van den Noort, Josien C.; van Beek, Nathalie; van der Kraan, Thomas; Veeger, DirkJan H. E. J.; Stegeman, Dick F.; Veltink, Peter H.; Maas, Huub
2016-01-01
The variability in the numerous tasks in which we use our hands is very large. However, independent movement control of individual fingers is limited. To assess the extent of finger independency during full-range finger flexion including all finger joints, we studied enslaving (movement in non-instructed fingers) and range of independent finger movement through the whole finger flexion trajectory in single and multi-finger movement tasks. Thirteen young healthy subjects performed single- and multi-finger movement tasks under two conditions: active flexion through the full range of movement with all fingers free to move and active flexion while the non-instructed finger(s) were restrained. Finger kinematics were measured using inertial sensors (PowerGlove), to assess enslaving and range of independent finger movement. Although all fingers showed enslaving movement to some extent, highest enslaving was found in adjacent fingers. Enslaving effects in ring and little finger were increased with movement of additional, non-adjacent fingers. The middle finger was the only finger affected by restriction in movement of non-instructed fingers. Each finger showed a range of independent movement before the non-instructed fingers started to move, which was largest for the index finger. The start of enslaving was asymmetrical for adjacent fingers. Little finger enslaving movement was affected by multi-finger movement. We conclude that no finger can move independently through the full range of finger flexion, although some degree of full independence is present for smaller movements. This range of independent movement is asymmetric and variable between fingers and between subjects. The presented results provide insight into the role of finger independency for different types of tasks and populations. PMID:27992598
Teo, W P; Rodrigues, J P; Mastaglia, F L; Thickbroom, G W
2013-06-01
Repetitive finger tapping is a well-established clinical test for the evaluation of parkinsonian bradykinesia, but few studies have investigated other finger movement modalities. We compared the kinematic changes (movement rate and amplitude) and response to levodopa during a conventional index finger-thumb-tapping task and an unconstrained index finger flexion-extension task performed at maximal voluntary rate (MVR) for 20 s in 11 individuals with levodopa-responsive Parkinson's disease (OFF and ON) and 10 healthy age-matched controls. Between-task comparisons showed that for all conditions, the initial movement rate was greater for the unconstrained flexion-extension task than the tapping task. Movement rate in the OFF state was slower than in controls for both tasks and normalized in the ON state. The movement amplitude was also reduced for both tasks in OFF and increased in the ON state but did not reach control levels. The rate and amplitude of movement declined significantly for both tasks under all conditions (OFF/ON and controls). The time course of rate decline was comparable for both tasks and was similar in OFF/ON and controls, whereas the tapping task was associated with a greater decline in MA, both in controls and ON, but not OFF. The findings indicate that both finger movement tasks show similar kinematic changes during a 20-s sustained MVR, but that movement amplitude is less well sustained during the tapping task than the unconstrained finger movement task. Both movement rate and amplitude improved with levodopa; however, movement rate was more levodopa responsive than amplitude.
Writing in the Air: Contributions of Finger Movement to Cognitive Processing
Itaguchi, Yoshihiro; Yamada, Chiharu; Fukuzawa, Kazuyoshi
2015-01-01
The present study investigated the interactions between motor action and cognitive processing with particular reference to kanji-culture individuals. Kanji-culture individuals often move their finger as if they are writing when they are solving cognitive tasks, for example, when they try to recall the spelling of English words. This behavior is called kusho, meaning air-writing in Japanese. However, its functional role is still unknown. To reveal the role of kusho behavior in cognitive processing, we conducted a series of experiments, employing two different cognitive tasks, a construction task and a stroke count task. To distinguish the effects of the kinetic aspects of kusho behavior, we set three hand conditions in the tasks; participants were instructed to use either kusho, unrelated finger movements or do nothing during the response time. To isolate possible visual effects, two visual conditions in which participants saw their hand and the other in which they did not, were introduced. We used the number of correct responses and response time as measures of the task performance. The results showed that kusho behavior has different functional roles in the two types of cognitive tasks. In the construction task, the visual feedback from finger movement facilitated identifying a character, whereas the kinetic feedback or motor commands for the behavior did not help to solve the task. In the stroke count task, by contrast, the kinetic aspects of the finger movements influenced counting performance depending on the type of the finger movement. Regardless of the visual condition, kusho behavior improved task performance and unrelated finger movements degraded it. These results indicated that motor behavior contributes to cognitive processes. We discussed possible mechanisms of the modality dependent contribution. These findings might lead to better understanding of the complex interaction between action and cognition in daily life. PMID:26061273
Writing in the Air: Contributions of Finger Movement to Cognitive Processing.
Itaguchi, Yoshihiro; Yamada, Chiharu; Fukuzawa, Kazuyoshi
2015-01-01
The present study investigated the interactions between motor action and cognitive processing with particular reference to kanji-culture individuals. Kanji-culture individuals often move their finger as if they are writing when they are solving cognitive tasks, for example, when they try to recall the spelling of English words. This behavior is called kusho, meaning air-writing in Japanese. However, its functional role is still unknown. To reveal the role of kusho behavior in cognitive processing, we conducted a series of experiments, employing two different cognitive tasks, a construction task and a stroke count task. To distinguish the effects of the kinetic aspects of kusho behavior, we set three hand conditions in the tasks; participants were instructed to use either kusho, unrelated finger movements or do nothing during the response time. To isolate possible visual effects, two visual conditions in which participants saw their hand and the other in which they did not, were introduced. We used the number of correct responses and response time as measures of the task performance. The results showed that kusho behavior has different functional roles in the two types of cognitive tasks. In the construction task, the visual feedback from finger movement facilitated identifying a character, whereas the kinetic feedback or motor commands for the behavior did not help to solve the task. In the stroke count task, by contrast, the kinetic aspects of the finger movements influenced counting performance depending on the type of the finger movement. Regardless of the visual condition, kusho behavior improved task performance and unrelated finger movements degraded it. These results indicated that motor behavior contributes to cognitive processes. We discussed possible mechanisms of the modality dependent contribution. These findings might lead to better understanding of the complex interaction between action and cognition in daily life.
Fu, Yue; Zhang, Quan; Zhang, Jing; Zhang, Yun Ting
2015-01-01
To compare the effects of active and passive movements on brain activation in patients with cerebral infarction using fMRI. Twenty-four hemiplegic patients with cerebral infarction were evaluated using fMRI. All patients performed active and passive finger opposition movements. Patients were instructed to perform the finger opposition movement for the active movement task. For the passive movement task, the subject's fingers were moved by the examiner to perform the finger opposition movement. Statistical parametric mapping software was used for statistical analyses and to process all data. In the affected hemisphere, sensorimotor cortex (SMC) activation intensity and range were significantly stronger during the passive movement of the affected fingers compared to the active movement of the affected fingers (p < 0.05). However, there were no significant differences between active and passive movements of unaffected fingers in SMC activation intensity and range in the unaffected hemisphere (p > 0.05). In addition, the passive movement activated many other regions of the brain. The brain regions activated by passive movements of the affected fingers tended to center toward the contralateral SMC. Our findings suggest that passive movements induce cortical reorganization in patients with cerebral infarction. Therefore, passive movement is likely beneficial for motor function recovery in patients with cerebral infarction.
Márquez, Gonzalo; Keller, Martin; Lundbye-Jensen, Jesper; Taube, Wolfgang
2018-03-01
Research has indicated that at the onset of a finger movement, unwanted contractions of adjacent muscles are prevented by inhibiting the cortical areas representing these muscles. This so-called surround inhibition (SI) seems relevant for the performance of selective finger movements but may not be necessary for tasks involving functional coupling between different finger muscles. Therefore, the present study compared SI between isolated finger movement and complex selective finger movements while playing a three-finger sequence on the piano in nine non-professional musicians and 10 untrained control participants. Transcranial magnetic stimulation (TMS) was applied to the contralateral motor cortex to assess SI in the first dorsal interosseous (FDI), abductor pollicis brevis (APB) and abductor digiti minimi (ADM) during the movement preparation and the late phasic phases. The results reveal stronger SI during the preparation phase than during the phasic phase (30.6% vs. 10.7%; P < 0.05) in the isolated-finger condition in both musicians and controls. Results also show higher SI in musicians during the preparation phase of the isolated finger condition compared to the preparation phase of the three-finger sequence (40% vs. 15%; P < 0.05). However, the control group did not show this task-specific modulation of SI (isolated: 25% vs. sequence: 25%; P > 0.05). Thus, musicians were able to modulate SI between conditions whereas control participants revealed constant levels of SI. Therefore, it may be assumed that long-term training as observed in skilled musicians is accompanied by task-specific effects on SI modulation potentially relating to the ability to perform selective and complex finger movements. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.
Affiliative stimuli as primers to prosocial predispositions.
Souza, Gabriela Guerra Leal; Pereira, Mirtes Garcia; Vila, Jaime; Oliveira, Leticia; Volchan, Eliane
2012-03-01
Affiliative stimuli are pleasant and highly biologically relevant. Affiliative cues are thought to elicit a prosocial predisposition. Here affiliative and neutral pictures were exposed prior to a reaction time task which consisted in responding to a visual target. Half the participants responded with finger-flexion, a movement frequently involved in prosocial activities. The other half responded with finger extension, a less prosocially compatible movement. Results showed that under the exposure to affiliative pictures, as compared to neutral ones, participants who used finger flexion were faster, while those using finger extension were slower. Performance benefits to the task, when flexing the finger, together with performance costs, when extending it, indicate the relevance of movement compatibility to the context. These findings put forward a possible link between affiliative primers and motor preparation to facilitate a repertoire of movements related to prosocial predispositions including finger flexion.
Ranganathan, Rajiv
2017-09-11
Impairment of hand and finger function after stroke is common and affects the ability to perform activities of daily living. Even though many of these coordination deficits such as finger individuation have been well characterized, it is critical to understand how stroke survivors learn to explore and reorganize their finger coordination patterns for optimizing rehabilitation. In this study, I examine the use of a body-machine interface to assess how participants explore their movement repertoire, and how this changes with continued practice. Ten participants with chronic stroke wore a data glove and the finger joint angles were mapped on to the position of a cursor on a screen. The task of the participants was to move the cursor back and forth between two specified targets on a screen. Critically, the map between the finger movements and cursor motion was altered so that participants sometimes had to generate coordination patterns that required finger individuation. There were two phases to the experiment - an initial assessment phase on day 1, followed by a learning phase (days 2-5) where participants trained to reorganize their coordination patterns. Participants showed difficulty in performing tasks which had maps that required finger individuation, and the degree to which they explored their movement repertoire was directly related to clinical tests of hand function. However, over four sessions of practice, participants were able to learn to reorganize their finger movement coordination pattern and improve their performance. Moreover, training also resulted in improvements in movement repertoire outside of the context of the specific task during free exploration. Stroke survivors show deficits in movement repertoire in their paretic hand, but facilitating movement exploration during training can increase the movement repertoire. This suggests that exploration may be an important element of rehabilitation to regain optimal function.
A developmental study of the effect of music training on timed movements.
Braun Janzen, Thenille; Thompson, William F; Ranvaud, Ronald
2014-01-01
When people clap to music, sing, play a musical instrument, or dance, they engage in temporal entrainment. We examined the effect of music training on the precision of temporal entrainment in 57 children aged 10-14 years (31 musicians, 26 non-musicians). Performance was examined for two tasks: self-paced finger tapping (discrete movements) and circle drawing (continuous movements). For each task, participants synchronized their movements with a steady pacing signal and then continued the movement at the same rate in the absence of the pacing signal. Analysis of movements during the continuation phase revealed that musicians were more accurate than non-musicians at finger tapping and, to a lesser extent, circle drawing. Performance on the finger-tapping task was positively associated with the number of years of formal music training, whereas performance on the circle-drawing task was positively associated with the age of participants. These results indicate that music training and maturation of the motor system reinforce distinct skills of timed movement.
Miyaguchi, Shota; Kojima, Sho; Kirimoto, Hikari; Tamaki, Hiroyuki; Onishi, Hideaki
2016-01-01
We conducted two experiments to determine how differences in muscle contraction levels, muscle contraction types, and movement duration affect degree of post-exercise depression (PED) after non-exhaustive, repetitive finger movement. Twelve healthy participants performed repetitive abduction movements of the right index finger at 2 Hz. In experiment 1, we examined the effects of muscle contraction levels at 10, 20, and 30% maximum voluntary contraction and the effects of muscle contraction types at isotonic and isometric contraction. In experiment 2, we examined the effects of movement duration at 2 and 6 min. Motor-evoked potentials (MEPs) were recorded from the right first dorsal interosseous muscle before movement tasks and 1-10 min after movement tasks. MEP amplitudes after isotonic contraction tasks were significantly smaller than those after isometric contraction tasks and decreased with increasing contraction levels, but were independent of movement duration. This study demonstrated that the degree of PED after non-exhaustive repetitive finger movement depended on muscle contraction levels and types. Thus, the degree of PED may depend on the levels of activity in the motor cortex during a movement task. This knowledge will aid in the design of rehabilitation protocols.
Neural control of finger movement via intracortical brain-machine interface
NASA Astrophysics Data System (ADS)
Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Bullard, A. J.; Tat, D. M.; Nu, C. S.; Vaskov, A.; Nason, S. R.; Thompson, D. E.; Bentley, J. N.; Patil, P. G.; Chestek, C. A.
2017-12-01
Objective. Intracortical brain-machine interfaces (BMIs) are a promising source of prosthesis control signals for individuals with severe motor disabilities. Previous BMI studies have primarily focused on predicting and controlling whole-arm movements; precise control of hand kinematics, however, has not been fully demonstrated. Here, we investigate the continuous decoding of precise finger movements in rhesus macaques. Approach. In order to elicit precise and repeatable finger movements, we have developed a novel behavioral task paradigm which requires the subject to acquire virtual fingertip position targets. In the physical control condition, four rhesus macaques performed this task by moving all four fingers together in order to acquire a single target. This movement was equivalent to controlling the aperture of a power grasp. During this task performance, we recorded neural spikes from intracortical electrode arrays in primary motor cortex. Main results. Using a standard Kalman filter, we could reconstruct continuous finger movement offline with an average correlation of ρ = 0.78 between actual and predicted position across four rhesus macaques. For two of the monkeys, this movement prediction was performed in real-time to enable direct brain control of the virtual hand. Compared to physical control, neural control performance was slightly degraded; however, the monkeys were still able to successfully perform the task with an average target acquisition rate of 83.1%. The monkeys’ ability to arbitrarily specify fingertip position was also quantified using an information throughput metric. During brain control task performance, the monkeys achieved an average 1.01 bits s-1 throughput, similar to that achieved in previous studies which decoded upper-arm movements to control computer cursors using a standard Kalman filter. Significance. This is, to our knowledge, the first demonstration of brain control of finger-level fine motor skills. We believe that these results represent an important step towards full and dexterous control of neural prosthetic devices.
Soylu, Firat; Newman, Sharlene D
2016-02-01
Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development.
Finger Interdependence: Linking the Kinetic and Kinematic Variables
Kim, Sun Wook; Shim, Jae Kun; Zatsiorsky, Vladimir M.; Latash, Mark L.
