine-tuned shuttles for bone morphogenetic proteins.

    PubMed

    Wharton, Kristi A; Serpe, Mihaela

    2013-08-01

    Bone morphogenetic proteins (BMPs) are potent secreted signaling factors that trigger phosphorylation of Smad transcriptional regulators through receptor complex binding at the cell-surface. Resulting changes in target gene expression impact critical cellular responses during development and tissue homeostasis. BMP activity is tightly regulated in time and space by secreted modulators that control BMP extracellular distribution and availability for receptor binding. Such extracellular regulation is key for BMPs to function as morphogens and/or in the formation of morphogen activity gradients. Here, we review shuttling systems utilized to control the distribution of BMP ligands in tissue of various geometries, developing under different temporal constraints. We discuss the biological advantages for employing specific strategies for BMP shuttling and roles of varied ligand forms.

  17. Fine-tuning Food Safety Objectives and risk assessment.

    PubMed

    Havelaar, Arie H; Nauta, Maarten J; Jansen, Jaap T

    2004-05-15

    Food Safety Objectives (FSOs) have been proposed as a practical tool to translate public health targets for food safety into tolerable levels of pathogens in a food product. The FSO concept is subject to intensive debate, and has not been developed in detail. We evaluate the proposed definition of FSOs and their implementation from the perspective of Quantitative Microbiological Risk Assessment (QMRA). The relationship between QMRA and FSOs is illustrated by a model for the public health risk of Shiga-producing Escherichia coli in steak tartare. We conclude that the proposed definition of FSOs needs to be modified to properly account for variability in and uncertainty about the contamination of food with pathogenic microorganisms and emphasize that both prevalence and concentration of pathogens must be considered. For this purpose, we propose the P-D equivalence curve, a simple graphical tool to separate "tolerable" from "non-tolerable" combinations of prevalence and concentration (dose).

  18. Fine tuning of graphene properties by modification with aryl halogens.

    PubMed

    Bouša, D; Pumera, M; Sedmidubský, D; Šturala, J; Luxa, J; Mazánek, V; Sofer, Z

    2016-01-21

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.

  19. Fine tuning of graphene properties by modification with aryl halogens

    NASA Astrophysics Data System (ADS)

    Bouša, D.; Pumera, M.; Sedmidubský, D.; Šturala, J.; Luxa, J.; Mazánek, V.; Sofer, Z.

    2016-01-01

    Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties.Graphene and its derivatives belong to one of the most intensively studied materials. The radical reaction using halogen derivatives of arene-diazonium salts can be used for effective control of graphene's electronic properties. In our work we investigated the influence of halogen atoms (fluorine, chlorine, bromine and iodine) as well as their position on the benzene ring towards the electronic and electrochemical properties of modified graphenes. The electronegativity as well as the position of the halogen atoms on the benzene ring has crucial influence on graphene's properties due to the inductive and mesomeric effects. The results of resistivity measurement are in good agreement with the theoretical calculations of electron density within chemically modified graphene sheets. Such simple chemical modifications of graphene can be used for controllable and scalable synthesis of graphene with tunable transport properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06295k

  20. tRNA concentration fine tunes protein solubility.

    PubMed

    Fedyunin, Ivan; Lehnhardt, Lothar; Böhmer, Nadine; Kaufmann, Paul; Zhang, Gong; Ignatova, Zoya

    2012-09-21

    Clusters of codons pairing to low-abundance tRNAs synchronize the translation with co-translational folding of single domains in multidomain proteins. Although proven with some examples, the impact of the ribosomal speed on the folding and solubility on a global, cell-wide level remains elusive. Here we show that upregulation of three low-abundance tRNAs in Escherichia coli increased the aggregation propensity of several cellular proteins as a result of an accelerated elongation rate. Intriguingly, alterations in the concentration of the natural tRNA pool compromised the solubility of various chaperones consequently rendering the solubility of some chaperone-dependent proteins.

  1. Spanish "fine tuning" of language to describe depression and anxiety.

    PubMed

    Noguera, Antonio; Centeno, Carlos; Carvajal, Ana; Tejedor, María Angustias Portela; Urdiroz, Juliana; Martínez, Marina

    2009-08-01

    On screening tools for emotional distress, the terms "depression" and "anxiety" are commonly used for patients with advanced cancer. However, these terms could have negative connotations in Spanish such that cultural and unexpected differences in perception may invalidate or skew the results of the screening if the best terms are not chosen. The goal of this study was to determine the best expression that can be used to explore anxiety and depression in Spanish. A prospective study of 100 Spanish-speaking patients was performed. Spanish patients with cancer completed the Hospital Anxiety and Depression Scale (HADS) and six Verbal Numerical Scales (VNS) exploring the level of anxiety using the terms ansioso (anxious), nervioso (nervous), or intranquilo (uneasy/disquiet), and the level of depression using the terms deprimido (depressed), desanimado (discouraged), or triste (sad). The correlation, sensitivity, and specificity for all the VNS and HADS (8 and 11 cutoff points) were analyzed. The correlation (Spearman rho) between HADS and the anxiety VNS was r = 0.557 using "anxious"; r = 0.603 using "nervous"; and r = 0.594 using "uneasy." The correlation for the depression VNS was r = 0.662 using "depression"; r = 0.759 using "discouraged" and r = 0.596 using "sad"; alpha < 0.001 was used in all VNS. A cutoff point of 4 of 10 for any term used to explore anxiety achieved the best levels for sensitivity (0.80) and specificity (0.70). The term "discouraged" with a cutoff point of 4 of 10 shows a sensitivity of 0.89, a specificity of 0.84, as well as a predictive positive value of 0.77 and a negative value of 0.93. In Spanish, the term desanimado seems to be more suitable in screening for depression. Alternate terms could be used to explore anxiety in Spanish. Exploring depression with simple questions in Spanish achieves greater accuracy than the same approach to exploring anxiety.

  2. Fine tuning of graphene-metal adhesion by surface alloying.

    PubMed

    Alfè, D; Pozzo, M; Miniussi, E; Günther, S; Lacovig, P; Lizzit, S; Larciprete, R; Santos Burgos, B; Menteş, T O; Locatelli, A; Baraldi, A

    2013-01-01

    We show that bimetallic surface alloying provides a viable route for governing the interaction between graphene and metal through the selective choice of the elemental composition of the surface alloy. This concept is illustrated by an experimental and theoretical characterization of the properties of graphene on a model PtRu surface alloy on Ru(0001), with a concentration of Pt atoms in the first layer between 0 and 50%. The progressive increase of the Pt content determines the gradual detachment of graphene from the substrate, which results from the modification of the carbon orbital hybridization promoted by Pt. Alloying is also found to affect the morphology of graphene, which is strongly corrugated on bare Ru, but becomes flat at a Pt coverage of 50%. The method here proposed can be readily extended to several supports, thus opening the way to the conformal growth of graphene on metals and to a full tunability of the graphene-substrate interaction.

  3. A Presynaptic Gain Control Mechanism Fine-Tunes Olfactory Behavior

    PubMed Central

    Root, Cory M.; Masuyama, Kaoru; Green, David S.; Enell, Lina E.; Nässel, Dick R.; Lee, Chi-Hon; Wang, Jing W.

    2008-01-01

    Early sensory processing can play a critical role in sensing environmental cues. We have investigated the physiological and behavioral function of gain control at the first synapse of olfactory processing in Drosophila. We report that olfactory receptor neurons (ORNs) express the GABAB receptor (GABABR) and its expression expands the dynamic range of ORN synaptic transmission that is preserved in projection neuron responses. Strikingly, we find that different ORN channels have unique baseline levels of GABABR expression. ORNs that sense the aversive odorant CO2 do not express GABABRs nor exhibit any presynaptic inhibition. In contrast, pheromone-sensing ORNs express a high level of GABABRs and exhibit strong presynaptic inhibition. Furthermore, a behavioral significance of presynaptic inhibition was revealed by a courtship behavior in which pheromone-dependent mate localization is impaired in flies that lack GABABRs in specific ORNs. Together, these findings indicate that different olfactory receptor channels may employ heterogeneous presynaptic gain control as a mechanism to allow an animal’s innate behavioral responses to match its ecological needs. PMID:18667158

  4. Fine-Tuning ADAS Algorithm Parameters for Optimizing Traffic ...

    EPA Pesticide Factsheets

    With the development of the Connected Vehicle technology that facilitates wirelessly communication among vehicles and road-side infrastructure, the Advanced Driver Assistance Systems (ADAS) can be adopted as an effective tool for accelerating traffic safety and mobility optimization at various highway facilities. To this end, the traffic management centers identify the optimal ADAS algorithm parameter set that enables the maximum improvement of the traffic safety and mobility performance, and broadcast the optimal parameter set wirelessly to individual ADAS-equipped vehicles. After adopting the optimal parameter set, the ADAS-equipped drivers become active agents in the traffic stream that work collectively and consistently to prevent traffic conflicts, lower the intensity of traffic disturbances, and suppress the development of traffic oscillations into heavy traffic jams. Successful implementation of this objective requires the analysis capability of capturing the impact of the ADAS on driving behaviors, and measuring traffic safety and mobility performance under the influence of the ADAS. To address this challenge, this research proposes a synthetic methodology that incorporates the ADAS-affected driving behavior modeling and state-of-the-art microscopic traffic flow modeling into a virtually simulated environment. Building on such an environment, the optimal ADAS algorithm parameter set is identified through an optimization programming framework to enable th

  5. Forecasting RVF Outbreaks-FineTuning a Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An outbreak of Rift Valley Fever, causing severe illness in more than 600 people, resulting in more than 150 deaths, occurred in several locations in Kenya from November 2006 until early March 2007. The symposium (I and II) will review the epidemic and present findings from the multi-faceted invest...

  6. Fine tuning by miRNAs in development

    NASA Astrophysics Data System (ADS)

    McHale, Peter; Levine, Erel; Levine, Herbert

    2007-03-01

    The unique role played by microRNA in a developing embryo is a topic of much current research interest. One possibility is that microRNA diffuse within a developing tissue, acting as communicators between different cells. Here we pursue this possibility in two different contexts. The first case occurs when the transcription profiles of the microRNA and its target are spatially anticorrelated, as for example is the case in the iab4-Ubx system in fly. Conversely, in the second context the two transcription profiles are correlated in space, as may be the case for the mir10-Hoxb4 system in mouse. In each context we identify a major function for a mobile miRNA. In the first, miRNA serve to induce an all-or-nothing response of the mRNA profile to its morphogen by generating a sharp boundary between domains of high and (ultimately) low target expression. In the second, miRNA amplify polarity in the target expression pattern by removing residual mRNAs. Importantly, our model predicts that these two functions require very different type of diffusion. While our results are highly quantitative, we propose ways of realizing them in experiments, taking into account limitations of standard experimental techniques.

  7. Molecular mechanism of energy conservation in polysulfide respiration

    SciTech Connect

    Jormakka, Mika; Yokoyama, Ken; Yano, Takahiro; Tamakoshi, Masatada; Akimoto, Satoru; Shimamura, Tatsuro; Curmi, Paul; Iwata, So

    2008-09-03

    Bacterial polysulfide reductase (PsrABC) is an integral membrane protein complex responsible for quinone-coupled reduction of polysulfide, a process important in extreme environments such as deep-sea vents and hot springs. We determined the structure of polysulfide reductase from Thermus thermophilus at 2.4-{angstrom} resolution, revealing how the PsrA subunit recognizes and reduces its unique polyanionic substrate. The integral membrane subunit PsrC was characterized using the natural substrate menaquinone-7 and inhibitors, providing a comprehensive representation of a quinone binding site and revealing the presence of a water-filled cavity connecting the quinone binding site on the periplasmic side to the cytoplasm. These results suggest that polysulfide reductase could be a key energy-conserving enzyme of the T. thermophilus respiratory chain, using polysulfide as the terminal electron acceptor and pumping protons across the membrane via a previously unknown mechanism.

  8. Theoretical study of substitution effects on molecular reorganization energy in organic semiconductors.

    PubMed

    Geng, Hua; Niu, Yingli; Peng, Qian; Shuai, Zhigang; Coropceanu, Veaceslav; Brédas, Jean-Luc

    2011-09-14

    Chemical substitutions are powerful molecular design tools to enhance the performance of organic semiconductors, for instance, to improve solubility, intermolecular stacking, or film quality. However, at the microscopic level, substitutions in general tend to increase the molecular reorganization energy and thus decrease the intrinsic charge-carrier mobility. Through density functional theory calculations, we elucidate strategies that could be followed to reduce the reorganization energy upon chemical substitution. Specific examples are given here for hole-transport materials including indolo-carbazoles and several triarylamine derivatives. Through decomposition of the total reorganization energy into the internal coordinate space, we are able to identify the molecular segment that provides the most important contributions to the reorganization energy. It is found that when substitution reduces (enhances) the amplitude of the relevant frontier molecular orbital in that segment, the total reorganization energy decreases (increases). In particular, chlorination at appropriate positions can significantly reduce the reorganization energy. Several other substituents are shown to play a similar role, to a greater or lesser extent.

  9. Foraging on the potential energy surface: A swarm intelligence-based optimizer for molecular geometry

    NASA Astrophysics Data System (ADS)

    Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel

    2012-11-01

    We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.

  10. Bayesian Energy Landscape Tilting: Towards Concordant Models of Molecular Ensembles

    PubMed Central

    Beauchamp, Kyle A.; Pande, Vijay S.; Das, Rhiju

    2014-01-01

    Predicting biological structure has remained challenging for systems such as disordered proteins that take on myriad conformations. Hybrid simulation/experiment strategies have been undermined by difficulties in evaluating errors from computational model inaccuracies and data uncertainties. Building on recent proposals from maximum entropy theory and nonequilibrium thermodynamics, we address these issues through a Bayesian energy landscape tilting (BELT) scheme for computing Bayesian hyperensembles over conformational ensembles. BELT uses Markov chain Monte Carlo to directly sample maximum-entropy conformational ensembles consistent with a set of input experimental observables. To test this framework, we apply BELT to model trialanine, starting from disagreeing simulations with the force fields ff96, ff99, ff99sbnmr-ildn, CHARMM27, and OPLS-AA. BELT incorporation of limited chemical shift and 3J measurements gives convergent values of the peptide’s α, β, and PPII conformational populations in all cases. As a test of predictive power, all five BELT hyperensembles recover set-aside measurements not used in the fitting and report accurate errors, even when starting from highly inaccurate simulations. BELT’s principled framework thus enables practical predictions for complex biomolecular systems from discordant simulations and sparse data. PMID:24655513

  11. Ab initio potential energy and dipole moment surfaces for CS2: determination of molecular vibrational energies.

    PubMed

    Pradhan, Ekadashi; Carreón-Macedo, José-Luis; Cuervo, Javier E; Schröder, Markus; Brown, Alex

    2013-08-15

    The ground state potential energy and dipole moment surfaces for CS2 have been determined at the CASPT2/C:cc-pVTZ,S:aug-cc-pV(T+d)Z level of theory. The potential energy surface has been fit to a sum-of-products form using the neural network method with exponential neurons. A generic interface between neural network potential energy surface fitting and the Heidelberg MCTDH software package is demonstrated. The potential energy surface has also been fit using the potfit procedure in MCTDH. For fits to the low-energy regions of the potential, the neural network method requires fewer parameters than potfit to achieve high accuracy; global fits are comparable between the two methods. Using these potential energy surfaces, the vibrational energies have been computed for the four most abundant CS2 isotopomers. These results are compared to experimental and previous theoretical data. The current potential energy surfaces are shown to accurately reproduce the low-lying vibrational energies within a few wavenumbers. Hence, the potential energy and dipole moments surfaces will be useful for future study on the control of quantum dynamics in CS2.

  12. Theoretical investigation of energy storage in atomic and molecular systems: Metastable molecular fuels

    NASA Astrophysics Data System (ADS)

    Saxon, Roberta P.

    1990-12-01

    Ion-pair species bound by the coulomb attraction between a stable positive and stable negative ion have been investigated theoretically as candidate high-energy fuels that could form the basis of new propulsion schemes. Theoretical results for H3O, Li3H, and H3F are presented along with specific impulse, I(sub sp), predictions based on calculated energies. The ion-pair local minimum on the first excited potential surface of H3O is found to be unstable with respect to dissociation to H2 + H + O. The ion-pair state of H3F has a double degenerate imaginary frequency. These results support the general conclusion that ion-pair states based on the H3 cation will not be stable because back-charge transfer to H3(+) leads to neutral H3, which is unstable with respect to H2 + H. However, the ion-pair state of Li3H is found to be a local minimum with a very small barrier to conversion to the lower energy planar form. Even the lowest energy form of Li3H as an additive to hydrogen is predicted to provide a 16 percent improvement in I(sub sp).

  13. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    SciTech Connect

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Matsumoto, Yoichiro; Takagi, Shu

    2008-12-31

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  14. Phosphorescent Molecular Butterflies with Controlled Potential-Energy Surfaces and Their Application as Luminescent Viscosity Sensor.

    PubMed

    Zhou, Chenkun; Yuan, Lin; Yuan, Zhao; Doyle, Nicholas Kelly; Dilbeck, Tristan; Bahadur, Divya; Ramakrishnan, Subramanian; Dearden, Albert; Huang, Chen; Ma, Biwu

    2016-09-06

    We report precise manipulation of the potential-energy surfaces (PESs) of a series of butterfly-like pyrazolate-bridged platinum binuclear complexes, by synthetic control of the electronic structure of the cyclometallating ligand and the steric bulkiness of the pyrazolate bridging ligand. Color tuning of dual emission from blue/red, to green/red and red/deep red were achieved for these phosphorescent molecular butterflies, which have two well-controlled energy minima on the PESs. The environmentally dependent photoluminescence of these molecular butterflies enabled their application as self-referenced luminescent viscosity sensor.

  15. Hierarchical particle swarm optimizer for minimizing the non-convex potential energy of molecular structure.

    PubMed

    Cheung, Ngaam J; Shen, Hong-Bin

    2014-11-01

    The stable conformation of a molecule is greatly important to uncover the secret of its properties and functions. Generally, the conformation of a molecule will be the most stable when it is of the minimum potential energy. Accordingly, the determination of the conformation can be solved in the optimization framework. It is, however, not an easy task to achieve the only conformation with the lowest energy among all the potential ones because of the high complexity of the energy landscape and the exponential computation increasing with molecular size. In this paper, we develop a hierarchical and heterogeneous particle swarm optimizer (HHPSO) to deal with the problem in the minimization of the potential energy. The proposed method is evaluated over a scalable simplified molecular potential energy function with up to 200 degrees of freedom and a realistic energy function of pseudo-ethane molecule. The experimental results are compared with other six PSO variants and four genetic algorithms. The results show HHPSO is significantly better than the compared PSOs with p-value less than 0.01277 over molecular potential energy function.

  16. A New Maximum Likelihood Approach for Free Energy Profile Construction from Molecular Simulations.

    PubMed

    Lee, Tai-Sung; Radak, Brian K; Pabis, Anna; York, Darrin M

    2013-01-08

    A novel variational method for construction of free energy profiles from molecular simulation data is presented. The variational free energy profile (VFEP) method uses the maximum likelihood principle applied to the global free energy profile based on the entire set of simulation data (e.g from multiple biased simulations) that spans the free energy surface. The new method addresses common obstacles in two major problems usually observed in traditional methods for estimating free energy surfaces: the need for overlap in the re-weighting procedure and the problem of data representation. Test cases demonstrate that VFEP outperforms other methods in terms of the amount and sparsity of the data needed to construct the overall free energy profiles. For typical chemical reactions, only ~5 windows and ~20-35 independent data points per window are sufficient to obtain an overall qualitatively correct free energy profile with sampling errors an order of magnitude smaller than the free energy barrier. The proposed approach thus provides a feasible mechanism to quickly construct the global free energy profile and identify free energy barriers and basins in free energy simulations via a robust, variational procedure that determines an analytic representation of the free energy profile without the requirement of numerically unstable histograms or binning procedures. It can serve as a new framework for biased simulations and is suitable to be used together with other methods to tackle with the free energy estimation problem.

  17. Internal Energy Dependence of Molecular Condensation Coefficients Determined from Molecular Beam Surface Scattering Experiments

    DOE R&D Accomplishments Database

    Sibener, S. J.; Lee, Y. T.

    1978-05-01

    An experiment was performed which confirms the existence of an internal mode dependence of molecular sticking probabilities for collisions of molecules with a cold surface. The scattering of a velocity selected effusive beam of CCl{sub 4} from a 90 K CC1{sub 4} ice surface has been studied at five translational velocities and for two different internal temperatures. At a surface temperature of 90 K (approx. 99% sticking probability) a four fold increase in reflected intensity was observed for the internally excited (560 K) CC1{sub 4} relative to the room temperature (298 K) CC1{sub 4} at a translational velocity of 2.5 X 10{sup 4} cm/sec. For a surface temperature of 90 K all angular distributions were found to peak 15{sup 0} superspecularly independent of incident velocity.

  18. A phenomenological relationship between molecular geometry change and conformational energy change

    NASA Astrophysics Data System (ADS)

    Bodi, Andras; Bjornsson, Ragnar; Arnason, Ingvar

    2010-08-01

    A linear correlation is established between the change in the axial/equatorial conformational energy difference and the change in the molecular geometry transformation during conformational inversion in substituted six-membered ring systems, namely in the 1-substituted cyclohexane/silacyclohexane, cyclohexane/ N-substituted piperidine and 1-substituted silacyclohexane/ P-substituted phosphorinane compound families, and for the analogous gauche/anti conformational isomerism in 1-substituted propanes/1-silapropanes. The nuclear repulsion energy parameterizes the molecular geometry, and changes in the conformational energy between the related compound families are linearly correlated with the changes in the nuclear repulsion energy difference based on DFT (B3LYP, M06-2X), G3B3, and CBS-QB3 calculations. This correlation reproduces the sometimes remarkable contrast between the conformational behavior of analogous compounds, e.g., the lack of a general equatorial preference in silacyclohexanes.

