Science.gov

Sample records for finely dispersed powders

  1. Dispersibility of lactose fines as compared to API in dry powders for inhalation.

    PubMed

    Thalberg, Kyrre; Åslund, Simon; Skogevall, Marcus; Andersson, Patrik

    2016-05-17

    This work investigates the dispersion performance of fine lactose particles as function of processing time, and compares it to the API, using Beclomethasone Dipropionate (BDP) as model API. The total load of fine particles is kept constant in the formulations while the proportions of API and lactose fines are varied. Fine particle assessment demonstrates that the lactose fines have higher dispersibility than the API. For standard formulations, processing time has a limited effect on the Fine Particle Fraction (FPF). For formulations containing magnesium stearate (MgSt), FPF of BDP is heavily influenced by processing time, with an initial increase, followed by a decrease at longer mixing times. An equation modeling the observed behavior is presented. Surprisingly, the dispersibility of the lactose fines present in the same formulation remains unaffected by mixing time. Magnesium analysis demonstrates that MgSt is transferred to the fine particles during the mixing process, thus lubrication both BDP and lactose fines, which leads to an increased FPF. Dry particle sizing of the formulations reveals a loss of fine particles at longer mixing times. Incorporation of fine particles into the carrier surfaces is believed to be behind this, and is hence a mechanism of importance as regards the dispersion performance of dry powders for inhalation.

  2. The impact of dispersion on selective laser melting of titanium and niobium fine powders mixture

    NASA Astrophysics Data System (ADS)

    Razin, A.; Ovchinnikov, V.; Akhmetshin, R.; Krinitcyn, M.; Fedorov, V.; Akhmetshina, V.

    2016-11-01

    This paper is dedicated to the study of selective laser melting process of metal powders. Experiments were performed in the Research Center Modern Manufacturing Technologies of TPU with the fine powders of titanium and niobium. The research was carried out on 3D laser printer designed at TPU. In the framework of experiments aimed at determining possibilities of obtaining niobium-titanium alloy by SLS (selective laser sintering) there were studied the basic processes of laser melting and their effect on the quality of final samples and products. We determined operation modes of 3D printers which allow obtaining high quality of printed sample surface. The research results show that rigid requirements related to powder dispersiveness and proportions are needed to achieve better quality of products.

  3. Granulation of fine powder

    DOEpatents

    Chen, Ching-Fong

    2016-08-09

    A mixture of fine powder including thorium oxide was converted to granulated powder by forming a first-green-body and heat treating the first-green-body at a high temperature to strengthen the first-green-body followed by granulation by crushing or milling the heat-treated first-green-body. The granulated powder was achieved by screening through a combination of sieves to achieve the desired granule size distribution. The granulated powder relies on the thermal bonding to maintain its shape and structure. The granulated powder contains no organic binder and can be stored in a radioactive or other extreme environment. The granulated powder was pressed and sintered to form a dense compact with a higher density and more uniform pore size distribution.

  4. Dustiness of Fine and Nanoscale Powders

    PubMed Central

    Evans, Douglas E.; Baron, Paul A.

    2013-01-01

    Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3–37.9% and 0.1–31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace. PMID:23065675

  5. Wetter for fine dry powder

    DOEpatents

    Hall, James E.; Williams, Everett H.

    1977-01-01

    A system for wetting fine dry powders such as bentonite clay with water or other liquids is described. The system includes a wetting tank for receiving water and a continuous flow of fine powder feed. The wetting tank has a generally square horizontal cross section with a bottom end closure in the shape of an inverted pyramid. Positioned centrally within the wetting tank is a flow control cylinder which is supported from the walls of the wetting tank by means of radially extending inclined baffles. A variable speed motor drives a first larger propeller positioned immediately below the flow control cylinder in a direction which forces liquid filling the tank to flow downward through the flow control cylinder and a second smaller propeller positioned below the larger propeller having a reverse pitch to oppose the flow of liquid being driven downward by the larger propeller.

  6. Magnetofluidization of fine magnetite powder.

    PubMed

    Valverde, J M; Espin, M J; Quintanilla, M A S; Castellanos, A

    2009-03-01

    The behavior of a fluidized bed of fine magnetite particles as affected by a cross-flow magnetic field is investigated. A distinct feature of this naturally cohesive powder, as compared to noncohesive magnetic grains usually employed in magnetofluidized beds, is that the fluidized bed displays a range of stable fluidization even in the absence of an external magnetic field. Upon application of the magnetic field, the interval of stable fluidization is extended to higher gas velocities and bed expansion is enhanced. We have measured the tensile strength as affected by application of the external magnetic field according to two different operation modes. In the H off-on operation mode, the bed is driven to bubbling in the absence of external magnetic field. Once the gas velocity is decreased below the bubbling onset and the bed has returned to stable fluidization due to natural cohesive forces, the field is applied. In the H on-on mode, the field is maintained during the whole process of bubbling and return to stable fluidization. It is found that the tensile strength of the naturally stabilized bed is not essentially changed by application of the field ( H off-on) since the magnetic field cannot alter the bed structure once the particles are jammed in the stable fluidization state. Magnetic forces within the bulk of the jammed bed are partially canceled as a result of the anisotropic nature of the dipole-dipole interaction between the particles, which gives rise to just a small increment of the tensile strength. On the other hand, when the field is held on during bubbling and transition to stable fluidization ( H on-on mode), the tensile strength is appreciably increased. This suggests the formation of particle chains when the particles are not constrained due to the dipole-dipole attractive interaction which affects the mechanical strength of the stably fluidized bed. Experimental data are analyzed in the light of theoretical models on magnetic surface stresses.

  7. Making Pure Fine-Grained Inorganic Powder

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1985-01-01

    Sustained arc plasma chemical reactor fabricates very-fine-grained inorganic solids having low thermal conductivity. Powder fabrication method, based on plasma tube technique produces pure solids without contamination commonly produced by grinding.

  8. Removing Undesired Fine Powder From Silicon Reactor

    NASA Technical Reports Server (NTRS)

    Flagella, Robert N.

    1992-01-01

    Fluidized-bed reactor produces highly pure polycrystalline silicon particles with diameters approximately greater than 400 micrometers. Operates by pyrolysis of silane in reaction zone, which is bed of silicon seed particles fluidized by flow of silane and carrier gas. Above reaction zone, gas mixture flows rapidly enough to entrain silicon powders, but not larger seed and product particles. Entrained particles swept out of reactor. Applicable to other processes such as production of fine metal and ceramic powders where control of sizes of product needed.

  9. The Effect of Alumina Dispersant Powder on the Workability of Chromia Based Refractory for IGCC Application

    NASA Astrophysics Data System (ADS)

    Ming, Zhao Jing; Xun, Yang Zheng; Hong, Hwang Kyu; Hwan, Park Sang

    2011-10-01

    The quality of refractory applied on IGCC is a key factor that affects the cost of production. The workability and microstructure of chromia based castable are varied by introducing different type of alumina dispersant powder, such as active alumina powder. In this study, three types of active alumina powder are added to improve the workability. It's proved that the specific surface area and particle size distribution of fine powders in matrix part greatly affect the flow values and microstructures.

  10. Dispersant for aqueous slurry of coal powder

    SciTech Connect

    Moriyama, N.; Watanabe, S.; Yamamura, M.

    1982-05-18

    A dispersant for forming an aqueous slurry of coal powder having a good flowability, which comprises as the active ingredient at least one member selected from sulfonation products of polycyclic aromatic compounds which may have a hydrocarbon group as a substituent, salts thereof and formaldehyde condensates thereof.

  11. Process for preparing fine grain silicon carbide powder

    DOEpatents

    Wei, G.C.

    Method of producing fine-grain silicon carbide powder comprises combining methyltrimethoxysilane with a solution of phenolic resin, acetone and water or sugar and water, gelling the resulting mixture, and then drying and heating the obtained gel.

  12. Preparation and characterization of fine powdered whole soybean curd

    PubMed Central

    Shin, Junghee

    2015-01-01

    [Purpose] Efficacy and comparative characteristics of fine powdered whole soybean curd. [Methods] Ground dried soybean to a fine powder (700 mesh) containing bean components in its entirety, and then produced whole soybean curd. Analysed its nutritive components, bioactive substances, antioxidant activities and texture compared with pressed soybean curd. [Results] Compared with pressed soybean curd, the nutrients and isoflavone in whole soybean curd were slightly decreased, but antioxidant activities, dietary fibers and moisture content were increased. Also, the yield rate of the total process was improved 1.9 times. [Conclusion] Fine powdered whole bean curd has antioxidant effects, contains dietary fiber and possesses soft characteristics, hence has development potential in the diet market and as food for patients. PMID:27274462

  13. Seismic properties of fine rock powders in lunar conditions.

    NASA Technical Reports Server (NTRS)

    Jones, B. W.

    1973-01-01

    Seismic properties of fine rock powders in near lunar surface conditions have been measured in the laboratory, and they correspond well with those obtained for the near lunar surface. The laboratory values of Q range from 40 to 330 with corresponding wave velocities below 100 m/sec. Many of the results obtained are shown to be understandable in terms of current theories of the elastic and plastic properties of fine rock powders in a variety of temperature and pressure conditions. This enables some estimate to be made of the changes in Q and wave velocity with depth in the moon, on the supposition that fine rock powder continues downward as an abundant constituent.

  14. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  15. Oxidation of fine aluminum powders with water and air

    NASA Astrophysics Data System (ADS)

    Antipina, S. A.; Zmanovskii, S. V.; Gromov, A. A.; Konovalov, A. S.

    2017-01-01

    Fine aluminum powders (RA20-RA60 grades, SUAL-PM) with specific surface area from 0.37 to 0.73 m2/g and high aluminum contents (95-98 wt %) are studied. The powders are found to be waterwettable without additions of surfactants and characterized by high rates of gas liberation in reacting with a calcium hydroxide solution under normal conditions. All RA20-RA60 powders are shown to be highly reactive upon oxidation with air and close to aluminum nanopowders in the parameters of their activity when heated in air. Their stability in water could prevent active (metallic) aluminum losses during their storage.

  16. Supercritical fluid molecular spray thin films and fine powders

    DOEpatents

    Smith, Richard D.

    1988-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.

  17. Powder diffraction studies using anomalous dispersion

    SciTech Connect

    Cox, D.E. ); Wilkinson, A.P. . Dept. of Materials)

    1993-01-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f' for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high [Tc] superconductors, ternary alloys, FeCo[sub 2](PO[sub 4])[sub 3], FeNi[sub 2]BO[sub 5]), oxidation-state contrast (e.g. YBa[sub 2]Cu[sub 3]O[sub 6+x], Eu[sub 3]O[sub 4], GaCl[sub 2], Fe[sub 2]PO[sub 5]), and the effect of coordination geometry (e.g. Y[sub 3]Ga[sub 5]O[sub l2]).

  18. Powder diffraction studies using anomalous dispersion

    SciTech Connect

    Cox, D.E.; Wilkinson, A.P.

    1993-05-01

    With the increasing availability and accessibility of high resolution powder diffractometers at many synchrotron radiation sources throughout the world, there is rapidly-growing interest in the exploitation of anomalous dispersion techniques for structural studies of polycrystalline materials. In conjunction with the Rietveld profile method for structure refinement, such studies are especially useful for the determination of the site distributions of two or more atoms which are near neighbors in the periodic table, or atoms which are distributed among partially occupied sites. Additionally, it is possible to (1) determine the mean-square displacements associated with different kinds of atoms distributed over a single set of sites, (2) distinguish between different oxidation states and coordination geometries of a particular atom in a compound and (3) to determine f` for a wide range of atomic species as a function of energy in the vicinity of an absorption edge. Experimental methods for making anomalous dispersion measurements are described in some detail, including data collection strategies, data analysis and correlation problems, possible systematic errors, and the accuracy of the results. Recent work in the field is reviewed, including cation site-distribution studies (e.g. doped high {Tc} superconductors, ternary alloys, FeCo{sub 2}(PO{sub 4}){sub 3}, FeNi{sub 2}BO{sub 5}), oxidation-state contrast (e.g. YBa{sub 2}Cu{sub 3}O{sub 6+x}, Eu{sub 3}O{sub 4}, GaCl{sub 2}, Fe{sub 2}PO{sub 5}), and the effect of coordination geometry (e.g. Y{sub 3}Ga{sub 5}O{sub l2}).

  19. Far infrared emission and portable testing device of fine powders.

    PubMed

    Liang, Jinsheng; Meng, Junping; Ding, Yan; Wang, Peipeng; Gan, Kun

    2011-11-01

    In order for industrial and mining enterprises to fast detect the quality of fine mineral powders with far infrared emission, a simple testing model was set up according to the relationship between the emission intensity of powders and their surface temperature. The corresponding testing device was designed and assembled into three parts containing Constant Temperature Heating Part, Temperature Measuring Part and Sample Loading Part. By using the tourmaline mineral powders with far infrared emission as the research object and combining Fourier transform infrared spectroscopy, the calibration for the testing device was carried out. The results showed that the far infrared emission intensity of the tourmaline powders with different mining area and particle size could be judged. The testing results exhibited correct values when compared with those from FTIR measurements.

  20. Process for preparing fine grain silicon carbide powder

    DOEpatents

    Wei, G.C.

    Finely divided silicon carbide powder is obtained by mixing colloidal silica and unreacted phenolic resin in either acetone or methanol, evaporating solvent from the obtained solution to form a gel, drying and calcining the gel to polymerize the phenolic resin therein, pyrolyzing the dried and calcined gel at a temperature in the range of 500 to 1000/sup 0/C, and reacting silicon and carbon in the pyrolyzed gel at a temperature in the range of 1550 to 1700/sup 0/C to form the powder.

  1. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janney, M.A.

    1985-03-12

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  2. Process for preparing fine grain titanium carbide powder

    DOEpatents

    Janey, Mark A.

    1986-01-01

    A method for preparing finely divided titanium carbide powder in which an organotitanate is reacted with a carbon precursor polymer to provide an admixture of the titanium and the polymer at a molecular-level due to a crosslinking reaction between the organotitanate and the polymer. The resulting gel is dried, pyrolyzed to drive off volatile components and provide carbon. The resulting solids are then heated at an elevated temperature to convert the titanium and carbon to high-purity titanium carbide powder in a submicron size range.

  3. Process for preparing fine-grain metal carbide powder

    DOEpatents

    Kennedy, C.R.; Jeffers, F.P.

    Fine-grain metal carbide powder suitable for use in the fabrication of heat resistant products is prepared by coating bituminous pitch on SiO/sub 2/ or Ta/sub 2/O/sub 5/ particles, heating the coated particles to convert the bituminous pitch to coke, and then heating the particles to a higher temperature to convert the particles to a carbide by reaction of said coke therewith.

  4. Pulsed high energy synthesis of fine metal powders

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  5. Dispersion of fine phosphor particles by newly developed beads mill

    NASA Astrophysics Data System (ADS)

    Joni, I. Made; Panatarani, C.; Maulana, Dwindra W.

    2016-02-01

    Fine phosphor Y2O3:Eu3+ particles has advanced properties compare to conventional particles applied for compact fluorescent lamp (CFL) as three band phosphor. However, suspension of fine particles easily agglomerated during preparation of spray coating of the CFL tube. Therefore, it is introduced newly developed beads mill system to disperse fine phosphor. The beads mill consist of glass beads, dispersing chamber (impellers), separator chamber, slurry pump and motors. The first important performance of beads mill is the performance of the designed on separating the beads with the suspended fine particles. We report the development of beads mill and its separation performance vary in flow rate and separator rotation speeds. The 27 kg of glass beads with 30 µm in size was poured into dispersing chamber and then water was pumped continuously through the slurry pump. The samples for the separation test was obtained every 1 hours vary in rotation speed and slurry flow rate. The results shows that the separation performance was 99.99 % obtained for the rotation speed of >1000 rpm and flow rate of 8 L/minute. The performances of the system was verified by dispersing fine phosphor Y2O3:Eu3+ particles with concentration 1 wt.%. From the observed size distribution of particles after beads mill, it is concluded that the current design of bead mill effectively dispersed fine phosphor Y2O3:Eu3+.

  6. Handling, transport and dispersion of sorbent powder for in-furnace injection. Final report

    SciTech Connect

    Fan, Liang-Shih; Abou-Zeida, E.; Liang, Shu-Chien; Luo, Xukun

    1996-02-01

    The focus of this project is on sorbent injection technologies using dry, calcium-based sorbents for high-sulfur coal flue gas desulfurization. The goal is to provide research findings on handling, transport and dispersion of sorbent powder, aimed at improving SO{sub 2} (to at least 90%) removal and increasing sorbent utilization in a cost-effective fashion. With this goal, the purpose of this project is to investigate the fundamental aspects of powder technology relevant to the fine sorbent powders, and to provide means of improving sorbent performance through superior dispersion and reduced dispersed particle size. The fifth year`s project contains three phases, Phase I ``Characterization of Electrostatic Properties``, Phase II ``Cohesive Strength of Modified Sorbents``. and Phase III ``Modeling of Powder Dispersion``. Work under Phase I involves characterization of the sorbents in terms of their electrostatic properties. Phase II investigates the flow properties of several calcium-based sorbents under different handling and transporting conditions. In Phase III, experimental studies are performed to measure the sorbent powder size distribution in different apparatuses and under different conditions. The population balance model proposed in previous studies can reasonably simulate these experiment results. These three areas of investigations are discussed in this report.

  7. Computer Models Simulate Fine Particle Dispersion

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through a NASA Seed Fund partnership with DEM Solutions Inc., of Lebanon, New Hampshire, scientists at Kennedy Space Center refined existing software to study the electrostatic phenomena of granular and bulk materials as they apply to planetary surfaces. The software, EDEM, allows users to import particles and obtain accurate representations of their shapes for modeling purposes, such as simulating bulk solids behavior, and was enhanced to be able to more accurately model fine, abrasive, cohesive particles. These new EDEM capabilities can be applied in many industries unrelated to space exploration and have been adopted by several prominent U.S. companies, including John Deere, Pfizer, and Procter & Gamble.

  8. Oxide-dispersion strengthening of porous powder metalurgy parts

    DOEpatents

    Judkins, Roddie R.

    2002-01-01

    Oxide dispersion strengthening of porous metal articles includes the incorporation of dispersoids of metallic oxides in elemental metal powder particles. Porous metal articles, such as filters, are fabricated using conventional techniques (extrusion, casting, isostatic pressing, etc.) of forming followed by sintering and heat treatments that induce recrystallization and grain growth within powder grains and across the sintered grain contact points. The result is so-called "oxide dispersion strengthening" which imparts, especially, large increases in creep (deformation under constant load) strength to the metal articles.

  9. Powder dispersion mechanisms within a dry powder inhaler using microscale particle image velocimetry.

    PubMed

    Kou, Xiang; Wereley, Steven T; Heng, Paul W S; Chan, Lai Wah; Carvajal, M Teresa

    2016-12-05

    The goal of this work was to evaluate the ability of Particle Image Velocimetry (PIV) to visually assess dry powder dispersion within an inhaler. Herein, the study reports particle movement characterization of entrained low-micron particles within an inhaler to further scheme of potential mechanisms. Carrier based DPI formulations were prepared and placed in a transparent model Rotahaler(®) chamber for the aerosolization experiments. Then using the PIV, a high-speed camera, the dried powder dispersion was directly observed and analyzed for all, neat, binary and ternary systems. Powder dispersion mechanisms proposed include drag force, impact with obstacle and particle-particle collision; these different mechanisms depended on the powder flow properties. A revised ratio of aerodynamic response time (τA) to the mean time between collisions (τC) was found to be 6.8 indicating that particle collisions were of strong influence to particle dispersion. With image analysis techniques, visualization of particle flow pattern and collision regions was possible; suggesting that the various mechanisms proposed did govern the powder dispersion.

  10. Powder fed sheared dispersal particle generator

    NASA Technical Reports Server (NTRS)

    Morrisette, E. L.; Bushnell, D. M. (Inventor)

    1984-01-01

    A particle generating system is described which is capable of breaking up agglomerations of particles and producing a cloud of uniform, submicron-sized particles at high pressure and high flow rates. This is achieved by utilizing a tubular structure which has injection microslits on is periphery to accept and disperse the desired particle feed. By suppling a carrying fluid at a pressure, of approximately twice the ambient pressure of the velocimeter's settling chamber, the microslits operate at choked flow conditions. The shearing action of this choked flow is sufficient to overcome interparticle bonding forces, thereby breaking up the agglomerates of the particles feed into individual particles.

  11. Dispersal of fine sediment in nearshore coastal waters

    USGS Publications Warehouse

    Warrick, Jonathan A.

    2013-01-01

    Fine sediment (silt and clay) plays an important role in the physical, ecological, and environmental conditions of coastal systems, yet little is known about the dispersal and fate of fine sediment across coastal margin settings outside of river mouths. Here I provide simple physical scaling and detailed monitoring of a beach nourishment project near Imperial Beach, California, with a high portion of fines (40% silt and clay by weight). These results provide insights into the pathways and residence times of fine sediment transport across a wave-dominated coastal margin. Monitoring of the project used physical, optical, acoustic, and remote sensing techniques to track the fine portion of the nourishment sediment. The initial transport of fine sediment from the beach was influenced strongly by longshore currents of the surf zone that were established in response to the approach angles of the waves. The mean residence time of fine sediment in the surf zone—once it was suspended—was approximately 1 hour, and rapid decreases in surf zone fine sediment concentrations along the beach resulted from mixing and offshore transport in turbid rip heads. For example, during a day with oblique wave directions and surf zone longshore currents of approximately 25 cm/s, the offshore losses of fine sediment in rips resulted in a 95% reduction in alongshore surf zone fine sediment flux within 1 km of the nourishment site. However, because of the direct placement of nourishment sediment on the beach, fine suspended-sediment concentrations in the swash zone remained elevated for several days after nourishment, while fine sediment was winnowed from the beach. Once offshore of the surf zone, fine sediment settled downward in the water column and was observed to transport along and across the inner shelf. Vertically sheared currents influenced the directions and rates of fine sediment transport on the shelf. Sedimentation of fine sediment was greatest on the seafloor directly offshore

  12. Finely dispersed brown carbon in a smoggy atmosphere

    NASA Astrophysics Data System (ADS)

    Gorchakov, G. I.; Vasiliev, A. V.; Verichev, K. S.; Semoutnikova, E. G.; Karpov, A. V.

    2016-11-01

    It is shown that the absorption capacity of smoke aerosol during mass forest and forest-peat fires is determined to a considerable degree by light absorbing organic compounds or brown carbon. According to the data from the AERONET global network of stations [1], the absorption spectra of smoke aerosol vary significantly if airborne particulate matter is contained in brown carbon. It is established that in several cases, the absorption spectra of smoke aerosol are approximated with satisfactory accuracy by exponents. It is shown that the finely dispersed (submicron) fraction of the smoke aerosol makes a major contribution to its optical characteristics in the 0.44-1.02 μm spectral region. Strong variation in the single scattering albedo is discovered in the presence of brown carbon in the smoke aerosol. It is shown that the optical characteristics of coarsely dispersed and finely dispersed fractions of smoke aerosol differ considerably.

  13. Evaluation of the TSI small-scale powder disperser

    SciTech Connect

    Chen, B.T.; Yeh, Hsu-Chi; Fan, Bijian

    1994-11-01

    Several dry powder generators, including the Wright-dust-feed, the fluidized-bed, the venturi tube, and the jet-o-mizer systems, have been used for inhalation toxicity studies involving relatively high concentrations of aerosols. For fundamental laboratory studies, however, a powder generator that can produce a limited quantity of test aerosol is more practical than a system that generates high concentrations. The TSI small-scale powder disperser (SSPD) is a low flow rate, low mass output generator that uses venturi aspiration through a capillary tube to remove particles from the surface of a turntable, like a vacuum cleaner. The particles are then deagglomerated in a venturi throat and an expansion cone. The purpose of this study was to evaluate the SSPD by investigating the effects of flow rate, particle size, and particle shape on the generation efficiency and internal losses.

  14. Dispersion characteristics in column flotation of fine coal

    SciTech Connect

    Peng, F.F.; Lili, L.

    1995-10-01

    The dispersion model of nonideal flow was applied to describe the hydrodynamic state within the flotation column. Residence time distribution (RTD) data of a laboratory flotation column were measured to determine the parameters of the model. The effects of operating variables and column geometry on the Peclet number which reflects the extent of axial dispersion were investigated and a semi-empirical expression of Pe was formulated. The dispersion model was validated for the column flotation of ultrafines coal. Under the conditions of sufficient aeration rate and frother addition, a good agreement between the measured recoveries and predicted data was obtained. The dispersion model with first-order flotation rate process of the flotation column developed in this study is useful in predicting the collection zone recovery of fine coal, and for the flotation column scale-up.

  15. Fine-grained sediment dispersal along the California coast

    USGS Publications Warehouse

    Warrick, Jonathan A.; Storlazzi, Curt D.

    2013-01-01

    Fine-grained sediment (silt and clay) enters coastal waters from rivers, eroding coastal bluffs, resuspension of seabed sediment, and human activities such as dredging and beach nourishment. The amount of sediment in coastal waters is an important factor in ocean ecosystem health, but little information exists on both the natural and human-driven magnitudes of fine-grained sediment delivery to the coastal zone, its residence time there, and its transport out of the system—information upon which to base environmental assessments. To help fill these information gaps, the U.S. Geological Survey has partnered with Federal, State, and local agencies to monitor fine-grained sediment dispersal patterns and fate in the coastal regions of California. Results of these studies suggest that the waves and currents of many of the nearshore coastal settings of California are adequately energetic to transport fine-grained sediment quickly through coastal systems. These findings will help with the management and regulation of fine-grained sediment along the U.S. west coast.

  16. Enhancement and inversion of an alternating-current electric field in a finely dispersed dielectric

    NASA Astrophysics Data System (ADS)

    Kharlamov, V. F.

    2017-01-01

    It has been found that a sinusoidal electric field is enhanced by a factor of more than 103 in two plane-parallel layers of different dielectrics placed between plates of a parallel-plate capacitor. The implementation of the enhancement of the electric field requires that the following two conditions should be satisfied: (1) one of the two layers should consist of finely dispersed dielectric particles with ionized donor centers formed on their surface and free electrons in their bulk, and (2) the dielectric permittivity of the powder should have a negative value. It has also been found that, in the powder layer, the enhancement of the electric field occurs simultaneously with its inversion.

  17. Binder-Jet Printing of Fine Stainless Steel Powder with Varied Final Density

    NASA Astrophysics Data System (ADS)

    Ziaee, Mohsen; Tridas, Eric M.; Crane, Nathan B.

    2017-03-01

    Binder jetting is an additive manufacturing process that produces weak porous parts that are strengthened through sintering and/or infiltration. This article reports on two different methods of preparing fine 316 stainless steel powder and their impact on the final sintered density and dimensions relative to direct printing into <22 micron powder . The first method uses agglomerates of fine powder. In the second, nylon 12 powders are mixed with the steel powder as a fugitive space holder to increase porosity. Sintered density and sintering shrinkage of agglomerate material are shown to vary with the density of the spread powder bed. Nevertheless, with added nylon, the shrinkage correlates with the shrinkage of the base steel powder, whereas the density depends on the quantity of the nylon. Thus, it is possible to create varied sintered density with compatible shrinkage levels—a key step toward creating binder-jetting systems with spatially controlled porosity.

  18. Production of fine calcium powders by centrifugal atomization with rotating quench bath

    DOE PAGES

    Tian, Liang; Anderson, Iver; Riedemann, Trevor; ...

    2016-02-08

    Recently, a novel Al/Ca composite was produced by severe plastic deformation of Al powders and Ca granules for possible use as a high-voltage power transmission conductor. Since the strength of such composites is inversely proportional to the Ca filament size, fine Ca powders (less than ~250 μm) are needed to achieve the desired high strength for the powder metallurgy production of an Al-matrix composite reinforced by nano-scale Ca filaments. However, fine Ca powders are not commercially available. Therefore, we have developed a method to produce fine Ca powders via centrifugal atomization to supply Ca powder for prototype development of Al/Camore » composite conductor. A secondary goal of the project was to demonstrate that Ca powder can be safely prepared, stored, and handled and could potentially be scaled for commercial production. Our results showed that centrifugal atomization can yield as much as 83 vol. % Ca powder particles smaller than 250 μm. The mean particle size sometimes matches, sometimes deviates substantially from the predictions of the Champagne & Anger equation likely due to unexpected secondary atomization. The particle size distribution is typical for a ligament-disintegration atomization mode. Scanning electron micrographs showed that the morphology of these Ca powders varied with powder size. Spark testing and auto-ignition tests indicated that the atomized powders were difficult to ignite, providing confidence that this material can be handled safely in air.« less

  19. Production of fine calcium powders by centrifugal atomization with rotating quench bath

    SciTech Connect

    Tian, Liang; Anderson, Iver; Riedemann, Trevor; Russell, Alan

    2016-02-08

    Recently, a novel Al/Ca composite was produced by severe plastic deformation of Al powders and Ca granules for possible use as a high-voltage power transmission conductor. Since the strength of such composites is inversely proportional to the Ca filament size, fine Ca powders (less than ~250 μm) are needed to achieve the desired high strength for the powder metallurgy production of an Al-matrix composite reinforced by nano-scale Ca filaments. However, fine Ca powders are not commercially available. Therefore, we have developed a method to produce fine Ca powders via centrifugal atomization to supply Ca powder for prototype development of Al/Ca composite conductor. A secondary goal of the project was to demonstrate that Ca powder can be safely prepared, stored, and handled and could potentially be scaled for commercial production. Our results showed that centrifugal atomization can yield as much as 83 vol. % Ca powder particles smaller than 250 μm. The mean particle size sometimes matches, sometimes deviates substantially from the predictions of the Champagne & Anger equation likely due to unexpected secondary atomization. The particle size distribution is typical for a ligament-disintegration atomization mode. Scanning electron micrographs showed that the morphology of these Ca powders varied with powder size. Spark testing and auto-ignition tests indicated that the atomized powders were difficult to ignite, providing confidence that this material can be handled safely in air.

  20. Oxide Dispersion Strengthened Iron Aluminide by CVD Coated Powders

    SciTech Connect

    Asit Biswas Andrew J. Sherman

    2006-09-25

    This I &I Category2 program developed chemical vapor deposition (CVD) of iron, aluminum and aluminum oxide coated iron powders and the availability of high temperature oxidation, corrosion and erosion resistant coating for future power generation equipment and can be used for retrofitting existing fossil-fired power plant equipment. This coating will provide enhanced life and performance of Coal-Fired Boilers components such as fire side corrosion on the outer diameter (OD) of the water wall and superheater tubing as well as on the inner diameter (ID) and OD of larger diameter headers. The program also developed a manufacturing route for readily available thermal spray powders for iron aluminide coating and fabrication of net shape component by powder metallurgy route using this CVD coated powders. This coating can also be applid on jet engine compressor blade and housing, industrial heat treating furnace fixtures, magnetic electronic parts, heating element, piping and tubing for fossil energy application and automotive application, chemical processing equipment , heat exchanger, and structural member of aircraft. The program also resulted in developing a new fabrication route of thermal spray coating and oxide dispersion strengthened (ODS) iron aluminide composites enabling more precise control over material microstructures.

  1. Dispersing agents for an aqueous slurry of coal powder

    SciTech Connect

    Moriyama, N.; Watanabe, S.; Yamamura, M.

    1981-11-24

    Aqueous dispersions of coal powder having good flowability properties are provided by employing, as the dispersing agent, an anionic surface active agent. The formula of the additives: (R-O-CH2CH2O-MSO3)nm wherein R is an alkyl or alkenyl group having 6 to 22 carbon atoms or an alkyl- or alkenyl-substituted aryl group having 4 to 22 carbon atoms in the substituent thereof, M is an integer from 2 to 50, N is a number of from 1 to 3 and is the same as the valence of the counter ion m, and M is a cation having a valence of from 1 to 3.

  2. Probing of Metabolites in Finely Powdered Plant Material by Direct Laser Desorption Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Musharraf, Syed Ghulam; Ali, Arslan; Choudhary, M. Iqbal; Atta-ur-Rahman

    2014-04-01

    Natural products continue to serve as an important source of novel drugs since the beginning of human history. High-throughput techniques, such as MALDI-MS, can be techniques of choice for the rapid screening of natural products in plant materials. We present here a fast and reproducible matrix-free approach for the direct detection of UV active metabolites in plant materials without any prior sample preparation. The plant material is mechanically ground to a fine powder and then sieved through different mesh sizes. The collected plant material is dispersed using 1 μL solvent on a target plate is directly exposed to Nd:YAG 335 nm laser. The strategy was optimized for the analysis of plant metabolites after study of the different factors affecting the reproducibility and effectiveness of the analysis, including particle sizes effects, types of solvents used to disperse the sample, and the part of the plant analyzed. Moreover, several plant species, known for different classes of metabolites, were screened to establish the generality of the approach. The developed approach was validated by the characterization of withaferin A and nicotine in the leaves of Withania somnifera and Nicotiana tabacum, respectively, through comparison of its MS/MS data with the standard compound. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) techniques were used for the tissue imaging purposes. This approach can be used to directly probe small molecules in plant materials as well as in herbal and pharmaceutical formulations for fingerprinting development.

  3. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  4. Are the lunar seismic signals compatible with a deep layer of fine powder.

    NASA Technical Reports Server (NTRS)

    Jones, B. W.

    1972-01-01

    It is shown that a sudden change in the seismic wave velocity at 25 km can be interpreted in terms of a single type of material, namely the fine rock powder that is so abundant on the lunar surface. An investigation conducted by Toksoz et al. (1972) is considered. Toksoz et al. rule out a deep powder layer and derive a velocity profile for powders from laboratory data. Differences regarding powder densification between laboratory tests and actual lunar conditions due to much longer compression times are pointed out.

  5. Ionic liquids for simultaneous preconcentration of some lanthanoids using dispersive liquid-liquid microextraction technique in uranium dioxide powder.

    PubMed

    Mallah, Mohammad H; Shemirani, Farzaneh; Maragheh, Mohammad G

    2009-03-15

    Ionic liquids in a dispersive liquid-liquid microextraction technique were used for determination of lanthanoids such as samarium, europium, gadolinium, and dysprosium in uranium dioxide powder. In this process, an appropriate mixture of extraction solvent and disperser is rapidly injected into an aqueous sample containing samarium, europium, gadolinium, and dysprosium ions complexes with 1-hydroxy-2, 5-pyrrolidinedione, and consequently a cloudy solution is formed. It consists of fine droplets of extraction solventwhich are dispersed entirely into the aqueous phase. After centrifugation of this solution, the whole enriched phase was determined by inductively coupled plasma optical emission spectrometry. In the present work, the preconcentration factor, limit of detection, and relative standard deviation were investigated for samarium, europium, gadolinium, and dysprosium in uranium dioxide powder.

  6. Suppressing H2 Evolution by Silicon Powder Dispersions

    NASA Astrophysics Data System (ADS)

    Tichapondwa, S. M.; Focke, W. W.; Del Fabbro, O.; Mkhize, S.; Muller, E.

    2011-10-01

    Silicon dispersions in water are used to produce pyrotechnic time delay compositions. The propensity of the silicon to react with water and to produce hazardous hydrogen gas must be suppressed. To this end, the effect of surface modifications and medium pH on the rate of corrosion of silicon was studied at ambient temperature. It was found that the rate of hydrogen evolution increased with increasing pH. Silanes proved to be more effective silicon corrosion inhibitors than alcohols, with vinyl tris (2-methoxyethoxy) silane producing the best results. Differential thermal analysis (DTA) studies were performed using a near-stoichiometric amount of lead chromate as oxidant. Comparable combustion behavior was observed when both the fuel and the oxidant powders were either uncoated or silane modified. Mixtures of neat oxidant with silane-coated silicon showed poor burn behavior and this was attributed to poor particle-particle mixing due to the mismatch in surface energies.

  7. Storage stability of DDT water-dispersible powders*

    PubMed Central

    Pearce, George W.; Goette, Mary B.; Sedlak, Vincent A.

    1959-01-01

    The authors describe a study of the change in suspensibility of two series of 75% DDT water-dispersible powders during storage in simulated commercial packages at 27°C, 50°C and 65°C and as “shelf” samples at ambient temperatures. All the products tested in both series were made under the conditions of regular commercial production, and all those in the second series were prepared in 1954 under contract to the International Cooperation Administration (ICA) and according to ICA specifications. The results showed that: (a) a high initial suspensibility is no criterion of “shelf” life; (b) the suspensibility after the so-called “tropical storage pre-treatment” is no criterion of stability, except perhaps in the case of very poorly formulated products; (c) periodic observations, made over a period of a month or more, of the suspensibility of powders stored in commercial or simulated commercial packages at 50°C and 65°C will provide an indication as to the probable long-term stability of the products in question; and (d) it seems likely that a reasonable estimate of long-term storage stability at ambient temperatures could be obtained by subjecting the samples to high temperatures for a very short period. PMID:14431216

  8. Handling, transport and dispersion of sorbent powder for in-furnace injection. Final report, September 1, 1993--August 31, 1994

    SciTech Connect

    Fan, L.S.; Abou-Zeida, E.; Liang, S.C.; Luo, Xukun

    1995-02-01

    The focus of this project is on sorbent injection technologies using dry, calcium-based sorbents for high-sulfur coal flue gas desulfurization. The goal is to provide research findings on handling, transport and dispersion of sorbent powder, aimed at improving SO{sub 2} (to at least 90%) removal and increasing sorbent utilization in a cost-effective fashion. The purpose of this project is to investigate the fundamental aspects of powder technology relevant to the fine sorbent powders, and to provide means of improving sorbent performance through superior dispersion and reduced dispersed particle size. This project is in two phases, Phase 1 ``Powder Characterization`` and Phase 2 ``Powder Mechanical Properties``. Phase 1 involves characterization of the sorbents in terms of their electrostatic properties. The triboelectric charging of powders are studied in detail by measuring sorbent charging as a function of material properties as well as transport conditions. A variety of sorbents are tested, including laboratory-made lignohydrates, calcite, dolomite, dolomitic hydrate and hydrated lime. The effects of transport tube material and gas properties, specifically humidity and velocity on the extent of sorbent charging are also investigated. A population balance model is developed to account for the particle size distribution for powder dispersion through gas-solid injection nozzles. The variations of the transition probability with the booster air velocities is examined. Simulation of particle size distributions under some operating conditions is conducted. Phase 2 investigates the flow properties of several calcium-based sorbents under different handling and transporting conditions. Effect of moisture content, as an important handling condition, on these properties is examined. Determined properties has been analyzed to study their effect on the transport and handling processes.

  9. The combustion synthesis of iron group metal fine powders

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Nersisyan, H. H.; Won, C. W.

    2004-01-01

    The new approach has been developed for the synthesis of nickel (Ni), cobalt (Co) and iron (Fe) powders from the appropriate oxides by the solid combustion method. The reduction was made by sodium azide (NaN 3) at the presence of carbon in the argon atmosphere. The variation of combustion temperature and velocity was performed by using alkali metal salt as an inert diluent. The values of combustion parameters were measured and also the temperature distribution in a combustion wave are obtained. The geometric sizes of reactionary zones and the activation energy of the process were estimated. The optimum conditions for single-phase metal powder synthesis were found. Powders fabricated in this way had cubic structure and particles size about 0.5-2.0 μm for Ni, Co and 1-3 μm for Fe. In a number of cases the formation of spherical particles with the average size about 5-15 μm were observed.

  10. Attractive particle interaction forces and packing density of fine glass powders.

    PubMed

    Parteli, Eric J R; Schmidt, Jochen; Blümel, Christina; Wirth, Karl-Ernst; Peukert, Wolfgang; Pöschel, Thorsten

    2014-09-02

    We study the packing of fine glass powders of mean particle diameter in the range (4-52) μm both experimentally and by numerical DEM simulations. We obtain quantitative agreement between the experimental and numerical results, if both types of attractive forces of particle interaction, adhesion and non-bonded van der Waals forces are taken into account. Our results suggest that considering only viscoelastic and adhesive forces in DEM simulations may lead to incorrect numerical predictions of the behavior of fine powders. Based on the results from simulations and experiments, we propose a mathematical expression to estimate the packing fraction of fine polydisperse powders as a function of the average particle size.

  11. EFFECTS OF CHEMICAL DISPERSANTS AND MINERAL FINES ON CRUDE OIL DISPERSION IN A WAVE TANK UNDER BREAKING WAVES

    EPA Science Inventory

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the ...

  12. Preparation of fine powdered composite for latent heat storage

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pomaleski, Marina; Trník, Anton; Pavlíková, Milena; Pavlík, Zbyšek

    2016-07-01

    Application of latent heat storage building envelope systems using phase-change materials represents an attractive method of storing thermal energy and has the advantages of high-energy storage density and the isothermal nature of the storage process. This study deals with a preparation of a new type of powdered phase change composite material for thermal energy storage. The idea of a composite is based upon the impregnation of a natural silicate material by a reasonably priced commercially produced pure phase change material and forming the homogenous composite powdered structure. For the preparation of the composite, vacuum impregnation method is used. The particle size distribution accessed by the laser diffraction apparatus proves that incorporation of the organic phase change material into the structure of inorganic siliceous pozzolana does not lead to the clustering of the particles. The compatibility of the prepared composite is characterized by the Fourier transformation infrared analysis (FTIR). Performed DSC analysis shows potential of the developed composite for thermal energy storage that can be easily incorporated into the cement-based matrix of building materials. Based on the obtained results, application of the developed phase change composite can be considered with a great promise.

  13. Method of Making Fine Lithium Iron Phosphate/Carbon-Based Powders with an Olivine Type Structure

    NASA Technical Reports Server (NTRS)

    Singhal, Amit (Inventor); Dhamne, Abhijeet (Inventor); Skandan, Ganesh (Inventor)

    2008-01-01

    Processes for producing fine LiFePO.sub.4/C and nanostructured LiFe.sub.xM.sub.1-xPO.sub.4/C composite powders, where 1.ltoreq.x.ltoreq.0.1 and M is a metal cation. Electrodes made of either nanostructured LiFe.sub.xM.sub.1-xPO.sub.4 powders or nanostructured LiFe.sub.xM.sub.1-xPO.sub.4/C composite powders exhibit excellent electrochemical properties. That will provide high power density, low cost and environmentally friendly rechargeable Li-ion batteries.

  14. [The study of ultra-fine diamond powder used in magnetic head polishing slurry].

    PubMed

    Jin, Hong-Yun; Hou, Shu-En; Pan, Yong; Xiao, Hong-Yan

    2008-05-01

    In the present paper, atomic absorption spectrometry(AAS), inductively-coupled plasma mass spectrometry (ICP-MS), transmission electron microscopy (TEM), X-ray diffraction (XRD) and laser Raman spectroscopy (RM) were employed to study the commercial ultra-fine diamond powders prepared by the static pressure-catalyst method and used in magnetic head polishing slurry. The results of AAS and ICP-MS indicated that there were silicon oxide, Fe, Ni, Al and some other metal elements in the ultra-fine powders. XRD patterns showed the peaks of SiO2 at 2theta = 35.6 degrees, 39.4 degrees and 59.7 degrees and diamond sharp peaks in agreement with the results above. Diamond sharp peaks implied perfect crystal and high-hardness beneficial to high-efficiency in polishing. The broader Raman band of graphite at 1 592 cm(-1) observed by Raman analysis proved graphite existing in the diamond powders. In the TEM images, the size of ultra-fine powders was estimated between 0.1 and 0.5 microm distributed in a wide scope, however, sharp edges of the powder particles was useful to polish. The ultra-fine diamond powders have many advantages, for example, high-hardness, well abrasion performance, high-polishing efficiency and being useful in magnetic head polishing slurry. But, the impurities influence the polishing efficiency, shortening its service life and the wide distribution reduces the polishing precision. Consequently, before use the powders must be purified and classified. The purity demands is 99.9% and trace silicon oxide under 0.01% should be reached. The classification demands that the particle distribution should be in a narrower scope, with the mean size of 100 nm and the percentage of particles lager than 200 nm not over 2%.

  15. Effect of amino acids on the dispersion of disodium cromoglycate powders.

    PubMed

    Chew, Nora Y K; Shekunov, Boris Y; Tong, Henry H Y; Chow, Albert H L; Savage, Charles; Wu, James; Chan, Hak-Kim

    2005-10-01

    Modified disodium cromoglycate powders were prepared by co-spray drying with different concentrations of leucine, phenylalanine, tryptophan, methionine, asparagine, and arginine. Amorphous spherical particles of the same size and density where obtained which, however, exhibited different surface properties as measured by the inverse gas chromatography (IGC) and X-ray photoelectron spectroscopy (XPS) techniques. The surface energy parameters, such as the dispersive component of surface free energy of the sample, gammaSD, and the total solubility parameter, delta, were significantly lower in the presence of nonpolar chain amino acids, particularly with leucine and phenylalanine, than pure DSCG. However no quantitative relationship between these parameters, the additive concentrations, and the fine particle fractions, FPF, determined for different inhalers and air flow rates, was observed. The FPF significantly increased with addition of leucine and this effect was attributed to reduced intermolecular interactions between leucine and disodium cromoglycate molecules, as indicated by the difference in corresponding Hansen solubility parameters. Decrease of interparticle interactions for leucine-containing powders also led to a lesser dependence of FPF on the flow rate and inhaler type.

  16. Effect of interactive ternary mixtures on dispersion characteristics of ipratropium bromide in dry powder inhaler formulations.

    PubMed

    Beilmann, Bianca; Kubiak, René; Grab, Peter; Häusler, Heribert; Langguth, Peter

    2007-04-20

    The purpose of this investigation was to evaluate the effect of mixing order and the influence of adding fines on in vitro performance of ipratropium bromide (ITB) dry powder inhaler formulations. Coarse lactose (CL) in varying mass ratio with or without addition of micronized lactose (ML) and ITB in different mixing sequences was used to formulate ternary mixtures. A binary mixture composed of CL and ITP served as control. The in vitro deposition of ITB from these formulations was measured using an Andersen cascade impactor (aerosolization at 39 L/min) employing a HandiHaler as the delivery device. It was observed that mixing order has a significant effect (P < .05) on in vitro deposition of ITB. Formulations with preblending of CL and ITB produced similar deposition profiles as the control, regardless of the added ML. In contrast, formulations without preblending resulted in significantly higher fine particle dose (FPD) as compared with the control. In addition, an increased quantity of ML generally resulted in an increase in drug deposition. The results show that the effect of ML on dispersion of ITB is highly dependent upon the mixing order. The evaluation of atomic force measurement (AFM) to forecast drug detachment and predict the aerodynamic characteristics resulted in similar attraction forces for the different pairs lactose/lactose (42.66 +/- 25.01 nN) and lactose/ITB (46.77 +/- 17.04 nN).

  17. Effects of chemical dispersants and mineral fines on crude oil dispersion in a wave tank under breaking waves.

    PubMed

    Li, Zhengkai; Kepkay, Paul; Lee, Kenneth; King, Thomas; Boufadel, Michel C; Venosa, Albert D

    2007-07-01

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on the dispersion of oil and the formation of oil-mineral-aggregates (OMAs) in natural seawater. Results of ultraviolet spectrofluorometry and gas chromatography flame ionized detection analysis indicated that dispersants and mineral fines, alone and in combination, enhanced the dispersion of oil into the water column. Measurements taken with a laser in situ scattering and transmissometer (LISST-100X) showed that the presence of mineral fines increased the total concentration of the suspended particles from 4 to 10microl l(-1), whereas the presence of dispersants decreased the particle size (mass mean diameter) of OMAs from 50 to 10microm. Observation with an epifluorescence microscope indicated that the presence of dispersants, mineral fines, or both in combination significantly increased the number of particles dispersed into the water.

  18. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-02-14

    The purpose of this study was to systematically design pure antibiotic drug dry powder inhalers (DPIs) for targeted antibiotic pulmonary delivery in the treatment of pulmonary infections and comprehensively correlate the physicochemical properties in the solid-state and spray-drying conditions effects on aerosol dispersion performance as dry powder inhalers (DPIs). The two rationally chosen model antibiotic drugs, tobramycin (TOB) and azithromycin (AZI), represent two different antibiotic drug classes of aminoglycosides and macrolides, respectively. The particle size distributions were narrow, unimodal, and in the microparticulate/nanoparticulate size range. The SD particles possessed relatively spherical particle morphology, smooth surface morphology, low residual water content, and the absence of long-range molecular order. The emitted dose (ED%), fine particle fraction (FPF%) and respirable fraction (RF%) were all excellent. The MMAD values were in the inhalable range (<10 μm) with smaller MMAD values for SD AZI powders in contrast to SD TOB powders. Positive linear correlations were observed between the aerosol dispersion performance parameter of FPF with increasing spray-drying pump rates and also with the difference between thermal parameters expressed as Tg-To (i.e. the difference between the glass transition temperature and outlet temperature) for SD AZI powders. The aerosol dispersion performance for SD TOB appeared to be influenced by its high water vapor sorption behavior (hygroscopicity) and pump rates or To. Aerosol dispersion performance of SD powders were distinct for both antibiotic drug aerosol systems and also between different pump rates for each system.

  19. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery.

    PubMed

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug - cyclosporine A - for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters.

  20. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery

    PubMed Central

    Wu, Xiao; Zhang, Weifen; Hayes, Don; Mansour, Heidi M

    2013-01-01

    In this systematic and comprehensive study, inhalation powders of the polypeptide immunosuppressant drug – cyclosporine A – for lung delivery as dry powder inhalers (DPIs) were successfully designed, developed, and optimized. Several spray drying pump rates were rationally chosen. Comprehensive physicochemical characterization and imaging was carried out using scanning electron microscopy, hot-stage microscopy, differential scanning calorimetry, powder X-ray diffraction, Karl Fischer titration, laser size diffraction, and gravimetric vapor sorption. Aerosol dispersion performance was conducted using a next generation impactor with a Food and Drug Administration-approved DPI device. These DPIs displayed excellent aerosol dispersion performance with high values in emitted dose, respirable fraction, and fine particle fraction. In addition, novel multifunctional inhalation aerosol powder formulations of cyclosporine A with lung surfactant-mimic phospholipids were also successfully designed and developed by advanced organic solution cospray drying in closed mode. The lung surfactantmimic phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-snglycero- 3-(phosphor-rac-1-glycerol). These cyclosporine A lung surfactant-mimic aerosol powder formulations were comprehensively characterized. Powder X-ray diffraction and differential scanning calorimetry confirmed that the phospholipid bilayer structure in the solid state was preserved following advanced organic solution spray drying in closed mode. These novel multifunctional inhalation powders were optimized for DPI delivery with excellent aerosol dispersion performance and high aerosol performance parameters. PMID:23569375

  1. Design of sustained release fine particles using two-step mechanical powder processing: particle shape modification of drug crystals and dry particle coating with polymer nanoparticle agglomerate.

    PubMed

    Kondo, Keita; Ito, Natsuki; Niwa, Toshiyuki; Danjo, Kazumi

    2013-09-10

    We attempted to prepare sustained release fine particles using a two-step mechanical powder processing method; particle-shape modification and dry particle coating. First, particle shape of bulk drug was modified by mechanical treatment to yield drug crystals suitable for the coating process. Drug crystals became more rounded with increasing rotation speed, which demonstrates that powerful mechanical stress yields spherical drug crystals with narrow size distribution. This process is the result of destruction, granulation and refinement of drug crystals. Second, the modified drug particles and polymer coating powder were mechanically treated to prepare composite particles. Polymer nanoparticle agglomerate obtained by drying poly(meth)acrylate aqueous dispersion was used as a coating powder. The porous nanoparticle agglomerate has superior coating performance, because it is completely deagglomerated under mechanical stress to form fine fragments that act as guest particles. As a result, spherical drug crystals treated with porous agglomerate were effectively coated by poly(meth)acrylate powder, showing sustained release after curing. From these findings, particle-shape modification of drug crystals and dry particle coating with nanoparticle agglomerate using a mechanical powder processor is expected as an innovative technique for preparing controlled-release coated particles having high drug content and size smaller than 100 μm.

  2. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    SciTech Connect

    Rieken, Joel

    2011-12-13

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from

  3. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    NASA Astrophysics Data System (ADS)

    Rieken, Joel Rodney

    Gas atomization reaction synthesis (GARS) was employed as a simplified method for producing precursor powders for oxide dispersion strengthened (ODS) ferritic stainless steels (e.g., Fe-Cr-Y-(Ti,Hf)-O), departing from the conventional mechanical alloying (MA) process. During GARS processing a reactive atomization gas (i.e., Ar-O2) was used to oxidize the powder surfaces during primary break-up and rapid solidification of the molten alloy. This resulted in envelopment of the powders by an ultra-thin (t < 150 nm) metastable Cr-enriched oxide layer that was used as a vehicle for solid-state transport of O into the consolidated microstructure. In an attempt to better understand the kinetics of this GARS reaction, theoretical cooling curves for the atomized droplets were calculated and used to establish an oxidation model for this process. Subsequent elevated temperature heat treatments, which were derived from Rhines pack measurements using an internal oxidation model, were used to promote thermodynamically driven O exchange reactions between trapped films of the initial Cr-enriched surface oxide and internal Y-enriched intermetallic precipitates. This novel microstructural evolution process resulted in the successful formation of nano-metric Y-enriched dispersoids, as confirmed using high energy X-ray diffraction and transmission electron microscopy (TEM), equivalent to conventional ODS alloys from MA powders. The thermal stability of these Y-enriched dispersoids was evaluated using high temperature (1200°C) annealing treatments ranging from 2.5 to 1,000 hrs of exposure. In a further departure from current ODS practice, replacing Ti with additions of Hf appeared to improve the Y-enriched dispersoid thermal stability by means of crystal structure modification. Additionally, the spatial distribution of the dispersoids was found to depend strongly on the original rapidly solidified microstructure. To exploit this, ODS microstructures were engineered from different

  4. High Explosive Moulding Powders from RDX and Aqueous Polyurethane Dispersions,

    DTIC Science & Technology

    1987-05-01

    polybutadiene (17] type by reaction with low molecular weight diisocyanates in the absence of water. Explosive moulding powders incorporating...polyaddition reaction . The final polymers have predominantly hydrophobic long chain segments of the polyether or polyester type and also contain some...reacted with isocyanate groups in reaction sequences which ultimately yield either polyurethane or polyurethane-urea polymers. Three of the methods for

  5. Chemical dispersion of oil with mineral fines in a low temperature environment.

    PubMed

    Wang, Weizhi; Zheng, Ying; Lee, Kenneth

    2013-07-15

    The increasing risks of potential oil spills in the arctic regions, which are characterized by low temperatures, are a big challenge. The traditional dispersant method has shown limited effectiveness in oil cleanup. This work studied the role of mineral fines in the formation of oil-mineral aggregates (OMAs) at low temperature (0-4 °C) environment. The loading amount of minerals and dispersant with different dispersant and oil types were investigated under a full factorial design. The shapes and sizes of OMAs were analyzed. Results showed that the behavior of OMA formation differs when dispersant and mineral fines are used individually or together. Both the experimental and microscopic results also showed the existence of optimal dispersant to oil ratios and mineral to oil ratios. In general, poor oil removal performance was observed for more viscous oil. Corexit 9500 performed better than Corexit 9527 with various oils, in terms of oil dispersion and OMA formation.