2008-01-01
We studied the dependence between voluntary motion of a finger and pressing forces produced by the tips of other fingers of the hand. Subjects moved one of the fingers (task finger) of the right hand trying to follow a cyclic, ramp-like flexion-extension template at different frequencies. The other fingers (slave fingers) were restricted from moving; their flexion forces were recorded and analyzed. Index finger motion caused the smallest force production by the slave fingers. Larger forces were produced by the neighbors of the task finger; these forces showed strong modulation over the range of motion of the task finger. The enslaved forces were higher during the flexion phase of the movement cycle as compared to the extension phase. The index of enslaving expressed in N/rad was higher when the task finger moved through the more flexed postures. The dependence of enslaving on both range and direction of task finger motion poses problems for methods of analysis of finger coordination based on an assumption of universal matrices of finger inter-dependence. PMID:18255182
Van Vaerenbergh, J; Vranken, R; Briers, L; Briers, H
2001-11-01
A data glove is a typical input device to control a virtual environment. At the same time it measures movements of wrist and fingers. The purposes of this investigation were to assess the ability of BrainMaker, a neural network, to recognize movement patterns during an opposition task that consisted of repetitive self-paced movements of the fingers in opposition to the thumb. The neural network contained 56 inputs, 3 hidden layers of 20 neurons, and one output. The 5th glove '95 (5DT), a commercial glove especially designed for virtual reality games, was used for finger motion capture. The training of the neural network was successful for recognizing the thumb, the index finger and the ring finger movements during the repetitive self-paced movements and neural network performed well during testing.
Development of motor speed and associated movements from 5 to 18 years.
Gasser, Theo; Rousson, Valentin; Caflisch, Jon; Jenni, Oskar G
2010-03-01
To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance, diadochokinesis) were administered to 593 right-handed participants (286 males, 307 females). A strong improvement with age was observed in motor speed from age 5 to 10, followed by a levelling-off between 12 and 18 years. Simple tasks and the pegboard matured early and complex tasks later. Simple tasks showed no associated movements beyond early childhood; in complex tasks associated movements persisted until early adulthood. The two sexes differed only marginally in speed, but markedly in associated movements. A significant laterality (p<0.001) in speed was found for all tasks except for static balance; the pegboard was most lateralized, and sequential finger movements least. Associated movements were lateralized only for a few complex tasks. We also noted a substantial interindividual variability. Motor speed and associated movements improve strongly in childhood, weakly in adolescence, and are both of developmental relevance. Because they correlate weakly, they provide complementary information.
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Heute, U; Deuschl, G; Raethjen, J; Muthuraman, Muthuraman
2016-09-01
Recently, interest has been growing to understand the underlying dynamic directional relationship between simultaneously activated regions of the brain during motor task performance. Such directionality analysis (or effective connectivity analysis), based on non-invasive electrophysiological (electroencephalography-EEG) and hemodynamic (functional near infrared spectroscopy-fNIRS; and functional magnetic resonance imaging-fMRI) neuroimaging modalities can provide an estimate of the motor task-related information flow from one brain region to another. Since EEG, fNIRS and fMRI modalities achieve different spatial and temporal resolutions of motor-task related activation in the brain, the aim of this study was to determine the effective connectivity of cortico-cortical sensorimotor networks during finger movement tasks measured by each neuroimaging modality. Nine healthy subjects performed right hand finger movement tasks of different complexity (simple finger tapping-FT, simple finger sequence-SFS, and complex finger sequence-CFS). We focused our observations on three cortical regions of interest (ROIs), namely the contralateral sensorimotor cortex (SMC), the contralateral premotor cortex (PMC) and the contralateral dorsolateral prefrontal cortex (DLPFC). We estimated the effective connectivity between these ROIs using conditional Granger causality (GC) analysis determined from the time series signals measured by fMRI (blood oxygenation level-dependent-BOLD), fNIRS (oxygenated-O2Hb and deoxygenated-HHb hemoglobin), and EEG (scalp and source level analysis) neuroimaging modalities. The effective connectivity analysis showed significant bi-directional information flow between the SMC, PMC, and DLPFC as determined by the EEG (scalp and source), fMRI (BOLD) and fNIRS (O2Hb and HHb) modalities for all three motor tasks. However the source level EEG GC values were significantly greater than the other modalities. In addition, only the source level EEG showed a significantly greater forward than backward information flow between the ROIs. This simultaneous fMRI, fNIRS and EEG study has shown through independent GC analysis of the respective time series that a bi-directional effective connectivity occurs within a cortico-cortical sensorimotor network (SMC, PMC and DLPFC) during finger movement tasks.
Soteropoulos, Demetris S; Williams, Elizabeth R; Baker, Stuart N
2012-01-01
Recent work has shown that the primate reticulospinal tract can influence spinal interneurons and motoneurons involved in control of the hand. However, demonstrating connectivity does not reveal whether reticular outputs are modulated during the control of different types of hand movement. Here, we investigated how single unit discharge in the pontomedullary reticular formation (PMRF) modulated during performance of a slow finger movement task in macaque monkeys. Two animals performed an index finger flexion–extension task to track a target presented on a computer screen; single units were recorded both from ipsilateral PMRF (115 cells) and contralateral primary motor cortex (M1, 210 cells). Cells in both areas modulated their activity with the task (M1: 87%, PMRF: 86%). Some cells (18/115 in PMRF; 96/210 in M1) received sensory input from the hand, showing a short-latency modulation in their discharge following a rapid passive extension movement of the index finger. Effects in ipsilateral electromyogram to trains of stimuli were recorded at 45 sites in the PMRF. These responses involved muscles controlling the digits in 13/45 sites (including intrinsic hand muscles, 5/45 sites). We conclude that PMRF may contribute to the control of fine finger movements, in addition to its established role in control of more proximal limb and trunk movements. This finding may be especially important in understanding functional recovery after brain lesions such as stroke. PMID:22641776
Spontaneous eye blinks are entrained by finger tapping.
Cong, D-K; Sharikadze, M; Staude, G; Deubel, H; Wolf, W
2010-02-01
We studied the mutual cross-talk between spontaneous eye blinks and continuous, self-paced unimanual and bimanual tapping. Both types of motor activities were analyzed with regard to their time-structure in synchronization-continuation tapping tasks which involved different task instructions, namely "standard" finger tapping (Experiment 1), "strong" tapping (Experiment 2) requiring more forceful finger movements, and "impulse-like" tapping (Experiment 3) where upward-downward finger movements had to be very fast. In a further control condition (Experiment 4), tapping was omitted altogether. The results revealed a prominent entrainment of spontaneous blink behavior by the manual tapping, with bimanual tapping being more effective than unimanual tapping, and with the "strong" and "impulse-like" tapping showing the largest effects on blink timing. Conversely, we found no significant effects of the tapping on the timing of the eye blinks across all experiments. The findings suggest a functional overlap of the motor control structures responsible for voluntary, rhythmic finger movements and eye blinking behavior.
Cluff, Tyler; Boulet, Jason; Balasubramaniam, Ramesh
2011-08-01
Theories of motor learning argue that the acquisition of novel motor skills requires a task-specific organization of sensory and motor subsystems. We examined task-specific coupling between motor subsystems as subjects learned a novel stick-balancing task. We focused on learning-induced changes in finger movements and body sway and investigated the effect of practice on their coupling. Eight subjects practiced balancing a cylindrical wooden stick for 30 min a day during a 20 day learning period. Finger movements and center of pressure trajectories were recorded in every fifth practice session (4 in total) using a ten camera VICON motion capture system interfaced with two force platforms. Motor learning was quantified using average balancing trial lengths, which increased with practice and confirmed that subjects learned the task. Nonlinear time series and phase space reconstruction methods were subsequently used to investigate changes in the spatiotemporal properties of finger movements, body sway and their progressive coupling. Systematic increases in subsystem coupling were observed despite reduced autocorrelation and differences in the temporal properties of center of pressure and finger trajectories. The average duration of these coupled trajectories increased systematically across the learning period. In short, the abrupt transition between coupled and decoupled subsystem dynamics suggested that stick balancing is regulated by a hierarchical control mechanism that switches from collective to independent control of the finger and center of pressure. In addition to traditional measures of motor performance, dynamical analyses revealed changes in motor subsystem organization that occurred when subjects learned a novel stick-balancing task.
Eye movement training is most effective when it involves a task-relevant sensorimotor decision.
Fooken, Jolande; Lalonde, Kathryn M; Mann, Gurkiran K; Spering, Miriam
2018-04-01
Eye and hand movements are closely linked when performing everyday actions. We conducted a perceptual-motor training study to investigate mutually beneficial effects of eye and hand movements, asking whether training in one modality benefits performance in the other. Observers had to predict the future trajectory of a briefly presented moving object, and intercept it at its assumed location as accurately as possible with their finger. Eye and hand movements were recorded simultaneously. Different training protocols either included eye movements or a combination of eye and hand movements with or without external performance feedback. Eye movement training did not transfer across modalities: Irrespective of feedback, finger interception accuracy and precision improved after training that involved the hand, but not after isolated eye movement training. Conversely, eye movements benefited from hand movement training or when external performance feedback was given, thus improving only when an active interceptive task component was involved. These findings indicate only limited transfer across modalities. However, they reveal the importance of creating a training task with an active sensorimotor decision to improve the accuracy and precision of eye and hand movements.
Influence of action-effect associations acquired by ideomotor learning on imitation.
Bunlon, Frédérique; Marshall, Peter J; Quandt, Lorna C; Bouquet, Cedric A
2015-01-01
According to the ideomotor theory, actions are represented in terms of their perceptual effects, offering a solution for the correspondence problem of imitation (how to translate the observed action into a corresponding motor output). This effect-based coding of action is assumed to be acquired through action-effect learning. Accordingly, performing an action leads to the integration of the perceptual codes of the action effects with the motor commands that brought them about. While ideomotor theory is invoked to account for imitation, the influence of action-effect learning on imitative behavior remains unexplored. In two experiments, imitative performance was measured in a reaction time task following a phase of action-effect acquisition. During action-effect acquisition, participants freely executed a finger movement (index or little finger lifting), and then observed a similar (compatible learning) or a different (incompatible learning) movement. In Experiment 1, finger movements of left and right hands were presented as action-effects during acquisition. In Experiment 2, only right-hand finger movements were presented during action-effect acquisition and in the imitation task the observed hands were oriented orthogonally to participants' hands in order to avoid spatial congruency effects. Experiments 1 and 2 showed that imitative performance was improved after compatible learning, compared to incompatible learning. In Experiment 2, although action-effect learning involved perception of finger movements of right hand only, imitative capabilities of right- and left-hand finger movements were equally affected. These results indicate that an observed movement stimulus processed as the effect of an action can later prime execution of that action, confirming the ideomotor approach to imitation. We further discuss these findings in relation to previous studies of action-effect learning and in the framework of current ideomotor approaches to imitation.
Influence of Action-Effect Associations Acquired by Ideomotor Learning on Imitation
Bunlon, Frédérique; Marshall, Peter J.; Quandt, Lorna C.; Bouquet, Cedric A.
2015-01-01
According to the ideomotor theory, actions are represented in terms of their perceptual effects, offering a solution for the correspondence problem of imitation (how to translate the observed action into a corresponding motor output). This effect-based coding of action is assumed to be acquired through action-effect learning. Accordingly, performing an action leads to the integration of the perceptual codes of the action effects with the motor commands that brought them about. While ideomotor theory is invoked to account for imitation, the influence of action-effect learning on imitative behavior remains unexplored. In two experiments, imitative performance was measured in a reaction time task following a phase of action-effect acquisition. During action-effect acquisition, participants freely executed a finger movement (index or little finger lifting), and then observed a similar (compatible learning) or a different (incompatible learning) movement. In Experiment 1, finger movements of left and right hands were presented as action-effects during acquisition. In Experiment 2, only right-hand finger movements were presented during action-effect acquisition and in the imitation task the observed hands were oriented orthogonally to participants’ hands in order to avoid spatial congruency effects. Experiments 1 and 2 showed that imitative performance was improved after compatible learning, compared to incompatible learning. In Experiment 2, although action-effect learning involved perception of finger movements of right hand only, imitative capabilities of right- and left-hand finger movements were equally affected. These results indicate that an observed movement stimulus processed as the effect of an action can later prime execution of that action, confirming the ideomotor approach to imitation. We further discuss these findings in relation to previous studies of action-effect learning and in the framework of current ideomotor approaches to imitation. PMID:25793755
Jones, Christopher L; Kamper, Derek G
2018-01-01
Finger-thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger-thumb coupling during close-open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb ( p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing ( p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI ( p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm ( p < 0.001). A greater effect was seen during the opening phase ( p < 0.044). Thus, involuntary finger-thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies.
Mibu, Akira; Nishigami, Tomohiko; Tanaka, Katsuyoshi; Osumi, Michihiro; Tanabe, Akihito
2016-04-01
A 43-year-old man had deafferentation pain in his right upper extremity secondary to brachial plexus avulsion from a traffic accident 23 years previously. On our initial examination, he had severe tingling pain with numbness in the right fingers rated 10 on the numerical rating scale. The body perception of the affected third and fourth fingers was distorted in the flexed position. Although he performed traditional mirror therapy (TMT) for 4 weeks in the same methods as seen in previous studies, he could not obtain willed motor imagery and pain-alleviation effect. Therefore, we modified the task of TMT: Graded mirror therapy (GMT). GMT consisted of five stages: (1) observation of the mirror reflection of the unaffected side without imagining any movements of the affected side; (2) observation of the mirror reflection of the third and fourth fingers changing shape gradually adjusted from a flexed position to a extended position; (3) observation of the mirror reflection of passive movement; (4) motor imagery of affected fingers with observation of the mirror reflection (similar to TMT); (5) motor imagery of affected fingers without mirror. Each task was performed for 3 to 4 weeks. As a result, pain intensity during mirror therapy gradually decreased and finally disappeared. The body perception of the affected fingers also improved, and he could imagine the movement of the fingers with or without mirror. We suggested that GMT starting from the observation task without motor imagery may effectively decrease deafferentation pain compared to TMT. © 2016 World Institute of Pain.