  19. Atomic, Molecular and Plasma-Surface Interaction Data for Fusion Energy Research

    SciTech Connect

    Clark, R. E. H.; Humbert, D.

    2009-05-02

    Research on fusion energy requires a large amount of data in order to predict the behaviour of complex plasma devices. As plasma systems are updated and new machines are designed, data are required for a variety of different materials over a wide range of plasma conditions. The Atomic and Molecular Data Unit of the International Atomic Energy Agency works to coordinate multinational efforts to establish databases for this fusion research effort.

  20. Free energy of adsorption of supported lipid bilayers from molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Schneemilch, M.; Quirke, N.

    2016-11-01

    A novel method is presented for the calculation of adhesion energies of lipid bilayers on solid surfaces from molecular dynamics simulation. We illustrate the method with a fully atomistic model comprising a gold surface and an adsorbed lipid bilayer. We use our technique to scale the lipid-surface interactions to reproduce the experimental value for adsorption of DMPC bilayers on gold surfaces. Finally we estimate the entropic contribution to the free energy change on adsorption of the bilayer.

  1. Trinuclear Mo3S7 clusters coordinated to dithiolate or diselenolate ligands and their use in the preparation of magnetic single component molecular conductors.

    PubMed

    Llusar, Rosa; Triguero, Sonia; Polo, Victor; Vicent, Cristian; Gómez-García, Carlos J; Jeannin, Olivier; Fourmigué, Marc

    2008-10-20

    A general route for the preparation of a series of dianionic Mo3S7 cluster complexes bearing dithiolate or diselenolate ligands, namely, [Mo3S7L3](2-) (where L = tfd (bis(trifluoromethyl)-1,2-dithiolate) (4(2-)), bdt (1,2-benzenedithiolate) (5(2-)), dmid (1,3-dithia-2-one-4,5-dithiolate) (6(2-)), and dsit (1,3-dithia-2-thione-4,5-diselenolate) (7(2-))) is reported by direct reaction of [Mo3S7Br6](2-) and (n-Bu)2Sn(dithiolate). The redox properties, molecular structure, and electronic structure (BP86/VTZP) of the 4(2-) to 7(2-) clusters have also been investigated. The HOMO orbital in all complexes is delocalized over the ligand and the Mo3S7 cluster core. Ligand contributions to the HOMO range from 61.67% for 4(2-) to 82.07% for 7(2-), which would allow fine-tuning of the electronic and magnetic properties. These dianionic clusters present small energy gaps between the HOMO and HOMO-1 orbitals (0.277-0.104 eV). Complexes 6(2-) and 7(2-) are oxidized to the neutral state to afford microcrystalline or amorphous fine powders that exhibit semiconducting behavior and present antiferromagnetic exchange interactions. These compounds are new examples of the still rare single-component conductors based on cluster magnetic units.

  2. MOLECULAR DETERMINANTS OF A2AR-D2R ALLOSTERISM: ROLE OF THE INTRACELLULAR LOOP 3 OF THE D2R

    PubMed Central

    Fernández-Dueñas, Víctor; Gómez-Soler, Maricel; Jacobson, Kenneth A.; Kumar, T. Santhosh; Fuxe, Kjell; Borroto-Escuela, Dasiel O.; Ciruela, Francisco

    2012-01-01

    In the central nervous system (CNS), an antagonistic interaction has been shown between adenosine A2A and dopamine D2 receptors (A2ARs and D2Rs) that may be relevant both in normal and pathological conditions (i.e. Parkinson’s disease). Thus, the molecular determinants mediating this receptor-receptor interaction have recently been explored, since the fine tuning of this target (namely the A2AR/D2R oligomer) could possibly improve the treatment of certain CNS diseases. Here, we used a fluorescence resonance energy transfer (FRET)-based approach to examine the allosteric modulation of the D2R within the A2AR/D2R oligomer and the dependence of this receptor-receptor interaction on two regions rich in positive charges on intracellular loop 3 (IL3) of the D2R. Interestingly, we observed a negative allosteric effect of the D2R agonist quinpirole on A2AR ligand binding and activation. However, these allosteric effects were abolished upon mutation of specific arginine residues (217–222 and 267–269) on IL3 of the D2R, thus demonstrating a major role of these positively-charged residues in mediating the observed receptor-receptor interaction. Overall, these results provide structural insights to better understand the functioning of the A2AR/D2R oligomer in living cells. PMID:22924752

  3. Solubility curves and nucleation rates from molecular dynamics for polymorph prediction - moving beyond lattice energy minimization.

    PubMed

    Parks, Conor; Koswara, Andy; DeVilbiss, Frank; Tung, Hsien-Hsin; Nere, Nandkishor K; Bordawekar, Shailendra; Nagy, Zoltan K; Ramkrishna, Doraiswami

    2017-02-15

    Current polymorph prediction methods, known as lattice energy minimization, seek to determine the crystal lattice with the lowest potential energy, rendering it unable to predict solvent dependent metastable form crystallization. Facilitated by embarrassingly parallel, multiple replica, large-scale molecular dynamics simulations, we report on a new method concerned with predicting crystal structures using the kinetics and solubility of the low energy polymorphs predicted by lattice energy minimization. The proposed molecular dynamics simulation methodology provides several new predictions to the field of crystallization. (1) The methodology is shown to correctly predict the kinetic preference for β-glycine nucleation in water relative to α- and γ-glycine. (2) Analysis of nanocrystal melting temperatures show γ- nanocrystals have melting temperatures up to 20 K lower than either α- or β-glycine. This provides a striking explanation of how an energetically unstable classical nucleation theory (CNT) transition state complex leads to kinetic inaccessibility of γ-glycine in water, despite being the thermodynamically preferred polymorph predicted by lattice energy minimization. (3) The methodology also predicts polymorph-specific solubility curves, where the α-glycine solubility curve is reproduced to within 19% error, over a 45 K temperature range, using nothing but atomistic-level information provided from nucleation simulations. (4) Finally, the methodology produces the correct solubility ranking of β- > α-glycine. In this work, we demonstrate how the methodology supplements lattice energy minimization with molecular dynamics nucleation simulations to give the correct polymorph prediction, at different length scales, when lattice energy minimization alone would incorrectly predict the formation of γ-glycine in water from the ranking of lattice energies. Thus, lattice energy minimization optimization algorithms are supplemented with the necessary solvent

  4. Reviews Book: At Home: A Short History of Private Life Book: The Story of Mathematics Book: Time Travel: A Writer's Guide to the Real Science of Plausible Time Travel Equipment: Rotational Inertial Wands DVD: Planets Book: The Fallacy of Fine-Tuning Equipment: Scale with Dial Equipment: Infrared Thermometers Book: 300 Science and History Projects Book: The Nature of Light and Colour in the Open Air Equipment: Red Tide Spectrometer Web Watch

    NASA Astrophysics Data System (ADS)

    2011-09-01

    WE RECOMMEND The Story of Mathematics Book shows the link between maths and physics Time Travel: A Writer's Guide to the Real Science of Plausible Time Travel Book explains how to write good time-travelling science fiction Rotational Inertial Wands Wands can help explore the theory of inertia Infrared Thermometers Kit measures temperature differences Red Tide Spectrometer Spectrometer gives colour spectra WORTH A LOOK At Home: A Short History of Private Life Bryson explores the history of home life The Fallacy of Fine-Tuning Book wades into the science/religion debate Scale with Dial Cheap scales can be turned into Newton measuring scales 300 Science History Projects Fun science projects for kids to enjoy The Nature of Light and Colour in the Open Air Text looks at fascinating optical effects HANDLE WITH CARE Planets DVD takes a trip through the solar system WEB WATCH Websites offer representations of nuclear chain reactions

  5. Exploring the vibrational fingerprint of the electronic excitation energy via molecular dynamics

    SciTech Connect

    Deyne, Andy Van Yperen-De; Pauwels, Ewald; Ghysels, An; Waroquier, Michel; Van Speybroeck, Veronique; Hemelsoet, Karen; De Meyer, Thierry; De Clerck, Karen

    2014-04-07

    A Fourier-based method is presented to relate changes of the molecular structure during a molecular dynamics simulation with fluctuations in the electronic excitation energy. The method implies sampling of the ground state potential energy surface. Subsequently, the power spectrum of the velocities is compared with the power spectrum of the excitation energy computed using time-dependent density functional theory. Peaks in both spectra are compared, and motions exhibiting a linear or quadratic behavior can be distinguished. The quadratically active motions are mainly responsible for the changes in the excitation energy and hence cause shifts between the dynamic and static values of the spectral property. Moreover, information about the potential energy surface of various excited states can be obtained. The procedure is illustrated with three case studies. The first electronic excitation is explored in detail and dominant vibrational motions responsible for changes in the excitation energy are identified for ethylene, biphenyl, and hexamethylbenzene. The proposed method is also extended to other low-energy excitations. Finally, the vibrational fingerprint of the excitation energy of a more complex molecule, in particular the azo dye ethyl orange in a water environment, is analyzed.

  6. Relating polarizability to volume, ionization energy, electronegativity, hardness, moments of momentum, and other molecular properties

    SciTech Connect

    Blair, Shamus A.; Thakkar, Ajit J.

    2014-08-21

    Semiquantitative relationships between the mean static dipole polarizability and other molecular properties such as the volume, ionization energy, electronegativity, hardness, and moments of momentum are explored. The relationships are tested using density functional theory computations on the 1641 neutral, ground-state, organic molecules in the TABS database. The best polarizability approximations have median errors under 5%.

  7. The molecular potential energy surface and vibrational energy levels of methyl fluoride. Part II.

    PubMed

    Manson, Steven A; Law, Mark M; Atkinson, Ian A; Thomson, Grant A

    2006-06-28

    New analytical bending and stretching, ground electronic state, potential energy surfaces for CH(3)F are reported. The surfaces are expressed in bond-length, bond-angle internal coordinates. The four-dimensional stretching surface is an accurate, least squares fit to over 2000 symmetrically unique ab initio points calculated at the CCSD(T) level. Similarly, the five-dimensional bending surface is a fit to over 1200 symmetrically unique ab initio points. This is an important first stage towards a full nine-dimensional potential energy surface for the prototype CH(3)F molecule. Using these surfaces, highly excited stretching and (separately) bending vibrational energy levels of CH(3)F are calculated variationally using a finite basis representation method. The method uses the exact vibrational kinetic energy operator derived for XY(3)Z systems by Manson and Law (preceding paper, Part I, Phys. Chem. Chem. Phys., 2006, 8, DOI: 10.1039/b603106d). We use the full C(3v) symmetry and the computer codes are designed to use an arbitrary potential energy function. Ultimately, these results will be used to design a compact basis for fully coupled stretch-bend calculations of the vibrational energy levels of the CH(3)F system.

  8. Calculating solution redox free energies with ab initio quantum mechanical/molecular mechanical minimum free energy path method

    SciTech Connect

    Zeng Xiancheng; Hu Hao; Hu Xiangqian; Yang Weitao

    2009-04-28

    A quantum mechanical/molecular mechanical minimum free energy path (QM/MM-MFEP) method was developed to calculate the redox free energies of large systems in solution with greatly enhanced efficiency for conformation sampling. The QM/MM-MFEP method describes the thermodynamics of a system on the potential of mean force surface of the solute degrees of freedom. The molecular dynamics (MD) sampling is only carried out with the QM subsystem fixed. It thus avoids 'on-the-fly' QM calculations and thus overcomes the high computational cost in the direct QM/MM MD sampling. In the applications to two metal complexes in aqueous solution, the new QM/MM-MFEP method yielded redox free energies in good agreement with those calculated from the direct QM/MM MD method. Two larger biologically important redox molecules, lumichrome and riboflavin, were further investigated to demonstrate the efficiency of the method. The enhanced efficiency and uncompromised accuracy are especially significant for biochemical systems. The QM/MM-MFEP method thus provides an efficient approach to free energy simulation of complex electron transfer reactions.

  9. Implicit ligand theory: Rigorous binding free energies and thermodynamic expectations from molecular docking

    NASA Astrophysics Data System (ADS)

    Minh, David D. L.

    2012-09-01

    A rigorous formalism for estimating noncovalent binding free energies and thermodynamic expectations from calculations in which receptor configurations are sampled independently from the ligand is derived. Due to this separation, receptor configurations only need to be sampled once, facilitating the use of binding free energy calculations in virtual screening. Demonstrative calculations on a host-guest system yield good agreement with previous free energy calculations and isothermal titration calorimetry measurements. Implicit ligand theory provides guidance on how to improve existing molecular docking algorithms and insight into the concepts of induced fit and conformational selection in noncovalent macromolecular recognition.

  10. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field.

    PubMed

    Shivakumar, Devleena; Williams, Joshua; Wu, Yujie; Damm, Wolfgang; Shelley, John; Sherman, Woody

    2010-05-11

    The accurate prediction of protein-ligand binding free energies is a primary objective in computer-aided drug design. The solvation free energy of a small molecule provides a surrogate to the desolvation of the ligand in the thermodynamic process of protein-ligand binding. Here, we use explicit solvent molecular dynamics free energy perturbation to predict the absolute solvation free energies of a set of 239 small molecules, spanning diverse chemical functional groups commonly found in drugs and drug-like molecules. We also compare the performance of absolute solvation free energies obtained using the OPLS_2005 force field with two other commonly used small molecule force fields-general AMBER force field (GAFF) with AM1-BCC charges and CHARMm-MSI with CHelpG charges. Using the OPLS_2005 force field, we obtain high correlation with experimental solvation free energies (R(2) = 0.94) and low average unsigned errors for a majority of the functional groups compared to AM1-BCC/GAFF or CHelpG/CHARMm-MSI. However, OPLS_2005 has errors of over 1.3 kcal/mol for certain classes of polar compounds. We show that predictions on these compound classes can be improved by using a semiempirical charge assignment method with an implicit bond charge correction.

  11. Real-space investigation of energy transfer in heterogeneous molecular dimers

    NASA Astrophysics Data System (ADS)

    Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo

    2016-10-01

    Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H2Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H2Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S2) of H2Pc, which results in energy transfer to the first singlet state (S1) of MgPc and final funnelling to the S1 state of H2Pc. We also show that tautomerization of H2Pc changes the energy transfer characteristics within the dimer system, which essentially makes H2Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.

  12. Real-space investigation of energy transfer in heterogeneous molecular dimers.

    PubMed

    Imada, Hiroshi; Miwa, Kuniyuki; Imai-Imada, Miyabi; Kawahara, Shota; Kimura, Kensuke; Kim, Yousoo

    2016-10-20

    Given its central role in photosynthesis and artificial energy-harvesting devices, energy transfer has been widely studied using optical spectroscopy to monitor excitation dynamics and probe the molecular-level control of energy transfer between coupled molecules. However, the spatial resolution of conventional optical spectroscopy is limited to a few hundred nanometres and thus cannot reveal the nanoscale spatial features associated with such processes. In contrast, scanning tunnelling luminescence spectroscopy has revealed the energy dynamics associated with phenomena ranging from single-molecule electroluminescence, absorption of localized plasmons and quantum interference effects to energy delocalization and intervalley electron scattering with submolecular spatial resolution in real space. Here we apply this technique to individual molecular dimers that comprise a magnesium phthalocyanine and a free-base phthalocyanine (MgPc and H2Pc) and find that locally exciting MgPc with the tunnelling current of the scanning tunnelling microscope generates a luminescence signal from a nearby H2Pc molecule as a result of resonance energy transfer from the former to the latter. A reciprocating resonance energy transfer is observed when exciting the second singlet state (S2) of H2Pc, which results in energy transfer to the first singlet state (S1) of MgPc and final funnelling to the S1 state of H2Pc. We also show that tautomerization of H2Pc changes the energy transfer characteristics within the dimer system, which essentially makes H2Pc a single-molecule energy transfer valve device that manifests itself by blinking resonance energy transfer behaviour.

  13. Repackaging photon energy using exciton fission and fusion in molecular crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bardeen, Christopher J.

    2016-09-01

    The ability to downconvert (1 photon to 2 photons) and upconvert (2 photons to 1 photon) energy can boost solar energy conversion efficiencies by 30% or more. Downconversion can be accomplished through exciton fission, in which an initially created high energy singlet exciton spontaneously splits into a pair of lower energy triplet excitons. In organic semiconductors like tetracene and rubrene, the Frenkel character of the excitons leads to energetically separate singlet and triplet bands, providing an ideal set of energy levels for both processes to take place. In this talk, our efforts to understand the basic photophysics of singlet fission using time-resolved transient absorption, photoluminescence and magnetic field effects will be described. The role of molecular packing in controlling the fission rate will be emphasized. Upconversion occurs via the reverse process, where a pair of triplet excitons fuse into a high-energy singlet state. While most approaches to upconversion require a sensitizer to populate the dark triplet states, an alternate approach is to take advantage of low-energy intermolecular states in organic crystals to sensitize triplet states. We show that this process can be surprisingly efficient in certain molecular crystals, even in the absence of sensitizers. The exciton interactions responsible for this process are investigated using steady-state and time-resolved spectroscopy.

  14. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation.

    PubMed

    Opitz, Andreas

    2017-04-05

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground

  15. Energy level alignment at planar organic heterojunctions: influence of contact doping and molecular orientation

    NASA Astrophysics Data System (ADS)

    Opitz, Andreas

    2017-04-01

    Planar organic heterojunctions are widely used in photovoltaic cells, light-emitting diodes, and bilayer field-effect transistors. The energy level alignment in the devices plays an important role in obtaining the aspired gap arrangement. Additionally, the π-orbital overlap between the involved molecules defines e.g. the charge-separation efficiency in solar cells due to charge-transfer effects. To account for both aspects, direct/inverse photoemission spectroscopy and near edge x-ray absorption fine structure spectroscopy were used to determine the energy level landscape and the molecular orientation at prototypical planar organic heterojunctions. The combined experimental approach results in a comprehensive model for the electronic and morphological characteristics of the interface between the two investigated molecular semiconductors. Following an introduction on heterojunctions used in devices and on energy levels of organic materials, the energy level alignment of planar organic heterojunctions will be discussed. The observed energy landscape is always determined by the individual arrangement between the energy levels of the molecules and the work function of the electrode. This might result in contact doping due to Fermi level pinning at the electrode for donor/acceptor heterojunctions, which also improves the solar cell efficiency. This pinning behaviour can be observed across an unpinned interlayer and results in charge accumulation at the donor/acceptor interface, depending on the transport levels of the respective organic semiconductors. Moreover, molecular orientation will affect the energy levels because of the anisotropy in ionisation energy and electron affinity and is influenced by the structural compatibility of the involved molecules at the heterojunction. High structural compatibility leads to π-orbital stacking between different molecules at a heterojunction, which is of additional interest for photovoltaic active interfaces and for ground

  16. Analytic second derivatives of the energy in the fragment molecular orbital method

    NASA Astrophysics Data System (ADS)

    Nakata, Hiroya; Nagata, Takeshi; Fedorov, Dmitri G.; Yokojima, Satoshi; Kitaura, Kazuo; Nakamura, Shinichiro

    2013-04-01

    We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in SN2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm-1 in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed.

  17. Quantum mechanical calculation of nanomaterial-ligand interaction energies by molecular fractionation with conjugated caps method

    NASA Astrophysics Data System (ADS)

    Zhang, Dawei

    2017-03-01

    Molecular fractionation with conjugate caps (MFCC) method is introduced for the efficient estimation of quantum mechanical (QM) interaction energies between nanomaterial (carbon nanotube, fullerene, and graphene surface) and ligand (charged and neutral). In the calculations, nanomaterials are partitioned into small fragments and conjugated caps that are properly capped, and the interaction energies can be obtained through the summation of QM calculations of the fragments from which the contribution of the conjugated caps is removed. All the calculations were performed by density functional theory (DFT) and dispersion contributions for the attractive interactions were investigated by dispersion corrected DFT method. The predicted interaction energies by MFCC at each computational level are found to give excellent agreement with full system (FS) calculations with the mean energy deviation just a fractional kcal/mol. The accurate determination of nanomaterial-ligand interaction energies by MFCC suggests that it is an effective method for performing QM calculations on nanomaterial-ligand systems.