  6. Improved flotation performance of hematite fines using citric acid as a dispersant

    NASA Astrophysics Data System (ADS)

    Luo, Xi-mei; Yin, Wan-zhong; Sun, Chuan-yao; Wang, Nai-ling; Ma, Ying-qiang; Wang, Yun-fan

    2016-10-01

    In this study, citric acid was used as a dispersant to improve the flotation performance of hematite fines. The effect and mechanism of citric acid on the reverse flotation of hematite fines were investigated by flotation tests, sedimentation experiments, scanning electron microscopy (SEM), zeta-potential measurements, and X-ray photoelectron spectroscopy (XPS). The results of SEM analysis and flotation tests reveal that a strong heterocoagulation in the form of slime coating or coagulation in hematite fine slurry affects the beneficiation of hematite ores by froth flotation. The addition of a small amount of citric acid (less than 300 g/t) favorably affects the reverse flotation of hematite fines by improving particle dispersion. The results of sedimentation experiments, zeta-potential measurements, and XPS measurements demonstrate that citric acid adsorbs onto hematite and quartz surfaces via hydrogen bonding, thereby reducing the zeta potentials of mineral surfaces, strengthening the electrical double-layer repulsion between mineral particles, and dispersing the pulp particles.

  7. Effect of compaction history on the fluidization behavior of fine cohesive powders.

    PubMed

    Valverde, Jose Manuel; Castellanos, Antonio

    2006-05-01

    Fine particles agglomerate in the fluidized state due to the strength of interparticle attractive forces as compared to particle weight. Interparticle adhesion can be largely increased by consolidation stresses applied during powder handling. As a consequence, fragments of the consolidated powder may persist when the powder is fluidized, which gives rise to large agglomerates of strongly adhered particles in fluidization. This history-dependent effect can be minimized by coating the particles with surface additives such as silica nanoparticles. In this paper, we investigate the effect of high consolidation stresses sigma(c) previously applied to samples of silica-coated fine particles on their fluidization behavior. Our experimental measurements show that, even though homogeneous fluidization is still observed, the average agglomerate size and fractal dimension of the agglomerates increase as sigma(c) is increased. Bed expansion in the fluidized state is hindered by previously applied high consolidations, which we attribute to an increase of the largest stable size of mesoscopic fluid pockets. As a consequence, we observe that the initiation of macroscopic bubbling is delayed up to larger values of the fluid velocity.

  8. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V., Jr.; Dreshfield, R. L.

    1980-01-01

    Hot isostatically pressed powder metallurgy Astroloy was obtained which contained 1.4 percent fine porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep fatigue, tension, and stress-rupture and the results compared with previous data on sound Astroloy. The pores averaged about 2 micrometers diameter and 20 micrometers spacing. They did influence fatigue crack initiation and produced a more intergranular mode of propagation. However, fatigue life was not drastically reduced. A large 25 micrometers pore in one specimen resulting from a hollow particle did not reduce life by 60 percent. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was little changed reflecting the small reduction in sigma sub u/E for the porous material.

  9. Biomimetic synthesis of modified calcium phosphate fine powders and their in vitro studies

    SciTech Connect

    Gergulova, R. Tepavitcharova, S. Rabadjieva, D. Sezanova, K. Ilieva, R.; Alexandrova, R.; Andonova-Lilova, B.

    2013-12-16

    Biomimetic approach and subsequent high-temperature treatment were used to synthesize ion modified calcium phosphate fine powders. Thus, using Simulated Body Fluid (SBF) as an ion modifier, a bi-phase mixture of ion modified β-tricalcium phosphate and hydroxyapatite (β-TCP + HA) was prepared. The use of SBF electrolyte solution enriched with Mg{sup 2+} or Zn{sup 2+} yielded monophase β-tricalcium phosphate additionally modified with Mg{sup 2+} or Zn{sup 2+} (Mg-β-TCP or Zn-β-TCP). The in vitro behavior of the prepared powders on cell viability and proliferation of murine BALB/c 3T3 fibroblasts and of human Lep 3 cells was studied by MTT test assays and Mosmann method after 72 h incubation. The relative cell viability was calculated.

  10. Biomimetic synthesis of modified calcium phosphate fine powders and their in vitro studies

    NASA Astrophysics Data System (ADS)

    Gergulova, R.; Tepavitcharova, S.; Rabadjieva, D.; Sezanova, K.; Ilieva, R.; Alexandrova, R.; Andonova-Lilova, B.

    2013-12-01

    Biomimetic approach and subsequent high-temperature treatment were used to synthesize ion modified calcium phosphate fine powders. Thus, using Simulated Body Fluid (SBF) as an ion modifier, a bi-phase mixture of ion modified β-tricalcium phosphate and hydroxyapatite (β-TCP + HA) was prepared. The use of SBF electrolyte solution enriched with Mg2+ or Zn2+ yielded monophase β-tricalcium phosphate additionally modified with Mg2+ or Zn2+ (Mg-β-TCP or Zn-β-TCP). The in vitro behavior of the prepared powders on cell viability and proliferation of murine BALB/c 3T3 fibroblasts and of human Lep 3 cells was studied by MTT test assays and Mosmann method after 72 h incubation. The relative cell viability was calculated.

  11. Plasma Processed Nanosized-Powders of Refractory Compounds for Obtaining Fine-Grained Advanced Ceramics

    NASA Astrophysics Data System (ADS)

    I, Zalite; J, Grabis; E, Palcevskis; M, Herrmann

    2011-10-01

    One of the ways for the production of ceramic materials with a fine-grained structure is the use of nanopowders. Different methods are used for the production of nanopowders. One of them is the method of plasmachemical synthesis. Different nanopowders of refractory materials can be obtained by this method. The preparation of nanosized powders of nitrides and oxides and their composites by the method of plasmachemical synthesis, the possibilities to receive nanopowders with different particle size and the potential advantages of nanopowders were investigated.

  12. MnO spin-wave dispersion curves from neutron powder diffraction

    SciTech Connect

    Goodwin, Andrew L.; Dove, Martin T.; Tucker, Matthew G.; Keen, David A.

    2007-02-15

    We describe a model-independent approach for the extraction of spin-wave dispersion curves from powder neutron total scattering data. Our approach is based on a statistical analysis of real-space spin configurations to calculate spin-dynamical quantities. The RMCPROFILE implementation of the reverse Monte Carlo refinement process is used to generate a large ensemble of supercell spin configurations from MnO powder diffraction data collected at 100 K. Our analysis of these configurations gives spin-wave dispersion curves for MnO that agree well with those determined independently using neutron triple-axis spectroscopic techniques.

  13. Chromium Extraction via Chemical Processing of Fe-Cr Alloys Fine Powder with High Carbon Content

    NASA Astrophysics Data System (ADS)

    Torres, D. M.; Navarro, R. C. S.; Souza, R. F. M.; Brocchi, E. A.

    2017-03-01

    Ferrous alloys are important raw materials for special steel production. In this context, alloys from the Fe-Cr system, with typical Cr weight fraction ranging from 0.45 to 0.95, are prominent, particularly for the stainless steel industry. During the process in which these alloys are obtained, there is considerable production of fine powder, which could be reused after suitable chemical treatment, for example, through coupling pyrometallurgical and hydrometallurgical processes. In the present study, the extraction of chromium from fine powder generated during the production of a Fe-Cr alloy with high C content was investigated. Roasting reactions were performed at 1073 K, 1173 K, and 1273 K (800 °C, 900 °C, and 1000 °C) with 300 pct (w/w) excess NaOH in an oxidizing atmosphere (air), followed by solubilization in deionized water, selective precipitation, and subsequent calcination at 1173 K (900 °C) in order to convert the obtained chromium hydroxide to Cr2O3. The maximum achieved Cr recovery was around 86 pct, suggesting that the proposed chemical route was satisfactory regarding the extraction of the chromium initially present. Moreover, after X-ray diffraction analysis, the final produced oxide has proven to be pure Cr2O3 with a mean crystallite size of 200 nm.

  14. Low-Temperature Oxidation of Fine UO2 Powders: A Process of Nanosized Domain Development.

    PubMed

    Leinders, Gregory; Pakarinen, Janne; Delville, Rémi; Cardinaels, Thomas; Binnemans, Koen; Verwerft, Marc

    2016-04-18

    The nanostructure and phase evolution in low-temperature oxidized (40-250 °C), fine UO2 powders (<200 nm) have been investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HR-TEM). The extent of oxidation was also measured via in situ thermogravimetric analysis. The oxidation of fine powders was found to proceed differently as compared to oxidation of coarse-grained UO2. No discrete surface oxide layer was observed and no U3O8 was formed, despite the high degree of oxidation (up to O/U = 2.45). Instead, nanosized (5-15 nm) amorphous nuclei (interpreted as amorphous UO3), unmodulated and modulated U4O9, and a continuous range of U3O7-z phases with varying tetragonal distortion (c/a > 1) were observed. Oxidation involves formation of higher uranium oxides in nanodomains near the grain surface which, initially, have a disordered defect structure ("disordered U4O9"). As oxidation progresses, domain growth increases and the long-period modulated structure of U4O9 develops ("ordered U4O9"). A similar mechanism is understood to happen also in U3O7-z.

  15. Preparation of a melt-processed La123 bulk superconductor with finely dispersed Y211 particle

    NASA Astrophysics Data System (ADS)

    Hee-Gyoun Lee; Il-Hyun Kook; Gye-Won Hong; Kyu-Won Lee; Yong-Il Kim; Chang-Soo Kim; Jong-Jin Kim; Myoung-Youp Song

    1995-02-01

    A high-magnetization La123 specimen with finely dispersed second-phase particles was successfully fabricated by a melt process under a reduced oxygen partial pressure. The dispersion of the fine second-phase particle was obtained by adding Y211 particles to the La123 specimen. The melt-down and the crack propagation were effectively suppressed in a melt-processed specimen with Y211 addition. The magnetization of the La123 specimen was clearly enhanced with Y211 addition. It is considered that the Y211 addition introduced extra flux-pinning centers in the La123 specimen.

  16. Amorphous solid dispersion of cyclosporine A prepared with fine droplet drying process: Physicochemical and pharmacokinetic characterization.

    PubMed

    Suzuki, Hiroki; Moritani, Tatsuru; Morinaga, Tadahiko; Seto, Yoshiki; Sato, Hideyuki; Onoue, Satomi

    2017-03-15

    The present study aimed to develop an amorphous solid dispersion (ASD) of cyclosporine A (CsA) by a fine droplet drying (FDD) process for improvement in oral absorption of CsA. CsA and hydroxypropyl cellulose-SSL were dissolved in 1,4-dioxane, and the solution was powdered by the FDD process to obtain the ASD formulation of CsA (ASD/CsA). The ASD/CsA was characterized in terms of morphology, particle size distribution, crystallinity, dissolution behavior, physicochemical stability, and pharmacokinetic behavior in rats. The ASD/CsA was obtained in the form of uniform spherical particles, and the span factor was calculated to be ca. 0.4. CsA in the formulation existed in an amorphous state. The ASD/CsA exhibited a higher dissolution behavior of CsA than amorphous CsA, whereas storage of the ASD/CsA under accelerated conditions led to impairment in the dissolution behavior. The constant release of CsA from non-aged ASD/CsA was observed during dissolution testing. After oral administration of CsA samples (10mg-CsA/kg) in rats, the ASD/CsA showed a high and sustained plasma concentration of CsA as evidenced by a 18-fold increase in the oral bioavailability of CsA compared with amorphous CsA. From these findings, the FDD process might be an efficacious option for the ASD formulation of CsA with enhanced biopharmaceutics properties.

  17. Special Features of Polarization-Induced Relaxation in Structurally Disordered Finely Dispersed Systems

    NASA Astrophysics Data System (ADS)

    Shcherbachenko, L. A.; Tanaev, A. B.; Bezrukova, Ya. V.; Ezhova, L. I.; Baryshnikov, D. S.; Marchuk, S. D.; Berezovskii, P. P.

    2015-04-01

    Dielectric characteristics of finely dispersed hydrated natural coal from the Krasnoyarsk Strip Mine are measured in wide ranges of external measuring electric field frequencies, environmental temperatures, and humidities. The frequency, temperature, and concentration dispersions of the dielectric permittivity are revealed for the examined structures. An analysis of the results obtained demonstrates that a cluster layer of the polar aqueous matrix characterized by rigid fixing of water molecules is formed at the interphase boundaries of the examined system. It is demonstrated that this layer plays the role of the potential barrier that complicates transitions for both free water molecules and surface active dispersed coals oriented by the electric field. This layer can increase the electric strength of the examined disordered finely dispersed structures.

  18. Fine cohesive powders in rotating drums: Transition from rigid-plastic flow to gas-fluidized regime

    NASA Astrophysics Data System (ADS)

    Castellanos, A.; Valverde, J. M.; Quintanilla, M. A.

    2002-06-01

    We investigate the dynamics of fine cohesive powders inside rotating drums. We show that these powders may be fluidized due to entrapment of ambient gas, and we determine the onset of fluidization. Experimental measurements on the bed expansion as a function of the rotation velocity have been performed. Drums of different diameters and fine powders of varying cohesiveness have been tested. We show that (i) fine powders transit directly from a rigid-plastic state to a gas-fluidized state in accordance with the flow regime boundaries predicted elsewhere [A. Castellanos et al., Phys. Rev. Lett. 82, 1156 (1999)], (ii) the onset of fluidization in the rotating drum is determined by the ratio of the powder kinetic energy per unit volume to its tensile strength, and (iii) once the powder is completely fluidized the average interstitial gas velocity increases proportionally to the rotation velocity. The last two results imply that the required velocity to fluidize a powder, ωR (ω angular velocity, R radius of the drum), must increase as the square root of its tensile strength, and this has been confirmed by independent measurements and estimations.

  19. Population density and sex do not influence fine-scale natal dispersal in roe deer.

    PubMed

    Gaillard, J-M; Hewison, A J M; Kjellander, P; Pettorelli, N; Bonenfant, C; Van Moorter, B; Liberg, O; Andren, H; Van Laere, G; Klein, F; Angibault, J-M; Coulon, A; Vanpé, C

    2008-09-07

    It is commonly assumed that the propensity to disperse and the dispersal distance of mammals should increase with increasing density and be greater among males than among females. However, most empirical evidence, especially on large mammals, has focused on highly polygynous and dimorphic species displaying female-defence mating tactics. We tested these predictions on roe deer, a weakly polygynous species of large herbivore exhibiting a resource-defence mating tactic at a fine spatial scale. Using three long-term studies of populations that were subject to the experimental manipulation of size, we did not find any support for either prediction, whether in terms of dispersal probability or dispersal distance. Our findings of similar dispersal patterns in both sexes of roe deer suggest that the underlying cause of natal dispersal is not related to inbreeding avoidance in this species. The absence of positive density dependence in fine-scale dispersal behaviour suggests that roe deer natal dispersal is a pre-saturation process that is shaped by heterogeneities in habitat quality rather than by density per se.

  20. Population density and sex do not influence fine-scale natal dispersal in roe deer

    PubMed Central

    Gaillard, J.-M; Hewison, A.J.M; Kjellander, P; Pettorelli, N; Bonenfant, C; Van Moorter, B; Liberg, O; Andren, H; Van Laere, G; Klein, F; Angibault, J.-M; Coulon, A; Vanpé, C

    2008-01-01

    It is commonly assumed that the propensity to disperse and the dispersal distance of mammals should increase with increasing density and be greater among males than among females. However, most empirical evidence, especially on large mammals, has focused on highly polygynous and dimorphic species displaying female-defence mating tactics. We tested these predictions on roe deer, a weakly polygynous species of large herbivore exhibiting a resource-defence mating tactic at a fine spatial scale. Using three long-term studies of populations that were subject to the experimental manipulation of size, we did not find any support for either prediction, whether in terms of dispersal probability or dispersal distance. Our findings of similar dispersal patterns in both sexes of roe deer suggest that the underlying cause of natal dispersal is not related to inbreeding avoidance in this species. The absence of positive density dependence in fine-scale dispersal behaviour suggests that roe deer natal dispersal is a pre-saturation process that is shaped by heterogeneities in habitat quality rather than by density per se. PMID:18505718

  1. Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging

    NASA Astrophysics Data System (ADS)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-02-01

    Oxide dispersion strengthened (ODS) ferritic steels are candidates for cladding tubes in fast breeder nuclear reactors. In this study, an 18%Cr ODS ferritic steel was prepared through powder forging route. Elemental powders with a nominal composition of Fe-18Cr-2 W-0.2Ti (composition in wt.%) with 0 and 0.35% yttria were prepared by mechanical alloying in a Simoloyer attritor under argon atmosphere. The alloyed powders were heated in a mild steel can to 1473 K under flowing hydrogen atmosphere. The can was then hot forged. Steps of sealing, degassing and evacuation are eliminated by using powder forging. Heating ODS powder in hydrogen atmosphere ensures good bonding between alloy powders. A dense ODS alloy with an attractive combination of strength and ductility was obtained after re-forging. On testing at 973 K, a loss in ductility was observed in yttria-containing alloy. The strength and ductility increased with increase in strain rate at 973 K. Reasons for this are discussed. The ODS alloy exhibited a recrystallized microstructure which is difficult to achieve by extrusion. No prior particle boundaries were observed after forging. The forged compacts exhibited isotropic mechanical properties. It is suggested that powder forging may offer several advantages over the traditional extrusion/HIP routes for fabrication of ODS alloys.

  2. Demonstration of a silicon nitride attrition mill for production of fine pure Si and Si3N4 powders

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.; Glasgow, T. K.; Orth, N. W.

    1984-01-01

    To avoid metallic impurities normally introduced by milling ceramic powders in conventional steel hardware, an attrition mill (high-energy stirred ball mill) was constructed with the wearing parts (mill body, stirring arms, and media) made from silicon nitride. Commercial silicon and Si3N4 powders were milled to fine uniform particles with only minimal contamination - primarily from wear of the sintered Si3N4 media.

  3. The combination of precipitation and dispersion hardening in powder metallurgy produced Cu-Ti-Si alloy

    SciTech Connect

    Bozic, D.; Dimcic, O.; Dimcic, B. Cvijovic, I.; Rajkovic, V.

    2008-08-15

    Microstructure and microhardness properties of precipitation hardened Cu-Ti and precipitation/dispersion hardened Cu-Ti-Si alloys have been analyzed. Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} (wt.%) atomized powders were characterized before and after consolidation by HIP (Hot Isostatic Pressing). Rapidly solidified powders and HIP-ed compacts were subsequently subjected to thermal treatment in hydrogen at temperatures between 300 and 600 deg. C. Compared to Cu-Ti powder particles and compacts, obtained by the same procedure, the strengthening effect in Cu-1.2Ti-3TiSi{sub 2} powder particles and compacts was much greater. The binary and ternary powders both reveal properties superior to those of Cu-1.2Ti and Cu-1.2Ti-3TiSi{sub 2} compacts. Microhardness analysis as a function of the aging temperature of Cu-1.2Ti-3TiSi{sub 2} alloy shows an interaction between precipitation and dispersion hardening which offers possibilities for an application at elevated temperatures.

  4. Optimization of the EMI shielding effectiveness of fine and ultrafine POFA powder mix with OPC powder using Flower Pollination Algorithm

    NASA Astrophysics Data System (ADS)

    Narong, L. C.; Sia, C. K.; Yee, S. K.; Ong, P.; Zainudin, A.; Nor, N. H. M.; Kasim, N. A.

    2017-01-01

    In order to solve the electromagnetic interference (EMI) issue and provide a new application for palm oil fuel ash (POFA), POFA was used as the cement filler for enhancing the EMI absorption of cement-based composites. POFA was refined by using water precipitation for 24 hours to remove the filthiness and distinguish the layer 1 (floated) and layer 2 (sink) of POFA. Both layers POFA were dried for 24 hours at 100 ± 5 °C and grind separately for sieve at 140 μm (Fine) and 45 цш sizes (Ultrafine). The micro structure and element content of the both layers POFA were characterized by scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDS) respectively. The results showed layer 1 POFA has potentialities for EMI shielding effectiveness (SE) due to its higher carbon content and porous structure. The study reveals that EMI SE also influenced by the particle size of POFA, where smaller particle size can increase 5 % to 13 % of EMI SE. When the specimen consists of 50% POFA with passing through 45 μm sieve, the EMI was shield -13.08 dB in between 50 MHz to 2 GHz range. Flower Pollination Algorithm (FPA) proves that POFA passing 45 μm sieve with 50% mixed to OPC is optimal parameter. The error between experimental and FPA simulation data is below 1.2 for both layers POFA.

  5. In situ fine tailoring of group velocity dispersion in optical microfibers via nanocoatings.

    PubMed

    Xu, Z Y; Li, Y H; Wang, L J

    2014-11-17

    We experimentally demonstrate a convenient technique for in situ fine group velocity dispersion (GVD) tailoring in optical microfibers via dielectric nanocoatings. This was elaborated by successively depositing poly-dimethylsiloxane (PDMS) nanocoatings around a 1.2 μm-diameter optical microfiber with a modified dip-coating method. In situ dispersion measurements showed that the GVD was tailored by 55 ps/nm•km at 1580 nm, and the zero-dispersion wavelength (ZDW) was red shifted by 30 nm. Numerical simulations showed that GVD tailoring in optical microfibers could bring signal (idler) tuning in spontaneous four-wave mixing (FWM) and spectral bandwidth expanding in supercontinuum (SC) generation, implying that this in situ fine GVD tailoring technique would offer optical microfibers with many new opportunities for applications in nonlinear optics.

  6. High solids loading of aluminum nitride powder in epoxy resin: Dispersion and thermal conductivity

    NASA Astrophysics Data System (ADS)

    Lee, Eunsung

    Most semiconductor devices are now packaged in an epoxy polymer composite, which includes a silica powder filler for reducing the thermal expansion coefficient. However, increased heat output from near-future semiconductors will require higher thermal conductivity fillers such as aluminum nitride powder, instead of silica. This thesis research is intended to apply improved dispersant chemistry, in order to achieve a high volume percentage of AlN powder in epoxy, increasing the thermal conductivity of the composite without causing excessive viscosity before the epoxy monomer is crosslinked. In initial experiments, the dispersibility of aluminum oxide in epoxy monomer resin was better than that of AlN, because of the weaker basicity of oxide surfaces compared with nitride. To improve the dispersibility of AlN, its surface was modified by pretreatment with silane coupling agents. Silane molecules with different head groups were investigated. In those experiments, methylsilane gave lower viscosities than chloro- or methoxysilane, while pretreatments using organic acids increased the viscosity of the AlN dispersion. The viscosity changes and FTIR peak intensity trends suggested that the silane molecules could be adsorbed on AlN surfaces in the form of a monolayer during optimization experiments, and the best silane monolayer coverage on the AlN powder surfaces was achieved with 2 wt% amounts in a 3 hour treatment. A particular phosphate ester was a good second layer dispersant for the AlN-plus-epoxy system. When that dispersant was added onto the silane-treated filler surfaces, the degree of viscosity reduction was dependent on the types of silane coupling agent functional groups. In the optimized results, silane pretreatment followed by dispersant addition was better than either alone. High solids loading, up to 57 vol.%, was achieved with a wide particle size distribution of powder, and the viscosity of that dispersion was 60,000 to 90,000 cps, which easily flowed by

  7. Predicting the Fine Particle Fraction of Dry Powder Inhalers Using Artificial Neural Networks.

    PubMed

    Muddle, Joanna; Kirton, Stewart B; Parisini, Irene; Muddle, Andrew; Murnane, Darragh; Ali, Jogoth; Brown, Marc; Page, Clive; Forbes, Ben

    2017-01-01

    Dry powder inhalers are increasingly popular for delivering drugs to the lungs for the treatment of respiratory diseases, but are complex products with multivariate performance determinants. Heuristic product development guided by in vitro aerosol performance testing is a costly and time-consuming process. This study investigated the feasibility of using artificial neural networks (ANNs) to predict fine particle fraction (FPF) based on formulation device variables. Thirty-one ANN architectures were evaluated for their ability to predict experimentally determined FPF for a self-consistent dataset containing salmeterol xinafoate and salbutamol sulfate dry powder inhalers (237 experimental observations). Principal component analysis was used to identify inputs that significantly affected FPF. Orthogonal arrays (OAs) were used to design ANN architectures, optimized using the Taguchi method. The primary OA ANN r(2) values ranged between 0.46 and 0.90 and the secondary OA increased the r(2) values (0.53-0.93). The optimum ANN (9-4-1 architecture, average r(2) 0.92 ± 0.02) included active pharmaceutical ingredient, formulation, and device inputs identified by principal component analysis, which reflected the recognized importance and interdependency of these factors for orally inhaled product performance. The Taguchi method was effective at identifying successful architecture with the potential for development as a useful generic inhaler ANN model, although this would require much larger datasets and more variable inputs.

  8. Deposition and fine particle production during dynamic flow in a dry powder inhaler: a CFD approach.

    PubMed

    Milenkovic, J; Alexopoulos, A H; Kiparissides, C

    2014-01-30

    In this work the dynamic flow as well as the particle motion and deposition in a commercial dry powder inhaler, DPI (i.e., Turbuhaler) is described using computational fluid dynamics, CFD. The dynamic flow model presented here is an extension of a steady flow model previously described in Milenkovic et al. (2013). The model integrates CFD simulations for dynamic flow, an Eulerian-fluid/Lagrangian-particle description of particle motion as well as a particle/wall interaction model providing the sticking efficiency of particles colliding with the DPI walls. The dynamic flow is imposed by a time varying outlet pressure and the particle injections into the DPI are assumed to occur instantaneously and follow a prescribed particle size distribution, PSD. The total particle deposition and the production of fine particles in the DPI are determined for different peak inspiratory flow rates, PIFR, flow increase rates, FIR, and particle injection times. The simulation results for particle deposition are found to agree well with available experimental data for different values of PIFR and FIR. The predicted values of fine particle fraction are in agreement with available experimental results when the mean size of the injected PSD is taken to depend on the PIFR.

  9. Investigation of the potential for direct compaction of a fine ibuprofen powder dry-coated with magnesium stearate.

    PubMed

    Qu, Li; Zhou, Qi Tony; Gengenbach, Thomas; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Gamlen, Michael; Morton, David A V

    2015-05-01

    Intensive dry powder coating (mechanofusion) with tablet lubricants has previously been shown to give substantial powder flow improvement. This study explores whether the mechanofusion of magnesium stearate (MgSt), on a fine drug powder can substantially improve flow, without preventing the powder from being directly compacted into tablets. A fine ibuprofen powder, which is both cohesive and possesses a low-melting point, was dry coated via mechanofusion with between 0.1% and 5% (w/w) MgSt. Traditional low-shear blending was also employed as a comparison. No significant difference in particle size or shape was measured following mechanofusion. For the low-shear blended powders, only marginal improvement in flowability was obtained. However, after mechanofusion, substantial improvements in the flow properties were demonstrated. Both XPS and ToF-SIMS demonstrated high degrees of a nano-scale coating coverage of MgSt on the particle surfaces from optimized mechanofusion. The study showed that robust tablets were produced from the selected mechanofused powders, at high-dose concentration and tablet tensile strength was further optimized via addition of a Polyvinylpyrrolidone (PVP) binder (10% w/w). The tablets with the mechanofused powder (with or without PVP) also exhibited significantly lower ejection stress than those made of the raw powder, demonstrating good lubrication. Surprisingly, the release rate of drug from the tablets made with the mechanofused powder was not retarded. This is the first study to demonstrate such a single-step dry coating of model drug with MgSt, with promising flow improvement, flow-aid and lubrication effects, tabletability and also non-inhibited dissolution rate.

  10. Evaluation of Rock Powdering Methods to Obtain Fine-grained Samples for CHEMIN, a Combined XRD/XRF Instrument

    NASA Technical Reports Server (NTRS)

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D. F.; Bearman, G.; Bar-Cohen, Y.

    2004-01-01

    A miniature XRD/XRF (X-ray diffraction / X-ray fluorescence) instrument, CHEMIN, is currently being developed for definitive mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument will produce good results even with poorly prepared powder, the quality of the data will improve and the time required for data collection will be reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD results from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, we compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRF instrument such as CHEMIN.

  11. Evaluation of rock powdering methods to obtain fine-grained samples for CHEMIN, a combined XRD/XRF instrument

    SciTech Connect

    Chipera, S. J.; Vaniman, D. T.; Bish, D. L.; Sarrazin, P.; Feldman, S.; Blake, D.; Bearman, G. H.; Bar-Cohen, Yoseph

    2004-01-01

    A miniature XRD/XRD (X-ray diffraction/X-ray fluorescence) instrument, CHEMIN, is currently being developed for definite mineralogic analysis of soils and rocks on Mars. One of the technical issues that must be addressed to enable remote XRD analysis is how best to obtain a representative sample powder for analysis. For powder XRD analyses, it is beneficial to have a fine-grained sample to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the X-ray beam. Although a two-dimensional detector as used in the CHEMIN instrument produces good results even with poorly prepared powder, the quality of the data improves and the time required for data collection is reduced if the sample is fine-grained and randomly oriented. A variety of methods have been proposed for XRD sample preparation. Chipera et al. presented grain size distributions and XRD reuslts from powders generated with an Ultrasonic/Sonic Driller/Corer (USDC) currently being developed at JPL. The USDC was shown to be an effective instrument for sampling rock to produce powder suitable for XRD. In this paper, they compare powder prepared using the USDC with powder obtained with a miniaturized rock crusher developed at JPL and with powder obtained with a rotary tungsten carbide bit to powders obtained from a laboratory bench-scale Retsch mill (provides benchmark mineralogical data). These comparisons will allow assessment of the suitability of these methods for analysis by an XRD/XRD instrument such as CHEMIN.

  12. Dispersion-strengthened nickel-alumina alloy produced from comminuted powders

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Quatinetz, M.

    1972-01-01

    An investigation was conducted to determine whether a nickel - 2-volume-percent alumina dispersion-strengthened material with a fine, uniformly distributed dispersoid could be produced, which was equivalent in short time tensile strength to commercially available thoriated sheet materials. Comminution and blending with a modified triple stirrer attritor and a hydrogen and vacuum precleaning treatment prior to consolidation were used. A product with a fine dispersoid with an average particle size of 0.04 micron and an interparticle spacing of 0.7 micron was achieved. This material has a 1093 C (2000 F) short time tensile strength of 117 MN/sq m (16 900 psi).

  13. Densification of Reaction Bonded Silicon Nitride with the Addition of Fine Si Powder Effects on the Sinterability and Mechanical Properties

    SciTech Connect

    Lee, Sea-Hoon; Cho, Chun-Rae; Park, Young-Jo; Ko, Jae-Woong; Kim, Hai-Doo; Lin, Hua-Tay; Becher, Paul F

    2013-01-01

    The densification behavior and strength of sintered reaction bonded silicon nitrides (SRBSN) that contain Lu2O3-SiO2 additives were improved by the addition of fine Si powder. Dense specimens (relative density: 99.5%) were obtained by gas-pressure sintering (GPS) at 1850oC through the addition of fine Si. In contrast, the densification of conventional specimens did not complete at 1950oC. The fine Si decreased the onset temperature of shrinkage and increased the shrinkage rate because the additive helped the compaction of green bodies and induced the formation of fine Si3N4 particles after nitridation and sintering at and above 1600oC. The amount of residual SiO2 within the specimens was not strongly affected by adding fine Si powder because most of the SiO2 layer that had formed on the fine Si particles decomposed during nitridation. The maximum strength and fracture toughness of the specimens were 991 MPa and 8.0 MPa m1/2, respectively.

  14. Sources, dispersal, and fate of fine sediment supplied to coastal California

    USGS Publications Warehouse

    Farnsworth, Katherine L.; Warrick, Jonathan A.

    2007-01-01

    We have investigated the sources, dispersal, and fate of fine sediment supplied to California coastal waters in a partnership between the U.S. Geological Survey (USGS) and the California Sediment Management Workgroup (CSMW). The purpose of this study was to document the rates and characteristics of these processes so that the State can better manage its coastal resources, including sediment. In this study, we made the following observations: - Rivers dominate the supply of fine sediment to the California coastal waters, with an average annual flux of 34 megatonnes (Mt). - Cliff and bluff erosion in central and southern California is a source of fine sediment, with a delivery rate of approximately 10 percent of river loads. In the southern most part of the State, however, where river-sediment loads are low, cliff and bluff erosion represent approximately 40 percent of the total fine-sediment flux. - Temporal variation in the sources of fine sediment is high. River floods and bluff erosion are episodic and dominated by winter storms, which supply most sediment flux to the coast. The magnitude of winter storms is generally related to the El Niño-Southern Oscillation (ENSO) and Pacific Decadal Oscillation (PDO) climate cycles. - The three rivers that dominate fine-sediment flux to the California coast are the Eel, Salinas, and Santa Clara Rivers. Because the sediment delivery from these and all other California coastal watersheds is episodic, individual rivers discharge most of their annual loads over the course of only a few days per year. - Spatial variation in river-sediment discharge is high and generally related to such watershed characteristics as geology, precipitation, and drainage area. For example, the Transverse Range of southern California represents only 9 percent of the watershed-drainage area but 18 percent of the fine-sediment flux, a function of the young sedimentary bedrock and active tectonics of this region. The urban rivers of southern California

  15. Advanced spray-dried design, physicochemical characterization, and aerosol dispersion performance of vancomycin and clarithromycin multifunctional controlled release particles for targeted respiratory delivery as dry powder inhalation aerosols.

    PubMed

    Park, Chun-Woong; Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Zwischenberger, Joseph B; Park, Eun-Seok; Mansour, Heidi M

    2013-10-15

    Respirable microparticles/nanoparticles of the antibiotics vancomycin (VCM) and clarithromycin (CLM) were successfully designed and developed by novel organic solution advanced spray drying from methanol solution. Formulation optimization was achieved through statistical experimental design of pump feeding rates of 25% (Low P), 50% (Medium P) and 75% (High P). Systematic and comprehensive physicochemical characterization and imaging were carried out using scanning electron microscopy (SEM), hot-stage microscopy (HSM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), Karl Fischer titration (KFT), laser size diffraction (LSD), gravimetric vapor sorption (GVS), confocal Raman microscopy (CRM) and spectroscopy for chemical imaging mapping. These novel spray-dried (SD) microparticulate/nanoparticulate dry powders displayed excellent aerosol dispersion performance as dry powder inhalers (DPIs) with high values in emitted dose (ED), respirable fraction (RF), and fine particle fraction (FPF). VCM DPIs displayed better aerosol dispersion performance compared to CLM DPIs which was related to differences in the physicochemical and particle properties of VCM and CLM. In addition, organic solution advanced co-spray drying particle engineering design was employed to successfully produce co-spray-dried (co-SD) multifunctional microparticulate/nanoparticulate aerosol powder formulations of VCM and CLM with the essential lung surfactant phospholipid, dipalmitoylphosphatidylcholine (DPPC), for controlled release pulmonary nanomedicine delivery as inhalable dry powder aerosols. Formulation optimization was achieved through statistical experimental design of molar ratios of co-SD VCM:DPPC and co-SD CLM:DPPC. XRPD and DSC confirmed that the phospholipid bilayer structure in the solid-state was preserved following spray drying. Co-SD VCM:DPPC and co-SD CLM:DPPC dry powder aerosols demonstrated controlled release of antibiotic drug that was fitted to various

  16. Influence of dispersion state of initial AlN powder on the hydrolysis process in air environment

    NASA Astrophysics Data System (ADS)

    Ditts, A. A.; Revva, I. B.; Grishko, N. Y.; Tarnovskiy, R. V.

    2016-11-01

    The research results of the hydrolysis processes of aluminum nitride powders received by the SVS method in dependence on humidity of the storage environment, and grain size distribution are presented in this work. Oxidation kinetics was estimated by means of X- ray Diffraction (XRD) and scanning electron microscopy (SEM). The induction period of the hydrolysis process for various powders, its dependence on powder dispersion and thickness of the oxide layer on surface of particles have been defined.

  17. Innovative Powder Processing of Oxide Dispersion Strengthened ODS Ferritic Stainless Steels

    SciTech Connect

    Rieken, Joel; Anderson, Iver; Kramer, Matthew

    2011-04-01

    An innovative gas atomization reaction synthesis technique was employed as a viable method to dramatically lower the processing cost for precursor oxide dispersion forming ferritic stainless steel powders (i.e., Fe-Cr-(Hf,Ti)-Y). During this rapid solidification process the atomized powders were enveloped by a nano-metric Cr-enriched metastable oxide film. Elevated temperature heat treatment was used to dissociate this metastable oxide phase through oxygen exchange reactions with Y-(Hf,Ti) enriched intermetallic compound precipitates. These solid state reactions resulted in the formation of highly stable nano-metric mixed oxide dispersoids (i.e., Y-Ti-O or Y-Hf-O) throughout the alloy microstructure. Subsequent high temperature (1200 C) heat treatments were used to elucidate the thermal stability of each nano-metric oxide dispersoid phase. Transmission electron microscopy coupled with X-ray diffraction was used to evaluate phase evolution within the alloy microstructure.

  18. Mechanical Properties of Silicone Rubber Acoustic Lens Material Doped with Fine Zinc Oxide Powders for Ultrasonic Medical Probe

    NASA Astrophysics Data System (ADS)

    Yamamoto, Noriko; Yohachi; Yamashita; Itsumi, Kazuhiro

    2009-07-01

    The mechanical properties of high-temperature-vulcanization silicone (Q) rubber doped with zinc oxide (ZnO) fine powders have been investigated to develop an acoustic lens material with high reliability. The ZnO-doped Q rubber with an acoustic impedance (Z) of 1.46×106 kg·m-2·s-1 showed a tear strength of 43 N/mm and an elongation of 560%. These mechanical property values were about 3 times higher than those of conventional acoustic Q lens materials. The ZnO-doped Q rubbers also showed a lower abrasion loss. These superior characteristics are attributable to the microstructure with fewer origins of breaks; few pores and spherical fine ZnO powder. The high mechanical properties of ZnO-doped Q rubber acoustic lenses enable higher performance during long-life and safe operation during diagnosis using medical array probe applications.

  19. An enzyme test for determining isomalathion impurities in water-dispersible powders of malathion

    PubMed Central

    Reiner, Elsa; Radić, Zoran

    1986-01-01

    An enzyme test for determining isomalathion (O,S-dimethyl-S-(1,2-dicarbethoxyethyl) phosphorodithioate) impurities in water-dispersible powders of malathion (WDP malathion) is described. The test is based on inhibition of acetylcholinesterase (EC 3.1.1.7) by isomalathion extracted from WDP malathion. The lower limit of detection of the test is 0.01% (w/w) isomalathion. For 18 samples of WDP malathion there was good correlation between the levels of isomalathion found using the enzyme test and those obtained by thin-layer chromatography. PMID:3490319

  20. Comparison of the Anti-tumor Effects of Two Platinum Agents (Miriplatin and Fine-Powder Cisplatin)

    SciTech Connect

    Watanabe, Shobu Nitta, Norihisa Ohta, Shinichi Sonoda, Akinaga Otani, Hideji Tomozawa, Yuki Nitta-Seko, Ayumi Tsuchiya, Keiko Tanka, Toyohiko Takahashi, Masashi Murata, Kiyoshi

    2012-04-15

    Purpose: This study was designed to evaluate the anti-tumor effects of miriplatin-lipidol and fine-powder cisplatin-lipiodol suspensions. Methods: Assessment of the cytotoxicity of two drugs was performed: a soluble derivative of miriplatin (DPC) and fine-powder cisplatin. We randomly divided 15 rabbits with transplanted VX2 liver tumors into three equal groups. They were infused via the proper hepatic artery with a miriplatin-lipiodol suspension (ML), a fine-powder cisplatin-lipiodol suspension (CL), or saline (control) and the tumor growth rate was determined on MR images acquired before and 7 days after treatment. The concentration of platinum (PCs) in blood was assayed immediately, and 10, 30, and 60 min, and 24 h and 7 days after drug administration. Its concentration in tumor and surrounding normal liver tissues was determined at 7 days postadministration. Results: At high concentrations, fine-powder cisplatin exhibited stronger cytotoxicity than DPC. At low concentrations, both agents manifested weak cytotoxicity. While there was no difference between the tumor growth rate of the ML and the CL groups, the difference between the controls and ML- and CL-treated rabbits was significant. The blood PCs peaked at 10 min and then gradually decreased over time. On the other hand, no platinum was detected at any point after the administration of ML. There was no difference between the ML and CL groups in the PCs in tumor tissues; however, in normal hepatic tissue, the PCs were higher in ML- than CL-treated rabbits. Conclusions: We confirmed the anti-tumor effect of ML and CL. There was no significant difference between the anti-tumor effect of ML and CL at 7 days postadministration.

  1. Preparation of finely dispersed O/W emulsion from fatty acid solubilized in subcritical water.

    PubMed

    Khuwijitjaru, Pramote; Kimura, Yukitaka; Matsuno, Ryuichi; Adachi, Shuji

    2004-10-01

    A novel method for preparing a finely dispersed oil-in-water emulsion is proposed. Octanoic acid dissolved in water at a high temperature of 220 or 230 degrees C at 15 MPa was combined with an aqueous solution of a surfactant and then the mixture was cooled. When a nonionic surfactant, decaglycerol monolaurate (ML-750) or polyoxyethylene sorbitan monolaurate (Tween 20), was used, fine emulsions with a median oil droplet diameter of 100 nm or less were successfully prepared at ML-750 and Tween 20 concentrations of 0.083% (w/v) and 0.042%, respectively, or higher. The diameters were much smaller than those of oil droplets prepared by the conventional homogenization method using a rotor/stator homogenizer. However, an anionic surfactant, sodium dodecyl sulfate, was not adequate for the preparation of such fine emulsions by the proposed method. Although the interfacial tensions between octanoic acid and the surfactant solutions were measured at different temperatures, they were not an indication for selecting a surfactant for the successful preparation of the fine emulsion by the proposed method.

  2. Effect of positron source irradiation on positronium annihilation in fine powdered alumina

    NASA Astrophysics Data System (ADS)

    Liu, Z. W.; Chen, Z. Q.

    2016-09-01

    Positron lifetime and Doppler broadening of positron annihilation radiation were measured as a function of time to study the irradiation effect by 22Na positron source in fine powdered alumina. The γ-Al2O3 samples were put in a vacuum chamber with a pressure of about 10-6 Torr and were cooled down to 10 K by a closed-cycle helium gas refrigerator. The irradiation of γ-Al2O3 samples by positron source was taken for a duration of about two days immediately after the sample was cooled down. After that, the sample was subjected to a warm up process from 10 K to 300 K with a step of 10 K. Positron lifetime and Doppler broadening spectra were measured simultaneously during these processes. Two long lifetime components corresponding to ortho-positronium annihilation were observed. A significant shortening of these long lifetime components and a large increase in S parameter is observed during irradiation. It is supposed that positron source irradiation creates a large number of paramagnetic centers on the surface of the γ-Al2O3 grains, which induce spin conversion quenching of positronium. The irradiation induced paramagnetic centers are unstable above 70 K and are nearly annealed out when the temperature rises to 190 K. After warming up of the sample to room temperature, the positron lifetime spectrum is identical to that before irradiation. It was also found that after irradiation, a medium long lifetime component of about 5 ns appears, of which the intensity increases with increasing irradiation time. This may be originated from the formation of the surface o-Ps state. This surface o-Ps state is also inhibited at elevated temperatures. Our results indicate that positronium is a very sensitive probe for the surface defects in porous materials.

  3. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The SAP technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of the alloy Ni-17Cr-5Al-0.2 Y. SAP-NiCrAl was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. A variety of annealing treatments were applied after working to determine the recrystallization response. NiCrAlY, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl of this study exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl as has been reported for other oxide dispersion strengthened alloys. In contrast, unoxidized NiCrAlY exhibited only primary recrystallization.

  4. Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations.

    PubMed

    Zamudio, Kelly R; Wieczorek, Ania M

    2007-01-01

    We examined fine-scale genetic variation among breeding aggregations of the spotted salamander (Ambystoma maculatum) to quantify dispersal, interpopulation connectivity and population genetic structure. Spotted salamanders rely on temporary ponds or wetlands for aggregate breeding. Adequate breeding sites are relatively isolated from one another and field studies suggest considerable adult site fidelity; therefore, we expected to find population structure and differentiation at small spatial scales. We used microsatellites to estimate population structure and dispersal among 29 breeding aggregations in Tompkins County, New York, USA, an area encompassing 1272 km(2). Bayesian and frequency-based analyses revealed fine-scale genetic structure with two genetically defined demes: the North deme included seven breeding ponds, and the South deme included 13 ponds. Nine ponds showed evidence of admixture between these two genetic pools. Bayesian assignment tests for detection of interpopulation dispersal indicate that immigration among ponds is common within demes, and that certain populations serve as sources of immigrants to neighbouring ponds. Likewise, spatial genetic correlation analyses showed that populations < or = 4.8 km distant from each other show significant genetic correlation that is not evident at higher scales. Within-population levels of relatedness are consistently larger than expected if mating were completely random across ponds, and in the case of a few ponds, within-population processes such as inbreeding or reproductive skew contribute significantly to differentiation from neighbouring ponds. Our data underscore the importance of these within-population processes as a source of genetic diversity across the landscape, despite considerable population connectivity. Our data further suggest that spotted salamander breeding groups behave as metapopulations, with population clusters as functional units, but sufficient migration among demes to allow for

  5. High resolution Transmission Electron Microscopy characterization of a milled oxide dispersion strengthened steel powder

    NASA Astrophysics Data System (ADS)

    Loyer-Prost, M.; Merot, J.-S.; Ribis, J.; Le Bouar, Y.; Chaffron, L.; Legendre, F.

    2016-10-01

    Oxide Dispersion Strengthened (ODS) steels are promising materials for generation IV fuel claddings as their dense nano-oxide dispersion provides good creep and irradiation resistance. Even if they have been studied for years, the formation mechanism of these nano-oxides is still unclear. Here we report for the first time a High Resolution Transmission Electron Microscopy and Energy Filtered Transmission Electron Microscopy characterization of an ODS milled powder. It provides clear evidence of the presence of small crystalline nanoclusters (NCs) enriched in titanium directly after milling. Small NCs (<5 nm) have a crystalline structure and seem partly coherent with the matrix. They have an interplanar spacing close to the (011) bcc iron structure. They coexist with larger crystalline spherical precipitates of 15-20 nm in size. Their crystalline structure may be metastable as they are not consistent with any Y-Ti-O or Ti-O structure. Such detailed observations in the as-milled grain powder confirm a mechanism of Y, Ti, O dissolution in the ferritic matrix followed by a NC precipitation during the mechanical alloying process of ODS materials.

  6. Disperse fine equiaxed alpha alumina nanoparticles with narrow size distribution synthesised by selective corrosion and coagulation separation

    PubMed Central

    Pu, Sanxu; Li, Lu; Ma, Ji; Lu, Fuliang; Li, Jiangong

    2015-01-01

    Disperse fine equiaxed α-Al2O3 nanoparticles with narrow size distribution are important materials in nanotechnology and nanomaterials, but syntheses of disperse fine equiaxed α-Al2O3 nanoparticles usually result in fine γ-Al2O3 nanoparticles or large α-Al2O3 nanoparticles larger than 15 nm. α-Al2O3 has a higher surface energy than γ-Al2O3 and becomes thermodynamically not stable with respect to γ-Al2O3 at specific surface areas larger than 100 m2/g (at sizes smaller than 15 nm for spherical particles) at room temperature. So disperse fine equiaxed α-Al2O3 nanoparticles smaller than 15 nm with narrow size distribution are extremely difficult to synthesise. Here we show the successful synthesis of disperse fine equiaxed α-Al2O3 nanoparticles with average sizes below 10 nm and narrow size distribution by selective corrosion and refined fractionated coagulation separation. An almost fully dense nanocrystalline α-Al2O3 ceramic with a relative density of 99.5% and an average grain size of 60 nm can be sintered from disperse fine equiaxed α-Al2O3 nanoparticles with narrow size distribution. PMID:26166455

  7. Characteristic of nanoparticles generated from different nano-powders by using different dispersion methods

    NASA Astrophysics Data System (ADS)

    Tsai, Chuen-Jinn; Lin, Guan-Yu; Liu, Chun-Nan; He, Chi-En; Chen, Chun-Wan

    2012-03-01

    A standard rotating drum with a modified sampling train (RD), a vortex shaker (VS), and a SSPD (small-scale powder disperser) were used to investigate the emission characteristics of nano-powders, including nano-titanium dioxide (nano-TiO2, primary diameter: 21 nm), nano-zinc oxide (nano-ZnO, primary diameter: 30-50 nm), and nano-silicon dioxide (nano-SiO2, primary diameter: 10-30 nm). A TSI SMPS (scanning mobility particle sizer), a TSI APS (aerodynamic particle sizer), and a MSP MOUDI (micro-orifice uniform deposit impactor) were used to measure the number and mass distributions of generated particles. Significant differences in specific number and mass concentration or distributions were found among different methods and nano-powders with the most specific number and mass concentration and the smallest particles being generated by the most energetic SSPD, followed by VS and RD. Near uni-modal number or mass distributions were observed for the SSPD while bi-modal number or mass distributions existed for nano-powders except nano-SiO2 which also exhibited bimodal mass distributions. The 30-min average results showed that the mass median aerodynamic diameter (MMAD) and number median diameter (NMD) of the SSPD ranged 1.1-2.1 μm and 166-261 nm, respectively, for all three nano-powders, which were smaller than those of the VS (MMAD: 3.3-6.0 μm and NMD: 156-462 nm), and the RD (MMAD: 5.2-11.2 μm and NMD: 198-479 nm). For nano-particles (electric mobility diameter < 100 nm), specific mass concentrations were nearly negligible for all three nano-powders and test methods. Specific number concentrations of nano-particles were low for the RD tester but were elevated when more energetic VS and SSPD testers were used. The quantitative size and concentration data obtained in this study is useful to elucidate the field emission and personal exposure data in the future provided that particle loss in the generation system is carefully assessed.

  8. Dispersal, Mating Events and Fine-Scale Genetic Structure in the Lesser Flat-Headed Bats

    PubMed Central

    Guo, Tingting; Flanders, Jon; Zhang, Shuyi

    2013-01-01

    Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and FST estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise FST values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females. PMID:23349888

  9. Regional model studies of the atmospheric dispersion of fine volcanic ash after the eruption of Eyjafjallajoekull

    NASA Astrophysics Data System (ADS)

    Langmann, B.; Hort, M. K.

    2010-12-01

    During the eruption of Eyjafjallajoekull on Iceland in April/May 2010 air traffic over Europe was repeatedly interrupted because of volcanic ash in the atmosphere. This completely unusual situation in Europe leads to the demand of improved crisis management, e.g. European wide regulations of volcanic ash thresholds and improved forecasts of theses thresholds. However, the quality of the forecast of fine volcanic ash concentrations in the atmosphere depends to a great extent on a realistic description of the erupted mass flux of fine ash particles, which is rather uncertain. Numerous aerosol measurements (ground based and satellite remote sensing, and in situ measurements) all over Europe have tracked the volcanic ash clouds during the eruption of Eyjafjallajoekull offering the possibility for an interdisciplinary effort between volcanologists and aerosol researchers to analyse the release and dispersion of fine volcanic ash in order to better understand the needs for realistic volcanic ash forecasts. This contribution describes the uncertainties related to the amount of fine volcanic ash released from Eyjafjallajoekull and its influence on the dispersion of volcanic ash over Europe by numerical modeling. We use the three-dimensional Eulerian atmosphere-chemistry/aerosol model REMOTE (Langmann et al., 2008) to simulate the distribution of volcanic ash as well as its deposition after the eruptions of Eyjafjallajoekull during April and May 2010. The model has been used before to simulate the fate of the volcanic ash after the volcanic eruptions of Kasatochi in 2008 (Langmann et al., 2010) and Mt. Pinatubo in 1991. Comparing our model results with available measurements for the Eyjafjallajoekull eruption we find a quite good agreement with available ash concentrations data measured over Europe as well as with the results from other models. Langmann, B., K. Zakšek and M. Hort, Atmospheric distribution and removal of volcanic ash after the eruption of Kasatochi volcano

  10. Aerosol flow reactor production of fine Y1Ba2Cu3O7 powder: Fabrication of superconducting ceramics

    NASA Astrophysics Data System (ADS)

    Kodas, T. T.; Engler, E. M.; Lee, V. Y.; Jacowitz, R.; Baum, T. H.; Roche, K.; Parkin, S. S. P.; Young, W. S.; Hughes, S.; Kleder, J.; Auser, W.

    1988-05-01

    An aerosol flow reactor operating at 900-1000 °C is used to prepare high-purity Y1Ba2Cu3O7 powders with a uniform chemical composition and a submicron to micron average particle size by thermally decomposing aerosol droplets of a solution consisting of the nitrate salts of Y, Ba, and Cu in a 1:2:3 ratio. The powders were at least 99% reacted based on thermogravimetric analysis, and the x-ray diffraction pattern is essentially that of Y1Ba2Cu3O7. Magnetic susceptibility measurements showed the powders to be superconducting with a transition at 90 K even for average reactor residence times as short as 20 s. Sintering cold-pressed pellets between 900 and 1000 °C provides dense, fine grained (average size on the order of 1 μm) superconducting ceramics with sharp 90 K transitions. The grain size and shape of a final sintered part could be varied depending on powder production, processing, and sintering conditions.

  11. Optimizations in angular dispersive neutron powder diffraction using divergent beam geometries

    NASA Astrophysics Data System (ADS)

    Buchsteiner, Alexandra; Stüßer, Norbert

    2009-01-01

    Angular dispersive neutron powder diffractometers are usually built using beam divergencies defined by Soller type collimators. To account for the needs of resolution for crystal structure refinement a good in-pile collimation α1, a high take-off angle above 90∘ at the monochromator and a good collimation α3 in front of the detector bank are chosen whereas the value of α2 for the collimation between monochromator and sample is less crucial. During the last years new strategies were developed at our institute using wide divergent beam geometries defined by fan collimators or slit-type diaphragms which correlate ray direction and wavelength within the beam. Here we present the performance of a newly developed fan collimator, which enables one to adjust the opening of the collimator channels on both sides independently. This fan collimator is positioned in front of the monochromator at the instrument E6 at the Helmholtz Centre Berlin (formerly Hahn-Meitner-Institut Berlin). It will be shown that control of the beam divergency allows optimization of the resolution in a large angular diffraction range. Hence the resolution and intensity can be adapted to the needs of powder diffraction. Monte Carlo simulations using McStas are used to check and prove the optimal setting of the instrument. We obtain a very good agreement between experimental and simulated data and demonstrate the superior outcome of the new instrument configuration with respect to Soller type instruments.

  12. High-temperature sorption of cesium and strontium on dispersed kaolinite powders.

    PubMed

    Yoo, Jong-Ik; Shinagawa, Takuya; Wood, Joseph P; Linak, William P; Santoianni, Dawn A; King, Charles J; Seo, Yong-Chil; Wendt, Jost O L

    2005-07-01

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high-temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, nonradioactive aqueous cesium acetate or strontium acetate was atomized down the center of a natural gas flame supported on a variable-swirl burner in a refractory-lined laboratory-scale combustion facility. Kaolinite powder was injected at a postflame location in the combustor. Cesium readily vaporized in the high-temperature regions of the combustor, but was reactively scavenged onto dispersed kaolinite. Global sorption mechanisms of cesium vapor on kaolinite were quantified, and are related to those available in the literature for sodium and lead. Both metal adsorption and substrate deactivation steps are important, so there is an optimum temperature, between 1400 and 1500 K, at which maximum sorption occurs. The presence of chlorine inhibits cesium sorption. In contrast to cesium, and in the absence of chlorine, strontium was only partially vaporized and was, therefore, only partially scavengeable. The strontium data did not allow quantification of global kinetic mechanisms of interaction, although equilibrium arguments provided insight into the effects of chlorine on strontium sorption. These results have implications for the use of sorbents to control cesium and strontium emissions during high-temperature waste processing including incineration and vitrification.