Oscillatory motor network activity during rest and movement: an fNIRS study
Bajaj, Sahil; Drake, Daniel; Butler, Andrew J.; Dhamala, Mukesh
2014-01-01
Coherent network oscillations (<0.1 Hz) linking distributed brain regions are commonly observed in the brain during both rest and task conditions. What oscillatory network exists and how network oscillations change in connectivity strength, frequency and direction when going from rest to explicit task are topics of recent inquiry. Here, we study network oscillations within the sensorimotor regions of able-bodied individuals using hemodynamic activity as measured by functional near-infrared spectroscopy (fNIRS). Using spectral interdependency methods, we examined how the supplementary motor area (SMA), the left premotor cortex (LPMC) and the left primary motor cortex (LM1) are bound as a network during extended resting state (RS) and between-tasks resting state (btRS), and how the activity of the network changes as participants execute left, right, and bilateral hand (LH, RH, and BH) finger movements. We found: (i) power, coherence and Granger causality (GC) spectra had significant peaks within the frequency band (0.01–0.04 Hz) during RS whereas the peaks shifted to a bit higher frequency range (0.04–0.08 Hz) during btRS and finger movement tasks, (ii) there was significant bidirectional connectivity between all the nodes during RS and unidirectional connectivity from the LM1 to SMA and LM1 to LPMC during btRS, and (iii) the connections from SMA to LM1 and from LPMC to LM1 were significantly modulated in LH, RH, and BH finger movements relative to btRS. The unidirectional connectivity from SMA to LM1 just before the actual task changed to the bidirectional connectivity during LH and BH finger movement. The uni-directionality could be associated with movement suppression and the bi-directionality with preparation, sensorimotor update and controlled execution. These results underscore that fNIRS is an effective tool for monitoring spectral signatures of brain activity, which may serve as an important precursor before monitoring the recovery progress following brain injury. PMID:24550793
EEG resolutions in detecting and decoding finger movements from spectral analysis
Xiao, Ran; Ding, Lei
2015-01-01
Mu/beta rhythms are well-studied brain activities that originate from sensorimotor cortices. These rhythms reveal spectral changes in alpha and beta bands induced by movements of different body parts, e.g., hands and limbs, in electroencephalography (EEG) signals. However, less can be revealed in them about movements of different fine body parts that activate adjacent brain regions, such as individual fingers from one hand. Several studies have reported spatial and temporal couplings of rhythmic activities at different frequency bands, suggesting the existence of well-defined spectral structures across multiple frequency bands. In the present study, spectral principal component analysis (PCA) was applied on EEG data, obtained from a finger movement task, to identify cross-frequency spectral structures. Features from identified spectral structures were examined in their spatial patterns, cross-condition pattern changes, detection capability of finger movements from resting, and decoding performance of individual finger movements in comparison to classic mu/beta rhythms. These new features reveal some similar, but more different spatial and spectral patterns as compared with classic mu/beta rhythms. Decoding results further indicate that these new features (91%) can detect finger movements much better than classic mu/beta rhythms (75.6%). More importantly, these new features reveal discriminative information about movements of different fingers (fine body-part movements), which is not available in classic mu/beta rhythms. The capability in decoding fingers (and hand gestures in the future) from EEG will contribute significantly to the development of non-invasive BCI and neuroprosthesis with intuitive and flexible controls. PMID:26388720
Gazzoni, Marco; Celadon, Nicolò; Mastrapasqua, Davide; Paleari, Marco; Margaria, Valentina; Ariano, Paolo
2014-01-01
The study of hand and finger movement is an important topic with applications in prosthetics, rehabilitation, and ergonomics. Surface electromyography (sEMG) is the gold standard for the analysis of muscle activation. Previous studies investigated the optimal electrode number and positioning on the forearm to obtain information representative of muscle activation and robust to movements. However, the sEMG spatial distribution on the forearm during hand and finger movements and its changes due to different hand positions has never been quantified. The aim of this work is to quantify 1) the spatial localization of surface EMG activity of distinct forearm muscles during dynamic free movements of wrist and single fingers and 2) the effect of hand position on sEMG activity distribution. The subjects performed cyclic dynamic tasks involving the wrist and the fingers. The wrist tasks and the hand opening/closing task were performed with the hand in prone and neutral positions. A sensorized glove was used for kinematics recording. sEMG signals were acquired from the forearm muscles using a grid of 112 electrodes integrated into a stretchable textile sleeve. The areas of sEMG activity have been identified by a segmentation technique after a data dimensionality reduction step based on Non Negative Matrix Factorization applied to the EMG envelopes. The results show that 1) it is possible to identify distinct areas of sEMG activity on the forearm for different fingers; 2) hand position influences sEMG activity level and spatial distribution. This work gives new quantitative information about sEMG activity distribution on the forearm in healthy subjects and provides a basis for future works on the identification of optimal electrode configuration for sEMG based control of prostheses, exoskeletons, or orthoses. An example of use of this information for the optimization of the detection system for the estimation of joint kinematics from sEMG is reported. PMID:25289669
Laterality of repetitive finger movement performance and clinical features of Parkinson's disease.
Stegemöller, Elizabeth; Zaman, Andrew; MacKinnon, Colum D; Tillman, Mark D; Hass, Chris J; Okun, Michael S
2016-10-01
Impairments in acoustically cued repetitive finger movement often emerge at rates near to and above 2Hz in persons with Parkinson's Disease (PD) in which some patients move faster (hastening) and others move slower (bradykinetic). The clinical features impacting this differential performance of repetitive finger movement remain unknown. The purpose of this study was to compare repetitive finger movement performance between the more and less affected side, and the difference in clinical ratings among performance groups. Forty-one participants diagnosed with idiopathic PD completed an acoustically cued repetitive finger movement task while "on" medication. Eighteen participants moved faster, 10 moved slower, and 13 were able to maintain the appropriate rate at rates above 2Hz. Clinical measures of laterality, disease severity, and the UPDRS were obtained. There were no significant differences between the more and less affected sides regardless of performance group. Comparison of disease severity, tremor, and rigidity among performance groups revealed no significant differences. Comparison of posture and postural instability scores revealed that the participants that demonstrated hastening had worse posture and postural instability scores. Consideration of movement rate during the clinical evaluation of repetitive finger movement may provide additional insight into varying disease features in persons with PD. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of Mental and Physical Practice on a Finger Opposition Task among Children
ERIC Educational Resources Information Center
de Paula Asa, Sabrina Kyoko; Santos Melo, Mara Cristina; Piemonte, Maria Elisa Pimentel
2014-01-01
Purpose: We sought to compare the effects of physical practice (PP) and mental practice (MP) on the immediate and long-term learning of the finger-to-thumb opposition sequence task (FOS) in children; in addition, we investigated the transfer of this learning to an untrained sequence of movements and to the contralateral untrained hand. Method:…
Jones, Christopher L.; Kamper, Derek G.
2018-01-01
Finger–thumb coordination is crucial to manual dexterity but remains incompletely understood, particularly following neurological injury such as stroke. While being controlled independently, the index finger and thumb especially must work in concert to perform a variety of tasks requiring lateral or palmar pinch. The impact of stroke on this functionally critical sensorimotor control during dynamic tasks has been largely unexplored. In this study, we explored finger–thumb coupling during close–open pinching motions in stroke survivors with chronic hemiparesis. Two types of perturbations were applied randomly to the index with a novel Cable-Actuated Finger Exoskeleton: a sudden joint acceleration stretching muscle groups of the index finger and a sudden increase in impedance in selected index finger joint(s). Electromyographic signals for specific thumb and index finger muscles, thumb tip trajectory, and index finger joint angles were recorded during each trial. Joint angle perturbations invoked reflex responses in the flexor digitorum superficialis (FDS), first dorsal interossei (FDI), and extensor digitorum communis muscles of the index finger and heteronymous reflex responses in flexor pollicis brevis of the thumb (p < 0.017). Phase of movement played a role as a faster peak reflex response was observed in FDI during opening than during closing (p < 0.002) and direction of perturbations resulted in shorter reflex times for FDS and FDI (p < 0.012) for extension perturbations. Surprisingly, when index finger joint impedance was suddenly increased, thumb tip movement was substantially increased, from 2 to 10 cm (p < 0.001). A greater effect was seen during the opening phase (p < 0.044). Thus, involuntary finger–thumb coupling was present during dynamic movement, with perturbation of the index finger impacting thumb activity. The degree of coupling modulated with the phase of motion. These findings reveal a potential mechanism for direct intervention to improve poststroke hand mobility and provide insight on prospective neurologically oriented therapies. PMID:29545767
Flexible, task-dependent use of sensory feedback to control hand movements
Knill, David C.; Bondada, Amulya; Chhabra, Manu
2011-01-01
We tested whether changing accuracy demands for simple pointing movements leads humans to adjust the feedback control laws that map sensory signals from the moving hand to motor commands. Subjects made repeated pointing movements in a virtual environment to touch a button whose shape varied randomly from trial-to-trial – between squares, rectangles oriented perpendicular to the movement path and rectangles oriented parallel to the movement path. Subjects performed the task on a horizontal table, but saw the target configuration and a virtual rendering of their pointing finger through a mirror mounted between a monitor and the table. On a one-third of trials, the position of the virtual finger was perturbed by ±1 cm either in the movement direction or perpendicular to the movement direction when the finger passed behind an occluder. Subjects corrected quickly for the perturbations despite not consciously noticing them; however, they corrected almost twice as much for perturbations aligned with the narrow dimension of a target than for perturbations aligned with the long dimension. These changes in apparent feedback gain appeared in the kinematic trajectories soon after the time of the perturbations, indicating that they reflect differences in the feedback control law used throughout the duration of movements. The results indicate that the brain adjusts its feedback control law for individual movements “on-demand” to fit task demands. Simulations of optimal control laws for a two-joint arm show that accuracy demands alone, coupled with signal dependent noise lead to qualitatively the same behavior. PMID:21273407
Slobounov, S; Chiang, H; Johnston, J; Ray, W
2002-12-01
The present research was designed to address the nature of interdependency between fingers during force production tasks in subjects with varying experience in performing independent finger manipulation. Specifically, behavioral and electroencephalographic (EEG) measures associated with controllability of the most enslaved (ring) and the least enslaved (index) fingers was examined in musicians and non-musicians. Six piano players and 6 age-matched control subjects performed a series of isometric force production tasks with the index and ring fingers. Subjects produced 3 different force levels with either their index or ring fingers. We measured the isometric force output produced by all 4 fingers (index, ring, middle and little), including both ramp and static phases of force production. We applied time-domain averaging of EEG single trials in order to extract 4 components of the movement-related cortical potentials (MRCP) preceding and accompanying force responses. Three behavioral findings were observed. First, musicians were more accurate than non-musicians at reaching the desired force level. Second, musicians showed less enslaving as compared to non-musicians. And third, the amount of enslaving increased with the increment of nominal force levels regardless of whether the index or ring finger was used as the master finger. In terms of EEG measures, we found differences between tasks performed with the index and ring fingers in non-musicians. For musicians, we found larger MRCP amplitudes at most electrode sites for the ring finger. Our data extends previous enslaving research and suggest an important role for previous experience in terms of the independent use of the fingers. Given that a variety of previous work has shown finger independence to be reflected in cortical representation in the brain and our findings of MRCP amplitude associated with greater independence of fingers in musicians, this suggests that what has been considered to be stable constraints in terms of finger movements can be modulated by experience. This work supports the idea that experience is associated with changes in behavioral and EEG correlates of task performance and may have clinical implications in disorders such as stroke or focal hand dystonia. Practice-related procedures offer useful approaches to rehabilitation strategies.
Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki
2016-01-01
Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Brain activity during bilateral rapid alternate finger tapping measured with magnetoencephalography
NASA Astrophysics Data System (ADS)
Fukuda, Hiroshi; Odagaki, Masato; Hiwaki, Osamu; Kodabashi, Atsushi; Fujimoto, Toshiro
2009-04-01
Using magnetoencephalography (MEG), brain regions involved in an alternate bimanual tapping task by index fingers triggered with spontaneous timing were investigated. The tapping mode in which both index fingers moved simultaneously was interlaced during the task. The groups of the alternate tapping (AL mode) and the simultaneous tapping (SI mode) were extracted from the successive alternating taps with a histogram of intervals between the right and left index fingers. MEG signals in each mode were averaged separately before and after the tapping initiation of the dominant index finger. The activities of the contralateral sensorimotor cortex before and after the tapping initiation in the AL mode were larger than that in the SI mode. The result indicates that the activity of the contralateral sensorimotor cortex depends on the degree of achievement in the difficult motor task such as the voluntary alternate tapping movements.
A Developmental Study of the Influence of Task Characteristics on Motor Overflow
ERIC Educational Resources Information Center
Addamo, Patricia K.; Farrow, Maree; Hoy, Kate E.; Bradshaw, John L.; Georgiou-Karistianis, Nellie
2009-01-01
Motor overflow refers to involuntary movement or muscle activity that may coincide with voluntary movement. This study examined factors influencing motor overflow in 17 children (8-11 years), and 17 adults (18-35 years). Participants performed a finger pressing task by exerting either 33% or 66% of their maximal force output using their dominant…
Motor Interference Does Not Impair the Memory Consolidation of Imagined Movements
ERIC Educational Resources Information Center
Debarnot, Ursula; Maley, Laura; De Rossi, Danilo; Guillot, Aymeric
2010-01-01
The present study aimed to investigate whether an interference task might impact the sleep-dependent consolidation process of a mentally learned sequence of movements. Thirty-two participants were subjected to a first training session through motor imagery (MI) or physical practice (PP) of a finger sequence learning task. After 2 h, half of the…
On the complexity of classical guitar playing: functional adaptations to task constraints.
Heijink, Hank; Meulenbroek, Ruud G J
2002-12-01
The authors performed a behavioral study of the complexity of left-hand finger movements in classical guitar playing. Six professional guitarists played movement sequences in a fixed tempo. Left-hand finger movements were recorded in 3 dimensions, and the guitar sound was recorded synchronously. Assuming that performers prefer to avoid extreme joint angles when moving, the authors hypothesized 3 complexity factors. The results showed differential effects of the complexity factors on the performance measures and on participants' judgments of complexity. The results demonstrated that keeping the joints in the middle of their range is an important principle in guitar playing, and players exploit the available tolerance in timing and placement of the left-hand fingers to control the acoustic output variability.
A Method for Recognizing State of Finger Flexure and Extension
NASA Astrophysics Data System (ADS)
Terado, Toshihiko; Fujiwara, Osamu
In our country, the handicapped and the elderly people in bed increase rapidly. In the bedridden person’s daily life, there may be limitations in the physical movement and the means of mutual communication. For the support of their comfortable daily lives, therefore, the development of human interface equipment becomes an important task. The equipment of this kind is being already developed by means of laser beam, eye-tracking, breathing motion and myo-electric signals, while the attachment and handling are normally not so easy. In this study, paying attention to finger motion, we have developed human interface equipment easily attached to the body, which enables one to measure the finger flexure and extension for mutual communication. The state of finger flexure and extension is identified by a threshold level analysis from the 3D-locus data for the finger movement, which can be measured through the infrared rays from the LED markers attached to a glove with the previously developed prototype system. We then have confirmed from an experiment that nearly 100% recognition for the finger movement can be achieved.
The relation between attention and tic generation in Tourette syndrome.
Misirlisoy, Erman; Brandt, Valerie; Ganos, Christos; Tübing, Jennifer; Münchau, Alexander; Haggard, Patrick
2015-07-01
Many neuropsychiatric disorders involve abnormal attentional processing. Systematic investigations of how attention may affect tic frequency in Tourette syndrome are lacking. Patients performed rhythmic finger movements, approximately once every 2 s. Each movement triggered a unique visual color stimulus. Patients were asked to monitor and remember their finger actions, the external colors caused by their actions, or their tics. Sixteen adult Tourette syndrome patients performed each task twice: once while inhibiting tics, and once without inhibiting tics. During the "freely tic" condition, patients had significantly fewer tics when attending to finger movements, or to the ensuing colors, compared with when attending to their tics. Attention to fingers produced the fewest tics overall. During tic suppression, tic frequency was reduced to an equal level in all conditions. Focusing attention away from tics significantly reduces tic frequency. This attentional process may operate by regulating motor noise. (c) 2015 APA, all rights reserved).
The Relation Between Attention and Tic Generation in Tourette Syndrome
2014-01-01
Objective: Many neuropsychiatric disorders involve abnormal attentional processing. Systematic investigations of how attention may affect tic frequency in Tourette syndrome are lacking. Method: Patients performed rhythmic finger movements, approximately once every 2 s. Each movement triggered a unique visual color stimulus. Patients were asked to monitor and remember their finger actions, the external colors caused by their actions, or their tics. Sixteen adult Tourette syndrome patients performed each task twice: once while inhibiting tics, and once without inhibiting tics. Results: During the “freely tic” condition, patients had significantly fewer tics when attending to finger movements, or to the ensuing colors, compared with when attending to their tics. Attention to fingers produced the fewest tics overall. During tic suppression, tic frequency was reduced to an equal level in all conditions. Conclusions: Focusing attention away from tics significantly reduces tic frequency. This attentional process may operate by regulating motor noise. PMID:25486384
Multi-scale recordings for neuroprosthetic control of finger movements.