  18. Quantum mechanical calculation of nanomaterial-ligand interaction energies by molecular fractionation with conjugated caps method

    PubMed Central

    Zhang, Dawei

    2017-01-01

    Molecular fractionation with conjugate caps (MFCC) method is introduced for the efficient estimation of quantum mechanical (QM) interaction energies between nanomaterial (carbon nanotube, fullerene, and graphene surface) and ligand (charged and neutral). In the calculations, nanomaterials are partitioned into small fragments and conjugated caps that are properly capped, and the interaction energies can be obtained through the summation of QM calculations of the fragments from which the contribution of the conjugated caps is removed. All the calculations were performed by density functional theory (DFT) and dispersion contributions for the attractive interactions were investigated by dispersion corrected DFT method. The predicted interaction energies by MFCC at each computational level are found to give excellent agreement with full system (FS) calculations with the mean energy deviation just a fractional kcal/mol. The accurate determination of nanomaterial-ligand interaction energies by MFCC suggests that it is an effective method for performing QM calculations on nanomaterial-ligand systems. PMID:28300179

  19. Analytic second derivatives of the energy in the fragment molecular orbital method.

    PubMed

    Nakata, Hiroya; Nagata, Takeshi; Fedorov, Dmitri G; Yokojima, Satoshi; Kitaura, Kazuo; Nakamura, Shinichiro

    2013-04-28

    We developed the analytic second derivatives of the energy for the fragment molecular orbital (FMO) method. First we derived the analytic expressions and then introduced some approximations related to the first and second order coupled perturbed Hartree-Fock equations. We developed a parallel program for the FMO Hessian with approximations in GAMESS and used it to calculate infrared (IR) spectra and Gibbs free energies and to locate the transition states in SN2 reactions. The accuracy of the Hessian is demonstrated in comparison to ab initio results for polypeptides and a water cluster. By using the two residues per fragment division, we achieved the accuracy of 3 cm(-1) in the reduced mean square deviation of vibrational frequencies from ab initio for all three polyalanine isomers, while the zero point energy had the error not exceeding 0.3 kcal/mol. The role of the secondary structure on IR spectra, zero point energies, and Gibbs free energies is discussed.

  20. EFFECT OF STRAIN FIELD ON THRESHOLD DISPLACEMENT ENERGY OF TUNGSTEN STUDIED BY MOLECULAR DYNAMICS SIMULATION

    SciTech Connect

    Wang, D.; Gao, Ning; Setyawan, Wahyu; Kurtz, Richard J.; Gao, X.; He, W. H.

    2016-03-31

    The influence of hydrostatic strain on point defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten was studied with molecular dynamics simulations. Two different tungsten potentials (Fikar and Juslin) were used. The minimum Ed direction calculated with the Fikar-potential was <100>, but with the Juslin-potential it was <111>. The most stable self-interstitial (SIA) configuration was a <111>-crowdion for both potentials. The stable SIA configuration did not change with applied strain. Varying the strain from compression to tension increased the vacancy formation energy but decreased the SIA formation energy. The SIA formation energy changed more significantly than for a vacancy such that Ed decreased with applied strain from compression to tension.

  1. Organic surfaces excited by low-energy ions: atomic collisions, molecular desorption and buckminsterfullerenes.

    PubMed

    Delcorte, Arnaud

    2005-10-07

    This article reviews the recent progress in the understanding of kiloelectronvolt particle interactions with organic solids, including atomic displacements in a light organic medium, vibrational excitation and desorption of fragments and entire molecules. This new insight is the result of a combination of theoretical and experimental approaches, essentially molecular dynamics (MD) simulations and secondary ion mass spectrometry (SIMS). Classical MD simulations provide us with a detailed microscopic view of the processes occurring in the bombarded target, from the collision cascade specifics to the scenarios of molecular emission. Time-of-flight SIMS measures the mass and energy distributions of sputtered ionized fragments and molecular species, a precious source of information concerning their formation, desorption, ionization and delayed unimolecular dissociation in the gas phase. The mechanisms of energy transfer and sputtering are compared for bulk molecular solids, organic overlayers on metal and large molecules embedded in a low-molecular weight matrix. These comparisons help understand some of the beneficial effects of metal substrates and matrices for the analysis of molecules by SIMS. In parallel, I briefly describe the distinct ionization channels of molecules sputtered from organic solids and overlayers. The specific processes induced by polyatomic projectile bombardment, especially fullerenes, are discussed on the basis of new measurements and calculations. Finally, the perspective addresses the state-of-the-art and potential developments in the fields of surface modification and analysis of organic materials by kiloelectronvolt ion beams.

  2. Molecular approaches to improvement of Jatropha curcas Linn. as a sustainable energy crop.

    PubMed

    Sudhakar Johnson, T; Eswaran, Nalini; Sujatha, M

    2011-09-01

    With the increase in crude oil prices, climate change concerns and limited reserves of fossil fuel, attention has been diverted to alternate renewable energy sources such as biofuel and biomass. Among the potential biofuel crops, Jatropha curcas L, a non-domesticated shrub, has been gaining importance as the most promising oilseed, as it does not compete with the edible oil supplies. Economic relevance of J. curcas for biodiesel production has promoted world-wide prospecting of its germplasm for crop improvement and breeding. However, lack of adequate genetic variation and non-availability of improved varieties limited its prospects of being a successful energy crop. In this review, we present the progress made in molecular breeding approaches with particular reference to tissue culture and genetic transformation, genetic diversity assessment using molecular markers, large-scale transcriptome and proteome studies, identification of candidate genes for trait improvement, whole genome sequencing and the current interest by various public and private sector companies in commercial-scale cultivation, which highlights the revival of Jatropha as a sustainable energy crop. The information generated from molecular markers, transcriptome profiling and whole genome sequencing could accelerate the genetic upgradation of J. curcas through molecular breeding.

  3. Stability and free energy calculation of LNA modified quadruplex: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Chaubey, Amit Kumar; Dubey, Kshatresh Dutta; Ojha, Rajendra Prasad

    2012-03-01

    Telomeric ends of chromosomes, which comprise noncoding repeat sequences of guanine-rich DNA, which are the fundamental in protecting the cell from recombination and degradation. Telomeric DNA sequences can form four stranded quadruplex structures, which are involved in the structure of telomere ends. The formation and stabilization of telomeric quadruplexes has been shown to inhibit the activity of telomerase, thus establishing telomeric DNA quadrulex as an attractive target for cancer therapeutic intervention. Molecular dynamic simulation offers the prospects of detailed description of the dynamical structure with ion and water at molecular level. In this work we have taken a oligomeric part of human telomeric DNA, d(TAGGGT) to form different monomeric quadruplex structures d(TAGGGT)4. Here we report the relative stabilities of these structures under K+ ion conditions and binding interaction between the strands, as determined by molecular dynamic simulations followed by energy calculation. We have taken locked nucleic acid (LNA) in this study. The free energy molecular mechanics Poission Boltzman surface area calculations are performed for the determination of most stable complex structure between all modified structures. We calculated binding free energy for the combination of different strands as the ligand and receptor for all structures. The energetic study shows that, a mixed hybrid type quadruplex conformation in which two parallel strands are bind with other two antiparallel strands, are more stable than other conformations. The possible mechanism for the inhibition of the cancerous growth has been discussed. Such studies may be helpful for the rational drug designing.

  4. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    PubMed

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  5. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models

    NASA Astrophysics Data System (ADS)

    Marsh, M. C. David

    2017-01-01

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, Nvac˜O (1 0272 000) , are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  6. Deflation of the cosmological constant associated with inflation and dark energy

    NASA Astrophysics Data System (ADS)

    Geng, Chao-Qiang; Lee, Chung-Chi

    2016-06-01

    In order to solve the fine-tuning problem of the cosmological constant, we propose a simple model with the vacuum energy non-minimally coupled to the inflaton field. In this model, the vacuum energy decays to the inflaton during pre-inflation and inflation eras, so that the cosmological constant effectively deflates from the Planck mass scale to a much smaller one after inflation and plays the role of dark energy in the late-time of the universe. We show that our deflationary scenario is applicable to arbitrary slow-roll inflation models. We also take two specific inflation potentials to illustrate our results.

  7. Molecular Depth Profiling using a C(60) Cluster Beam: the Role of Impact Energy.

    PubMed

    Wucher, Andreas; Cheng, Juan; Winograd, Nicholas

    2008-10-23

    Molecular depth profiling of organic overlayers was performed using a mass selected C(60) ion beam in conjunction with time-of-flight (TOF-SIMS) mass spectrometry. The characteristics of sputter depth profiles acquired for a 300-nm Trehalose film on silicon were studied as a function of the kinetic impact energy of the projectile ions. The results are interpreted in terms of a simple model describing the balance between sputter erosion and ion induced chemical damage. It is shown that the efficiency of the projectile to clean up the fragmentation debris produced by its own impact represents a key parameter governing the success of molecular depth profile analysis.

  8. Quantitative analysis of molecular surfaces: areas, volumes, electrostatic potentials and average local ionization energies.

    PubMed

    Bulat, Felipe A; Toro-Labbé, Alejandro; Brinck, Tore; Murray, Jane S; Politzer, Peter

    2010-11-01

    We describe a procedure for performing quantitative analyses of fields f(r) on molecular surfaces, including statistical quantities and locating and evaluating their local extrema. Our approach avoids the need for explicit mathematical representation of the surface and can be implemented easily in existing graphical software, as it is based on the very popular representation of a surface as collection of polygons. We discuss applications involving the volumes, surface areas and molecular surface electrostatic potentials, and local ionization energies of a group of 11 molecules.

  9. Molecular dynamics simulations of high energy cascade in ordered alloys: Defect production and subcascade division

    NASA Astrophysics Data System (ADS)

    Crocombette, Jean-Paul; Van Brutzel, Laurent; Simeone, David; Luneville, Laurence

    2016-06-01

    Displacement cascades have been calculated in two ordered alloys (Ni3Al and UO2) in the molecular dynamics framework using the CMDC (Cell Molecular Dynamics for Cascade) code (J.-P. Crocombette and T. Jourdan, Nucl. Instrum. Meth. B 352, 9 (2015)) for energies ranking between 0.1 and 580 keV. The defect production has been compared to the prediction of the NRT (Norgett, Robinson and Torrens) standard. One observes a decrease with energy of the number of defects compared to the NRT prediction at intermediate energies but, unlike what is commonly observed in elemental solids, the number of produced defects does not always turn to a linear variation with ballistic energy at high energies. The fragmentation of the cascade into subcascades has been studied through the analysis of surviving defect pockets. It appears that the common knowledge equivalence of linearity of defect production and subcascades division does not hold in general for alloys. We calculate the average number of subcascades and average number of defects per subcascades as a function of ballistic energy. We find an unexpected variety of behaviors for these two average quantities above the threshold for subcascade formation.

  10. A Bayesian Target Predictor Method based on Molecular Pairing Energies estimation.

    PubMed

    Oliver, Antoni; Canals, Vincent; Rosselló, Josep L

    2017-03-06

    Virtual screening (VS) is applied in the early drug discovery phases for the quick inspection of huge molecular databases to identify those compounds that most likely bind to a given drug target. In this context, there is the necessity of the use of compact molecular models for database screening and precise target prediction in reasonable times. In this work we present a new compact energy-based model that is tested for its application to Virtual Screening and target prediction. The model can be used to quickly identify active compounds in huge databases based on the estimation of the molecule's pairing energies. The greatest molecular polar regions along with its geometrical distribution are considered by using a short set of smart energy vectors. The model is tested using similarity searches within the Directory of Useful Decoys (DUD) database. The results obtained are considerably better than previously published models. As a Target prediction methodology we propose the use of a Bayesian Classifier that uses a combination of different active compounds to build an energy-dependent probability distribution function for each target.

  11. A Bayesian Target Predictor Method based on Molecular Pairing Energies estimation

    PubMed Central

    Oliver, Antoni; Canals, Vincent; Rosselló, Josep L.

    2017-01-01

    Virtual screening (VS) is applied in the early drug discovery phases for the quick inspection of huge molecular databases to identify those compounds that most likely bind to a given drug target. In this context, there is the necessity of the use of compact molecular models for database screening and precise target prediction in reasonable times. In this work we present a new compact energy-based model that is tested for its application to Virtual Screening and target prediction. The model can be used to quickly identify active compounds in huge databases based on the estimation of the molecule’s pairing energies. The greatest molecular polar regions along with its geometrical distribution are considered by using a short set of smart energy vectors. The model is tested using similarity searches within the Directory of Useful Decoys (DUD) database. The results obtained are considerably better than previously published models. As a Target prediction methodology we propose the use of a Bayesian Classifier that uses a combination of different active compounds to build an energy-dependent probability distribution function for each target. PMID:28263323

  12. A Bayesian Target Predictor Method based on Molecular Pairing Energies estimation

    NASA Astrophysics Data System (ADS)

    Oliver, Antoni; Canals, Vincent; Rosselló, Josep L.

    2017-03-01

    Virtual screening (VS) is applied in the early drug discovery phases for the quick inspection of huge molecular databases to identify those compounds that most likely bind to a given drug target. In this context, there is the necessity of the use of compact molecular models for database screening and precise target prediction in reasonable times. In this work we present a new compact energy-based model that is tested for its application to Virtual Screening and target prediction. The model can be used to quickly identify active compounds in huge databases based on the estimation of the molecule’s pairing energies. The greatest molecular polar regions along with its geometrical distribution are considered by using a short set of smart energy vectors. The model is tested using similarity searches within the Directory of Useful Decoys (DUD) database. The results obtained are considerably better than previously published models. As a Target prediction methodology we propose the use of a Bayesian Classifier that uses a combination of different active compounds to build an energy-dependent probability distribution function for each target.

  13. Full QM Calculation of RNA Energy Using Electrostatically Embedded Generalized Molecular Fractionation with Conjugate Caps Method.

    PubMed

    Jin, Xinsheng; Zhang, John Z H; He, Xiao

    2017-03-30

    In this study, the electrostatically embedded generalized molecular fractionation with conjugate caps (concaps) method (EE-GMFCC) was employed for efficient linear-scaling quantum mechanical (QM) calculation of total energies of RNAs. In the EE-GMFCC approach, the total energy of RNA is calculated by taking a proper combination of the QM energy of each nucleotide-centric fragment with large caps or small caps (termed EE-GMFCC-LC and EE-GMFCC-SC, respectively) deducted by the energies of concaps. The two-body QM interaction energy between non-neighboring ribonucleotides which are spatially in close contact are also taken into account for the energy calculation. Numerical studies were carried out to calculate the total energies of a number of RNAs using the EE-GMFCC-LC and EE-GMFCC-SC methods at levels of the Hartree-Fock (HF) method, density functional theory (DFT), and second-order many-body perturbation theory (MP2), respectively. The results show that the efficiency of the EE-GMFCC-SC method is about 3 times faster than the EE-GMFCC-LC method with minimal accuracy sacrifice. The EE-GMFCC-SC method is also applied for relative energy calculations of 20 different conformers of two RNA systems using HF and DFT, respectively. Both single-point and relative energy calculations demonstrate that the EE-GMFCC method has deviations from the full system results of only a few kcal/mol.

  14. New Soft-Core Potential Function for Molecular Dynamics Based Alchemical Free Energy Calculations.

    PubMed

    Gapsys, Vytautas; Seeliger, Daniel; de Groot, Bert L

    2012-07-10

    The fields of rational drug design and protein engineering benefit from accurate free energy calculations based on molecular dynamics simulations. A thermodynamic integration scheme is often used to calculate changes in the free energy of a system by integrating the change of the system's Hamiltonian with respect to a coupling parameter. These methods exploit nonphysical pathways over thermodynamic cycles involving particle introduction and annihilation. Such alchemical transitions require the modification of the classical nonbonded potential energy terms by applying soft-core potential functions to avoid singularity points. In this work, we propose a novel formulation for a soft-core potential to be applied in nonequilibrium free energy calculations that alleviates singularities, numerical instabilities, and additional minima in the potential energy for all combinations of nonbonded interactions at all intermediate alchemical states. The method was validated by application to (a) the free energy calculations of a closed thermodynamic cycle, (b) the mutation influence on protein thermostability, (c) calculations of small ligand solvation free energies, and (d) the estimation of binding free energies of trypsin inhibitors. The results show that the novel soft-core function provides a robust and accurate general purpose solution to alchemical free energy calculations.

  15. Constructing multiscale gravitational energy spectra from molecular cloud surface density PDF - interplay between turbulence and gravity

    NASA Astrophysics Data System (ADS)

    Li, Guang-Xing; Burkert, Andreas

    2016-09-01

    Gravity is believed to be important on multiple physical scales in molecular clouds. However, quantitative constraints on gravity are still lacking. We derive an analytical formula which provides estimates on multiscale gravitational energy distribution using the observed surface density probability distribution function (PDF). Our analytical formalism also enables one to convert the observed column density PDF into an estimated volume density PDF, and to obtain average radial density profile ρ(r). For a region with N_col ˜ N^{-γ _N}, the gravitational energy spectra is E_p(k)˜ k^{-4(1 - 1/γ _N)}. We apply the formula to observations of molecular clouds, and find that a scaling index of -2 of the surface density PDF implies that ρ ˜ r-2 and Ep(k) ˜ k-2. The results are valid from the cloud scale (a few parsec) to around ˜ 0.1 pc. Because of the resemblance the scaling index of the gravitational energy spectrum and the that of the kinetic energy power spectrum of the Burgers turbulence (where E ˜ k-2), our result indicates that gravity can act effectively against turbulence over a multitude of physical scales. This is the critical scaling index which divides molecular clouds into two categories: clouds like Orion and Ophiuchus have shallower power laws, and the amount of gravitational energy is too large for turbulence to be effective inside the cloud. Because gravity dominates, we call this type of cloud g-type clouds. On the other hand, clouds like the California molecular cloud and the Pipe nebula have steeper power laws, and turbulence can overcome gravity if it can cascade effectively from the large scale. We call this type of cloud t-type clouds. The analytical formula can be used to determine if gravity is dominating cloud evolution when the column density PDF can be reliably determined.

  16. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory

    NASA Astrophysics Data System (ADS)

    Mrugalla, Florian; Kast, Stefan M.

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  17. Designing molecular complexes using free-energy derivatives from liquid-state integral equation theory.

    PubMed

    Mrugalla, Florian; Kast, Stefan M

    2016-09-01

    Complex formation between molecules in solution is the key process by which molecular interactions are translated into functional systems. These processes are governed by the binding or free energy of association which depends on both direct molecular interactions and the solvation contribution. A design goal frequently addressed in pharmaceutical sciences is the optimization of chemical properties of the complex partners in the sense of minimizing their binding free energy with respect to a change in chemical structure. Here, we demonstrate that liquid-state theory in the form of the solute-solute equation of the reference interaction site model provides all necessary information for such a task with high efficiency. In particular, computing derivatives of the potential of mean force (PMF), which defines the free-energy surface of complex formation, with respect to potential parameters can be viewed as a means to define a direction in chemical space toward better binders. We illustrate the methodology in the benchmark case of alkali ion binding to the crown ether 18-crown-6 in aqueous solution. In order to examine the validity of the underlying solute-solute theory, we first compare PMFs computed by different approaches, including explicit free-energy molecular dynamics simulations as a reference. Predictions of an optimally binding ion radius based on free-energy derivatives are then shown to yield consistent results for different ion parameter sets and to compare well with earlier, orders-of-magnitude more costly explicit simulation results. This proof-of-principle study, therefore, demonstrates the potential of liquid-state theory for molecular design problems.

  18. Molecular self-organization: Predicting the pattern diversity and lowest energy state of competing ordering motifs

    NASA Astrophysics Data System (ADS)

    Hermann, B. A.; Rohr, C.; Balbás Gambra, M.; Malecki, A.; Malarek, M. S.; Frey, E.; Franosch, T.

    2010-10-01

    Self-organized monolayers of highly flexible Fréchet dendrons were deposited on graphite surfaces by solution casting. Scanning tunneling microscopy (STM) reveals an unprecedented variety of patterns with up to seven stable hierarchical ordering motifs allowing us to use these molecules as a versatile model system. The essential molecular properties determined by molecular mechanics simulations are condensed to a coarse grained interaction-site model of various chain configurations. In a Monte Carlo approach with random starting configurations, the experimental pattern diversity can be reproduced in all facets of the local and global ordering. Based on an energy analysis of the Monte Carlo and molecular mechanics modeling, the thermodynamically most stable pattern is predicted and shown to coincide with the pattern which dominates the STM images after several hours or upon moderate heating.

  19. Recent Advances in Cardiac Computed Tomography: Dual Energy, Spectral and Molecular CT Imaging

    PubMed Central

    Danad, Ibrahim; Fayad, Zahi A.; Willemink, Martin J.; Min, James K.

    2015-01-01

    Computed tomography (CT) evolved into a powerful diagnostic tool and it is impossible to imagine current clinical practice without CT imaging. Due to its widespread availability, ease of clinical application, superb sensitivity for detection of CAD, and non-invasive nature, CT has become a valuable tool within the armamentarium of the cardiologist. In the last few years, numerous technological advances in CT have occurred—including dual energy CT (DECT), spectral CT and CT-based molecular imaging. By harnessing the advances in technology, cardiac CT has advanced beyond the mere evaluation of coronary stenosis to an imaging modality tool that permits accurate plaque characterization, assessment of myocardial perfusion and even probing of molecular processes that are involved in coronary atherosclerosis. Novel innovations in CT contrast agents and pre-clinical spectral CT devices have paved the way for CT-based molecular imaging. PMID:26068288

  20. Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation.

    PubMed

    Pandey, Rajan Kumar; Kumbhar, Bajarang Vasant; Srivastava, Shubham; Malik, Ruchi; Sundar, Shyam; Kunwar, Ambarish; Prajapati, Vijay Kumar

    2017-01-01

    Visceral leishmaniasis affects people from 70 countries worldwide, mostly from Indian, African and south American continent. The increasing resistance to antimonial, miltefosine and frequent toxicity of amphotericin B drives an urgent need to develop an antileishmanial drug with excellent efficacy and safety profile. In this study we have docked series of febrifugine analogues (n = 8813) against trypanothione reductase in three sequential docking modes. Extra precision docking resulted into 108 ligands showing better docking score as compared to two reference ligand. Furthermore, 108 febrifugine analogues and reference inhibitor clomipramine were subjected to ADMET, QikProp and molecular mechanics, the generalized born model and solvent accessibility study to ensure the toxicity caused by compounds and binding-free energy, respectively. Two best ligands (FFG7 and FFG2) qualifying above screening parameters were further subjected to molecular dynamics simulation. Conducting these studies, here we confirmed that 6-chloro-3-[3-(3-hydroxy-2-piperidyl)-2-oxo-propyl]-7-(4-pyridyl) quinazolin-4-one can be potential drug candidate to fight against Leishmania donovani parasites.