  13. Microgas dispersion for fine-coal cleaning. Technical progress report, September 1, 1980-February 28, 1981

    SciTech Connect

    Yoon, R.H.; Sebba, F.

    1980-01-01

    The purpose of this project is to develop a method of cleaning fine coal by flotation using very small microbubbles now known as Colloidal Gas Aphrons (CGA) and previously known as Microgas Dispersions (MGD). It was thought that MGD was not sufficiently descriptive of the nature of the small bubbles, and hence, the change was made. The objectives of the past six months of investigation were as follows: (1) a fundamental study of the properties of CGA, which involved (i) a study of the stability of the bubbles generated with several frothers that are currently used in the mineral industry, (ii) a study of the charge on the bubbles, and (iii) a microscopic inspection of the bubbles during flotation; (2) a preliminary investigation of the flotation characteristics of coal; and (3) construction of an automatic batch flotation machine, similar to the one described by Miller (1980).

  14. Lack of sex-biased dispersal promotes fine-scale genetic structure in alpine ungulates

    USGS Publications Warehouse

    Roffler, Gretchen H.; Talbot, Sandra L.; Luikart, Gordon; Sage, George K.; Pilgrim, Kristy L.; Adams, Layne G.; Schwartz, Michael K.

    2014-01-01

    Identifying patterns of fine-scale genetic structure in natural populations can advance understanding of critical ecological processes such as dispersal and gene flow across heterogeneous landscapes. Alpine ungulates generally exhibit high levels of genetic structure due to female philopatry and patchy configuration of mountain habitats. We assessed the spatial scale of genetic structure and the amount of gene flow in 301 Dall’s sheep (Ovis dalli dalli) at the landscape level using 15 nuclear microsatellites and 473 base pairs of the mitochondrial (mtDNA) control region. Dall’s sheep exhibited significant genetic structure within contiguous mountain ranges, but mtDNA structure occurred at a broader geographic scale than nuclear DNA within the study area, and mtDNA structure for other North American mountain sheep populations. No evidence of male-mediated gene flow or greater philopatry of females was observed; there was little difference between markers with different modes of inheritance (pairwise nuclear DNA F ST = 0.004–0.325; mtDNA F ST = 0.009–0.544), and males were no more likely than females to be recent immigrants. Historical patterns based on mtDNA indicate separate northern and southern lineages and a pattern of expansion following regional glacial retreat. Boundaries of genetic clusters aligned geographically with prominent mountain ranges, icefields, and major river valleys based on Bayesian and hierarchical modeling of microsatellite and mtDNA data. Our results suggest that fine-scale genetic structure in Dall’s sheep is influenced by limited dispersal, and structure may be weaker in populations occurring near ancestral levels of density and distribution in continuous habitats compared to other alpine ungulates that have experienced declines and marked habitat fragmentation.

  15. A method for producing superfine black tea powder with enhanced infusion and dispersion property.

    PubMed

    Xiao, Weihua; Zhang, Yang; Fan, Chongxin; Han, Lujia

    2017-01-01

    Tea is rich in healthy components including polyphenols, caffeine, gallic acids, and others. Current technology of tea infusion and extraction leads to more than 40% soluble solids wasted in spent leaf. To increase the bioaccessibility of black tea, we report a method of pulverization treatments including general and superfine grinding to reduce the particle size. In comparison with coarsely ground black tea powders (BTPs), the superfine ground BTP with medium diameter 6.9μm resulted in significant higher infusion yield of total polyphenols (TPP), caffeine, and water-soluble carbohydrate (WSC). The total water-soluble solids (WSS) of superfine BTP infusion increased markedly by twice due to the accelerated diffusion and enhanced solubility. High correlation between particle size and sedimentation ratio suggested improved dispersion stability of superfine BTP. The optimal dispersion of 0.1% superfine BTP in water was obtained by combination of homogenization and 0.08% CMC-Na formulation with 27.05% centrifugal sedimentation ratio.

  16. Limited Dispersal and Significant Fine - Scale Genetic Structure in a Tropical Montane Parrot Species

    PubMed Central

    Klauke, Nadine; Schaefer, H. Martin; Bauer, Michael; Segelbacher, Gernot

    2016-01-01

    Tropical montane ecosystems are biodiversity hotspots harbouring many endemics that are confined to specific habitat types within narrow altitudinal ranges. While deforestation put these ecosystems under threat, we still lack knowledge about how heterogeneous environments like the montane tropics promote population connectivity and persistence. We investigated the fine-scale genetic structure of the two largest subpopulations of the endangered El Oro parakeet (Pyrrhura orcesi) endemic to the Ecuadorian Andes. Specifically, we assessed the genetic divergence between three sites separated by small geographic distances but characterized by a heterogeneous habitat structure. Although geographical distances between sites are small (3–17 km), we found genetic differentiation between all sites. Even though dispersal capacity is generally high in parrots, our findings indicate that dispersal is limited even on this small geographic scale. Individual genotype assignment revealed similar genetic divergence across a valley (~ 3 km distance) compared to a continuous mountain range (~ 13 km distance). Our findings suggest that geographic barriers promote genetic divergence even on small spatial scales in this endangered endemic species. These results may have important implications for many other threatened and endemic species, particularly given the upslope shift of species predicted from climate change. PMID:28033364

  17. A study of the oxide dispersion and recrystallization in NiCrAl prepared from preoxidized powder

    NASA Technical Reports Server (NTRS)

    Glasgow, T. K.

    1975-01-01

    The sintered aluminum powder (SAP) technique of dispersion strengthening (formation of an oxide dispersion by preoxidation of metal powders) was applied to atomized powder of a nickel alloy containing, by weight, 17% Cr, 5% Al, and 0.2% Y. The SAP-NiCrAl alloy (without the ytterbium removed by oxdation) was worked by extrusion and rod rolling at 1205 C and by swaging at 760 C. Annealing treatments were applied after working to determine the recrystallization response. The NiCrAlY alloy, similarly prepared from atomized powder, but without a preoxidation treatment, was examined for comparison. The SAP-NiCrAl alloy exhibited oxide particle size and spacing much larger than that usually observed in oxide dispersion strengthened alloys; nonetheless, it was possible to achieve abnormal (secondary) recrystallization in the SAP-NiCrAl alloy as has been reported for other oxide dispersion strengthened alloys. In contrast, the unoxidized NiCrAlY alloy exhibited only primary recrystallization.

  18. Solid dispersion particles of amorphous indomethacin with fine porous silica particles by using spray-drying method.

    PubMed

    Takeuchi, Hirofumi; Nagira, Shinsuke; Yamamoto, Hiromitsu; Kawashima, Yoshiaki

    2005-04-11

    The solid dispersion particles of indomethacin (IMC) were prepared with different types of silica, non-porous (Aerosil 200) or porous silica (Sylysia 350) by using spray-drying method. Powder X-ray diffraction analysis showed that IMC in solid dispersion particles is in amorphous state irrespective of the type of silica formulated. In DSC analysis, the melting peak of IMC in solid dispersion particles with Sylysia 350 shifted to lower temperature than that in solid dispersion particles with Aerosil 200 although the peak of each solid dispersion particles was much smaller than that of original IMC crystals. Dissolution property of IMC was remarkably improved by formulating the silica particles to the solid dispersion particles. In comparing the effect of the type of the silica particles, the dissolution rate of solid dispersion particles with Sylysia 350 was faster than that with Aerosil 200. The formulation amount of IMC did not affect on the amorphous state of IMC in the resultant solid dispersion particles in powder X-ray diffraction patterns. However, the area of the melting peak of IMC in the solid dispersion particles increased and an exothermic peak owing to recrystallization was observed with increasing the IMC content in the DSC patterns. The dissolution rate of IMC from the solid dispersion particles with Sylysia 350 was faster than that of Aerosil 200 irrespective of IMC content. In stability test, amorphous IMC in the solid dispersion particles with each silica particles did not crystallize under storing at severe storage conditions (40 degrees C, 75% RH) for 2 months, while amorphous IMC without silica easily crystallized under same conditions.

  19. Fine-scale genetic structure reflects sex-specific dispersal strategies in a population of sociable weavers (Philetairus socius).

    PubMed

    van Dijk, René E; Covas, Rita; Doutrelant, Claire; Spottiswoode, Claire N; Hatchwell, Ben J

    2015-08-01

    Dispersal is a critical driver of gene flow, with important consequences for population genetic structure, social interactions and other biological processes. Limited dispersal may result in kin-structured populations in which kin selection may operate, but it may also increase the risk of kin competition and inbreeding. Here, we use a combination of long-term field data and molecular genetics to examine dispersal patterns and their consequences for the population genetics of a highly social bird, the sociable weaver (Philetairus socius), which exhibits cooperation at various levels of sociality from nuclear family groups to its unique communal nests. Using 20 years of data, involving capture of 6508 birds and 3151 recaptures at 48 colonies, we found that both sexes exhibit philopatry and that any dispersal occurs over relatively short distances. Dispersal is female-biased, with females dispersing earlier, further, and to less closely related destination colonies than males. Genotyping data from 30 colonies showed that this pattern of dispersal is reflected by fine-scale genetic structure for both sexes, revealed by isolation by distance in terms of genetic relatedness and significant genetic variance among colonies. Both relationships were stronger among males than females. Crucially, significant relatedness extended beyond the level of the colony for both sexes. Such fine-scale population genetic structure may have played an important role in the evolution of cooperative behaviour in this species, but it may also result in a significant inbreeding risk, against which female-biased dispersal alone is unlikely to be an effective strategy.

  20. Super-fine powdered activated carbon (SPAC) for efficient removal of micropollutants from wastewater treatment plant effluent.

    PubMed

    Bonvin, Florence; Jost, Livia; Randin, Lea; Bonvin, Emmanuel; Kohn, Tamar

    2016-03-01

    In an effort to mitigate the discharge of micropollutants to surface waters, adsorption of micropollutants onto powdered activated carbon (PAC) after conventional wastewater treatment has been identified as a promising technology for enhanced removal of pharmaceuticals and pesticides from wastewater. We investigated the effectiveness of super-fine powdered activated carbon, SPAC, (ca. 1 μm mean particle diameter) in comparison to regular-sized PAC (17-37 μm mean diameter) for the optimization of micropollutant removal from wastewater. Adsorption isotherms and batch kinetic experiments were performed for 10 representative micropollutants (bezafibrate, benzotriazole, carbamazepine, diclofenac, gabapentin, mecoprop, metoprolol, ofloxacin, sulfamethoxazole and trimethoprim) onto three commercial PACs and their super-fine variants in carbonate buffer and in wastewater effluent. SPAC showed substantially faster adsorption kinetics of all micropollutants than conventional PAC, regardless of the micropollutant adsorption affinity and the solution matrix. The total adsorptive capacities of SPAC were similar to those of PAC for two of the three tested carbon materials, in all tested waters. However, in effluent wastewater, the presence of effluent organic matter adversely affected micropollutant removal, resulting in lower removal efficiencies especially for micropollutants with low affinity for adsorbent particles in comparison to pure water. In comparison to PAC, SPAC application resulted in up to two-fold enhanced dissolved organic carbon (DOC) removal from effluent wastewater. The more efficient adsorption process using SPAC translates into a reduction of contact time and contact tank size as well as reduced carbon dosing for a targeted micropollutant removal. In the tested effluent wastewater (5 mg/L DOC), the necessary dose to achieve 80% average removal of indicator micropollutants (benzotriazole, diclofenac, carbamazepine, mecoprop and sulfamethoxazole) ranged

  1. Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy

    NASA Technical Reports Server (NTRS)

    Miner, R. V.; Dreshfield, R. L.

    1980-01-01

    Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.

  2. Extension of the Vane Pump-Grinder Technology to Manufacture Finely Dispersed Meat Batters.

    PubMed

    Irmscher, Stefan B; Gibis, Monika; Herrmann, Kurt; Oechsle, Anja Maria; Kohlus, Reinhard; Weiss, Jochen

    2016-03-01

    A vane pump-grinder system was extended to enable the manufacture of finely dispersed emulsion-type sausages by constructing and attaching a high-shear homogenizer at the outlet. We hypothesized that the dispersing capabilities of the extended system may be improved to the point of facilitating meat-fat emulsification due to an overall increased volumetric energy input EV . Coarsely ground raw material mixtures were processed to yield meat batters at varying volume flow rates (10 to 60 L/min) and rotational rotor speeds of the homogenizer nrotor (1000 to 3400 rpm). The normalized torques acting on pump, grinder, and homogenizer motors were recorded and unit power consumptions were calculated. The structure of the manufactured meat batters and sausages were analyzed via image analysis. Key physicochemical properties of unheated and heated batters, that is, texture, water-binding, color, and solubilized protein were determined. The mean diameter d10 of the visible lean meat particles varied between 352 and 406 μm whereas the mean volume-surface diameter d32 varied between 603 and 796 μm. The lightness L* ranged from 66.2 to 70.7 and correlated with the volumetric energy input and product structure. By contrast, varying process parameters did not impact color values a* (approximately 11) and b* (approximately 8). Interestingly, water-binding and protein solubilization were not affected. An exponential process-structure relationship was identified allowing manufacturers to predict product properties as a function of applied process parameters. Raw material mixtures can be continuously comminuted, emulsified, and subsequently filled into casings using an extended vane pump-grinder.

  3. Design, characterization, and aerosol dispersion performance modeling of advanced co-spray dried antibiotics with mannitol as respirable microparticles/nanoparticles for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-09-01

    Dry powder inhalation aerosols of antibiotic drugs (a first-line aminoglycoside, tobramycin, and a first-line macrolide, azithromycin) and a sugar alcohol mucolytic agent (mannitol) as co-spray dried (co-SD) particles at various molar ratios of drug:mannitol were successfully produced by organic solution advanced co-spray drying from dilute solute concentration. These microparticulate/nanoparticulate aerosols consisting of various antibiotic drug:mannitol molar ratios were rationally designed with a narrow and unimodal primary particle size distribution, spherical particle shape, relatively smooth particle surface, and very low residual water content to minimize the interparticulate interactions and enhance in vitro aerosolization. These microparticulate/nanoparticulate inhalation powders were high-performing aerosols as reflected in the aerosol dispersion performance parameters of emitted dose, fine particle fraction (FPF), respirable fraction (RF), and mass median aerodynamic diameter (MMAD). The glass transition temperature (Tg) values were significantly above room temperature, which indicated that the co-SD powders were all in the amorphous glassy state. The Tg values for co-SD tobramycin:mannitol powders were significantly lower than those for co-SD azithromycin:mannitol powders. The interplay between aerosol dispersion performance parameters and Tg was modeled where higher Tg values (i.e., more ordered glass) were correlated with higher values in FPF and RF and lower values in MMAD.

  4. Mineralogical effect correction in wavelength dispersive X-ray florescence analysis of pressed powder pellets

    NASA Astrophysics Data System (ADS)

    Shan, H. Z.; Zhuo, S. J.; Shen, R. X.; Sheng, C.

    2008-05-01

    Two methods are utilized to correct the influence of the mineralogical effect on the calibration of elements in geological samples when the pressed powder pellet method is used in wavelength dispersive X-ray fluorescence analysis. The first method involves checking of the 2θ angle for the analyzed element in each sample to correct peak shift and the second method involves replacing the peak intensity with the peak area of the analytical line, so to correct for any shape distortion of the peak. The results were compared with those obtained from the normal method. Major elements in 27 Chinese Certified Reference Materials (CRMs) of rocks, soils and sediments were calibrated with a linear regression curve without theoretical or empirical coefficients. In view of the K values, the calibrations of all 8 elements were improved by the first method and those of 6 elements were improved by the second method. Sulfur calibrations with 4 iron ore CRMs were improved with the use of both methods. The methods have been successfully applied for the analysis of the major elements in limestone ores from different resources of a cement factory.

  5. Fabrication of Ta2O5 Dispersion-Strengthened Mo-Si-B Alloy by Powder Metallurgical Method

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Choi, Won June; Bang, Su-Ryong; Park, Chun Woong; Do Kim, Young

    2017-01-01

    In this study, we investigate the effect of oxide dispersion strengthening on mechanical properties by dispersion of nano-sized Ta2O5 particles in Mo-Si-B alloy. A Mo-Si-B core-shell powder consisting of two intermetallic compounds of Mo5SiB2 and Mo3Si as the core and nano-sized Mo solid solution surrounding intermetallic compounds was fabricated by chemical vapor transport. And Mo-Si-B core-shell powder with uniformly dispersed nano-sized Ta2O5 particles on the surface of a Mo solid solution shell was produced by a wet blending process with TaCl5 solution and heat treatment. Then, pressureless sintering was performed at 1400°C for 3 h under a H2 atmosphere. The hardness and fracture toughness of the Ta2O5-dispersed Mo-Si-B alloy were measured using Vickers hardness and 3-point bending tests, respectively. The Vickers hardness and fracture toughness of the fabricated Mo-Si-B-Ta2O5 alloy were more improved than that of the Mo-Si-B alloy fabricated using core-shell powder with no addition of Ta2O5 particles (Mo-Si-B alloy: 353 Hv, 13.5 MPa·√m, Mo-Si-B-Ta2O5 alloy: 509 Hv, 15.1 MPa·√m).

  6. The physical state of finely dispersed soil-like systems with drilling sludge as an example

    NASA Astrophysics Data System (ADS)

    Smagin, A. V.; Kol'Tsov, I. N.; Pepelov, I. L.; Kirichenko, A. V.; Sadovnikova, N. B.; Kinzhaev, R. R.

    2011-02-01

    The physical state and its dynamics were studied at the quantitative level for drilling sludge (finely dispersed waste of the oil industry). Using original methodological approaches, the main hydrophysical and technological properties of sludge samples were assessed for the first time, including the water retention curve, the specific surface, the water conductivity, the electrical conductivity, the porosity dynamics during shrinkage, the water yield, etc., which are used in the current models of water transfer and the behavior of these soil-like objects under real thermodynamic conditions. The technologically unfavorable phenomenon of the spontaneous swelling of sludge during the storage of drilling waste was theoretically explained. The water regime of the homogeneous 0.5-m thick drilling sludge layer under the free gravity outflow and permanent evaporation of water from the surface was analyzed using the HYDRUS-1D model. The high water retention capacity and the low water conductivity and water yield of sludge do not allow their drying to the three-phase state (with the entry of air) acceptable for terrestrial plants under humid climatic conditions, which explains the spontaneous transformation of sludge pits to only hydromorphic ecosystems.

  7. Dense and Homogeneous Compaction of Fine Ceramic and Metallic Powders: High-Speed Centrifugal Compaction Process

    SciTech Connect

    Suzuki, Hiroyuki Y.

    2008-02-15

    High-Speed Centrifugal Compaction Process (HCP) is a variation of colloidal compacting method, in which the powders sediment under huge centrifugal force. Compacting mechanism of HCP differs from conventional colloidal process such as slip casting. The unique compacting mechanism of HCP leads to a number of characteristics such as a higher compacting speed, wide applicability for net shape formation, flawless microstructure of the green compacts, etc. However, HCP also has several deteriorative characteristics that must be overcome to fully realize this process' full potential.

  8. Biodegradability and mechanical properties of poly(butylene succinate) composites with finely dispersed hydrophilic poly(acrylic acid)

    NASA Astrophysics Data System (ADS)

    Mizuno, Sawako; Hotta, Atsushi

    2014-03-01

    Biodegradability and mechanical properties of aliphatic poly(butylene succinate) (PBS) films with finely dispersed hydrophilic poly(acrylic acid) (PAA) were investigated. First, 3.5 wt% of PAA was chemically grafted onto the surface of the PBS films (surface-grafted PBS) by photo grafting polymerization, and then the grafted PAA was homogeneously and finely dispersed into PBS by dissolving the surface-grafted PBS into chloroform before mixing and drying to get solid PAA-dispersed PBS. Degradation of these modified PBS was investigated using gel permeation chromatography (GPC) and tensile testing. According to the GPC results, it was found that the PAA-dispersed PBS had intermediate biodegradability with the intermediate water intake, and the reaction constant of PAA-dispersed PBS was in between those of untreated PBS and surface-grafted PBS, in fact 25% higher and 17% lower, respectively. The experimental results presented that the biodegradability of PBS could be well controlled by the dispersion of PAA, possibly leading to the widespread use of PBS for biodegradable polymers.

  9. Fine surface modification of aluminum by laser irradiation with TiO2-Ni composite powder

    NASA Astrophysics Data System (ADS)

    Akanuma, Masanobu; Tanaka, Hiroyuki; Sato, Takanori; Ikeda, Masayuki

    1999-09-01

    Surface modification experiments on aluminum were performed using CO2 laser beam irradiation on a surface on which an alloying powder had been pre-placed. Using TiO2 particles coated with Ni as a new material for laser alloying, a hard and uniformly-structured alloyed layer was achieved on the Al substrate. The effects of additive Ni on the hardness and structure of the alloyed layer were then investigated. With an increase in Ni content in the alloying powder, the hardness of the alloyed layer increased. This hardening in the alloyed layer was caused by the crystallization of intermetallic compounds. The optimum alloyed layer was obtained, when the weight ratio of TiO2 to Ni was about 1:1. The thickness of the alloyed layer was 0.6 - 0.7 mm, and the surface roughness about Rz 70 micrometers. It mainly consisted of Al+Al3Ni eutectic matrix and Al3Ti dendrites. The micro Vickers hardware of the alloyed layer was Hv200+/- 50. According to the sliding friction test, and specific wear volume was smaller than that of tempered carbon steel under high sliding speed and heavy load conditions.

  10. Breed Locally, Disperse Globally: Fine-Scale Genetic Structure Despite Landscape-Scale Panmixia in a Fire-Specialist

    PubMed Central

    Pierson, Jennifer C.; Allendorf, Fred W.; Drapeau, Pierre; Schwartz, Michael K.

    2013-01-01

    An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go ‘extinct’ during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus) and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results. PMID:23825646

  11. Breed locally, disperse globally: fine-scale genetic structure despite landscape-scale panmixia in a fire-specialist.

    PubMed

    Pierson, Jennifer C; Allendorf, Fred W; Drapeau, Pierre; Schwartz, Michael K

    2013-01-01

    An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go 'extinct' during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic structuring or how this changes over time in ephemeral patches. We predicted that species that specialize on ephemeral habitats will delay dispersal to exploit natal habitat patches while resources are plentiful and thus display fine-scale structure. To investigate this idea, we evaluated the effect of frequent colonization of ephemeral habitats on the fine-scale genetic structure of a fire specialist, the black-backed woodpecker (Picoides arcticus) and found a pattern of fine-scale genetic structure. We then tested for differences in spatial structure between sexes and detected a pattern consistent with male-biased dispersal. We also detected a temporal increase in relatedness among individuals within newly burned forest patches. Our results indicate that specialist species that outlive their ephemeral patches can accrue significant fine-scale spatial structure that does not necessarily affect spatial structure at larger scales. This highlights the importance of both spatial and temporal scale considerations in both sampling and data interpretation of molecular genetic results.

  12. Decoupling the contribution of dispersive and acid-base components of surface energy on the cohesion of pharmaceutical powders.

    PubMed

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2014-11-20

    This study reports an experimental approach to determine the contribution from two different components of surface energy on cohesion. A method to tailor the surface chemistry of mefenamic acid via silanization is established and the role of surface energy on cohesion is investigated. Silanization was used as a method to functionalize mefenamic acid surfaces with four different functional end groups resulting in an ascending order of the dispersive component of surface energy. Furthermore, four haloalkane functional end groups were grafted on to the surface of mefenamic acid, resulting in varying levels of acid-base component of surface energy, while maintaining constant dispersive component of surface energy. A proportional increase in cohesion was observed with increases in both dispersive as well as acid-base components of surface energy. Contributions from dispersive and acid-base surface energy on cohesion were determined using an iterative approach. Due to the contribution from acid-base surface energy, cohesion was found to increase ∼11.7× compared to the contribution from dispersive surface energy. Here, we provide an approach to deconvolute the contribution from two different components of surface energy on cohesion, which has the potential of predicting powder flow behavior and ultimately controlling powder cohesion.

  13. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    PubMed

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed.

  14. Fine scale relationships between sex, life history, and dispersal of masu salmon

    USGS Publications Warehouse

    Kitanishi, Shigeru; Yamamoto, Toshiaki; Koizumi, Itsuro; Dunham, Jason B.; Higashi, Seigo

    2012-01-01

    Identifying the patterns and processes driving dispersal is critical for understanding population structure and dynamics. In many organisms, sex-biased dispersal is related to the type of mating system. Considerably less is known about the influence of life history variability on dispersal. Here we investigated patterns of dispersal in masu salmon (Oncorhynchus masou) to evaluate influences of sex and life history on dispersal. As expected, assignment tests and isolation by distance analysis revealed that dispersal of marine-migratory masu salmon was male-biased. However, dispersal of resident and migratory males did not follow our expectation and marine-migratory individuals dispersed more than residents. This may be because direct competition between marine-migratory and resident males is weak or that the cost of dispersal is smaller for marine-migratory individuals. This study revealed that both sex and migratory life history influence patterns of dispersal at a local scale in masu salmon.

  15. Using a test solution of NaCl in water for studying the finely dispersed spraying of liquids

    NASA Astrophysics Data System (ADS)

    Ishmatov, A. N.; Vorozhtsov, B. I.; Arkhipov, V. A.

    2013-12-01

    Both theoretically and experimentally, the suitability of a technique for studying the finely dispersed spraying of liquids based on an analysis of salt residue particles formed as a result of evaporation of test solutions of NaCl in water was evaluated. Data gained in studying the dispersion of droplets in the droplet clouds produced by pulsed and ultrasonic atomizers are reported. During pulsed atomization, salt residue particles of various morphologies were found to form, this finding pointing to realization of unsteady conditions for particle evolution.

  16. An investigation into the effect of fine lactose particles on the fluidization behaviour and aerosolization performance of carrier-based dry powder inhaler formulations.

    PubMed

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Shur, Jagdeep; Price, Robert

    2014-08-01

    The effect of milled and micronized lactose fines on the fluidization and in vitro aerosolization properties of dry powder inhaler (DPI) formulations was investigated, and the suitability of static and dynamic methods for characterizing general powder flow properties of these blends was assessed. Lactose carrier pre-blends were prepared by adding different lactose fines (Lactohale® (LH) 300, 230 and 210) with coarse carrier lactose (Lactohale100) at 2.5, 5, 10 and 20 wt% concentrations. Powder flow properties of lactose pre-blends were characterized using the Freeman Technology FT4 and Schulze RST-XS ring shear tester. A strong correlation was found between the basic flow energy (BFENorm) measured using the Freeman FT4 Rheometer and the flowability number (ffc) measured on Schulze RST-XS. These data indicate that both static and dynamic methods are suitable for characterizing general powder flow properties of lactose carriers. Increasing concentration of fines corresponded with an increase in the normalized fluidization energy (FENorm). The inclusion of fine particles of lactose resulted in a significant (p < 0.05) increase in fine particle delivery of budesonide and correlated with FENorm. This trend was strongest for lactose containing up to 10 wt% LH300. A similar trend was found for the milled lactose grades LH230 and LH210. However, the increase in FENorm upon addition of milled fines only corresponded to a very slight improvement in the performance. These data suggest that whilst the fluidization energy correlated with fine particle delivery, this relationship is specific to lactose grades of similar particle size.

  17. Fine structural features in {alpha}-silicon nitride powder particles and their implications

    SciTech Connect

    Wang, C.M.

    1995-12-01

    Commercial Si{sub 3}N{sub 4} powder particles have been studied with transmission electron microscopy. A vacancy type of dislocation loop is revealed to be a typical feature of as-grown {alpha}-Si{sub 3}N{sub 4} particles fabricated through the imide decomposition method. As a result of vacancy agglomeration on the (0001) plane, a stacking fault which is distinctively situated in the very middle of an individual particle with respect to the c-axis can be seen within some particles. In combination with three other recent publications reporting dislocation loops in {alpha}-Si{sub 3}N{sub 4} but produced by different methods, it seems that dislocation loops are a common feature of as-grown {alpha}-Si{sub 3}N{sub 4} even produced by distinctively different methods. Of the most relevance to the present observation, the controversy over the structural nature of {alpha}-Si{sub 3}N{sub 4} is discussed.

  18. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf; Bamberger, Carlos E.

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  19. Preparation of metal diboride powders

    DOEpatents

    Brynestad, J.; Bamberger, C.E.

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group of consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  20. Titanium Aluminides Based Composite Coatings with Fine Carbide DispersoidsProduced by Reactive Spraying of Ti/Al Powders Containing Carbon

    NASA Astrophysics Data System (ADS)

    Murakami, Kenji; Ishikawa, Hiroshi; Nakajima, Hideo

    Elemental aluminum powders and elemental titanium powders were ball-milled to fabricate Ti/Al composite powders with different titanium to aluminum ratio using several kinds of organic solvents as a process controlling agent. The organic solvent was decomposed during milling and the carbon was incorporated in the composite powder. The carbon content of the composite powder depended on the kind of the organic solvent. The composite powders were low pressure plasma sprayed onto a steel substrate to produce coatings. The coatings deposited on a water cooled substrate were predominantly composed of a metastable Ti3Al phase that was supersaturated with carbon. Heat treatment of the coatings led to the decomposition of the Ti3Al phase to a TiAl phase and fine Ti2AlC. When the thermal spraying was carried out on a preheated substrate, the main constituent of the coatings was a stable TiAl phase and Ti2AlC was detected by X-ray diffraction. The as-sprayed coating possessed a high hardness. Fine Ti2AlC particles appeared after heat treatment of these coatings. The volume percentage of the Ti2AlC ranged from 4.9% to 15.3% depending on the coating composition.

  1. Metallurgical features of the manufacture of hard-alloy powders by electroerosive dispersion of a T15K6 alloy in butanol

    NASA Astrophysics Data System (ADS)

    Ageev, E. V.; Latypov, R. A.; Ugrimov, A. S.

    2016-12-01

    The properties of the powders fabricated by the electroerosive dispersion of the wastes of a T15K6 hard alloy in working fluid (butanol-1) are studied. The powder particles thus fabricated are found to have a predominantly spherical shape and contain W, Ti, Co, C, and O.

  2. Electromagnetic wave absorption properties of Fe73Si16B7Nb3Cu1-based composites mixed with fine charcoal powder

    NASA Astrophysics Data System (ADS)

    Kim, Sun-I.; Kim, Mi Rae; Sohn, Keun Yong; Park, Won-Wook

    2010-05-01

    Fe73Si16B7Nb3Cu1 soft magnetic powder was crystallized to obtain a nano grain structure and mixed with a fine charcoal powder. The mixtures were tape-cast with polymer-based organic binders to form a sheet-type electromagnetic (EM) wave absorption composite. The EM wave absorption properties of the sheets were investigated using a network analyzer. The results showed that addition of charcoal powder improved the EM-absorbing properties of the composite. The power loss of the EM wave was directly related to the imaginary part of the permeability and permittivity, and it was reviewed in detail. Excellent absorption properties were achieved by adding 5 wt % charcoal powder (-500 mesh) to the Fe-based sheets.

  3. DISPERSION HARDENING OF URANIUM METAL

    DOEpatents

    Arbiter, W.

    1963-01-15

    A method of hardening U metal involves the forming of a fine dispersion of UO/sub 2/. This method consists of first hydriding the U to form a finely divided powder and then exposing the powder to a very dilute O gas in an inert atmosphere under such pressure and temperature conditions as to cause a thin oxide film to coat each particle of the U hydride, The oxide skin prevents agglomeration of the particles as the remaining H is removed, thus preserving the small particle size. The oxide skin coatings remain as an oxide dispersion. The resulting product may be workhardened to improve its physical characteristics. (AEC)

  4. Attenuation of Gas Turbulence by a Nearly Stationary Dispersion of Fine Particles

    NASA Technical Reports Server (NTRS)

    Paris, A. D.; Eaton, J. K.; Hwang, W.

    1999-01-01

    Turbulence attenuation by greater than a factor of two has been observed in many practical gas flows carrying volume fractions as small as 0.01% of dispersed particles. Particles which cause such attenuation usually are smaller than the smallest scales of the turbulence and have time constants 5 to 10 times greater than the time scale of a typical turbulent eddy. That is, strongly attenuating particles usually have Stokes numbers in the range of 5 to 10, indicating that they do not respond to the turbulent fluctuations, but instead just fall through the flow responding only to the mean flow. There are two mechanisms by which free falling particles may attenuate turbulence. First, the unresponsive particles act as a drag on the turbulent eddies, passing energy from the turbulent eddies to the small scale wakes of the particles where it is quickly dissipated by viscosity. The second mechanism is more complicated. Particles falling under gravity convert gravitational potential energy to turbulent velocity fluctuations. If the particles are large, this mechanism increases the overall turbulence level. However, with moderate size particles, the small scale turbulence generated apparently distorts the turbulent eddies leading to more rapid dissipation. Unfortunately, this conclusion is supported only by circumstantial evidence to date. The objectives of the experiment are to use microgravity to separate the two mechanisms. A region of nearly-isotropic decaying turbulence with zero mean flow will be formed in a box in the microgravity environment. Different sets of particles with Stokes numbers in the range of 2 to 20 will be dispersed in the flow. With zero gravity and no mean fluid velocity the particles will have zero mean velocity. With the large Stokes numbers, the fluctuating velocities will also be small. Therefore, the only attenuation mechanism will be the direct action of the particles on the turbulence. Control experiments will also be done in which the

  5. Non-steroidal anti-inflammatory drug for pulmonary administration: design and investigation of ketoprofen lysinate fine dry powders.

    PubMed

    Stigliani, Mariateresa; Aquino, Rita P; Del Gaudio, Pasquale; Mencherini, Teresa; Sansone, Francesca; Russo, Paola

    2013-05-01

    Pulmonary inflammation is an important therapeutic target in cystic fibrosis (CF) patients, aiming to limit and delay the lung damage. The purpose of the present research was to produce respirable engineered particles of ketoprofen lysinate, a non-steroidal anti-inflammatory drug able to fight lung inflammatory status by direct administration to the site of action. Micronized drug powders containing leucine as dispersibility enhancer were prepared by co-spray drying the active compound and the excipient from water or hydro-alcoholic feeds. Microparticles were fully characterized in terms of process yield, particle size distribution, morphology and drug content. The ability of the drug to reach the deepest airways after aerosolization of spray-dried formulations was evaluated by Andersen cascade impactor, using the monodose DPI as device. In order to investigate the behaviour of the drug once in contact with lung fluid, an artificial CF mucus was prepared. Drug permeation properties were evaluated interposing the mucus layer between the drug and a synthetic membrane mounted in Franz-type diffusion cells. Finally, the effect of the engineered particles on vitality of human airway epithelial cells of patients homozygous for ΔF 508 CF (CuFi1) was studied and compared to that of raw active compound. Results indicated that powders engineering changed the diameter and shape of the particles, making them suitable for inhalation. The mucus layer in the donor compartment of vertical diffusion cells slowed down drug dissolution and permeation, leucine having no influence. Cell proliferation studies evidenced that the spray drying process together with the addition of leucine reduced the cytotoxic effect of ketoprofen lysine salt as raw material, making the ketoprofen lysinate DPI a very promising product for the inflammation control in CF patients.

  6. Preparation of Active Proteins, Vaccines and Pharmaceuticals as Fine Powders using Supercritical or Near-Critical Fluids

    PubMed Central

    Villa, Joseph A.; Huang, Edward T. S.; Yang, Tzung-Horng; Carpenter, John F.; Sievers, Robert E.

    2008-01-01

    Supercritical or near-critical fluid processes for generating microparticles have enjoyed considerable attention in the past decade or so, with good success for substances soluble in supercritical fluids or organic solvents. In this review, we survey their application to the production of protein particles. A recently developed process known as CO2-assisted nebulization with a Bubble Dryer® (CAN-BD) has been demonstrated to have broad applicability to small-molecule as well as macromolecule substances (including therapeutic proteins). The principles of CAN-BD are discussed as well as the stabilization, micronization and drying of a wide variety of materials. More detailed case studies are presented for three proteins, two of which are of therapeutic interest: anti-CD4 antibody (rheumatoid arthritis), α1-antitrypsin (cystic fibrosis and emphysema), and trypsinogen (a model enzyme). Dry powders were formed in which stability and activity are maintained and which are fine enough to be inhaled and reach the deep lung. Enhancement of apparent activity after CAN-BD processing was also observed in some formulation and processing conditions. PMID:18581212

  7. Fine-scale genetic structure analyses suggest further male than female dispersal in mountain gorillas

    PubMed Central

    2014-01-01

    Background Molecular studies in social mammals rarely compare the inferences gained from genetic analyses with field information, especially in the context of dispersal. In this study, we used genetic data to elucidate sex-specific dispersal dynamics in the Virunga Massif mountain gorilla population (Gorilla beringei beringei), a primate species characterized by routine male and female dispersal from stable mixed-sex social groups. Specifically, we conducted spatial genetic structure analyses for each sex and linked our genetically-based observations with some key demographic and behavioural data from this population. Results To investigate the spatial genetic structure of mountain gorillas, we analysed the genotypes of 193 mature individuals at 11 microsatellite loci by means of isolation-by-distance and spatial autocorrelation analyses. Although not all males and females disperse, female gorillas displayed an isolation-by-distance pattern among groups and a signal of dispersal at short distances from their natal group based on spatial autocorrelation analyses. In contrast, male genotypes were not correlated with spatial distance, thus suggesting a larger mean dispersal distance for males as compared to females. Both within sex and mixed-sex pairs were on average genetically more related within groups than among groups. Conclusions Our study provides evidence for an intersexual difference in dispersal distance in the mountain gorilla. Overall, it stresses the importance of investigating spatial genetic structure patterns on a sex-specific basis to better understand the dispersal dynamics of the species under investigation. It is currently poorly understood why some male and female gorillas disperse while others remain in the natal group. Our results on average relatedness within and across groups confirm that groups often contain close relatives. While inbreeding avoidance may play a role in driving female dispersal, we note that more detailed dyadic genetic

  8. Extremely fine structured cathode for solid oxide fuel cells using Sr-doped LaMnO3 and Y2O3-stabilized ZrO2 nano-composite powder synthesized by spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Shimada, Hiroyuki; Yamaguchi, Toshiaki; Sumi, Hirofumi; Nomura, Katsuhiro; Yamaguchi, Yuki; Fujishiro, Yoshinobu

    2017-02-01

    A solid oxide fuel cell (SOFC) for high power density operation was developed with a microstructure-controlled cathode using a nano-composite powder of Sr-doped LaMnO3 (LSM) and Y2O3-stabilized ZrO2 (YSZ) synthesized by spray pyrolysis. The individual LSM-YSZ nano-composite particles, formed by crystalline and amorphous nano-size LSM and YSZ particles, showed spherical morphology with uniform particle size. The use of this powder for cathode material led to an extremely fine microstructure, in which all the LSM and YSZ grains (approximately 100-200 nm) were highly dispersed and formed their own network structures. This microstructure was due to the two phase electrode structure control using the powder, namely, nano-order level in each particle and micro-order level between particles. An anode-supported SOFC with the LSM-YSZ cathode using humidified H2 as fuel and ambient air as oxidant exhibited high power densities, such as 1.29 W cm-2 under a voltage of 0.75 V and a maximum power density of 2.65 W cm-2 at 800 °C. Also, the SOFC could be stably operated for 250 h with no degradation, even at a high temperature of 800 °C.

  9. Fine-scale spatial genetic structure and gene dispersal in Silene latifolia

    PubMed Central

    Barluenga, M; Austerlitz, F; Elzinga, J A; Teixeira, S; Goudet, J; Bernasconi, G

    2011-01-01

    Plants are sessile organisms, often characterized by limited dispersal. Seeds and pollen are the critical stages for gene flow. Here we investigate spatial genetic structure, gene dispersal and the relative contribution of pollen vs seed in the movement of genes in a stable metapopulation of the white campion Silene latifolia within its native range. This short-lived perennial plant is dioecious, has gravity-dispersed seeds and moth-mediated pollination. Direct measures of pollen dispersal suggested that large populations receive more pollen than small isolated populations and that most gene flow occurs within tens of meters. However, these studies were performed in the newly colonized range (North America) where the specialist pollinator is absent. In the native range (Europe), gene dispersal could fall on a different spatial scale. We genotyped 258 individuals from large and small (15) subpopulations along a 60 km, elongated metapopulation in Europe using six highly variable microsatellite markers, two X-linked and four autosomal. We found substantial genetic differentiation among subpopulations (global FST=0.11) and a general pattern of isolation by distance over the whole sampled area. Spatial autocorrelation revealed high relatedness among neighboring individuals over hundreds of meters. Estimates of gene dispersal revealed gene flow at the scale of tens of meters (5–30 m), similar to the newly colonized range. Contrary to expectations, estimates of dispersal based on X and autosomal markers showed very similar ranges, suggesting similar levels of pollen and seed dispersal. This may be explained by stochastic events of extensive seed dispersal in this area and limited pollen dispersal. PMID:20389310

  10. Piezochromic Phenomena of Nanometer Voids Formed by Mono-Dispersed Nanometer Powders Compacting Process

    PubMed Central

    Su, Lihong; Wan, Caixia; Zhou, Jianren; Wang, Yiguang; Wang, Liang; Ai, Yanling; Zhao, Xu

    2013-01-01

    Piezochromism describes a tendency of certain materials changing colors when they are subjected to various pressure levels. It occurs particularly in some polymers or inorganic materials, such as in palladium complexes. However, piezochromism is generally believed to work at high pressure range of 0.1–10 GPa. This research work focused on unique piezochromism responses of the nanometer voids formed by the 5–20 nm inorganic ISOH nanometer powders. It was discovered that microstructures of the nanometer voids could change color at very low pressures of only 0.002–0.01 GPa; its sensitivity to pressure was increased by tens of times. It is believed that the uniform microstructures of nanometer powders contributed to the material's high sensitivity of piezochromic phenomena. One factor which quantum optical change caused by nanometer voids affected the quantum confinement effect; another is surface Plasmon Resonance of great difference dielectric property between conductive ITO powder and insulation hydroxide. PMID:24115999

  11. Development of finely dispersed Ti- and Zr-doped isotropic graphites for the divertor of next step fusion devices

    NASA Astrophysics Data System (ADS)

    López-Galilea, I.; García-Rosales, C.; Pintsuk, G.; Linke, J.

    2007-03-01

    Finely dispersed Ti- and Zr-doped isotropic graphites have been manufactured using three different starting raw materials. The aim is to obtain doped fine grain isotropic graphites with reduced chemical erosion, high thermal shock resistance and low cost, which aim to be competitive with present carbon-based candidate materials for next step fusion devices. First ITER relevant thermal shock loads were applied on test specimens of these materials. The brittle destruction behaviour of graphite is greatly improved by doping with Ti or Zr, most probably due to a significant increase of thermal conductivity related to the catalytic effect of TiC and ZrC on the graphitization. Doped graphites manufactured with the synthetic mesophase pitch 'AR' as raw material showed the best performance from the three investigated raw materials due to its higher graphitability. The eroded surfaces of doped graphites exhibit a thin solidified carbide layer, probably caused by the segregation of liquid carbide during the thermal shot.

  12. Dispersion strengthened nickel-yttria sheet alloy produced from comminuted powders

    NASA Technical Reports Server (NTRS)

    Sikora, P. F.; Quatinetz, M.

    1973-01-01

    An investigation was conducted to determine whether a nickel matrix with yttria as a dispersoid could be produced by a comminution and blending (wet attrition-NASCAB) approach. Concentration of yttria, powder cleaning temperature, screening (sieving) of the powders, and amount of thermomechanical working were major variables. Tensile strength and stress-rupture life at 1093 C were determined. A product containing 4v/o Y2O3, cleaned at 315 or 371 C with screening exhibited 1093 C tensile strength equivalent to NASCAB Ni-4ThO2 and to commercially produced thoriated nickel sheet.

  13. Extrinsic lactose fines improve dry powder inhaler formulation performance of a cohesive batch of budesonide via agglomerate formation and consequential co-deposition.

    PubMed

    Kinnunen, Hanne; Hebbink, Gerald; Peters, Harry; Huck, Deborah; Makein, Lisa; Price, Robert

    2015-01-15

    The aim of the study was to investigate how the fine particle content of lactose carriers prepared with different types of lactose fines regulates dry powder inhaler (DPI) formulation performance of a cohesive batch of micronised budesonide. Budesonide formulations (0.8 wt%) were prepared with three different lactose carriers (Lactohale (LH) LH100, 20 wt% LH210 in LH100 and 20 wt% LH300 in LH100). Fine particle fraction of emitted dose (FPFED) and mean mass aerodynamic diameter (MMAD) of budesonide was assessed with a Next Generation Impactor (NGI) using a Cyclohaler at 90 l/min. Morphological and chemical characteristics of particles deposited on Stage 2 were determined using a Malvern Morphologi G3-ID. The results indicate that increasing concentration of lactose fines (<4.5 μm) not only increased the FPFED but also the MMAD of budesonide, suggesting drug deposition in agglomerates. Presence of agglomerates on Stage 2 was confirmed by morphological analysis of particles. Raman analysis of material collected on Stage 2 indicated that the more fine lactose particles were available the more agglomerates of budesonide and lactose were delivered to Stage 2. These results suggest drug-fines agglomerate formation is an important mechanism for how lactose fines improve and regulate DPI formulation performance.

  14. Additive Manufacturing/Diagnostics via the High Frequency Induction Heating of Metal Powders: The Determination of the Power Transfer Factor for Fine Metallic Spheres

    SciTech Connect

    Rios, Orlando; Radhakrishnan, Balasubramaniam; Caravias, George; Holcomb, Matthew

    2015-03-11

    Grid Logic Inc. is developing a method for sintering and melting fine metallic powders for additive manufacturing using spatially-compact, high-frequency magnetic fields called Micro-Induction Sintering (MIS). One of the challenges in advancing MIS technology for additive manufacturing is in understanding the power transfer to the particles in a powder bed. This knowledge is important to achieving efficient power transfer, control, and selective particle heating during the MIS process needed for commercialization of the technology. The project s work provided a rigorous physics-based model for induction heating of fine spherical particles as a function of frequency and particle size. This simulation improved upon Grid Logic s earlier models and provides guidance that will make the MIS technology more effective. The project model will be incorporated into Grid Logic s power control circuit of the MIS 3D printer product and its diagnostics technology to optimize the sintering process for part quality and energy efficiency.

  15. HIGH TEMPERATURE SORPTION OF CESIUM AND STRONTIUM ON DISPERSED KAOLINITE POWDERS

    EPA Science Inventory

    Sorption of cesium and strontium on kaolinite powders was investigated as a means to minimize the emissions of these metals during certain high-temperature processes currently being developed to isolate and dispose of radiological and mixed wastes. In this work, nonradioactive aq...

  16. Ultrastructural and cytochemical changes in the respiratory compartment of the lungs in rats after combined treatment with fine silicon dioxide powder and uridine.

    PubMed

    Lebkova, N P; Baranov, V I

    2004-06-01

    Electron microscopy and cytochemical study of alveolar tissue of rat lungs were performed at the early stage after intratracheal treatment with fine silicon dioxide powder. The preparation was administered to animals receiving or not receiving intravenous injection of uridine. Dust particles permeated the cytoplasm, mitochondria, and nuclei of cells in the air-blood barrier of the alveoli. Uridine decreased the severity of dust-induced damage to cells and increased intracellular glycogen content.

  17. Dispersion and Deposition of Fine Particulates, Heavy Metals and Nitrogen in Urban Landscapes

    NASA Astrophysics Data System (ADS)

    Whitlow, T. H.; Tong, Z.

    2015-12-01

    Cities are characterized by networks of heavily trafficked roads, abrupt environmental gradients and local sources of airborne pollutants. Because urban dwellers are inevitably in close proximity to near ground pollution, there has been recent interest in using trees and green roofs to reduce human exposure yet there have been few empirical studies documenting the effect of vegetation and spatial heterogeneity on pollution concentration, human exposure and food safety. In this paper we describe the results of 2 studies in the New York metropolitan area. The first describes the effect of roadside trees on the concentration of fine particulates downwind of a major highway. The second examines vertical attenuation of fine particulates between street level and a rooftop vegetable farm and the deposition of nitrogen and heavy metals to vegetables and soil on the roof.

  18. Dispersal of Fine Sediment in the Coastal Ocean: Sensitivity to Aggregation and Stratification

    DTIC Science & Technology

    2008-01-01

    sponsored REU (Research Experience for Undergraduates) student used this model to evaluate dispersal of material from the Umpqua River, Oregon. She will...Variation on Sediment Transport and Deposition on a Collision Margin: the Umpqua River, Eos, Transactions, American Geophysical Union, Fall 2008 Meeting

  19. Advection, dispersion, and filtration of fine particles within emergent vegetation of the Florida Everglades

    USGS Publications Warehouse

    Huang, Y.H.; Saiers, J.E.; Harvey, J.W.; Noe, G.B.; Mylon, S.

    2008-01-01

    The movement of particulate matter within wetland surface waters affects nutrient cycling, contaminant mobility, and the evolution of the wetland landscape. Despite the importance of particle transport in influencing wetland form and function, there are few data sets that illuminate, in a quantitative way, the transport behavior of particulate matter within surface waters containing emergent vegetation. We report observations from experiments on the transport of 1 ??m latex microspheres at a wetland field site located in Water Conservation Area 3A of the Florida Everglades. The experiments involved line source injections of particles inside two 4.8-m-long surface water flumes constructed within a transition zone between an Eleocharis slough and Cladium jamaicense ridge and within a Cladium jamaicense ridge. We compared the measurements of particle transport to calculations of two-dimensional advection-dispersion model that accounted for a linear increase in water velocities with elevation above the ground surface. The results of this analysis revealed that particle spreading by longitudinal and vertical dispersion was substantially greater in the ridge than within the transition zone and that particle capture by aquatic vegetation lowered surface water particle concentrations and, at least for the timescale of our experiments, could be represented as an irreversible, first-order kinetics process. We found generally good agreement between our field-based estimates of particle dispersion and water velocity and estimates determined from published theory, suggesting that the advective-dispersive transport of particulate matter within complex wetland environments can be approximated on the basis of measurable properties of the flow and aquatic vegetation. Copyright 2008 by the American Geophysical Union.

  20. Microgas dispersion for fine-coal cleaning. Technical progress report, March 1, 1981-August 31, 1981

    SciTech Connect

    Yoon, R.H.; Halsey, G.S.; Sebba, F.

    1981-01-01

    The results of the flotation tests conducted demonstrate that the use of fine colloidal gas aphrons (CGA) bubbles is beneficial for fine coal flotation. As demonstrated with the ultrafine coal sample, the froth products of CGA flotation are almost twice as clean as those of the conventional flotation tests at 70% yield. The kerosene consumption was considerably higher, however, both in conventional and in CGA flotation. Attempts were made to coat the CGA bubbles with a film of kerosene and use them for flotation, hoping that this would reduce the oil consumption. However, no positive results have yet been obtained with this process. Another problem associated with CGA flotation is that the ash content of the froth products is relatively high when using a stable CGA, such as that prepared with Dowfroth M150. On the other hand, when using an unstable CGA, as is the case with MIBC, low ash clean coal products can be obtained, but at the expense of the yield. Two approaches are being investigated to correct this problem. A considerable amount of effort has been made to determine the surface charge of the CGA.

  1. Insights into the roles of carrier microstructure in adhesive/carrier-based dry powder inhalation mixtures: Carrier porosity and fine particle content.

    PubMed

    Shalash, Ahmed O; Molokhia, Abdulla M; Elsayed, Mustafa M A

    2015-10-01

    To gain insights into complex interactions in carrier-based dry powder inhalation mixtures, we studied the relationships between the carrier microstructural characteristics and performance. We used mercury intrusion porosimetry to measure the microstructural characteristics and to also derive the air permeability of eight carriers. We evaluated the performances of inhalation mixtures of each of these carriers and fluticasone propionate after aerosolization from an Aerolizer®. We did not observe a simple relationship between the carrier total porosity and the performance. Classification of the porosity according to pore size, however, provided interesting insights. The carrier nanoporosity, which refers to pores smaller than micronized drug particles, has a positive influence on the performance. Nanopores reduce the carrier effective contact area and the magnitude of interparticulate adhesion forces in inhalation mixtures. The carrier microporosity, which refers to pores similar in size to drug particles, also has a positive influence on the performance. During mixing, micropores increase the effectiveness of frictional and press-on forces, which are responsible for breaking up of cohesive drug agglomerates and for distribution of drug particles over the carrier surface. On the other hand, the carrier macroporosity, which refers to pores larger than drug particles, apparently has a negative influence on the performance. This influence is likely mediated via the effects of macropores on the powder bed tensile strength and fluidization behavior. The air permeability better represents these effects. The inhalation mixture performance improved as the carrier air permeability decreased. Interestingly, as the carrier fine particle content increased, the carrier microporosity increased and the carrier air permeability decreased. This proposes a new mechanism for the positive effect of fine excipient materials on the performance of carrier-based inhalation mixtures. Fine

  2. Magneto-rheological fluids redispersibility - a factorial design study of phosphate shell on carbonyl iron powder with dispersing additives

    NASA Astrophysics Data System (ADS)

    Bombard, Antonio J. F.; Antunes, Laís S.; Balestrassi, Pedro P.; Paiva, Anderson P.

    2009-02-01

    We showed, in a previous paper, that Magneto-Rheological Fluids (MRFs) have different rheology when prepared with Carbonyl Iron Powders (CIP) phosphate (coated or uncoated). This was especially so when done without a magnetic field. This paper employs factorial design to examine the redispersibility and rheology of some MRF formulations; we use the same CIPs but with different dispersing additives. The factors are: CIP A (uncoated) or B (phosphate shell); additives with carboxylic acid or primary amine as the polar group; and n-octyl (C8H17) or n-dodecyl (C12H25) as the alkyl hydrocarbon chain (R-). CIP B was much more redispersible than CIP A, especially with amine additives; typical work values were > 5mJ @ 20 mm depth. In terms of viscosity, CIP A generated lower values, at shear rates above 100 s-1. It also realized higher yield stress values (Ho = 300 kA/m) than CIP B (50% and beyond).

  3. Influence of Fine Powder Feedstock (-10 + 2 μm) on the HVOF Spraying Characteristics, Coating Morphology, and Properties of WC-CoCr 86-10-4

    NASA Astrophysics Data System (ADS)

    Tillmann, W.; Nebel, J.; Piotrowski, W.

    2013-03-01

    The use of fine feedstock powder can extend the feasibility and scope of HVOF coatings to new fields of applications. Especially for the purpose of near-net-shape coatings, these powders facilitate homogeneous layer morphologies, and smooth coating surfaces. However, the small particle sizes also lead to several challenges. One major issue is the in-flight behavior which is distinctly affected by the low mass and relatively large specific surface of the particles. In this paper, the in-flight and coating characteristics of WC-CoCr 86-10-4 (-10 + 2 μm) were investigated. It was determined that the fine powder feedstock shows a high sensitivity to the gas flow, velocity, and temperature of the spray jet. Because of their low mass inertia, their velocity, for example, is actually influenced by local pressure nodes (shock diamonds) in the supersonic flow. Additionally, the relatively large specific surface of the particles promotes partial overheating and degradation. Nevertheless, the morphological and mechanical properties of the sprayed layer are hardly affected. In fact, the coatings feature a superior surface roughness, porosity, hardness, and wear resistance.