Baker, Justin; Bishop, William; Kellis, Spencer; Levy, Todd; House, Paul; Greger, Bradley
2009-01-01
We trained a rhesus monkey to perform individuated and combined finger flexions and extensions of the thumb, index, and middle finger. A Utah Electrode Array (UEA) was implanted into the hand region of the motor cortex contralateral to the monkey's trained hand. We also implanted a microwire electrocorticography grid (microECoG) epidurally so that it covered the UEA. The microECoG grid spanned the arm and hand regions of both the primary motor and somatosensory cortices. Previously this monkey had Implantable MyoElectric Sensors (IMES) surgically implanted into the finger muscles of the monkey's forearm. Action potentials (APs), local field potentials (LFPs), and microECoG signals were recorded from wired head-stage connectors for the UEA and microECoG grids, while EMG was recorded wirelessly. The monkey performed a finger flexion/extension task while neural and EMG data were acquired. We wrote an algorithm that uses the spike data from the UEA to perform a real-time decode of the monkey's finger movements. Also, analyses of the LFP and microECoG data indicate that these data show trial-averaged differences between different finger movements, indicating the data are potentially decodeable.
Difference of motor overflow depending on the impaired or unimpaired hand in stroke patients.
Kim, Yushin; Kim, Woo-Sub; Shim, Jae Kun; Suh, Dong Won; Kim, TaeYeong; Yoon, BumChul
2015-02-01
The aim of this study was to investigate the patterns of contralateral motor overflow (i.e. mirror movement) between the homologous body parts on the right and left side, in stroke patients during single-finger and multi-finger maximum force production tasks. Forty subjects, including stroke (n=20) and normal subjects (n=20), participated in this study. The stroke subjects maximally pressed force sensors with their fingers in a flexed position using a single (index, middle, ring, or little) or all fingers (all 4 fingers) using the impaired (IH) or unimpaired (UIH) hand, while the non-patient subjects used their right hands for the same tasks. The maximal voluntary forces in the ipsilateral and unintended pressing forces of each contralateral finger were recorded during the tasks. The magnitude of motor overflow to the contralateral side was calculated using the index of contralateral independence (CI). During the single finger tasks, the finger CI was significantly decreased in the UIH (91%) compared with that in the IH (99%) or normal hands (99%). Likewise, the multiple finger tasks showed that the CI was significantly lower in the UIH (84%) compared with that in the IH (96%) or normal hands (99%). However, the maximal forces were significantly lower in the IH relative to those in the UIH and normal hands. These data demonstrate that stroke patients have greater motor overflow from the UIH to the IH. Copyright © 2014 Elsevier B.V. All rights reserved.
Chong, Hyun Ju; Cho, Sung-Rae; Kim, Soo Ji
2014-01-01
As a sequential, programmed movement of fingers, keyboard playing is a promising technique for inducing execution and a high level of coordination during finger movements. Also, keyboard playing can be physically and emotionally rewarding for adolescents in rehabilitation settings and thereby motivate continued involvement in treatment. The purpose of this study is to evaluate the effects of keyboard playing using Musical Instrument Digital Interface (MIDI) on finger movement for adolescents with brain damage. Eight adolescents with brain damage, ages 9 to 18 years (M = 13 years, SD = 2.78), in physical rehabilitation settings participated in this study. Measurements included MIDI keyboard playing for pressing force of the fingers and hand function tests (Grip and Pinch Power Test, Box and Block Test of Manual Dexterity [BBT], and the Jebsen Taylor Hand Function Test). Results showed increased velocity of all fingers on the MIDI-based test, and statistical significance was found in the velocity of F2 (index finger), F3 (middle finger), and F5 (little finger) between pre- and post-training tests. Correlation analysis between the pressing force of the finger and hand function tests showed a strong positive correlation between the measure of grip power and the pressing force of F2 and F5 on the Grip and Pinch Strength Test. All fingers showed strong correlation between MIDI results and BBT. For the Jebsen Taylor Hand Function Test, only the moving light objects task at post-training yielded strong correlation with MIDI results of all fingers. The results support using keyboard playing for hand rehabilitation, especially in the pressing force of individual finger sequential movements. Further investigation is needed to define the feasibility of the MIDI program for valid hand rehabilitation for people with brain damage.
Development of Motor Speed and Associated Movements from 5 to 18 Years
ERIC Educational Resources Information Center
Gasser, Theo; Rousson, Valentin; Caflisch, Jon; Jenni, Oskar G.
2010-01-01
Aim: To study the development of motor speed and associated movements in participants aged 5 to 18 years for age, sex, and laterality. Method: Ten motor tasks of the Zurich Neuromotor Assessment (repetitive and alternating movements of hands and feet, repetitive and sequential finger movements, the pegboard, static and dynamic balance,…
Shirota, Yuichiro; Terney, Daniella; Antal, Andrea; Paulus, Walter
2017-01-01
Transcranial direct current stimulation (tDCS) has been reported to have bidirectional influence on the amplitude of motor-evoked potentials (MEPs) in resting participants in a polarity-specific manner: anodal tDCS increased and cathodal tDCS decreased them. More recently, the effects of tDCS have been shown to depend on a number of additional factors. We investigated whether a small variety of movements involving target and non-target muscles could differentially modify the efficacy of tDCS. MEPs were elicited from the right first dorsal interosseous muscle, defined as the target muscle, by single pulse transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). During M1 tDCS, which lasted for 10 min applying anodal, cathodal, or sham condition, the participants were instructed to squeeze a ball with their right hand (Task 1), to move their right index finger only in the medial (Task 2), in the lateral direction (Task 3), or in medial and lateral direction alternatively (Task 4). Anodal tDCS reduced MEP amplitudes measured in Task 1 and Task 2, but to a lesser extent in the latter. In Task 3, anodal tDCS led to greater MEP amplitudes than cathodal stimulation. Alternating movements resulted in no effect of tDCS on MEP amplitude (Task 4). The results are congruent with the current notion that the aftereffects of tDCS are highly variable relying on a number of factors including the type of movements executed during stimulation.
Cortical activity predicts good variation in human motor output.
Babikian, Sarine; Kanso, Eva; Kutch, Jason J
2017-04-01
Human movement patterns have been shown to be particularly variable if many combinations of activity in different muscles all achieve the same task goal (i.e., are goal-equivalent). The nervous system appears to automatically vary its output among goal-equivalent combinations of muscle activity to minimize muscle fatigue or distribute tissue loading, but the neural mechanism of this "good" variation is unknown. Here we use a bimanual finger task, electroencephalography (EEG), and machine learning to determine if cortical signals can predict goal-equivalent variation in finger force output. 18 healthy participants applied left and right index finger forces to repeatedly perform a task that involved matching a total (sum of right and left) finger force. As in previous studies, we observed significantly more variability in goal-equivalent muscle activity across task repetitions compared to variability in muscle activity that would not achieve the goal: participants achieved the task in some repetitions with more right finger force and less left finger force (right > left) and in other repetitions with less right finger force and more left finger force (left > right). We found that EEG signals from the 500 milliseconds (ms) prior to each task repetition could make a significant prediction of which repetitions would have right > left and which would have left > right. We also found that cortical maps of sites contributing to the prediction contain both motor and pre-motor representation in the appropriate hemisphere. Thus, goal-equivalent variation in motor output may be implemented at a cortical level.
Hesse, Stefan; Kuhlmann, H; Wilk, J; Tomelleri, C; Kirker, Stephen GB
2008-01-01
Background The functional outcome after stroke is improved by more intensive or sustained therapy. When the affected hand has no functional movement, therapy is mainly passive movements. A novel device for repeating controlled passive movements of paralysed fingers has been developed, which will allow therapists to concentrate on more complicated tasks. A powered cam shaft moves the four fingers in a physiological range of movement. Methods After refining the training protocol in 2 chronic patients, 8 sub-acute stroke patients were randomised to receive additional therapy with the Finger Trainer for 20 min every work day for four weeks, or the same duration of bimanual group therapy, in addition to their usual rehabilitation. Results In the chronic patients, there was a sustained reduction in finger and wrist spasticity, but there was no improvement in active movements. In the subacute patients, mean distal Fugl-Meyer score (0–30) increased in the control group from 1.25 to 2.75 (ns) and 0.75 to 6.75 in the treatment group (p < .05). Median Modified Ashworth score increased 0/5 to 2/5 in the control group, but not in the treatment group, 0 to 0. Only one patient, in the treatment group, regained function of the affected hand. No side effects occurred. Conclusion Treatment with the Finger Trainer was well tolerated in sub-acute & chronic stroke patients, whose abnormal muscle tone improved. In sub-acute stroke patients, the Finger Trainer group showed small improvements in active movement and avoided the increase in tone seen in the control group. This series was too small to demonstrate any effect on functional outcome however. PMID:18771581
Interactional synchrony in chimpanzees: Examination through a finger-tapping experiment.
Yu, Lira; Tomonaga, Masaki
2015-05-11
Humans often unconsciously coordinate behaviour with that of others in daily life. This interpersonal coordination, including mimicry and interactional synchrony, has been suggested to play a fundamental role in social interaction. If this coordinative behavior is socially adaptive, it may be shared with other highly social animal species. The current study targeted chimpanzees, which phylogenetically are the closest living relatives of humans and live in complex social groups, and examined whether interactional synchrony would emerge in pairs of chimpanzees when auditory information about a partner's movement was provided. A finger-tapping task was introduced via touch panels to elicit repetitive and rhythmic movement from each chimpanzee. We found that one of four chimpanzees produced significant changes in both tapping tempo and timing of the tapping relative to its partner's tap when auditory sounds were provided. Although the current results may have limitations in generalizing to chimpanzees as a species, we suggest that a finger-tapping task is one potential method to investigate interactional synchrony in chimpanzees under a laboratory setup.
Decoding of human hand actions to handle missing limbs in neuroprosthetics.
Belić, Jovana J; Faisal, A Aldo
2015-01-01
The only way we can interact with the world is through movements, and our primary interactions are via the hands, thus any loss of hand function has immediate impact on our quality of life. However, to date it has not been systematically assessed how coordination in the hand's joints affects every day actions. This is important for two fundamental reasons. Firstly, to understand the representations and computations underlying motor control "in-the-wild" situations, and secondly to develop smarter controllers for prosthetic hands that have the same functionality as natural limbs. In this work we exploit the correlation structure of our hand and finger movements in daily-life. The novelty of our idea is that instead of averaging variability out, we take the view that the structure of variability may contain valuable information about the task being performed. We asked seven subjects to interact in 17 daily-life situations, and quantified behavior in a principled manner using CyberGlove body sensor networks that, after accurate calibration, track all major joints of the hand. Our key findings are: (1) We confirmed that hand control in daily-life tasks is very low-dimensional, with four to five dimensions being sufficient to explain 80-90% of the variability in the natural movement data. (2) We established a universally applicable measure of manipulative complexity that allowed us to measure and compare limb movements across tasks. We used Bayesian latent variable models to model the low-dimensional structure of finger joint angles in natural actions. (3) This allowed us to build a naïve classifier that within the first 1000 ms of action initiation (from a flat hand start configuration) predicted which of the 17 actions was going to be executed-enabling us to reliably predict the action intention from very short-time-scale initial data, further revealing the foreseeable nature of hand movements for control of neuroprosthetics and tele operation purposes. (4) Using the Expectation-Maximization algorithm on our latent variable model permitted us to reconstruct with high accuracy (<5-6° MAE) the movement trajectory of missing fingers by simply tracking the remaining fingers. Overall, our results suggest the hypothesis that specific hand actions are orchestrated by the brain in such a way that in the natural tasks of daily-life there is sufficient redundancy and predictability to be directly exploitable for neuroprosthetics.
Hand kinematics of piano playing
Flanders, Martha; Soechting, John F.
2011-01-01
Dexterous use of the hand represents a sophisticated sensorimotor function. In behaviors such as playing the piano, it can involve strong temporal and spatial constraints. The purpose of this study was to determine fundamental patterns of covariation of motion across joints and digits of the human hand. Joint motion was recorded while 5 expert pianists played 30 excerpts from musical pieces, which featured ∼50 different tone sequences and fingering. Principal component analysis and cluster analysis using an expectation-maximization algorithm revealed that joint velocities could be categorized into several patterns, which help to simplify the description of the movements of the multiple degrees of freedom of the hand. For the thumb keystroke, two distinct patterns of joint movement covariation emerged and they depended on the spatiotemporal patterns of the task. For example, the thumb-under maneuver was clearly separated into two clusters based on the direction of hand translation along the keyboard. While the pattern of the thumb joint velocities differed between these clusters, the motions at the metacarpo-phalangeal and proximal-phalangeal joints of the four fingers were more consistent. For a keystroke executed with one of the fingers, there were three distinct patterns of joint rotations, across which motion at the striking finger was fairly consistent, but motion of the other fingers was more variable. Furthermore, the amount of movement spillover of the striking finger to the adjacent fingers was small irrespective of the finger used for the keystroke. These findings describe an unparalleled amount of independent motion of the fingers. PMID:21880938
Multiple Fingers - One Gestalt.
Lezkan, Alexandra; Manuel, Steven G; Colgate, J Edward; Klatzky, Roberta L; Peshkin, Michael A; Drewing, Knut
2016-01-01
The Gestalt theory of perception offered principles by which distributed visual sensations are combined into a structured experience ("Gestalt"). We demonstrate conditions whereby haptic sensations at two fingertips are integrated in the perception of a single object. When virtual bumps were presented simultaneously to the right hand's thumb and index finger during lateral arm movements, participants reported perceiving a single bump. A discrimination task measured the bump's perceived location and perceptual reliability (assessed by differential thresholds) for four finger configurations, which varied in their adherence to the Gestalt principles of proximity (small versus large finger separation) and synchrony (virtual spring to link movements of the two fingers versus no spring). According to models of integration, reliability should increase with the degree to which multi-finger cues integrate into a unified percept. Differential thresholds were smaller in the virtual-spring condition (synchrony) than when fingers were unlinked. Additionally, in the condition with reduced synchrony, greater proximity led to lower differential thresholds. Thus, with greater adherence to Gestalt principles, thresholds approached values predicted for optimal integration. We conclude that the Gestalt principles of synchrony and proximity apply to haptic perception of surface properties and that these principles can interact to promote multi-finger integration.
Cortical Decoding of Individual Finger and Wrist Kinematics for an Upper-Limb Neuroprosthesis
Aggarwal, Vikram; Tenore, Francesco; Acharya, Soumyadipta; Schieber, Marc H.; Thakor, Nitish V.