  1. Correcting for the free energy costs of bond or angle constraints in molecular dynamics simulations

    PubMed Central

    König, Gerhard; Brooks, Bernard R.

    2014-01-01

    Background Free energy simulations are an important tool in the arsenal of computational biophysics, allowing the calculation of thermodynamic properties of binding or enzymatic reactions. This paper introduces methods to increase the accuracy and precision of free energy calculations by calculating the free energy costs of constraints during post-processing. The primary purpose of employing constraints for these free energy methods is to increase the phase space overlap between ensembles, which is required for accuracy and convergence. Methods The free energy costs of applying or removing constraints are calculated as additional explicit steps in the free energy cycle. The new techniques focus on hard degrees of freedom and use both gradients and Hessian estimation. Enthalpy, vibrational entropy, and Jacobian free energy terms are considered. Results We demonstrate the utility of this method with simple classical systems involving harmonic and anharmonic oscillators, four-atomic benchmark systems, an alchemical mutation of ethane to methanol, and free energy simulations between alanine and serine. The errors for the analytical test cases are all below 0.0007 kcal/mol, and the accuracy of the free energy results of ethane to methanol is improved from 0.15 to 0.04 kcal/mol. For the alanine to serine case, the phase space overlaps of the unconstrained simulations range between 0.15 and 0.9%. The introduction of constraints increases the overlap up to 2.05%. On average, the overlap increases by 94% relative to the unconstrained value and precision is doubled. Conclusions The approach reduces errors arising from constraints by about an order of magnitude. Free energy simulations benefit from the use of constraints through enhanced convergence and higher precision. General Significance The primary utility of this approach is to calculate free energies for systems with disparate energy surfaces and bonded terms, especially in multi-scale molecular mechanics

  2. Free Energy Calculations using a Swarm-Enhanced Sampling Molecular Dynamics Approach.

    PubMed

    Burusco, Kepa K; Bruce, Neil J; Alibay, Irfan; Bryce, Richard A

    2015-10-26

    Free energy simulations are an established computational tool in modelling chemical change in the condensed phase. However, sampling of kinetically distinct substates remains a challenge to these approaches. As a route to addressing this, we link the methods of thermodynamic integration (TI) and swarm-enhanced sampling molecular dynamics (sesMD), where simulation replicas interact cooperatively to aid transitions over energy barriers. We illustrate the approach by using alchemical alkane transformations in solution, comparing them with the multiple independent trajectory TI (IT-TI) method. Free energy changes for transitions computed by using IT-TI grew increasingly inaccurate as the intramolecular barrier was heightened. By contrast, swarm-enhanced sampling TI (sesTI) calculations showed clear improvements in sampling efficiency, leading to more accurate computed free energy differences, even in the case of the highest barrier height. The sesTI approach, therefore, has potential in addressing chemical change in systems where conformations exist in slow exchange.

  3. Defect-induced discriminative modulation of the highest occupied molecular orbital energies of graphene

    SciTech Connect

    Yuan, Wenjuan E-mail: luojunkink@126.com; Yang, Hongping; Zhu, Jing; Luo, Jun E-mail: luojunkink@126.com

    2015-11-15

    Defects are capable of modulating various properties of graphene, and thus controlling defects is useful in the development of graphene-based devices. Here we present first-principles calculations, which reveal a new avenue for defect engineering of graphene: the modulation by defects on the highest occupied molecular orbital (HOMO) energy of a charged monolayer graphene quantum dot (GQD) is discriminative. When the charge of a GQD increases its HOMO energy also increases. Importantly, when the GQD contains one particular class of defects its HOMO energy is sometimes higher and sometimes lower than that of the corresponding GQD without any defects, but when the GQD contains another class of defects its HOMO energy is always higher or lower than that of the corresponding intact GQD as its excess charge reaches a critical value. This discriminative modulation could allow defect engineering to control secondary electron ejection in graphene, leading to a new way to develop graphene-based devices.

  4. Parallel AFMPB solver with automatic surface meshing for calculation of molecular solvation free energy

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Peng, Bo; Huang, Jingfang; Pitsianis, Nikos P.; Sun, Xiaobai; Lu, Benzhuo

    2015-05-01

    We present PAFMPB, an updated and parallel version of the AFMPB software package for fast calculation of molecular solvation-free energy. The new version has the following new features: (1) The adaptive fast multipole method and the boundary element methods are parallelized; (2) A tool is embedded for automatic molecular VDW/SAS surface mesh generation, leaving the requirement for a mesh file at input optional; (3) The package provides fast calculation of the total solvation-free energy, including the PB electrostatic and nonpolar interaction contributions. PAFMPB is implemented in C and Fortran programming languages, with the Cilk Plus extension to harness the computing power of both multicore and vector processing. Computational experiments demonstrate the successful application of PAFMPB to the calculation of the PB potential on a dengue virus system with more than one million atoms and a mesh with approximately 20 million triangles.

  5. Energy Minimization of Molecular Features Observed on the (110) Face of Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Perozzo, Mary A.; Konnert, John H.; Li, Huayu; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    Molecular dynamics and energy minimization have been carried out using the program XPLOR to check the plausibility of a model lysozyme crystal surface. The molecular features of the (110) face of lysozyme were observed using atomic force microscopy (AFM). A model of the crystal surface was constructed using the PDB file 193L, and was used to simulate an AFM image. Molecule translations, van der Waals radii, and assumed AFM tip shape were adjusted to maximize the correlation coefficient between the experimental and simulated images. The highest degree of 0 correlation (0.92) was obtained with the molecules displaced over 6 A from their positions within the bulk of the crystal. The quality of this starting model, the extent of energy minimization, and the correlation coefficient between the final model and the experimental data will be discussed.

  6. Recent emergence of photon upconversion based on triplet energy migration in molecular assemblies.

    PubMed

    Yanai, Nobuhiro; Kimizuka, Nobuo

    2016-04-07

    An emerging field of triplet energy migration-based photon upconversion (TEM-UC) is reviewed. Highly efficient photon upconversion has been realized in a wide range of chromophore assemblies, such as non-solvent liquids, ionic liquids, amorphous solids, gels, supramolecular assemblies, molecular crystals, and metal-organic frameworks (MOFs). The control over their assembly structures allows for unexpected air-stability and maximum upconversion quantum yield at weak solar irradiance that has never been achieved by the conventional molecular diffusion-based mechanism. The introduction of the "self-assembly" concept offers a new perspective in photon upconversion research and triplet exciton science, which show promise for numerous applications ranging from solar energy conversion to chemical biology.

  7. Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface

    SciTech Connect

    Valentini, Paolo Schwartzentruber, Thomas E. Bender, Jason D. Nompelis, Ioannis Candler, Graham V.

    2015-08-15

    The direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen. An ab initio potential energy surface (PES) is used to calculate the dynamics of two interacting nitrogen molecules by providing forces between the four atoms. In the near-equilibrium limit, it is shown that DMS reproduces the results obtained from well-established quasiclassical trajectory (QCT) analysis, verifying the validity of the approach. DMS is used to predict the vibrational relaxation time constant for N{sub 2}–N{sub 2} collisions and its temperature dependence, which are in close agreement with existing experiments and theory. Using both QCT and DMS with the same PES, we find that dissociation significantly depletes the upper vibrational energy levels. As a result, across a wide temperature range, the dissociation rate is found to be approximately 4–5 times lower compared to the rates computed using QCT with Boltzmann energy distributions. DMS calculations predict a quasi-steady-state distribution of rotational and vibrational energies in which the rate of depletion of high-energy states due to dissociation is balanced by their rate of repopulation due to collisional processes. The DMS approach simulates the evolution of internal energy distributions and their coupling to dissociation without the need to precompute rates or cross sections for all possible energy transitions. These benchmark results could be used to develop new computational fluid dynamics models for high-enthalpy flow applications.

  8. Vibrational energy on surfaces: Ultrafast flash-thermal conductance of molecular monolayers

    NASA Astrophysics Data System (ADS)

    Dlott, Dana

    2008-03-01

    Vibrational energy flow through molecules remains a perennial problem in chemical physics. Usually vibrational energy dynamics are viewed through the lens of time-dependent level populations. This is natural because lasers naturally pump and probe vibrational transitions, but it is also useful to think of vibrational energy as being conducted from one location in a molecule to another. We have developed a new technique where energy is driven into a specific part of molecules adsorbed on a metal surface, and ultrafast nonlinear coherent vibrational spectroscopy is used to watch the energy arrive at another part. This technique is the analog of a flash thermal conductance apparatus, except it probes energy flow with angstrom spatial and femtosecond temporal resolution. Specific examples to be presented include energy flow along alkane chains, and energy flow into substituted benzenes. Ref: Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N.-H. Seong, D. G. Cahill, and D. D. Dlott, Ultrafast flash thermal conductance of molecular chains, Science 317, 787-790 (2007). This material is based upon work supported by the National Science Foundation under award DMR 0504038 and the Air Force Office of Scientific Research under award FA9550-06-1-0235.

  9. Docking, molecular dynamics and free energy studies on aspartoacylase mutations involved in Canavan disease.

    PubMed

    Kocak, Abdulkadir; Yildiz, Muslum

    2017-03-19

    The disruption of aspartoacylase enzyme's catalytic activity causes fatal neurodegenerative Canavan disease. By molecular dynamics and docking methods, here we studied two deleterious mutations that have been identified in the Canavan patients' genotype E285A, F295S, and revealed the possible cause for the enzyme inhibition due to the drastic changes in active site dynamics, loss of interactions among Arg 71, Arg 168 and the substrate and pKa value of critical Glu178 residue. In addition to changes in the enzyme dynamics, free energy calculations show that the binding energy of substrate decreases dramatically up on mutations.

  10. Proposed Molecular Beam Determination of Energy Partition in the Photodissociation of Polyatomic Molecules

    DOE R&D Accomplishments Database

    Zare, P. N.; Herschbach, D. R.

    1964-01-29

    Conventional photochemical experiments give no information about the partitioning of energy between translational recoil and internal excitation of the fragment molecules formed in photodissociation of a polyatomic molecule. In a molecular beam experiment, it becomes possible to determine the energy partition from the form of the laboratory angular distribution of one of the photodissociation products. A general kinematic analysis is worked out in detail, and the uncertainty introduced by the finite angular resolution of the apparatus and the velocity spread in the parent beam is examined. The experimental requirements are evaluated for he photolysis of methyl iodide by the 2537 angstrom Hg line.

  11. Molecular dynamics simulation of vapour-liquid nucleation of water with constant energy

    NASA Astrophysics Data System (ADS)

    Duška, Michal; Němec, Tomáš; Hrubý, Jan; Vinš, Václav; Planková, Barbora

    2015-05-01

    The paper describes molecular dynamics study of nucleation of water in NVE ensemble. The numerical simulation was performed with the DL_POLY. The metastable steam consisting of 10976 water molecules with TIP4P/2005 potential was driven on the desired energy level by a simulation at constant temperature, and then the nucleation at constant energy was studied for several tens of nanoseconds, which was sufficient for clusters to evolve at hundred molecules size. The results were compared with the previously published results and the classical nucleation theory predictions.

  12. Resolving solvophobic interactions inferred from experimental solvation free energies and evaluated from molecular simulations

    NASA Astrophysics Data System (ADS)

    Barnett, J. Wesley; Bhutta, Amna; Bierbrier, Sarah C.; da Silva Moura, Natalia; Ashbaugh, Henry S.

    2017-01-01

    Ben-Naim estimated the solvent-mediated interaction between methanes based on experimental solvation free energy differences between chemically similar hydrocarbons. Interactions were predicted to be strongest in water, dominated by characteristic entropic gains. We use molecular simulations in combination with an empirical interpolation procedure that bridges interactions from outside methane's excluded volume down to overlap to test Ben-Naim's estimates. While Ben-Naim's approach captures many distinctive trends, the alchemical differences between methane and a methyl unit play a non-trivial role on the predicted association strength and the sign of enthalpic and entropic components of the interaction free energy in water and ethanol.

  13. Analytic Methods for Predicting Significant Multi-Quanta Effects in Collisional Molecular Energy Transfer

    NASA Technical Reports Server (NTRS)

    Bieniek, Ronald J.

    1996-01-01

    Collision-induced transitions can significantly affect molecular vibrational-rotational populations and energy transfer in atmospheres and gaseous systems. This, in turn. can strongly influence convective heat transfer through dissociation and recombination of diatomics. and radiative heat transfer due to strong vibrational coupling. It is necessary to know state-to-state rates to predict engine performance and aerothermodynamic behavior of hypersonic flows, to analyze diagnostic radiative data obtained from experimental test facilities, and to design heat shields and other thermal protective systems. Furthermore, transfer rates between vibrational and translational modes can strongly influence energy flow in various 'disturbed' environments, particularly where the vibrational and translational temperatures are not equilibrated.

  14. On the nature of intramolecular vibrational energy transfer in dense molecular environments

    NASA Astrophysics Data System (ADS)

    von Benten, Rebekka S.; Abel, Bernd

    2010-12-01

    Transient femtosecond-IR-pump-UV-absorption probe-spectroscopy has been employed to shed light on the nature of intramolecular vibrational energy transfer (IVR) in dense molecular environments ranging from the diluted gas phase to the liquid. A general feature in our experiments and those of others is that IVR proceeds via multiple timescales if overtones or combination vibrations of high frequency modes are excited. It has been found that collisions enhance IVR if its (slower) timescales can compete with collisions. This enhancement is, however, much more weaker and rather inefficient as opposed to the effect of collisions on intermolecular energy transfer which is well known. In a series of experiments we found that IVR depends not significantly on the average energy transferred in a collision but rather on the number of collisions. The collisions are much less efficient in affecting IVR than VET. We conclude that collision induced broadening of vibrational energy levels reduces the energy gaps and enhances existing couplings between tiers. The present results are an important step forward to rationalize and understand apparently different and not consistent results from different groups on different molecular systems between gas and liquid phases.

  15. Bioinspired molecular electrets: bottom-up approach to energy materials and applications

    NASA Astrophysics Data System (ADS)

    Larsen, Jillian M.; Espinoza, Eli M.; Vullev, Valentine I.

    2015-01-01

    The diversity of life on Earth is made possible through an immense variety of proteins that stems from less than a couple of dozen native amino acids. Is it possible to achieve similar engineering freedom and precision to design electronic materials? What if a handful of non-native residues with a wide range of characteristics could be rationally placed in sequences to form organic macromolecules with specifically targeted properties and functionalities? Referred to as molecular electrets, dipolar oligomers and polymers composed of non-native aromatic beta-amino acids, anthranilamides (Aa) provide venues for pursuing such possibilities. The electret molecular dipoles play a crucial role in rectifying charge transfer, e.g., enhancing charge separation and suppressing undesired charge recombination, which is essential for photovoltaics, photocatalysis, and other solar-energy applications. A set of a few Aa residues can serve as building blocks for molecular electrets with widely diverse electronic properties, presenting venues for bottom-up designs. We demonstrate how three substituents and structural permutations within an Aa residue widely alter its reduction potential. Paradigms of diversity in electronic properties, originating from a few changes within a basic molecular structure, illustrate the promising potentials of biological inspiration for energy science and engineering.

  16. Conversion of light-energy into molecular strain in the photocycle of the photoactive yellow protein.

    PubMed

    Gamiz-Hernandez, Ana P; Kaila, Ville R I

    2016-01-28

    The Photoactive Yellow Protein (PYP) is a light-driven photoreceptor, responsible for the phototaxis of halophilic bacteria. Recently, a new short-lived intermediate (pR0) was characterized in the PYP photocycle using combined time-resolved X-ray crystallography and density functional theory calculations. The pR0 species was identified as a highly contorted cis-intermediate, which is stabilized by hydrogen bonds with protein residues. Here we show by hybrid quantum mechanics/classical mechanics (QM/MM) molecular dynamics simulations, and first-principles calculations of optical properties, that the optical shifts in the early steps of the PYP photocycle originate from the conversion of light energy into molecular strain, stored in the pR0 state, and its relaxation in subsequent reaction steps. Our calculations quantitatively reproduce experimental data, which enables us to identify molecular origins of the optical shifts. Our combined approach suggests that the short-lived pR0 intermediate stores ∼1/3 of the photon energy as molecular strain, thus providing the thermodynamic driving force for later conformational changes in the protein.

  17. Incorporating replacement free energy of binding-site waters in molecular docking.

    PubMed

    Sun, Hanzi; Zhao, Lifeng; Peng, Shiming; Huang, Niu

    2014-09-01

    Binding-site water molecules play a crucial role in protein-ligand recognition, either being displaced upon ligand binding or forming water bridges to stabilize the complex. However, rigorously treating explicit binding-site waters is challenging in molecular docking, which requires to fully sample ensembles of waters and to consider the free energy cost of replacing waters. Here, we describe a method to incorporate structural and energetic properties of binding-site waters into molecular docking. We first developed a solvent property analysis (SPA) program to compute the replacement free energies of binding-site water molecules by post-processing molecular dynamics trajectories obtained from ligand-free protein structure simulation in explicit water. Next, we implemented a distance-dependent scoring term into DOCK scoring function to take account of the water replacement free energy cost upon ligand binding. We assessed this approach in protein targets containing important binding-site waters, and we demonstrated that our approach is reliable in reproducing the crystal binding geometries of protein-ligand-water complexes, as well as moderately improving the ligand docking enrichment performance. In addition, SPA program (free available to academic users upon request) may be applied in identifying hot-spot binding-site residues and structure-based lead optimization.

  18. Dynamics of liquid state chemical reactions: Vibrational energy relaxation of molecular iodine in liquid solution

    NASA Astrophysics Data System (ADS)

    Brooks, C. L., III; Balk, M. W.; Adelman, S. A.

    1983-07-01

    The dynamics of vibrational energy relaxation of highly excited molecular iodine in three monatomic solvents is studied via stochastic classical trajectory simulations based on the molecular timescale generalized Langevin equation (MTGLE) of motion for liquid state chemical reactions [S. A. Adelman, J. Chem. Phys. 73, 3145 (1980)]. Also presented for comparison purposes are parallel studies based on a matrix Langevin equation of motion characterized by friction coefficients which depend on the instantaneous I2 internuclear separation R. The qualitative features of the energy relaxation may be interpreted as effects arising from modifications of the solute dynamics due to molecular timescale correlations between its motion and that of its solvation shells. Such dynamical solvent effects are realistically described by the MTGLE equation of motion but not by the Langevin equation. Thus, for example, the marked slowdown of the rate of I2 energy relaxtion in simple solvents when the I2 vibrational quantum number drops below a solvent-dependent critical value, earlier predicted by Nesbitt and Hynes, is predicted by MTGLE dynamics but not by Langevin dynamics. Finally, practical algorithms for numerically constructing the MTGLE and Langevin equations for specific solute-solvent systems are presented.

  19. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics

    PubMed Central

    Kohanoff, Jorge

    2017-01-01

    Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile’s energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules. PMID:28267804

  20. Threshold displacement energies in rutile TiO 2: A molecular dynamics simulation study

    NASA Astrophysics Data System (ADS)

    Thomas, B. S.; Marks, N. A.; Corrales, L. R.; Devanathan, R.

    2005-09-01

    Threshold displacement energies are determined for Ti and O in rutile TiO 2 using molecular dynamics simulations with an empirical model. The simulations involve the introduction of a primary knock-on atom (PKA) with a range of energies (30-150 eV) in various crystallographic directions at 160 K. We observe the formation of stable Frenkel defects, as well as defect recovery via low-energy interstitial migration mechanisms. The latter causes significant statistical variation between simulation outcomes, which leads to the definition of a defect formation probability. This probability is characterized as a function of PKA energy in order to define the threshold displacement energy and compare with experimental results. Using a probability of 10%, the average threshold displacement energy is around 40 eV for oxygen (comparable to experiment) and 105 eV for titanium. Using a probability of 50%, the values are 65 eV and 130 eV respectively, which may be more appropriate for use in TRIM calculations. In addition, we run a parallel set of calculations using a second empirical model, finding that the detailed results are highly model-dependent, particularly the oxygen defect structures and energies, which are compared to new ab initio data.

  1. Energy relaxation of intermolecular motions in supercooled water and ice: A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Yagasaki, Takuma; Saito, Shinji

    2011-12-01

    We investigate the energy relaxation of intermolecular motions in liquid water at temperatures ranging from 220 K to 300 K and in ice at 220 K using molecular dynamics simulations. We employ the recently developed frequency resolved transient kinetic energy analysis, which provides detailed information on energy relaxation in condensed phases like two-color pump-probe spectroscopy. It is shown that the energy cascading in liquid water is characterized by four processes. The temperature dependences of the earlier three processes, the rotational-rotational, rotational-translational, and translational-translational energy transfers, are explained in terms of the density of states of the intermolecular motions. The last process is the slow energy transfer arising from the transitions between potential energy basins caused by the excitation of the low frequency translational motion. This process is absent in ice because the hydrogen bond network rearrangement, which accompanies the interbasin transitions in liquid water, cannot take place in the solid phase. We find that the last process in supercooled water is well approximated by a stretched exponential function. The stretching parameter, β, decreases from 1 to 0.72 with decreasing temperature. This result indicates that the dynamics of liquid water becomes heterogeneous at lower temperatures.