  4. Preparation and coating of finely dispersed drugs 4. Loratadine and danazol.

    PubMed

    Skapin, Sreco D; Matijević, Egon

    2004-04-01

    The preparation of colloidal particles of different morphologies, including spheres, of two drugs, loratadine and danazol, is described. In principle these particles were obtained by precipitation when nonsolvents (water or aqueous surfactant solutions) were added to ethanol solutions of the drug. In addition, procedures were developed that made it possible to use the drug particles thus obtained as cores to be then coated with either silica or aluminum (hydrous) oxide layers. The presence of these inorganic shells was confirmed by electron microscopy, energy dispersive spectroscopy, and electrophoresis.

  5. Ultrasound-assisted ionic liquid/ionic liquid-dispersive liquid-liquid microextraction for the determination of sulfonamides in infant formula milk powder using high-performance liquid chromatography.

    PubMed

    Gao, Shiqian; Yang, Xiao; Yu, Wei; Liu, Zhongling; Zhang, Hanqi

    2012-09-15

    Ultrasound-assisted ionic liquid/ionic liquid-dispersive liquid-liquid microextraction (UA-IL/IL-DLLME) high-performance liquid chromatography was developed and applied to the extraction, separation and determination of sulfonamides in infant formula milk powder samples. The hydrophobic IL and hydrophilic IL were used as extraction solvent and dispersion solvent, respectively. The extraction procedure was induced by the formation of cloudy solution, which was composed of fine drops of [C(6)MIM][PF(6)] dispersed entirely into sample solution with help of [C(4)MIM][BF(4)]. The purification of sample and concentration of target analytes were performed simultaneously. The introduction of ion-pairing agent (NH(4)PF(6)) was beneficial to the improvement of recoveries for IL phase and analytes. The experimental parameters of the UA-IL/IL-DLLME, including concentration of [C(6)MIM][PF(6)] and [C(4)MIM][BF(4)] in sample solution, ultrasound extraction time, pH value of sample solution and amount of ion-pairing agent (NH(4)PF(6)), were evaluated. The limits of detection for sulfamerazine, sulfamethizole, sulfachlorpyridazine, sulfamonomethoxine, sulfmethoxazole and sulfisoxazole were 2.94, 9.26, 16.7, 5.28, 3.35 and 6.66 μg kg(-1), respectively. When the present method was applied to the analysis of infant formula milk powder samples, the recoveries of the analytes ranged from 90.4% to 114.8% and relative standard deviations were lower than 7.5%. The proposed method was compared with the ionic liquid-homogeneous liquid-liquid microextraction, ionic liquid-ultrasound-assisted emulsification-microextraction and ionic liquid-temperature-controlled-DLLME. The results indicated that the proposed method is effective for the extraction of the sulfonamides in milk powder samples.

  6. Determining the efficiency of subjecting finely dispersed emulsions to physical coagulation in a packed layer under turbulent conditions

    NASA Astrophysics Data System (ADS)

    Laptev, A. G.; Basharov, M. M.; Farakhova, A. I.

    2013-09-01

    The process through which small droplets contained in emulsions are physically coagulated on the surface of random packing elements is considered. The theory of turbulent migration of a finely dispersed phase is used for determining the coagulation efficiency. Expressions for calculating coagulation efficiency and turbulent transfer rate are obtained by applying models of a turbulent boundary layer. An example of calculating the enlargement of water droplets in hydrocarbon medium represented by a wide fraction of light hydrocarbons (also known as natural gas liquid) is given. The process flowchart of a system for removing petroleum products from effluent waters discharged from the Kazan TETs-1 cogeneration station is considered. Replacement of the mechanical filter by a thin-layer settler with a coagulator is proposed.

  7. Improving the dispersity of detonation nanodiamond: differential scanning calorimetry as a new method of controlling the aggregation state of nanodiamond powders.

    PubMed

    Korobov, Mikhail V; Volkov, Dmitry S; Avramenko, Natalya V; Belyaeva, Lubov' A; Semenyuk, Pavel I; Proskurnin, Mikhail A

    2013-02-21

    Detonation nanodiamond (ND) is a suitable source material to produce unique samples consisting of almost uniform diamond nanocrystals (d = 3-5 nm). Such samples exist in the form of long stable aqueous dispersions with narrow size distribution of diamond particles. The material is finding ever increasing application in biomedicine. The major problem in producing monodispersed diamond colloids lies in the necessity of deagglomeration of detonation soot and/or removing of clusters formed by already isolated core particles in dry powders. To do this one must have an effective method to monitor the aggregation state or dispersity of powders and gels prior to the preparation of aqueous dispersions. In the absence of dispersity control at various stages of preparation the reproducibility of properties of existing ND materials is poor. In this paper we introduce differential scanning calorimetry (DSC) as a new tool capable to distinguish the state of aggregation in dry and wetted ND materials and to follow changes in this state under different types of treatment. Samples with identical X-ray diffraction patterns (XRD) and high resolution transmission electron microscopy (HRTEM) images gave visibly different DSC traces. Strong correlation was found between dynamic light scattering (DLS) data for colloids and DSC parameters for gels and powders of the same material. Based on DSC data we improved dispersity of existing ND materials and isolated samples with the best possible DSC parameters. These were true monodispersed easily dispersible fractions of ND particles with diameters of ca. 3 nm.

  8. Colossal negative thermal expansion with an extended temperature interval covering room temperature in fine-powdered Mn0.98CoGe

    NASA Astrophysics Data System (ADS)

    Lin, Jianchao; Tong, Peng; Zhang, Kui; Tong, Haiyun; Guo, Xinge; Yang, Cheng; Wu, Ying; Wang, Meng; Lin, Shuai; Chen, Li; Song, Wenhai; Sun, Yuping

    2016-12-01

    MnM'X (M' = Co, Ni; X = Ge, Si, etc.) alloys usually present a large volumetric change during the Martensitic (MA) transformation. This offers a great opportunity for exploring new negative thermal expansion (NTE) materials if the temperature interval of NTE can be extended. Here, we report colossal NTE in fine-powdered Mn0.98CoGe prepared by repeated thermal cycling (TC) through the MA transition or ball milling. Both treatments can expand the MA transformation, and thus broaden the NTE temperature window (ΔT). For the powders that have gone through TC for ten times, ΔT reaches 90 K (309 K-399 K), and the linear expansion coefficient (αL) is about -141 ppm/K, which rank among the largest values of colossal NTE materials. The difference between two kinds of treatments and the possible mechanisms of the extended MA transformation window are discussed based on the introduced strain.

  9. A Rietveld refinement method for angular- and wavelength-dispersive neutron time-of-flight powder diffraction data.

    PubMed

    Jacobs, Philipp; Houben, Andreas; Schweika, Werner; Tchougréeff, Andrei L; Dronskowski, Richard

    2015-12-01

    This paper introduces a two-dimensional extension of the well established Rietveld refinement method for modeling neutron time-of-flight powder diffraction data. The novel approach takes into account the variation of two parameters, diffraction angle 2θ and wavelength λ, to optimally adapt to the varying resolution function in diffraction experiments. By doing so, the refinement against angular- and wavelength-dispersive data gets rid of common data-reduction steps and also avoids the loss of high-resolution information typically introduced by integration. In a case study using a numerically simulated diffraction pattern of Rh0.81Fe3.19N taking into account the layout of the future POWTEX instrument, the profile function as parameterized in 2θ and λ is extracted. As a proof-of-concept, the resulting instrument parameterization is then utilized to perform a typical refinement of the angular- and wavelength-dispersive diffraction pattern of CuNCN, yielding excellent residuals within feasible computational efforts. Another proof-of-concept is carried out by applying the same approach to a real neutron diffraction data set of CuNCN obtained from the POWGEN instrument at the Spallation Neutron Source in Oak Ridge. The paper highlights the general importance of the novel approach for data analysis at neutron time-of-flight diffractometers and its possible inclusion within existing Rietveld software packages.

  10. A Rietveld refinement method for angular- and wavelength-dispersive neutron time-of-flight powder diffraction data

    PubMed Central

    Jacobs, Philipp; Houben, Andreas; Schweika, Werner; Tchougréeff, Andrei L.; Dronskowski, Richard

    2015-01-01

    This paper introduces a two-dimensional extension of the well established Rietveld refinement method for modeling neutron time-of-flight powder diffraction data. The novel approach takes into account the variation of two parameters, diffraction angle 2θ and wavelength λ, to optimally adapt to the varying resolution function in diffraction experiments. By doing so, the refinement against angular- and wavelength-dispersive data gets rid of common data-reduction steps and also avoids the loss of high-resolution information typically introduced by integration. In a case study using a numerically simulated diffraction pattern of Rh0.81Fe3.19N taking into account the layout of the future POWTEX instrument, the profile function as parameterized in 2θ and λ is extracted. As a proof-of-concept, the resulting instrument parameterization is then utilized to perform a typical refinement of the angular- and wavelength-dispersive diffraction pattern of CuNCN, yielding excellent residuals within feasible computational efforts. Another proof-of-concept is carried out by applying the same approach to a real neutron diffraction data set of CuNCN obtained from the POWGEN instrument at the Spallation Neutron Source in Oak Ridge. The paper highlights the general importance of the novel approach for data analysis at neutron time-of-flight diffractometers and its possible inclusion within existing Rietveld software packages. PMID:26664340

  11. Normal and abnormal grain growth in fine-grained Nd-Fe-B sintered magnets prepared from He jet milled powders

    NASA Astrophysics Data System (ADS)

    Bittner, F.; Woodcock, T. G.; Schultz, L.; Schwöbel, C.; Gutfleisch, O.; Zickler, G. A.; Fidler, J.; Üstüner, K.; Katter, M.

    2017-03-01

    Fine-grained, heavy rare earth free Nd-Fe-B sintered magnets were prepared from He jet milled powders with an average particle size of 1.5 μm by low temperature sintering at 920 °C or 980 °C. A coercivity of >1600 kA/m was achieved for an average grain size of 1.68 μm. Transmission electron microscopy showed that the distribution and composition of intergranular and grain boundary junction phases was similar to that in conventionally processed magnets. Microstructural analysis on different length scales revealed the occurrence of abnormal grain growth, which is unexpected for sintering temperatures below 1000 °C. A larger area fraction of abnormal grains was observed in the sample sintered at 920 °C compared to that sintered at 980 °C. Microtexture investigation showed a better crystallographic alignment of the abnormal grains compared to the fine-grained matrix, which is explained by a size dependent alignment of the powder particles during magnetic field alignment prior to sintering. Slightly larger particles in the initial powder show a better alignment and will act as nucleation sites for abnormal grain growth. Magneto-optical Kerr investigations confirmed the lower switching field of the abnormal grains compared to the fine-grained matrix. The demagnetisation curve of the sample sintered at 920 °C showed reduced rectangularity and this was attributed to a cooperative effect of the larger fraction of abnormal grains with low switching field and, as a minor effect, a reduced degree of crystallographic texture in this sample compared to the material sintered at 980 °C, which did not show the reduced rectangularity of the demagnetisation curve.

  12. Combined dispersive solid-phase extraction-dispersive liquid-liquid microextraction-derivatization for gas chromatography-mass spectrometric determination of aliphatic amines on atmospheric fine particles.

    PubMed

    Majedi, Seyed Mohammad; Lee, Hian Kee

    2017-02-24

    Short-chain aliphatic amines are ubiquitous in the atmospheric environment. They play an important role in the formation and growth of atmospheric particles. As such, there is a pressing need to monitor these particle-bound compounds present at trace quantities. The present work describes an efficient, one-step microextraction technique for the preconcentration and detection of trace levels of 10 aliphatic amines on fine particles (particulate matter of 2.5μm or less (PM2.5)) in the atmosphere. After extraction of amines from particles in acidified water samples, carbon-based sorbents (in dispersive solid-phase extraction mode), and vortex agitation were utilized for simultaneous derivatization-extraction and dispersive liquid-liquid microextraction. The approach significantly increased the recoveries and enrichment of the amine derivatives. This one-step, combined technique is proposed for the first time. Several influential factors including type and concentration of derivatization reagent (for gas chromatographic separation), type of buffer, sample pH, types and volumes of extraction and disperser solvents, type and amount of sorbent, vortex time and temperature, desorption solvent type and volume, and salt content were investigated and optimized. Under the optimum conditions, high enrichment factors (in the range of between 307 and 382) and good reproducibility (relative standard deviations, below 7.0%, n=5) were achieved. The linearity ranged from 0.1μg/L-100μg/L, and from 0.5μg/L-100μg/L, depending on the analytes. The limits of detection were between 0.02μg/L (corresponding to ∼0.01ng/m(3) in air) and 0.09μg/L (corresponding to ∼0.04ng/m(3) in air). The developed method was successfully applied to the analysis of PM2.5 samples collected by air sampling through polytetrafluoroethylene filters. The concentration levels of amines ranged from 1.04 to 4.16ng/m(3) in the air sampled.

  13. Volcanic ash dispersed in the Wyodak-Anderson coal bed, Powder River Basin, Wyoming

    USGS Publications Warehouse

    Triplehorn, D.M.; Stanton, R.W.; Ruppert, L.F.; Crowley, S.S.

    1991-01-01

    Minerals derived from air-fall volcanic ash were found in two zones in the upper Paleocene Wyodak-Anderson coal bed of the Fort Union Formation in the Powder River Basin of Wyoming, and are the first reported evidence of such volcanic material in this thick (> 20 m) coal bed. The volcanic minerals occur in zones that are not visually obvious because they contain little or no clay. These zones were located by geophysical logs of the boreholes and X-ray radiography of the cores. The zones correspond to two of a series of incremental core samples of the coal bed that have anomalous concentrations of Zr, Ba, Nb, Sr, and P2O5. Two suites of minerals were found in both of the high-density zones. A primary suite (not authigenic) consists of silt-sized quartz grains, biotite, and minor zircon. A minor suite consists of authigenic minerals, including calcite, pyrite, kaolinite, quartz, anatase, barite, and an alumino-phosphate (crandallite?). The original volcanic ash is inferred to have consisted of silica glass containing phenocrysts of quartz, biotite, zircon, and possibly, associated feldspars, pyroxenes, and amphiboles. The glass, as well as the less stable minerals, probably dissolved relatively quickly and contributed to the minor authigenic mineral suite or was removed from the peat as a result of the prevailing hydrologic conditions present in a raised peat formation. This type of volcanic ash suggests that suggests that volcanic material could have rained on the peat; this fallout may have also had a fertilizing effect on the peat by providing nutrients essential for plant growth thus contributing to the thick accumulations of the Wyodak-Anderson bed. Notwithstanding, the presence of these minerals provides evidence for the contribution by volcanic sources to the mineral content of coal, but not as tonsteins. ?? 1991.

  14. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D).

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2014-12-01

    In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.

  15. Fine-sized LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders prepared by combined process of gas-phase reaction and solid-state reaction methods

    NASA Astrophysics Data System (ADS)

    Ju, Seo Hee; Kang, Yun Chan

    The Ni-rich precursor powders with spherical shape and filled morphologies were prepared by spray pyrolysis from the spray solution with citric acid, ethylene glycol and a drying control chemical additive. The precursor powders with controlled morphologies formed the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders with spherical shape and fine size by solid-state reaction with lithium hydroxide. However, the cathode powders prepared from the spray solution without additives had irregular morphologies and were large in size. The precursor powders with hollow and porous morphologies formed cathode powders with irregular and aggregated morphologies. The composition ratios of the nickel, cobalt and manganese components were maintained in the as-prepared, precursor and cathode powders. The initial discharge capacity of the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders with spherical shape and fine size tested at a temperature of 55 °C under a constant current density of 0.5 C was 215 mAh g -1. The discharge capacity of the LiNi 0.8Co 0.15Mn 0.05O 2 cathode powders decreased to 81% of the initial value after 30 cycles.

  16. High-purity, fine-particle boron nitride powder synthesis at -75 to 750C. Report of investigations/1986

    SciTech Connect

    Kalyoncu, R.S.

    1986-01-01

    Nonoxide ceramics with improved high-temperature properties could substitute for high-temperature alloys and reduce the Nation's dependence on imports of Cr, Co, Ni, and Mn. To meet the objective, the Bureau of Mines conducted research to synthesize ultrafine reactive boron nitride (BN) powders. BN powders were prepared at temperatures ranging from -75 degrees to 750 degrees C. Low-temperature reactions (-75 to 200/sup 0/C) between boron halides and N compounds led to formation of elemento-organic compounds that were thermally decomposed to ultrafine (approximately 100- to 150-A particle size) reactive BN powders. BN powders were also prepared through the reaction of a low-melting inorganic B compound (boric acid, borax) with an organic N compound (carbimide and thiocarbimide) in N/sub 2/ and/or ammonia (NH/sub 3/) atmospheres at temperatures between 500 and 750/sup 0/C. The report is based upon work done under an agreement between the University of Alabama and the Bureau of Mines.

  17. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Effect of adhesive thickness and surface treatment on shear strength on single lap joint Al/CFRP using adhesive of epoxy/Al fine powder

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Anwar, Miftahul; Tarigan, Roy Aries P.; Rivai, Ahmad

    2016-02-01

    The objective of this study is to investigate the effect of adhesive thickness and surface treatment on the shear strength and failure type characteristic of single lap joint (SLJ) CFRP/Al using adhesive epoxy/Al-fine-powder. The CFRP was produced by using hand layup method for 30% of woven roving carbon fiber (w/w) and the resin used was bisphenolic. The adhesive was prepared using 12.5% of aluminum fine powder (w/w) in the epoxy adhesive. The powder was mixed by using a mixing machine at 60 rpm for 6 minutes, and then it was used to join the Al plate-2024 and CFRP. The start time to pressure for the joint process was 20 minutes after the application of adhesive on the both of adherends. The variables in this research are adhesive thickness (i.e. 0.2 mm, 0.4 mm, 0.6 mm, 0.8 mm and 1 mm) and surface treatment of adherends (i.e. acetone, chromate sulphuric acid, caustic etch and tucker's reagent). Before shear testing, all specimens were post-cured at 100 °C for 15 minutes. The result shows that the SLJ has the highest shear strength for 0.4 mm of adhesive thickness. When the adhesive thickness is more than 0.4 mm (0.6-1 mm), the shear strength decreases significantly. It might be caused by the property change of adhesive from ductile to brittle. The acetone surface treatment produces the best bonding between the adhesive and adherends (CFRP and Al-plate 2024), and the highest shear strength is 9.31 MPa. The surface treatment give the humidification effect of adherend surfaces by adhesive. The failure characteristic shows that the mixed failure of light-fiber-tear-failure and cohesive-failure are occurred on the high shear strength of SLJ, and the low shear strength commonly has the adhesive-failure type.

  19. The pharmacopeial evolution of intralipid injectable emulsion in plastic containers: from a coarse to a fine dispersion.

    PubMed

    Driscoll, David F

    2009-02-23

    On December 1, 2007, the United States Pharmacopeia (USP) adopted Chapter 729 entitled Globule Size Distribution in Lipid Injectable Emulsions that contains two globule sizing methods and criteria to measure the mean droplet diameter (MDD) and the large-diameter tail of the globule size distribution to meet pharmacopeial specifications. The first of these measures, as the intensity-weighted MDD expressed in nanometers, must be less than 500 nm. The second measure, as the volume-weighted percentage of fat greater than 5 microm or PFAT(5), must be less than 0.05%. These limits were first suggested in 2001 based on an analysis of 16 lipid injectable emulsions available worldwide. In 2004, the packaging of the innovator lipid emulsion product Intralipid was changed from conventional glass bottles to plastic containers in the U.S. A subsequent analysis of the emulsion in its new container showed it to be more coarse than its previous glass counterpart and now failed the PFAT(5) limit. In 2007, it was announced that Intralipid in plastic containers was reformulated to meet the pharmacopeial limits. To track the time course of its transition from a coarse to a fine dispersion, 31 lots of Intralipid with expiration dates spanning five years were investigated.

  20. Dispersal

    USGS Publications Warehouse

    Clobert, J.; Danchin, E.; Dhondt, A.A.; Nichols, J.D.

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  1. Inbreeding avoidance drives consistent variation of fine-scale genetic structure caused by dispersal in the seasonal mating system of Brandt's voles.

    PubMed

    Liu, Xiao Hui; Yue, Ling Fen; Wang, Da Wei; Li, Ning; Cong, Lin

    2013-01-01

    Inbreeding depression is a major evolutionary and ecological force influencing population dynamics and the evolution of inbreeding-avoidance traits such as mating systems and dispersal. Mating systems and dispersal are fundamental determinants of population genetic structure. Resolving the relationships among genetic structure, seasonal breeding-related mating systems and dispersal will facilitate our understanding of the evolution of inbreeding avoidance. The goals of this study were as follows: (i) to determine whether females actively avoided mating with relatives in a group-living rodent species, Brandt's voles (Lasiopodomys brandtii), by combined analysis of their mating system, dispersal and genetic structure; and (ii) to analyze the relationships among the variation in fine-genetic structure, inbreeding avoidance, season-dependent mating strategies and individual dispersal. Using both individual- and population-level analyses, we found that the majority of Brandt's vole groups consisted of close relatives. However, both group-specific FISs, an inbreeding coefficient that expresses the expected percentage rate of homozygosity arising from a given breeding system, and relatedness of mates showed no sign of inbreeding. Using group pedigrees and paternity analysis, we show that the mating system of Brandt's voles consists of a type of polygyny for males and extra-group polyandry for females, which may decrease inbreeding by increasing the frequency of mating among distantly-related individuals. The consistent variation in within-group relatedness, among-group relatedness and fine-scale genetic structures was mostly due to dispersal, which primarily occurred during the breeding season. Biologically relevant variation in the fine-scale genetic structure suggests that dispersal during the mating season may be a strategy to avoid inbreeding and drive the polygynous and extra-group polyandrous mating system of this species.

  2. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries.

    PubMed

    Prankerd, Richard J; Nguyen, Tri-Hung; Ibrahim, Jibriil P; Bischof, Robert J; Nassta, Gemma C; Olerile, Livesey D; Russell, Adrian S; Meiser, Felix; Parkington, Helena C; Coleman, Harold A; Morton, David A V; McIntosh, Michelle P

    2013-01-01

    Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm) to facilitate aerosolised delivery via the lungs. A powder formulation of oxytocin, using mannitol, glycine and leucine as carriers, was prepared with a volume-based median particle diameter of 1.9 µm. Oxytocin content in the formulation was assayed using high-performance liquid chromatography-mass spectroscopy and was found to be unchanged after spray-drying. Ex vivo contractility studies utilising human and ovine uterine tissue indicated no difference in the bioactivity of oxytocin before and after spray-drying. Uterine electromyographic (EMG) activity in postpartum ewes following pulmonary (in vivo) administration of oxytocin closely mimicked that observed immediately postpartum (0-12 h following normal vaginal delivery of the lamb). In comparison to the intramuscular injection, pulmonary administration of an oxytocin dry powder formulation to postpartum ewes resulted in generally similar EMG responses, however a more rapid onset of uterine EMG activity was observed following pulmonary administration (129 ± 18 s) than intramuscular injection (275 ± 22 s). This is the first study to demonstrate the potential for oxytocin to elicit uterine activity after systemic absorption as an aerosolised powder from the lungs. Aerosolised oxytocin has the potential to provide a stable and easy to administer delivery system for effective prevention and treatment of postpartum haemorrhage in resource-poor settings in the developing world.

  3. Preparation of the highly dispersed powder of titanium carbonitride by SHS azide technology with previous partial nitriding

    NASA Astrophysics Data System (ADS)

    Amosov, A. P.; Markov, Yu M.; Dobrovolskaya, R. A.; Nikolaeva, E. N.

    2017-02-01

    It is shown that the powder of very hard refractory titanium carbonitride (TiC0.5N0.5) is the basis of tungsten-free hard alloys which are prospective for application as inexpensive cutting tools. The finer the powder of titanium carbonitrideis, the moreenhanced properties of hard alloys, sintered from the powder, are. An opportunity to reduce the particle size of the titanium carbonitride powder obtained by energy-saving azide technology of self-propagating high-temperature synthesis at the cost of reducing the particle size of the initial titanium powderwas investigated. To ensure the safety of the grinding process of the initial metal titanium powder, it was offered to nitride a Ti powder partially into a TiN0.2 compound. Such partial nitriding was performed by the azidetechnology with lack of sodium azide (NaN3) as a nitriding reagent. After intensive grinding in the planetary ball mill, the TiN0.2 powder turned into a superfine powder with an ultrafine structure. This powder was capable of nitriding and carburizing in the azide technology with formation of superfine pure powder agglomerates which are composed of ultrafine and nano-particles of TiC0.5N0.5.

  4. [Ultra-Fine Pressed Powder Pellet Sample Preparation XRF Determination of Multi-Elements and Carbon Dioxide in Carbonate].

    PubMed

    Li, Xiao-li; An, Shu-qing; Xu, Tie-min; Liu, Yi-bo; Zhang, Li-juan; Zeng, Jiang-ping; Wang, Na

    2015-06-01

    The main analysis error of pressed powder pellet of carbonate comes from particle-size effect and mineral effect. So in the article in order to eliminate the particle-size effect, the ultrafine pressed powder pellet sample preparation is used to the determination of multi-elements and carbon-dioxide in carbonate. To prepare the ultrafine powder the FRITSCH planetary Micro Mill machine and tungsten carbide media is utilized. To conquer the conglomeration during the process of grinding, the wet grinding is preferred. The surface morphology of the pellet is more smooth and neat, the Compton scatter effect is reduced with the decrease in particle size. The intensity of the spectral line is varied with the change of the particle size, generally the intensity of the spectral line is increased with the decrease in the particle size. But when the particle size of more than one component of the material is decreased, the intensity of the spectral line may increase for S, Si, Mg, or decrease for Ca, Al, Ti, K, which depend on the respective mass absorption coefficient . The change of the composition of the phase with milling is also researched. The incident depth of respective element is given from theoretical calculation. When the sample is grounded to the particle size of less than the penetration depth of all the analyte, the effect of the particle size on the intensity of the spectral line is much reduced. In the experiment, when grounded the sample to less than 8 μm(d95), the particle-size effect is much eliminated, with the correction method of theoretical α coefficient and the empirical coefficient, 14 major, minor and trace element in the carbonate can be determined accurately. And the precision of the method is much improved with RSD < 2%, except Na2O. Carbon is ultra-light element, the fluorescence yield is low and the interference is serious. With the manual multi-layer crystal PX4, coarse collimator, empirical correction, X-ray spectrometer can be used to

  5. Radiation-induced copolymerization of styrene/ n-butyl acrylate in the presence of ultra-fine powdered styrene-butadiene rubber

    NASA Astrophysics Data System (ADS)

    Yu, Haibo; Peng, Jing; Zhai, Maolin; Li, Jiuqiang; Wei, Genshuan; Qiao, Jinliang

    2007-11-01

    Styrene (St)/ n-butyl acrylate (BA) copolymers were prepared by two-stage polymerization: St/BA was pre-polymerized to a viscous state by bulk polymerization with initiation by benzoyl peroxide (BPO) followed by 60Co γ-ray radiation curing. The resultant copolymers had higher molecular weight and narrower molecular weight distribution than conventional methods. After incorporation of ultra-fine powdered styrene-butadiene rubber (UFSBR) with a particle size of 100 nm in the monomer, the glass transition temperature ( Tg) of St-BA copolymer increased at low rubber content. Both the St-BA copolymer and the St-BA copolymer/UFSBR composites had good transparency at BA content below 40%.

  6. Mechanical properties of Mo-Si-B alloys fabricated by using core-shell powder with dispersion of yttria nanoparticles

    NASA Astrophysics Data System (ADS)

    Byun, Jong Min; Bang, Su-Ryong; Choi, Won June; Kim, Min Sang; Noh, Goo Won; Kim, Young Do

    2017-01-01

    In recent years, refractory materials with excellent high-temperature properties have been in the spotlight as a next generation's high-temperature materials. Among these, Mo-Si-B alloys composed of two intermetallic compound phases (Mo5SiB2 and Mo3Si) and a ductile α-Mo phase have shown an outstanding thermal properties. However, due to the brittleness of the intermetallic compound phases, Mo-Si-B alloys were restricted to apply for the structural materials. So, to enhance the mechanical properties of Mo-Si-B alloys, many efforts to add rare-earth oxide particles in the Mo-Si-B alloy were performed to induce the improvement of strength and fracture toughness. In this study, to investigate the effect of adding nano-sized Y2O3 particles in Mo-Si-B alloy, a core-shell powder consisting of intermetallic compound phases as the core and nano-sized α-Mo and Y2O3 particles surrounding the core was fabricated. Then pressureless sintering was carried out at 1400 °C for 3 h, and the mechanical properties of sintered bodies with different amounts of Y2O3 particles were evaluated by Vickers hardness and 3-point bending test. Vickers hardness was improved by dispersed Y2O3 particles in the Mo-Si-B alloy. Especially, Mo-3Si-1B-1.5Y2O3 alloy had the highest value, 589 Hv. The fracture toughness was measured using Mo-3Si-1B-1.5Y2O3 alloy and the value indicated as 13.5 MPa·√m.

  7. DEM analysis of the effect of particle-wall impact on the dispersion performance in carrier-based dry powder inhalers.

    PubMed

    Yang, Jiecheng; Wu, Chuan-Yu; Adams, Michael

    2015-06-20

    The impact between particles or agglomerates and a device wall is considered as an important mechanism controlling the dispersion of active pharmaceutical ingredient (API) particles in dry powder inhalers (DPIs). In order to characterise the influencing factors and better understand the impact induced dispersion process for carrier-based DPIs, the impact behaviour between an agglomerate and a wall is systematically investigated using the discrete element method. In this study, a carrier-based agglomerate is initially formed and then allowed to impact with a target wall. The effects of impact velocity, impact angle and work of adhesion on the dispersion performance are analysed. It is shown that API particles in the near-wall regions are more likely to be dispersed due to the deceleration of the carrier particle resulted from the impact with the wall. It is also revealed that the dispersion ratio increases with increasing impact velocity and impact angle, indicating that the normal component of the impact velocity plays a dominant role on the dispersion. Furthermore, the impact induced dispersion performance for carrier-based DPI formulations can be well approximated using a cumulative Weibull distribution function that is governed by the ratio of overall impact energy and adhesion energy.

  8. Preparation and characterization of new photoluminescent nano-powder based on Eu3+:La2Ti2O7 and dispersed into silica matrix for latent fingerprint detection

    NASA Astrophysics Data System (ADS)

    Saif, M.; Alsayed, N.; Mbarek, A.; El-Kemary, M.; Abdel-Mottaleb, M. S. A.

    2016-12-01

    Pure lanthanum titanate doped with europium metal ions (La2Ti2O7:Eu3+) and dispersed in silica matrix phosphor powder was prepared by sol-gel process followed by thermal treatment. The prepared nanophosphors were characterized by powder X-ray Diffraction (XRD), Fourier Transform Infrared (FT-IR), Transmission Electron Microscope (TEM), Energy Dispersive Spectroscopy (EDX), and Photoluminescence Spectroscopy (PL). The effects of silica, thermal treatment, Eu3+ ion, and surfactant (CTAB) concentrations on the crystal, morphology, and photoluminescence properties were investigated. The present work found that dispersion of La2Ti2O7:Eu3+ into silica matrix significantly altered the morphology of La2Ti2O7:Eu3+ from high crystalline micro-plate like shape into amorphous aggregated Nano-spherical shape. The high separated spherical shape with intense red PL emission and long lifetime was obtained from 10 mol% Eu3+:La2Ti2O7:Eu3+, dispersed into silica matrix, and prepared in the presence of CTAB. The high PL Nano-phosphor has been successfully used in developing latent fingerprint from various forensic relevant materials.

  9. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-19

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  10. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  11. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  12. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goval, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-06-07

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  13. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  14. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-05-10

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  15. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-28

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  16. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-01-25

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  17. Characterization and aerosol dispersion performance of advanced spray-dried chemotherapeutic PEGylated phospholipid particles for dry powder inhalation delivery in lung cancer.

    PubMed

    Meenach, Samantha A; Anderson, Kimberly W; Zach Hilt, J; McGarry, Ronald C; Mansour, Heidi M

    2013-07-16

    Pulmonary inhalation chemotherapeutic drug delivery offers many advantages for lung cancer patients in comparison to conventional systemic chemotherapy. Inhalable particles are advantageous in their ability to deliver drug deep in the lung by utilizing optimally sized particles and higher local drug dose delivery. In this work, spray-dried and co-spray dried inhalable lung surfactant-mimic PEGylated lipopolymers as microparticulate/nanoparticulate dry powders containing paclitaxel were rationally designed via organic solution advanced spray drying (no water) in closed-mode from dilute concentration feed solution. Dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) with varying PEG chain length were mixed with varying amounts of paclitaxel in methanol to produce co-spray dried microparticles and nanoparticles. Scanning electron microscopy showed the spherical particle morphology of the inhalable particles. Thermal analysis and X-ray powder diffraction confirmed the retention of the phospholipid bilayer structure in the solid-state following spray drying, the degree of solid-state molecular order, and solid-state phase transition behavior. The residual water content of the particles was very low as quantified analytically Karl Fisher titration. The amount of paclitaxel loaded into the particles was quantified which indicated high encapsulation efficiencies (43-99%). Dry powder aerosol dispersion performance was measured in vitro using the Next Generation Impactor (NGI) coupled with the Handihaler dry powder inhaler device and showed mass median aerodynamic diameters in the range of 3.4-7 μm. These results demonstrate that this novel microparticulate/nanoparticulate chemotherapeutic PEGylated phospholipid dry powder inhalation aerosol platform has great potential in lung cancer drug delivery.

  18. Effect of the dispersion of Eudragit S100 powder on the properties of cellulose acetate butyrate microspheres containing theophylline made by the emulsion-solvent evaporation method.

    PubMed

    Obeidat, Wasfy M; Obaidat, Ihab M

    2007-05-01

    The dispersion/incorporation of Eudragit S100 powder as a filler in cellulose acetate butyrate (CAB-551-0.01) microsphere containing theophylline was investigated as a means of controlling drug release. Microspheres of CAB-551-0.01 of different polymer solution concentrations/viscosities were prepared (preparations Z(0), Z(A), Z(B) and Z(C)) and evaluated and compared to microspheres of a constant concentration of CAB-551-0.01 containing different amounts of Eudragit S100 powder as a filler (preparations X(A), X(B) and X(C)). The organic solvent acetonitrile used was capable of dissolving the matrix former CAB-551-0.01 only but not Eudragit S100 powder in the emulsion-solvent evaporation method. The CAB-551-0.01 concentration in Z(A), Z(B) and Z(C) was equal to the total polymer concentration (CAB-551-0.01 and Eudragit S100 powder) in X(A), X(B) and X(C), respectively. Scanning electron microscopy (SEM) was used to identify microspheres shape and morphology. In vitro dissolution studies were carried out on the microspheres at 37 degrees C (+/-0.5 degrees C) at two successive different pH media (1.2 +/- 0.2 for 2 h and 6.5 +/- 0.2 for 10 h). Z preparations exhibited low rates of drug release in the acidic and the slightly neutral media. On the other hand, X preparations showed an initial rapid release in the acidic medium followed by a decrease in the release rate at the early stage of dissolution in the slightly neutral pH which could be due to some relaxation and gelation of Eudragit S100 powder to form a gel network before it dissolves completely allowing the remained drug to be released.

  19. Hot extrusion of B2 iron aluminide powders

    NASA Technical Reports Server (NTRS)

    Strothers, S.; Vedula, K.

    1987-01-01

    The objective of the study was to investigate the effect of powder and processing variables on the microstructure and resultant tensile properties of an extruded FeAlZrB alloy. For a given powder particle size, increasing the extrusion temperature from 1250 to 1450 K is found to increase the grain size and produce a more uniform microstructure. At high extrusion temperatures, where grain boundary mobility is high, powder size is not critical in determining the grain size. The addition of Y2O3 dispersion (1 vol pct) by mechanical alloying makes it possible to obtain very fine-grained materials at low and high extrusion temperatures.

  20. Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media-Is there a Rationale for Harmonization?

    PubMed

    Hartmann, Nanna B; Jensen, Keld Alstrup; Baun, Anders; Rasmussen, Kirsten; Rauscher, Hubert; Tantra, Ratna; Cupi, Denisa; Gilliland, Douglas; Pianella, Francesca; Riego Sintes, Juan M

    2015-01-01

    Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP.

  1. FINE SCALE AIR QUALITY MODELING USING DISPERSION AND CMAQ MODELING APPROACHES: AN EXAMPLE APPLICATION IN WILMINGTON, DE

    EPA Science Inventory

    Characterization of spatial variability of air pollutants in an urban setting at fine scales is critical for improved air toxics exposure assessments, for model evaluation studies and also for air quality regulatory applications. For this study, we investigate an approach that su...

  2. Oxide Particle Growth During Friction Stir Welding of Fine Grain MA956 Oxide Dispersion-Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Baker, Brad W.; Knipling, Keith E.; Brewer, Luke N.

    2017-01-01

    Friction stir welding of an aluminum-containing oxide dispersion-strengthened steel causes significant oxide particle growth visible at both the nano- and microscales. Quantitative stereology of scanning electron images, small-angle X-ray scattering, energy-dispersive X-ray spectroscopy, and atom-probe tomography is used to quantify the degree of particle coarsening as a function of welding parameters. Results show the dispersed oxides are significantly coarsened in the stir zone due to a proposed combination of agglomeration, Ostwald ripening, and phase transformation within the Al2O3-Y2O3 system. This oxide particle coarsening effectively removes all strengthening contribution of the original oxide particles, as confirmed by uniaxial tensile tests and microhardness measurements.

  3. Oxide Particle Growth During Friction Stir Welding of Fine Grain MA956 Oxide Dispersion-Strengthened Steel

    NASA Astrophysics Data System (ADS)

    Baker, Brad W.; Knipling, Keith E.; Brewer, Luke N.

    2017-03-01

    Friction stir welding of an aluminum-containing oxide dispersion-strengthened steel causes significant oxide particle growth visible at both the nano- and microscales. Quantitative stereology of scanning electron images, small-angle X-ray scattering, energy-dispersive X-ray spectroscopy, and atom-probe tomography is used to quantify the degree of particle coarsening as a function of welding parameters. Results show the dispersed oxides are significantly coarsened in the stir zone due to a proposed combination of agglomeration, Ostwald ripening, and phase transformation within the Al2O3-Y2O3 system. This oxide particle coarsening effectively removes all strengthening contribution of the original oxide particles, as confirmed by uniaxial tensile tests and microhardness measurements.

  4. Mono-disperse spherical Cu-Zn powder fabricated via the low wettability of liquid/solid interface

    NASA Astrophysics Data System (ADS)

    Lei, Chenglong; Huang, Haifu; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei

    2015-12-01

    Spherical Cu-Zn alloy powders were fabricated by combining the surface tension of a molten metal with the de-wetting of a metal droplet on a graphite surface. The effect that the gas pressure had on the surface morphology and composition was studied. The Zn concentration can be maintained at 20.18 wt.%, 15.5 wt.% and 12.08 wt.% using 0.22 MPa, 0.10 MPa, and 0.04 MPa, respectively, from a commercially available Cu-38 wt.%Zn raw material. The gas pressure was adjusted to control the surface volatility of Zn without affecting the spherical morphology, and higher gas pressure yielded less volatile Zn. The Cu-Zn alloy powders were perfectly spherical, even at a negative pressure of 0.04 MPa. The spherical Cu-Zn alloy particles hardly changed and were fully dense up to Cu-50 wt.%Zn, which allowed high-quality spherical Cu-Zn alloy powders to potentially serve a large composition range.

  5. Improving clarity and stability of skim milk powder dispersions by dissociation of casein micelles at pH 11.0 and acidification with citric acid.

    PubMed

    Pan, Kang; Zhong, Qixin

    2013-09-25

    Casein micelles in milk cause turbidity and have poor stability at acidic conditions. In this study, skim milk powder dispersions were alkalized to pH 10.0 or 11.0, corresponding to reduced particle mass. In the following acidification with hydrochloric or citric acid, the re-formation of casein particles was observed. The combination of treatment at pH 11.0 and acidification with citric acid resulted in dispersions with the lowest turbidity and smallest particles, which enabled translucent dispersions at pH 5.5-7.0, corresponding to discrete nanoparticles. The concentration of ionic calcium was lower when acidified with citric acid than hydrochloric acid, corresponding to smaller particles with less negative zeta potential. The pH 11.0 treatment followed by acidification with citric acid also resulted in smaller particles than the simple chelating effects (directly implementing sodium citrate). The produced casein nanoparticles with reduced dimensions can be used for beverage and other novel applications.

  6. Sensitive determination of melamine in milk and powdered infant formula samples by high-performance liquid chromatography using dabsyl chloride derivatization followed by dispersive liquid-liquid microextraction.

    PubMed

    Faraji, M; Adeli, M

    2017-04-15

    A new and sensitive pre-column derivatization with dabsyl chloride followed by dispersive liquid-liquid microextraction was developed for the analysis of melamine (MEL) in raw milk and powdered infant formula samples by high performance liquid chromatography (HPLC) with visible detection. Derivatization with dabsyl chloride leads to improving sensitivity and hydrophobicity of MEL. Under optimum conditions of derivatization and microextraction steps, the method yielded a linear calibration curve ranging from 1.0 to 500μgL(-1) with a determination coefficient (R(2)) of 0.9995. Limit of detection and limit of quantification were 0.1 and 0.3μgL(-1), respectively. The relative standard deviation (RSD%) for intra-day (repeatability) and inter-day (reproducibility) at 25 and 100μgL(-1) levels of MEL was less than 7.0% (n=6). Finally, the proposed method was successfully applied for the preconcentration and determination of MEL in different raw milk and powdered infant formula, and satisfactory results were obtained (relative recovery ⩾94%).

  7. Influence of nanometric oxide dispersion on creep resistance of ODS FeAl prepared from prealloyed powders

    SciTech Connect

    Wolski, K.; Thevenot, F.; Le Coze, J.

    1996-03-01

    Intermetallic Fe-40at% Al is characterized by excellent oxidation and corrosion resistance at high temperatures, low cost of raw materials, relatively low density (6.0 g/cm{sup 3}) and significant ductility at room temperature. The ductility depends on composition, boron addition, environmental effect and in optimized conditions of processing was measured to be at least 6%. One of the limitations of this material is its insufficient creep strength at about 700 C, the temperature for potential applications instead of stainless steels or standard superalloys. This paper is focused on the rheological properties of FeAl prepared by attrition coupled with in situ formation of the dispersion and subsequent sintering. Critical steps of processing, leading to the formation of the nanosized ceramic dispersion are also addressed, however a detailed description of the type of oxides formed is presented elsewhere. This paper describes a part of a larger study aimed at the improvement of the creep strength of FeAl by dispersion of oxides.

  8. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory.

    PubMed

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-Ichi; Bowler, David R; Miki, Kazushi

    2017-04-20

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi-Si bond length from [Formula: see text] to [Formula: see text] Å. We infer that following epitaxial growth the Bi-Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi-Si bond lengths.

  9. Dopant activation mechanism of Bi wire-δ-doping into Si crystal, investigated with wavelength dispersive fluorescence x-ray absorption fine structure and density functional theory

    NASA Astrophysics Data System (ADS)

    Murata, Koichi; Kirkham, Christopher; Shimomura, Masaru; Nitta, Kiyofumi; Uruga, Tomoya; Terada, Yasuko; Nittoh, Koh-ichi; Bowler, David R.; Miki, Kazushi

    2017-04-01

    We successfully characterized the local structures of Bi atoms in a wire-δ-doped layer (1/8 ML) in a Si crystal, using wavelength dispersive fluorescence x-ray absorption fine structure at the beamline BL37XU, in SPring-8, with the help of density functional theory calculations. It was found that the burial of Bi nanolines on the Si(0 0 1) surface, via growth of Si capping layer at 400 °C by molecular beam epitaxy, reduced the Bi–Si bond length from 2.79+/- 0.01~{\\mathring{\\text{A}}} to 2.63+/- 0.02 Å. We infer that following epitaxial growth the Bi–Bi dimers of the nanoline are broken, and the Bi atoms are located at substitutional sites within the Si crystal, leading to the shorter Bi–Si bond lengths.

  10. A novel cation exchange polymer as a reversed-dispersive solid phase extraction sorbent for the rapid determination of rhodamine B residue in chili powder and chili oil.

    PubMed

    Chen, Dawei; Zhao, Yunfeng; Miao, Hong; Wu, Yongning

    2014-12-29

    This paper presents a new analytical method for the determination of rhodamine B (RB) residue in chili powder and chili oil based on a novel reversed-dispersive solid phase extraction (r-dSPE) and ultra high performance liquid chromatography–high resolution mass spectrometry (UHPLC–HRMS). Chili powder and chili oil samples were first extracted with acetonitrile/water (1:1, v/v) and acetonitrile, respectively. Then, RB from the extract was adsorbed to the polymer cation exchange (PCX) sorbent with the characteristics of ion exchange and reversed-phase retention. Subsequently, the analyte in PCX sorbent was eluted with ammonium hydroxide/methanol (1:99, v/v) through a simple unit device equipped with 1 mL syringe and 0.22 μm nylon syringe filter. All of the samples were analyzed by UHPLC–HRMS/MS on a Waters Acquity BEH C18 column with 0.1% formic acid and 4 mM ammonium formate in water/acetonitrile as the mobile phase with gradient elution. The matrix effect, recovery, and repeatability, within laboratory reproducibility, and the LODs and LOQs of the r-dSPE cleanup method were investigated. The method showed a good linearity (R2 > 0.999) in the ranges of 0.01–1 μg/L and 1–100 μg/L for the analyte. The LODs of RB for chili powder and chili oil samples were 0.5 μg/kg. The average recoveries of RB from the samples spiked at four different concentrations (2, 20, 500 and 5000 μg/kg) were in a range from 76.7 to 104.9%. Results showed that the proposed method was simple, fast, economical and effective for the determination of RB in chili powder and chili oil. Considering the excellent sorptive performance of PCX for RB, further work should be done to evaluate the usefulness of the PCX in r-dSPE for the clean-up and analyses of other trace-level alkaline contaminants.

  11. Fine-grained multiferroic BaTiO{sub 3}/(Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} composite ceramics synthesized by novel powder-in-sol precursor hybrid processing route

    SciTech Connect

    Zhang Hongfang; Or, Siu Wing; Chan, Helen Lai Wa

    2009-06-03

    Dense, homogeneous, and fine-grained multiferroic BaTiO{sub 3}/(Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} composite ceramics are synthesized by a novel powder-in-sol precursor hybrid processing route. This route includes the dispersion of nanosized BaTiO{sub 3} ferroelectric powders prepared via conventional sold-state ceramic process into (Ni{sub 0.5}Zn{sub 0.5})Fe{sub 2}O{sub 4} ferromagnetic sol-gel precursor prepared via sol-gel wet chemistry process. Uniformly distributed slurry is obtained after ball milling and used in the fabrication of the ceramics with low sintering temperatures. The ceramics show coexistence of ferromagnetic and ferroelectric phases with obvious ferromagnetic and ferroelectric hysteresis loops at room temperature, besides exhibiting excellent magnetic and dielectric properties in a wide range of frequency. The combination of high permeability and permittivity with low losses in the ceramics enables significant miniaturization of electronic devices based on the ceramics.

  12. Direct Preparation of Fine Powders of the 80 K Superconducting Phase in the Bi-Ca-Sr-Cu-O System by Spray Pyrolysis

    NASA Astrophysics Data System (ADS)

    Tohge, Noboru; Tatsumisago, Masahiro; Minami, Tsutomu; Okuyama, Kikuo; Arai, Kouji; Kousaka, Yasuo

    1989-07-01

    Submicron powders of the 80 K superconducting phase in the Bi-Ca-Sr-Cu-O system have been directly prepared by the spray pyrolysis of aqueous solutions of corresponding metal nitrates, Bi:Ca:Sr:Cu=1:1:1:2. The powders obtained were spheres with uniformly distributed diameters below 1 μm. The crystalline phase of these powders was found to greatly depend on the oxygen partial pressure in the carrier gas as well as the decomposition temperature. The preparation conditions for the 80 K superconducting phase were examined.

  13. Pt3Ti nanoparticles: fine dispersion on SiO2 supports, enhanced catalytic CO oxidation, and chemical stability at elevated temperatures.

    PubMed

    Saravanan, Govindachetty; Abe, Hideki; Xu, Ya; Sekido, Nobuaki; Hirata, Hirohito; Matsumoto, Shin-ichi; Yoshikawa, Hideki; Yamabe-Mitarai, Yoko

    2010-07-06

    A platinum-based intermetallic phase with an early d-metal, Pt(3)Ti, has been synthesized in the form of nanoparticles (NPs) dispersed on silica (SiO(2)) supports. The organometallic Pt and Ti precursors, Pt(1,5-cyclooctadiene)Cl(2) and TiCl(4)(tetrahydrofuran)(2), were mixed with SiO(2) and reduced by sodium naphthalide in tetrahydrofuran. Stoichiometric Pt(3)Ti NPs with an average particle size of 2.5 nm were formed on SiO(2) (particle size: 20-200 nm) with an atomically disordered FCC-type structure (Fm3m; a = 0.39 nm). A high dispersivity of Pt(3)Ti NPs was achieved by adding excessive amounts of SiO(2) relative to the Pt precursor. A 50-fold excess of SiO(2) resulted in finely dispersed, SiO(2)-supported Pt(3)Ti NPs that contained 0.5 wt % Pt. The SiO(2)-supported Pt(3)Ti NPs showed a lower onset temperature of catalysis by 75 degrees C toward the oxidation reaction of CO than did SiO(2)-supported pure Pt NPs with the same particle size and Pt fraction, 0.5 wt %. The SiO(2)-supported Pt(3)Ti NPs also showed higher CO conversion than SiO(2)-supported pure Pt NPs even containing a 2-fold higher weight fraction of Pt. The SiO(2)-supported Pt(3)Ti NPs retained their stoichiometric composition after catalytic oxidation of CO at elevated temperatures, 325 degrees C. Pt(3)Ti NPs show promise as a catalytic center of purification catalysts for automobile exhaust due to their high catalytic activity toward CO oxidation with a low content of precious metals.

  14. Determination of tacrolimus crystalline fraction in the commercial immediate release amorphous solid dispersion products by a standardized X-ray powder diffraction method with chemometrics.

    PubMed

    Rahman, Ziyaur; Siddiqui, Akhtar; Bykadi, Srikant; Khan, Mansoor A

    2014-11-20

    Clinical performance of an amorphous solid dispersion (ASD) drug product is related to the amorphous drug content because of the greater bioavailability of this form of the drug than its crystalline form. Therefore, it is paramount to monitor the amorphous and the crystalline fractions in the ASD products. The objective of the present investigation was to study the feasibility of using a standardized X-ray powder diffraction (XRPD) in conjunction with chemometric methods to quantitate the amorphous and crystalline fraction of the drug in several tacrolimus ASD products. Three ASD products were prepared in which drug to excipients ratios ranged from 1:19 to 1:49. The amorphous and crystalline drug products were mixed in various proportions so that amorphous/crystalline tacrolimus in the samples vary from 0 to 100%. XRPD of the samples of the drug products were collected, and PLSR and PCR chemometric methods were applied to the data. The R(2) was greater than '0.987' for all the models and bias in the models were statistically insignificant (p>0.05). RMSEP and SEP values were smaller for PLSR models than PCR models. The models prediction capabilities were good and can predict as low as 10% when drug to excipient ratio is as high as 1:49. In summary, XRPD and chemometric provide powerful analytical tools to monitor the crystalline fractions of the drug in the ASD products.

  15. Electron paramagnetic resonance, scanning electron microscopy with energy dispersion X-ray spectrometry, X-ray powder diffraction, and NMR characterization of iron-rich fired clays.

    PubMed

    Presciutti, Federica; Capitani, Donatella; Sgamellotti, Antonio; Brunetti, Brunetto Giovanni; Costantino, Ferdinando; Viel, Stéphane; Segre, Annalaura

    2005-12-01

    The aim of this study is to clarify the structure of an iron-rich clay and the structural changes involved in the firing process as a preliminary step to get information on ancient ceramic technology. To this purpose, illite-rich clay samples fired at different temperatures were characterized using a multitechnique approach, i.e., by electron paramagnetic resonance, scanning electron microscopy with electron dispersion X-ray spectrometry, X-ray powder diffraction, magic angle spinning and multiple quantum magic angle spinning NMR. During firing, four main reaction processes occur: dehydration, dehydroxylation, structural breakdown, and recrystallization. When the results are combined from all characterization methods, the following conclusions could be obtained. Interlayer H2O is located close to aluminum in octahedral sites and is driven off at temperatures lower than 600 degrees C. Between 600 and 700 degrees C dehydroxylation occurs whereas, between 800 and 900 degrees C, the aluminum in octahedral sites disappears, due to the breakdown of the illite structure, and all iron present is oxidized to Fe3+. In samples fired at 1000 and 1100 degrees C iron clustering was observed as well as large single crystals of iron with the occurrence of ferro- or ferrimagnetic effects. Below 900 degrees C the aluminum in octahedral sites presents a continuous distribution of chemical shift, suggesting the presence of slightly distorted sites. Finally, over the whole temperature range, the presence of at least two tetrahedral aluminum sites was revealed, characterized by different values of the quadrupolar coupling constant.

  16. Gas chromatographic methods for determination of gamma-BHC in technical emulsifiable concentrates and water-dispersible powder formulations and in lindane shampoo and lotion: collaborative study.

    PubMed

    Miles, J W; Mount, D L; Beckmann, T J; Carrigan, S K; Galoux, I M; Hitos, P; Hodge, M C; Kissler, K; Martijn, A; Sanchez-Rasero, F

    1984-01-01

    Although the gas chromatographic separation of the isomers of BHC was demonstrated two decades ago, the present AOAC method of analysis of BHC for gamma-isomer (lindane) content is based on a separation carried out on a liquid chromatographic partition column. A method of analysis has been developed that uses an OV-210 column for separation of the gamma-isomer from the other isomers and impurities in technical BHC. Di-n-propyl phthalate was chosen as an internal standard. The same system allows quantitation of lindane in lotion and shampoo after these products are extracted with ethyl acetate-isooctane (1 + 4). The analytical methods were subjected to a collaborative trial with 10 laboratories. The coefficient of variation for technical BHC was 2.83%. For the water-dispersible powder and emulsifiable concentrate, the coefficients of variation were 2.89% and 4.62%, respectively. Coefficients of variation for 1% lindane lotion and shampoo were 4.36% and 11.92%, respectively. The method has been adopted official first action.

  17. [The study of antimicrobial properties of silver nanoparticles in the form of a colloidal solution in the matrix of finely dispersed silica].

    PubMed

    Korchak, G I; Surmasheva, E V; Mikhienkova, A I; Nikonova, N A; Romanenko, L I; Oliĭnyk, Z A; Gorval', A K; Rosada, M A

    2012-01-01

    In the experimental study obtained with chemical method colloid solution of nanoparticles (NPs) of silver (Ag) and a composite on his base in the matrix of finely dispersed silica with particle size of 8-12 nm and NPs concentration in basic solution of 0,0016% (0,016 mg/cm3) were established to exhibit high antimicrobial activity against the test organisms: E. coli, P. aeruginosa, S. Aureus and C. Albicans, which depended on a set of factors. Antibacterial properties of tissue impregnated with Ag-NPs were studied. As stabilizing substances a mixture of surface-active substance sodium dodecyl sulfate and polymer polyvinylpyrrolidone was used Before the beginning of the study effective neutralizer was tailored. Times of preservation of antimicrobial activity of test samples have been established, and also their stability throughout long term of supervision (24 months) has been shown. Effect of organic pollution on antimicrobal activity of the samples has been studied. Based on obtained results the algorithm of the study of antimicrobial properties of nanopreparations has been elaborated.