2010-01-01
Previous research has shown that neuronal activity can be used to continuously decode the kinematics of gross movements involving arm and hand trajectory. However, decoding the kinematics of fine motor movements, such as the manipulation of individual fingers, has not been demonstrated. In this study, single unit activities were recorded from task-related neurons in M1 of two trained rhesus monkey as they performed individuated movements of the fingers and wrist. The primates’ hand was placed in a manipulandum, and strain gauges at the tips of each finger were used to track the digit’s position. Both linear and non-linear filters were designed to simultaneously predict kinematics of each digit and the wrist, and their performance compared using mean squared error and correlation coefficients. All models had high decoding accuracy, but the feedforward ANN (R=0.76–0.86, MSE=0.04–0.05) and Kalman filter (R=0.68–0.86, MSE=0.04–0.07) performed better than a simple linear regression filter (0.58–0.81, 0.05–0.07). These results suggest that individual finger and wrist kinematics can be decoded with high accuracy, and be used to control a multi-fingered prosthetic hand in real-time. PMID:19964645
Task specific grip force control in writer's cramp.
Schneider, A S; Fürholzer, W; Marquardt, C; Hermsdörfer, J
2014-04-01
Writer's cramp is defined as a task specific focal dystonia generating hypertonic muscle co-contractions during handwriting resulting in impaired writing performance and exaggerated finger force. However, little is known about the generalisation of grip force across tasks others than writing. The aim of the study was to directly compare regulation of grip forces during handwriting with force regulation in other fine-motor tasks in patients and control subjects. Handwriting, lifting and cyclic movements of a grasped object were investigated in 21 patients and 14 controls. The applied forces were registered in all three tasks and compared between groups and tasks. In addition, task-specific measures of fine-motor skill were assessed. As expected, patients generated exaggerated forces during handwriting compared to control subjects. However there were no statistically significant group differences during lifting and cyclic movements. The control group revealed a generalisation of grip forces across manual tasks whereas in patients there was no such correlation. We conclude that increased finger forces during handwriting are a task-specific phenomenon that does not necessarily generalise to other fine-motor tasks. Force control of patients with writer's cramp in handwriting and other fine-motor tasks is characterised by individualised control strategies. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Wright, Rachel L; Elliott, Mark T
2014-01-01
Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task-correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself.
Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R
2016-11-16
Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from movement phase-related amplitude modulations. We separate these two EEG source elements motivated by our previous findings in gait. Here, we found two types of large-scale networks, representing the right fingers in distinction from the time sequence of the movements. These findings suggest that EEG source amplitudes reconstructed in a cortical patch are the superposition of these simultaneously present network activities. Separating these frequency-specific networks is relevant for studying function and possible dysfunction of the cortical sensorimotor system in humans as well as to provide more advanced features for brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/3611671-11$15.00/0.
Ohata, Erika; Matsuo, Kiyoshi; Ban, Ryokuya; Shiba, Masato; Yasunaga, Yoshichika
2013-01-01
Background: For surgical suturing, a Webster needle holder uses wrist supinating with supinator and extrinsic muscles, whereas a pen needle holder uses finger twisting with intrinsic and extrinsic muscles. Because the latter is better suited to microsurgery, which requires fine suturing with less forearm muscle movement, we have recently adopted an enlarged pen needle holder scaled from a micro needle holder for fine skin suturing. In this study, we assessed whether the enlarged pen needle holder reduced forearm muscle movement during fine skin suturing as compared with the Webster needle holder. Methods: A fine skin-suturing task was performed using pen holding with the enlarged micro needle holder or scissor holding with the Webster needle holder by 9 experienced and 6 inexperienced microsurgeons. The task lasted for 60 seconds and was randomly performed 3 times for each method. Forearm flexor and extensor muscular activities were evaluated by surface electromyography. Results: The enlarged pen needle holder method required significantly less forearm muscle movement for experienced microsurgeons despite it being their first time using the instrument. There was no significant difference between 2 methods for inexperienced microsurgeons. Conclusions: Experienced microsurgeons conserved forearm muscle movement by finger twisting in fine skin suturing with the enlarged pen needle holder. Inexperienced microsurgeons may benefit from the enlarged pen needle holder, even for fine skin suturing, to develop their internal acquisition model of the dynamics of finger twisting. PMID:23691259
Ohata, Erika; Matsuo, Kiyoshi; Ban, Ryokuya; Shiba, Masato; Yasunaga, Yoshichika
2013-01-01
For surgical suturing, a Webster needle holder uses wrist supinating with supinator and extrinsic muscles, whereas a pen needle holder uses finger twisting with intrinsic and extrinsic muscles. Because the latter is better suited to microsurgery, which requires fine suturing with less forearm muscle movement, we have recently adopted an enlarged pen needle holder scaled from a micro needle holder for fine skin suturing. In this study, we assessed whether the enlarged pen needle holder reduced forearm muscle movement during fine skin suturing as compared with the Webster needle holder. A fine skin-suturing task was performed using pen holding with the enlarged micro needle holder or scissor holding with the Webster needle holder by 9 experienced and 6 inexperienced microsurgeons. The task lasted for 60 seconds and was randomly performed 3 times for each method. Forearm flexor and extensor muscular activities were evaluated by surface electromyography. The enlarged pen needle holder method required significantly less forearm muscle movement for experienced microsurgeons despite it being their first time using the instrument. There was no significant difference between 2 methods for inexperienced microsurgeons. Experienced microsurgeons conserved forearm muscle movement by finger twisting in fine skin suturing with the enlarged pen needle holder. Inexperienced microsurgeons may benefit from the enlarged pen needle holder, even for fine skin suturing, to develop their internal acquisition model of the dynamics of finger twisting.
Observation of Simple Intransitive Actions: The Effect of Familiarity
Plata Bello, Julio; Modroño, Cristián; Marcano, Francisco; González–Mora, José Luis
2013-01-01
Introduction Humans are more familiar with index – thumb than with any other finger to thumb grasping. The effect of familiarity has been previously tested with complex, specialized and/or transitive movements, but not with simple intransitive ones. The aim of this study is to evaluate brain activity patterns during the observation of simple and intransitive finger movements with differing degrees of familiarity. Methodology A functional Magnetic Resonance Imaging (fMRI) study was performed using a paradigm consisting of the observation of 4 videos showing a finger opposition task between the thumb and the other fingers (index, middle, ring and little) in a repetitive manner with a fixed frequency (1 Hz). This movement is considered as the pantomime of a precision grasping action. Results Significant activity was identified in the bilateral Inferior Parietal Lobule and premotor regions with the selected level of significance (FDR [False Discovery Rate] = 0.01). The extent of the activation in both regions tended to decrease when the finger that performed the action was further from the thumb. More specifically, this effect showed a linear trend (index>middle>ring>little) in the right parietal and premotor regions. Conclusions The observation of less familiar simple intransitive movements produces less activation of parietal and premotor areas than familiar ones. The most important implication of this study is the identification of differences in brain activity during the observation of simple intransitive movements with different degrees of familiarity. PMID:24073213
Examining age-related movement representations for sequential (fine-motor) finger movements.
Gabbard, Carl; Caçola, Priscila; Bobbio, Tatiana
2011-12-01
Theory suggests that imagined and executed movement planning relies on internal models for action. Using a chronometry paradigm to compare the movement duration of imagined and executed movements, we tested children aged 7-11 years and adults on their ability to perform sequential finger movements. Underscoring this tactic was our desire to gain a better understanding of the age-related ability to create internal models for action requiring fine-motor movements. The task required number recognition and ordering and was presented in three levels of complexity. Results for movement duration indicated that 7-year-olds and adults were different from the other groups with no statistical distinction between 9- and 11-year-olds. Correlation analysis indicated a significant relationship between imagined and executed actions. These results are the first to document the increasing convergence between imagined and executed movements in the context of fine-motor behavior; a finding that adds to our understanding of action representation in children. Copyright © 2011 Elsevier Inc. All rights reserved.
Sequence specific motor performance gains after memory consolidation in children and adolescents.
Dorfberger, Shoshi; Adi-Japha, Esther; Karni, Avi
2012-01-01
Memory consolidation for a trained sequence of finger opposition movements, in 9- and 12-year-old children, was recently found to be significantly less susceptible to interference by a subsequent training experience, compared to that of 17-year-olds. It was suggested that, in children, the experience of training on any sequence of finger movements may affect the performance of the sequence elements, component movements, rather than the sequence as a unit; the latter has been implicated in the learning of the task by adults. This hypothesis implied a possible childhood advantage in the ability to transfer the gains from a trained to the reversed, untrained, sequence of movements. Here we report the results of transfer tests undertaken to test this proposal in 9-, 12-, and 17-year-olds after training in the finger-to-thumb opposition sequence (FOS) learning task. Our results show that the performance gains in the trained sequence partially transferred from the left, trained hand, to the untrained hand at 48-hours after a single training session in the three age-groups tested. However, there was very little transfer of the gains from the trained to the untrained, reversed, sequence performed by either hand. The results indicate sequence specific post-training gains in FOS performance, as opposed to a general improvement in performance of the individual, component, movements that comprised both the trained and untrained sequences. These results do not support the proposal that the reduced susceptibility to interference, in children before adolescence, reflects a difference in movement syntax representation after training.
Du, Yue; Clark, Jane E; Whitall, Jill
2017-05-01
Timing control, such as producing movements at a given rate or synchronizing movements to an external event, has been studied through a finger-tapping task where timing is measured at the initial contact between finger and tapping surface or the point when a key is pressed. However, the point of peak force is after the time registered at the tapping surface and thus is a less obvious but still an important event during finger tapping. Here, we compared the time at initial contact with the time at peak force as participants tapped their finger on a force sensor at a given rate after the metronome was turned off (continuation task) or in synchrony with the metronome (sensorimotor synchronization task). We found that, in the continuation task, timing was comparably accurate between initial contact and peak force. These two timing events also exhibited similar trial-by-trial statistical dependence (i.e., lag-one autocorrelation). However, the central clock variability was lower at the peak force than the initial contact. In the synchronization task, timing control at peak force appeared to be less variable and more accurate than that at initial contact. In addition to lower central clock variability, the mean SE magnitude at peak force (SEP) was around zero while SE at initial contact (SEC) was negative. Although SEC and SEP demonstrated the same trial-by-trial statistical dependence, we found that participants adjusted the time of tapping to correct SEP, but not SEC, toward zero. These results suggest that timing at peak force is a meaningful target of timing control, particularly in synchronization tapping. This result may explain the fact that SE at initial contact is typically negative as widely observed in the preexisting literature.
Analysis of dystonic tremor in musicians using empirical mode decomposition.
Lee, A; Schoonderwaldt, E; Chadde, M; Altenmüller, E
2015-01-01
Test the hypotheses that tremor amplitude in musicians with task-specific dystonia is higher at the affected finger (dystonic tremor, DT) or the adjacent finger (tremor associated with dystonia, TAD) than (1) in matched fingers of healthy musicians and non-musicians and (2) within patients in the unaffected and non-adjacent fingers of the affected side within patients. We measured 21 patients, 21 healthy musicians and 24 non-musicians. Participants exerted a flexion-extension movement. Instantaneous frequency and amplitude values were obtained with empirical mode decomposition and a Hilbert-transform, allowing to compare tremor amplitudes throughout the movement at various frequency ranges. We did not find a significant difference in tremor amplitude between patients and controls for either DT or TAD. Neither differed tremor amplitude in the within-patient comparisons. Both hypotheses were rejected and apparently neither DT nor TAD occur in musician's dystonia of the fingers. This is the first study assessing DT and TAD in musician's dystonia. Our finding suggests that even though MD is an excellent model for malplasticity due to excessive practice, it does not seem to provide a good model for DT. Rather it seems that musician's dystonia may manifest itself either as dystonic cramping without tremor or as task-specific tremor without overt dystonic cramping. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Kodama, Kentaro; Furuyama, Nobuhiro; Inamura, Tetsunari
2015-01-01
Finger-tapping experiments were conducted to examine whether the dynamics of intrapersonal and interpersonal coordination systems can be described equally by the Haken—Kelso—Bunz model, which describes inter-limb coordination dynamics. This article reports the results of finger-tapping experiments conducted in both systems. Two within-subject factors were investigated: the phase mode and the number of fingers. In the intrapersonal experiment (Experiment 1), the participants were asked to tap, paced by a gradually hastening auditory metronome, looking at their fingers moving, using the index finger in the two finger condition, or the index and middle finger in the four-finger condition. In the interpersonal experiment (Experiment 2), pairs of participants performed the task while each participant used the outside hand, tapping with the index finger in the two finger condition, or the index and middle finger in the four-finger condition. Some results did not agree with the HKB model predictions. First, from Experiment 1, no significant difference was observed in the movement stability between the in-phase and anti-phase modes in the two finger condition. Second, from Experiment 2, no significant difference was found in the movement stability between the in-phase and anti-phase mode in the four-finger condition. From these findings, different coordination dynamics were inferred between intrapersonal and interpersonal coordination systems against prediction from the previous studies. Results were discussed according to differences between intrapersonal and interpersonal coordination systems in the availability of perceptual information and the complexity in the interaction between limbs derived from a nested structure. PMID:26070119
Self-reported empathy and neural activity during action imitation and observation in schizophrenia
Horan, William P.; Iacoboni, Marco; Cross, Katy A.; Korb, Alex; Lee, Junghee; Nori, Poorang; Quintana, Javier; Wynn, Jonathan K.; Green, Michael F.
2014-01-01
Introduction Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy. Methods 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, or simply observed finger movements and facial emotional expressions. Between-group activation differences, as well as relationships between activation and self-reported empathy, were evaluated. Results Both patients and controls similarly activated neural systems previously associated with these tasks. We found no significant between-group differences in task-related activations. There were, however, between-group differences in the correlation between self-reported empathy and right inferior frontal (pars opercularis) activity during observation of facial emotional expressions. As in previous studies, controls demonstrated a positive association between brain activity and empathy scores. In contrast, the pattern in the patient group reflected a negative association between brain activity and empathy. Conclusions Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy. PMID:25009771
Self-reported empathy and neural activity during action imitation and observation in schizophrenia.
Horan, William P; Iacoboni, Marco; Cross, Katy A; Korb, Alex; Lee, Junghee; Nori, Poorang; Quintana, Javier; Wynn, Jonathan K; Green, Michael F
2014-01-01
Although social cognitive impairments are key determinants of functional outcome in schizophrenia their neural bases are poorly understood. This study investigated neural activity during imitation and observation of finger movements and facial expressions in schizophrenia, and their correlates with self-reported empathy. 23 schizophrenia outpatients and 23 healthy controls were studied with functional magnetic resonance imaging (fMRI) while they imitated, executed, or simply observed finger movements and facial emotional expressions. Between-group activation differences, as well as relationships between activation and self-reported empathy, were evaluated. Both patients and controls similarly activated neural systems previously associated with these tasks. We found no significant between-group differences in task-related activations. There were, however, between-group differences in the correlation between self-reported empathy and right inferior frontal (pars opercularis) activity during observation of facial emotional expressions. As in previous studies, controls demonstrated a positive association between brain activity and empathy scores. In contrast, the pattern in the patient group reflected a negative association between brain activity and empathy. Although patients with schizophrenia demonstrated largely normal patterns of neural activation across the finger movement and facial expression tasks, they reported decreased self perceived empathy and failed to show the typical relationship between neural activity and self-reported empathy seen in controls. These findings suggest that patients show a disjunction between automatic neural responses to low level social cues and higher level, integrative social cognitive processes involved in self-perceived empathy.