  2. Molecular dynamics simulation of energy exchanges during hydrogen collision with graphite sheets

    SciTech Connect

    Sun Jizhong; Li Shouyang; Wang Dezhen; Stirner, Thomas; Chen Junlin

    2010-06-15

    Experiments show that the energy of particles incident on divertor plates in fusion devices seldom exceeds 100 eV. Trim code and its variants are not suitable to predict the sputtering yield of carbon-based divertor plates for this energy range and, therefore, a dynamic model, taking into account the C-H bond formation and breaking, and the structure of carbon, is needed. In this paper, the molecular dynamics method is employed to investigate collision processes between incident hydrogen atoms and a graphene sheet. The simulation results demonstrate that the collision processes cannot be adequately described by a simple binary approximation. The energy transfer from the projectile to the graphite sheet exhibits a very complicated behavior when the kinetic energy of the incident hydrogen atom is below 30 eV, strongly depending on the impact position. When its kinetic energy is lower than 0.35 eV, the incident hydrogen is always reflected back from the single, perfect graphite sheet; when its kinetic energy is higher than 0.35 eV, then whether the incident particle penetrates the graphite sheet, is reflected back or is adsorbed depends on the impact position. In certain areas of the graphite sheet, either adsorption or reflection of an incident hydrogen atom can occur in two different energy ranges.

  3. Water radiolysis by low-energy carbon projectiles from first-principles molecular dynamics.

    PubMed

    Kohanoff, Jorge; Artacho, Emilio

    2017-01-01

    Water radiolysis by low-energy carbon projectiles is studied by first-principles molecular dynamics. Carbon projectiles of kinetic energies between 175 eV and 2.8 keV are shot across liquid water. Apart from translational, rotational and vibrational excitation, they produce water dissociation. The most abundant products are H and OH fragments. We find that the maximum spatial production of radiolysis products, not only occurs at low velocities, but also well below the maximum of energy deposition, reaching one H every 5 Å at the lowest speed studied (1 Bohr/fs), dissociative collisions being more significant at low velocity while the amount of energy required to dissociate water is constant and much smaller than the projectile's energy. A substantial fraction of the energy transferred to fragments, especially for high velocity projectiles, is in the form of kinetic energy, such fragments becoming secondary projectiles themselves. High velocity projectiles give rise to well-defined binary collisions, which should be amenable to binary approximations. This is not the case for lower velocities, where multiple collision events are observed. H secondary projectiles tend to move as radicals at high velocity, as cations when slower. We observe the generation of new species such as hydrogen peroxide and formic acid. The former occurs when an O radical created in the collision process attacks a water molecule at the O site. The latter when the C projectile is completely stopped and reacts with two water molecules.

  4. Molecular dynamics simulation on generalized stacking fault energies of FCC metals under preloading stress

    NASA Astrophysics Data System (ADS)

    Zhang, Liang; Cheng, Lü; Kiet, Tieu; Zhao, Xing; Pei, Lin-Qing; Guillaume, Michal

    2015-08-01

    Molecular dynamics (MD) simulations are performed to investigate the effects of stress on generalized stacking fault (GSF) energy of three fcc metals (Cu, Al, and Ni). The simulation model is deformed by uniaxial tension or compression in each of [111], [11-2], and [1-10] directions, respectively, before shifting the lattice to calculate the GSF curve. Simulation results show that the values of unstable stacking fault energy (γusf), stable stacking fault energy (γsf), and unstable twin fault energy (γutf) of the three elements can change with the preloaded tensile or compressive stress in different directions. The ratio of γsf/γusf, which is related to the energy barrier for full dislocation nucleation, and the ratio of γutf/γusf, which is related to the energy barrier for twinning formation are plotted each as a function of the preloading stress. The results of this study reveal that the stress state can change the energy barrier of defect nucleation in the crystal lattice, and thereby can play an important role in the deformation mechanism of nanocrystalline material. Project supported by Australia Research Council Discovery Projects (Grant No. DP130103973). L. Zhang, X. Zhao and L. Q. Pei were financially supported by the China Scholarship Council (CSC).

  5. Molecular correlates of cortical network modulation by long-term sensory experience in the adult rat barrel cortex

    PubMed Central

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J.M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment up-regulates cortical expression of neuropeptide mRNAs and down-regulates immediate-early gene (IEG) mRNAs specifically in the barrel cortex, and not in other brain regions. The present data suggest a central role of neuropeptides in the fine-tuning of sensory cortical circuits by long-term experience. PMID:25171421

  6. A molecular Debye-Hückel approach to the reorganization energy of electron transfer reactions in an electric cell.

    PubMed

    Xiao, Tiejun; Song, Xueyu

    2014-10-07

    Electron transfer near an electrode immersed in ionic fluids is studied using the linear response approximation, namely, mean value of the vertical energy gap can be used to evaluate the reorganization energy, and hence any linear response model that can treat Coulomb interactions successfully can be used for the reorganization energy calculation. Specifically, a molecular Debye-Hückel theory is used to calculate the reorganization energy of electron transfer reactions in an electric cell. Applications to electron transfer near an electrode in molten salts show that the reorganization energies from our molecular Debye-Hückel theory agree well with the results from MD simulations.

  7. Chemical energy release and radical formation in cluster-induced sputtering of diatomic molecular targets: a molecular-dynamics model study.

    PubMed

    Anders, Christian; Urbassek, Herbert M

    2007-07-13

    Using molecular-dynamics simulation, we perform a systematic study of cluster-induced sputtering. Two model systems of diatomic molecular solids are employed, which have identical cohesive energy but differ in their dissociation energy and the possible reaction pathways. Sputtering occurs by the flow of gasified material out of the spike volume into the vacuum above it. Because of the entrainment of radicals and reaction products with the flow, only a minority of this debris is left behind in the target. The excitation of internal molecular degrees of freedom (rotation and vibration) slightly reduces the sputter yield in comparison to the sputtering of an atomic system, while the chemical energy release due to exothermic reactions of radicals formed enhances the yield in proportion to the chemical energy release.

  8. Chemical Energy Release and Radical Formation in Cluster-Induced Sputtering of Diatomic Molecular Targets: A Molecular-Dynamics Model Study

    SciTech Connect

    Anders, Christian; Urbassek, Herbert M.

    2007-07-13

    Using molecular-dynamics simulation, we perform a systematic study of cluster-induced sputtering. Two model systems of diatomic molecular solids are employed, which have identical cohesive energy but differ in their dissociation energy and the possible reaction pathways. Sputtering occurs by the flow of gasified material out of the spike volume into the vacuum above it. Because of the entrainment of radicals and reaction products with the flow, only a minority of this debris is left behind in the target. The excitation of internal molecular degrees of freedom (rotation and vibration) slightly reduces the sputter yield in comparison to the sputtering of an atomic system, while the chemical energy release due to exothermic reactions of radicals formed enhances the yield in proportion to the chemical energy release.

  9. Molecular potential energies in dodecahedron cell of methane hydrate and dispersion correction for DFT.

    PubMed

    Du, Qi-Shi; Li, Da-Peng; Liu, Peng-Jun; Huang, Ri-Bo

    2008-09-01

    The interaction potential energies of water-water and water-methane in structure-I unit cell of methane hydrate are calculated from 2.1 to 8.0A using density functional theory (DFT) B3LYP/TZVP. The curves of potential energies are corrected for basis set superposition error (BSSE) and dispersion interaction using a 4-term L-J (4,6-8,12) correction equation, which is derived from CCSD(T)/cc-pVTZ calculations of water-water and water-methane molecular pairs, using least squares curve-fitting. The methane hydrate unit cell is a regular water dodecahedron cell consisting of 20 water molecules with a methane molecule in the center. The geometries of water and methane are optimized at CCSD(T)/cc-pVTZ level. The BSSE-corrections are calculated for water-water and water-methane interaction energies as functions of the side length, l, of the dodecahedron cell at B3LYP/TZVP level in the range from 2.1 to 8.0A. The BSSE CP-corrected and dispersion-corrected potential energy surfaces (PES) of water-water and water-methane are useful for molecular dynamics simulation of gas clathrate-hydrates.

  10. Connecting metabolism and reproduction: roles of central energy sensors and key molecular mediators.

    PubMed

    Roa, Juan; Tena-Sempere, Manuel

    2014-11-01

    It is well established that pubertal activation of the reproductive axis and maintenance of fertility are critically dependent on the magnitude of body energy reserves and the metabolic state of the organism. Hence, conditions of impaired energy homeostasis often result in deregulation of puberty and reproduction, whereas gonadal dysfunction can be associated with the worsening of the metabolic profile and, eventually, changes in body weight. While much progress has taken place in our knowledge about the neuroendocrine mechanisms linking metabolism and reproduction, our understanding of how such dynamic interplay happens is still incomplete. As paradigmatic example, much has been learned in the last two decades on the reproductive roles of key metabolic hormones (such as leptin, insulin and ghrelin), their brain targets and the major transmitters and neuropeptides involved. Yet, the molecular mechanisms whereby metabolic information is translated and engages into the reproductive circuits remain largely unsolved. In this work, we will summarize recent developments in the characterization of the putative central roles of key cellular energy sensors, such as mTOR, in this phenomenon, and will relate these with other molecular mechanisms likely contributing to the brain coupling of energy balance and fertility. In doing so, we aim to provide an updated view of an area that, despite still underdeveloped, may be critically important to fully understand how reproduction and metabolism are tightly connected in health and disease.

  11. College Chemistry Students' Understanding of Potential Energy in the Context of Atomic-Molecular Interactions

    ERIC Educational Resources Information Center

    Becker, Nicole M.; Cooper, Melanie M.

    2014-01-01

    Understanding the energy changes that occur as atoms and molecules interact forms the foundation for understanding the macroscopic energy changes that accompany chemical processes. In order to identify ways to scaffold students' understanding of the connections between atomic-molecular and macroscopic energy perspectives, we conducted a…

  12. Threshold displacement energy in GaN; Ab initio molecular dynamics study

    SciTech Connect

    Xiao, H. Y.; Gao, Fei; Zu, Xiaotao T.; Weber, William J.

    2009-06-25

    Large-scale ab initio molecular dynamics method has been used to determine the threshold displacement energies, Ed, along five specific directions and to determine the defect configurations created during low energy events. The Ed shows a significant dependence on direction. The minimum Ed is determined to be 39 eV along the <-1010> direction for a gallium atom and 17.0 eV along the <-1010> direction for a nitrogen atom, which are in reasonable agreement with the experimental measurements. The average Ed values determined are 73.2 and 32.4 eV for gallium and nitrogen atoms, respectively. The N defects created at low energy events along different crystallographic directions have a similar configuration (a N-N dumbbell configuration), but various configurations for Ga defects are formed in GaN.

  13. A Spin-Boson Screening approach for unraveling dominant vibrational energy transfer pathways in molecular materials

    NASA Astrophysics Data System (ADS)

    Chuntonov, Lev; Peskin, Uri

    2017-01-01

    Vibrational energy transfer driven by anharmonicity is the major mechanism of energy dissipation in polyatomic molecules and in molecules embedded in condensed phase environment. Energy transfer pathways are sensitive to the particular intra-molecular structure as well as to specific interactions between the molecule and its environment, and their identification is a challenging many-body problem. This work introduces a theoretical approach which enables to identify the dominant pathways for specified initial excitations, by screening the different possible relaxation channels. For each channel, the many-body Hamiltonian is mapped onto a respective all-vibrational Spin-Boson Hamiltonian, expressed in terms of the harmonic frequencies and the anharmonic coupling parameters obtained from the electronic structure of the molecule in its environment. A focus is given on the formulation of the relaxation rates when different limits of perturbation theory apply. In these cases the proposed Spin-Boson Screening approach becomes especially powerful.

  14. Molecular dynamics study on low-energy sputtering of carbon material by Xe ion bombardment

    NASA Astrophysics Data System (ADS)

    Muramoto, T.; Hyakutake, T.

    2013-05-01

    The low-energy sputtering of carbon material under Xe ion bombardment is studied through the molecular dynamics (MD) simulation. For the normal incidence of Xe, the MD result of sputtering yield almost agrees with the experimental result by Williams et al. (AIAA-2004-3788). However, the experimental result shows a less incident angle dependence than the MD result because the experiment performed on a rough surface. It is found that the sputtered particles have memory of the projectile because the sputtered particles by the low-energy projectile undergo only a few collisions before the ejection. Low density of an amorphous carbon surface brings the decrease of the sputtering yield and the increase of high-energy sputtered atoms.

  15. Effect of Strain Field on Threshold Displacement Energy of Tungsten Studied by Molecular Dynamics Simulation

    SciTech Connect

    Wang, Dong; Gao, Ning; Setyawan, W.; Kurtz, R. J.; Wang, Zhi-Guang; Gao, Xing; He, Wen-Hao; Pang, Li-Long

    2016-09-01

    The influence of strain field on defect formation energy and threshold displacement energy (Ed) in body-centered cubic (BCC) tungsten (W) has been studied with molecular dynamics simulations. Two different W potentials (Fikar and Juslin) were compared and the results indicate that the connection distance and selected function linking the short-range and long-range portions of the potentials affects the threshold displacement energy and its direction-specific values. The minimum Ed direction calculated with the Fikar-potential is <100> and with the Juslin-potential is <111>. Nevertheless, the most stable self-interstitial configuration is found to be a <111>-crowdion for both potentials. This stable configuration does not change with applied strain. Varying the strain from compression to tension increases the vacancy formation energy but decreases the self-interstitial formation energy. The formation energy of a self-interstitial changes more significantly than a vacancy such that Ed decreases with applied hydrostatic strain from compression to tension.

  16. Selective excitation, relaxation, and energy channeling in molecular systems. Comprehensive progress report, April 1990--July 1993

    SciTech Connect

    Rhodes, W.C.

    1993-08-01

    Research involves theoretical studies of response, relaxation, and correlated motion in time-dependent behavior of large molecular systems ranging from polyatomic molecules to protein molecules in their natural environment. Underlying theme is subsystem modulation dynamics. Main idea is that quantum mechanical correlations between components of a system develop with time, playing a major role in determining the balance between coherent and dissipative forces. Central theme is interplay of coherence and dissipation in determining the nature of dynamic structuring and energy flow in molecular transformation mechanisms. Subsystem equations of motion are being developed to show how nonlinear, dissipative dynamics of a particular subsystem arise from correlated interactions with the rest of the system (substituent groups, solvent, lattice modes, etc.); one consequence is resonance structures and networks. Quantum dynamics and thermodynamics are being applied to understand control and energy transfer mechanisms in biological functions of protein molecules; these mechanisms are both global and local. Besides the above theory, the research deals with phenomenological aspects of molecular systems.

  17. Charting molecular free-energy landscapes with an atlas of collective variables

    NASA Astrophysics Data System (ADS)

    Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino

    2016-11-01

    Collective variables (CVs) are a fundamental tool to understand molecular flexibility, to compute free energy landscapes, and to enhance sampling in molecular dynamics simulations. However, identifying suitable CVs is challenging, and is increasingly addressed with systematic data-driven manifold learning techniques. Here, we provide a flexible framework to model molecular systems in terms of a collection of locally valid and partially overlapping CVs: an atlas of CVs. The specific motivation for such a framework is to enhance the applicability and robustness of CVs based on manifold learning methods, which fail in the presence of periodicities in the underlying conformational manifold. More generally, using an atlas of CVs rather than a single chart may help us better describe different regions of conformational space. We develop the statistical mechanics foundation for our multi-chart description and propose an algorithmic implementation. The resulting atlas of data-based CVs are then used to enhance sampling and compute free energy surfaces in two model systems, alanine dipeptide and β-D-glucopyranose, whose conformational manifolds have toroidal and spherical topologies.

  18. Beyond the Lorentzian Model in Quantum Transport: Energy-Dependent Resonance Broadening in Molecular Junctions

    NASA Astrophysics Data System (ADS)

    Liu, Zhenfei; Neaton, Jeffrey B.

    In quantum transport calculations, transmission functions of molecular junctions, as well as spectral functions of metal-organic interfaces, often feature peaks originating from molecular resonances. These resonance peaks are often assumed to be Lorentzian, with an energy-independent broadening function Γ. However, in the general case, the wide-band-limit breaks down, and the Lorentzian approximation is no longer valid. Here, we develop a new energy-dependent broadening function Γ (E) , based on diagonalization of non-Hermitian matrices within a non-equilbrium Green's function (NEGF) formalism. As defined, Γ (E) can describe resonances of non-Lorentzian nature and can be decomposed into components associated with the left and right leads, respectively; and it is particularly useful in understanding transport properties in terms of molecular orbitals in asymmetric junctions. We compute this quantity via an ab initio NEGF approach based on density functional theory and illustrate its utility with several junctions of experimental relevance, including recent work on rectification in Au-graphite junctions. This work is supported by the DOE, and computational resources are provided by NERSC.

  19. Intra-molecular Triplet Energy Transfer is a General Approach to Improve Organic Fluorophore Photostability

    PubMed Central

    Zheng, Qinsi; Jockusch, Steffen; Rodríguez-Calero, Gabriel G.; Zhou, Zhou; Zhao, Hong; Altman, Roger B.; Abruña, Héctor D.; Blanchard, Scott C.

    2015-01-01

    Bright, long-lasting and non-phototoxic organic fluorophores are essential to the continued advancement of biological imaging. Traditional approaches towards achieving photostability, such as the removal of molecular oxygen and the use of small-molecule additives in solution, suffer from potentially toxic side effects, particularly in the context of living cells. The direct conjugation of small-molecule triplet state quenchers, such as cyclooctatetraene (COT), to organic fluorophores has the potential to bypass these issues by restoring reactive fluorophore triplet states to the ground state through intra-molecular triplet energy transfer. Such methods have enabled marked improvement in cyanine fluorophore photostability spanning the visible spectrum. However, the generality of this strategy to chemically and structurally diverse fluorophore species has yet to be examined. Here, we show that the proximal linkage of COT increases the photon yield of a diverse range of organic fluorophores widely used in biological imaging applications, demonstrating that the intra-molecular triplet energy transfer mechanism is a potentially general approach for improving organic fluorophore performance and photostability. PMID:26700693

  20. Molecular understanding of mutagenicity using potential energy methods. Progress report, July 1, 1992--September 30, 1993

    SciTech Connect

    Broyde, S.; Shapiro, R.

    1993-09-01

    Our objective has been to elucidate on a molecular level, at atomic resolution, the structures of DNAs modified by highly mutagenic aromatic amines and hydrocarbons. The underlying hypothesis is that DNA replicates with reduced fidelity when its normal right-handed B-structure is altered, and one result is a higher mutation rate. This change in structure may occur normally at a low incidence but it may be enhanced greatly after covalent modification by a mutagenic substance. The methods that we use to elucidate structures are computational, but we keep in close contact with experimental developments, and we incorporate data from NMR studies in our calculations when they are available. X-ray and low resolution spectroscopic studies have not succeeded in producing atomic resolution views of mutagen and carcinogen-oligonucleotide adducts. Even the high resolution NMR method cannot alone yield molecular views, though it does so in combination with our computations. The specific methods that we employ are minimized potential energy calculations using the torsion angle space molecular mechanics program DUPLEX to yield static views. Molecular dynamics simulations of static structures with solvent and salt can be carried out with the program AMBER; this yields mobile views in a medium that mimics aspects of the natural aqueous environment of the cell.

  1. Vacuum-deposited small-molecule organic solar cells with high power conversion efficiencies by judicious molecular design and device optimization.

    PubMed

    Chen, Yi-Hong; Lin, Li-Yen; Lu, Chih-Wei; Lin, Francis; Huang, Zheng-Yu; Lin, Hao-Wu; Wang, Po-Han; Liu, Yi-Hung; Wong, Ken-Tsung; Wen, Jianguo; Miller, Dean J; Darling, Seth B

    2012-08-22

    Three new tailor-made molecules (DPDCTB, DPDCPB, and DTDCPB) were strategically designed and convergently synthesized as donor materials for small-molecule organic solar cells. These compounds possess a donor-acceptor-acceptor molecular architecture, in which various electron-donating moieties are connected to an electron-withdrawing dicyanovinylene moiety through another electron-accepting 2,1,3-benzothiadiazole block. The molecular structures and crystal packings of DTDCPB and the previously reported DTDCTB were characterized by single-crystal X-ray crystallography. Photophysical and electrochemical properties as well as energy levels of this series of donor molecules were thoroughly investigated, affording clear structure-property relationships. By delicate manipulation of the trade-off between the photovoltage and the photocurrent via molecular structure engineering together with device optimizations, which included fine-tuning the layer thicknesses and the donor:acceptor blended ratio in the bulk heterojunction layer, vacuum-deposited hybrid planar-mixed heterojunction devices utilizing DTDCPB as the donor and C(70) as the acceptor showed the best performance with a power conversion efficiency (PCE) of 6.6 ± 0.2% (the highest PCE of 6.8%), along with an open-circuit voltage (V(oc)) of 0.93 ± 0.02 V, a short-circuit current density (J(sc)) of 13.48 ± 0.27 mA/cm(2), and a fill factor (FF) of 0.53 ± 0.02, under 1 sun (100 mW/cm(2)) AM 1.5G simulated solar illumination.

  2. Broad-wing molecular lines without internal energy sources. [in interstellar clouds

    NASA Technical Reports Server (NTRS)

    Blitz, Leo; Magnani, Loris; Wandel, Amri

    1988-01-01

    The discovery of broad CO wings in four high-latitude molecular clouds which do not have associated internal energy sources is reported. The velocity width of the wings is as much as five times greater than the width of the cloud cores. Neither visible stars brighter than the background population, optical nebulosity, nor IRAS point sources are found at the position of the wings, except for one case with an IRAS source 3 arcmin from the peak position of the wings. The possibility that the wings are the result of conductive interfaces resulting from cold molecular clouds in a hotter ambient medium is examined, and it is concluded that the expected column density of such gas is more than three orders of magnitude smaller than that observed.