  18. Preparation of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ fine powders by carbonate coprecipitation for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Ha, Sang Bu; Cho, Pyeong-Seok; Cho, Yoon Ho; Lee, Dokyol; Lee, Jong-Heun

    A range of La 0.75Sr 0.25Cr 0.5Mn 0.5O 3- δ (LSCM) powders is prepared by the carbonate coprecipitation method for use as anodes in solid oxide fuel cells. The supersaturation ratio (R = [(NH 4) 2CO 3]/([La 3+] + [Sr 2+] + [Cr 3+] + [Mn 2+])) during the coprecipitation determines the relative compositions of La, Sr, Cr, and Mn. The composition of the precursor approaches the stoichiometric one at the supersaturation range of 4 ≤ R ≤ 12.5, whereas Sr and Mn components are deficient at R < 4 and excessive at R = 25. The fine and phase-pure LSCM powders are prepared by heat treatment at very low temperature (1000 °C) at R = 7.5 and 12.5. By contrast, the solid-state reaction requires a higher heat-treatment temperature (1400 °C). The catalytic activity of the LSCM electrodes is enhanced by using carbonate-derived powders to manipulate the electrode microstructures.

  19. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  20. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  1. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  2. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Copper powder. 73.1647 Section 73.1647 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive copper powder is a very fine free-flowing metallic powder prepared from virgin electrolytic copper....

  3. Nest suitability, fine-scale population structure and male-mediated dispersal of a solitary ground nesting bee in an urban landscape.

    PubMed

    López-Uribe, Margarita M; Morreale, Stephen J; Santiago, Christine K; Danforth, Bryan N

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei's GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for enhancing

  4. Nest Suitability, Fine-Scale Population Structure and Male-Mediated Dispersal of a Solitary Ground Nesting Bee in an Urban Landscape

    PubMed Central

    López-Uribe, Margarita M.; Morreale, Stephen J.; Santiago, Christine K.; Danforth, Bryan N.

    2015-01-01

    Bees are the primary pollinators of flowering plants in almost all ecosystems. Worldwide declines in bee populations have raised awareness about the importance of their ecological role in maintaining ecosystem functioning. The naturally strong philopatric behavior that some bee species show can be detrimental to population viability through increased probability of inbreeding. Furthermore, bee populations found in human-altered landscapes, such as urban areas, can experience lower levels of gene flow and effective population sizes, increasing potential for inbreeding depression in wild bee populations. In this study, we investigated the fine-scale population structure of the solitary bee Colletes inaequalis in an urbanized landscape. First, we developed a predictive spatial model to detect suitable nesting habitat for this ground nesting bee and to inform our field search for nests. We genotyped 18 microsatellites in 548 female individuals collected from nest aggregations throughout the study area. Genetic relatedness estimates revealed that genetic similarity among individuals was slightly greater within nest aggregations than among randomly chosen individuals. However, genetic structure among nest aggregations was low (Nei’s GST = 0.011). Reconstruction of parental genotypes revealed greater genetic relatedness among females than among males within nest aggregations, suggesting male-mediated dispersal as a potentially important mechanism of population connectivity and inbreeding avoidance. Size of nesting patch was positively correlated with effective population size, but not with other estimators of genetic diversity. We detected a positive trend between geographic distance and genetic differentiation between nest aggregations. Our landscape genetic models suggest that increased urbanization is likely associated with higher levels of inbreeding. Overall, these findings emphasize the importance of density and distribution of suitable nesting patches for

  5. Simultaneous determination of bisphenol A and bisphenol B in beverages and powdered infant formula by dispersive liquid-liquid micro-extraction and heart-cutting multidimensional gas chromatography-mass spectrometry.

    PubMed

    Cunha, S C; Almeida, C; Mendes, E; Fernandes, J O

    2011-04-01

    The purpose of this study was to establish a reliable, cost-effective, fast and simple method to quantify simultaneously both bisphenol A (BPA) and bisphenol B (BPB) in liquid food matrixes such as canned beverages (soft drinks and beers) and powdered infant formula using dispersive liquid-liquid micro-extraction (DLLME) with in-situ derivatisation coupled with heart-cutting gas chromatography-mass spectrometry (GC-MS). For the optimisation of the DLLME procedure different amounts of various extractive and dispersive solvents as well as different amounts of the derivative reagent were compared for their effects on extraction efficiency and yields. The optimised procedure consisted of the injection of a mixture containing tetrachloroethylene (extractant), acetonitrile (dispersant) and acetic anhydride (derivatising reagent) directly into an aliquot of beverage samples or into an aqueous extract of powdered milk samples obtained after a pretreatment of the samples. Given the compatibility of the solvents used, and the low volumes involved, the procedure was easily associated with GC-MS end-point determination, which was accomplished by means of an accurate GC dual column (heart-cutting) technique. Careful optimisation of heart-cutting GC-MS conditions, namely pressure of front and auxiliary inlets, have resulted in a good analytical performance. The linearity of the matrix-matched calibration curves was acceptable, with coefficients of determination (r2) always higher than 0.99. Average recoveries of the BPA and BPB spiked at two concentration levels into beverages and powdered infant formula ranged from 68% to 114% and the relative standard deviation (RSD) was <15%. The limits of detection (LOD) in canned beverages were 5.0 and 2.0 ng l(-1) for BPA and BPB, respectively, whereas LOD in powdered infant formula were 60.0 and 30.0 ng l(-1), respectively. The limits of quantification (LOQ) in canned beverages were 10.0 and 7.0 ng l-1 for BPA and BPB, respectively

  6. Synthesis of fine α″-Fe16N2 powders by low-temperature nitridation of α-Fe from magnetite nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Jing; Yuan, Wei; Peng, Xiaoling; Yang, Yanting; Xu, Jingcai; Wang, Xinqing; Hong, Bo; Jin, Hongxiao; Jin, Dingfeng; Ge, Hongliang

    2016-12-01

    α″-Fe16N2 nanoparticles were produced from starting Fe3O4 powders via hydrogen reduction and low temperature nitridation. Influences of both reduction and nitridation conditions on the synthesis of α″-Fe16N2 were investigated in detail. The magnetic properties of the nitrided products were also studied. The results show that the combination of 4-h reduction at 400 °C and 16-h nitridation at 170 °C gives the highest yield of α″-Fe16N2 up to 59.8 wt. %, which exhibits a saturation magnetization of about 207.3 emu/g.

  7. Iowa Powder Atomization Technologies

    SciTech Connect

    2012-01-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  8. Iowa Powder Atomization Technologies

    ScienceCinema

    None

    2016-07-12

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  9. Understanding the influence of powder flowability, fluidization and de-agglomeration characteristics on the aerosolization of pharmaceutical model powders.

    PubMed

    Zhou, Qi Tony; Armstrong, Brian; Larson, Ian; Stewart, Peter J; Morton, David A V

    2010-08-11

    The aim of this study was to investigate the influence of the intrinsic inter-particulate cohesion of model pharmaceutical powders on their aerosolization from a dry powder inhaler. Two cohesive poly-disperse lactose powders with median particle sizes of around 4 and 20 microm were examined. The results showed that after dry coating with magnesium stearate, their flowability, fluidization and de-agglomeration behaviours could be substantially improved, as indicated by powder rheometry, shear testing and laser diffraction aerosol testing. This was achieved by reducing their cohesiveness via surface modification. In contrast to some previous reports, this study demonstrated how powder aerosolization may be improved more significantly and consistently (for widely varying air flow rates) by substantially reducing their inter-particulate cohesive forces. This study contributes to the understanding of the relationship between intrinsic cohesive nature and bulk properties such as flowability, fluidization and de-agglomeration and its impact on their aerosolization, which is fundamental and critical in the optimal design of dry powder inhaler formulations. The intensive mechanical dry coating technique also demonstrated a promising potential to improve aerosolization efficiency of fine cohesive model powders.

  10. In-vitro release and permeation studies of ketoconazole from optimized dermatological vehicles using powder, nanoparticles and solid dispersion forms of drug

    NASA Astrophysics Data System (ADS)

    Mohammed, Irfan A.

    To optimize the clinical efficacy of Ketoconazole from an externally applied product, this project was undertaken to evaluate the drug release/permeation profile from various dermatological vehicles using regular powder, nanoparticles and solid dispersion forms with reduced level of drug. Nanoparticles of drug were prepared by wet media milling method using Polyvinylpyrrolidone (PVP-10K) as a stabilizer. The nanoparticles were in the size range of 250-300nm. Solid dispersion was prepared by solvent evaporation method using drug to PVP-10K at a weight ratio of (1:2). Formulations containing 1% w/w drug were developed using HPMC gel, Carbomer gel and a cationic cream as the vehicles. Penetration enhancers including propylene glycol (PG), dimethylsulfoxide (DMSO) and polyethylene glycol 400 (PEG-400) at various levels were evaluated. A commercial 2% w/w ketoconazole product was included as a control for comparison. Studies were carried out with Franz Diffusion Cells using cellulose membrane and human cadaver skin for two and six hour studies. Among the formulations evaluated, the general rank order of the drug release through the cellulose membrane was observed to be: HPMC gel base > Anionic gel base > Cationic gel base > Commercial product. The addition of penetration enhancers showed variable effects in all samples evaluated. However, the HPMC gel-based vehicle showed significant effect in enhancing the drug release in the presence of DMSO. The formulation containing 1% w/w ketoconazole and 20% w/w DMSO gave a maximum drug release of 20.21% when compared to only 1.60% from the commercial product. This represents a twelve fold increase in the release of ketoconazole from the formulation. Furthermore, when the optimum gel-based formulation containing 1% w/w ketoconazole was studied over an extended period of 6 hours, it gave 36.01% drug release from the sample formulation compared to only 2.00% from the commercial product. Finally, this formulation was selected to

  11. Engineering Design Handbook Rotational Molding of Plastic Powders

    DTIC Science & Technology

    1975-04-15

    characteristics such as discoloration. Also, tumbling of very fine powders within a mold will build up high static charges that aid in agglomerating the powders...strongly affected by fines concentration. Further, fines aid powder flow during mixing and tumbling apparently by lubricating the larger particles and...different type. Powders that have been ground but not polished or tumbled for some time against an abrasive surface usually have tails on the order of 10

  12. USE OF COMBUSTION SYNTHESIS IN PREPARING CERAMIC-MATRIX AND METAL-MATRIX COMPOSITE POWDERS

    SciTech Connect

    Weil, K. Scott; Hardy, John S.

    2005-03-01

    A standard combustion-based approach typically used to synthesize nanosize oxide powders has been modified to prepare composite oxide-metal powders for subsequent densification via sintering or hot-pressing into ceramic- or metal-matrix composites. Copper and cerium nitrate salts were dissolved in the appropriate ratio in water and combined with glycine, then heated to cause autoignition. The ratio of glycine-to-total nitrate concentration was found to have the largest effect on the composition, agglomerate size, crystallite size, and dispersivity of phases in the powder product. After consolidation and sintering under reducing conditions, the resulting composite compact consists of a well-dispersed mixture of sub-micron size reinforcement particles in a fine-grained matrix.

  13. Ignition of pyrophoric powders: An entry-level model

    NASA Astrophysics Data System (ADS)

    Alymov, M. I.; Seplyarskii, B. S.; Gordopolova, I. S.

    2015-11-01

    Chemically prepared metal nanopowders are normally pyrophoric, i.e. are liable to ignite spontaneously on exposure to air because of high reactivity and developed specific surface. On the other side, reliable theoretical models for spontaneous self-ignition of fine dispersed powders at room temperature have not been suggested so far. A deeper insight into the mechanism of the phenomenon would shed new light on the critical conditions for self-inflammation and thus would provide some clues for optimization of the passivation of fine dispersed powders. In this work, we formulated and analyzed an entry-level model for ignition of pyrophoric powders. Analysis of such a model in terms of the ignition theory gave the following results. Depending on the width of the reaction zone, the ignition may get started in either one or two stages. The duration of each stage was evaluated by using the approximate methods of combustion theory. The parametric limits for the model applicability were derived and the influence of sample length on the ignition process was explored as well.

  14. Theory of the effect of the change in the pH of water upon contact with the surface of finely dispersed solids (flint)

    SciTech Connect

    Olodovskii, P.P.

    1995-10-01

    Based on estimates of the parameters of the structure of water in a water-flint powder system and the structure of water adsorbed on the surface of the flint, an explanation is given for the effect of the increase in the pH of water in contact with the flint.

  15. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  16. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  17. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  18. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  19. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Aluminum powder. 73.1645 Section 73.1645 Food and... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive aluminum powder shall be composed of finely divided particles of aluminum prepared from virgin aluminum....

  20. Compaction of Titanium Powders

    SciTech Connect

    Gerdemann, Stephen,J; Jablonski, Paul, J

    2011-05-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines<150 {micro}m,<75 {micro}m, and<45 {micro}m; two different sizes of a hydride-dehydride [HDH]<75 {micro}m and<45 {micro}m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  1. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  2. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 μm, <75 μm, and < 45 μm; two different sizes of a hydride-dehydride [HDH] <75 μm and < 45 μm; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  3. SCF-engineered powders for delivery of budesonide from passive DPI devices.

    PubMed

    Lobo, Jennifer M; Schiavone, Helena; Palakodaty, Srinivas; York, Peter; Clark, Andy; Tzannis, Stelios T

    2005-10-01

    The objective of this study was to develop SEDS-engineered budesonide particles suitable for dry powder inhalation delivery and to evaluate their aerosol performance across a range of passive dry powder inhalers (DPI). SEDS budesonide powders were manufactured in Nektar's SCF manufacturing plant and compared to the micronized drug and commercial powder (Pulmicort Turbuhaler, AstraZeneca). Aerosol performance was evaluated by determining emitted dose (ED) by a variation of the USP method and fine particle fraction (FPF) using Andersen cascade impaction. The SCF powder dispersed best in the Turbospin and Eclipse devices, exhibiting high EDs (70%-80%) and relatively low variability (RSD 8%-13%). Regardless of the device, the SEDS material outperformed both the micronized drug and the commercial powder, while exhibiting good batch-to-batch reproducibility (RSD <5%). All powders exhibited flow rate-dependent ED, albeit for the SEDS material it was minimized at reduced fill weights. This was attributed to inadequate and variable powder clearance from the capsules at low inspiratory flow rates, which was more pronounced in the Eclipse and Cyclohaler. The results demonstrate that SEDS is an attractive particle-engineering process that may enhance pulmonary performance of budesonide and possibly facilitate development of other small molecule pulmonary products in passive DPI.

  4. Revisit to diffraction anomalous fine structure

    PubMed Central

    Kawaguchi, T.; Fukuda, K.; Tokuda, K.; Shimada, K.; Ichitsubo, T.; Oishi, M.; Mizuki, J.; Matsubara, E.

    2014-01-01

    The diffraction anomalous fine structure (DAFS) method that is a spectroscopic analysis combined with resonant X-ray diffraction enables the determination of the valence state and local structure of a selected element at a specific crystalline site and/or phase. This method has been improved by using a polycrystalline sample, channel-cut monochromator optics with an undulator synchrotron radiation source, an area detector and direct determination of resonant terms with a logarithmic dispersion relation. This study makes the DAFS method more convenient and saves a large amount of measurement time in comparison with the conventional DAFS method with a single crystal. The improved DAFS method has been applied to some model samples, Ni foil and Fe3O4 powder, to demonstrate the validity of the measurement and the analysis of the present DAFS method. PMID:25343791

  5. Differences in fine-scale genetic structure and dispersal in Quercus ilex L. and Q. suber L.: consequences for regeneration of mediterranean open woods.

    PubMed

    Soto, A; Lorenzo, Z; Gil, L

    2007-12-01

    Cork oak (Quercus suber L.) and holm oak (Q. ilex L.) are among the most important tree species (economically and ecologically) in the Western Mediterranean region, where they define unique open woods (created and maintained by man) known as 'dehesas' in Spain. However, these formations are under increasing threat due to the lack of regeneration. We have analysed spatial genetic structure in a mixed parkland; inferences about gene dispersal have also been performed, according to the isolation by distance model. Noticeable differences have been detected between the species, despite their similar ecological roles. Restricted effective dispersal leads to kin structures in cork oak, up to 70 m, while no genetic structure is observed in holm oak. Our results suggest a very effective dispersal for the latter, with a local historical gene flow estimated between 55 and 95 m. This is the first time regeneration of Mediterranean oak parklands has been assessed from a genetic perspective. Effective gene flow detected for holm oaks allows us to discount the risk of inbreeding over successive generations. Thus, regeneration of Q. ilex dehesas will just require action directed to help the settlement of the saplings (such as limiting grazing). However, in those cases where densities are too low, more intense forestation (such as plantation and/or establishment of appropriate shelter) will be needed. The 'density threshold' for initiating regeneration will probably be higher for cork oak, due to its more limited dispersal and minor full-light tolerance.

  6. Microstructural characterization of oxide dispersion strengthened (ODS) Fe-12Cr-0.5Y2O3 alloy

    NASA Astrophysics Data System (ADS)

    Shamsudin, Farha Mizana; Radiman, Shahidan; Abdullah, Yusof; Hamid, Nasri A.

    2016-11-01

    Oxide dispersion strengthened (ODS) ferritic alloy containing 12wt% Cr and 0.5wt% Y2O3 was prepared by mechanical alloying (MA) method and then compacted into bulk shape. Field emission scanning electron microscopy (FESEM) was performed to characterize the microstructure of milled alloy powder. The fragments and nanoclusters of Y2O3 were observed in this alloy powder. FESEM-EDS mapping on the milled alloy powder reveal the uniformity of the element distribution achieved by the alloy. The Y element is finely dispersed into the alloy matrix and the O element is observed indicating the presence of oxides throughout the alloy sample. The compacted alloy was then heat treated at 1050°C and analyzed by field emission scanning electron microscope (FESEM). The formations of nano-scale Y2O3 were observed after the heat treatment process of alloy indicating the dispersion and incorporation of Y2O3 nanoparticles into the alloy matrix.

  7. L-Leucine as an excipient against moisture on in vitro aerosolization performances of highly hygroscopic spray-dried powders.

    PubMed

    Li, Liang; Sun, Siping; Parumasivam, Thaigarajan; Denman, John A; Gengenbach, Thomas; Tang, Patricia; Mao, Shirui; Chan, Hak-Kim

    2016-05-01

    L-Leucine (LL) has been widely used to enhance the dispersion performance of powders for inhalation. LL can also protect powders against moisture, but this effect is much less studied. The aim of this study was to investigate whether LL could prevent moisture-induced deterioration in in vitro aerosolization performances of highly hygroscopic spray-dried powders. Disodium cromoglycate (DSCG) was chosen as a model drug and different amounts of LL (2-40% w/w) were added to the formulation, with the aim to explore the relationship between powder dispersion, moisture protection and physicochemical properties of the powders. The powder formulations were prepared by spray drying of aqueous solutions containing known concentrations of DSCG and LL. The particle sizes were measured by laser diffraction. The physicochemical properties of fine particles were characterized by X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and dynamic vapor sorption (DVS). The surface morphology and chemistry of fine particles were analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and time-of-flight secondary ion mass spectrometry (ToF-SIMS). In vitro aerosolization performances were evaluated by a next generation impactor (NGI) after the powders were stored at 60% or 75% relative humidity (RH), and 25°C for 24h. Spray-dried (SD) DSCG powders were amorphous and absorbed 30-45% (w/w) water at 70-80% RH, resulting in deterioration in the aerosolization performance of the powders. LL did not decrease the water uptake of DSCG powders, but it could significantly reduce the effect of moisture on aerosolization performances. This is due to enrichment of crystalline LL on the surface of the composite particles. The effect was directly related to the percentage of LL coverage on the surface of particles. Formulations having 61-73% (molar percent) of LL on the particle surface (which correspond to 10-20% (w

  8. Dispersion strengthened copper

    DOEpatents

    Sheinberg, H.; Meek, T.T.; Blake, R.D.

    1990-01-09

    A composition of matter is described which is comprised of copper and particles which are dispersed throughout the copper, where the particles are comprised of copper oxide and copper having a coating of copper oxide. A method for making this composition of matter is also described. This invention relates to the art of powder metallurgy and, more particularly, it relates to dispersion strengthened metals.

  9. Application of nanoring amino-functionalized magnetic polymer dispersive micro-solid-phase extraction and ultra fast liquid chromatography-tandem mass spectrometry in dicyandiamide residue analysis of powdered milk.

    PubMed

    Chen, Xiao-Hong; Zhou, Li-Xin; Zhao, Yong-Gang; Pan, Sheng-Dong; Jin, Mi-Cong

    2014-02-01

    In this study, a rapid and accurate ultra-fast liquid chromatography-tandem quadrupole mass spectrometry (UFLC-MS/MS) method combined with dispersive micro-solid-phase extraction (d-µ-SPE) using a core-shell nanoring amino-functionalized magnetic polymer (CS-NR-MP) was established and validated to determine trace dicyandiamide (DCD) in powdered milk. The developed d-µ-SPE cleanup procedure can dramatically reduce the matrix in samples, and lead to a significant reduction in absolute matrix effects. Chromatographic separation was performed on an Acquity UPLC BEH Amide column by using water-acetonitrile (9:91, v/v) as the mobile phase within 2 min. DCD was quantitatively analyzed by using DCD-(15)N2(13)C2 as an internal standard. The results showed that the recoveries were between 99.8 and 105.6% with RSDs in the range of 0.5-4.9%. The target compound had good linearity in the range of 0.1-20.0 µg L(-1) with a correlation coefficient (r) of 0.9996. The limit of quantification (LOQ) was 0.06 µg kg(-1). This method can be used for the rapid and sensitive determination of ultratrace DCD residue in powdered milk samples.

  10. Aluminium alloys with transition metals prepared by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Kucera, V.; Prusa, F.; Vojtech, D.

    2017-02-01

    Powder metallurgy represented by mechanical alloying and spark plasma sintering was used for preparation of the AlFe16 and the AlSi20Fe16 alloys. Microstructure of the both alloys consisted of very fine intermetallic phases homogenously dispersed in the matrix of α-Al solid solution. Fine nature of microstructure led to promising results of compressive stress-strain tests performed at laboratory and elevated temperature of 400 °C. The compressive strengths of the AlSi20Fe16 and the AlFe16 alloys at laboratory temperature were 780 MPa and 508 MPa, respectively. Elevated temperature resulted in drop of the compressive strengths to 480 MPa and 211 MPa, respectively. However, the results of investigated alloys outperformed the thermally stable AlSi12Cu1Mg1Ni1 (wt. %) used as reference material.

  11. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests

    PubMed Central

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-01-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species. PMID:26696137

  12. Relationships between population density, fine-scale genetic structure, mating system and pollen dispersal in a timber tree from African rainforests.

    PubMed

    Duminil, J; Daïnou, K; Kaviriri, D K; Gillet, P; Loo, J; Doucet, J-L; Hardy, O J

    2016-03-01

    Owing to the reduction of population density and/or the environmental changes it induces, selective logging could affect the demography, reproductive biology and evolutionary potential of forest trees. This is particularly relevant in tropical forests where natural population densities can be low and isolated trees may be subject to outcross pollen limitation and/or produce low-quality selfed seeds that exhibit inbreeding depression. Comparing reproductive biology processes and genetic diversity of populations at different densities can provide indirect evidence of the potential impacts of logging. Here, we analysed patterns of genetic diversity, mating system and gene flow in three Central African populations of the self-compatible legume timber species Erythrophleum suaveolens with contrasting densities (0.11, 0.68 and 1.72 adults per ha). The comparison of inbreeding levels among cohorts suggests that selfing is detrimental as inbred individuals are eliminated between seedling and adult stages. Levels of genetic diversity, selfing rates (∼16%) and patterns of spatial genetic structure (Sp ∼0.006) were similar in all three populations. However, the extent of gene dispersal differed markedly among populations: the average distance of pollen dispersal increased with decreasing density (from 200 m in the high-density population to 1000 m in the low-density one). Overall, our results suggest that the reproductive biology and genetic diversity of the species are not affected by current logging practices. However, further investigations need to be conducted in low-density populations to evaluate (1) whether pollen limitation may reduce seed production and (2) the regeneration potential of the species.

  13. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20 K to 300 K for Bi{sub 2}Te{sub 3} and from 10 K to 298 K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19 K to 298 K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M = Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  14. Slip casting nano-particle powders for making transparent ceramics

    SciTech Connect

    Kuntz, Joshua D.; Soules, Thomas F.; Landingham, Richard Lee; Hollingsworth, Joel P.

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  15. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  16. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A.

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  17. Dispersion in the Surfzone: Tracer Dispersion Studies

    DTIC Science & Technology

    2011-09-30

    objective is to improve understanding and modeling of dispersion of tracers (pol­ lution, fecal indicator bacteria, fine sediments) within the...discussed further here. Stochastic Particle Simulation for Surfzone Dispersion Drifter-derived diffusivities are time-dependent. In an unbounded...diffusion. Here HB06 particle trajectories are stochastically simulated with the Langevin equations with a shoreline boundary to explain the observed

  18. Comparison of X-ray powder diffraction and solid-state nuclear magnetic resonance in estimating crystalline fraction of tacrolimus in sustained-release amorphous solid dispersion and development of discriminating dissolution method.

    PubMed

    Rahman, Ziyaur; Bykadi, Srikant; Siddiqui, Akhtar; Khan, Mansoor A

    2015-05-01

    The focus of present investigation was to explore X-ray powder diffraction (XRPD) and solid-state nuclear magnetic resonance (ssNMR) techniques for amorphous and crystalline tacrolimus quantification in the sustained-release amorphous solid dispersion (ASD), and to propose discriminating dissolution method that can detect crystalline drug. The ASD and crystalline physical mixture was mixed in various proportions to make sample matrices containing 0%-100% crystalline-amorphous tacrolimus. Partial-least-square regression and principle component regression were applied to the spectral data. Dissolution of the ASD in the US FDA recommended dissolution medium with and without surfactant was performed. R(2) > 0.99 and slope was close to one for all the models. Root-mean-square of prediction, standard error of prediction, and bias were higher in ssNMR-based models when compared with XRPD data models. Dissolution of the ASD decreased with an increase in the crystalline tacrolimus in the formulations. Furthermore, detection of crystalline tacrolimus in the ASD was progressively masked with an increase in the surfactant level in the dissolution medium. XRPD and ssNMR can be used equally to quantitate the crystalline and amorphous fraction of tacrolimus in the ASD with good accuracy; however, ssNMR data collection time is excessively long, and minimum surfactant level in the dissolution medium maximizes detection of crystalline reversion in the formulation.

  19. Stability and rheology of dispersions of silicon nitride and silicon carbide

    NASA Technical Reports Server (NTRS)

    Feke, Donald L.

    1987-01-01

    The relationship between the surface and colloid chemistry of commercial ultra-fine silicon carbide and silicon nitride powders was examined by a variety of standard characterization techniques and by methodologies especially developed for ceramic dispersions. These include electrokinetic measurement, surface titration, and surface spectroscopies. The effects of powder pretreatment and modification strategies, which can be utilized to augment control of processing characteristics, were monitored with these technologies. Both silicon carbide and nitride were found to exhibit silica-like surface chemistries, but silicon nitride powders possess an additional amine surface functionality. Colloidal characteristics of the various nitride powders in aqueous suspension is believed to be highly dependent on the relative amounts of the two types of surface groups, which in turn is determined by the powder synthesis route. The differences in the apparent colloidal characteristics for silicon nitride powders cannot be attributed to the specific absorption of ammonium ions. Development of a model for the prediction of double-layer characteristics of materials with a hybrid site interface facilitated understanding and prediction of the behavior of both surface charge and surface potential for these materials. The utility of the model in application to silicon nitride powders was demonstrated.

  20. High temperature dispersion strengthening of NiAl

    NASA Technical Reports Server (NTRS)

    Sherman, M.; Vedula, K.

    1986-01-01

    A potential high temperature strengthening mechanism for alloys based on the intermetallic compound NiAl was investigated. This study forms part of an overall program at NASA Lewis Research Center for exploring the potential of alloys based on NiAl for high temperature applications. An alloy containing 2.26 at% Nb and produced by hot extrusion of blended powders was examined in detail using optical and electron microscopy. Interdiffusion between the blended Nb and NiAl powders results in the formation of intermediate phases. A fine dispersion of precipitates of a hexagonal, ordered NiAlNb phases in a matrix of NiAl can be produced and this results in strengthening of the alloy by interfering with dislocation motion at high temperature. These precipitates are, however, found to coarsen during the high temperature (1300 K) deformation at slow strain rates and this may impose some limitatioins on the use of this strengthening mechanism.

  1. How to freeze drop oscillations with powders

    NASA Astrophysics Data System (ADS)

    Marston, Jeremy; Zhu, Ying; Vakarelski, Ivan; Thoroddsen, Sigurdur

    2012-11-01

    We present experiments that show when a water drop impacts onto a bed of fine, hydrophobic powder, the final form of the drop can be very different from the spherical form with which it impacts. For all drop impact speeds, the drop rebounds due to the hydrophobic nature of the powder. However, we observe that above a critical impact speed, the drop undergoes a permanent deformation to a highly non-spherical shape with a complete coverage of powder, thus creating a deformed liquid marble. This powder coating acts to freeze the drop oscillations during rebound.

  2. Evaluation of Oxide Dispersion Strengthened (ODS) molybdenum alloys

    SciTech Connect

    Bianco, R.; Buckman, R.W. Jr.

    1995-12-31

    A series of fourteen (14) novel high-strength molybdenum alloy compositions containing a dispersion of very fine (< 1 {mu}m diameter) oxide particles were consolidated using two proprietary powder metallurgy techniques. The developmental compositions were evaluated to determine the microstructural stability and mechanical properties from cryogenic (-148{degrees}F) to elevated temperatures (4000{degrees}F) for material in the as-swaged (>98% cold work) condition and for as-swaged material in the heat treated condition. Extremely fine oxide particle sizes (<1000 {Angstrom}) were observed by Transmission Electron Microscopy (TEM) for a number of the experimental compositions in the as-swaged condition. A one hour recrystallization temperature as high as 3990{degrees}F was measured and a ductile-to-brittle transition temperature as low as {approximately}58{degrees}F for material in the recrystallized condition was determined. The preliminary results support the alloy design concept feasibility.

  3. Solid dispersions of itraconazole for inhalation with enhanced dissolution, solubility and dispersion properties.

    PubMed

    Duret, Christophe; Wauthoz, Nathalie; Sebti, Thami; Vanderbist, Francis; Amighi, Karim

    2012-05-30

    The purpose of this study was to produce a dry powder for inhalation (DPI) of a poorly soluble active ingredient (itraconazole: ITZ) that would present an improved dissolution rate and enhanced solubility with good aerosolization properties. Solid dispersions of amorphous ITZ, mannitol and, when applicable, D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) were produced by spray-drying hydro-alcoholic solutions in which all agents were dissolved. These dry formulations were characterized in terms of their aerosol performances and their dissolution, solubility and physical properties. Modulate differential scanning calorimetry and X-ray powder diffraction analyses showed that ITZ recovered from the different spray-dried solutions was in an amorphous state and that mannitol was crystalline. The inlet drying temperature and, indirectly, the outlet temperature selected during the spray-drying were critical parameters. The outlet temperature should be below the ITZ glass transition temperature to avoid severe particle agglomeration. The formation of a solid dispersion between amorphous ITZ and mannitol allowed the dry powder to be produced with an improved dissolution rate, greater saturation solubility than bulk ITZ and good aerosol properties. The use of a polymeric surfactant (such as TPGS) was beneficial in terms of dissolution rate acceleration and solubility enhancement, but it also reduced aerosol performance. For example, significant dissolution rate acceleration (f(2)<50) and greater saturation solubility were obtained when introducing 1% (w/w) TPGS (mean dissolution time dropped from 50.4 min to 36.9 min and saturation solubility increased from 20 ± 3 ng/ml to 46 ± 2 ng/ml). However, the fine particle fraction dropped from 47 ± 2% to 37.2 ± 0.4%. This study showed that mannitol solid dispersions may provide an effective formulation type for producing DPIs of poorly soluble active ingredients, as exemplified by ITZ.

  4. [Stability of probucol-polyvinylpyrrolidone solid dispersion systems].

    PubMed

    Kubo, Yoshitada; Yagi, Naomi; Sekikawa, Hitoshi

    2011-04-01

    After solid dispersion systems of probucol-polyvinylpyrrolidone K30 (1 : 9 in weight ratio) were exposed to light (10000 lx) for 7 days, 84% of the probucol remained. Commercial probucol fine granules were thus fairly stable under light exposure. When solid dispersion systems were stored in heat-sealed packages at relative humidity (R.H.) of 75% and 92% for 30 days at 30°C, the weight of the samples increased by 22% and 43%, respectively. When these solid dispersion systems were dissolved in water, the probucol concentration decreased with the duration of storage. The crystalline nature of probucol in the solid dispersion systems could not be detected by powder X-ray diffraction or differential scanning calorimetry. After passing the dissolution medium through the membrane filter, retention time of the residue on the filter in the HPLC method corresponded to that of probucol. These results suggest that the partial crystallization of probucol in the solid dispersion systems may occur during storage under these conditions. Solid dispersion systems in heat-sealed packages were fairly stable when stored under room conditions or in light-resistant tightly sealed containers for 5 months.

  5. Alternative sugars as potential carriers for dry powder inhalations.

    PubMed

    Steckel, Hartwig; Bolzen, Nina

    2004-02-11

    Most dry powder inhaler (DPI) formulations rely on lactose monohydrate as a carrier in the drug powder blends. However, lactose cannot be used for compounds that interact with the reducing sugar function of the lactose, such as formoterol, budesonide or peptides and proteins. In this study, alternative carriers like mannitol, glucose, sorbitol, maltitol and xylitol have therefore been evaluated for their potential use in DPI formulations. Raw materials were characterised physico-chemically and blends with the model drug substance budesonide were tested with respect to the aerosolization behaviour of the powders. It was found out that similarly to the problems known for lactose monohydrate, such as supplier variability, variability between different qualities of one supplier, the same difficulties apply to the alternative carriers investigated. Different sources and qualities of mannitol led to significant differences in the fine particle fraction (FPF), varying from 15 to 50% for two different qualities of mannitol. Similar observations were made for the other carrier materials studied. Also, the influence of conditioning the raw material at different relative humidity was found to have substantial influence on the performance of drug/carrier blends which is characterised by a strong decrease in the FPF. In summary, mannitol showed potential as a drug carrier to be used in DPIs whereas the more hygroscopic sugars only showed poor dispersibility.

  6. Fine Arts.

    ERIC Educational Resources Information Center

    Danzer, Gerald A.; Newman, Mark

    1992-01-01

    Discusses the use of fine arts as sources to enrich the study of history. Suggests that such works will serve as barometers of change, examples of cross-cultural influences, and political messages. Includes suggestions of works and artists from different historic periods. (DK)

  7. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    NASA Astrophysics Data System (ADS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an "area" detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  8. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    SciTech Connect

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-09-15

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors.

  9. Method for synthesizing fine-grained phosphor powders of the type (RE.sub.1- Ln.sub.x)(P.sub.1-y V.sub.y)O.sub.4

    DOEpatents

    Phillips, Mark L. F.

    1998-01-01

    A method for generating well-crystallized photo- and cathodoluminescent oxide phosphor powders. The method of this invention uses hydrothermal synthesis and annealing to produce nearly monosized (RE.sub.1-x Ln.sub.x)(P.sub.1-y V.sub.y)O.sub.4 (Ln.dbd.Ce.fwdarw.Lu) phosphor grains with crystallite sizes from 0.04 to 5 .mu.m. Such phosphors find application in cathode-ray tube, flat-panel, and projection displays.

  10. Spheroidization of glass powders for glass ionomer cements.

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs.

  11. Method for synthesizing fine-grained phosphor powders of the type (RE{sub 1{minus}x}Ln{sub x})(P{sub 1{minus}y}V{sub y})O{sub 4}

    DOEpatents

    Phillips, M.L.F.

    1998-04-28

    A method for generating well-crystallized photo- and cathodoluminescent oxide phosphor powders is disclosed. The method of this invention uses hydrothermal synthesis and annealing to produce nearly monosized (RE{sub 1{minus}x}Ln{sub x})(P{sub 1{minus}y}V{sub y}O{sub 4}) (Ln{double_bond}Ce{yields}Lu) phosphor grains with crystallite sizes from 0.04 to 5 {micro}m. Such phosphors find application in cathode-ray tube, flat-panel, and projection displays. 4 figs.

  12. Energetic powder

    DOEpatents

    Jorgensen, Betty S.; Danen, Wayne C.

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  13. Microstructural characterization of a new mechanically alloyed Ni-base ODS superalloy powder

    SciTech Connect

    Seyyed Aghamiri, S.M.; Shahverdi, H.R.; Ukai, S.; Oono, N.; Taya, K.; Miura, S.; Hayashi, S.; Okuda, T.

    2015-02-15

    The microstructure of a new Ni-base oxide dispersion strengthened superalloy powder was studied for high temperature gas turbine applications after the mechanical alloying process. In this study, an atomized powder with a composition similar to the CMSX-10 superalloy was mechanically alloyed with yttria and Hf powders. The mechanically alloyed powder included only the supersaturated solid solution γ phase without γ′ and yttria provided by severe plastic deformation, while after the 3-step aging, the γ′ phase was precipitated due to the partitioning of Al and Ta to the γ′ and Co, Cr, Re, W, and Mo to the γ phase. Mechanical alloying modified the morphology of γ′ to the new coherent γ–γ′ nanoscale lamellar structure to minimize the elastic strain energy of the precipitation, which yielded a low lattice misfit of 0.16% at high temperature. The γ′ lamellae aligned preferentially along the elastically soft [100] direction. Also, the precipitated oxide particles were refined in the γ phase by adding Hf from large incoherent YAlO{sub 3} to fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles with the average size of 7 nm and low interparticle spacing of 76 nm. - Highlights: • A new Ni-base ODS superalloy powder was produced by mechanical alloying. • The nanoscale γ–γ′ lamellar structure was precipitated after the aging treatment. • Fine semi-coherent Y{sub 2}Hf{sub 2}O{sub 7} oxide particles were precipitated by addition of Hf.

  14. The structure and phase composition of hard alloys of the Cr3C2-Ti system produced by explosive compacting of powders

    NASA Astrophysics Data System (ADS)

    Kharlamov, V. O.; Krokhalev, A. V.; Tupitsin, M. A.; Kuz’min, S. V.; Lysak, V. I.

    2017-02-01

    The work presents the findings of theoretical and experimental studies by scanning electron microscopy and energy-dispersive electron microprobe analysis of the phase composition of hard alloys produced by explosive compacting of the powders of chromium carbide Cr3C2 with titanium. It was found that when the powder mixture is heated in shock waves to 660 °C, the phase composition of hard alloys corresponds to that of the initial components of the powder mixture. With the increasing intensity of the explosive compacting, formation of secondary carbides is observed on the border of the initial components. A further increase in temperature results in a local melting and formation of new fine phases. With the subsequent temperature rise in the shock waves, a transition to the calculated equilibrium composition is observed.

  15. Wet powder seal for gas containment

    DOEpatents

    Stang, L.G.

    1979-08-29

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  16. Wet powder seal for gas containment

    DOEpatents

    Stang, Louis G.

    1982-01-01

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  17. Particle Size of Milk Protein Concentrate Powder Affects the Texture of High-Protein Nutrition Bars During Storage.

    PubMed

    Banach, J C; Clark, S; Lamsal, B P

    2017-03-07

    Milk protein concentrate powder with 85% protein (MPC85) was jet-milled to give 2 particle size distributions (that is, JM-Coarse and JM-Fine) or freeze-dried (FD), in order to improve the functional properties of MPC85 for use in high-protein nutrition (HPN) bars. Volume-weighted mean diameter decreased from 86 μm to 49, 22, and 8 μm in FD, JM-Coarse, and JM-Fine, respectively (P < 0.05). The MPC85 powders modified by jet-milling and freeze-drying were significantly denser than the control MPC85 (P < 0.05). Volume of occluded air in the modified powders decreased (P < 0.05) by an order of magnitude, yet only FD possessed a lower volume of interstitial air (P < 0.05). Particle size reduction and freeze-drying MPC85 decreased its water holding capacity and improved its dispersibility by at least 20%. Contact angle measurements showed that these modifications increased initial hydrophobicity and did not improve wettability. HPN bars made from JM-Fine or FD were firmer by 40 or 17 N, respectively, than the control on day 0 (P < 0.05). HPN bar maximum compressive force increased by 38%, 33%, and 242% after 42 d at 32 °C when formulated with JM-Fine, FD, or control MPC85, respectively. HPN bars prepared with JM-Fine were less crumbly than those formulated with control or FD MPC85. Physically altering the particle structure of MPC85 improved its ability to plasticize within HPN bars and this improved their cohesiveness and textural stability.

  18. Synergistic combination dry powders for inhaled antimicrobial therapy

    NASA Astrophysics Data System (ADS)

    Heng, Desmond; Lee, Sie Huey; Teo, Jeanette; Ng, Wai Kiong; Chan, Hak-Kim; Tan, Reginald B. H.

    2013-06-01

    Combination products play an important role in medicine as they offer improved clinical effectiveness, enhanced patient adherence, and reduced administrative costs. In combination antimicrobial therapy, the desired outcome is to extend the antimicrobial spectrum and to achieve a possible synergistic effect. However, adverse antagonistic species may sometimes emerge from such combinations, leading to treatment failure. Therefore, it is crucial to screen the drug candidates for compatibility and possible antagonistic interactions. This work aims to develop a novel synergistic dry powder inhaler (DPI) formulation for antimicrobial combination therapy via the pulmonary route. Binary and ternary combinations were prepared via spray drying on a BUCHI® Nano Spray Dryer B-90. All powders were within the respirable size range, and were consisted of spherical particles that were slightly corrugated. The powers yielded fine particle fractions (of the loaded dose) of over 40% when dispersed using an Aerolizer® DPI at 60 L/min. Time-kill studies carried out against common respiratory tract pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Acinetobacter baumannii at 1x the minimum inhibitory concentration (MIC) over 24 hours revealed no antagonistic behavior for both combinations. While the interactions were generally found to be indifferent, a favorable synergistic effect was detected in the binary combination when it was tested against Pseudomonas aeruginosa bacteria.

  19. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  20. Powder treatment process

    DOEpatents

    Weyand, John D.

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  1. IMPROVED PRODUCTION OF POWDER METALLURGY ITEMS.

    DTIC Science & Technology

    This report describes and discusses the results of exn tests made on TZM, Inco 713C , Udimet 700, and PH15-7Mo superalloys, and contains an assessment...Udimet 700 and Inco 713C , prob ably because of unsoundness in the cast extrusion billets. The pilot-plant atomized powders are fine, have irregular

  2. Shear dispersion in dense granular flows

    DOE PAGES

    Christov, Ivan C.; Stone, Howard A.

    2014-04-18

    We formulate and solve a model problem of dispersion of dense granular materials in rapid shear flow down an incline. The effective dispersivity of the depth-averaged concentration of the dispersing powder is shown to vary as the Péclet number squared, as in classical Taylor–Aris dispersion of molecular solutes. An extension to generic shear profiles is presented, and possible applications to industrial and geological granular flows are noted.

  3. Densification of molybdenum and molybdenum alloy powders using hot isostatic pressing. Final technical report

    SciTech Connect

    Barranco, J.; Ahmad, I.; Isserow, S.; Warenchak, R.

    1985-08-01

    This study was conducted to determine a superior erosion-resistant gun-barrel liner material with improved properties at higher temperatures. Four categories of powders were examined: 1. TZM spherical containing 0.5 titanium, 0.08 zirconium, and 0.02 carbon (wt. % nominally), balance molybdenum (Mo), produced by REP (Rotating Electrode Process), PREP (Plasma Rotating Electrode Process), and PMRS (Plasma Melted and Rapidly Solidified); 2. Mo reduced 2 and 5 microns; 3. Mo-0.1% cobalt, co-reduced; 4. Mo-5 wt. % alumina (A12O3), dispersion strengthened. Hot Isostatic Pressing (HIP) densification occurred at 15-30 Ksi, 1300-1600 C, for 1.5 to 3.0 hours. The TZM REP/PREP powders (220/74 microns) were not fully densified even at 1600 C, 30 Ksi, 3 hours. Point-particle contact prevented complete void elimination. TZM PMRS powder (24.7 microns) achieved 99% of theoretical density while maintaining a small grain size (10.4 ASTM eq.) Bend deflection and fracture energies were approximately three times those for PREP powder at a bend rupture strength of about 120 Ksi. Mo reduced and Mo-0.1% Co powders showed less (or the same) ductility with increasing HIP temperatures. Fractures were intergranular with decreased bend rupture and compression strength. The Mo-5A1/sub 2/O/sub 3/ powder maintained a fine grain size (13 ASTM eq.), but with fracture energies usually less than 0.6 in.-lbs. Included are results from bending and compression testing with metallographic and fracture mode interpretation.

  4. Experimental observations of dry powder inhaler dose fluidisation.

    PubMed

    Tuley, Rob; Shrimpton, John; Jones, Matthew D; Price, Rob; Palmer, Mark; Prime, Dave

    2008-06-24

    Dry powder inhalers (DPIs) are widely used to deliver respiratory medication as a fine powder. This study investigates the physical mechanism of DPI operation, assessing the effects of geometry, inhalation and powder type on dose fluidisation. Patient inhalation through an idealised DPI was simulated as a linearly increasing pressure drop across three powder dose reservoir geometries permitting an analysis of shear and normal forces on dose evacuation. Pressure drop gradients of 3.3, 10 and 30 kPa s(-1)were applied to four powder types (glass, aluminium, and lactose 6 and 16% fines) and high speed video of each powder dose fluidisation was recorded and quantitatively analysed. Two distinct mechanisms are identified, labelled 'fracture' and 'erosion'. 'Fracture' mode occurs when the initial evacuation occurs in several large agglomerates whilst 'erosion' mode occurs gradually, with successive layers being evacuated by the high speed gas flow at the bed/gas interface. The mechanism depends on the powder type, and is independent of the reservoir geometries or pressure drop gradients tested. Both lactose powders exhibit fracture characteristics, while aluminium and glass powders fluidise as an erosion. Further analysis of the four powder types by an annular shear cell showed that the fluidisation mechanism cannot be predicted using bulk powder properties.

  5. Measuring Electrical Resistivity Of Compacted Powder

    NASA Technical Reports Server (NTRS)

    Shlichta, Paul J.

    1991-01-01

    Slightly modified micrometer used in conjunction with special cup to measure electrical resistance of specimen of powder as function of packing fraction. Powder pressed between anvils of micrometer, which make electrical contact with specimen. Device used in manufacturing batteries to determine effective electrical conductivities of powders loaded into plastic sheets to make battery substrates. Coupled with good mathematical description of expected conductivity of particulate composite as function of packing density. Also serves as tool for evaluating conductivity of dispersed phase, as well as evaluating electrical resistances of interparticle contacts.

  6. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-10-21

    A strengthened, biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed, compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: Ni, Ag, Ag--Cu, Ag--Pd, Ni--Cu, Ni--V, Ni--Mo, Ni--Al, Ni--Cr--Al, Ni--W--Al, Ni--V--Al, Ni--Mo--Al, Ni--Cu--Al; and at least one fine metal oxide powder; the article having a grain size which is fine and homogeneous; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  7. Interpretation of Wild 2 Dust Fine Structure: Comparison of Stardust Aluminium Foil Craters to the Three-Dimensional Shape of Experimental Impacts by Artificial Aggregate Particles and Meteorite Powders

    SciTech Connect

    Kearsley, A T; Burchell, M J; Price, M C; Graham, G A; Wozniakiewicz, P J; Cole, M J; Foster, N J; Teslich, N

    2009-12-10

    New experimental results show that Stardust crater morphology is consistent with interpretation of many larger Wild 2 dust grains being aggregates, albeit most of low porosity and therefore relatively high density. The majority of large Stardust grains (i.e. those carrying most of the cometary dust mass) probably had density of 2.4 g cm{sup -3} (similar to soda-lime glass used in earlier calibration experiments) or greater, and porosity of 25% or less, akin to consolidated carbonaceous chondrite meteorites, and much lower than the 80% suggested for fractal dust aggregates. Although better size calibration is required for interpretation of the very smallest impacting grains, we suggest that aggregates could have dense components dominated by {micro}m-scale and smaller sub-grains. If porosity of the Wild 2 nucleus is high, with similar bulk density to other comets, much of the pore-space may be at a scale of tens of micrometers, between coarser, denser grains. Successful demonstration of aggregate projectile impacts in the laboratory now opens the possibility of experiments to further constrain the conditions for creation of bulbous (Type C) tracks in aerogel, which we have observed in recent shots. We are also using mixed mineral aggregates to document differential survival of pristine composition and crystalline structure in diverse fine-grained components of aggregate cometary dust analogues, impacted onto both foil and aerogel under Stardust encounter conditions.

  8. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  9. KISMET tungsten dispersal experiment

    SciTech Connect

    Wohletz, K.; Kunkle, T.; Hawkins, W.

    1996-12-01

    Results of the KISMET tungsten dispersal experiment indicate a relatively small degree of wall-rock contamination caused by this underground explosive experiment. Designed as an add-on to the KISMET test, which was performed in the U-1a.02 drift of the LYNER facility at Nevada Test Site on 1 March 1995, this experiment involved recovery and analysis of wall-rock samples affected by the high- explosive test. The chemical, high-explosive blast drove tungsten powder, placed around the test package as a plutonium analog, into the surrounding wall- rock alluvium. Sample analyses by an analytical digital electron microscope (ADEM) show tungsten dispersed in the rock as tiny (<10 {mu}m) particles, agglomerates, and coatings on alluvial clasts. Tungsten concentrations, measured by energy dispersive spectral analysis on the ADEM, indicate penetration depths less than 0.1 m and maximum concentrations of 1.5 wt % in the alluvium.

  10. Engineering hydrophobically modified chitosan for enhancing the dispersion of respirable microparticles of levofloxacin.

    PubMed

    Merchant, Zahra; Taylor, Kevin M G; Stapleton, Paul; Razak, Sana A; Kunda, Nitesh; Alfagih, Iman; Sheikh, Khalid; Saleem, Imran Y; Somavarapu, Satyanarayana

    2014-11-01

    The potential of amphiphilic chitosan formed by grafting octanoyl chains on the chitosan backbone for pulmonary delivery of levofloxacin has been studied. The success of polymer synthesis was confirmed using FT-IR and NMR, whilst antimicrobial activity was assessed against Pseudomonas aeruginosa. Highly dispersible dry powders for delivery as aerosols were prepared with different amounts of chitosan and octanoyl chitosan to study the effect of hydrophobic modification and varying concentration of polymer on aerosolization of drug. Powders were prepared by spray-drying from an aqueous solution containing levofloxacin and chitosan/amphiphilic octanoyl chitosan. l-leucine was also used to assess its effect on aerosolization. Following spray-drying, the resultant powders were characterized using scanning electron microscopy, laser diffraction, dynamic light scattering, HPLC, differential scanning calorimetry, thermogravimetric analysis and X-ray powder diffraction. The in vitro aerosolization profile was determined using a Next Generation Impactor, whilst in vitro antimicrobial assessment was performed using MIC assay. Microparticles of chitosan have the property of mucoadhesion leading to potential increased residence time in the pulmonary mucus, making it important to test the toxicity of these formulations. In-vitro cytotoxicity evaluation using MTT assay was performed on A549 cell line to determine the toxicity of formulations and hence feasibility of use. The MTT assay confirmed that the polymers and the formulations were non-cytotoxic. Hydrophobically modifying chitosan showed significantly lower MIC (4-fold) than the commercial chitosan against P. aeruginosa. The powders generated were of suitable aerodynamic size for inhalation having a mass median aerodynamic diameter less than 4.5μm for formulations containing octanoyl chitosan. These highly dispersible powders have minimal moisture adsorption and hence an emitted dose of more than 90% and a fine particle

  11. Dry powder inhalers of gentamicin and leucine: formulation parameters, aerosol performance and in vitro toxicity on CuFi1 cells.

    PubMed

    Aquino, R P; Prota, L; Auriemma, G; Santoro, A; Mencherini, T; Colombo, G; Russo, P

    2012-04-15

    The high hygroscopicity of gentamicin (G) as raw material hampers the production of respirable particles during aerosol generation and prevents its direct use as powder for inhalation in patients suffering from cystic fibrosis (CF). Therefore, this research aimed to design a new dry powder formulation of G studying dispersibility properties of an aminoacid, L-leucine (leu), and appropriate process conditions. Spray-dried powders were characterized as to water uptake, particle size distribution, morphology and stability, in correlation with process parameters. Aerodynamic properties were analyzed both by Single Stage Glass Impinger and Andersen Cascade Impactor. Moreover, the potential cytotoxicity on bronchial epithelial cells bearing a CFTR F508/F508 mutant genotype (CuFi1) were tested. Results indicated that leu may improve the aerosol performance of G-dried powders. The maximum fine particle fraction (FPF) of about 58.3% was obtained when water/isopropyl alcohol 7:3 system and 15-20% (w/w) of leu were used, compared to a FPF value of 13.4% for neat G-dried powders. The enhancement of aerosol efficiency was credited both to the improvement of the powder flowability, caused by the dispersibility enhancer (aminoacid), and to the modification of the particle surface due to the influence of the organic co-solvent on drying process. No significant degradation of the dry powder was observed up to 6 months of storage. Moreover, particle engineering did not affect either the cell viability or cell proliferation of CuFi1 over a 24 h period.

  12. Development of Metal/Polymer Mixtures for Micro Powder Injection Moulding

    NASA Astrophysics Data System (ADS)

    Quinard, C.; Barriere, T.; Gelin, J. C.

    2007-04-01

    Important research tasks at ENSMM/LMA are concerned for the development of mixtures of Fine powders associated to polymer binders dedicated to the powder injection moulding (PIM) and to the powder injection micro-moulding (μPIM) in accordance with many works already carried out with different feedstock suppliers dedicated to the macro-components.

  13. Resin-Powder Dispenser

    NASA Technical Reports Server (NTRS)

    Standfield, Clarence E.

    1994-01-01

    Resin-powder dispenser used at NASA's Langley Research Center for processing of composite-material prepregs. Dispenser evenly distributes powder (resin polymer and other matrix materials in powder form) onto wet uncured prepregs. Provides versatility in distribution of solid resin in prepreg operation. Used wherever there is requirement for even, continuous distribution of small amount of powder.

  14. Investigation of the Changes in Aerosolization Behavior Between the Jet-Milled and Spray-Dried Colistin Powders Through Surface Energy Characterization.

    PubMed

    Jong, Teresa; Li, Jian; Morton, David A V; Zhou, Qi Tony; Larson, Ian

    2016-03-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared with those produced by jet milling. Inhalable colistin powder formulations were produced by jet milling or spray drying (with or without l-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, whereas the spray-dried particles were more spherical. Significantly higher fine particle fractions were measured for the spray-dried (43.8%-49.6%) versus the jet-milled formulation (28.4%) from a Rotahaler at 60 L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of l-leucine in the spray drying feed solution gave no significant improvement in fine particle fraction. As measured by inverse gas chromatography, spray-dried formulations had significantly (p < 0.001) lower dispersive, specific, and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without l-leucine. Based on our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray drying contributed significantly to the reduction of surface free energy and the superior aerosolization performance.