Agostino, Rocco; Iezzi, Ennio; Dinapoli, Loredana; Suppa, Antonio; Conte, Antonella; Berardelli, Alfredo
2008-08-01
In this paper we investigated the effects of intermittent theta-burst stimulation (iTBS) applied to the primary motor cortex on practice-related changes in motor performance. Seventeen healthy subjects underwent two experimental sessions, one testing real iTBS and the other testing sham iTBS. Before and after both iTBS sessions, the subjects practiced fast right index-finger abductions for a few minutes. As measures of cortical excitability we calculated resting motor threshold and motor-evoked potential amplitude. As measures of practice-related changes we evaluated the mean movement amplitude, peak velocity and peak acceleration values for each block. When subjects practiced the movement task, the three variables measuring practice-related changes improved to a similar extent during real and sham iTBS whereas cortical excitability increased only during real iTBS. In a further group of five healthy subjects we investigated the effect of real and sham iTBS on changes in motor performance after a longer task practice and found no significant changes in motor performance and retention after real and sham iTBS. From our results overall we conclude that in healthy subjects iTBS applied to the primary motor cortex leaves practice-related changes in an index finger abduction task unaffected. We suggest that iTBS delivered over the primary motor cortex is insufficient to alter motor performance because early motor learning probably engages a wide cortical and subcortical network.
Inui, N; Ichihara, T
2001-10-01
To examine the relation between timing and force control during finger taping sequences by both pianists and nonpianists, participants tapped a force plate connected to strain gauges. A series of finger tapping tasks consisted of 16 combinations of pace (intertap interval: 180, 200, 400, or 800 ms) and peak force (50, 100, 200, or 400 g). Analysis showed that, although movement timing was independent of force control under low or medium pace conditions, there were strong interactions between the 2 parameters under high pace conditions. The results indicate that participants adapted the movement by switching from separately controlling these parameters in the slow and moderate movement to coupling them in the fast movement. While variations in the intertap interval affected force production by nonpianists, they had little effect for pianists. The ratios of time-to-peak force to press duration increased linearly in pianists but varied irregularly in nonpianists, as the required force decreased. Thus, pianists regulate peak force by timing control of peak force to press duration, suggesting that training affects the relationship between the 2 parameters.
Corrective jitter motion shows similar individual frequencies for the arm and the finger.
Noy, Lior; Alon, Uri; Friedman, Jason
2015-04-01
A characteristic of visuomotor tracking of non-regular oscillating stimuli are high-frequency jittery corrective motions, oscillating around the tracked stimuli. However, the properties of these corrective jitter responses are not well understood. For example, does the jitter response show an idiosyncratic signature? What is the relationship between stimuli properties and jitter properties? Is the jitter response similar across effectors with different inertial properties? To answer these questions, we measured participants' jitter frequencies in two tracking tasks in the arm and the finger. Thirty participants tracked the same set of eleven non-regular oscillating stimuli, vertically moving on a screen, once with forward-backward arm movements (holding a tablet stylus) and once with upward-downward index finger movements (with a motion tracker attached). Participants' jitter frequencies and tracking errors varied systematically as a function of stimuli frequency and amplitude. Additionally, there were clear individual differences in average jitter frequencies between participants, ranging from 0.7 to 1.15 Hz, similar to values reported previously. A comparison of individual jitter frequencies in the two tasks showed a strong correlation between participants' jitter frequencies in the finger and the arm, despite the very different inertial properties of the two effectors. This result suggests that the corrective jitter response stems from common neural processes.
... cramp is a focal dystonia of the fingers, hand, and/or forearm. Symptoms usually appear when a person is trying to do a task that requires fine motor movements such as writing or playing a musical instrument. The symptoms may ...
Shen, Guohua; Zhang, Jing; Wang, Mengxing; Lei, Du; Yang, Guang; Zhang, Shanmin; Du, Xiaoxia
2014-06-01
Multivariate pattern classification analysis (MVPA) has been applied to functional magnetic resonance imaging (fMRI) data to decode brain states from spatially distributed activation patterns. Decoding upper limb movements from non-invasively recorded human brain activation is crucial for implementing a brain-machine interface that directly harnesses an individual's thoughts to control external devices or computers. The aim of this study was to decode the individual finger movements from fMRI single-trial data. Thirteen healthy human subjects participated in a visually cued delayed finger movement task, and only one slight button press was performed in each trial. Using MVPA, the decoding accuracy (DA) was computed separately for the different motor-related regions of interest. For the construction of feature vectors, the feature vectors from two successive volumes in the image series for a trial were concatenated. With these spatial-temporal feature vectors, we obtained a 63.1% average DA (84.7% for the best subject) for the contralateral primary somatosensory cortex and a 46.0% average DA (71.0% for the best subject) for the contralateral primary motor cortex; both of these values were significantly above the chance level (20%). In addition, we implemented searchlight MVPA to search for informative regions in an unbiased manner across the whole brain. Furthermore, by applying searchlight MVPA to each volume of a trial, we visually demonstrated the information for decoding, both spatially and temporally. The results suggest that the non-invasive fMRI technique may provide informative features for decoding individual finger movements and the potential of developing an fMRI-based brain-machine interface for finger movement. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Irwin, Z. T.; Schroeder, K. E.; Vu, P. P.; Tat, D. M.; Bullard, A. J.; Woo, S. L.; Sando, I. C.; Urbanchek, M. G.; Cederna, P. S.; Chestek, C. A.
2016-08-01
Objective. Loss of even part of the upper limb is a devastating injury. In order to fully restore natural function when lacking sufficient residual musculature, it is necessary to record directly from peripheral nerves. However, current approaches must make trade-offs between signal quality and longevity which limit their clinical potential. To address this issue, we have developed the regenerative peripheral nerve interface (RPNI) and tested its use in non-human primates. Approach. The RPNI consists of a small, autologous partial muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft acts as a bioamplifier for descending motor commands in the nerve, enabling long-term recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two rhesus macaques who were trained to perform cued finger movements. Main results. No adverse events were noted in either monkey, and we recorded normal EMG with high SNR (>8) from the RPNIs for up to 20 months post-implantation. Using RPNI signals recorded during the behavioral task, we were able to classify each monkey’s finger movements as flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic control, allowing the monkeys to perform the same behavioral task equally well with either physical finger movements or RPNI-based movement classifications. Significance. The RPNI signal strength, stability, and longevity demonstrated here represents a promising method for controlling advanced prosthetic limbs and fully restoring natural movement.
Irwin, Z T; Schroeder, K E; Vu, P P; Tat, D M; Bullard, A J; Woo, S L; Sando, I C; Urbanchek, M G; Cederna, P S; Chestek, C A
2016-08-01
Loss of even part of the upper limb is a devastating injury. In order to fully restore natural function when lacking sufficient residual musculature, it is necessary to record directly from peripheral nerves. However, current approaches must make trade-offs between signal quality and longevity which limit their clinical potential. To address this issue, we have developed the regenerative peripheral nerve interface (RPNI) and tested its use in non-human primates. The RPNI consists of a small, autologous partial muscle graft reinnervated by a transected peripheral nerve branch. After reinnervation, the graft acts as a bioamplifier for descending motor commands in the nerve, enabling long-term recording of high signal-to-noise ratio (SNR), functionally-specific electromyographic (EMG) signals. We implanted nine RPNIs on separate branches of the median and radial nerves in two rhesus macaques who were trained to perform cued finger movements. No adverse events were noted in either monkey, and we recorded normal EMG with high SNR (>8) from the RPNIs for up to 20 months post-implantation. Using RPNI signals recorded during the behavioral task, we were able to classify each monkey's finger movements as flexion, extension, or rest with >96% accuracy. RPNI signals also enabled functional prosthetic control, allowing the monkeys to perform the same behavioral task equally well with either physical finger movements or RPNI-based movement classifications. The RPNI signal strength, stability, and longevity demonstrated here represents a promising method for controlling advanced prosthetic limbs and fully restoring natural movement.
Walz, A D; Doppl, K; Kaza, E; Roschka, S; Platz, T; Lotze, M
2015-02-01
We were interested in motor performance gain after unilateral hand motor training and associated changes of cerebral and cerebellar movement representation tested with functional magnetic resonance imaging (fMRI) before and after training. Therefore, we trained the left hand of strongly right-handed healthy participants with a comprehensive training (arm ability training, AAT) over two weeks. Motor performance was tested for the trained and non-trained hand before and after the training period. Functional imaging was performed for the trained and the non-trained hand separately and comprised force modulation with the fist, sequential finger movements and a fast writing task. After the training period the performance gain of tapping movements was comparable for both hand sides, whereas the motor performance for writing showed a higher training effect for the trained hand. fMRI showed a reduction of activation in supplementary motor, dorsolateral prefrontal cortex, parietal cortical areas and lateral cerebellar areas during sequential finger movements over time. During left hand writing lateral cerebellar hemisphere also showed reduced activation, while activation of the anterior cerebellar hemisphere was increased. An initially high anterior cerebellar activation magnitude was a predictive value for high training outcome of finger tapping and visual guided movements. During the force modulation task we found increased activation in the striate. Overall, a comprehensive long-term training of the less skillful hand in healthy participants resulted in relevant motor performance improvements, as well as an intermanual learning transfer differently pronounced for the type of movement tested. Whereas cortical motor area activation decreased over time, cerebellar anterior hemisphere and striatum activity seem to represent increasing resources after long-term motor training. Copyright © 2014 Elsevier B.V. All rights reserved.
Temporal prediction abilities are mediated by motor effector and rhythmic expertise.
Manning, Fiona C; Harris, Jennifer; Schutz, Michael
2017-03-01
Motor synchronization is a critical part of musical performance and listening. Recently, motor control research has described how movements that contain more available degrees of freedom are more accurately timed. Previously, we demonstrated that stick tapping improves perception in a timing detection task, where percussionists greatly outperformed non-percussionists only when tapping along. Since most synchronization studies implement finger tapping to examine simple motor synchronization, here we completed a similar task where percussionists and non-percussionists synchronized using finger tapping; movement with fewer degrees of freedom than stick tapping. Percussionists and non-percussionists listened to an isochronous beat sequence and identified the timing of a probe tone. On half of the trials, they tapped along with their index finger, and on the other half of the trials, they listened without moving prior to making timing judgments. We found that both groups benefited from tapping overall. Interestingly, percussionists performed only marginally better than did non-percussionists when finger tapping and no different when listening alone, differing from past studies reporting highly superior timing abilities in percussionists. Additionally, we found that percussionist finger tapping was less variable and less asynchronous than was non-percussionist tapping. Moreover, in both groups finger tapping was more variable and more asynchronous than stick tapping in our previous study. This study demonstrates that the motor effector implemented in tapping studies affects not only synchronization abilities, but also subsequent prediction abilities. We discuss these findings in light of effector-specific training and degrees of freedom in motor timing, both of which impact timing abilities to different extents.
Caçola, Priscila; Roberson, Jerroed; Gabbard, Carl
2013-06-01
Studies show that as we enter older adulthood (>64years), our ability to mentally represent action in the form of using motor imagery declines. Using a chronometry paradigm to compare the movement duration of imagined and executed movements, we tested young-, middle-aged, and older adults on their ability to perform sequential finger (fine-motor) movements. The task required number recognition and ordering and was presented in three levels of complexity. Results for movement duration indicated no differences between young- and middle-aged adults, however both performed faster than the older group. In regard to the association between imagined and executed actions, correlation analyses indicated that values for all groups were positive and moderate (r's .80,.76,.70). In summary, whereas the older adults were significantly slower in processing actions than their younger counterparts, the ability to mentally represent their actions was similar. Copyright © 2013 Elsevier Inc. All rights reserved.
Geometric features of workspace and joint-space paths of 3D reaching movements.
Klein Breteler, M D; Meulenbroek, R G; Gielen, S C
1998-11-01
The present study focuses on geometric features of workspace and joint-space paths of three-dimensional reaching movements. Twelve subjects repeatedly performed a three-segment, triangular-shaped movement pattern in an approximately 60 degrees tilted horizontal plane. Task variables elicited movement patterns that varied in position, rotational direction and speed. Trunk, arm, hand and finger-tip movements were recorded by means of a 3D motion-tracking system. Angular excursions of the shoulder and elbow joints were extracted from position data. Analyses of the shape of 3D workspace and joint-space paths focused on the extent to which the submovements were produced in a plane, and on the curvature of the central parts of the submovements. A systematic tendency to produce movements in a plane was found in addition to an increase of finger-tip path curvature with increasing speed. The findings are discussed in relation to the role of optimization principles in trajectory-formation models.
Mollazadeh, Mohsen; Davidson, Adam G.; Schieber, Marc H.; Thakor, Nitish V.
2013-01-01
The performance of brain-machine interfaces (BMIs) that continuously control upper limb neuroprostheses may benefit from distinguishing periods of posture and movement so as to prevent inappropriate movement of the prosthesis. Few studies, however, have investigated how decoding behavioral states and detecting the transitions between posture and movement could be used autonomously to trigger a kinematic decoder. We recorded simultaneous neuronal ensemble and local field potential (LFP) activity from microelectrode arrays in primary motor cortex (M1) and dorsal (PMd) and ventral (PMv) premotor areas of two male rhesus monkeys performing a center-out reach-and-grasp task, while upper limb kinematics were tracked with a motion capture system with markers on the dorsal aspect of the forearm, hand, and fingers. A state decoder was trained to distinguish four behavioral states (baseline, reaction, movement, hold), while a kinematic decoder was trained to continuously decode hand end point position and 18 joint angles of the wrist and fingers. LFP amplitude most accurately predicted transition into the reaction (62%) and movement (73%) states, while spikes most accurately decoded arm, hand, and finger kinematics during movement. Using an LFP-based state decoder to trigger a spike-based kinematic decoder [r = 0.72, root mean squared error (RMSE) = 0.15] significantly improved decoding of reach-to-grasp movements from baseline to final hold, compared with either a spike-based state decoder combined with a spike-based kinematic decoder (r = 0.70, RMSE = 0.17) or a spike-based kinematic decoder alone (r = 0.67, RMSE = 0.17). Combining LFP-based state decoding with spike-based kinematic decoding may be a valuable step toward the realization of BMI control of a multifingered neuroprosthesis performing dexterous manipulation. PMID:23536714
Altered corticospinal function during movement preparation in humans with spinal cord injury.