  3. First-principles and classical molecular dynamics study of threshold displacement energy in beryllium

    NASA Astrophysics Data System (ADS)

    Vladimirov, P. V.; Borodin, V. A.

    2017-02-01

    Beryllium selected as a neutron multiplier material for the tritium breeding blanket of fusion reactor should withstand high doses of fast neutron irradiation. The damage produced by irradiation is usually evaluated assuming that the number of atomic displacements to the threshold displacement energy, Ed, which is considered as an intrinsic material parameter. In this work the value of Ed for hcp beryllium is estimated simultaneously from classical and first-principles molecular dynamics simulations. Quite similar quantitative pictures of defect production are observed in both simulation types, though the predicted displacement threshold values seem to be approximately two times higher in the first-principles approach. We expect that, after more detailed first-principles investigations, this approach can be used for scaling the damage prediction predictions by classical molecular dynamics, opening a way for more consistent calculations of displacement damage in materials.

  4. Thermoelectric efficiency of molecular junctions.

    PubMed

    Perroni, C A; Ninno, D; Cataudella, V

    2016-09-21

    Focus of the review is on experimental set-ups and theoretical proposals aimed to enhance thermoelectric performances of molecular junctions. In addition to charge conductance, the thermoelectric parameter commonly measured in these systems is the thermopower, which is typically rather low. We review recent experimental outcomes relative to several junction configurations used to optimize the thermopower. On the other hand, theoretical calculations provide estimations of all the thermoelectric parameters in the linear and non-linear regime, in particular of the thermoelectric figure of merit and efficiency, completing our knowledge of molecular thermoelectricity. For this reason, the review will mainly focus on theoretical studies analyzing the role of not only electronic, but also of the vibrational degrees of freedom. Theoretical results about thermoelectric phenomena in the coherent regime are reviewed focusing on interference effects which play a significant role in enhancing the figure of merit. Moreover, we review theoretical studies including the effects of molecular many-body interactions, such as electron-vibration couplings, which typically tend to reduce the efficiency. Since a fine tuning of many parameters and coupling strengths is required to optimize the thermoelectric conversion in molecular junctions, new theoretically proposed set-ups are discussed in the conclusions.

  5. Molecular and cellular regulation of hypothalamic melanocortin neurons controlling food intake and energy metabolism.

    PubMed

    Koch, M; Horvath, T L

    2014-07-01

    The brain receives and integrates environmental and metabolic information, transforms these signals into adequate neuronal circuit activities, and generates physiological behaviors to promote energy homeostasis. The responsible neuronal circuitries show lifetime plasticity and guaranty metabolic health and survival. However, this highly evolved organization has become challenged nowadays by chronic overload with nutrients and reduced physical activity, which results in an ever-increasing number of obese individuals worldwide. Research within the last two decades has aimed to decipher the responsible molecular and cellular mechanisms for regulation of the hypothalamic melanocortin neurons, which have a key role in the control of food intake and energy metabolism. This review maps the central connections of the melanocortin system and highlights its global position and divergent character in physiological and pathological metabolic events. Moreover, recently uncovered molecular and cellular processes in hypothalamic neurons and glial cells that drive plastic morphological and physiological changes in these cells, and account for regulation of food intake and energy metabolism, are brought into focus. Finally, potential functional interactions between metabolic disorders and psychiatric diseases are discussed.

  6. Walking freely in the energy and temperature space by the modified replica exchange molecular dynamics method.

    PubMed

    Chen, Changjun; Huang, Yanzhao

    2016-06-30

    Replica Exchange Molecular Dynamics (REMD) method is a powerful sampling tool in molecular simulations. Recently, we made a modification to the standard REMD method. It places some inactive replicas at different temperatures as well as the active replicas. The method completely decouples the number of the active replicas and the number of the temperature levels. In this article, we make a further modification to our previous method. It uses the inactive replicas in a different way. The inactive replicas first sample in their own knowledge-based energy databases and then participate in the replica exchange operations in the REMD simulation. In fact, this method is a hybrid between the standard REMD method and the simulated tempering method. Using different active replicas, one can freely control the calculation quantity and the convergence speed of the simulation. To illustrate the performance of the method, we apply it to some small models. The distribution functions of the replicas in the energy space and temperature space show that the modified REMD method in this work can let the replicas walk freely in both of the two spaces. With the same number of the active replicas, the free energy surface in the simulation converges faster than the standard REMD. © 2016 Wiley Periodicals, Inc.

  7. Identifying low variance pathways for free energy calculations of molecular transformations in solution phase.

    PubMed

    Pham, Tri T; Shirts, Michael R

    2011-07-21

    Improving the efficiency of free energy calculations is important for many biological and materials design applications, such as protein-ligand binding affinities in drug design, partitioning between immiscible liquids, and determining molecular association in soft materials. We show that for any pair potential, moderately accurate estimation of the radial distribution function for a solute molecule is sufficient to accurately estimate the statistical variance of a sampling along a free energy pathway. This allows inexpensive analytical identification of low statistical error free energy pathways. We employ a variety of methods to estimate the radial distribution function (RDF) and find that the computationally cheap two-body "dilute gas" limit performs as well or better than 3D-RISM theory and other approximations for identifying low variance free energy pathways. With a RDF estimate in hand, we can search for pairwise interaction potentials that produce low variance. We give an example of a search minimizing statistical variance of solvation free energy over the entire parameter space of a generalized "soft core" potential. The free energy pathway arising from this optimization procedure has lower curvature in the variance and reduces the total variance by at least 50% compared to the traditional soft core solvation pathway. We also demonstrate that this optimized pathway allows free energies to be estimated with fewer intermediate states due to its low curvature. This free energy variance optimization technique is generalizable to solvation in any homogeneous fluid and for any type of pairwise potential and can be performed in minutes to hours, depending on the method used to estimate g(r).

  8. Fourier transform photoelectron diffraction and its application to molecular orbitals and surface structure

    SciTech Connect

    Zhou, Xin

    1998-11-30

    Photoemission intensities from the molecular orbitals of c(2x2)CO/Pt(111) over a wide photon energy range were measured and analyzed by the same methods developed for structural studies using core levels. The 4{sigma} orbital center of gravity is found to be concentrated between the C and O atoms, while that of the 5{sigma} orbital lies between the C atom and the Pt surface. The C 1s photoelectron diffraction was used to determine the adsorption geometry. The earlier ambiguity that multiple scattering is needed to correctly model a {chi} curve while single scattering is sufficient for understanding major peaks in the ARPEFS-FTS is clarified by studying the clean Ni(111) surface. In the normal emission case, several different combinations of scattering events have similar path length differences (PLDs), and can either cancel each other or enhance the corresponding FT peak. In the off-normal case the degeneracy is greatly reduced due to the lower degree of symmetry. In normal emission AR PEFS, up to third order multiple scattering is needed to describe fully both the {chi} curve and its FT spectrum. To improve the spectral resolution in the ARPEFS-FT analysis, several new spectral analysis methods are introduced. With both autocorrelation autoregression (ACAR) and autocorrelation eigenvector (ACE), we can produce a reliable power spectrum by following the order-closing procedure. The best spectra are usually obtained when the autocorrelation sequence is computed with lags up to half the data range. A simple way of determining surface adsorption sites is proposed as follows: First use a single scattering cluster for possible adsorption sites to construct the geometrical PLDs from the strong backscattering events; then compare these PLDs with those obtained from the ARPEFS-FT analysis of the experimental data. After the preferred adsorption site is determined, fine tune the interlayer distances according to the positional R-factor.

  9. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    SciTech Connect

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Vaidehi, Nagarajan; Jain, Abhinandan

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  10. Spectroscopic studies, potential energy surface and molecular orbital calculations of pramipexole

    NASA Astrophysics Data System (ADS)

    Muthu, S.; Uma Maheswari, J.; Srinivasan, S.; Isac paulraj, E.

    2013-11-01

    A systematic vibrational spectroscopic assignment and analysis of pramipexole [(S)-N6-propyl-4,5,6,7-tetrahydro-1,3-benzothiazole-2,6-diamine] has been carried out using FT-IR and FT-Raman spectral data. The vibrational analysis was aided by an electronic structure calculation based on the hybrid density functional method B3LYP using a 6-311G(d, p) and cc-pVTZ basis sets. Molecular equilibrium geometries, electronic energies, IR and Raman intensities, harmonic vibrational frequencies have been computed. The assignments are based on the experimental IR and Raman spectra, and a complete assignment of the observed spectra has been proposed. The UV-visible spectrum of the compound was recorded and the electronic properties, such as HOMO and LUMO energies and the maximum absorption λmax were determined by time-dependent DFT (TD-DFT) method. The geometrical parameters, vibrational frequencies and absorption wavelengths were compared with the experimental data. The complete vibrational assignments are performed on the basis of the potential energy distributions (PEDs) of the vibrational modes in terms of natural internal coordinates. The simulated FT-IR, FT-Raman, and UV spectra of the title compound have been constructed. In addition, the potential energy surface, HOMO and LUMO energies, the molecular electrostatic potential and the first-order hyperpolarizability have been computed. The magnitude of the first-order hyperpolarizability is 5 times larger than that of urea and the title compound may be a potential applicant for the development of NLO materials.

  11. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    PubMed Central

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-01

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  12. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B.; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-01

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  13. Overcoming potential energy distortions in constrained internal coordinate molecular dynamics simulations.

    PubMed

    Kandel, Saugat; Salomon-Ferrer, Romelia; Larsen, Adrien B; Jain, Abhinandan; Vaidehi, Nagarajan

    2016-01-28

    The Internal Coordinate Molecular Dynamics (ICMD) method is an attractive molecular dynamics (MD) method for studying the dynamics of bonded systems such as proteins and polymers. It offers a simple venue for coarsening the dynamics model of a system at multiple hierarchical levels. For example, large scale protein dynamics can be studied using torsional dynamics, where large domains or helical structures can be treated as rigid bodies and the loops connecting them as flexible torsions. ICMD with such a dynamic model of the protein, combined with enhanced conformational sampling method such as temperature replica exchange, allows the sampling of large scale domain motion involving high energy barrier transitions. Once these large scale conformational transitions are sampled, all-torsion, or even all-atom, MD simulations can be carried out for the low energy conformations sampled via coarse grained ICMD to calculate the energetics of distinct conformations. Such hierarchical MD simulations can be carried out with standard all-atom forcefields without the need for compromising on the accuracy of the forces. Using constraints to treat bond lengths and bond angles as rigid can, however, distort the potential energy landscape of the system and reduce the number of dihedral transitions as well as conformational sampling. We present here a two-part solution to overcome such distortions of the potential energy landscape with ICMD models. To alleviate the intrinsic distortion that stems from the reduced phase space in torsional MD, we use the Fixman compensating potential. To additionally alleviate the extrinsic distortion that arises from the coupling between the dihedral angles and bond angles within a force field, we propose a hybrid ICMD method that allows the selective relaxing of bond angles. This hybrid ICMD method bridges the gap between all-atom MD and torsional MD. We demonstrate with examples that these methods together offer a solution to eliminate the potential

  14. Redox Active Polymers as Soluble Nanomaterials for Energy Storage.

    PubMed

    Burgess, Mark; Moore, Jeffrey S; Rodríguez-López, Joaquín

    2016-11-15

    RAPs conveniently translate the redox properties of small molecules into a nanostructure, they give rise to charge transfer mechanisms and electrolyte interactions that elicit distinct electrochemical responses. To understand how the electrochemical characteristics of RAPs depend on molecular features, including redox moiety, macromolecular size, and backbone structure, a range of techniques has been employed by our groups, including voltammetry at macro- and microelectrodes, rotating disk electrode voltammetry, bulk electrolysis, and scanning electrochemical microscopy. RAPs rely on three-dimensional charge transfer within their inner bulk, which is an efficient process and allows quantitative electrolysis of particles of up to ∼800 nm in radius. Interestingly, we find that interactions between neighboring pendants create unique opportunities for fine-tuning their electrochemical reactivity. Furthermore, RAP interrogation toward the single particle limit promises to shed light on fundamental charge storage mechanisms.

  15. Lennard-Jones systems near solid walls: computing interfacial free energies from molecular simulation methods.

    PubMed

    Benjamin, Ronald; Horbach, Jürgen

    2013-08-28

    Different computational techniques in combination with molecular dynamics computer simulation are used to determine the wall-liquid and the wall-crystal interfacial free energies of a modified Lennard-Jones (LJ) system in contact with a solid wall. Two different kinds of solid walls are considered: a flat structureless wall and a structured wall consisting of an ideal crystal with the particles rigidly attached to fcc lattice sites. Interfacial free energies are determined by a thermodynamic integration scheme, the anisotropy of the pressure tensor, the non-equilibrium work method based on Bennett acceptance criteria, and a method using Cahn's adsorption equations based on the interfacial thermodynamics of Gibbs. For the flat wall, interfacial free energies as a function of different densities of the LJ liquid and as a function of temperature along the coexistence curve are calculated. In the case of a structured wall, the interaction strength between the wall and the LJ system and the lattice constant of the structured wall are varied. Using the values of the wall-liquid and wall-crystal interfacial energies along with the value for the crystal-liquid interfacial free energy determined previously for the same system by the "cleaving potential method," we obtain the contact angle as a function of various parameters; in particular, the conditions are found under which partial wetting occurs.

  16. Exchange-Hole Dipole Dispersion Model for Accurate Energy Ranking in Molecular Crystal Structure Prediction.

    PubMed

    Whittleton, Sarah R; Otero-de-la-Roza, A; Johnson, Erin R

    2017-02-14

    Accurate energy ranking is a key facet to the problem of first-principles crystal-structure prediction (CSP) of molecular crystals. This work presents a systematic assessment of B86bPBE-XDM, a semilocal density functional combined with the exchange-hole dipole moment (XDM) dispersion model, for energy ranking using 14 compounds from the first five CSP blind tests. Specifically, the set of crystals studied comprises 11 rigid, planar compounds and 3 co-crystals. The experimental structure was correctly identified as the lowest in lattice energy for 12 of the 14 total crystals. One of the exceptions is 4-hydroxythiophene-2-carbonitrile, for which the experimental structure was correctly identified once a quasi-harmonic estimate of the vibrational free-energy contribution was included, evidencing the occasional importance of thermal corrections for accurate energy ranking. The other exception is an organic salt, where charge-transfer error (also called delocalization error) is expected to cause the base density functional to be unreliable. Provided the choice of base density functional is appropriate and an estimate of temperature effects is used, XDM-corrected density-functional theory is highly reliable for the energetic ranking of competing crystal structures.

  17. On the energy components governing molecular recognition in the framework of continuum approaches.

    PubMed

    Li, Lin; Wang, Lin; Alexov, Emil

    2015-01-01

    Molecular recognition is a process that brings together several biological macromolecules to form a complex and one of the most important characteristics of the process is the binding free energy. Various approaches exist to model the binding free energy, provided the knowledge of the 3D structures of bound and unbound molecules. Among them, continuum approaches are quite appealing due to their computational efficiency while at the same time providing predictions with reasonable accuracy. Here we review recent developments in the field emphasizing on the importance of adopting adequate description of physical processes taking place upon the binding. In particular, we focus on the efforts aiming at capturing some of the atomistic details of the binding phenomena into the continuum framework. When possible, the energy components are reviewed independently of each other. However, it is pointed out that rigorous approaches should consider all energy contributions on the same footage. The two major schemes for utilizing the individual energy components to predict binding affinity are outlined as well.

  18. The reorganization energy of electron transfer in nonpolar solvents: Molecular level treatment of the solvent

    NASA Astrophysics Data System (ADS)

    Leontyev, I. V.; Tachiya, M.

    2005-12-01

    The intermolecular electron transfer in a solute pair consisting of pyrene and dimethylaniline is investigated in a nonpolar solvent, n-hexane. The earlier elaborated approach [M. Tachiya, J. Phys Chem. 97, 5911 (1993)] is used; this method provides a physically relevant background for separating inertial and inertialess polarization responses for both nonpolarizable and polarizable molecular level simulations. The molecular-dynamics technique was implemented for obtaining the equilibrium ensemble of solvent configurations. The nonpolar solvent, n-hexane, was treated in terms of OPLS-AA parametrization. Solute Lennard-Jones parameters were taken from the same parametrization. Solute charge distributions of the initial and final states were determined using ab initio level [HF/6-31G(d,p)] quantum-chemical calculations. Configuration analysis was performed explicitly taking into account the anisotropic polarizability of n-hexane. It is shown that the Gaussian law well describes calculated distribution functions of the solvent coordinate, therefore, the rate constant of the ET reaction can be characterized by the reorganization energy. Evaluated values of the reorganization energies are in a range of 0.03-0.11 eV and significant contribution (more then 40% of magnitude) comes from anisotropic polarizability. Investigation of the reorganization energy λ dependence on the solute pair separation distance d revealed unexpected behavior. The dependence has a very sharp peak at the distance d =7Å where solvent molecules are able to penetrate into the intermediate space between the solute pair. The reason for such behavior is clarified. This new effect has a purely molecular origin and cannot be described within conventional continuum solvent models.

  19. The reorganization energy of electron transfer in nonpolar solvents: Molecular level treatment of the solvent

    SciTech Connect

    Leontyev, I.V.; Tachiya, M.

    2005-12-08

    The intermolecular electron transfer in a solute pair consisting of pyrene and dimethylaniline is investigated in a nonpolar solvent, n-hexane. The earlier elaborated approach [M. Tachiya, J. Phys Chem. 97, 5911 (1993)] is used; this method provides a physically relevant background for separating inertial and inertialess polarization responses for both nonpolarizable and polarizable molecular level simulations. The molecular-dynamics technique was implemented for obtaining the equilibrium ensemble of solvent configurations. The nonpolar solvent, n-hexane, was treated in terms of OPLS-AA parametrization. Solute Lennard-Jones parameters were taken from the same parametrization. Solute charge distributions of the initial and final states were determined using ab initio level [HF/6-31G(d,p)] quantum-chemical calculations. Configuration analysis was performed explicitly taking into account the anisotropic polarizability of n-hexane. It is shown that the Gaussian law well describes calculated distribution functions of the solvent coordinate, therefore, the rate constant of the ET reaction can be characterized by the reorganization energy. Evaluated values of the reorganization energies are in a range of 0.03-0.11 eV and significant contribution (more then 40% of magnitude) comes from anisotropic polarizability. Investigation of the reorganization energy {lambda} dependence on the solute pair separation distance d revealed unexpected behavior. The dependence has a very sharp peak at the distance d=7 A where solvent molecules are able to penetrate into the intermediate space between the solute pair. The reason for such behavior is clarified. This new effect has a purely molecular origin and cannot be described within conventional continuum solvent models.

  20. Molecular structure and analytical potential energy function of SeCO

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Tian, Duan-Liang; Yan, Shi-Ying

    2014-09-01

    The density functional method (B3P86/6-311G) is used for calculating the possible structures of SeC, SeO, and SeCO molecules. The result shows that the ground state of the SeC molecule is 1Σ, the equilibrium nuclear distance is RSeC = 0.1699 nm, and the dissociation energy is De = 8.7246 eV. The ground state of the SeO molecule is 3Σ, with equilibrium nuclear distance RSeO = 0.1707 nm and dissociation energy De = 7.0917 eV. There are two structures for the ground state of the SeCO molecule: Se=C=O and Se=O=C. The linear Se=C=O is 1Σ. Its equilibrium nuclear distances and dissociation energy are RSeC = 0.1715 nm, RCO = 0.1176 nm and 18.8492 eV, respectively. The other structure Se=O=C is 1Σ. Its equilibrium nuclear distances and dissociation energy are RCO = 0.1168 nm, RSeO = 0.1963 nm and 15.5275 eV, respectively. The possible dissociative limit of the SeCO molecule is analyzed. The potential energy function for the SeCO molecule has been obtained from the many-body expansion theory. The contour of the potential energy curve describes the structure characters of the SeCO molecule. Furthermore, contours of the molecular stretching vibration based on this potential energy function are discussed.

  1. Assessment and Validation of Machine Learning Methods for Predicting Molecular Atomization Energies.

    PubMed

    Hansen, Katja; Montavon, Grégoire; Biegler, Franziska; Fazli, Siamac; Rupp, Matthias; Scheffler, Matthias; von Lilienfeld, O Anatole; Tkatchenko, Alexandre; Müller, Klaus-Robert

    2013-08-13

    The accurate and reliable prediction of properties of molecules typically requires computationally intensive quantum-chemical calculations. Recently, machine learning techniques applied to ab initio calculations have been proposed as an efficient approach for describing the energies of molecules in their given ground-state structure throughout chemical compound space (Rupp et al. Phys. Rev. Lett. 2012, 108, 058301). In this paper we outline a number of established machine learning techniques and investigate the influence of the molecular representation on the methods performance. The best methods achieve prediction errors of 3 kcal/mol for the atomization energies of a wide variety of molecules. Rationales for this performance improvement are given together with pitfalls and challenges when applying machine learning approaches to the prediction of quantum-mechanical observables.

  2. Total synthesis of interstellar chemical compounds by high energy molecular beam bombardment on pure graphite

    NASA Astrophysics Data System (ADS)

    Devienne, F. M.; Teisseire, M.