  15. Improved Small-Particle Powders for Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.

    2005-01-01

    Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a

  16. Ultrasound treatment of centrifugally atomized 316 stainless steel powders

    NASA Astrophysics Data System (ADS)

    Rawers, James C.; McCune, Robert A.; Dunning, John S.

    1991-12-01

    The Bureau of Mines is studying the surface characteristics of rapidly solidified powders and the potential for surface modification of fine powders prior to consolidation. The surface modification and work hardening of fine powders were accomplished by applying high-energy ultrasound to centrifugally atomized austenitic 316 stainless steel powders suspended in liquid media. Cavitation implosion changed the surface morphology, hammering the surface and occasionally fretting off microchips of work-hardened metal. Ultrasound-cavitation work-hardened metal powder surfaces producing a strained, duplex austenite face-centered cubic (fcc)-martensite body-centered tetragonal (bct) phase structure. The amount of work hardening depended upon the quantity of ultrasound energy used, considering both power level and experimental time. Work hardening was relatively independent of the liquid media used.

  17. Novel budesonide particles for dry powder inhalation (DPI) prepared using a microfluidic reactor coupled with ultrasonic spray freeze drying.

    PubMed

    Saboti, Denis; Maver, Uroš; Chan, Hak-Kim; Planinšek, Odon

    2017-03-09

    Budesonide is a potent active pharmaceutical ingredient, often administered using respiratory devices such as metered dose inhalers (MDI), nebulizers and dry powder inhalers (DPI). Inhalable drug particles are conventionally produced by crystallization followed by milling. This approach tends to generate partially amorphous materials that require post-processing to improve the formulations' stability. Other methods involve homogenization or precipitation and often require the use of stabilizers, mostly surfactants. The purpose of this study was therefore to develop a novel method for preparation of fine budesonide particles using a microfluidic reactor coupled with ultrasonic spray freeze drying, and hence avoiding the need of additional homogenization or stabilizer use. A T-junction microfluidic reactor was employed to produce particle suspension (using an ethanol-water, methanol-water and an acetone-water system), which was directly fed into an ultrasonic atomization probe, followed by direct feeding to liquid nitrogen. Freeze drying was the final preparation step. The result were fine crystalline budesonide powders which, when blended with lactose and dispersed in an Aerolizer at 100 L/min, generated fine particle fraction in the range 47.6±2.8% to 54.9±1.8%, thus exhibiting a good aerosol performance. Subsequent sample analysis confirmed the suitability of the developed method to produce inhalable drug particles without additional homogenization or stabilizers. The developed method provides a viable solution for particle isolation in microfluidics in general.

  18. Thin transparent films formed from powdered glass

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Glass film less than five mils thick is formed from powdered glass dispersed in an organic liquid, deposited on a substrate, and fused into place. The thin films can be cut and shaped for contact lenses, optical filters and insulating layers.

  19. Agglomeration of food powder and applications.

    PubMed

    Dhanalakshmi, K; Ghosal, S; Bhattacharya, S

    2011-05-01

    Agglomeration has many applications in food processing and major applications include easy flow table salt, dispersible milk powder and soup mix, instant chocolate mix, beverage powder, compacted cubes for nutritional-intervention program, health bars using expanded/puffed cereals, etc. The main purpose of agglomeration is to improve certain physical properties of food powders such as bulk density, flowability, dispersability, and stability. Agglomerated products are easy to use by the consumers and hence are preferred over the traditional non-agglomerated products that are usually non-flowable in nature. The properties of food agglomerates and the process of agglomeration like employing pressure, extrusion, rewetting, spray-bed drying, steam jet, heat/sintering, and binders have been reviewed. The physical and instant properties of agglomerated food products have also been discussed.

  20. Structure-property relationships in thermomechanically treated beryllia dispersed nickel alloys

    NASA Technical Reports Server (NTRS)

    Grewal, M. S.; Sastri, S. A.; Grant, N. J.

    1975-01-01

    BeO dispersed nickel alloys, produced by powder metallurgy techniques, were studied extensively in stress rupture at 815, 982, and 1093 C (1088, 1255, and 1366 K) and by transmission electron microscopy. The alloys were subjected to a variety of thermomechanical treatments (TMT) to determine the benefits of TMT on properties. It is shown that the use of intermediate annealing treatments after 10 pct reduction steps is highly beneficial on both low and high temperature properties. It is indicated that the high temperature strength is not primarily dependent on the grain aspect ratio or texture but depends strongly on the dislocation density and distribution of dislocations in a stable substructure which is pinned by the fine oxide dispersion.

  1. Microstructure of rapidly solidified Al 2O 3 dispersion strengthened type 316 stainless steel

    NASA Astrophysics Data System (ADS)

    Megusar, J.; Arnberg, L.; Vander Sande, J. B.; Grant, N. J.

    An aluminum oxide dispersion strengthened 316 stainless steel was developed by surface oxidation. Surface oxidation was chosen as a preferred method in order to minimize formation of less stable chromium oxides. Ultra low C+N 316 stainless steel was alloyed with 1 wt% A1, rapidly solidified to produce fine powders and attrited to approximately 0.5 pm thick flakes to provide for surface oxidation. Oxide particles in the extruded material were identified mostly as A1 oxides, In the preirradiated condition, oxide dispersion retarded crystallization and grain growth and had an effect on room temperature tensile properties. These structural modifications are expected to have an effect on the swelling resistance, structure stability and high temperature strength of austenitic stainless steels (Path A alloys).

  2. Setting time and formability of calcium phosphate cements prepared using modified dicalcium phosphate anhydrous powders.

    PubMed

    Sawamura, Takenori; Mizutani, Yoichiro; Okuyama, Masahiko; Kasuga, Toshihiro

    2014-07-01

    Calcium phosphate cements (CPCs) were prepared using Ca4(PO4)2O (TeCP) and modified CaHPO4 (DCPA) to evaluate the effects of the powder properties for DCPA particles on the setting time and formability of the resulting CPCs. Two types of modified DCPA were prepared by milling commercially available DCPA with ethanol (to produce E-DCPA) or distilled water (to produce W-DCPA). The E-DCPA samples consisted of well-dispersed, fine primary particles, while the W-DCPA samples contained agglomerated particles, and had a smaller specific surface area. The mean particle size decreased with increased milling time in both cases. The raw CPC powders prepared using W-DCPA had a higher packing density than those prepared using E-DCPA, regardless of the mean particle size. The setting time of the CPC paste after mixing with distilled water decreased with decreases in the mean particle size and specific surface area, for both types of DCPA. The CPCs prepared using W-DCPA showed larger plasticity values compared with those prepared using E-DCPA, which contributed to the superior formability of the W-DCPA samples. The CPCs prepared using W-DCPA showed a short setting time and large plasticity values, despite the fact that only a small amount of liquid was used for the mixing of the raw CPC powders (a liquid-to-powder ratio of 0.25 g g(-1) was used). It is likely that the higher packing density of the raw CPC powders prepared using W-DCPA was responsible for the higher performance of the resulting CPCs.

  3. Evidence for core-shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, S.; Odette, G. R.; Segre, C. U.

    2014-02-01

    Nanostructured ferritic alloys (NFA) dispersion strengthened by an ultra high density of Y-Ti-O enriched nano-features (NF) exhibit superior creep strength and the potential for high resistance to radiation damage. However, the detailed character of the NF, that precipitate from solid solution during hot consolidation of metallic powders mechanically alloyed with Y2O3, are not well understood. In order to clarify the nature of the NF, X-ray absorption spectroscopy (XAS) technique, including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were used to characterize the local structure of the Ti and Y atoms in both NFA powders and consolidated alloys. The powders were characterized in the as-received, as-milled and after annealing milled powders at 850, 1000 and 1150 °C. The consolidated alloys included powders hot isostatic pressed (HIPed) at 1150 °C and commercial vendor alloys, MA957 and J12YWT. The NFA XAS data were compared various Ti and Y-oxide standards. The XANES and EXAFS spectra for the annealed and HIPed powders are similar and show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y2Ti2O7 and, especially, TiO. However, the MA957 and J12YWT and annealed-consolidated powder data differ. The commercial vendor alloys results more closely resemble the as-milled powder data and all show that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix.

  4. Evidence for core–shell nanoclusters in oxygen dispersion strengthened steels measured using X-ray absorption spectroscopy

    SciTech Connect

    Liu, S.; Odette, G. R.; Segre, C. U.

    2014-02-01

    Nanostructured ferritic alloys (NFA) dispersion strengthened by an ultra high density of Y–Ti–O enriched nano-features (NF) exhibit superior creep strength and the potential for high resistance to radiation damage. However, the detailed character of the NF, that precipitate from solid solution during hot consolidation of metallic powders mechanically alloyed with Y₂O₃, are not well understood. In order to clarify the nature of the NF, X-ray absorption spectroscopy (XAS) technique, including X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were used to characterize the local structure of the Ti and Y atoms in both NFA powders and consolidated alloys. The powders were characterized in the as-received, as-milled and after annealing milled powders at 850, 1000 and 1150 °C. The consolidated alloys included powders hot isostatic pressed (HIPed) at 1150 °C and commercial vendor alloys, MA957 and J12YWT. The NFA XAS data were compared various Ti and Y-oxide standards. The XANES and EXAFS spectra for the annealed and HIPed powders are similar and show high temperature heat treatments shift the Y and Ti to more oxidized states that are consistent with combinations of Y₂Ti₂O₇ and, especially, TiO. However, the MA957 and J12YWT and annealed–consolidated powder data differ. The commercial vendor alloys results more closely resemble the as-milled powder data and all show that a significant fraction of substitutional Ti remains dissolved in the (BCC) ferrite matrix.

  5. Up-scaling of superconductor powders by the acrylamide polymerization method

    NASA Astrophysics Data System (ADS)

    Calleja, A.; Casas, X.; Serradilla, I. G.; Segarra, M.; Sin, A.; Odier, P.; Espiell, F.

    2002-08-01

    Sol-gel methods allow the preparation of powders with high performance: very fine granularity with a low grain size dispersion and excellent chemical homogeneity. In addition, lower synthesis temperatures can be attained with respect to solid-state processes. From an industrial standpoint, some effort has to be made in the up-scaling of such techniques in order to bring laboratory operations to industrial practice in a cost-effective way. In this work, we attempt to scale-up the acrylamide (AA) process for obtaining large batches of superconductor powders and related compounds. This technique consists of polymerizing AA monomer in aqueous media containing cation derivatives in the presence of a reticulating agent. This process is the fastest way to perform monolithic and stable gels. Large quantities, around 1 kg, have been produced of the following superconducting compounds and related additives: Y123, Y211, (Bi,Pb)-2212 and (Bi,Pb)-2223. Phase evolution has been monitored by XRD and thermogravimetric analysis. The presence of carbonate phases, which is the main drawback in the sol-gel techniques, is checked by elemental analysis. Results show that the superconducting and additive powders can be prepared in a single thermal treatment step, except the (Bi,Pb)-2223 phase.

  6. Effect of compression pressure on inhalation grade lactose as carrier for dry powder inhalations

    PubMed Central

    Raut, Neha Sureshrao; Jamaiwar, Swapnil; Umekar, Milind Janrao; Kotagale, Nandkishor Ramdas

    2016-01-01

    Introduction: This study focused on the potential effects of compression forces experienced during lactose (InhaLac 70, 120, and 230) storage and transport on the flowability and aerosol performance in dry powder inhaler formulation. Materials and Methods: Lactose was subjected to typical compression forces 4, 10, and 20 N/cm2. Powder flowability and particle size distribution analysis of un-compressed and compressed lactose was evaluated by Carr's index, Hausner's ratio, the angle of repose and by laser diffraction method. Aerosol performance of un-compressed and compressed lactose was assessed in dispersion studies using glass twin-stage-liquid-impenger at flow rate 40-80 L/min. Results: At compression forces, the flowability of compressed lactose was observed same or slightly improved. Furthermore, compression of lactose caused a decrease in in vitro aerosol dispersion performance. Conclusion: The present study illustrates that, as carrier size increases, a concurrent decrease in drug aerosolization performance was observed. Thus, the compression of the lactose fines onto the surfaces of the larger lactose particles due to compression pressures was hypothesized to be the cause of these observed performance variations. The simulations of storage and transport in an industrial scale can induce significant variations in formulation performance, and it could be a source of batch-to-batch variations. PMID:27014618

  7. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection.

    PubMed

    Deng, Yibin; Mathaes, Roman; Winter, Gerhard; Engert, Julia

    2014-10-15

    Epidermal powder immunisation (EPI) is being investigated as a promising needle-free delivery methods for vaccination. The objective of this work was to prepare a nanoparticles-in-microparticles (nano-in-micro) system, integrating the advantages of nanoparticles and microparticles into one vaccine delivery system for epidermal powder immunisation. Cationic mesoporous silica nanoparticles (MSNP-NH2) were prepared and loaded with ovalbumin as a model antigen. Loading was driven by electrostatic interactions. Ovalbumin-loaded silica nanoparticles were subsequently formulated into sugar-based microparticles by spray-freeze-drying. The obtained microparticles meet the size requirement for EPI. Confocal microscopy was used to demonstrate that the nanoparticles are homogeneously distributed in the microparticles. Furthermore, the silica nanoparticles in the dry microparticles can be re-dispersed in aqueous solution showing no aggregation. The recovered ovalbumin shows integrity compared to native ovalbumin. The present nano-in-micro system allows (1) nanoparticles to be immobilized and finely distributed in microparticles, (2) microparticle formation and (3) re-dispersion of nanoparticles without subsequent aggregation. The nanoparticles inside microparticles can (1) adsorb proteins to cationic shell/surface voids in spray-dried products without detriment to ovalbumin stability, (2) deliver antigens in nano-sized modes to allow recognition by the immune system.

  8. Micro-feeding and dosing of powders via a small-scale powder pump.

    PubMed

    Besenhard, M O; Fathollahi, S; Siegmann, E; Slama, E; Faulhammer, E; Khinast, J G

    2017-03-15

    Robust and accurate powder micro-feeding (<100mg/s) and micro-dosing (<5 mg) are major challenges, especially with regard to regulatory limitations applicable to pharmaceutical development and production. Since known micro-feeders that yield feed rates below 5mg/s use gravimetric feeding principles, feed rates depend primarily on powder properties. In contrast, volumetric powder feeders do not require regular calibration because their feed rates are primarily determined by the feeder's characteristic volume replacement. In this paper, we present a volumetric micro-feeder based on a cylinder piston system (i.e., a powder pump), which allows accurate micro-feeding and feed rates of a few grams per hours even for very fine powders. Our experimental studies addressed the influence of cylinder geometries, the initial conditions of bulk powder, and the piston speeds. Additional computational studies via Discrete Element Method simulations offered a better understanding of the feeding process, its possible limitations and ways to overcome them. The powder pump is a simple yet valuable tool for accurate powder feeding at feed rates of several orders of magnitude.

  9. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, J.A.; Sipola, D.L.; Tuttle, B.A.; Anderson, M.T.

    1999-06-01

    A process is disclosed for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications. 4 figs.

  10. Nonaqueous solution synthesis process for preparing oxide powders of lead zirconate titanate and related materials

    DOEpatents

    Voigt, James A.; Sipola, Diana L.; Tuttle, Bruce A.; Anderson, Mark T.

    1999-01-01

    A process for producing powders of perovskite-type compounds which comprises mixing a metal alkoxide solution with a lead acetate solution to form a homogeneous, clear metal solution, adding an oxalic acid/n-propanol solution to this metal solution to form an easily filterable, free-flowing precursor powder and then calcining this powder. This process provides fine perovskite-phase powders with ferroelectric properties which are particularly useful in a variety of electronic applications.

  11. Amorphous rare earth magnet powders

    SciTech Connect

    Sellers, C.H.; Branagan, D.J.; Hyde, T.A.; Lewis, L.H.; Panchanathan, V.

    1996-08-01

    Gas atomization (GA) processing does not generally have a high enough cooling rate to produce the initial amorphous microstructure needed to obtain optimal magnetic properties in RE{sub 2}Fe{sub 14}B alloys. Phase separation and an underquenched microstructure result from detrimental {alpha}-Fe precipitation, and the resulting magnetic domain structure is very coarse. Additionally, there is a dramatic dependence of the magnetic properties on the cooling rate (and therefore the particle size) and the powders can be sensitive to environmental degradation. Alloy compositions designed just for GA (as opposed to melt spinning) are necessary to produce an amorphous structure that can be crystallized to result in a fine structure with magnetic properties which are independent of particle size. The addition of titanium and carbon to the melt has been found to change the solidification process sufficiently to result in an ``overquenched`` state in which most of the powder size fractions have an amorphous component. Crystallization with a brief heat treatment produces a structure which has improved magnetic properties, in part due to the ability to use compositions with higher Fe contents without {alpha}-Fe precipitation. Results from magnetometry, magnetic force microscopy, and x-ray analyses will be used to contrast the microstructure, domain structure, and magnetic properties of this new generation of amorphous powders with their multiphase predecessors.

  12. Fabrication of large-scale ultra-fine Cd-doped ZnO nanowires

    SciTech Connect

    Zhou Shaomin . E-mail: shaominzhou@yahoo.com; Zhang Xiaohong; Meng Xiangmin; Wu Shikang; Lee Shuittong

    2006-02-02

    We demonstrate bulk synthesis of highly crystal Cd-doped ZnO nanowires by using (Cd + Zn) powders at 600 deg. C. These mass ultra-fine ZnO nanowires with about 0%, 1%, 4% and 8% Cd so obtained have been characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED) and high-resolution TEM (HRTEM). They have the uniform diameter of about 20 nm and several hundred microns in length. The growth of the as-synthesized nanowires is suggested for self-catalyzed vapor-liquid-solid.

  13. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric; Schmale, David T.; Oliver, Michael S.

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  14. Powder and particulate production of metallic alloys

    NASA Technical Reports Server (NTRS)

    Grant, N. J.

    1982-01-01

    Developments of particulate metallurgy of alloyed materials where the final products is a fully dense body are discussed. Particulates are defined as powders, flakes, foils, silvers, ribbons and strip. Because rapid solidification is an important factor in particulate metallurgy, all of the particulates must have at least one dimension which is very fine, sometimes as fine as 10 to 50 microns, but move typically up to several hundred microns, provided that the dimension permits a minimum solidification rate of at least 100 K/s.

  15. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  16. Synthesis of fine-grained TATB

    DOEpatents

    Lee, Kien-Yin; Kennedy, James E.

    2003-04-15

    A method for producing fine-grained triamino-trinitrobenzene (TATB) powders having improved detonation-spreading performance and hence increased shock sensitivity when compared with that for ultrafine TATB is described. A single-step, sonochemical amination of trichloro-trinitrobenzene using ammonium hydroxide solution in a sealed vessel yields TATB having approximately 6 .mu.m median particle diameter and increased shock sensitivity.

  17. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    SciTech Connect

    Zhang, Jun Wang, Xiucai; Li, Lili; Li, Chengxuan; Peng, Shuge

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulk Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.

  18. Method for cleaning fine coal

    SciTech Connect

    Smit, F.J.

    1985-07-16

    A method for cleaning fine coal is provided which includes: mixing the coal with a fluid of such a specific gravity that clean coal particles would float while refuse particles would sink therein, pretreating the coalfluid slurry by adding a surfactant, subjecting the mixture to ultrasonic dispersion, and separating the entire mixture into higher and lower specific gravity fluid streams by means of centrifugal separation. The fluid of the chosen specific gravity and the surfactant may be recovered from the fluid streams and recycled if desired.

  19. Joining of parts via magnetic heating of metal aluminum powders

    SciTech Connect

    Baker, Ian

    2013-05-21

    A method of joining at least two parts includes steps of dispersing a joining material comprising a multi-phase magnetic metal-aluminum powder at an interface between the at least two parts to be joined and applying an alternating magnetic field (AMF). The AMF has a magnetic field strength and frequency suitable for inducing magnetic hysteresis losses in the metal-aluminum powder and is applied for a period that raises temperature of the metal-aluminum powder to an exothermic transformation temperature. At the exothermic transformation temperature, the metal-aluminum powder melts and resolidifies as a metal aluminide solid having a non-magnetic configuration.

  20. Powder lubrication of faults by powder rolls in gouge zones

    NASA Astrophysics Data System (ADS)

    Chen, X.; Madden, A. S.; Reches, Z.

    2013-12-01

    Powder-lubrication by fault gouge can be an effective mechanism of dynamic weakening of faults (Reches & Lockner, 2010); however, the physical mechanisms of this lubrication are poorly understood. While the flow of coarse-grained (> 100 μm) materials, e.g. glass beads or quartz sand, was extensively studied, the flow of fine-grained (< 1 μm) powders, e.g., fault-gouge and nano-powders, have remained enigmatic. We report here experimental results of a new efficient mechanism for powder lubrication. We conducted friction tests on high-velocity rotary shear apparatus (Reches & Lockner, 2010). Two types of experimental faults were tested: (1) faults made of solid, igneous rocks (granite, tonalite and diorite); and (2) fault-zones made of 2-3 mm thick layer of granular materials (oolites, calcite or gypsum) sheared in a confined cell. We performed 21 runs with total slip of 0.14-13 m, normal stress of 1.2-14.5 MPa, slip velocity of 0.012-0.97 m/s. The ultra-microscopic (SEM and AFM) analysis of the experimental slip surfaces revealed two outstanding features in 17 out of the 21 experiments: (1) localized fault-slip along Principal Slip Zones (PSZs) that are composed of a dense, shiny, cohesive crust, 0.5-1 micron thick, that overlaid a porous substrate, and (2) elongated rolls composed of gouge-powder into three-dimensional structures of closely-packed powder grains, (20-50 nm in size). The rolls are cylindrical, 0.75-1.4 micron wide, and 1.7-30 micron long, with smooth outer surface, and laminated, concentric layers of compacted grains. The rolls were exclusively found on the PSZs. Many rolls were destroyed fracturing and smearing on the PSZ, suggesting that the rolls underwent a life cycle of formation and destruction. Significant macroscopic friction reduction was measured in experiments with observed rolls, and no (or minor) friction reduction in the four experiments without rolls. The final, reduced friction coefficients have a general reciprocal relation to the

  1. Preparation of Fine Oxide Powders by Emulsion Precipitation.

    DTIC Science & Technology

    1987-05-31

    anionic and non-ionic commercial emulsifying agents were tried, including Aerosol-OT, Arlacel 83, Span 60, Span 80, Tween 80 , Tween 85, Pluronic L62 and...w/o type emulsion with all three organic liquids, while other o/w or w/o type emulsions are produced by Tween 80 and Tween 85, depending upon the...of 72 v/o toluene; aqueous 25 v/o 0.4M Y(N03 )3 and 3 v/o * emulsifier (1.6 Span 60 + 1.4 Tween 80 ), which was stirred for 15 minutes with a magnetic

  2. Fe-based nanocrystalline powder cores with ultra-low core loss

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyue; Lu, Zhichao; Lu, Caowei; Li, Deren

    2013-12-01

    Melt-spun amorphous Fe73.5Cu1Nb3Si15.5B7 alloy strip was crushed to make flake-shaped fine powders. The passivated powders by phosphoric acid were mixed with organic and inorganic binder, followed by cold compaction to form toroid-shaped bonded powder-metallurgical magnets. The powder cores were heat-treated to crystallize the amorphous structure and to control the nano-grain structure. Well-coated phosphate-oxide insulation layer on the powder surface decreased the the core loss with the insulation of each powder. FeCuNbSiB nanocrystalline alloy powder core prepared from the powder having phosphate-oxide layer exhibits a stable permeability up to high frequency range over 2 MHz. Especially, the core loss could be reduced remarkably. At the other hand, the softened inorganic binder in the annealing process could effectively improve the intensity of powder cores.

  3. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  4. Adsorption and removal of graphene dispersants.

    PubMed

    Irin, Fahmida; Hansen, Matthew J; Bari, Rozana; Parviz, Dorsa; Metzler, Shane D; Bhattacharia, Sanjoy K; Green, Micah J

    2015-05-15

    We demonstrate three different techniques (dialysis, vacuum filtration, and spray drying) for removal of dispersants from liquid-exfoliated graphene. We evaluate these techniques for elimination of dispersants from both the bulk liquid phase and from the graphene surface. Thermogravimetric analysis (TGA) confirms dispersant removal by these treatments. Vacuum filtration (driving by convective mass transfer) is the most effective method of dispersant removal, regardless of the type of dispersant, removing up to ∼95 wt.% of the polymeric dispersant with only ∼7.4 wt.% decrease in graphene content. Dialysis also removes a significant fraction (∼70 wt.% for polymeric dispersants) of un-adsorbed dispersants without disturbing the dispersion quality. Spray drying produces re-dispersible, crumpled powder samples and eliminates much of the unabsorbed dispersants. We also show that there is no rapid desorption of dispersants from the graphene surface. In addition, electrical conductivity measurements demonstrate conductivities one order of magnitude lower for graphene drop-cast films (where excess dispersants are present) than for vacuum filtered films, confirming poor inter-sheet connectivity when excess dispersants are present.

  5. Nano powders, components and coatings by plasma technique

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)

    2009-01-01

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  6. Nano powders, components and coatings by plasma technique

    DOEpatents

    McKechnie, Timothy N.; Antony, Leo V. M.; O'Dell, Scott; Power, Chris; Tabor, Terry

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  7. Jet-vortex spray freeze drying for the production of inhalable lyophilisate powders.

    PubMed

    Wanning, Stefan; Süverkrüp, Richard; Lamprecht, Alf

    2017-01-01

    Spray-freeze-dried powders were suggested for nasal, epidermal (needle-free injection) or pulmonary application of proteins, peptides or nucleic acids. In spray-freeze-drying processes an aqueous solution is atomized into a refrigerant medium and subsequently dried by sublimation. Droplet-stream generators produce a fast stream of monodisperse droplets, where droplets are subject to collisions and therefore the initial monodispersity is lost and droplets increase in diameter, which reduces their suitability for pulmonary application. In jet-vortex-freezing, a droplet-stream is injected into a vortex of cold process gas to prevent droplet collisions. Both the injection position of the droplet-stream and the velocity of the cold gas vortex have an impact on the size distributions of the resulting powders. A model solution containing mannitol (1.5%m/V) and maltodextrin (1.5%m/V) was sprayed at 5 droplet-stream positions at distances between 1mm and 30mm from the gas jet nozzle and 5 gas velocities (0.8-6.8m/s) at a process temperature of -100°C. Mean geometric diameters of the highly porous particles (bulk density: 0.012±0.007g/cm3) ranged between 55±4 and 98±4μm. Evaluation of the aerodynamic properties by Next-Generation-Impactor (NGI) analysis showed that all powders had high emitted doses (98±1%) and fine-particle fractions ranged between 4±1% and 21±2%. It was shown that jet-vortex freezing is a suitable method for the reproducible production of lyophilized powders with excellent dispersibility in air, which has a high potential for nasal and pulmonary drug delivery.

  8. Dry Powder Precursors of Cubic Liquid Crystalline Nanoparticles (cubosomes)

    NASA Astrophysics Data System (ADS)

    Spicer, Patrick T.; Small, William B.; Small, William B.; Lynch, Matthew L.; Burns, Janet L.

    2002-08-01

    Cubosomes are dispersed nanostructured particles of cubic phase liquid crystal that have stimulated significant research interest because of their potential for application in controlled-release and drug delivery. Despite the interest, cubosomes can be difficult to fabricate and stabilize with current methods. Most of the current work is limited to liquid phase processes involving high shear dispersion of bulk cubic liquid crystalline material into sub-micron particles, limiting application flexibility. In this work, two types of dry powder cubosome precursors are produced by spray-drying: (1) starch-encapsulated monoolein is produced by spray-drying a dispersion of cubic liquid crystalline particles in an aqueous starch solution and (2) dextran-encapsulated monoolein is produced by spray-drying an emulsion formed by the ethanol-dextran-monoolein-water system. The encapsulants are used to decrease powder cohesion during drying and to act as a soluble colloidal stabilizer upon hydration of the powders. Both powders are shown to form (on average) 0.6 μm colloidally-stable cubosomes upon addition to water. However, the starch powders have a broader particle size distribution than the dextran powders because of the relative ease of spraying emulsions versus dispersions. The developed processes enable the production of nanostructured cubosomes by end-users rather than just specialized researchers and allow tailoring of the surface state of the cubosomes for broader application.

  9. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2001-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  10. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K.; Less, Richard M.

    2002-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  11. Investigation of dry powder inhaler (DPI) resistance and aerosol dispersion timing on emitted aerosol aerodynamic particle sizing by multistage cascade impactor when sampled volume is reduced from compendial value of 4 L.

    PubMed

    Mohammed, Hlack; Arp, Jan; Chambers, Frank; Copley, Mark; Glaab, Volker; Hammond, Mark; Solomon, Derek; Bradford, Kerry; Russell, Theresa; Sizer, Yvonne; Nichols, Steven C; Roberts, Daryl L; Shelton, Christopher; Greguletz, Roland; Mitchell, Jolyon P

    2014-10-01

    Compendial methods determining dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distribution (APSD) collect a 4-L air sample containing the aerosol bolus, where the flow, which propagates through the cascade impactor (CI) measurement system from the vacuum source, is used to actuate the inhaler. A previous article described outcomes with two CIs (Andersen eight-stage cascade impactor (ACI) and Next-Generation Pharmaceutical Impactor (NGI)) when the air sample volume was ≤4 L with moderate-resistance DPIs. This article extends that work, examining the hypothesis that DPI flow resistance may be a factor in determining outcomes. APSD measurements were made using the same CI systems with inhalers representing low and high flow resistance extremes (Cyclohaler® and HandiHaler® DPIs, respectively). The ratio of sample volume to internal dead space (normalized volume (V*)) was varied from 0.25 to 1.98 (NGI) and from 0.43 to 3.46 (ACI). Inhaler resistance was a contributing factor to the rate of bolus transfer; the higher resistance DPI completing bolus relocation to the NGI pre-separator via the inlet when V* was as small as 0.25, whereas only ca. 50% of the bolus mass was collected at this condition with the Cyclohaler® DPI. Size fractionation of the bolus from either DPI was completed within the ACI at smaller values of V* than within the NGI. Bolus transfer from the Cyclohaler® capsule and from the HandiHaler® to the ACI system were unaffected by the different flow rise time observed in the two different flow controller systems, and the effects the ACI-based on APSD measurements were marginal.

  12. Roller compaction: Effect of relative humidity of lactose powder.

    PubMed

    Omar, Chalak S; Dhenge, Ranjit M; Palzer, Stefan; Hounslow, Michael J; Salman, Agba D

    2016-09-01

    The effect of storage at different relative humidity conditions, for various types of lactose, on roller compaction behaviour was investigated. Three types of lactose were used in this study: anhydrous lactose (SuperTab21AN), spray dried lactose (SuperTab11SD) and α-lactose monohydrate 200M. These powders differ in their amorphous contents, due to different manufacturing processes. The powders were stored in a climatic chamber at different relative humidity values ranging from 10% to 80% RH. It was found that the roller compaction behaviour and ribbon properties were different for powders conditioned to different relative humidities. The amount of fines produced, which is undesirable in roller compaction, was found to be different at different relative humidity. The minimum amount of fines produced was found to be for powders conditioned at 20-40% RH. The maximum amount of fines was produced for powders conditioned at 80% RH. This was attributed to the decrease in powder flowability, as indicated by the flow function coefficient ffc and the angle of repose. Particle Image Velocimetry (PIV) was also applied to determine the velocity of primary particles during ribbon production, and it was found that the velocity of the powder during the roller compaction decreased with powders stored at high RH. This resulted in less powder being present in the compaction zone at the edges of the rollers, which resulted in ribbons with a smaller overall width. The relative humidity for the storage of powders has shown to have minimal effect on the ribbon tensile strength at low RH conditions (10-20%). The lowest tensile strength of ribbons produced from lactose 200M and SD was for powders conditioned at 80% RH, whereas, ribbons produced from lactose 21AN at the same condition of 80% RH showed the highest tensile strength. The storage RH range 20-40% was found to be an optimum condition for roll compacting three lactose powders, as it resulted in a minimum amount of fines in the

  13. The rheology and hydrodynamics of dry powder lubrication

    NASA Technical Reports Server (NTRS)

    Heshmat, Hooshang

    1991-01-01

    This paper conceptualizes a powder lubrication mechanisms which closely resembles that of a hydrodynamic fluid film. Based on the observations of past investigations and on the author's experiments, it is postulated that a layered shearing of the compacted powder generates velocity, density, and temperature profiles akin to fluid film bearings. Thus, a lubricant consisting of a fine powder unserted either deliberately or one generated by the water of the mating surfaces, constitutes a viable lubricant that generates the required flows and pressures to prevent contact between the surfaces.

  14. Plasma preparation and low-temperature sintering of spherical TiC-Fe composite powder

    NASA Astrophysics Data System (ADS)

    Wang, Jian-jun; Hao, Jun-jie; Guo, Zhi-meng; Wang, Song

    2015-12-01

    A spherical Fe matrix composite powder containing a high volume fraction (82vol%) of fine TiC reinforcement was produced using a novel process combining in situ synthesis and plasma techniques. The composite powder exhibited good sphericity and a dense structure, and the fine sub-micron TiC particles were homogeneously distributed in the α-Fe matrix. A TiC-Fe cermet was prepared from the as-prepared spherical composite powder using powder metallurgy at a low sintering temperature; the product exhibited a hardness of HRA 88.5 and a flexural strength of 1360 MPa. The grain size of the fine-grained TiC and special surface structure of the spherical powder played the key roles in the fabrication process.

  15. Physical Characterization of Tobramycin Inhalation Powder: I. Rational Design of a Stable Engineered-Particle Formulation for Delivery to the Lungs.

    PubMed

    Miller, Danforth P; Tan, Trixie; Tarara, Thomas E; Nakamura, John; Malcolmson, Richard J; Weers, Jeffry G

    2015-08-03

    A spray-dried engineered particle formulation, Tobramycin Inhalation Powder (TIP), was designed through rational selection of formulation composition and process parameters. This PulmoSphere powder comprises small, porous particles with a high drug load. As a drug/device combination, TOBI Podhaler enables delivery of high doses of drug per inhalation, a feature critical for dry powder delivery of anti-infectives for treatment of cystic fibrosis. The objective of this work was to characterize TIP on both the particle and molecular levels using multiple orthogonal physical characterization techniques. Differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD), electron spectroscopy for chemical analysis (ESCA), and Raman measurements show that a TIP particle consists of two phases: amorphous, glassy tobramycin sulfate with a glass transition temperature of about 100 °C and a gel-phase phospholipid (DSPC) with a gel-to-liquid-crystal transition temperature of about 80 °C. This was by design and constituted a rational formulation approach to provide Tg and Tm values that are well above the temperatures used for long-term storage of TIP. Raman and ESCA data provide support for a core/shell particle architecture of TIP. Particle surfaces are enriched with a porous, hydrophobic coating that reduces cohesive forces, improving powder fluidization and dispersibility. The excellent aerosol dispersibility of TIP enables highly efficient delivery of fine particles to the respiratory tract. Collectively, particle engineering has enabled development of TOBI Podhaler, an approved inhaled drug product that meaningfully reduces the treatment burden to cystic fibrosis patients worldwide.

  16. Improved dispersion method of multi-wall carbon nanotube for inhalation toxicity studies of experimental animals.

    PubMed

    Taquahashi, Yuhji; Ogawa, Yukio; Takagi, Atsuya; Tsuji, Masaki; Morita, Koichi; Kanno, Jun

    2013-01-01

    A multi-wall carbon nanotube (MWCNT) product Mitsui MWNT-7 is a mixture of dispersed single fibers and their agglomerates/aggregates. In rodents, installation of such mixture induces inflammatory lesions triggered predominantly by the aggregates/agglomerates at the level of terminal bronchiole of the lungs. In human, however, pulmonary toxicity induced by dispersed single fibers that reached the lung alveoli is most important to assess. Therefore, a method to generate aerosol predominantly consisting of dispersed single fibers without changing their length and width is needed for inhalation studies. Here, we report a method (designated as Taquann method) to effectively remove the aggregate/agglomerates and enrich the well-dispersed singler fibers in dry state without dispersant and without changing the length and width distribution of the single fibers. This method is base on two major concept; liquid-phase fine filtration and critical point drying to avoid re-aggregation by surface tension. MWNT-7 was suspended in Tert-butyl alcohol, freeze-and-thawed, filtered by a vibrating 25 µm mesh Metallic Sieve, snap-frozen by liquid nitrogen, and vacuum-sublimated (an alternative method to carbon dioxide critical point drying). A newly designed direct injection system generated well-dispersed aerosol in an inhalation chamber. The lung of mice exposed to the aerosol contained single fibers with a length distribution similar to the original and the Taquann-treated sample. Taquann method utilizes inexpensive materials and equipments mostly found in common biological laboratories, and prepares dry powder ready to make well-dispersed aerosol. This method and the chamber with direct injection system would facilitate the inhalation toxicity studies more relevant to human exposure.

  17. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  18. Relationship between powder surface characteristics and viscoelastic properties of powder-filled semisolids.

    PubMed

    Radebaugh, G W; Simonelli, A P

    1985-01-01

    The viscoelastic properties of dispersions of powdered zinc oxide in anhydrous lanolin and colloidal sulfur in anhydrous lanolin were characterized by dynamic mechanical testing. The elastic shear modulus, G', viscous shear modulus, G", and loss tangent (damping), tan delta, were determined as a function of shear frequency, v, temperature, T, and volume fraction of powder, phi 2. A priori, it might be expected that zinc oxide and colloidal sulfur would elicit different viscoelastic properties due to their contrasting surface characteristics; zinc oxide has a hydrophilic surface and colloidal sulfur has a hydrophobic surface. Even though constitutive mathematical models, derived to predict the mechanical behavior of solid-filled polymeric materials, were not designed to account for differences in surface characteristics of the filler, the findings of these experiments show that these models are useful in explaining the differences in viscoelastic behavior of powder-filled semisolids due to surface characteristics of the filler. One model of particular value was the Kerner equation. With it, mechanisms were postulated for zinc oxide-zinc oxide interactions, sulfur-sulfur interactions, zinc oxide-anhydrous lanolin interactions, and sulfur-anhydrous lanolin interactions, within dispersions as a function of nu, T, and phi 2. In addition, damping was used to further identify the influence of temperature. Data obtained from three temperatures, where anhydrous lanolin exists in three different structural states, shows that the influence of the powder on damping is not only determined by the surface characteristics of the powder but also the structural state of anhydrous lanolin.

  19. Preparation of fine silicon particles from amorphous silicon monoxide by the disproportionation reaction

    NASA Astrophysics Data System (ADS)

    Mamiya, Mikito; Takei, Humihiko; Kikuchi, Masae; Uyeda, Chiaki

    2001-07-01

    Fine Si particles have been prepared by the disproportionation reaction of silicon monoxide (SiO), that is: 2SiO→Si+SiO 2. Amorphous powders of SiO are heated between 900°C and 1400°C in a flow of Ar and the obtained specimens are analyzed by X-ray powder diffraction and high-resolution transmission electron microscopy. The treatments between 1000°C and 1300°C for more than 0.5 h result in origination of Si particles dispersed in amorphous oxide media. The particle size varies from 1-3 to 20-40 nm, depending on the heating temperature. Kinetic analyses of the reaction reveal that the activation energy is 1.1 eV (82.1 kJ mol -1). The specimens annealed above 1350°C changes into a mixture of Si and cristobalite, suggesting a solid state transformation in the surrounding oxides from the amorphous to crystalline states.

  20. Aerosil for the improvement of the flow behavior of powdered substances

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The tendency of powdered substances to agglomerate and stick together is studied. The highly dispersed silicic acid Aerosil (tradename) is studied as an agent to improve the free flowing characteristics of powdered materials. It was concluded that the use of Aerosil 200, Aerosil R 972, aluminum oxide C and sylicic acid D 17 as flow agents caused broad improvements in the flow properties of powders. Additionally, the sifting, dispersion, and spray behavior, as well as the grinding and air separation characteristics of powders were improved.

  1. Evaluation of milk powder quality by protein oxidative modifications.

    PubMed

    Scheidegger, Dana; Radici, Paola M; Vergara-Roig, Víctor A; Bosio, Noelia S; Pesce, Silvia F; Pecora, Rolando P; Romano, José C P; Kivatinitz, Silvia C

    2013-06-01

    The objective of the present research was to evaluate commercially available milk powders according to their protein oxidative modifications and antioxidant capacity, and to evaluate if these characteristics are related to physical quality parameters such as dispersibility or stability during storage. Fifteen commercially processed spray-dried milk powders were evaluated: 6 whole milk powders (WMP), 4 skim milk powders (SMP), and 5 infant formula powders (IFP). Protein oxidative status was measured as protein carbonyl (PC) content, dityrosine content, and extent of protein polymerization. The level of PC was slightly lower in SMP than in WMP, whereas IFP had more than twice as much PC as WMP (2.8 ± 0.4, 2.1 ± 0.2, and 6.5 ± 1.3 nmol/mg of protein for WMP, SMP, and IFP, respectively). No differences were detected in dityrosine accumulation. Although all the possible pairs of parameters were tested for correlations, we found that 4 parameters were linked: PC, whey content, protein aggregate level, and dispersibility. After 9 mo of storage at -20°C or room temperature, all milk samples were analyzed to evaluate changes in protein oxidative status (PC, dityrosine, and protein integrity) and related parameters. Compared with the initial condition, PC increased in all tested samples after 9 mo of storage at -20°C or at room temperature. Stored milk powders had increased PC and decreased dispersibility compared with prestorage levels. Our results highlight the importance of protein oxidative status in milk powder and its relationship to other related quality parameters, such as protein integrity and dispersibility. Our findings suggest that the understanding of such relationships could help in developing quality differentiation for different types of milk powders in the product market.

  2. New coal dewatering technology turns sludge to powder

    SciTech Connect

    2009-03-15

    Virginian Tech's College of Engineering's Roe-Hoan Yoon and his group have developed a hyperbaric centrifuge that can dewater coal as fine as talcum powder. Such coal fines presently must be discarded by even the most advanced coal cleaning plants because of their high moisture content. The new technology can be used with the Microcel technology to remove ash, to re-mine the fine coal discarded to impoundments and to help minimize waste generation. Virginia Tech has received $1 million in funding from the US Department of State to also help the Indian coal industry produce a cleaner product. 1 photo.

  3. Development of controlled-release cisplatin dry powders for inhalation against lung cancers.

    PubMed

    Levet, Vincent; Rosière, Rémi; Merlos, Romain; Fusaro, Luca; Berger, Gilles; Amighi, Karim; Wauthoz, Nathalie

    2016-12-30

    The present study focuses on the development of dry powders for inhalation as adjuvant chemotherapy in lung cancer treatment. Cisplatin was chosen as a potential candidate for a local treatment as it remains the main platinum component used in conventional chemotherapies, despite its high and cumulative systemic toxicities. Bulk cisplatin was reduced to submicron sizes using high-pressure homogenization, mixed with a solubilized lipid and/or PEGylated component and then spray-dried to produce controlled-release dry powder formulations. The obtained formulations were characterized for their physicochemical properties (particle size and morphology), aerodynamic performance and release profiles. Cisplatin content and integrity were assessed by electrothermal atomic absorption spectrometry and (195)Pt nuclear magnetic resonance spectroscopy. DPI formulations with cisplatin contents ranging from 48.5 to 101.0% w/w exhibited high fine particle fractions ranging from 37.3% to 51.5% of the nominal dose. Formulations containing cisplatin microcrystals dispersed in solid lipid microparticles based on acceptable triglycerides for inhalation and PEGylated excipients showed a controlled-release for more than 24h and a limited burst effect. These new formulations could provide an interesting approach to increasing and prolonging drug exposure in the lung while minimizing systemic toxicities.

  4. Particle-Stabilized Powdered Water-in-Oil Emulsions.

    PubMed

    Binks, Bernard P; Tyowua, Andrew T

    2016-04-05

    The preparation of powdered water-in-oil (w/o) emulsions by gentle aeration of w/o emulsions stabilized by hydrophobic fumed silica particles in the presence of oleophobic fluorinated clay particles is reported for an alkane and a triglyceride oil. The resultant powders consist of water drops dispersed in oil globules themselves dispersed in air (w/o/a). They contain ∼80 wt % of the precursor w/o emulsion and were stable to phase separation for over 1 year but release oil and water when sheared on a substrate. Above a certain ratio of w/o emulsion:fluorinated clay particles, the powdered emulsions partially invert to an emulsion paste, composed of air bubbles and water droplets dispersed in oil. The tap density and angle of repose of the powdered emulsions were measured and compared with those of the corresponding powdered oils making up the continuous phase of the precursor emulsions. The contact angles of water droplets under oil on glass slides spin coated with silica particles and oil drops and w/o emulsion droplets in air on compressed disks of fluorinated clay particles are consistent with the stabilization of w/o emulsions and powdered emulsions, respectively.

  5. Sinterable Ceramic Powders from Laser-Heated Gases.

    DTIC Science & Technology

    1988-02-01

    toughness ( Nitriding kinetics RBSN oxidation kinetics I SiC sintering kinetics , Particle surface chemistr Oxide melt density Anhydrous dispers Oxide melt...materials. Pure anhydrous solvent and solvent-dispersant systems were identified that could be used to fully disperse Si and SIC powders. Stabilization...powders (1), SiH4 mixed with methane (CH 4 ) or ethylene (C2H4) is used to make SiC (3), and SiH4 nixed with amonia is used to make Si 3 N4 (1,4). Under

  6. Minimum ignition energy of nano and micro Ti powder in the presence of inert nano TiO₂ powder.

    PubMed

    Chunmiao, Yuan; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-15

    The inerting effect of nano-sized TiO2 powder on ignition sensitivity of nano and micro Ti powders was investigated with a Mike 3 apparatus. "A little is not good enough" is also suitable for micro Ti powders mixed with nano-sized solid inertants. MIE of the mixtures did not significantly increase until the TiO2 percentage exceeded 50%. Nano-sized TiO2 powders were ineffective as an inertant when mixed with nano Ti powders, especially at higher dust loadings. Even with 90% nano TiO2 powder, mixtures still showed high ignition sensitivity because the statistic energy was as low as 2.1 mJ. Layer fires induced by ignited but unburned metal particles may occur for micro Ti powders mixed with nano TiO2 powders following a low level dust explosion. Such layer fires could lead to a violent dust explosion after a second dispersion. Thus, additional attention is needed to prevent metallic layer fires even where electric spark potential is low. In the case of nano Ti powder, no layer fires were observed because of less flammable material involved in the mixtures investigated, and faster flame propagation in nanoparticle clouds.

  7. Effect of Powder Size and Shape on the SLS Processability and Mechanical Properties of a TPU Elastomer

    NASA Astrophysics Data System (ADS)

    Dadbakhsh, Sasan; Verbelen, Leander; Vandeputte, Tom; Strobbe, Dieter; Van Puyvelde, Peter; Kruth, Jean-Pierre

    This work investigates the influence of powder size/shape on selective laser sintering (SLS) of a thermoplastic polyurethane (TPU) elastomer. It examines a TPU powder which had been cryogenically milled in two different sizes; coarse powder (D50∼200μm) with rough surfaces in comparison with a fine powder (D50∼63μm) with extremely fine flow additives. It is found that the coarse powder coalesces at lower temperatures and excessively smokes during the SLS processing. In comparison, the fine powder with flow additives is better processable at significantly higher powder bed temperatures, allowing a lower optimum laser energy input which minimizes smoking and degradation of the polymer. In terms of mechanical properties, good coalescence of both powders lead to parts with acceptable shear-punch strengths compared to injection molded parts. However, porosity and degradation from the optimum SLS parameters of the coarse powder drastically reduce the tensile properties to about one-third of the parts made from the fine powders as well as those made by injection molding (IM).

  8. Microstructural development of rapid solidification in Al-Si powder

    SciTech Connect

    Jin, Feng

    1995-09-26

    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 μm to 150 μm diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  9. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  10. Preparation and characterization of nano bismuth titanate powders with high reflectivity in near-infrared waveband

    NASA Astrophysics Data System (ADS)

    Jia, Y. H.; Wu, Y. B.; Huang, Y.; Zhou, Z. H.; Shen, S.

    2017-03-01

    Nano powders with high reflectivity in near-infrared waveband have broad applications as thermal insulation materials. In this study, nano bismuth titanate powders with the reflectance to near-infrared of as high as 89.5% in average were prepared via a sol-gel method by using tetrabutyl titanate, bismuth nitrate as raw materials and citric acid, acetic acid as reaction adjuvant reagents. Furthermore, to control the reflectivity in the visible light waveband, the as-prepared nano bismuth titanate powders were further coated with nano-Ag by using NaBH4 as a reduction agent. The influence of different dispersants on reflectivity and on powder dispersibility has also been studied. SEM characterization demonstrates that PEG1000, worked as a dispersant, significantly enhances the dispersion of bismuth titanate powders comparing with non-dispersant system. UV-Vis-NIR spectra reveal that with addition amount of AgNO3 of 1.5 ml and PEG1000 as the dispersant, the Ag-coated bismuth titanate nano powders can reach about 60% of reflectance to near-infrared, while the reflectance of visible light can be controlled as low as around 14%. It is very promising for such nano powders to be used in thermal insulation glass materials.

  11. Effect of the preparation conditions of Al-3%Y powder on its structural and adsorption properties

    NASA Astrophysics Data System (ADS)

    Ryabina, A. V.; Shevchenko, V. G.

    2016-01-01

    In view of the great practical utility of aluminum-rare earth metal (REM) powders as adsorbents and catalyst supports, the dispersion composition and morphology of Al-3%Y alloy powder particles obtained by various methods (gas plasma recondensation, nitrogen sputtering) were studied by low-temperature nitrogen adsorption, scanning electron microscopy, XRD, etc. The phase composition of the powders was determined, and the amount of active aluminum was calculated. The nitrogen adsorption on the powder surface was studied experimentally at-196°C at relative pressures of P/Ps = 10-3-0.999. The specific surface areas of the powders were determined.

  12. Pourability Enhancement of PETN Explosive Powders

    SciTech Connect

    Vannet, M.D.; Ball, G.L.

    1987-01-01

    Manufacture of precision detonators requires the pelletizing of very fine, organic, crystalline explosive powders. Production of pellets in automatic machines within critical dimensional and weight tolerances requires that the powders pour uniformly into die cavities. The pellets must be able to be initiated with low energy and have a predictable energy output. Modifications to needle-like crystalline PETN explosive powders to make them pourable were introduced by the application of about 80 A thick polymeric coatings to the individual crystals, followed by a controlled agglomeration into a spherical prill. Microencapsulation techniques provided the key to achieving the result using less than 0.5 wt. % coating (an order of magnitude less coating than in usual PBX systems). These coatings did not appreciably alter the energy required to initiate and significantly increased the strength of the pellets. A key point demonstrated, which may be translated to other applications, was that powders that exhibit performance based on physical characteristics could have their handling and strength properties tailored with little change in their primary function.

  13. Fabrication of Spherical AlSi10Mg Powders by Radio Frequency Plasma Spheroidization

    NASA Astrophysics Data System (ADS)

    Wang, Linzhi; Liu, Ying; Chang, Sen

    2016-05-01

    Spherical AlSi10Mg powders were prepared by radio frequency plasma spheroidization from commercial AlSi10Mg powders. The fabrication process parameters and powder characteristics were investigated. Field emission scanning electron microscope, X-ray diffraction, laser particle size analyzer, powder rheometer, and UV/visible/infrared spectrophotometer were used for analyses and measurements of micrographs, phases, granulometric parameters, flowability, and laser absorption properties of the powders, respectively. The results show that the obtained spherical powders exhibit good sphericity, smooth surfaces, favorable dispersity, and excellent fluidity under appropriate feeding rate and flow rate of carrier gas. Further, acicular microstructures of the spherical AlSi10Mg powders are composed of α-Al, Si, and a small amount of Mg2Si phase. In addition, laser absorption values of the spherical AlSi10Mg powders increase obviously compared with raw material, and different spectra have obvious absorption peaks at a wavelength of about 826 nm.

  14. Nutritional composition of ginger powder prepared using various drying methods.

    PubMed

    Sangwan, A; Kawatra, A; Sehgal, S

    2014-09-01

    A study was undertaken to prepare ginger powder using various drying methods and their nutritional evaluation was carried out. Ginger (Zingiber officinale) was dried using shade, solar, oven and microwave drying methods. All the samples were ground in grinder to make fine powder. Sensory analysis indicated that acceptability of all types of ginger powders were in the range of 'liked very much' to 'liked moderately' by the panelists. The mean score obtained for colour was higher in shade dried ginger powder i.e., 8.20 as compared to oven dried (7.60), solar dried (7.70) and microwave dried ginger powder (7.80). Moisture content ranged from 3.55 % in solar dried ginger powder to 3.78 % in shade dried ginger powder. Slightly higher moisture content was found in shade dried ginger powder. Protein, crude fiber, fat and ash contents ranged from 5.02 to 5.82, 4.97 to 5.61, 0.76 to 0.90 and 3.38 to 3.66 %, respectively. β-carotene and ascorbic acid content was found maximum in shade dried ginger powder i.e., 0.81 mg/100 g and 3.83 mg/100 g, respectively. Polyphenol content was almost similar in all the samples whereas calcium was slightly higher in the shade dried ginger powder i.e., 69.21 mg/100 g. Results have shown that ginger powder prepared from various drying methods had good sensory and nutritional profile.

  15. Magnetically responsive enzyme powders

    NASA Astrophysics Data System (ADS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  16. OIL SOLUTIONS POWDER

    EPA Pesticide Factsheets

    Technical product bulletin: aka OIL SOLUTIONS POWDER, SPILL GREEN LS, this miscellaneous oil spill control agent used in cleanups initially behaves like a synthetic sorbent, then as a solidifier as the molecular microencapsulating process occurs.

  17. POWDER COAT APPLICATIONS

    EPA Science Inventory

    The report discusses an investigation of critical factors that affect the use of powder coatings on the environment, cost, quality, and production. The investigation involved a small business representative working with the National Defense Center for Environmental Excellence (ND...

  18. Talcum powder poisoning

    MedlinePlus

    ... powder As a filler in street drugs, like heroin Other products may also contain talc. ... have developed serious lung damage and cancer. Injecting heroin that contains talc into a vein may lead ...

  19. Aluminum powder applications

    SciTech Connect

    Gurganus, T.B.

    1995-08-01

    Aluminum powders have physical and metallurgical characteristics related to their method of manufacture that make them extremely important in a variety of applications. They can propel rockets, improve personal hygiene, increase computer reliability, refine exotic alloys, and reduce weight in the family sedan or the newest Air Force fighter. Powders formed into parts for structural and non-structural applications hold the key to some of the most exciting new developments in the aluminum future.

  20. Highly reproducible powder aerosolisation for lung delivery using powder-specific electromechanical vibration.

    PubMed

    Crowder, Timothy M

    2005-05-01

    Dry powder inhalers (DPIs) have been in use since the 1970s, but it is only within the past few years that their use has constituted > approximately 10% of the inhaler units sold worldwide. Similarly, active DPIs have been in development for more than a decade, but no active device has yet been approved. Oriel is developing an active DPI technology that uses a very simple physical design coupled with a complex knowledge of powder flow and dispersion characterisation. The DPI uses electromechanical vibration with frequencies determined through the analysis of powder flow properties. Results so far have shown highly reproducible, efficient performance. The technology lends itself to both unit-dose and multidose platforms in a targeted cost-effective DPI.