Federico, Paolo; Perez, Monica A
2017-01-01
In uninjured humans, transmission in the corticospinal pathway changes in a task-dependent manner during movement preparation. We investigated whether this ability is preserved in humans with incomplete chronic cervical spinal cord injury (SCI). Our results show that corticospinal excitability is altered in the preparatory phase of an upcoming movement when there is a need to suppress but not to execute rapid index finger voluntary contractions in individuals with SCI compared with controls. This is probably related to impaired transmission at a cortical and spinal level after SCI. Overall our findings indicate that deficits in corticospinal transmission in humans with chronic incomplete SCI are also present in the preparatory phase of upcoming movements. Corticospinal output is modulated in a task-dependent manner during the preparatory phase of upcoming movements in humans. Whether this ability is preserved after spinal cord injury (SCI) is unknown. In this study, we examined motor evoked potentials elicited by cortical (MEPs) and subcortical (CMEPs) stimulation of corticospinal axons and short-interval intracortical inhibition in the first dorsal interosseous muscle in the preparatory phase of a reaction time task where individuals with chronic incomplete cervical SCI and age-matched controls needed to suppress (NOGO) or initiate (GO) ballistic index finger isometric voluntary contractions. Reaction times were prolonged in SCI participants compared with control subjects and stimulation was provided ∼90 ms prior to movement onset in each group. During NOGO trials, both MEPs and CMEPs remained unchanged compared to baseline in SCI participants but were suppressed in control subjects. Notably, during GO trials, MEPs increased to a similar extent in both groups but CMEPs increased only in controls. The magnitude of short-interval intracortical inhibition increased in controls but not in SCI subjects during NOGO trials and decreased in both groups in GO trials. These novel observations reveal that humans with incomplete cervical SCI have an altered ability to modulate corticospinal excitability during movement preparation when there is a need to suppress but not to execute upcoming rapid finger movements, which is probably related to impaired transmission at a cortical and spinal level. Thus, deficits in corticospinal transmission after human SCI extend to the preparatory phase of upcoming movements. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Madrid, Antonio; Madinabeitia-Mancebo, Elena; Cudeiro, Javier; Arias, Pablo
2018-06-19
The central drive to the muscle reduces when muscle force wanes during sustained MVC, and this is generally considered the neurophysiological footprint of central fatigue. The question is if force loss and the failure of central drive to the muscle are responsible mechanisms of fatigue induced by un-resisted repetitive movements. In various experimental blocks, we validated a 3D-printed hand-fixation system permitting the execution of finger-tapping and maximal voluntary contractions (MVC). Subsequently, we checked the suitability of the system to test the level of central drive to the muscle and developed an algorithm to test it at the MVC force plateau. Our main results show that the maximum rate of finger-tapping dropped at 30 s, while the excitability of inhibitory M1-intracortical circuits and corticospinal excitability increased (all by approximately 15%). Furthermore, values obtained immediately after finger-tapping showed that MVC force and the level of central drive to the muscle remained unchanged. Our data suggest that force and central drive to the muscle are not determinants of fatigue induced by short-lasting un-resisted repetitive finger movements, even in the presence of increased inhibition of the motor cortex. According to literature, this profile might be different in longer-lasting, more complex and/or resisted repetitive movements.
Aridan, Nadav; Mukamel, Roy
2016-11-01
Observing someone else perform a movement facilitates motor planning, execution, and motor memory formation. Rate, an important feature in the execution of repeated movements, has been shown to vary following movement observation although the underlying neural mechanisms are unclear. In the current study, we examined how the rate of self-paced index finger pressing is implicitly modified following passive observation of a similar action performed at a different rate. Fifty subjects performed a finger pressing sequence with their right hand at their own pace before and after passive observation of either a 1-min video depicting the task performed at 3 Hz by someone else or a black screen. An additional set of 15 subjects performed the task in an MRI scanner. Across all 50 subjects, the spontaneous execution rate prior to video observation had a bimodal distribution with modes around 2 and 4 Hz. Following video observation, the slower subjects performed the task at an increased rate. In the 15 subjects who performed the task in the MRI scanner, we found positive correlation between fMRI signal in the left primary motor strip during passive video observation and subsequent behavioral changes in task performance rate. We conclude that observing someone else perform an action at a higher rate implicitly increases the spontaneous rate of execution, and that this implicit induction is mediated by activity in the contralateral primary motor cortex.
Hao, Qiao; Ora, Hiroki; Ogawa, Ken-Ichiro; Ogata, Taiki; Miyake, Yoshihiro
2016-09-13
The simultaneous perception of multimodal sensory information has a crucial role for effective reactions to the external environment. Voluntary movements are known to occasionally affect simultaneous perception of auditory and tactile stimuli presented to the moving body part. However, little is known about spatial limits on the effect of voluntary movements on simultaneous perception, especially when tactile stimuli are presented to a non-moving body part. We examined the effect of voluntary movement on the simultaneous perception of auditory and tactile stimuli presented to the non-moving body part. We considered the possible mechanism using a temporal order judgement task under three experimental conditions: voluntary movement, where participants voluntarily moved their right index finger and judged the temporal order of auditory and tactile stimuli presented to their non-moving left index finger; passive movement; and no movement. During voluntary movement, the auditory stimulus needed to be presented before the tactile stimulus so that they were perceived as occurring simultaneously. This subjective simultaneity differed significantly from the passive movement and no movement conditions. This finding indicates that the effect of voluntary movement on simultaneous perception of auditory and tactile stimuli extends to the non-moving body part.
van Beek, Nathalie; Stegeman, Dick F; van den Noort, Josien C; H E J Veeger, DirkJan; Maas, Huub
2018-02-01
The fingers of the human hand cannot be controlled fully independently. This phenomenon may have a neurological as well as a mechanical basis. Despite previous studies, the neuromechanics of finger movements are not fully understood. The aims of this study were (1) to assess the activation and coactivation patterns of finger specific flexor and extensor muscle regions during instructed single finger flexion and (2) to determine the relationship between enslaved finger movements and respective finger muscle activation. In 9 healthy subjects (age 22-29), muscle activation was assessed during single finger flexion using a 90 surface electromyography electrode grid placed over the flexor digitorum superficialis (FDS) and the extensor digitorum (ED). We found (1) no significant differences in muscle activation timing between fingers, (2) considerable muscle activity in flexor and extensor regions associated with the non-instructed fingers and (3) no correlation between the muscle activations and corresponding movement of non-instructed fingers. A clear disparity was found between the movement pattern of the non-instructed fingers and the activity pattern of the corresponding muscle regions. This suggests that mechanical factors, such as intertendinous and myofascial connections, may also affect finger movement independency and need to be taken into consideration when studying finger movement. Copyright © 2017 Elsevier Ltd. All rights reserved.
Turesky, Ted K.; Turkeltaub, Peter E.; Eden, Guinevere F.
2016-01-01
The functional neuroanatomy of finger movements has been characterized with neuroimaging in young adults. However, less is known about the aging motor system. Several studies have contrasted movement-related activity in older versus young adults, but there is inconsistency among their findings. To address this, we conducted an activation likelihood estimation (ALE) meta-analysis on within-group data from older adults and young adults performing regularly paced right-hand finger movement tasks in response to external stimuli. We hypothesized that older adults would show a greater likelihood of activation in right cortical motor areas (i.e., ipsilateral to the side of movement) compared to young adults. ALE maps were examined for conjunction and between-group differences. Older adults showed overlapping likelihoods of activation with young adults in left primary sensorimotor cortex (SM1), bilateral supplementary motor area, bilateral insula, left thalamus, and right anterior cerebellum. Their ALE map differed from that of the young adults in right SM1 (extending into dorsal premotor cortex), right supramarginal gyrus, medial premotor cortex, and right posterior cerebellum. The finding that older adults uniquely use ipsilateral regions for right-hand finger movements and show age-dependent modulations in regions recruited by both age groups provides a foundation by which to understand age-related motor decline and motor disorders. PMID:27799910
Finger movement at birth in brachial plexus birth palsy
Nath, Rahul K; Benyahia, Mohamed; Somasundaram, Chandra
2013-01-01
AIM: To investigate whether the finger movement at birth is a better predictor of the brachial plexus birth injury. METHODS: We conducted a retrospective study reviewing pre-surgical records of 87 patients with residual obstetric brachial plexus palsy in study 1. Posterior subluxation of the humeral head (PHHA), and glenoid retroversion were measured from computed tomography or Magnetic resonance imaging, and correlated with the finger movement at birth. The study 2 consisted of 141 obstetric brachial plexus injury patients, who underwent primary surgeries and/or secondary surgery at the Texas Nerve and Paralysis Institute. Information regarding finger movement was obtained from the patient’s parent or guardian during the initial evaluation. RESULTS: Among 87 patients, 9 (10.3%) patients who lacked finger movement at birth had a PHHA > 40%, and glenoid retroversion < -12°, whereas only 1 patient (1.1%) with finger movement had a PHHA > 40%, and retroversion < -8° in study 1. The improvement in glenohumeral deformity (PHHA, 31.8% ± 14.3%; and glenoid retroversion 22.0° ± 15.0°) was significantly higher in patients, who have not had any primary surgeries and had finger movement at birth (group 1), when compared to those patients, who had primary surgeries (nerve and muscle surgeries), and lacked finger movement at birth (group 2), (PHHA 10.7% ± 15.8%; Version -8.0° ± 8.4°, P = 0.005 and P = 0.030, respectively) in study 2. No finger movement at birth was observed in 55% of the patients in this study group. CONCLUSION: Posterior subluxation and glenoid retroversion measurements indicated significantly severe shoulder deformities in children with finger movement at birth, in comparison with those lacked finger movement. However, the improvement after triangle tilt surgery was higher in patients who had finger movement at birth. PMID:23362472
Iwamuro, B T; Fischer, H C; Kamper, D G
2011-01-01
The purpose of this study was to investigate whether active range of finger motion could be increased through the introduction of passive, external extension joint torques in stroke survivors. Five chronic stroke survivors with severe hand impairment resulting from hemiparesis took part in the study. Participants completed 2 experimental sessions in which hand movement and function were assessed. In one session, they wore a custom orthotic glove (X-Glove) that passively supplied extension torques to the joints of the fingers. In the second session, they performed the same tasks as in the other session, but without the glove. Outcome measures consisted of active range of motion, distance of the fingertip from the hand, selected tasks from the Graded Wolf Motor Function Test (GWMFT), and the Box and Blocks (BB) test. Primary results with and without the glove were compared using paired t tests with a Bonferroni correction. Active range of motion improved significantly by over 50%, from 4.4 cm to 6.7 cm, when the X-Glove was worn (P = .011). The distance of the fingertip from the metacarpophalangeal joint increased by an average of 2.2 cm for 4 of the subjects, although this change was not significant across all 5 subjects (P = .123). No significant differences were observed in the BB or GWMFT whether the X-Glove was worn or not. Introduction of passive extension torque can improve active range of motion for the fingers, even in chronic stroke survivors with substantial hand impairment. The increased range of motion would facilitate therapeutic training of the hand, potentially even in the home environment, although the bulk of the orthosis should be minimized to facilitate interactions with real objects.
Shim, Jae Kun; Karol, Sohit; Hsu, Jeffrey; de Oliveira, Marcio Alves
2008-04-01
The aim of this study was to investigate the contralateral motor overflow in children during single-finger and multi-finger maximum force production tasks. Forty-five right handed children, 5-11 years of age produced maximum isometric pressing force in flexion or extension with single fingers or all four fingers of their right hand. The forces produced by individual fingers of the right and left hands were recorded and analyzed in four-dimensional finger force vector space. The results showed that increases in task (right) hand finger forces were linearly associated with non-task (left) hand finger forces. The ratio of the non-task hand finger force magnitude to the corresponding task hand finger force magnitude, termed motor overflow magnitude (MOM), was greater in extension than flexion. The index finger flexion task showed the smallest MOM values. The similarity between the directions of task hand and non-task hand finger force vectors in four-dimensional finger force vector space, termed motor overflow direction (MOD), was the greatest for index and smallest for little finger tasks. MOM of a four-finger task was greater than the sum of MOMs of single-finger tasks, and this phenomenon was termed motor overflow surplus. Contrary to previous studies, no single-finger or four-finger tasks showed significant changes of MOM or MOD with the age of children. We conclude that the contralateral motor overflow in children during finger maximum force production tasks is dependent upon the task fingers and the magnitude and direction of task finger forces.
Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors.
Baker, Justin J; Scheme, Erik; Englehart, Kevin; Hutchinson, Douglas T; Greger, Bradley
2010-08-01
A rhesus monkey was trained to perform individuated and combined finger flexions of the thumb, index, and middle finger. Nine implantable myoelectric sensors (IMES) were then surgically implanted into the finger muscles of the monkey's forearm, without any adverse effects over two years postimplantation. Using an inductive link, EMG was wirelessly recorded from the IMES as the monkey performed a finger flexion task. The EMG from the different IMES implants showed very little cross correlation. An offline parallel linear discriminant analysis (LDA) based algorithm was used to decode finger activity based on features extracted from continuously presented frames of recorded EMG. The offline parallel LDA was run on intraday sessions as well as on sessions where the algorithm was trained on one day and tested on following days. The performance of the algorithm was evaluated continuously by comparing classification output by the algorithm to the current state of the finger switches. The algorithm detected and classified seven different finger movements, including individual and combined finger flexions, and a no-movement state (chance performance = 12.5%) . When the algorithm was trained and tested on data collected the same day, the average performance was 43.8+/-3.6% n=10. When the training-testing separation period was five months, the average performance of the algorithm was 46.5+/-3.4% n=8. These results demonstrated that using EMG recorded and wirelessly transmitted by IMES offers a promising approach for providing intuitive, dexterous control of artificial limbs where human patients have sufficient, functional residual muscle following amputation.
Losing dexterity: patterns of impaired coordination of finger movements in musician’s dystonia
Furuya, Shinichi; Tominaga, Kenta; Miyazaki, Fumio; Altenmüller, Eckart
2015-01-01
Extensive training can bring about highly-skilled action, but may also impair motor dexterity by producing involuntary movements and muscular cramping, as seen in focal dystonia (FD) and tremor. To elucidate the underlying neuroplastic mechanisms of FD, the present study addressed the organization of finger movements during piano performance in pianists suffering from the condition. Principal component (PC) analysis identified three patterns of fundamental joint coordination constituting finger movements in both patients and controls. The first two coordination patterns described less individuated movements between the “dystonic” finger and key-striking fingers for patients compared to controls. The third coordination pattern, representing the individuation of movements between the middle and ring fingers, was evident during a sequence of strikes with these fingers in controls, which was absent in the patients. Consequently, rhythmic variability of keystrokes was more pronounced during this sequence of strikes for the patients. A stepwise multiple-regression analysis further identified greater variability of keystrokes for individuals displaying less individuated movements between the affected and striking fingers. The findings suggest that FD alters dexterous joint coordination so as to lower independent control of finger movements, and thereby degrades fine motor control. PMID:26289433
The role of musical training in emergent and event-based timing.
Baer, L H; Thibodeau, J L N; Gralnick, T M; Li, K Z H; Penhune, V B
2013-01-01
Musical performance is thought to rely predominantly on event-based timing involving a clock-like neural process and an explicit internal representation of the time interval. Some aspects of musical performance may rely on emergent timing, which is established through the optimization of movement kinematics, and can be maintained without reference to any explicit representation of the time interval. We predicted that musical training would have its largest effect on event-based timing, supporting the dissociability of these timing processes and the dominance of event-based timing in musical performance. We compared 22 musicians and 17 non-musicians on the prototypical event-based timing task of finger tapping and on the typically emergently timed task of circle drawing. For each task, participants first responded in synchrony with a metronome (Paced) and then responded at the same rate without the metronome (Unpaced). Analyses of the Unpaced phase revealed that non-musicians were more variable in their inter-response intervals for finger tapping compared to circle drawing. Musicians did not differ between the two tasks. Between groups, non-musicians were more variable than musicians for tapping but not for drawing. We were able to show that the differences were due to less timer variability in musicians on the tapping task. Correlational analyses of movement jerk and inter-response interval variability revealed a negative association for tapping and a positive association for drawing in non-musicians only. These results suggest that musical training affects temporal variability in tapping but not drawing. Additionally, musicians and non-musicians may be employing different movement strategies to maintain accurate timing in the two tasks. These findings add to our understanding of how musical training affects timing and support the dissociability of event-based and emergent timing modes.
Finger-specific loss of independent control of movements in musicians with focal dystonia.