    1985-06-01

    The objective of this paper is to show a possibility of forming interstellar molecules detected in the interstellar space by bombarding a carbon target or graphite grains with high energy neutrals. The authors have bombarded pure graphite in the ultra-vacuum with high energy molecular beams (from 2 to 10 keV) obtained by charge exchange from ion beams of hydrogen, oxygen, or nitrogen. They have observed many organic compounds: binary compounds like hydrogen carbides, ternary compounds containing carbon, nitrogen, oxygen or hydrogen, and finally, quaternary compounds. They also have obtained cyanopolyynes and organic molecules which had previously been observed in the interstellar space. So far, they have identified thirty-two compounds corresponding to molecules observed in the interstellar space and about forty containing only carbon, hydrogen, nitrogen and oxygen.

  3. Molecular Dynamics Simulation Study on Energy Exchange Between Vibration Modes of a Square Graphene Nanoflake Oscillator.

    PubMed

    Lee, Eunae; Kang, Jeong Won; Kim, Ki-Sub; Kwon, Oh-Kuen

    2016-02-01

    Superlubricity in nanoscale graphene structures has been of interest for developing graphene-based nanoelectromechanical systems, as well as for the study of basic mechanical properties. Here, we investigated the translational and rotational motions of a square graphene nanoflake with retracting motions by performing classical molecular dynamics simulations. Our results show that the kinetic energy of the translational motion was exchanged into the kinetic energy of the rotational motion. Thus, square graphene nanoflake oscillators have very low quality factors in translational motions. We discuss that square graphene nanoflakes have great potential to be a core component in nanoelectromechanical systems by detecting their motions with ultrahigh sensitivity to facilitate the development of sensor, memory, and quantum computing.

  4. Adaptive free energy sampling in multidimensional collective variable space using boxed molecular dynamics.

    PubMed

    O'Connor, Mike; Paci, Emanuele; McIntosh-Smith, Simon; Glowacki, David R

    2016-12-22

    The past decade has seen the development of a new class of rare event methods in which molecular configuration space is divided into a set of boundaries/interfaces, and then short trajectories are run between boundaries. For all these methods, an important concern is how to generate boundaries. In this paper, we outline an algorithm for adaptively generating boundaries along a free energy surface in multi-dimensional collective variable (CV) space, building on the boxed molecular dynamics (BXD) rare event algorithm. BXD is a simple technique for accelerating the simulation of rare events and free energy sampling which has proven useful for calculating kinetics and free energy profiles in reactive and non-reactive molecular dynamics (MD) simulations across a range of systems, in both NVT and NVE ensembles. Two key developments outlined in this paper make it possible to automate BXD, and to adaptively map free energy and kinetics in complex systems. First, we have generalized BXD to multidimensional CV space. Using strategies from rigid-body dynamics, we have derived a simple and general velocity-reflection procedure that conserves energy for arbitrary collective variable definitions in multiple dimensions, and show that it is straightforward to apply BXD to sampling in multidimensional CV space so long as the Cartesian gradients ∇CV are available. Second, we have modified BXD to undertake on-the-fly statistical analysis during a trajectory, harnessing the information content latent in the dynamics to automatically determine boundary locations. Such automation not only makes BXD considerably easier to use; it also guarantees optimal boundaries, speeding up convergence. We have tested the multidimensional adaptive BXD procedure by calculating the potential of mean force for a chemical reaction recently investigated using both experimental and computational approaches - i.e., F + CD3CN → DF + D2CN in both the gas phase and a strongly coupled explicit CD3CN solvent

  5. Molecularly Engineered Azobenzene Derivatives for High Energy Density Solid-State Solar Thermal Fuels.

    PubMed

    Cho, Eugene N; Zhitomirsky, David; Han, Grace G D; Liu, Yun; Grossman, Jeffrey C

    2017-03-15

    Solar thermal fuels (STFs) harvest and store solar energy in a closed cycle system through conformational change of molecules and can release the energy in the form of heat on demand. With the aim of developing tunable and optimized STFs for solid-state applications, we designed three azobenzene derivatives functionalized with bulky aromatic groups (phenyl, biphenyl, and tert-butyl phenyl groups). In contrast to pristine azobenzene, which crystallizes and makes nonuniform films, the bulky azobenzene derivatives formed uniform amorphous films that can be charged and discharged with light and heat for many cycles. Thermal stability of the films, a critical metric for thermally triggerable STFs, was greatly increased by the bulky functionalization (up to 180 °C), and we were able to achieve record high energy density of 135 J/g for solid-state STFs, over a 30% improvement compared to previous solid-state reports. Furthermore, the chargeability in the solid state was improved, up to 80% charged from 40% charged in previous solid-state reports. Our results point toward molecular engineering as an effective method to increase energy storage in STFs, improve chargeability, and improve the thermal stability of the thin film.

  6. Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Zhao, Jia; Wang, Qi

    2017-03-01

    The Molecular Beam Epitaxial model is derived from the variation of a free energy, that consists of either a fourth order Ginzburg-Landau double well potential or a nonlinear logarithmic potential in terms of the gradient of a height function. One challenge in solving the MBE model numerically is how to develop proper temporal discretization for the nonlinear terms in order to preserve energy stability at the time-discrete level. In this paper, we resolve this issue by developing a first and second order time-stepping scheme based on the "Invariant Energy Quadratization" (IEQ) method. The novelty is that all nonlinear terms are treated semi-explicitly, and the resulted semi-discrete equations form a linear system at each time step. Moreover, the linear operator is symmetric positive definite and thus can be solved efficiently. We then prove that all proposed schemes are unconditionally energy stable. The semi-discrete schemes are further discretized in space using finite difference methods and implemented on GPUs for high-performance computing. Various 2D and 3D numerical examples are presented to demonstrate stability and accuracy of the proposed schemes.

  7. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    DOE PAGES

    Petersen, B. A.; Liu, B.; Weber, W. J.; ...

    2017-01-11

    In this paper, low-energy recoil events in MgO are studied using ab initio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for Omore » along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. Finally, there is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.« less

  8. Organic Semiconductors: A Molecular Picture of the Charge-Transport and Energy-Transport Processes.

    NASA Astrophysics Data System (ADS)

    Brédas, Jean-Luc

    2007-03-01

    Conjugated organic oligomer and polymer materials are being increasingly considered for their incorporation as the active semiconductor elements in devices such as photo-voltaic cells, light-emitting diodes, or field-effects transistors. In the operation of these devices, electron-transfer and energy-transfer processes play a key role, for instance in the form of charge transport (in the bulk or across interfaces), energy transport, charge separation, or charge recombination [1]. Here, we provide a theoretical description of electron-transfer phenomena based on electron-transfer theory, which allows us to provide a molecular, chemically-oriented understanding. In this presentation, we focus on the parameters that impact the mobility of charge carriers [2], that is the electronic coupling within chains and between adjacent chains and the reorganization energy of the chains upon ionization. Materials under study include conjugated oligomers such as oligoacenes, oligothiophene-acenes, oligothiophenes, and oligothienacenes. [1] J.L. Br'edas, D. Beljonne, V. Coropceanu, and J. Cornil, ``Charge-Transfer and Energy-Transfer Processes in pi-Conjugated Oligomers and Polymers'', Chemical Reviews, 104, 4971-5004 (2004). [2] V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.L. Br'edas, ``Charge Transport in Organic Semiconductors'', Chemical Reviews, 107, xxx (2007).

  9. Ab initio molecular dynamics simulations of low energy recoil events in MgO

    NASA Astrophysics Data System (ADS)

    Petersen, B. A.; Liu, B.; Weber, W. J.; Zhang, Y.

    2017-04-01

    Low-energy recoil events in MgO are studied using ab intio molecular dynamics simulations to reveal the dynamic displacement processes and final defect configurations. Threshold displacement energies, Ed, are obtained for Mg and O along three low-index crystallographic directions, [100], [110], and [111]. The minimum values for Ed are found along the [110] direction consisting of the same element, either Mg or O atoms. Minimum threshold values of 29.5 eV for Mg and 25.5 eV for O, respectively, are suggested from the calculations. For other directions, the threshold energies are considerably higher, 65.5 and 150.0 eV for O along [111] and [100], and 122.5 eV for Mg along both [111] and [100] directions, respectively. These results show that the recoil events in MgO are partial-charge transfer assisted processes where the charge transfer plays an important role. There is a similar trend found in other oxide materials, where the threshold displacement energy correlates linearly with the peak partial-charge transfer, suggesting this behavior might be universal in ceramic oxides.

  10. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations.

    PubMed

    Bell, David R; Cheng, Sara Y; Salazar, Heber; Ren, Pengyu

    2017-04-10

    We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R(2) = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3-4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes).

  11. Modeling Molecular Interactions in Water: From Pairwise to Many-Body Potential Energy Functions.

    PubMed

    Cisneros, Gerardo Andrés; Wikfeldt, Kjartan Thor; Ojamäe, Lars; Lu, Jibao; Xu, Yao; Torabifard, Hedieh; Bartók, Albert P; Csányi, Gábor; Molinero, Valeria; Paesani, Francesco

    2016-07-13

    Almost 50 years have passed from the first computer simulations of water, and a large number of molecular models have been proposed since then to elucidate the unique behavior of water across different phases. In this article, we review the recent progress in the development of analytical potential energy functions that aim at correctly representing many-body effects. Starting from the many-body expansion of the interaction energy, specific focus is on different classes of potential energy functions built upon a hierarchy of approximations and on their ability to accurately reproduce reference data obtained from state-of-the-art electronic structure calculations and experimental measurements. We show that most recent potential energy functions, which include explicit short-range representations of two-body and three-body effects along with a physically correct description of many-body effects at all distances, predict the properties of water from the gas to the condensed phase with unprecedented accuracy, thus opening the door to the long-sought "universal model" capable of describing the behavior of water under different conditions and in different environments.

  12. Hydration free energies of cyanide and hydroxide ions from molecular dynamics simulations with accurate force fields

    USGS Publications Warehouse

    Lee, M.W.; Meuwly, M.

    2013-01-01

    The evaluation of hydration free energies is a sensitive test to assess force fields used in atomistic simulations. We showed recently that the vibrational relaxation times, 1D- and 2D-infrared spectroscopies for CN(-) in water can be quantitatively described from molecular dynamics (MD) simulations with multipolar force fields and slightly enlarged van der Waals radii for the C- and N-atoms. To validate such an approach, the present work investigates the solvation free energy of cyanide in water using MD simulations with accurate multipolar electrostatics. It is found that larger van der Waals radii are indeed necessary to obtain results close to the experimental values when a multipolar force field is used. For CN(-), the van der Waals ranges refined in our previous work yield hydration free energy between -72.0 and -77.2 kcal mol(-1), which is in excellent agreement with the experimental data. In addition to the cyanide ion, we also study the hydroxide ion to show that the method used here is readily applicable to similar systems. Hydration free energies are found to sensitively depend on the intermolecular interactions, while bonded interactions are less important, as expected. We also investigate in the present work the possibility of applying the multipolar force field in scoring trajectories generated using computationally inexpensive methods, which should be useful in broader parametrization studies with reduced computational resources, as scoring is much faster than the generation of the trajectories.

  13. Capturing RNA Folding Free Energy with Coarse-Grained Molecular Dynamics Simulations

    PubMed Central

    Bell, David R.; Cheng, Sara Y.; Salazar, Heber; Ren, Pengyu

    2017-01-01

    We introduce a coarse-grained RNA model for molecular dynamics simulations, RACER (RnA CoarsE-gRained). RACER achieves accurate native structure prediction for a number of RNAs (average RMSD of 2.93 Å) and the sequence-specific variation of free energy is in excellent agreement with experimentally measured stabilities (R2 = 0.93). Using RACER, we identified hydrogen-bonding (or base pairing), base stacking, and electrostatic interactions as essential driving forces for RNA folding. Also, we found that separating pairing vs. stacking interactions allowed RACER to distinguish folded vs. unfolded states. In RACER, base pairing and stacking interactions each provide an approximate stability of 3–4 kcal/mol for an A-form helix. RACER was developed based on PDB structural statistics and experimental thermodynamic data. In contrast with previous work, RACER implements a novel effective vdW potential energy function, which led us to re-parameterize hydrogen bond and electrostatic potential energy functions. Further, RACER is validated and optimized using a simulated annealing protocol to generate potential energy vs. RMSD landscapes. Finally, RACER is tested using extensive equilibrium pulling simulations (0.86 ms total) on eleven RNA sequences (hairpins and duplexes). PMID:28393861

  14. Zero-Point Energy Leakage in Quantum Thermal Bath Molecular Dynamics Simulations.

    PubMed

    Brieuc, Fabien; Bronstein, Yael; Dammak, Hichem; Depondt, Philippe; Finocchi, Fabio; Hayoun, Marc

    2016-12-13

    The quantum thermal bath (QTB) has been presented as an alternative to path-integral-based methods to introduce nuclear quantum effects in molecular dynamics simulations. The method has proved to be efficient, yielding accurate results for various systems. However, the QTB method is prone to zero-point energy leakage (ZPEL) in highly anharmonic systems. This is a well-known problem in methods based on classical trajectories where part of the energy of the high-frequency modes is transferred to the low-frequency modes leading to a wrong energy distribution. In some cases, the ZPEL can have dramatic consequences on the properties of the system. Thus, we investigate the ZPEL by testing the QTB method on selected systems with increasing complexity in order to study the conditions and the parameters that influence the leakage. We also analyze the consequences of the ZPEL on the structural and vibrational properties of the system. We find that the leakage is particularly dependent on the damping coefficient and that increasing its value can reduce and, in some cases, completely remove the ZPEL. When using sufficiently high values for the damping coefficient, the expected energy distribution among the vibrational modes is ensured. In this case, the QTB method gives very encouraging results. In particular, the structural properties are well-reproduced. The dynamical properties should be regarded with caution although valuable information can still be extracted from the vibrational spectrum, even for large values of the damping term.

  15. A comparative study of density functional models to estimate molecular atomization energies

    NASA Astrophysics Data System (ADS)

    Clementi, Enrico; Chakravorty, Subhas J.

    1990-08-01

    In the present study the molecular atomization energies have been computed with some of the recent density functionals and with a semiempirical model developed in the IBM laboratory. In particular, the Lie-Clementi (LC), the Colle-Salvetti (CS), the Gunnarson-Lundqvist (GL), the Vosko, Wilk, and Nusair (VWN), the Perdew-Zunger (PZ), the Becke (B), and the Lee, Yang, and Parr (LYP) functionals have been considered. For GL and VWN the self-interaction correction of Stoll, Pavlidou, and Preuss (SPP) has been included. For the PZ the gradient correction of Perdew has been included. For the LYP a new and simpler form as proposed by Michlich et al. has been implemented. More than 50 small to fairly large molecules have been chosen at test cases. The results obtained with the present semiempirical model are gratifying and indicate that further improvement and calibration is still possible. From the computed data it is concluded that the density functionals in most cases do provide a pragmatic solution to the determination molecular atomization energy.

  16. Minor Groove Deformability of DNA: A Molecular Dynamics Free Energy Simulation Study

    PubMed Central

    Zacharias, Martin

    2006-01-01

    The conformational deformability of nucleic acids can influence their function and recognition by proteins. A class of DNA binding proteins including the TATA box binding protein binds to the DNA minor groove, resulting in an opening of the minor groove and DNA bending toward the major groove. Explicit solvent molecular dynamics simulations in combination with the umbrella sampling approach have been performed to investigate the molecular mechanism of DNA minor groove deformations and the indirect energetic contribution to protein binding. As a reaction coordinate, the distance between backbone segments on opposite strands was used. The resulting deformed structures showed close agreement with experimental DNA structures in complex with minor groove-binding proteins. The calculated free energy of minor groove deformation was ∼4–6 kcal mol−1 in the case of a central TATATA sequence. A smaller equilibrium minor groove width and more restricted minor groove mobility was found for the central AAATTT and also a significantly (∼2 times) larger free energy change for opening the minor groove. The helical parameter analysis of trajectories indicates that an easier partial unstacking of a central TA versus AT basepair step is a likely reason for the larger groove flexibility of the central TATATA case. PMID:16698780

  17. Large-scale molecular dynamics simulation: Effect of polarization on thrombin-ligand binding energy

    PubMed Central

    Duan, Li L.; Feng, Guo Q.; Zhang, Qing G.

    2016-01-01

    Molecular dynamics (MD) simulations lasting 500 ns were performed in explicit water to investigate the effect of polarization on the binding of ligands to human α-thrombin based on the standard nonpolarizable AMBER force field and the quantum-derived polarized protein-specific charge (PPC). The PPC includes the electronic polarization effect of the thrombin-ligand complex, which is absent in the standard force field. A detailed analysis and comparison of the results of the MD simulation with experimental data provided strong evidence that intra-protein, protein-ligand hydrogen bonds and the root-mean-square deviation of backbone atoms were significantly stabilized through electronic polarization. Specifically, two critical hydrogen bonds between thrombin and the ligand were broken at approximately 190 ns when AMBER force field was used and the number of intra-protein backbone hydrogen bonds was higher under PPC than under AMBER. The thrombin-ligand binding energy was computed using the molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method, and the results were consistent with the experimental value obtained using PPC. Because hydrogen bonds were unstable, it was failed to predict the binding affinity under the AMBER force field. Furthermore, the results of the present study revealed that differences in the binding free energy between AMBER and PPC almost comes from the electrostatic interaction. Thus, this study provides evidence that protein polarization is critical to accurately describe protein-ligand binding. PMID:27507430

  18. Energy distributions of atomic and molecular ions sputtered by C 60+ projectiles

    NASA Astrophysics Data System (ADS)

    Delcorte, A.; Poleunis, C.; Bertrand, P.

    2006-07-01

    In the process of investigating the interaction of fullerene projectiles with adsorbed organic layers, we measured the kinetic energy distributions (KEDs) of fragment and parent ions sputtered from an overlayer of polystyrene (PS) oligomers cast on silver under 15 keV C 60+ bombardment. These measurements have been conducted using our TRIFT™ spectrometer, recently equipped with the C 60+ source developed by Ionoptika, Ltd. For atomic ions, the intensity corresponding to the high energy tail decreases in the following order: C +( E-0.4) > H +( E-1.5) > Ag +( E-3.5). In particular, the distribution of Ag + is not broader than those of Ag 2+ and Ag 3+ clusters, in sharp contrast with 15 keV Ga + bombardment. On the other hand, molecular ions (fragments and parent-like species) exhibit a significantly wider distribution using C 60+ instead of Ga + as primary ions. For instance, the KED of Ag-cationized PS oligomers resembles that of Ag + and Ag n+ clusters. A specific feature of fullerene projectiles is that they induce the direct desorption of positively charged oligomers, without the need of a cationizing metal atom. The energy spectrum of these PS + ions is significantly narrower then that of Ag-cationized oligomers. For characteristic fragments of PS, such as C 7H 7+ and C 15H 13+ and polycyclic fragments, such as C 9H 7+ and C 14H 10+, the high energy decay is steep ( E-4 - E-8). In addition, reorganized ions generally show more pronounced high energy tails than characteristic ions, similar to the case of monoatomic ion bombardment. This observation is consistent with the higher excitation energy needed for their formation. Finally, the fraction of hydrocarbon ions formed in the gas phase via unimolecular dissociation of larger species is slightly larger with gallium than with fullerene projectiles.

  19. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    NASA Astrophysics Data System (ADS)

    Lau, Gabriel V.; Hunt, Patricia A.; Müller, Erich A.; Jackson, George; Ford, Ian J.

    2015-12-01

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  20. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics

    SciTech Connect

    Lau, Gabriel V.; Müller, Erich A.; Jackson, George; Hunt, Patricia A.; Ford, Ian J.

    2015-12-28

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the “mitosis” or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  1. Water droplet excess free energy determined by cluster mitosis using guided molecular dynamics.

    PubMed

    Lau, Gabriel V; Hunt, Patricia A; Müller, Erich A; Jackson, George; Ford, Ian J

    2015-12-28

    Atmospheric aerosols play a vital role in affecting climate by influencing the properties and lifetimes of clouds and precipitation. Understanding the underlying microscopic mechanisms involved in the nucleation of aerosol droplets from the vapour phase is therefore of great interest. One key thermodynamic quantity in nucleation is the excess free energy of cluster formation relative to that of the saturated vapour. In our current study, the excess free energy is extracted for clusters of pure water modelled with the TIP4P/2005 intermolecular potential using a method based on nonequilibrium molecular dynamics and the Jarzynski relation. The change in free energy associated with the "mitosis" or division of a cluster of N water molecules into two N/2 sub-clusters is evaluated. This methodology is an extension of the disassembly procedure used recently to calculate the excess free energy of argon clusters [H. Y. Tang and I. J. Ford, Phys. Rev. E 91, 023308 (2015)]. Our findings are compared to the corresponding excess free energies obtained from classical nucleation theory (CNT) as well as internally consistent classical theory (ICCT). The values of the excess free energy that we obtain with the mitosis method are consistent with CNT for large cluster sizes but for the smallest clusters, the results tend towards ICCT; for intermediate sized clusters, we obtain values between the ICCT and CNT predictions. Furthermore, the curvature-dependent surface tension which can be obtained by regarding the clusters as spherical droplets of bulk density is found to be a monotonically increasing function of cluster size for the studied range. The data are compared to other values reported in the literature, agreeing qualitatively with some but disagreeing with the values determined by Joswiak et al. [J. Phys. Chem. Lett. 4, 4267 (2013)] using a biased mitosis approach; an assessment of the differences is the main motivation for our current study.