  1. Dispersion Method Using Focused Ultrasonic Field

    NASA Astrophysics Data System (ADS)

    Jungsoon Kim,; Moojoon Kim,; Kanglyel Ha,; Minchul Chu,

    2010-07-01

    The dispersion of powders into liquids has become one of the most important techniques in high-tech industries and it is a common process in the formulation of various products, such as paint, ink, shampoo, beverages, and polishing media. In this study, an ultrasonic system with a cylindrical transducer is newly introduced for pure nanoparticle dispersion. The acoustics pressure field and the characteristics of the shock pulse caused by cavitation are investigated. The frequency spectrum of the pulse from the collapse of air bubbles in the cavitation is analyzed theoretically. It was confirmed that a TiO2 water suspension can be dispersed effectively using the suggested system.

  2. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    SciTech Connect

    Selva Kumar, M.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  3. Relationship between surface concentration of L-leucine and bulk powder properties in spray dried formulations.

    PubMed

    Mangal, Sharad; Meiser, Felix; Tan, Geoffrey; Gengenbach, Thomas; Denman, John; Rowles, Matthew R; Larson, Ian; Morton, David A V

    2015-08-01

    The amino acid L-leucine has been demonstrated to act as a lubricant and improve the dispersibility of otherwise cohesive fine particles. It was hypothesized that optimum surface L-leucine concentration is necessary to achieve optimal surface and bulk powder properties. Polyvinylpyrrolidone was spray dried with different concentration of L-leucine and the change in surface composition of the formulations was determined using X-ray photoelectron spectroscopy (XPS) and time of flight-secondary ion mass spectrometry (ToF-SIMS). The formulations were also subjected to powder X-ray diffraction analysis in order to understand the relationship between surface concentration and solid-state properties of L-leucine. In addition, the morphology, surface energy and bulk cohesion of spray dried formulations were also assessed to understand the relation between surface L-leucine concentration and surface and bulk properties. The surface concentration of L-leucine increased with higher feed concentrations and plateaued at about 10% L-leucine. Higher surface L-leucine concentration also resulted in the formation of larger L-leucine crystals and not much change in crystal size was noted above 10% L-leucine. A change in surface morphology of particles from spherical to increasingly corrugated was also observed with increasing surface l-leucine concentration. Specific collapsed/folded over particles were only seen in formulations with 10% or higher l-leucine feed concentration suggesting a change in particle surface formation process. In addition, bulk cohesion also reduced and approached a minimum with 10% L-leucine concentration. Thus, the surface concentration of L-leucine governs particle formation and optimum surface L-leucine concentration results in optimum surface and bulk powder properties.

  4. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  5. Modification of electrostatic charge on inhaled carrier lactose particles by addition of fine particles.

    PubMed

    Bennett, F S; Carter, P A; Rowley, G; Dandiker, Y

    1999-01-01

    Triboelectrification affects particle adhesion and agglomeration and hence the formulation, manufacture, and use of dry powder inhaler (DPI) devices. Electrostatic charge measurement of two component mixes of spray-dried or crystalline lactose fine particles (< 10 microns) 0, 5, 10, 15, 20, and 30% w/w with spray-dried or crystalline lactose 63-90 microns, respectively, has been undertaken using a system incorporating pneumatic transport of the mixed powders to a stainless steel cyclone charging device. The magnitude of charge on the mixes was shown to decrease with increased fine particle content, and there was no significant difference in charge for each concentration between spray-dried and crystalline lactose. Both the variation of charge and powder adhesion to the cyclone surface increased with increase in fine particle content. The proportion of fine particles in carrier systems in DPIs may thus have an important role where triboelectrification is involved.

  6. Analyses of fine paste ceramics

    SciTech Connect

    Sabloff, J A

    1980-01-01

    Four chapters are included: history of Brookhaven fine paste ceramics project, chemical and mathematical procedures employed in Mayan fine paste ceramics project, and compositional and archaeological perspectives on the Mayan fine paste ceramics. (DLC)

  7. Machining technological media used for chamber multispindle machining of parts made of powder materials

    NASA Astrophysics Data System (ADS)

    Skryabin, V. A.; Skhirtladze, A. G.

    2016-12-01

    The machining of parts made of powder materials by densified dispersed abrasive media is experimentally studied. The role of lubricant-cooling agents in polishing and their influence on the efficiency and quality of machining is considered.

  8. Copper Bronze Powder Surface Studied by XPS and HR SEM

    NASA Astrophysics Data System (ADS)

    Shvab, R.; Hryha, E.; Tahir, A. M.; Nyborg, L.

    2016-10-01

    The state of the powder surface represents one of the main interests in the whole cycle of components' production using powder metallurgy (PM) route. Large specific surface area of the powder in combination with often alloying with oxygen sensitive elements results in oxidation of the powder surface in most of the cases. The information about surface chemistry of the powder is of vital importance for further consolidation and sintering steps. Surface sensitive analytical techniques - X-ray photoelectron spectroscopy (XPS) and high-resolution scanning electron microscopy combined with energy dispersive X-ray analysis (HR SEM+EDX) were used for surface chemical analysis of the 60Cu-40Sn bronze powder. Determination of the compositional profiles and estimation of the surface oxide layer thickness was done by altering of ion etching and XPS analysis. The results showed tin oxide enrichment and presence of copper hydroxide on the surface of the powder particles. The impurities of P, Zn and Ca were also detected on the top surface of the powder in trace amounts.

  9. Ceramics containing dispersants for improved fracture toughness

    DOEpatents

    Nevitt, Michael V.; Aldred, Anthony T.; Chan, Sai-Kit

    1987-01-01

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRMO.sub.4, where R is a rare-earth element, B is Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  10. Ceramics containing dispersants for improved fracture toughness

    DOEpatents

    Nevitt, Michael V.; Aldred, Anthony T.; Chan, Sai-Kit

    1987-07-07

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRMO.sub.4, where R is a rare-earth element, B is Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  11. Electric charge limits on settled powders

    NASA Astrophysics Data System (ADS)

    Pérez-Vaquero, J.; Quintanilla, M. A. S.; Castellanos, A.

    2016-06-01

    In flows of dry particulate systems, electric charge is generated on particle surfaces by their collision with walls and with other particles. Charge build-up on single particles can yield local charge values high enough to surpass the limiting electric field for corona discharge into the surrounding gas. Then, local charge is decreased to a lower value that becomes stabilized when flows stop and particles deposit in a container. In this paper, we have used a Faraday pail system to measure the residual particle charge after using two different devices—tribochargers—for particle charging. One of the tribochargers allowed us to directly measure the total charge that was transferred from the walls to the particles, and this was compared to the final values in the bulk powder once it was collected in the Faraday pail. The results show that the electric charge of particles dispersed in gas is limited by corona discharge and depends mainly on the particle size. In addition, we present a simple model of the discharge of the collected powder based on electrostatic considerations. If the powder effective conductivity and the electric charge of the settling particles are known, the model predicts the temporal evolution of the total charge of the collected powder and the spatial distribution of the electric charge and electric field.

  12. Highly Dispersed Metal Catalyst for Fuel Cell Electrodes

    SciTech Connect

    2009-03-01

    This factsheet describes a study that will bring industrial catalyst experience to fuel cell research. Specifically, industrial catalysts, such as those used in platforming, utilize precious metal platinum as an active component in a finely dispersed form.

  13. Evaluation of the behavior of ceramic powders under mechanical vibration and its effect on the mechanics of auto-granulation

    NASA Astrophysics Data System (ADS)

    Ku, Nicholas

    In ceramic powder processing, the correlations between the constituent particles and the product structure-property outcomes are well established. However, the influence of static powder properties on the dynamic bulk powder behavior in such advance powder processes remains elusive. A multi-scale evaluation is necessary to understand the full effects of the particle ensemble on the bulk powder behavior, ranging from the particle micro-scale to the bulk powder macro-scale. Fine powders, with particle size of 10 ?m or less, often exhibit cohesive behavior. Cohesion in powders can cause poor flowability, affect agglomerate formation, as well as induce powder caking, all of which can be detrimental to the processing of the powders and/or final product structure-property outcomes. For this reason, it is critical to correlate the causal properties of the powders to this detrimental behavior. In this study, the bulk behavior of ceramic powders is observed under a simple powder process: harmonic, mechanical vibration. Four powder samples, two titania and two alumina powders, were studied. The main difference between the two powder variants of each material is particle size. The two alumina (Al2O3) powder samples had a primary particle size at 50% less than, or d50 of, 0.5 and 2.3 microm and the titania (TiO2) powder samples had a d 50 particle size of 0.1 and 1 microm. Due to mechanical vibration, the titania powder variant with a primary particle size of 0.1 microm exhibited a clustering behavior known as auto-granulation. Auto-granulation is the growth of particle clusters within a dry, fine powder bed without the addition of any binder or liquid to the system. The amplitude and frequency of the mechanical vibration was varied to view the effect on the equilibrium granule size and density. Furthermore, imaging of cross-sections of the granules was conducted to provide insight into to the internal microstructure and measure the packing fraction of the constituent

  14. A Novel Method for Direct Synthesis of WC-Co Nanocomposite Powder

    NASA Astrophysics Data System (ADS)

    Zhu, M.; Bao, X. Y.; Yang, X. P.; Gu, N. S.; Wang, H.; Zeng, M. Q.; Dai, L. Y.

    2011-09-01

    In this study, a novel method, termed dielectric-barrier-discharge-plasma (DBDP) assisted ball milling and low-temperature carburization, was used to synthesize WC-Co nanocomposite powder. X-ray diffraction, scanning/transmission electron microscopy, and differential scanning calorimetry were used to characterize the microstructure of powders. Starting from W, Co, and graphite powder mixtures, the DBDP-milled W-C-10Co powder exhibited a flakelike morphology with very fine lamellar structure. The WC-Co composite powder was synthesized at 1273 K (1000 °C), which is much lower than the requisite temperature for the conventional carburizing method. The obtained WC-Co composite powder had a nanocomposite microstructure in which fine WC particles were bounded by homogenously distributed Co phase, and the WC crystals had a slablike morphology with a planar size of about 200 nm and <100-nm thickness. The combinational effect of the milling and the plasma in the DBDP milling caused a unique fine flakelike morphology and high-density interfaces in the W-C-10Co powder mixture, which is responsible for the reduced carburization temperature and the nanocomposite structure of WC-Co powder.

  15. Enhanced centrifuge-based approach to powder characterization

    NASA Astrophysics Data System (ADS)

    Thomas, Myles Calvin

    powder through one adjustable parameter that was linked to the size distribution. It is important to note that when the engineered substrates (hemispherical indentations) were applied, it was possible to extract both powder size distribution and effective Hamaker constant information from the simulated centrifuge adhesion experiments. Experimental validation of the simulated technique was performed with a silica powder dispersed onto a stainless steel substrate with no engineered surface features. Though the proof-of-concept work was accomplished for indented substrates, non-ideal, relatively flat (non-indented) substrates were used experimentally to demonstrate that the technique can be extended to this case. The experimental data was then used within the newly developed simulation procedure to show its application to real systems. In the absence of engineered features on the substrates, it was necessary to specify the size distribution of the powder as an input to the simulator. With this information, it was possible to extract an effective Hamaker constant distribution and when the effective Hamaker constant distribution was applied in conjunction with the size distribution, the observed adhesion force distribution was described precisely. An equation was developed that related the normalized effective Hamaker constants (normalized by the particle diameter) to the particle diameter was formulated from the effective Hamaker constant distribution. It was shown, by application of the equation, that the adhesion behavior of an ideal (smooth, spherical) powder with an experimentally-validated, effective Hamaker constant distribution could be used to effectively represent that of a realistic powder. Thus, the roughness effects and size variations of a real powder are captured in this one distributed parameter (effective Hamaker constant distribution) which provides a substantial improvement to the existing technique. This can lead to better optimization of powder processing

  16. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  17. Properties and applications of powder-filled evacuated-panel superinsulations

    SciTech Connect

    Yarbrough, D.W.; Kollie, T.G.

    1994-04-01

    Powder-filled evacuated panel (PEP) superinsulations are made from fine powders enclosed in low permeability envelopes. These insulating panels have thermal resistances at 24{degree}C and 25.4 mm of thickness that exceed 3.5 K{center_dot}m{sup 2}/W. PEP superinsulation has prospective applications in appliances, refrigerated transport, and manufactured homes. This paper contains a brief review of heat flow through powders, a presentation of thermal performance data obtained for evacuated powders, and a discussion of long-term performance. An economic evaluation of the use of PEPs as insulation for refrigerators is presented.

  18. Investigation of jewelry powders radiating far-infrared rays and the biological effects on human skin.

    PubMed

    Yoo, B H; Park, C M; Oh, T J; Han, S H; Kang, H H; Chang, I S

    2002-01-01

    Far-infrared rays have certain kinds of effects on the human body, especially on skin, blood circulation, and skin cell vitalizing. Some jewelry powders radiate far-infrared rays. Jade has powerful far-infrared ray radiation, and tourmaline has pyroelectric and piezoelectric properties and radiated far-infrared rays. The jewelry powders (fine powdered jade and tourmaline powders) were screened by far-infrared rays for radiation properties and tested for the effects of far-infrared rays on the human skin by temperature observation using an infrared thermal analyzer.

  19. Characterization of Cu{sub 6}Sn{sub 5} intermetallic powders produced by water atomization and powder heat treatment

    SciTech Connect

    Tongsri, Ruangdaj; Yotkaew, Thanyaporn; Krataitong, Rungtip; Wila, Pongsak; Sir-on, Autcharaporn; Muthitamongkol, Pennapa; Tosangthum, Nattaya

    2013-12-15

    Since the Cu{sub 6}Sn{sub 5} intermetallic shows its importance in industrial applications, the Cu{sub 6}Sn{sub 5} intermetallic-containing powders, produced by a powder processing route with a high production rate, were characterized. The route consisted of water atomization of an alloy melt (Cu–61 wt.% Sn) and subsequent heat treatment of the water-atomized powders. Characterization of the water-atomized powders and their heated forms was conducted by using X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Fine water-atomized powder microstructures consisted of primary hexagonal η-Cu{sub 6.25}Sn{sub 5} dendrites coexisting with interdendritic η-Cu{sub 6.25}Sn{sub 5} + β-Sn eutectic. Solidification of fine melt droplets was governed by surface nucleation and growth of the primary hexagonal η-Cu{sub 6.25}Sn{sub 5} dendrites followed by η-Cu{sub 6.25}Sn{sub 5} + β-Sn eutectic solidification of the remnant liquid. In coarse melt droplets, nucleation and growth of primary ε-Cu{sub 3}Sn dendrites were followed by peritectic reaction (ε-Cu{sub 3}Sn + liquid → η-Cu{sub 6.25}Sn{sub 5}) or direct crystallization of η-Cu{sub 6.25}Sn{sub 5} phase from the undercooled melt. Finally, the η-Cu{sub 6.25}Sn{sub 5} + β-Sn eutectic solidification of the remnant liquid occurred. Heating of the water-atomized powders at different temperatures resulted in microstructural homogenization. The water-atomized powders with mixed phases were transformed to powders with single monoclinic ή-Cu{sub 6}Sn{sub 5} phase. - Highlights: • The Cu{sub 6}Sn{sub 5} intermetallic powder production route was proposed. • Single phase Cu{sub 6}Sn{sub 5} powders could be by water atomization and heating. • Water-atomized Cu–Sn powders contained mixed Cu–Sn phases. • Solidification and heat treatment of water-atomized Cu–Sn powders are explained.

  20. Powder towpreg process development

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1991-01-01

    The process for dry powder impregnation of carbon fiber tows being developed at LaRC overcomes many of the difficulties associated with melt, solution, and slurry prepregging. In the process, fluidized powder is deposited on spread tow bundles and fused to the fibers by radiant heating. Impregnated tows have been produced for preform, weaving, and composite materials applications. Design and operating data correlations were developed for scale up of the process to commercial operation. Bench scale single tow experiments at tow speeds up to 50 cm/sec have demonstrated that the process can be controlled to produce weavable towpreg. Samples were woven and molded into preform material of good quality.

  1. Low Temperature Powder Coating

    DTIC Science & Technology

    2011-02-09

    Patterson AFB, OH David Piatkowski, Chris Mahendra NAVAIR James Davila, Chris Geib SAIC Beavercreek, OH O G D E N A I R L O G I S T I C S C E N T...PUBLICATIONS Geib , C.W., Davila J.A., Patterson W., et al. “Low Temperature Cure Powder Coating, ESTCP Project WP-0614.” Joint Services Environmental...Management Conference, Columbus, Ohio. 21 – 24 May 2007. Geib , C.W., Davila J.A., Patterson W., et al. “Advances and Testing of Powder Coatings for Aerospace

  2. A visualization and characterization of microstructures of cohesive powders

    NASA Astrophysics Data System (ADS)

    Patil, Vineeth R.

    In this work, a framework for the determination of the particle positions in a fluorescent powder structure was created. The feasibility of imaging and quantifying sedimented particulate samples in air was demonstrated by using micron-sized poly-dispersed electrophotographic printing particles. Particle positions were determined by a Confocal Laser Scanning Microscope (CLSM) to capture a stack of cross-sectional images of fluorescent particle clusters. The resulting images were analyzed using Matlab image processing tools. The XYZ coordinates and radii for these particles (assumed spherical) were calculated in several selected sampling volumes, and the packing fractions were calculated. A three-dimensional visualization of the particle structure was then created. The CLSM particle results obtained from this study were compared with Scanning Electron Microscopy (SEM) particle imaging results. A difference in the average particle radii of the CLSM results from the SEM results was observed. The three-dimensional reconstruction of these particles showed a highly porous structure. The average packing fraction of 14.07% +/- 0.84% was comparable to the literature packing fraction values for cohesive particles [1]. The cohesive nature of toner was noted from this comparison. Based on this finding, the self-similar nature of the particle clusters was investigated in the samples. This methodology of three-dimensional particle mapping and visualization has the potential to lead to much needed materials and structural analyses for fine particles. The frame-by-frame particle-tracking method developed in this study can be adapted into other digital imaging methods like X-ray micro-computed tomography (muCT) where the scanned object is also digitized through layer-by-layer scanning.

  3. Minimum ignition temperature of nano and micro Ti powder clouds in the presence of inert nano TiO2 powder.

    PubMed

    Yuan, Chunmiao; Amyotte, Paul R; Hossain, Md Nur; Li, Chang

    2014-06-30

    Minimum ignition temperature (MIT) of micro Ti powder increased gradually with increases in nano-sized TiO2 employed as an inertant. Solid TiO2 inertant significantly reduced ignition hazard of micro Ti powder in contact with hot surfaces. The MIT of nano Ti powder remained low (583 K), however, even with 90% TiO2. The MIT of micro Ti powder, when mixed with nano Ti powder at concentrations as low as 10%, decreased so dramatically that its application as a solid fuel may be possible. A simple MIT model was proposed for aggregate particle size estimation and better understanding of the inerting effect of nano TiO2 on MIT. Estimated particle size was 1.46-1.51 μm larger than that in the 20-L sphere due to poor dispersion in the BAM oven. Calculated MITs were lower than corresponding empirically determined values for micro Ti powder because nano-sized TiO2 coated the micro Ti powder, thereby decreasing its reaction kinetics. In the case of nano Ti powder, nano-sized TiO2 facilitated dispersion of nano Ti powder which resulted in a calculated MIT that was greater than the experimentally determined value.

  4. Physical and chemical characterization techniques for metallic powders

    SciTech Connect

    Slotwinski, J. A.; Stutzman, P. E.; Ferraris, C. F.; Watson, S. S.; Peltz, M. A.; Garboczi, E. J.

    2014-02-18

    Systematic studies have been carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. An extensive array of characterization techniques were applied to these two powders. The physical techniques included laser-diffraction particle-size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to chemistry included X-ray diffraction and energy-dispersive analytical X-ray analysis. The background of these techniques will be summarized and some typical findings comparing different samples of virgin additive manufacturing powders, taken from the same lot, will be given. The techniques were used to confirm that different samples of powder from the same lot were essentially identical, within the uncertainty of the measurements.

  5. Effect of composition on physical properties of food powders

    NASA Astrophysics Data System (ADS)

    Szulc, Karolina; Lenart, Andrzej

    2016-04-01

    The paper presents an influence of raw material composition and technological process applied on selected physical properties of food powders. Powdered multi-component nutrients were subjected to the process of mixing, agglomeration, coating, and drying. Wetting liquids ie water and a 15% water lactose solution, were used in agglomeration and coating. The analyzed food powders were characterized by differentiated physical properties, including especially: particle size, bulk density, wettability, and dispersibility. The raw material composition of the studied nutrients exerted a statistically significant influence on their physical properties. Agglomeration as well as coating of food powders caused a significant increase in particle size, decreased bulk density, increased apparent density and porosity, and deterioration in flowability in comparison with non-agglomerated nutrients.

  6. Characteristics of Bi-Pb-Sr-Ca-Cu-O powders produced by aerosol decomposition and their rapid conversion to the high-T c phase

    NASA Astrophysics Data System (ADS)

    Ward, Timothy L.; Lyons, Shirley W.; Kodas, Toivo T.; Brynestad, Jorulf; Kroeger, Donald M.; Hsu, Huey

    1992-09-01

    Bi-Pb-Sr-Ca-Cu-O powders were produced by aerosol decomposition of nitrate solutions. The effects of reactor temperature and residence time on particle morphology and evaporative Pb loss from particles were demonstrated, and conditions necessary to control Pb loss established. Pb loss was roughly proportional to residence time, and minimal loss occurred with short residence times (3s) and T≤800°C. Particles produced at 700°C typically contained significant porosity, while those produced at T≥800°C were solid. Mixtures of the Bi 2Sr 2CuO y (2201) and Bi 2Sr 2CaCu 2O y (2212) phases were produced at 700-900°C in nitrogen and air. However, after hearing in air for 16 h at 850°C, pellets of powder produced at 700°C with nominal composition Pb 0.44Bi 1.8Sr 2Ca 2.2Cu 3O y converted to approximately 79 vol.% of the Bi 2Sr 2Ca 2Cu 3O y (2223) phase and displayed a Tc (onset) of 110 K. Rapid conversion to 2223 was promoted by powder synthesis conditions, leading to controlled Pb loss and a homogeneous fine-grained dispersion of mixed-oxide precursor phases within particles.

  7. Seeing into the infrared: a novel IR fluorescent fingerprint powder.

    PubMed

    King, Roberto S P; Hallett, Peter M; Foster, Doug

    2015-04-01

    A preliminary study demonstrates that latent fingermarks across a range of highly patterned, coloured non-porous and semi-porous substrates may be clearly developed and imaged in the near infrared following a simple dusting method using finely divided spirulina platensis powder, a naturally occurring, non-toxic algae, used widely within the food industry. Troublesome printed/multicoloured backgrounds show less interference with the fluorescence observed using this material, unlike conventional luminescent powders which fluoresce in the visible spectrum alongside the background to which they are applied. The material shows promise for use both in the field and in the laboratory.

  8. Capabilities Of Micro Powder Injection Molding For Microparts Manufacturing

    NASA Astrophysics Data System (ADS)

    Kong, X.; Barriere, T.; Gelin, J. C.

    2011-01-01

    The Micro-PIM processing technology satisfies the increasing demand in terms of smaller parts and miniaturization. Research works in this area have been carried out at FEMTO-ST Institute by performing the injection molding with 316L stainless steel fine powders and polymer binders. Several formulations with different proportion of powders and binders as well various polymers have been tested, and then a well adapted one has been selected. The process to select the well adapted formulation and the rheological characteristics of the feedstock realized according with the selected formulation are also detailed. Several test specimens have been successfully manufactured.

  9. Dispersed metal-toughened ceramics and ceramic brazing

    SciTech Connect

    Moorhead, A.J.; Tiegs, T.N.; Lauf, R.J.

    1983-01-01

    An alumina (Al/sub 2/O/sub 3/) based material that contains approximately 1 vol % finely dispersed platinum or chromium was developed for use in high temperature thermal-shock resistant electrical insulators. The work at ORNL is divided into two areas: (1) development of DMT ceramics; and (2) development of brazing filler metals suitable for making ceramic-to-ceramic and ceramic-to-metal brazements. The DMT ceramics and brazements are intended for service at elevated temperatures and at high stress levels in the dirty environments of advanced heat engines. The development and characterization of DMT ceramics includes processing (powder preparation, densification and heat treatment) and detailed measurement of mechanical and physical properties (strength, fracture toughness, and thermal conductivity). The brazing work includes: (1) the formulation and melting of small quantities of experimental brazing filler metals; (2) evaluation of the wetting and bonding behavior of these filler metals on Al/sub 2/O/sub 3/, partially stabilized zirconia and ..cap alpha..-SiC in a sessile drop apparatus; and (3) determine the short-term strength and fracture toughness of brazements.

  10. Demystifying Mystery Powders.

    ERIC Educational Resources Information Center

    Kotar, Michael

    1989-01-01

    Describes science activities which use simple chemical tests to distinguish between materials and to determine some of their properties. Explains the water, iodine, heat, acid, baking soda, acid/base indicator, glucose, and sugar tests. Includes activities to enhance chemical testing and a list of suggested powders for use. (RT)

  11. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols.

    PubMed

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  12. Preparation and physicochemical characterization of spray-dried and jet-milled microparticles containing bosentan hydrate for dry powder inhalation aerosols

    PubMed Central

    Lee, Hyo-Jung; Kang, Ji-Hyun; Lee, Hong-Goo; Kim, Dong-Wook; Rhee, Yun-Seok; Kim, Ju-Young; Park, Eun-Seok; Park, Chun-Woong

    2016-01-01

    The objectives of this study were to prepare bosentan hydrate (BST) microparticles as dry powder inhalations (DPIs) via spray drying and jet milling under various parameters, to comprehensively characterize the physicochemical properties of the BST hydrate microparticles, and to evaluate the aerosol dispersion performance and dissolution behavior as DPIs. The BST microparticles were successfully prepared for DPIs by spray drying from feeding solution concentrations of 1%, 3%, and 5% (w/v) and by jet milling at grinding pressures of 2, 3, and 4 MPa. The physicochemical properties of the spray-dried (SD) and jet-milled (JM) microparticles were determined via scanning electron microscopy, atomic force microscopy, dynamic light scattering particle size analysis, Karl Fischer titration, surface analysis, pycnometry, differential scanning calorimetry, powder X-ray diffraction, and Fourier transform infrared spectroscopy. The in vitro aerosol dispersion performance and drug dissolution behavior were evaluated using an Anderson cascade impactor and a Franz diffusion cell, respectively. The JM microparticles exhibited an irregular corrugated surface and a crystalline solid state, while the SD microparticles were spherical with a smooth surface and an amorphous solid state. Thus, the in vitro aerosol dispersion performance and dissolution behavior as DPIs were considerably different due to the differences in the physicochemical properties of the SD and JM microparticles. In particular, the highest grinding pressures under jet milling exhibited excellent aerosol dispersion performance with statistically higher values of 56.8%±2.0% of respirable fraction and 33.8%±2.3% of fine particle fraction and lower mass median aerodynamic diameter of 5.0±0.3 μm than the others (P<0.05, analysis of variance/Tukey). The drug dissolution mechanism was also affected by the physicochemical properties that determine the dissolution kinetics of the SD and JM microparticles, which were well

  13. LITERATURE REVIEW: HEAT TRANSFER THROUGH TWO-PHASE INSULATION SYSTEMS CONSISTING OF POWDERS IN A CONTINUOUS GAS PHASE

    EPA Science Inventory

    The report, a review of the literature on heat flow through powders, was motivated by the use of fine powder systems to produce high thermal resistivities (thermal resistance per unit thickness). he term "superinsulations" has been used to describe this type of material, which ha...

  14. Method to blend separator powders

    DOEpatents

    Guidotti, Ronald A.; Andazola, Arthur H.; Reinhardt, Frederick W.

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  15. Method for synthesizing powder materials

    DOEpatents

    Buss, R.J.; Ho, P.

    1988-01-21

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  16. Comparison of particle sizing techniques in the case of inhalation dry powders.

    PubMed

    Bosquillon, C; Lombry, C; Preat, V; Vanbever, R

    2001-12-01

    The objectives of this work were (i) to validate electrical zone sensing and laser diffraction for the analysis of primary particle size in the case of inhalation dry powders and (ii) to study the influence of the aggregation state of the powder on the sizing techniques. Free-flowing dry powders were prepared by spray-drying with a combination of albumin, lactose, and dipalmitoylphosphatidylcholine. The replacement of lactose by mannitol, the removal of albumin, and the atomization at high relative humidity all increased powder cohesion. Automated measurements were compared with primary particle sizes collected by light and electron microscopy. The mass mode obtained by electrical zone sensing and the mass median diameter measured by laser diffraction following dispersion with compressed air at a pressure of 3 bar or following suspension in water and ultrasonic dispersion at a power of 60 W for 30 s each provided primary particle sizes close to microscopy measurements. However, these conditions only applied in the case of slightly to moderately aggregated powders. For strongly agglomerated powders, an exact measurement of the size was only collected by laser diffraction in the wet state combined with ultrasonic dispersion. Our study underlies how measurement of primary particle size highly depends on both powder material and proper particle dispersion.

  17. Powder metallurgy approaches to high temperature components for gas turbine engines

    NASA Technical Reports Server (NTRS)

    Probst, H. B.

    1974-01-01

    Research is reported for the tensile strength, ductility, and heat performance characterisitics of powder metallurgy (p/m) superalloys. Oxide dispersion strengthened alloys were also evaluated for their strength during thermal processing. The mechanical attributes evident in both p/m supperalloys and dispersion strengthened alloys are discussed in terms of research into their possible combination.

  18. Hydroxyapatite forming ability of electrostatic spray pyrolysis derived calcium phosphate nano powder.

    PubMed

    Hwang, Kyu-Seog; Jeon, Kyung-Ok; Jeon, Young-Sun; Kim, Byung-Hoon

    2007-04-01

    A novel fabrication technique, i.e., electrostatic spray pyrolysis (ESP), has been used in this study to prepare calcium phosphate nano powders. Final annealing was done at 400 degrees C for 30 min in air. The hydroxyapatite-forming ability of the annealed powder has been investigated in Eagle's minimum essential medium solution. X-ray diffracton, field emission scanning electron microscope, energy dispersive X-ray spectroscope, and Fourier transform infrared spectroscope were employed to characterize the annealed powders after immersion. The powder with an amorphous structure induced hydroxyapatite formation on their surfaces after immersion for 15 days.

  19. Paste mechanics for fine extrusion

    NASA Astrophysics Data System (ADS)

    Hurysz, Kevin Michael

    Lightweight metallic honeycomb structures having low density and high strength are potentially useful materials in a wide variety of applications. These materials can be employed as replacements for bearing and support structures, for impact and sound absorption, for thermal management, and in multifunctional capacities where the benefits of both metallic character and low density are required. Extrusion of these architectures represents a novel and economical alternative to conventional honeycomb fabrication. Extrusion is a material forming process that allows the shaping of cohesive plastic body into a linear form having constant cross section. The plastic body is a paste; well mixed material composed of solids, liquids, and processing aids. Control of paste rheology and optimization of flow and die variables are necessary to the extrusion of articles having complex geometry. By extruding paste compositions of raw material powders, mixed in the appropriate proportion to produce alloy materials upon reduction, lightweight ceramic honeycomb can be formed. The green ceramic honeycomb is then reduced to alloy in a controlled atmosphere heat treatment. In this investigation, high quality, green extruded honeycomb structures were fabricated. The model equations used to describe high viscosity suspension behavior were applied to paste formulations to predict properties. To accomplish the goals of this research, it was necessary to consider: (1) Raw material characterization, ensuring consistency between batches and allowing prediction of paste behavior; (2) Mechanics of the fluid phase and the paste, using capillary rheometry to determine paste properties; (3) Characteristics of the fluid phase and the paste, including methods to estimate and experimentally determine maximum solids content and the hydrodynamic constant; (4) Model development, applying the equations that describe high viscosity suspensions to pastes, allowing prediction of extrusion variables over a wide

  20. Applying a novel electrostatic dry powder coating technology to pellets.

    PubMed

    Yang, Qingliang; Ma, Yingliang; Zhu, Jesse

    2015-11-01

    The present study aimed to apply a novel dry powder technology to coat pellets with different coating materials grounded into fine powders. Piroxicam, a non-steroidal anti-inflammatory drug, was used as the active pharmaceutical ingredient (API). Eudragit® EPO, Eudragit® RS/RL and Acryl EZE were used as the coating materials to achieve immediate release, sustained release and delayed release, respectively. Three steps including preheating, powder adhesion and curing were carried out to form the coating film while liquid plasticizers were used to decrease the glass transition temperature of coating powders and also served to reduce the electrical resistance of pellets. Results of SEM indicated coating film could be better formed by increasing curing temperature or extending curing time. Dissolution tests showed that three different drug release profiles, including immediate release, sustained release and delayed release, were achieved by this coating technology with different coating formulations. And the dry powder coated pellets using this developed technology exhibited an excellent stability with 1 month at 40 °C/75% RH. The coating procedure could be shortened to within 120 min and the use of fluidized hot air was minimized, both cutting down the overall cost dramatically compared to organic solvent coating and aqueous coating. All results demonstrated that the novel electrostatic dry powder coating method is a promising technology in the pharmaceutical coating industry.

  1. Vacuum powder injector and method of impregnating fiber with powder

    NASA Technical Reports Server (NTRS)

    Working, Dennis C. (Inventor)

    1993-01-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  2. Method of making fine-grained triaminotrinitrobenzene

    DOEpatents

    Benziger, Theodore M.

    1984-01-01

    A method of forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  3. Method of making fine-grained triaminotrinitrobenzene

    DOEpatents

    Benziger, T.M.

    1983-07-26

    A method is given for forming a fine-grained species of the insensitive high explosive sym-triaminotrinitrobenzene (TATB) without grinding. In accordance with the method, 1,3,5-trichloro-2,4,6-trinitrobenzene (TCTNB) is aminated by reaction with gaseous ammonia in an emulsion of toluene in water. The ratio of water to toluene in the emulsion is selected so that toluene is the dispersed phase in the emulsion. The size of the dispersed TCTNB-containing toluene droplets determines the particle size of the resulting TATB. The emulsion is preferably formed with an emulsifier such as ammonium oleate, which may be generated in situ from oleic acid, and stabilized with a protective colloid such as polyvinyl alcohol.

  4. Processing polymeric powders

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1989-01-01

    The concept of uniformly and continuously depositing and sinter-fusing nominal 0.1 to 40 microns dimensioned electrostatically charged polymer powder particles onto essentially uniformly spread 5 to 20 micron grounded continuous fiber tow to produce a respoolable thermoplastic composite two-preg was formulated at NASA Langley. The process was reduced to practice under a NASA grant at the University of Akron this spring. The production of tow-preg is called phase 1. The production of ultrafine polymer powders from 5 to 10 percent (wt) polymer solids in solvent is considered. This is phase 0 and is discussed. The production of unitape from multi tow-pregs was also considered. This is phase 2 and is also discussed. And another approach to phase 1, also proposed last summer, was scoped. This is phase 1A and is also discussed.

  5. Advanced powder processing

    SciTech Connect

    Janney, M.A.

    1997-04-01

    Gelcasting is an advanced powder forming process. It is most commonly used to form ceramic or metal powders into complex, near-net shapes. Turbine rotors, gears, nozzles, and crucibles have been successfully gelcast in silicon nitride, alumina, nickel-based superalloy, and several steels. Gelcasting can also be used to make blanks that can be green machined to near-net shape and then high fired. Green machining has been successfully applied to both ceramic and metal gelcast blanks. Recently, the authors have used gelcasting to make tooling for metal casting applications. Most of the work has centered on H13 tool steel. They have demonstrated an ability to gelcast and sinter H13 to near net shape for metal casting tooling. Also, blanks of H13 have been cast, green machined into complex shape, and fired. Issues associated with forming, binder burnout, and sintering are addressed.

  6. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  7. Characterization of Metal Powders Used for Additive Manufacturing.

    PubMed

    Slotwinski, J A; Garboczi, E J; Stutzman, P E; Ferraris, C F; Watson, S S; Peltz, M A

    2014-01-01

    Additive manufacturing (AM) techniques can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process.

  8. Fine Grain Aluminum Superplasticity

    DTIC Science & Technology

    1980-02-01

    time at elevated temperature for 7475 aluminum alloy 5 2 Optical micrographs of 7075 aluminum alloy after exposure to 5160C (960oF) for times...applied to Al-Zn-Mg-Cu ( 7075 Al) alloy. Subsequent developments by Waldman et al. (refs. 8-11) resulted in the demonstration that 7000 series alloys...a number of aluminum alloys. With such a fine grain structure, high temperature deformation character- istics approaching superplastic behavior

  9. Effect of mechanical denaturation on surface free energy of protein powders.

    PubMed

    Mohammad, Mohammad Amin; Grimsey, Ian M; Forbes, Robert T; Blagbrough, Ian S; Conway, Barbara R

    2016-10-01

    Globular proteins are important both as therapeutic agents and excipients. However, their fragile native conformations can be denatured during pharmaceutical processing, which leads to modification of the surface energy of their powders and hence their performance. Lyophilized powders of hen egg-white lysozyme and β-galactosidase from Aspergillus oryzae were used as models to study the effects of mechanical denaturation on the surface energies of basic and acidic protein powders, respectively. Their mechanical denaturation upon milling was confirmed by the absence of their thermal unfolding transition phases and by the changes in their secondary and tertiary structures. Inverse gas chromatography detected differences between both unprocessed protein powders and the changes induced by their mechanical denaturation. The surfaces of the acidic and basic protein powders were relatively basic, however the surface acidity of β-galactosidase was higher than that of lysozyme. Also, the surface of β-galactosidase powder had a higher dispersive energy compared to lysozyme. The mechanical denaturation decreased the dispersive energy and the basicity of the surfaces of both protein powders. The amino acid composition and molecular conformation of the proteins explained the surface energy data measured by inverse gas chromatography. The biological activity of mechanically denatured protein powders can either be reversible (lysozyme) or irreversible (β-galactosidase) upon hydration. Our surface data can be exploited to understand and predict the performance of protein powders within pharmaceutical dosage forms.

  10. Study for recycling of ceria-based glass polishing powder

    SciTech Connect

    Kato, Kazuhiro; Yoshioka, Toshiaki; Okuwaki, Akitsugu

    2000-04-01

    The recycling of ceria-based glass polishing powder by alkali treatment was investigated. Major impurities in the waste, a SiO{sub 2} component from fine glass powder and an Al{sub 2}O{sub 3} component from coagulating agents, could be removed easily at 50--60 C in a 4 mol/kg NaOH solution within 1 h. These impurities react with NaOH to precipitate as zeolite at higher temperature. Thus, it is expected that a recycling process which can regenerate polishing powder and convert SiO{sub 2} and Al{sub 2}O{sub 3} components into zeolite can be designed.

  11. The effect of DEB powder processing on thermal cell performance

    NASA Astrophysics Data System (ADS)

    Szwarc, R.; Walton, R. D.

    During the last twenty years, the system Ca/LiCl-KCl-CaCrO4/Fe has provided the basis for thermal batteries designed for military applications. In connection with greater performance demands, investigations are being conducted concerning the effect of catholyte processing on thermal cell performance. The catholyte layer is composed of three components including the depolarizer (D), CaCrO4, the electrolyte (E), LiCl-KCl eutectic, and the binder (B), finely divided SiO2. The catholyte layer or DEB pellets are produced by blending these components, fusing, pulverizing the cake, and hydrostatically pressing the powder into pellets. A description is given of ten powders which were prepared for the reported study. It was found that the procedure used in powder processing affects the capacity, but not its voltage. Increasing the prebake temperature for CaCrO4 from 400 to 600 C resulted in an increase in capacity.

  12. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  13. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D.; Weimer, Alan W.; Carroll, Daniel F.; Eisman, Glenn A.; Cochran, Gene A.; Susnitzky, David W.; Beaman, Donald R.; Nilsen, Kevin J.

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  14. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    NASA Astrophysics Data System (ADS)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  15. Characteristics of shock-compressed configuration of Ti and Si powder mixtures

    SciTech Connect

    Thadhani, N.N.; Dunbar, E.; Graham, R.A.

    1993-08-01

    Shock-compression recovery experiments were performed on mixtures of Ti and Si powders of fine, medium, and coarse morphology, and packed at different initial densities, using the Sandia Momma and Poppa Bear fixtures with Baratol explosive. The shock-compressed configuration revealed characteristics typical of either chemically reacted material with fine equiaxed grains, or unreacted material with densely packed Ti and Si particles. The unreacted configuration showed that Ti particles were extensively deformed, irrespective of powder morphology and shock conditions generated by either fixture. In contrast Si particles showed different characteristics depending on the powder morphology, packing density, and shock conditions. The microstructural characteristics of unreacted configuration of Ti and Si powder mixtures were investigated. Mechanistic processes occurring prior to the inception of shock-induced chemical reactions in this system are described.

  16. Chalcogenide waveguide structure for dispersion in mid-infrared wavelength

    NASA Astrophysics Data System (ADS)

    Ashok, Nandam; Lak Lee, Yeung; Shin, WooJin

    2017-03-01

    We present a waveguide design with low dispersion in mid-infrared wavelengths. The design consists of slot-strip-slot structures horizontally, the strip structure is considered with high index and slot is considered with low index material. We show a dispersion of 0–350 ps/(km·nm) over a band width of 1375 nm, and the structure shows zero dispersions at 2512 and 3887 nm wavelength. The magnitude of dispersion can be fine-tuned by varying the waveguide parameters. Such a waveguide structure with low dispersion at mid-infrared wavelengths has a great potential for supercontinuum generation application. Apart this, we have also proposed dispersion compensation structure, the structure shows a high negative dispersion at 1510 nm wavelength. The structure should find application in the design of an integrated optic dispersion compensator for optical telecommunication and ultrafast waveguide lasers.

  17. Liposomal dry powders as aerosols for pulmonary delivery of proteins.

    PubMed

    Lu, Dongmei; Hickey, Anthony J

    2005-12-21

    The purpose of this research was to develop liposomal dry powder aerosols for protein delivery. The delivery of stable protein formulations is essential for protein subunit vaccine delivery, which requires local delivery to macrophages in the lungs. Beta-glucuronidase (GUS) was used as a model protein to evaluate dry powder liposomes as inhaled delivery vehicles. Dimyristoyl phosphatylcholine:cholesterol (7:3) was selected as the liposome composition. The lyophilization of liposomes, micronization of the powders, aerosolization using a dry powder inhaler (DPI), and in vitro aerodynamic fine particle fraction upon collection in a twin-stage liquid impinger were evaluated. After lyophilization and jet-milling, the total amount of GUS and its activity, representing encapsulation efficiency and stability, were evaluated. The GUS amount and activity were measured and compared with freshly-prepared liposomes in the presence of mannitol, 43% of initial GUS amount, 29% of GUS activity after lyophilization and 36% of GUS amount, 22% of activity after micronization were obtained. Emitted doses from dry powder inhaler were 53%, 58%, 66%, and 73% for liposome powder:mannitol carrier ratios of 1:0, 1:4, 1:9, and 1:19. Fifteen percent of the liposome particles were less than 6.4 mum in aerodynamic diameter. The results demonstrate that milled liposome powders containing protein molecules can be aerosolized effectively at a fixed flow rate. Influences of different cryoprotectants on lyophilization of protein liposome formulations are reported. The feasibility of using liposomal dry powder aerosols for protein delivery has been demonstrated but further optimization is required in the context of specific therapeutic proteins.

  18. The Application of Powder Rheology in Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Clayton, Jamie; Millington-Smith, Doug; Armstrong, Brian

    2015-03-01

    Additive manufacturing (AM) is sensitive to powder variability when applying fine layers in a uniform manner. This demands a high degree of consistency and repeatability in the feedstock. Particle size is often used as a critical quality attribute, but this is not sufficient to fully qualify a feedstock. Indeed, it is inadequate to suggest that any parameter from a single test, e.g., Hall flowmeter or Hausner ratio, can comprehensively describe a powder's characteristics. This article uses four case studies to demonstrate the limitations of single parameter characterization and how the rheological properties of several metal powders used in AM applications are used to establish in-process performance. In the first study, the significantly reduced permeability and increased specific energy of a one batch of powder demonstrate a clear link to poor layer uniformity. The second study investigates the impact of metal powder manufacturing methods and suppliers, and it shows how shear properties alone cannot be relied on to identify properties that influence the process. The effect of additives on the processability of polymer blends used in AM is also evaluated, and the results show that even small quantities can have a significant effect on the permeability and basic flowability energy of feedstocks. The final study demonstrates the how rheological measurements can be used to identify the optimum blend of fresh and used material when reusing metal powders to manufacture components. These case studies illustrate the ability of a modern powder rheometer to detect minor variations in powders that are directly relevant to performance in AM processes in a way that traditional characterization methods cannot.

  19. DISPERSION STRENGTHENED NICKEL-BASE ALLOYS.

    DTIC Science & Technology

    The swaged cone of extruded Nichrome-thoria alloys prepared by the thermal decomposition of thorium nitrate onto alloy powder indicated descreased... swaging of these dispersion-strengthened Nichrome alloys was dependent on the presence of a mild steel jacket on the alloy rod as a result of the canned...extrusion practice. Efforts to cold swage the alloy materials without this jacket were unsuccessful. (Author)

  20. Low-temperature synthesis route for YBa 2Cu 3O x powder

    NASA Astrophysics Data System (ADS)

    Severin, J. W.; De With, G.; Van Hal, H. A. M.

    1988-04-01

    The preliminary results of a new low-temperature YBa 2Cu 3O x-powder preparation method are reporte. The new method is based on the rapid decomposition at 750°C of a spray-dried (Y, Ba, Cu)-nitrate mixture. In this way a fine powder with a primary particle size of about 0.3 μm is obtained. A comparison is made with the conventional methods.

  1. Production, sintering, and application of nanocrystalline iron-copper additions in a powder steel

    NASA Astrophysics Data System (ADS)

    Meilakh, A. G.

    2015-12-01

    A method is proposed for activated sintering of a sprayed iron powder by the coalescence of pressed particles through fine-grained layers based on iron-copper nanodispersed (ND) additions. The mechanical properties of composite materials containing 2% Fe-Cu ND addition are higher than those of the materials prepared from a mixture of standard powders by a factor of 1.5.

  2. Microstructure and properties of hot compacted powders of aluminium alloys.

    PubMed

    Lityńska-Dobrzyńska, L; Dutkiewicz, J; Maziarz, W; Kanciruk, A

    2009-11-01

    Atomized 6061 aluminium alloy powders with and without the addition of 2 wt% Zr were milled for 80 h in a planetary ball mill and hot pressed in vacuum. The milled powders showed microhardness of about 170 HV, which increased after hot pressing up to 260 HV and up to 280 HV for powders without and with the Zr additions, respectively. Compression tests showed the high yield stress of 300 MPa obtained for the hot-pressed sample produced from the initial powders compared with ultimate compression strength of above 800 MPa for that of the milled sample and slightly higher for that with Zr additions. The effect of hot pressing on the structure of powders was investigated using a conventional analytical and high-resolution electron microscopy and high angle annular dark-field scanning transmission electron microscopy combined with energy dispersive X-ray microanalysis. The samples of initial powders hot pressed in vacuum showed a cell structure with particles of the Mg(2)Si and AlFeSi phases in intercell areas. In the milled and hot-pressed sample, the homogeneous structure of small grains of size below 200 nm was observed. The AlFeSi and Mg(2)Si particles with size 20-100 nm were uniformly distributed as well as the Zr rich particles in the Zr containing alloy. The Zr-rich particles containing up to 80 at% Zr were identified as a metastable fcc cubic phase with lattice parameter a= 0.48 nm.

  3. High performance heat curing copper-silver powders filled electrically conductive adhesives

    NASA Astrophysics Data System (ADS)

    Cui, Hui-Wang; Jiu, Jin-Ting; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki; Uchida, Hiroshi

    2015-03-01

    In this study, high performance electrically conductive adhesives were fabricated from a vinyl ester resin, a thermal initiator, silver coated copper powders, and pure silver powders, without using any other coupling agent, dispersing agent, and reducing agent. The heat cured copper-silver powders filled electrically conductive adhesives presented low bulk resistivity (e.g., 4.53 × 10-5 Ω·cm) due to the silver powders that had given high electrical conductivity to the adhesives, and high shear strength (e.g., 16.22 MPa) provided by the crosslinked structures of vinyl ester resin. These high performance copper-silver powders filled electrically conductive adhesives have lower cost than those filled by pure silver powders, which can be well used in the electronic packaging and can enlarge the application prospects of electrically conductive adhesives. [Figure not available: see fulltext.

  4. Modeling volcanic ash dispersal

    SciTech Connect

    2010-10-22

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  5. Hybrid Dispersion Laser Scanner

    PubMed Central

    Goda, K.; Mahjoubfar, A.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points. PMID:22685627

  6. Hybrid dispersion laser scanner.

    PubMed

    Goda, K; Mahjoubfar, A; Wang, C; Fard, A; Adam, J; Gossett, D R; Ayazi, A; Sollier, E; Malik, O; Chen, E; Liu, Y; Brown, R; Sarkhosh, N; Di Carlo, D; Jalali, B

    2012-01-01

    Laser scanning technology is one of the most integral parts of today's scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanner's broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points.

  7. Modeling volcanic ash dispersal

    ScienceCinema

    None

    2016-07-12

    Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjöll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

  8. Fine particle clay catalysts for coal liquefaction

    SciTech Connect

    Olson, E.S.

    1991-01-01

    The efficient production of environmentally acceptable distillate fuels requires catalysts for hydrogenation and cleavage of the coal macromolecules and removal of oxygen, nitrogen, and sulfur heteroatoms. The goal of the proposed research is to develop new catalysts for the direct liquefaction of coal. This type of catalyst consists of fine clay particles that have been treated with reagents which form pillaring structures between the aluminosilicate layers of the clay. The pillars not only hold the layers apart but also constitute the active catalytic sites for hydrogenation of the coal and the solvent used in the liquefaction. The pillaring catalytic sites are composed of pyrrhotite, which has been previously demonstrated to be active for coal liquefaction. The pyrrhotite sites are generated in situ by sulfiding the corresponding oxyiron species. The size of the catalyst will be less than 40 nm in order to promote intimate contact with the coal material. Since the clays and reagents for pillaring and activating the clays are inexpensive, the catalysts can be discarded after use, rather than regenerated by a costly process. The proposed work will evaluate methods for preparing the fine particle iron-pillared clay dispersions and for activating the particles to generate the catalysts. Characterization studies of the pillared clays and activated catalysts will be performed. The effectiveness of the pillared clay dispersion for hydrogenation and coal liquefaction will be determined in several types of testing.

  9. Fine particle clay catalysts for coal liquefaction

    SciTech Connect

    Olson, E.S.

    1991-01-01

    The efficient production of environmentally acceptable distillate fuels requires catalysts for hydrogenation and cleavage of the coal macromolecules and removal of oxygen, nitrogen, and sulfur heteroatoms. The goal of the proposed research is to develop new catalysts for the direct liquefaction of coal. This type of catalyst consists of fine clay particles that have been treated with reagents which form pillaring structures between the aluminosilicate layers of the clay. The pillars not only hold the layers apart but also constitute the active catalytic sites for hydrogenation of the coal and solvent used in the liquefaction. The pillaring catalytic sites are composed of pyrrhotite, which has been previously demonstrated to be active for coal liquefaction. The pyrrhotite sites are generated in situ by sulfiding the corresponding oxyiron species. The size of the catalyst will be less than 40 nm in order to promote intimate contact with the coal material. Since the clays and reagents for pillaring and activating the clays are inexpensive, the catalysts can be discarded after use, rather than regenerated by a costly process. The proposed work will evaluate methods for preparing the fine particle iron-pillared clay dispersions and for activating the particles to generate the catalysts. Characterization studies of the pillared clays and activated catalysts will performed. The effectiveness of the pillared clay dispersion for hydrogenation and coal liquefaction will be determined in several types of testing. 5 refs., 1 tab.

  10. Alternative Fabrication Routes toward Oxide-Dispersion-Strengthened Steels and Model Alloys

    NASA Astrophysics Data System (ADS)

    Bergner, Frank; Hilger, Isabell; Virta, Jouko; Lagerbom, Juha; Gerbeth, Gunter; Connolly, Sarah; Hong, Zuliang; Grant, Patrick S.; Weissgärber, Thomas

    2016-11-01

    The standard powder metallurgy (PM) route for the fabrication of oxide-dispersion-strengthened (ODS) steels involves gas atomization to produce a prealloyed powder, mechanical alloying (MA) with fine oxide powders, consolidation, and finally thermal/thermomechanical treatment (TMT). It is well established that ODS steels with superior property combinations, for example, creep and tensile strength, can be produced by this PM/MA route. However, the fabrication process is complex and expensive, and the fitness for scaling up to the industrial scale is limited. At the laboratory scale, production of small amounts of well-controlled model systems continues to be desirable for specific purposes, such as modeling-oriented experiments. Thus, from the laboratory to industrial application, there is growing interest in complementary or alternative fabrication routes for ODS steels and related model systems, which offer a different balance of cost, convenience, properties, and scalability. This article reviews the state of the art in ODS alloy fabrication and identifies promising new routes toward ODS steels. The PM/AM route for the fabrication of ODS steels is also described, as it is the current default process. Hybrid routes that comprise aspects of both the PM route and more radical liquid metal (LM) routes are suggested to be promising approaches for larger volumes and higher throughput of fabricated material. Although similar uniformity and refinement of the critical nanometer-sized oxide particles has not yet been demonstrated, ongoing innovations in the LM route are described, along with recent encouraging preliminary results for both extrinsic nano-oxide additions and intrinsic nano-oxide formation in variants of the LM route. Finally, physicochemical methods such as ion beam synthesis are shown to offer interesting perspectives for the fabrication of model systems. As well as literature sources, examples of progress in the authors' groups are also highlighted.

  11. Washability of fine coal

    SciTech Connect

    Cavallaro, J.A.

    1984-01-01

    The objectives of this study are: (1) to determine the theoretical beneficiation potential of US coals when pulverized down to 44 microns, (2) to determine the effects of fine grinding on the liberation of ash, pyritic sulfur, and other impurities, and (3) to assess the impact of their removal on oil and gas replacement, environmental regulations, and specification feedstocks for emerging coal utilization technologies. With the emphasis on fine coal cleaning, we have developed a centrifugal float-sink technique for coals crushed down to 44 microns. Employing this technique will provide a complete fine coal gravimetric evaluation of US coals crushed down to 44 microns. Parallel research is being conducted through in-house studies by PETC, and contracts with the University of Alaska, the University of North Dakota, and Commercial Testing and Engineering, Inc. Results thus far have been encouraging for selected Northern Appalachian Region Coals (NAR), which have shown pyritic sulfur, SO/sub 2/ emission, and ash reductions of 94, 60, and 82%, respectively, for the float 1.30 specific gravity product. However, the data evaluated for several samples indicate a possible problem in the yield/ash relationship for the float 1.30 specific gravity products for samples crushed to 75 and 44 microns top size. Thus, testing was begun to try to resolve these anomalies in the data. Test results using surface active agents, a reverse order of float-sink, and sample pre-heat techniques have been promising. These modifications to the standard technique resulted in an increase in weight recovery of float 1.30 specific gravity material and a decrease in ash content for each of the other specific gravity fractions, thus showing an improvement in the yield/ash relationship.