  2. Aqueous Cation-Amide Binding: Free Energies and IR Spectral Signatures by Ab Initio Molecular Dynamics

    SciTech Connect

    Pluharova, Eva; Baer, Marcel D.; Mundy, Christopher J.; Schmidt, Burkhard; Jungwirth, Pavel

    2014-07-03

    Understanding specific ion effects on proteins remains a considerable challenge. N-methylacetamide serves as a useful proxy for the protein backbone that can be well characterized both experimentally and theoretically. The spectroscopic signatures in the amide I band reflecting the strength of the interaction of alkali cations and alkali earth dications with the carbonyl group remain difficult to assign and controversial to interpret. Herein, we directly compute the IR shifts corresponding to the binding of either sodium or calcium to aqueous N-methylacetamide using ab initio molecular dynamics simulations. We show that the two cations interact with aqueous N-methylacetamide with different affinities and in different geometries. Since sodium exhibits a weak interaction with the carbonyl group, the resulting amide I band is similar to an unperturbed carbonyl group undergoing aqueous solvation. In contrast, the stronger calcium binding results in a clear IR shift with respect to N-methylacetamide in pure water. Support from the Czech Ministry of Education (grant LH12001) is gratefully acknowledged. EP thanks the International Max-Planck Research School for support and the Alternative Sponsored Fellowship program at Pacific Northwest National Laboratory (PNNL). PJ acknowledges the Praemium Academie award from the Academy of Sciences. Calculations of the free energy profiles were made possible through generous allocation of computer time from the North-German Supercomputing Alliance (HLRN). Calculations of vibrational spectra were performed in part using the computational resources in the National Energy Research Supercomputing Center (NERSC) at Lawrence Berkeley National Laboratory. This work was supported by National Science Foundation grant CHE-0431312. CJM is supported by the U.S. Department of Energy`s (DOE) Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Biosciences. PNNL is operated for the Department of Energy by Battelle. MDB is

  3. Statistical Characterization of Medium-Duty Electric Vehicle Drive Cycles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Prohaska, R.; Duran, A.; Ragatz, A.; Kelly, K.

    2015-05-03

    With funding from the U.S. Department of Energy’s Vehicle Technologies Office, the National Renewable Energy Laboratory (NREL) conducts real-world performance evaluations of advanced medium- and heavy-duty fleet vehicles. Evaluation results can help vehicle manufacturers fine-tune their designs and assist fleet managers in selecting fuel-efficient, low-emission vehicles that meet their economic and operational goals. In 2011, NREL launched a large-scale performance evaluation of medium-duty electric vehicles. With support from vehicle manufacturers Smith and Navistar, NREL research focused on characterizing vehicle operation and drive cycles for electric delivery vehicles operating in commercial service across the nation.

  4. Voids as alternatives to dark energy and the propagation of γ rays through the universe.

    PubMed

    DeLavallaz, Arnaud; Fairbairn, Malcolm

    2012-04-27

    We test the opacity of a void universe to TeV energy γ rays having obtained the extragalactic background light in that universe using a simple model and the observed constraints on the star formation rate history. We find that the void universe has significantly more opacity than a Λ cold dark matter universe, putting it at odds with observations of BL-Lac objects. We argue that while this method of distinguishing between the two cosmologies contains uncertainties, it circumvents any debates over fine-tuning.

  5. Free molecular collision cross section calculation methods for nanoparticles and complex ions with energy accommodation

    SciTech Connect

    Larriba, Carlos Hogan, Christopher J.

    2013-10-15

    The structures of nanoparticles, macromolecules, and molecular clusters in gas phase environments are often studied via measurement of collision cross sections. To directly compare structure models to measurements, it is hence necessary to have computational techniques available to calculate the collision cross sections of structural models under conditions matching measurements. However, presently available collision cross section methods contain the underlying assumption that collision between gas molecules and structures are completely elastic (gas molecule translational energy conserving) and specular, while experimental evidence suggests that in the most commonly used background gases for measurements, air and molecular nitrogen, gas molecule reemission is largely inelastic (with exchange of energy between vibrational, rotational, and translational modes) and should be treated as diffuse in computations with fixed structural models. In this work, we describe computational techniques to predict the free molecular collision cross sections for fixed structural models of gas phase entities where inelastic and non-specular gas molecule reemission rules can be invoked, and the long range ion-induced dipole (polarization) potential between gas molecules and a charged entity can be considered. Specifically, two calculation procedures are described detail: a diffuse hard sphere scattering (DHSS) method, in which structures are modeled as hard spheres and collision cross sections are calculated for rectilinear trajectories of gas molecules, and a diffuse trajectory method (DTM), in which the assumption of rectilinear trajectories is relaxed and the ion-induced dipole potential is considered. Collision cross section calculations using the DHSS and DTM methods are performed on spheres, models of quasifractal aggregates of varying fractal dimension, and fullerene like structures. Techniques to accelerate DTM calculations by assessing the contribution of grazing gas

  6. Specific survivin dual fluorescence resonance energy transfer molecular beacons for detection of human bladder cancer cells

    PubMed Central

    Wang, Zhi-qiang; Zhao, Jun; Zeng, Jin; Wu, Kai-jie; Chen, Yu-le; Wang, Xin-yang; Chang, Luke S; He, Da-lin

    2011-01-01

    Aim: Survivin molecular beacons can be used to detect bladder cancer cells in urine samples non-invasively. The aim of this study is to improve the specificity of detection of bladder cancer cells using survivin dual fluorescence resonance energy transfer molecular beacons (FRET MBs) that have fluorophores forming one donor-acceptor pair. Methods: Survivin-targeting dual fluorescence resonance energy transfer molecular beacons with unique target sequences were designed, which had no overlap with the other genes in the apoptosis inhibitor protein family. Human bladder cancer cell lines 5637, 253J and T24, as well as the exfoliated cells in the urine of healthy adults and patients with bladder cancer were examined. Images of cells were taken using a laser scanning confocal fluorescence microscope. For assays using dual FRET MBs, the excitation wavelength was 488 nm, and the emission detection wavelengths were 520±20 nm and 560±20 nm, respectively. Results: The human bladder cancer cell lines and exfoliated cells in the urine of patients with bladder cancer incubated with the survivin dual FRET MBs exhibited strong fluorescence signals. In contrast, no fluorescence was detected in the survivin-negative human dermal fibroblasts-adult (HDF-a) cells or exfoliated cells in the urine of healthy adults incubated with the survivin dual FRET MBs. Conclusion: The results suggest that the survivin dual FRET MBs may be used as a specific and non-invasive method for early detection and follow-up of patients with bladder cancer. PMID:22019956

  7. Grow₂: the HIF system, energy homeostasis and the cell cycle.

    PubMed

    Moniz, Sónia; Biddlestone, John; Rocha, Sónia

    2014-05-01

    Cell cycle progression is an energy demanding process and requires fine-tuned metabolic regulation. Cells must overcome an energy restriction checkpoint before becoming committed to progress through the cell cycle. Aerobic organisms need oxygen for the metabolic conversion of nutrients into energy. As such, environmental oxygen is a critical signalling molecule regulating cell fate. The Hypoxia Inducible Factors (HIFs) are a family of transcription factors that respond to changes in environmental oxygen and cell energy and coordinate a transcriptional program which forms an important part of the cellular response to a hostile environment. A significant proportion of HIF-dependent transcriptional target genes, code for proteins that are involved in energy homeostasis. In this review we discuss the role of the HIF system in the regulation of energy homeostasis in response to changes in environmental oxygen and the impact on cell cycle control, and address the implications of the deregulation of this effect in cancer.

  8. Fluorescent Resonance Energy Transfer: A Tool for Probing Molecular Cell-Biomaterial Interactions in Three Dimensions

    PubMed Central

    Huebsch, Nathaniel D.; Mooney, David J.

    2007-01-01

    The current paradigm in designing biomaterials is to optimize material chemical and physical parameters based on correlations between these parameters and downstream biological responses, whether in vitro or in vivo. Extensive developments in molecular design of biomaterials have facilitated identification of several biophysical and biochemical variables (e.g. adhesion peptide density, substrate elastic modulus) as being critical to cell response. However, these empirical observations do not indicate whether different parameters elicit cell responses by modulating redundant variables of the cell-material interface (e.g. number of cell-material bonds, cell-matrix mechanics). Recently, a molecular fluorescence technique, Fluorescence Resonance Energy Transfer (FRET) has been applied to quantitatively analyze parameters of the cell-material interface for both two and three-dimensional adhesion substrates. Tools based on FRET have been utilized to quantify several parameters of the cell-material interface relevant to cell response, including molecular changes in matrix proteins induced by interactions both with surfaces and cells, the number of bonds between integrins and their adhesion ligands, and changes in the crosslink density of hydrogel synthetic extracellular matrix analogs. As such techniques allow both dynamic and 3D analyses they will be useful to quantitatively relate downstream cellular responses (e.g. gene expression) to the composition of this interface. Such understanding will allow bioengineers to fully exploit the potential of biomaterials engineered on the molecular scale, by optimizing material chemical and physical properties to a measurable set of interfacial parameters known to elicit a predictable response in a specific cell population. This will facilitate the rational design of complex, multi-functional biomaterials used as model systems for studying diseases or for clinical applications. PMID:17270268

  9. Exploring the energy landscape of the charge transport levels in organic semiconductors at the molecular scale.

    PubMed

    Cornil, J; Verlaak, S; Martinelli, N; Mityashin, A; Olivier, Y; Van Regemorter, T; D'Avino, G; Muccioli, L; Zannoni, C; Castet, F; Beljonne, D; Heremans, P

    2013-02-19

    strongly interacting electron-hole pairs can potentially escape from their Coulomb well, a process that is at the heart of photoconversion or molecular doping. Yet they do, with near-quantitative yield in some cases. Limited screening by the low dielectric medium in organic materials leads to subtle static and dynamic electronic polarization effects that strongly impact the energy landscape for charges, which offers a rationale for this apparent inconsistency. In this Account, we use different theoretical approaches to predict the energy landscape of charge carriers at the molecular level and review a few case studies highlighting the role of electrostatic interactions in conjugated organic molecules. We describe the pros and cons of different theoretical approaches that provide access to the energy landscape defining the motion of charge carriers. We illustrate the applications of these approaches through selected examples involving OFETs, OLEDs, and solar cells. The three selected examples collectively show that energetic disorder governs device performances and highlights the relevance of theoretical tools to probe energy landscapes in molecular assemblies.

  10. Structural properties and interaction energies affecting drug design. An approach combining molecular simulations, statistics, interaction energies and neural networks.

    PubMed

    Ioannidis, Dimitris; Papadopoulos, Georgios E; Anastassopoulos, Georgios; Kortsaris, Alexandros; Anagnostopoulos, Konstantinos

    2015-06-01

    In order to elucidate some basic principles for protein-ligand interactions, a subset of 87 structures of human proteins with their ligands was obtained from the PDB databank. After a short molecular dynamics simulation (to ensure structure stability), a variety of interaction energies and structural parameters were extracted. Linear regression was performed to determine which of these parameters have a potentially significant contribution to the protein-ligand interaction. The parameters exhibiting relatively high correlation coefficients were selected. Important factors seem to be the number of ligand atoms, the ratio of N, O and S atoms to total ligand atoms, the hydrophobic/polar aminoacid ratio and the ratio of cavity size to the sum of ligand plus water atoms in the cavity. An important factor also seems to be the immobile water molecules in the cavity. Nine of these parameters were used as known inputs to train a neural network in the prediction of seven other. Eight structures were left out of the training to test the quality of the predictions. After optimization of the neural network, the predictions were fairly accurate given the relatively small number of structures, especially in the prediction of the number of nitrogen and sulfur atoms of the ligand.

  11. Molecular Dynamics Fingerprints (MDFP): Machine-Learning from MD Data to Predict Free-Energy Differences.

    PubMed

    Riniker, Sereina

    2017-04-03

    While the use of machine-learning (ML) techniques is well established in cheminformatics for the prediction of physicochemical properties and binding affinities, the training of ML models based on data from molecular dynamics (MD) simulations remains largely unexplored. Here, we present a fingerprint termed MDFP which is constructed from the distributions of properties such as potential-energy components, radius of gyration and solvent-accessible surface area extracted from MD simulations. The corresponding fingerprint elements are the first two statistical moments of the distributions and the median. By considering not only the average but also the spread of the distribution in the fingerprint, some degree of entropic information is encoded. Short MD simulations of the molecules in water (and in vacuum) are used to generate the MDFP. These are further combined with simple counts based on the 2D structure of the molecules into MDFP+. The resulting information-rich MDFP+ are used to train ML models for the prediction of solvation free energies in five different solvents (water, octanol, chloroform, hexadecane and cyclohexane) as well as partition coefficients in octanol/water, hexadecane/water and cyclohexane/water. The approach is easy to implement and computationally relatively inexpensive. Yet, it performs similarly well compared to more rigorous MD-based free-energy methods such as free-energy pertur- bation (FEP) as well as end-state methods such as linear interaction energy (LIE), the conductor-like screening model for realistic solvation (COSMO-RS) and the SMx family of solvation models.

  12. Configurational space discretization and free energy calculation in complex molecular systems

    PubMed Central

    Wang, Kai; Long, Shiyang; Tian, Pu

    2016-01-01

    We sought to design a free energy calculation scheme with the hope of saving cost for generating dynamical information that is inherent in trajectories. We demonstrated that snapshots in a converged trajectory set are associated with implicit conformers that have invariant statistical weight distribution (ISWD). Since infinite number of sets of implicit conformers with ISWD may be created through independent converged trajectory sets, we hypothesized that explicit conformers with ISWD may be constructed for complex molecular systems through systematic increase of conformer fineness, and tested the hypothesis in lipid molecule palmitoyloleoylphosphatidylcholine (POPC). Furthermore, when explicit conformers with ISWD were utilized as basic states to define conformational entropy, change of which between two given macrostates was found to be equivalent to change of free energy except a mere difference of a negative temperature factor, and change of enthalpy essentially cancels corresponding change of average intra-conformer entropy. By implicitly taking advantage of entropy enthalpy compensation and forgoing all dynamical information, constructing explicit conformers with ISWD and counting thermally accessible number of which for interested end macrostates is likely to be an efficient and reliable alternative end point free energy calculation strategy. PMID:26974524

  13. Molecular tailoring approach for geometry optimization of large molecules: energy evaluation and parallelization strategies.

    PubMed

    Ganesh, V; Dongare, Rameshwar K; Balanarayan, P; Gadre, Shridhar R

    2006-09-14

    A linear-scaling scheme for estimating the electronic energy, gradients, and Hessian of a large molecule at ab initio level of theory based on fragment set cardinality is presented. With this proposition, a general, cardinality-guided molecular tailoring approach (CG-MTA) for ab initio geometry optimization of large molecules is implemented. The method employs energy gradients extracted from fragment wave functions, enabling computations otherwise impractical on PC hardware. Further, the method is readily amenable to large scale coarse-grain parallelization with minimal communication among nodes, resulting in a near-linear speedup. CG-MTA is applied for density-functional-theory-based geometry optimization of a variety of molecules including alpha-tocopherol, taxol, gamma-cyclodextrin, and two conformations of polyglycine. In the tests performed, energy and gradient estimates obtained from CG-MTA during optimization runs show an excellent agreement with those obtained from actual computation. Accuracy of the Hessian obtained employing CG-MTA provides good hope for the application of Hessian-based geometry optimization to large molecules.

  14. On the energy conservation during the active deformation in molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Zhong, Zheng

    2015-04-01

    In this paper, we examined the energy conservation for the current schemes of applying active deformation in molecular dynamics (MD) simulations. Specifically, two methods are examined. One is scaling the dimension of the simulation box and the atom positions via an affine transformation, suitable for the periodic system. The other is moving the rigid walls that interact with the atoms in the system, suitable for the non-periodic system. Based on the calculation of the external work and the internal energy change, we present that the atom velocities also need to be updated in the first deformation method; otherwise the energy conservation cannot be satisfied. The classic updating scheme is examined, in which any atom crossing the periodic boundary experiences a velocity delta that is equal to the velocity difference between the opposite boundaries. In addition, a new scheme which scales the velocities of all the atoms according to the strain increment is proposed, which is more efficient and realistic than the classic scheme. It is also demonstrated that the Virial stress instead of its interaction part is the correct stress definition that corresponds to Cauchy stress in the continuum mechanics.

  15. Asymmetric energy transfer and optical diffraction in novel molecular glass with carbazole moiety

    NASA Astrophysics Data System (ADS)

    Tsutsumi, Naoto; Eguchi, Junya; Sakai, Wataru

    2006-12-01

    Asymmetric energy transfer and optical diffraction under optically interfered beams was presented in composites with novel star-shaped molecular glass end-caped by carbazole moiety, α,α',α″-tris-(4-(carbazoryl)- n-hexyloxyphenyl)-1,3,5-triisopropylbenzene (Tris). Composite consisted of Tris as host matrix, 2,4,7-trinitro-9-fluorenone (TNF) as a sensitizer, ( S)-(-)-1-(4-nitrophenyl)-2-pyrrolidine-methanol (NPP) as a nonlinear optical dye and either tricresyl phosphate (TCP), n-butyl benzyl phthalate (BBP), diphenyl phthalate (DPP), or dicyclohexyl phthalate (DCP) as a plasticizer. Asymmetric two beam coupling (asymmetric energy transfer) and beam diffraction were achieved with no external field. Glass transition temperature of the composites plays an important role for these phenomena of asymmetric energy transfer and optical diffraction with no external field. Highest net gain coefficient of 59.7 cm -1 with optical gain of 151.3 cm -1 and absorption coefficient of 91.6 cm -1 was obtained for Tris/NPP/DPP/TNF (35/20/40/5) composite. TNF anion produced by laser illumination plays a key role of beam diffraction and asymmetric two beam coupling in the composites.

  16. Aptamer-molecularly imprinted sensor base on electrogenerated chemiluminescence energy transfer for detection of lincomycin.

    PubMed

    Li, Shuhuai; Liu, Chunhua; Yin, Guihao; Zhang, Qun; Luo, Jinhui; Wu, Nanchun

    2017-05-15

    In this study, a biosensor with a dual recognition system comprising a molecularly imprinted polymer (MIP) and aptamers selective for lincomycin was fabricated. The MIP was synthesized by electropolymerization of carbon dots (C-dots)-tagged DNA aptamers combined with lincomycin and o-aminophenol on the gold-nanoparticle-functionalized graphene oxide (Au-GO)-modified electrode. Electrogenerated chemiluminescence (ECL) resonance energy transfer was observed between Au-GO and C-dots. After the C-dots accepted the energy, they acted as a signal indicator and exhibited enhanced signal intensity in the presence of target lincomycin. When lincomycin was competitively bound to DNA aptamers and MIP, it blocked the transfer of energy, and a decreased ECL signal was observed. Hence, a dual recognition method for the detection of lincomycin is realized. Using this strategy, the sensor exhibited a linear ECL response to lincomycin at concentrations from 5.0 × 10 (-12) mol/L to 1.0 × 10 (-9) mol/L. The detection limit of this assay was found to be 1.6 × 10 (-13) mol/L. This method was utilized to determine lincomycin residuals in meat samples with satisfactory results.

  17. Configurational space discretization and free energy calculation in complex molecular systems.

    PubMed

    Wang, Kai; Long, Shiyang; Tian, Pu

    2016-03-14

    We sought to design a free energy calculation scheme with the hope of saving cost for generating dynamical information that is inherent in trajectories. We demonstrated that snapshots in a converged trajectory set are associated with implicit conformers that have invariant statistical weight distribution (ISWD). Since infinite number of sets of implicit conformers with ISWD may be created through independent converged trajectory sets, we hypothesized that explicit conformers with ISWD may be constructed for complex molecular systems through systematic increase of conformer fineness, and tested the hypothesis in lipid molecule palmitoyloleoylphosphatidylcholine (POPC). Furthermore, when explicit conformers with ISWD were utilized as basic states to define conformational entropy, change of which between two given macrostates was found to be equivalent to change of free energy except a mere difference of a negative temperature factor, and change of enthalpy essentially cancels corresponding change of average intra-conformer entropy. By implicitly taking advantage of entropy enthalpy compensation and forgoing all dynamical information, constructing explicit conformers with ISWD and counting thermally accessible number of which for interested end macrostates is likely to be an efficient and reliable alternative end point free energy calculation strategy.

  18. Molecular tailoring approach for geometry optimization of large molecules: Energy evaluation and parallelization strategies

    NASA Astrophysics Data System (ADS)

    Ganesh, V.; Dongare, Rameshwar K.; Balanarayan, P.; Gadre, Shridhar R.

    2006-09-01

    A linear-scaling scheme for estimating the electronic energy, gradients, and Hessian of a large molecule at ab initio level of theory based on fragment set cardinality is presented. With this proposition, a general, cardinality-guided molecular tailoring approach (CG-MTA) for ab initio geometry optimization of large molecules is implemented. The method employs energy gradients extracted from fragment wave functions, enabling computations otherwise impractical on PC hardware. Further, the method is readily amenable to large scale coarse-grain parallelization with minimal communication among nodes, resulting in a near-linear speedup. CG-MTA is applied for density-functional-theory-based geometry optimization of a variety of molecules including α-tocopherol, taxol, γ-cyclodextrin, and two conformations of polyglycine. In the tests performed, energy and gradient estimates obtained from CG-MTA during optimization runs show an excellent agreement with those obtained from actual computation. Accuracy of the Hessian obtained employing CG-MTA provides good hope for the application of Hessian-based geometry optimization to large molecules.

  19. Energy corrugation in atomic-scale friction on graphite revisited by molecular dynamics simulations