  12. Very fine Twilights

    NASA Astrophysics Data System (ADS)

    Boico, Vladimir

    1992-04-01

    The author is describing a very fine twilight on 3 January 1992 at 17 h25 m LT (The Sunset was at 16h48m LT) of red - terracotta color. The author is relating this twilight with the volcanic erruption of Pinatubo on the Philipines islands from June 1991. The author is describing the following phenomena related with Volcanic erruption: twilights, the greenish of the Moon's surface, a change in the color of Day Sky to white, Haloes around the Sun. The author is pointing out, that the phenomena mentioned could prolonge in time 2 or 3 years.

  13. Fine needle aspiration cytology.

    PubMed Central

    Lever, J V; Trott, P A; Webb, A J

    1985-01-01

    Fine needle aspiration cytology is an inexpensive, atraumatic technique for the diagnosis of disease sites. This paper describes the technique and illustrates how it may be applied to the management of tumours throughout the body. The limitations of the method, the dangers of false positive reports, and the inevitability of false negative diagnoses are emphasised. In a clinical context the method has much to offer by saving patients from inappropriate operations and investigations and allowing surgeons to plan quickly and more rationally. It is an economically valuable technique and deserves greater recognition. Images PMID:2578481

  14. The influence of sintering on the dispersion of carbon nanotubes in ceramic matrix composites

    NASA Astrophysics Data System (ADS)

    Tapasztó, Orsolya; Lemmel, Hartmut; Markó, Márton; Balázsi, Katalin; Balázsi, Csaba; Tapasztó, Levente

    2014-10-01

    Optimizing the dispersion of carbon nanostructures in ceramic matrix composites is a fundamental technological challenge. So far most efforts have been focused on improving the dispersion of nanostructures during the powder phase processing, due to the limited information and control on their possible redistribution during the sintering. Here, we address this issue by comparing multi-walled carbon nanotubes reinforced Si3N4 composites prepared from the same starting powder dispersion but sintered using two different techniques. We employ ultra-small angle neutron scattering measurements to gain reliable information on the dispersion of nanostructures allowing a direct comparison of their redistribution during the sintering.

  15. Advances in the engineering science of immiscible polymer blends: A powder route for delicate polymer precursors and a highly renewable polyamide/terephthalate blend system

    NASA Astrophysics Data System (ADS)

    Giancola, Giorgiana

    Powder processing of thermoplastic polymer composites is an effective way to achieve a high level of component homogenization in raw blends prior to melt processing, thus reducing the thermal and shear stress on the components. Polymer blends can be prepared that would otherwise not be possible due to thermodynamic incompatibility. Evaluation of this concept was conducted by processing PMMA and HDPE micron sized powders which were characterized using DSC and rheology. Optical microscopy and SEM, showed that high-quality, fine domain sized blends can be made by the compression molding process. Silica marker spheres were used to qualitatively assess the level dispersive mixing. EDS chemical analysis was effective in providing image contrast between PMMA and HDPE based on the carbonyl and ester oxygen. EDS image maps, combined with secondary electron images show that compression molding of blended powder precursors produces composites of comparable homogeneity and domain size as extrusion processing. FTIR proved valuable when assessing the intimacy of the constituents at the interface of the immiscible domains. The formation of an in-situ, PMMA nano-network structure resulting from solvent extraction and redeposition using DMF was uniquely found on the surface of these immiscible polymer blends. This work has shown that powder processing of polymers is an effective means to melt processed fragile polymers to high quality blends. Recently, efforts towards the development of sustainable materials have evolved due in part to the increase in price and limited supply of crude oil. Immiscible polymer blending is a paradigm that enables synergistic material performance in certain instances where the composite properties are superior to the sum of the constituents. The addition of PA6,10 to PTT offers an opportunity to increase the bio-based content of PTT while simultaneously maintaining or improving mechanical properties. PA6,10 and PTT are immiscible polymers that can be

  16. Wave Tank Studies On Formation And Transport Of OMA From The Chemically Dispersed Oil

    EPA Science Inventory

    The interaction of chemical dispersants and suspended sediments with crude oil influences the fate and transport of oil spills in coastal waters. A wave tank study was conducted to investigate the effects of chemical dispersants and mineral fines on dispersion of oil, formation ...

  17. Structural color painting by rubbing particle powder.

    PubMed

    Park, ChooJin; Koh, Kunsuk; Jeong, Unyong

    2015-02-09

    Structural colors originate from purely physical structures. Scientists have been inspired to mimic the structures found in nature, the realization of these structures still presents a great challenge. We have recently introduced unidirectional rubbing of a dry particle powder on a rubbery surface as a quick, highly reproducible means to fabricate a single crystal monolayer assembly of particles over an unlimited area. This study extends the particle-rubbing process to a novel fine-art painting, structural color painting (SCP). SCP is based on structural coloring with varying iridescence according to the crystal orientation, as controlled by the rubbing direction. This painting technique can be applied on curved surfaces, which enriches the objects to be painted and helps the painter mimic the structures found in nature. It also allows for quick fabrication of complicated particle-assembly patterns, which enables replication of paintings.

  18. Structural Color Painting by Rubbing Particle Powder

    PubMed Central

    Park, ChooJin; Koh, Kunsuk; Jeong, Unyong

    2015-01-01

    Structural colors originate from purely physical structures. Scientists have been inspired to mimic the structures found in nature, the realization of these structures still presents a great challenge. We have recently introduced unidirectional rubbing of a dry particle powder on a rubbery surface as a quick, highly reproducible means to fabricate a single crystal monolayer assembly of particles over an unlimited area. This study extends the particle-rubbing process to a novel fine-art painting, structural color painting (SCP). SCP is based on structural coloring with varying iridescence according to the crystal orientation, as controlled by the rubbing direction. This painting technique can be applied on curved surfaces, which enriches the objects to be painted and helps the painter mimic the structures found in nature. It also allows for quick fabrication of complicated particle-assembly patterns, which enables replication of paintings. PMID:25661669

  19. Computer-aided design of dry powder inhalers using computational fluid dynamics to assess performance.

    PubMed

    Suwandecha, Tan; Wongpoowarak, Wibul; Srichana, Teerapol

    2016-01-01

    Dry powder inhalers (DPIs) are gaining popularity for the delivery of drugs. A cost effective and efficient delivery device is necessary. Developing new DPIs by modifying an existing device may be the simplest way to improve the performance of the devices. The aim of this research was to produce a new DPIs using computational fluid dynamics (CFD). The new DPIs took advantages of the Cyclohaler® and the Rotahaler®. We chose a combination of the capsule chamber of the Cyclohaler® and the mouthpiece and grid of the Rotahaler®. Computer-aided design models of the devices were created and evaluated using CFD. Prototype models were created and tested with the DPI dispersion experiments. The proposed model 3 device had a high turbulence with a good degree of deagglomeration in the CFD and the experiment data. The %fine particle fraction (FPF) was around 50% at 60 L/min. The mass median aerodynamic diameter was around 2.8-4 μm. The FPF were strongly correlated to the CFD-predicted turbulence and the mechanical impaction parameters. The drug retention in the capsule was only 5-7%. In summary, a simple modification of the Cyclohaler® and Rotahaler® could produce a better performing inhaler using the CFD-assisted design.

  20. Hydrophobic flocculation flotation for beneficiating fine coal and minerals

    SciTech Connect

    Song, S.; Valdivieso, A.L.

    1998-06-01

    It is shown that hydrophobic flocculation flotation (HFF) is an effective process to treat finely ground ores and slimes so as to concentrate coal and mineral values at a fine size range. The process is based on first dispersing the fine particles suspension, followed by flocculation of fine mineral values or coal in the form of hydrophobic surfaces either induced by specifically adsorbed surfactants or from nature at the conditioning of the slurry with the shear field of sufficient magnitude. The flocculation is intensified by the addition of a small amount of nonpolar oil. finely ground coals, ilmenite slimes, and gold finely disseminated in a slag have been treated by this process. Results are presented indicating that cleaned coal with low ash and sulfur remaining and high Btu recovery can be obtained, and the refractory ores of ilmenite slimes and fine gold-bearing slag can be reasonably concentrated, leading to better beneficiation results than other separation techniques. In addition, the main operating parameters affecting the HFF process are discussed.

  1. Dry powder inhalation of macromolecules using novel PEG-co-polyester microparticle carriers.

    PubMed

    Tawfeek, Hesham M; Evans, Andrew R; Iftikhar, Abid; Mohammed, Afzal R; Shabir, Anjum; Somavarapu, Satyanarayana; Hutcheon, Gillian A; Saleem, Imran Y

    2013-01-30

    This study investigated optimizing the formulation parameters for encapsulation of a model mucinolytic enzyme, α-chymotrypsin (α-CH), within a novel polymer; poly(ethylene glycol)-co-poly(glycerol adipate-co-ω-pentadecalactone), PEG-co-(PGA-co-PDL) which were then applied to the formulation of DNase I. α-CH or DNase I loaded microparticles were prepared via spray drying from double emulsion (w(1)/o/w(2)) utilizing chloroform (CHF) as the organic solvent, L-leucine as a dispersibility enhancer and an internal aqueous phase (w(1)) containing PEG4500 or Pluronic(®) F-68 (PLF68). α-CH released from microparticles was investigated for bioactivity using the azocasein assay and the mucinolytic activity was assessed utilizing the degradation of mucin suspension assay. The chemical structure of PEG-co-(PGA-co-PDL) was characterized by (1)H NMR and FT-IR with both analyses confirming PEG incorporated into the polymer backbone, and any unreacted units removed. Optimum formulation α-CH-CHF/PLF68, 1% produced the highest bioactivity, enzyme encapsulation (20.08±3.91%), loading (22.31±4.34 μg/mg), FPF (fine particle fraction) (37.63±0.97%); FPD (fine particle dose) (179.88±9.43 μg), MMAD (mass median aerodynamic diameter) (2.95±1.61 μm), and the mucinolytic activity was equal to the native non-encapsulated enzyme up to 5h. DNase I-CHF/PLF68, 1% resulted in enzyme encapsulation (17.44±3.11%), loading (19.31±3.27 μg/mg) and activity (81.9±2.7%). The results indicate PEG-co-(PGA-co-PDL) can be considered as a potential biodegradable polymer carrier for dry powder inhalation of macromolecules for treatment of local pulmonary diseases.

  2. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    PubMed

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.

  3. Fine Channel Networks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  4. Comparative study of particle structure evolution during water sorption: skim and whole milk powders.

    PubMed

    Murrieta-Pazos, I; Gaiani, C; Galet, L; Cuq, B; Desobry, S; Scher, J

    2011-10-01

    Surface composition of dairy powders influences significantly a quantity of functional properties such as rehydration, caking, agglomeration. Nevertheless, the kinetic of water uptake by the powders was never directly related to the structure and the composition of the surface. In this work, the effect of relative humidity on the structural reorganization of two types of dairy powder was studied. The water-powder interaction for industrial whole milk powder, and skim milk powder was studied using dynamic vapor sorption. The water sorption isotherms were fitted with a Brunner-Emmet-Teller model and each stage of the sorption curve was analyzed with a Fickian diffusion. The water content in the monolayer predicted for each powder and the moisture diffusivity calculated were discussed and compared. Concurrently, powders microstructure and powders surface under variable relative humidity were assessed by X-ray photoelectron spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray and atomic force microscopy. A correlation between the data obtained from the sorption isotherms and the modifications of structure allowed us to conclude that powder microstructure and chemical state of the components could play an important role in determining the water diffusivity.

  5. Preparation of Ultrafine W-Cu Composite Powder Using Ultrasonic-Assisted Electroless Plating

    NASA Astrophysics Data System (ADS)

    Huang, Limei; Luo, Laima; Ding, Xiaoyu; Zan, Xiang; Hong, Yu; Cheng, Jigui; Wu, Yucheng; Luo, Guangnan; Zhu, Liu

    2013-07-01

    W-Cu ultrafine/nanocomposite powders have high sintering activity, so ultrafine/nanotechnology of W-Cu composite powders is one of the main methods to obtain fully dense, high-performance W-Cu composite materials. Cu-coated ultrafine W composite powders were synthesized by ultrasonic-assisted electroless plating process with non-noble metal activation pretreatment at room temperature in this paper. The growth mechanism of Cu layers and surface morphologies and composition of initial ultrafine W powders, pretreated W powders and Cu-coated W powders were analyzed by field emission scanning electron microscopy (FE-SEM), and energy dispersion spectrometry (EDS). The results show that the uniformly Cu coated W composite powder is successfully synthesized without conventional sensitization and activation steps by ultrasonic-assisted electroless plating at room temperature. The Cu layers on the ultrafine W powders had cell structure with dense, uniform distribution. The growth mechanism of Cu layers appears as follows: the surfaces of pretreated W powders appear linear-like and lamellar-like surface defects which act as activated sites. The reactants in the plating solution were adsorbed on catalytic activity surfaces of powders and happened oxidation-reduction reaction. The growth and aggregation mechanisms of Cu particles after nucleation are stripy Cu-cells grew up, bend, bifurcated, and aggregated, then wounding into a cellular structure, like "wrapping wool clusters" in the life. Finally, Cu cells grow up and merge into a layer.

  6. Pressureless sintered high-strength mullite from commercial powder

    NASA Astrophysics Data System (ADS)

    Lehman, R. L.; Umezu, Y.

    1992-08-01

    High-strength monolithic mullite ceramics were prepared from commercial-grade power by carefully controlled processing of the powder followed by pressureless sintering at 1700 °C. Mullite powder was mechanically and chemically dispersed, ball milled, and screened prior to slip casting. Specimens were sintered to 97% of theoretical density under pressureless conditions. The furnace ramp and soak schedule was an important variable. Four-point flexural strengths of 250 MPa were achieved, exceeding literature values for pressureless sintering of Baikowski mullite powder.[a] Pore sizes were small and were not strength limiting. Griffith calculations suggest a critical flaw size of 20 μm, in good agreement with the maximum observed crystal size in the microstructure.

  7. Direct Preparation of Uniformly-Distributed YBa2Cu3O7-x Powders by Spray-Pyrolysis

    NASA Astrophysics Data System (ADS)

    Tohge, Noboru; Tatsumisago, Masahiro; Minami, Tsutomu; Okuyama, Kikuo; Adachi, Motoaki; Kousaka, Yasuo

    1988-06-01

    Fine powders of the compound YBa2Cu3O7-x have been prepared directly by the spray-pyrolysis of aqueous solutions of corresponding metal nitrates. The powders obtained in a temperature range of 900 to 1000°C were spherical and their diameters were uniformly distributed below 1 μm. The crystallinity of these powders was increased with increasing decomposition temperature; an orthorhombic single phase was indeed obtained at 1000°C. The sintered bodies from these powders showed the offset of superconducting transition at 84 K.

  8. Polymer powder prepregging: Scoping study

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1988-01-01

    Early on, it was found that NEAT LARC-TPI thermoplastic polyimide powder behaved elastoplastically at pressures to 20 ksi and temperatures to 260 degrees celcius (below MP). At high resin assay, resin powder could be continuously cold-flowed around individual carbon fibers in a metal rolling mill. At low resin assay (2:1, C:TPI), fiber breakage was prohibitive. Thus, although processing of TPI below MP would be quite unique, it appears that the polymer must be melted and flowed to produce low resin assay prepreg. Fiber tow was spread to 75 mm using a venturi slot tunnel. This allowed intimate powder/fiber interaction. Two techniques were examined for getting room temperature powder onto the room temperature fiber surface. Electrostatic powder coating allows the charged powder to cling tenaciously to the fiber, even while heated with a hot air gun to above its melt temperature. A variant of the wet slurry coating process was also explored. The carbon fibers are first wetted with water. Then dry powder is sprinkled onto the wet tow and doctor-rolled between the fibers. The wet structure is then taken onto a heated roll, with hot air guns drying and sinter-melting the powder onto the fiber surfaces. In both cases SEM shows individual fibers coated with powder particles that have melted in place and flowed along the fiber surface via surface tension.

  9. Shock induced crystallization of amorphous Nickel powders

    NASA Astrophysics Data System (ADS)

    Cherukara, Mathew; Strachan, Alejandro

    2015-06-01

    Recent experimental work has shown the efficacy of amorphous Ni/crystalline Al composites as energetic materials, with flame velocities twice that of a comparable crystalline Ni/crystalline Al system. Of further interest is the recrystallization mechanisms in the pure amorphous Ni powders, both thermally induced and mechanically induced. We present large-scale molecular dynamics simulations of shock-induced recrystallization in loosely packed amorphous Nickel powders. We study the time dependent nucleation and growth processes by holding the shocked samples at the induced pressures and temperatures for extended periods following the passage of the shock (up to 6 ns). We find that the nanostructure of the recrystallized Ni and time scales of recrystallization are dependent on the piston velocity. At low piston velocities, nucleation events are rare, leading to long incubation times and a relatively coarse nanostructure. At higher piston velocities, local variations in temperature due to jetting phenomena and void collapse, give rise to multiple nucleation events on time scales comparable to the passage of the shock wave, leading to the formation of a fine-grained nanostructure. Interestingly, we observe that the nucleation and growth process occurs in two steps, with the first nuclei crystallizing into the BCC structure, before evolving over time into the expected FCC structure. U.S. Defense Threat Reduction Agency, HDTRA1-10-1-0119 (Program Manager Suhithi Peiris).

  10. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  11. Using Dispersed Modes During Model Correlation

    NASA Technical Reports Server (NTRS)

    Stewart, Eric; Hathcock, Megan

    2017-01-01

    Using model dispersions as a starting point allows us to quickly adjust a model to reflect new test data: a) The analyst does a lot of work before the test to save time post-test. b) Creating 1000s of model dispersions to provide "coarse tuning," then use Attune to provide the "fine tuning." ?Successful model tuning on three structures: a) TAURUS. b) Ares I-X C) Cart (in backup charts). ?Mode weighting factors, matrix norm method, and XOR vs. MAC all play key roles in determining the BME. The BME process will be used on future tests: a) ISPE modal test (ongoing work). b) SLS modal test (mid 2018).

  12. Preliminary attempt at sintering an ultrafine alumina powder using microwaves. Master's thesis

    SciTech Connect

    Alhambra, E.M.

    1994-09-01

    A commercially available microwave oven was used to sinter ultrafine alumina powders (0.02 - 0.05 micrometers particle size) with and without CaO sintering aid. The oven was modified by inserting a thermocouple probe through the bottom housing, and thoroughly insulating the interior with insulating material. The oven was placed in a glove box and filled with argon to prevent degradation of the thermocouple, and oxidation of the powdered graphite susceptor. Heating rates of 50-75 Deg C/sec with a maximum temperature of 1575 Deg C were obtained. Limited success in sintering of the the powder compacts was achieved in this preliminary effort. The microstructures of the sintered products were examined by scanning electron microscopy. It was concluded that further work is necessary to develop this technique into one which can be used for the routine sintering of fine powdered ceramic material. A review of the literature on microwave sintering of ceramic powders is also reported.

  13. The decontamination of industrial casein and milk powder by irradiation

    NASA Astrophysics Data System (ADS)

    Żegota, H.; Małolepszy, B.

    2008-09-01

    The efficacy of gamma radiation decontamination of industrial casein, a milk protein utilized as a component of many food and non-food products has been studied. Low-fat milk powder was also included with a purpose to study the microflora survival in protein-rich materials. Microbial analysis of the samples prior to irradiation showed that the initial total viable count was higher than 6.0 log cfu g -1 in both casein and milk powders. The contamination of casein with moulds and yeasts was found to be equal to 3.56 log cfu g -1. The counts of coliforms have not exceeded the value of 2.48 log cfu g -1. Radiation processing of casein and milk powder has substantially reduced the microbial population of all samples. The dose of 5 kGy was sufficient to reduce the total microflora and coliforms counts to the level permitted for food products. Survivals of microorganisms were analyzed by the generalized exponential equation, SF =exp[ -D/ Do) α]. Values of an exponent, α, standing for the dispersion parameter, were equal to 0.65 and 0.70 for microorganisms contaminating casein and milk powders, respectively. The numerical value of the dispersion parameter α<1 indicates the concave dependence of a logarithm of surviving fraction versus radiation dose. No difference in microflora survival in irradiated samples tested immediately and in samples stored for 1-month after irradiation has been noticed.

  14. Injection with ultra-fine cement into fine sand layer

    SciTech Connect

    Tamura, Masahito; Goto, Toshiyoshi; Ogino, Takuya; Shimizu, Kazunari

    1994-12-31

    In-situ injection test was carried out in fine sand layer with ordinary portland, colloid and ultra-fine cement. Permeability of the sand layer was 10{sup {minus}3} cm/sec. Suspension grout with ordinary portland and colloid cement was impossible to permeate into the sand. However with ultra fine cement small solidified sand was obtained and with ultra-fine cement-waterglass grout, water cement ratio of 0.8 and waterglass concentration of 75%, solidified sand with expected volume can be obtained.

  15. Use of an ultrasonic/sonic driller/corer to obtain sample powder for chemin, a combined XRD/XRF instrument.

    SciTech Connect

    Chipera, S. J.; Bish, D. L.; Vaniman, D. T.; Sherrit, S.; Bar-Cohen, Yoseph; Blake, D.

    2003-01-01

    One of the technical issues that must be addressed before landing an XRD,iXRF spectrometer on an extraterrestrial body is how best to obtain a representative sample powder for analysis. For XRD powder diffraction analyses, it is beneficial to have a powder that is extremely fine grained to reduce preferred orientation effects and to provide a statistically significant number of crystallites to the Xray beam. Although a 2 dimensional detector as used in the CHEMIN instrument will produce good results with poorly prepared powders, the quality of the data will improve with the quality of the sample powder.

  16. Automated Camera Array Fine Calibration

    NASA Technical Reports Server (NTRS)

    Clouse, Daniel; Padgett, Curtis; Ansar, Adnan; Cheng, Yang

    2008-01-01

    Using aerial imagery, the JPL FineCalibration (JPL FineCal) software automatically tunes a set of existing CAHVOR camera models for an array of cameras. The software finds matching features in the overlap region between images from adjacent cameras, and uses these features to refine the camera models. It is not necessary to take special imagery of a known target and no surveying is required. JPL FineCal was developed for use with an aerial, persistent surveillance platform.

  17. Recrystallization characteristics of oxide dispersion strengthened nickel-base alloys

    NASA Technical Reports Server (NTRS)

    Hotzler, R. K.; Glasgow, T. K.

    1980-01-01

    Electron microscopy was employed to study the process of recrystallization in two oxide dispersion strengthened (ODS) mechanically alloyed nickel-base alloys, MA 754 and MA 6000E. MA 754 contained both fine, uniformly dispersed particles and coarser oxides aligned along the working direction. Hot rolled MA 754 had a grain size of 0.5 microns and high dislocation densities. After partial primary recrystallization, the fine grains transformed to large elongated grains via secondary (or abnormal) grain growth. Extruded and rolled MA 6000E contained equiaxed grains of 0.2 micron diameter. Primary recrystallization occurring during working eliminated virtually all dislocations. Conversion from fine to coarse grains was triggered by gamma prime dissolution; this was also a process of secondary or abnormal grain growth. Comparisons were made to conventional and oxide dispersion strengthened nickel-base alloys.

  18. Spherical Granule Production from Micronized Saltwort (Salicornia herbacea) Powder as Salt Substitute

    PubMed Central

    Shin, Myung-Gon; Lee, Gyu-Hee

    2013-01-01

    The whole saltwort plant (Salicornia herbacea) was micronized to develop the table salt substitute. The micronized powder was mixed with distilled water and made into a spherical granule by using the fluid-bed coater (SGMPDW). The SGMPDW had superior flowability to powder; however, it had low dispersibility. To increase the dispersibility of SGMPDW, the micronized powder was mixed with the solution, which contained various soluble solid contents of saltwort aqueous extract (SAE), and made into a spherical granule (SGMPSAE). The SGMPSAE prepared with the higher percentages of solid content of SAE showed improved dispersibility in water and an increase in salty taste. The SGMPSAE prepared with 10% SAE was shown to possess the best physicochemical properties and its relative saltiness compared to NaCl (0.39). In conclusion, SGMPSAEs can be used as a table salt substitute and a functional food material with enhanced absorptivity and convenience. PMID:24471111

  19. Suitability of differently formulated dry powder Newcastle disease vaccines for mass vaccination of poultry.

    PubMed

    Huyge, Katrien; Van Reeth, Kristien; De Beer, Thomas; Landman, Wil J M; van Eck, Jo H H; Remon, Jean Paul; Vervaet, Chris

    2012-04-01

    Dry powders containing a live-attenuated Newcastle disease vaccine (LZ58 strain) and intended for mass vaccination of poultry were prepared by spray drying using mannitol in combination with trehalose or inositol, polyvinylpyrrolidone (PVP) and/or bovine serum albumin (BSA) as stabilizers. These powders were evaluated for vaccine stabilizing capacity during production and storage (at 6 °C and 25 °C), moisture content, hygroscopicity and dry powder dispersibility. A mixture design, varying the ratio of mannitol, inositol and BSA, was used to select the stabilizer combination which resulted in the desired powder properties (i.e. good vaccine stability during production and storage, low moisture content and hygroscopicity and good dry dispersibility). Inositol-containing powders had the same vaccine stabilizing capacity as trehalose powders, but were less hygroscopic. Incorporation of BSA enhanced the vaccine stability in the powders compared to PVP-containing formulations. However, increasing the BSA concentration increased the hygroscopicity and reduced the dry dispersibility of the powder. No valid mathematical model could be calculated for vaccine stability during production or storage, but the individual experiments indicated that a formulation combining mannitol, inositol and BSA in a ratio of 73.3:13.3:13.3 (wt/wt) resulted in the lowest vaccine titre loss during production (1.6-2.0 log(10) 50% egg infectious dose (EID(50)) and storage at 6 °C (max. 0.8 log(10) EID(50) after 6 months) in combination with a low moisture content (1.1-1.4%), low hygroscopicity (1.9-2.1% water uptake at 60% relative humidity) and good dry dispersibility properties.

  20. Fabrication and performance of silver coated copper powder

    NASA Astrophysics Data System (ADS)

    Cao, Xiao Guo; Zhang, Hai Yan

    2012-08-01

    Electroless silver coating on copper powder and its effects on oxidation resistance were investigated by varying the fabrication parameters. Using acetylacetone (C5H8O2) as chelating reagent, silver-coated copper powder was fabricated by displacement reaction method. In the process, acetylacetone forms chelating compound with Cu 2+, which prevent the formation of [Cu (NH3)4]2+. Therefore, Ag + can be reduced continully and deposited on the surface of copper particles. As-coated copper particles were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM) and x-ray energy dispersive spectroscopy (EDS). The oxidation resistance of silver coated copper powder was investigated by gravimetric method. It was found that a fairly continuous silver layer was formed on the surface of copper powder by the electroless type of substitution plating. When the silver content reached 10 wt. %, silver was homogeneously distributed around the copper particles and few free silver particles were detected. The results showed that the silver coated copper powder with the best oxidation resistance was prepared at 40°C and the C5H8O2/AgNO3 molar ratio was 1:1.

  1. Application of physical and chemical characterization techniques to metallic powders

    SciTech Connect

    Slotwinski, J. A.; Watson, S. S.; Stutzman, P. E.; Ferraris, C. F.; Peltz, M. A.; Garboczi, E. J.

    2014-02-18

    Systematic studies have been carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to chemistry, including X-ray diffraction and energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, were also employed. Results of these analyses will be used to shed light on the question: how does virgin powder change after being exposed to and recycled from one or more additive manufacturing build cycles? In addition, these findings can give insight into the actual additive manufacturing process.

  2. Proniosomal powders of natural canthaxanthin: Preparation and characterization.

    PubMed

    Ravaghi, Maryam; Sinico, Chiara; Razavi, Seyed Hadi; Mousavi, Seyed Mohammad; Pini, Elena; Fadda, Anna Maria

    2017-04-01

    In this study, canthaxanthin (CTX) was produced by Dietzia natronolimnaea HS-1 using beetroot molasses as substrate and used for encapsulation in proniosome powders after extraction, with the aim of improving its stability. Proniosome powders were prepared with an equimolar ratio of span 60/cholesterol and four different carriers, namely maltodextrin, mannitol, lactose and pullulan. The properties of these formulations as both proniosomal powders and resulted niosomal dispersions were evaluated. The type of carriers had significant effects on the micrometric properties of proniosome powders which were further confirmed by the results of SEM analysis. Although light and high temperatures affected the stability of CTX drastically, but encapsulation in proniosomes retarded its degradation. Among these samples, mannitol based proniosome powder (MAPP) produced small vesicles (mean diameter=175±3nmand polydispersity index=0.28±0.02) with the highest entrapment efficiency (74.1±2.7%). MAPP provided a promising formulation to increase CTX stability especially upon storage at high temperatures (45°C).

  3. Method for producing microcomposite powders using a soap solution

    DOEpatents

    Maginnis, Michael A.; Robinson, David A.

    1996-01-01

    A method for producing microcomposite powders for use in superconducting and non-superconducting applications. A particular method to produce microcomposite powders for use in superconducting applications includes the steps of: (a) preparing a solution including ammonium soap; (b) dissolving a preselected amount of a soluble metallic such as silver nitrate in the solution including ammonium soap to form a first solution; (c) adding a primary phase material such as a single phase YBC superconducting material in particle form to the first solution; (d) preparing a second solution formed from a mixture of a weak acid and an alkyl-mono-ether; (e) adding the second solution to the first solution to form a resultant mixture; (f) allowing the resultant mixture to set until the resultant mixture begins to cloud and thicken into a gel precipitating around individual particles of the primary phase material; (g) thereafter drying the resultant mixture to form a YBC superconducting material/silver nitrate precursor powder; and (h) calcining the YBC superconducting material/silver nitrate precursor powder to convert the silver nitrate to silver and thereby form a YBC/silver microcomposite powder wherein the silver is substantially uniformly dispersed in the matrix of the YBC material.

  4. Surface characterization of ZnO/ZnMn{sub 2}O{sub 4} and Cu/Mn{sub 3}O{sub 4} powders obtained by thermal degradation of heterobimetallic complexes

    SciTech Connect

    Barrault, Joeel; Khavryuchenko, Oleksiy V.; Kokozay, Vladimir N.; Ayrault, Philippe

    2012-03-15

    From the selective transformation of the heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes with 2,2 Prime -bipyridyl by thermal degradation at relatively low (350 Degree-Sign C) temperature, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Morphology of the powder surface was examined by scanning electron microscopy with energy dispersive X-ray microanalysis (SEM/EDX). Surface composition was determined by X-ray photoelectron spectroscopy (XPS). Specific surface of the powders by nitrogen adsorption was found to be 33{+-}0.2 and 9{+-}0.06 m{sup 2} g{sup -1} for Zn-Mn and Cu-Mn samples, respectively, which is comparable to those of commercial products. - Graphical abstract: From the selective transformation of heterometallic (Zn-Mn or Cu-Mn) carboxylate complexes, it was possible to get either well defined spinel ZnMn{sub 2}O{sub 4} over zinc oxide or well dispersed copper particles surrounded by a manganese oxide (Mn{sub 3}O{sub 4}) in a core-shell like structure. Highlights: Black-Right-Pointing-Pointer Thermal degradation of heterometallic complexes results in fine disperse particles. Black-Right-Pointing-Pointer Core-shell Cu/Mn{sub 3}O{sub 4} particles are obtained. Black-Right-Pointing-Pointer ZnMn{sub 2}O{sub 4} spinel layer covers ZnO particles.

  5. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  6. Method to evaluate the dustiness of pharmaceutical powders.

    PubMed

    Boundy, Maryanne; Leith, David; Polton, Thomas

    2006-07-01

    The trend among pharmaceutical companies to develop selective drugs of high potency has pushed the industry to consider the potential of each hazardous ingredient to become airborne. Dustiness issues are not unique to the pharmaceutical industry, but are relevant to any industry where powdered materials are mixed, transferred and handled. Interest in dustiness is also driven by concerns for worker health, the potential for plant explosions and the prevention of product loss. Unlike other industries, the pharmaceutical industry is limited by the milligram quantity of powdered material available for testing during product development. These needs have led to the development of a bench-top dustiness tester that requires only 10 mg of powder and fully contains the generated aerosol. The powder is dispersed within a 5.7 liter glass chamber that contains a respirable mass sampler and a closed-face sampler to quantify the respirable and total dust that are generated with a given energy input. The tester distinguished differences in dustiness levels of five different powders. Finer powders were dustier, and the respirable dust percentage was always less than that for total dust. Four testers have been built and evaluated using pharmaceutical grade lactose. Dustiness measurements determined using all four testers were comparable. The pharmaceutical industry uses surrogates such as lactose to represent active compounds in tests that estimate the dust concentration likely to occur in a new manufacturing operation. Differences between the dustiness of the active compound and its surrogate challenge the relevance of the surrogate tests to represent true exposures in the workplace. The tester can determine the dustiness of both the active compound and its surrogate, and the resultant ratio can help to interpret dust concentrations from surrogate tests. Further, dustiness information may allow the pharmaceutical researcher to select powder formulations that present low airborne

  7. Supercritical fluid molecular spray film deposition and powder formation

    DOEpatents

    Smith, Richard D.

    1986-01-01

    Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.

  8. Characterization of commercially pure aluminum powder for research reactor fuel plates

    SciTech Connect

    Downs, V.D.; Wiencek, T.C.

    1992-11-01

    Aluminum powder is used as the matrix material in the production of uranium aluminide, oxide, and silicide dispersion fuel plates for research and test reactors. variability in the characteristics of the aluminum powder, such as moisture content and particle-size distribution, influences blending and compacting of the aluminum/fuel powder. A detailed study was performed to characterize the physical properties of three aluminum powder lots. An angle-of-shear test was devised to characterize the cohesiveness of the aluminum powder. Flow-rate measurements, apparent density determination, subsieve analysis, surface area measurements, and scanning electron microscopy were also used in the study. It was found that because of the various types of commercially available powders, proper specification of powder variables will ensure the receipt of consistent raw materials. Improved control of the initial powder will reduce the variability of fuel-plate production and will improve overall plate reproducibility. It is recommended that a standard specification be written for the aluminum powder and silicide fuel.

  9. Characterization of commercially pure aluminum powder for research reactor fuel plates

    SciTech Connect

    Downs, V.D. ); Wiencek, T.C. )

    1992-01-01

    Aluminum powder is used as the matrix material in the production of uranium aluminide, oxide, and silicide dispersion fuel plates for research and test reactors. variability in the characteristics of the aluminum powder, such as moisture content and particle-size distribution, influences blending and compacting of the aluminum/fuel powder. A detailed study was performed to characterize the physical properties of three aluminum powder lots. An angle-of-shear test was devised to characterize the cohesiveness of the aluminum powder. Flow-rate measurements, apparent density determination, subsieve analysis, surface area measurements, and scanning electron microscopy were also used in the study. It was found that because of the various types of commercially available powders, proper specification of powder variables will ensure the receipt of consistent raw materials. Improved control of the initial powder will reduce the variability of fuel-plate production and will improve overall plate reproducibility. It is recommended that a standard specification be written for the aluminum powder and silicide fuel.

  10. Highly dispersive slot waveguides.

    PubMed

    Zhang, Lin; Yue, Yang; Xiao-Li, Yinying; Beausoleil, Raymond G; Willner, Alan E

    2009-04-27

    We propose a slot-waveguide with high dispersion, in which a slot waveguide is coupled to a strip waveguide. A negative dispersion of up to -181520 ps/nm/km is obtained due to a strong interaction of the slot and strip modes. A flat and large dispersion is achievable by cascading the dispersive slot-waveguides with varied waveguide thickness or width for dispersion compensation and signal processing applications. We show - 31300 ps/nm/km dispersion over 147-nm bandwidth with <1% variance.

  11. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols.

    PubMed

    Meenach, Samantha A; Vogt, Frederick G; Anderson, Kimberly W; Hilt, J Zach; McGarry, Ronald C; Mansour, Heidi M

    2013-01-01

    Novel advanced spray-dried and co-spray-dried inhalable lung surfactant-mimic phospholipid and poly(ethylene glycol) (PEG)ylated lipopolymers as microparticulate/nanoparticulate dry powders of biodegradable biocompatible lipopolymers were rationally formulated via an organic solution advanced spray-drying process in closed mode using various phospholipid formulations and rationally chosen spray-drying pump rates. Ratios of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine PEG (DPPE-PEG) with varying PEG lengths were mixed in a dilute methanol solution. Scanning electron microscopy images showed the smooth, spherical particle morphology of the inhalable particles. The size of the particles was statistically analyzed using the scanning electron micrographs and SigmaScan® software and were determined to be 600 nm to 1.2 μm in diameter, which is optimal for deep-lung alveolar penetration. Differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) were performed to analyze solid-state transitions and long-range molecular order, respectively, and allowed for the confirmation of the presence of phospholipid bilayers in the solid state of the particles. The residual water content of the particles was very low, as quantified analytically via Karl Fischer titration. The composition of the particles was confirmed using attenuated total-reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy and confocal Raman microscopy (CRM), and chemical imaging confirmed the chemical homogeneity of the particles. The dry powder aerosol dispersion properties were evaluated using the Next Generation Impactor™ (NGI™) coupled with the HandiHaler® dry powder inhaler device, where the mass median aerodynamic diameter from 2.6 to 4.3 μm with excellent aerosol dispersion performance, as exemplified by high values of emitted dose, fine particle fraction, and respirable fraction. Overall, it was determined that the pump rates defined in the

  12. Stable powders made from photosensitive polycrystalline complexes of heterocyclic monomers and their polymers

    NASA Technical Reports Server (NTRS)

    Hodko, Dalibor (Inventor); Murphy, Oliver J. (Inventor); Hitchens, G. Duncan (Inventor)

    1999-01-01

    The present invention relates to a low electronic conductivity polymer composition having well dispersed metal granules, a stable powder made from photosensitive polycrystalline complexes of pyrrole, or its substituted derivatives and silver cations for making the polymer composition, and methods of forming the stable powder and polymer composition, respectively. A polycrystalline complex of silver and a monomer, such as pyrrole, its substituted derivatives or combinations thereof, is precipitated in the form of a stable photosensitive powder upon addition of the monomer to a solvent solution, such as toluene containing an electron acceptor. The photosensitive powder can be stored in the dark until needed. The powder may be dissolved in a solvent, cast onto a substrate and photopolymerized.

  13. Comparison of the surface charge behavior of commercial silicon nitride and silicon carbide powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1988-01-01

    The adsorption and desorption of protons from aqueous solution onto the surfaces of a variety of commercial silicon carbide and silicon nitride powders has been examined using a surface titration methodology. This method provides information on some colloidal characteristics, such as the point of zero charge (pzc) and the variation of proton adsorption with dispersion pH, useful for the prediction of optimal ceramic-processing conditions. Qualitatively, the magnitude of the proton adsorption from solution reveals small differences among all of the materials studied. However, the results show that the pzc for the various silicon nitride powders is affected by the powder synthesis route. Complementary investigations have shown that milling can also act to shift the pzc exhibited by silicon nitride powder. Also, studies of the role of the electrolyte in the development of surface charge have indicated no evidence of specific adsorption of ammonium ion on either silicon nitride or silicon carbide powders.

  14. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  15. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath; Blaugher, Richard D.

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  16. Manufacture of finely divided carbon

    SciTech Connect

    Walker, D.G.

    1980-01-22

    Finely divided carbon is manufactured by a process producing a gaseous stream containing carbon monoxide by reacting coal and air in a slagging ash gasifier, separating carbon monoxide from the gaseous mixture, and disproportionating the carbon monoxide to produce finely divided carbon and carbon dioxide, the latter of which is recycled to the gasifier.

  17. Problems of Development and Application of Metal Matrix Composite Powders for Additive Technologies

    NASA Astrophysics Data System (ADS)

    Korosteleva, Elena N.; Pribytkov, Gennadii A.; Krinitcyn, Maxim G.; Baranovskii, Anton V.; Korzhova, Victoria V.

    2016-07-01

    The paper considers the problem of structure formation in composites with carbide phase and a metal binder under self-propagating high-temperature synthesis (SHS) of powder mixtures. The relation between metal binder content and their structure and wear resistance of coatings was studied. It has been shown that dispersion of the carbide phase and volume content of metal binder in the composite powders structure could be regulated purposefully for all of studied composites. It was found that the structure of surfaced coating was fully inherited of composite powders. Modification or coarsening of the structure at the expense of recrystallization or coagulation carbide phase during deposition and sputtering does not occur.

  18. Plasma methods of obtainment of multifunctional composite materials, dispersion-hardened by nanoparticles

    NASA Astrophysics Data System (ADS)

    Sizonenko, O. N.; Grigoryev, E. G.; Zaichenko, A. D.; Pristash, N. S.; Torpakov, A. S.; Lipyan, Ye V.; Tregub, V. A.; Zholnin, A. G.; Yudin, A. V.; Kovalenko, A. A.

    2016-04-01

    The new approach in developed plasma methods consists in that dispersionhardening additives (TiC, TiB2 in particular) are not mechanically added to powder mixture as additional component, as in conventional methods, but are instead synthesized during high voltage electric discharges (HVED) in disperse system “hydrocarbon liquid - powder” preservation of ultrafine structure is ensured due to use of spark plasma sintering (SPS) as a consolidation method. HVED in disperse system “hydrocarbon liquid - powder” due to impact of plasma discharge channel, electromagnetic fields, shock waves mechanical impact, hydro flows and volume microcavitation leads to synthesis of nanocarbon, metal powders dispersion and synthesis of micro- (from 10-6 to 10-7 m) and nanosized (from 10-7 to 10-9 m) composite powders of hardening phases. SPS is the passage of pulsed current (superposition of direct and alternating current) through powder with the simultaneous mechanical compressing. The formation of plasma is initiated in gaseous phase that fills gaps between particles. SPS allows targeted control of grain growth rate and thus allows obtainment of multifunctional composite materials dispersion hardened by nanoparticles. Processes of HVED synthesis of micro- and nanosized powders of new compositions from elemental metal powders and their mixtures with the subsequent application of high-speed SPS of obtained powders create conditions for increase of strength (by 10 - 20%), hardness and wear-resistance (by 30 - 60%) of obtained materials.

  19. Conversion method of powder inelastic scattering data for one-dimensional systems

    SciTech Connect

    Tomiyasu, Dr. Keisuke; Fujita, Prof. Masaki; Kolesnikov, Alexander I; Bewley, Robert I.; Bull, Dr. Martyn J.; Bennington, Dr. Stephen M.

    2009-01-01

    Extracting dispersive magnetic excitations from inelastic neutron scattering data usually requires large single crystals. We present a simple yet powerful method for extracting such information from polycrystalline or powder data for one-dimensional systems. We demonstrate the effectiveness of this data treatment by extracting dispersion curves from powder inelastic neutron scattering data on the one-dimensional spin-half systems: CuGeO3 and Rb2Cu2Mo3O12. For many such materials it is not possible to grow sufficiently large crystals and this method offers a quick and efficient way to study their magnetic excitations.

  20. Yield behavior of metal powder assemblages

    NASA Astrophysics Data System (ADS)

    Brown, Stuart; Abou-Chedid, Georges

    1994-03-01

    W E PRESENT EXPERIMENTAL data on the compaction of powder metals using two powder systems with different powder particle morphologies. The data have been collected using biaxial and triaxial compaction systems that load powders radially in deformation space. Our results indicate that several current models proposed for powder metal compaction do not represent actual constitutive behavior. Additionally, the powders tested demonstrate a strong dependence on powder morphology and a possible associated dependence on interparticle cohesion. This dependence on cohesion may necessitate the use of an additional state variable beyond those of relative density and particle hardening ordinarily used to represent powder yield behavior.

  1. Feeder For Oxygen-Sensitive Powders

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Mckechnie, Timothy N.; Power, Christopher A.; Burns, David H.

    1993-01-01

    Powder feeder for oxygen-sensitive powders facilitates transfer of powder while protecting it against oxidation. Sight gauge enables continuous monitoring of level to which feeder filled with powder, as well as for visual monitoring of quality powder. Coupling mates with specially designed containers, in which powders packaged under vacuum or inert gas. Eliminating need for unncessary handling of powders and attendant risk of contamination by oxygen. Internal funnel unloads unused powder from feeder in vacuum or inert-gas atmosphere. Pressure gauge monitors pressure of inert backfill gas.

  2. Chemical composition of Martian fines

    NASA Technical Reports Server (NTRS)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  3. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1994-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  4. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1996-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  5. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T.; Basaran, Osman A.; Kollie, Thomas G.; Weaver, Fred J.

    1995-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  6. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  7. Synthesis of Li 2TiO 3 ceramic breeder powders by the combustion process

    NASA Astrophysics Data System (ADS)

    Jung, C. H.; Park, J. Y.; Oh, S. J.; Park, H. K.; Kim, Y. S.; Kim, D. K.; Kim, J. H.

    1998-03-01

    The synthesis of the ultra-fine Li 2TiO 3 powder by the combustion reaction of lithium nitrate, titanium nitrate and specific fuels was investigated. Ultrafine Li 2TiO 3 powders could be synthesized using glycine or a mixture of urea and citric acid. A pure Li 2TiO 3 phase was obtained by the simple process without further calcination reaction. The specific surface area of the as-synthesized powder was 10 to 14 m 2/g and the primary particle size was about 30 nm. The Li 2TiO 3 body sintered at 800°C for 3 h had dense agglomerates which were formed by the inter-agglomerate sintering process. Each of the agglomerates consisted of very fine grains with a size of 0.3 to 0.5 μm.

  8. A Newtonian Explanation of the Hydrogen Fine Structure

    NASA Astrophysics Data System (ADS)

    Fisher, Paul; Espinosa, James; Woodyard, James

    2010-10-01

    The Hydrogen spectrum as seen by low dispersion spectrometers is correctly described by a classical theory founded on Ritz's magnetic model. With increasingly powerful instruments, individual lines are split into smaller groupings that are three orders of magnitude smaller. Arnold Sommerfeld was the first to develop a theory based on the mass variation of the electron to correctly describe this ``fine'' structure. A few years later, Vannevar Bush pointed out that Weber's force law could be used instead of Einstein's theory of relativity. We will utilize this line of approach to present a purely classical theory of the fine structure of the Hydrogen atom. Ritz's theory of electromagnetism replaces Weber's law; we will summarize all the other atomic physics experiments that our classical theory already describes correctly. Finally we will show how this fine structure theory logically paves the way for an explanation of the linear Stark effect.

  9. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  10. Comparative efficacy of emulsifiable-oil, wettable-powder, and unformulated-powder preparations of Beauveria bassiana against the melon aphid Aphis gossypii

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aphicidal efficacy of two commercial formulations of Beauveria bassiana strain GHA conidia, an emulsifiable-paraffinic oil dispersion (OD) and a clay-based wettable powder (WP), were compared to unformulated conidia in laboratory tests with adult melon aphids (Aphis gossypii). For the initial 24 hou...

  11. Characterization of prealloyed copper powders treated in high energy ball mill

    SciTech Connect

    Rajkovic, Viseslava . E-mail: visnja@vin.bg.ac.yu; Bozic, Dusan; Jovanovic, Milan T.

    2006-08-15

    The inert gas atomised prealloyed copper powders containing 3.5 wt.% Al were milled up to 20 h in the planetary ball mill in order to oxidize aluminium in situ with oxygen from the air. In the next procedure compacts from milled powder were synthesized by hot-pressing in argon atmosphere. Compacts from as-received Cu-3.5 wt.% Al powder and electrolytic copper powder were also prepared under the same conditions. Microstructural and morphological changes of high energy milled powder as well as changes of thermal stability and electrical conductivity of compacts were studied as a function of milling time and high temperature exposure at 800 deg. C. Optical, scanning electron microscopy (SEM) and X-ray diffraction analysis were performed for microstructural characterization, whereas thermal stability and electrical conductivity were evaluated by microhardness measurements and conductometer Sigmatest, respectively. The prealloyed 5 h-milled and compacted powder showed a significant increase in microhardness reaching the value of 2600 MPa, about 4 times greater than that of compacts synthesized from as-received electrolytic copper powder (670 MPa). The electrical conductivity of compacts from 5 h-milled powder was 52% IACS. The results were discussed in terms of the effect of small grain size and finely distributed alumina dispersoids on hardening and thermal stability of compacts.

  12. Lectures on Dispersion Theory

    DOE R&D Accomplishments Database

    Salam, A.

    1956-04-01

    Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)

  13. Aerosolization properties, surface composition and physical state of spray-dried protein powders.

    PubMed

    Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita

    2004-10-19

    Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (<0.15 g/cm3), the aerodynamic size of a large fraction of aggregates remained respirable (<5 microm). Fine particle fractions ranged between 21% and 41% in an Andersen cascade impactor operated at 28.3 l/min, with mannitol and lactose providing the most cohesive and free-flowing powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.

  14. Synthesis of aluminum nitride powders from a plasma-assisted ball milled precursor through carbothermal reaction

    SciTech Connect

    Liu, Zhi-jie; Dai, Le-yang; Yang, De-zheng; Wang, Sen; Zhang, Bao-jian; Wang, Wen-chun; Cheng, Tie-han

    2015-01-15

    Highlights: • A novel and high efficiency synthesizing AlN powders method combining mechanical ball milling and DBDP has been developed. • The particle size, the crystallite size, the lattice distortion, the morphology of Al{sub 2}O{sub 3} powders, and the AlN conversion rate are investigated and compared under the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP. • The ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. - Abstract: In this paper, aluminum nitride (AlN) powers have been produced with a novel and high efficiency method by thermal annealing at 1100–1600 °C of alumina (Al{sub 2}O{sub 3}) powders which were previously ball milled for various time up to 40 h with and without the assistant of dielectric barrier discharge plasma (DBDP). The ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP and the corresponding synthesized AlN powers are characterized by X-ray diffraction, scanning electron microscope, and transmission electron microscopy. From the characteristics of the ball milled Al{sub 2}O{sub 3} powders with DBDP and without DBDP, it can be seen that the ball milled Al{sub 2}O{sub 3} powders with DBDP have small spherical structure morphology with very fine particles size and high specific surface area, which result in a higher chemical efficiency and a higher AlN conversion rate at lower thermal temperature. Meanwhile, the synthesized AlN powders can be known as hexagonal AlN with fine crystal morphology and irregular lump-like structure, and have uniform distribution with the average particle size of about between 500 nm and 1000 nm. This provides an important method for fabricating ultra fine powders and synthesizing nitrogen compounds.

  15. A laboratory means to produce tough aluminum sheet from powder

    NASA Technical Reports Server (NTRS)

    Singleton, O. R.; Royster, D. M.; Thomas, J. R.

    1990-01-01

    The rapid solidification of aluminum alloys as powder and the subsequent fabrication processes can be used to develop and tailor alloys to satisfy specific aerospace design requirements, including high strength and toughness. Laboratory procedures to produce aluminum powder-metallurgy (PM) materials are efficient but require evidence that the laboratory methods used can produce a product with superior properties. This paper describes laboratory equipment and procedures which can be used to produce tough aluminum PM sheet. The processing of a 2124 + 0.9 percent Zr aluminum alloy powder is used as an example. The fully hardened sheet product is evaluated in terms of properties and microstructure. The key features of the vacuum hot press pressing operation used to consolidate the powder are described. The 2124 + 0.9 percent Zr - T8 temper aluminum sheet produced was both strong (460-490 MPa yield strength) and tough (Kahn Tear unit-propagation- energy values over three times those typical for ingot metallurgy 2024-T81). Both the longitudinal and longitudinal-transverse directions of the sheet were tested. The microstructure was well refined with subgrains of one or two micrometers. Fine dispersoids of Al3Zr in the precipitate free regions adjacent to boundaries are believed to contribute to the improved toughness.

  16. Development of liposomal salbutamol sulfate dry powder inhaler formulation.

    PubMed

    Huang, Wen-Hua; Yang, Zhi-Jun; Wu, Heng; Wong, Yuen-Fan; Zhao, Zhong-Zhen; Liu, Liang

    2010-01-01

    The purpose of our study was to develop a formulation of liposomal salbutamol sulfate (SBS) dry powder inhaler (DPI) for the treatment of asthma. Liposomes of high encapsulation efficiency (more than 80%) were prepared by a vesicular phospholipid gel (VPG) technique. SBS VPG liposomes were subjected to lyophilization using different kinds of cryoprotectants in various mass ratios. Coarse lactose (63-106 microm) in different mass ratios was used as a carrier. Magnesium stearate (0.5%) was added as a lubricator. The dry liposomal powders were then crushed by ball milling and sieved through a 400-mesh sieve to control the mean particle size at about 10 microm. The effects of different kinds of cryoprotectants and the amount of lactose carrier on the fine particle fraction (FPF) of SBS were investigated. The results showed that the developed formulation of liposomal dry powder inhaler was obtained using lactose as a cryoprotectant with a mass ratio of lyophilized powder to carrier lactose at 1 : 5; 0.5% magnesium stearate was used as a lubricator. The value of FPF for SBS was 41.51+/-2.22% for this formulation. Sustained release of SBS from the VPG liposomes was found in the in vitro release study. The study results offer the promising possibility of localized pulmonary liposomal SBS delivery in the anhydrous state.

  17. Process for making ultra-fine ceramic particles

    DOEpatents

    Stangle, Gregory C.; Venkatachari, Koththavasal R.; Ostrander, Steven P.; Schulze, Walter A.

    1995-01-01

    A process for producing ultra-fine ceramic particles in which droplets are formed from a ceramic precursor mixture containing a metal cation, a nitrogen-containing fuel, a solvent, and an anion capable of participating in an anionic oxidation-reduction reaction with the nitrogen containing fuel. The nitrogen-containing fuel contains at least three nitrogen atoms, at least one oxygen atom, and at least one carbon atom. The ceramic precursor mixture is dried to remove at least 85 weight percent of the solvent, and the dried mixture is then ignited to form a combusted powder.

  18. New ceramics containing dispersants for improved fracture toughness

    DOEpatents

    Nevitt, M.V.; Aldred, A.T.; Chan, Sai-Kit

    1985-07-01

    The invention is a ceramic composition containing a new class of dispersant for hindering crack propagation by means of one or more energy-dissipative mechanisms. The composition is composed of a ceramic matrix with dispersed particles of a transformation-prone rare-earth niobate, tantalate or mixtures of these with each other and/or with a rare-earth vanadate. The dispersants, having a generic composition tRBO/sub 4/, where R is a rare-earth element, B if Nb or Ta and O is oxygen, are mixed in powder form with a powder of the matrix ceramic and sintered to produce a ceramic form or body. The crack-hindering mechanisms operates to provide improved performance over a wide range of temperature and operating conditions.

  19. Dispersion y dinamica poblacional

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dispersal behavior of fruit flies is appetitive. Measures of dispersion involve two different parameter: the maximum distance and the standard distance. Standard distance is a parameter that describes the probalility of dispersion and is mathematically equivalent to the standard deviation around ...

  20. Ceramic powder for sintering materials

    NASA Technical Reports Server (NTRS)

    Akiya, H.; Saito, A.

    1984-01-01

    Surface activity of ceramic powders such as MgO and Al2O3, for use in sintering with sp. emphasis on their particle size, shape, particle size distribution, packing, and coexisting additives and impurities are reviewed.