Furuya, S; Altenmüller, E
2013-09-05
The loss of independent control of finger movements impairs the dexterous use of the hand. Focal hand dystonia is characterised by abnormal structural and functional changes at the cortical and subcortical regions responsible for individuated finger movements and by the loss of surround inhibition in the finger muscles. However, little is known about the pathophysiological impact of focal dystonia on the independent control of finger movements. Here we addressed this issue by asking pianists with and without focal dystonia to repetitively strike a piano key with one of the four fingers as fast as possible while the remaining digits kept the adjacent keys depressed. Using principal component analysis and cluster analysis to the derived keystroke data, we successfully classified pianists according to the presence or absence of dystonic symptoms with classification rates and cross-validation scores of approximately 90%. This confirmed the effects of focal dystonia on the individuated finger movements. Interestingly, the movement features that contributed to successful classification differed across fingers. Compared to healthy pianists, pianists with an affected index finger were characterised predominantly by stronger keystrokes, whereas pianists with affected middle or ring fingers exhibited abnormal temporal control of the keystrokes, such as slowness and rhythmic inconsistency. The selective alternation of the movement features indicates a finger-specific loss of the independent control of finger movements in focal dystonia of musicians. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.
The impact of the perception of rhythmic music on self-paced oscillatory movements
Peckel, Mathieu; Pozzo, Thierry; Bigand, Emmanuel
2014-01-01
Inspired by theories of perception-action coupling and embodied music cognition, we investigated how rhythmic music perception impacts self-paced oscillatory movements. In a pilot study, we examined the kinematic parameters of self-paced oscillatory movements, walking and finger tapping using optical motion capture. In accordance with biomechanical constraints accounts of motion, we found that movements followed a hierarchical organization depending on the proximal/distal characteristic of the limb used. Based on these findings, we were interested in knowing how and when the perception of rhythmic music could resonate with the motor system in the context of these constrained oscillatory movements. In order to test this, we conducted an experiment where participants performed four different effector-specific movements (lower leg, whole arm and forearm oscillation and finger tapping) while rhythmic music was playing in the background. Musical stimuli consisted of computer-generated MIDI musical pieces with a 4/4 metrical structure. The musical tempo of each song increased from 60 BPM to 120 BPM by 6 BPM increments. A specific tempo was maintained for 20 s before a 2 s transition to the higher tempo. The task of the participant was to maintain a comfortable pace for the four movements (self-paced) while not paying attention to the music. No instruction on whether to synchronize with the music was given. Results showed that participants were distinctively influenced by the background music depending on the movement used with the tapping task being consistently the most influenced. Furthermore, eight strategies put in place by participants to cope with the task were unveiled. Despite not instructed to do so, participants also occasionally synchronized with music. Results are discussed in terms of the link between perception and action (i.e., motor/perceptual resonance). In general, our results give support to the notion that rhythmic music is processed in a motoric fashion. PMID:25278924
Kim, Yong-Hee; Thakor, Nitish V; Schieber, Marc H; Kim, Hyoung-Nam
2015-05-01
Future generations of brain-machine interface (BMI) will require more dexterous motion control such as hand and finger movements. Since a population of neurons in the primary motor cortex (M1) area is correlated with finger movements, neural activities recorded in M1 area are used to reconstruct an intended finger movement. In a BMI system, decoding discrete finger movements from a large number of input neurons does not guarantee a higher decoding accuracy in spite of the increase in computational burden. Hence, we hypothesize that selecting neurons important for coding dexterous flexion/extension of finger movements would improve the BMI performance. In this paper, two metrics are presented to quantitatively measure the importance of each neuron based on Bayes risk minimization and deflection coefficient maximization in a statistical decision problem. Since motor cortical neurons are active with movements of several different fingers, the proposed method is more suitable for a discrete decoding of flexion-extension finger movements than the previous methods for decoding reaching movements. In particular, the proposed metrics yielded high decoding accuracies across all subjects and also in the case of including six combined two-finger movements. While our data acquisition and analysis was done off-line and post processing, our results point to the significance of highly coding neurons in improving BMI performance.
Kim, Yong-Hee; Thakor, Nitish V.; Schieber, Marc H.; Kim, Hyoung-Nam
2015-01-01
Future generations of brain-machine interface (BMI) will require more dexterous motion control such as hand and finger movements. Since a population of neurons in the primary motor cortex (M1) area is correlated with finger movements, neural activities recorded in M1 area are used to reconstruct an intended finger movement. In a BMI system, decoding discrete finger movements from a large number of input neurons does not guarantee a higher decoding accuracy in spite of the increase in computational burden. Hence, we hypothesize that selecting neurons important for coding dexterous flexion/extension of finger movements would improve the BMI performance. In this paper, two metrics are presented to quantitatively measure the importance of each neuron based on Bayes risk minimization and deflection coefficient maximization in a statistical decision problem. Since motor cortical neurons are active with movements of several different fingers, the proposed method is more suitable for a discrete decoding of flexion-extension finger movements than the previous methods for decoding reaching movements. In particular, the proposed metrics yielded high decoding accuracies across all subjects and also in the case of including six combined two-finger movements. While our data acquisition and analysis was done off-line and post processing, our results point to the significance of highly coding neurons in improving BMI performance. PMID:25347884
Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis.
Schaefer, Sydney Y; DeJong, Stacey L; Cherry, Kendra M; Lang, Catherine E
2012-04-01
This study investigated whether grip type and/or task goal influenced reaching and grasping performance in poststroke hemiparesis. Sixteen adults with poststroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared with the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment.
Grip type and task goal modify reach-to-grasp performance in post-stroke hemiparesis
Schaefer, Sydney Y.; DeJong, Stacey L.; Cherry, Kendra M.; Lang, Catherine E.
2011-01-01
This study investigated whether grip type and/or task goal influenced reaching and grasping performance in post-stroke hemiparesis. Sixteen adults with post-stroke hemiparesis and twelve healthy adults reached to and grasped a cylindrical object using one of two grip types (3-finger or palmar) to achieve one of two task goals (hold or lift). Performance of the stroke group was characteristic of hemiparetic limb movement during reach-to-grasp, with more curved handpaths and slower velocities compared to the control group. These effects were present regardless of grip type or task goal. Other measures of reaching (reach time and reach velocity at object contact) and grasping (peak thumb-index finger aperture during the reach and peak grip force during the grasp) were differentially affected by grip type, task goal, or both, despite the presence of hemiparesis, providing new evidence that changes in motor patterns after stroke may occur to compensate for stroke-related motor impairment. PMID:22357103
Classification of finger movements by using the ultra-wide band radar.
Eldosoky, Mohamed A A
2010-12-01
The coding system of finger movements depends on the differences in the characteristics of the muscles that are responsible for these movements. The ability of ultra-wide band (UWB) radar for use as a tool for identifying the movements of each finger is presented. This will facilitate the ability of the UWB radar in designing a coding system for the movement of fingers of each hand.
The effects of a two-step transfer on a visuomotor adaptation task.
Aiken, Christopher A; Pan, Zhujun; Van Gemmert, Arend W A
2017-11-01
The literature has shown robust effects of transfer-of-learning to the contralateral side and more recently transfer-of-learning effects to a new effector type on the ipsilateral side. Few studies have investigated the effects of transfer-of-learning when skills transfer to both a new effector type and the contralateral side (two-step transfer). The purpose of the current study was to investigate the effects of two-step transfer and to examine which aspects of the movement transfer and which aspects do not. Individuals practiced a 30° visual rotation task with either the dominant or non-dominant limb and with either the use of the fingers and wrist or elbow and shoulder. Following practice, participants performed the task with the untrained effector type on the contralateral side. Results showed that initial direction error and trajectory length transferred from the dominant to the non-dominant side and movement time transferred from the elbow and shoulder condition to the wrist and finger conditions irrespective of which limb was used during practice. The results offer a unique perspective on the current theoretical and practical implications for transfer-of-learning and are further discussed in this paper.
Speed invariance of independent control of finger movements in pianists
Soechting, John F.
2012-01-01
Independent control of finger movements characterizes skilled motor behaviors such as tool use and musical performance. The purpose of the present study was to identify the effect of movement frequency (tempo) on individuated finger movements in piano playing. Joint motion at the digits was recorded while 5 expert pianists were playing 30 excerpts from musical pieces with different fingering and key locations either at a predetermined normal tempo or as fast as possible. Principal component analysis and cluster analysis using an expectation-maximization algorithm determined three distinct patterns of finger movement coordination for a keypress with each of the index, middle, ring, and little fingers at each of the two tempi. The finger kinematics of each coordination pattern was overall similar across the tempi. Tone sequences assigned into each cluster were also similar for both tempi. A linear regression analysis determined no apparent difference in the amount of movement covariation between the striking and nonstriking fingers at both metacarpo-phalangeal and proximal-interphalangeal joints across the two tempi, which indicated no effect of tempo on independent finger movements in piano playing. In addition, the standard deviation of interkeystroke interval across strokes did not differ between the two tempi, indicating maintenance of rhythmic accuracy of keystrokes. Strong temporal constraints on finger movements during piano playing may underlie the maintained independent control of fingers over a wider range of tempi, a feature being likely to be specific to skilled pianists. PMID:22815403
Transfer of piano practice in fast performance of skilled finger movements.
Furuya, Shinichi; Nakamura, Ayumi; Nagata, Noriko
2013-11-01
Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements.
Witham, Claire L; Baker, Stuart N
2015-01-01
There is considerable debate over whether the brain codes information using neural firing rate or the fine-grained structure of spike timing. We investigated this issue in spike discharge recorded from single units in the sensorimotor cortex, deep cerebellar nuclei, and dorsal root ganglia in macaque monkeys trained to perform a finger flexion task. The task required flexion to four different displacements against two opposing torques; the eight possible conditions were randomly interleaved. We used information theory to assess coding of task condition in spike rate, discharge irregularity, and spectral power in the 15- to 25-Hz band during the period of steady holding. All three measures coded task information in all areas tested. Information coding was most often independent between irregularity and 15-25 Hz power (60% of units), moderately redundant between spike rate and irregularity (56% of units redundant), and highly redundant between spike rate and power (93%). Most simultaneously recorded unit pairs coded using the same measure independently (86%). Knowledge of two measures often provided extra information about task, compared with knowledge of only one alone. We conclude that sensorimotor systems use both rate and temporal codes to represent information about a finger movement task. As well as offering insights into neural coding, this work suggests that incorporating spike irregularity into algorithms used for brain-machine interfaces could improve decoding accuracy. Copyright © 2015 the American Physiological Society.
Murayama, Takashi; Takasugi, Jun; Monma, Masahiko; Oga, Masaru
2013-01-01
Mirror therapy can be used to promote recovery from paralysis in patients with post-stroke hemiplegia, There are a lot of reports that mirror-image observation of the unilateral moving hand enhanced the excitability of the primary motor area (M1) ipsilateral to the moving hand in healthy subjects. but the neural mechanisms underlying its therapeutic effects are currently unclear. To investigate this issue, we used functional magnetic resonance imaging to measure activity in brain regions related to visual information processing during mirror image movement observation. Thirteen healthy subjects performed a finger-thumb opposition task with the left and right hands separately, with or without access to mirror observation. In the mirror condition, one hand was reflected in a mirror placed above the abdomen in the MRI scanner. In the masked mirror condition, subjects performed the same task but with the mirror obscured. In both conditions, the other hand was held at rest behind the mirror. A between-task comparison (mirror versus masked mirror) revealed significant activation in the ipsilateral hemisphere in the anterior intraparietal sulcus (aIP) while performing all tasks, regardless of which hand was used. The right aIP was significantly activated while moving the right hand. In contrast, in the left aIP, a small number of voxels showed a tendency toward activation during both left and right hand movement. The enhancement of ipsilateral aIP activity by the mirror image observation of finger action suggests that bimodal aIP neurons can be activated by visual information. We propose that activation in the M1 ipsilateral to the moving hand can be induced by information passing through the ventral premotor area from the aIP. PMID:25792898
Finger tapping ability in healthy elderly and young adults.
Aoki, Tomoko; Fukuoka, Yoshiyuki
2010-03-01
The maximum isometric force production capacity of the fingers decreases with age. However, little information is available on age-related changes in dynamic motor capacity of individual fingers. The purpose of this study was to compare the dynamic motor function of individual fingers between elderly and young adults using rapid single-finger and double-finger tapping. Fourteen elderly and 14 young adults performed maximum frequency tapping by the index, middle, ring, or little finger (single-finger tapping) and with alternate movements of the index-middle, middle-ring, or ring-little finger-pair (double-finger tapping). The maximum pinch force between the thumb and each finger, tactile sensitivity of each fingertip, and time taken to complete a pegboard test were also measured. Compared with young subjects, the older subjects had significantly slower tapping rates in all fingers and finger-pairs in the tapping tasks. The age-related decline was also observed in the tactile sensitivities of all fingers and in the pegboard test. However, there was no group difference in the pinch force of any finger. The tapping rate of each finger did not correlate with the pinch force or tactile sensitivity for the corresponding finger in the elderly subjects. Maximum rate of finger tapping was lower in the elderly adults compared with the young adults. The decline of finger tapping ability in elderly adults seems to be less affected by their maximum force production capacities of the fingers as well as tactile sensitivities at the tips of the fingers.
Transfer of piano practice in fast performance of skilled finger movements
2013-01-01
Background Transfer of learning facilitates the efficient mastery of various skills without practicing all possible sensory-motor repertoires. The present study assessed whether motor practice at a submaximal speed, which is typical in sports and music performance, results in an increase in a maximum speed of finger movements of trained and untrained skills. Results Piano practice of sequential finger movements at a submaximal speed over days progressively increased the maximum speed of trained movements. This increased maximum speed of finger movements was maintained two months after the practice. The learning transferred within the hand to some extent, but not across the hands. Conclusions The present study confirmed facilitation of fast finger movements following a piano practice at a submaximal speed. In addition, the findings indicated the intra-manual transfer effects of piano practice on the maximum speed of skilled finger movements. PMID:24175946
Enhanced left-finger deftness following dominant upper- and lower-limb amputation.
Swanberg, Kelley M; Clark, Abigail M; Kline, Julia E; Yurkiewicz, Ilana R; Chan, Brenda L; Pasquina, Paul F; Heilman, Kenneth M; Tsao, Jack W
2011-09-01
After amputation, the sensorimotor cortex reorganizes, and these alterations might influence motor functions of the remaining extremities. The authors examined how amputation of the dominant or nondominant upper or lower extremity alters deftness in the intact limbs. The participants were 32 unilateral upper- or lower-extremity amputees and 6 controls. Upper-extremity deftness was tested by coin rotation (finger deftness) and pegboard (arm, hand, and finger deftness) tasks. Following right-upper- or right-lower-extremity amputation, the left hand's finger movements were defter than the left-hand fingers of controls. In contrast, with left-upper- or left-lower-extremity amputation, the right hand's finger performance was the same as that of the controls. Although this improvement might be related to increased use (practice), the finding that right-lower-extremity amputation also improved the left hand's finger deftness suggests an alternative mechanism. Perhaps in right-handed persons the left motor cortex inhibits the right side of the body more than the right motor cortex inhibits the left side, and the physiological changes induced by right-sided amputation reduced this inhibition.
Speed effects of deep brain stimulation for Parkinson's disease.
Klostermann, Fabian; Wahl, Michael; Marzinzik, Frank; Vesper, Jan; Sommer, Werner; Curio, Gabriel
2010-12-15
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) accelerates reaction time (RT) in patients with Parkinson's disease (PD), particularly in tasks in which decisions on the response side have to be made. This might indicate that DBS speeds up both motor and nonmotor operations. Therefore, we studied the extent to which modifications of different processing streams could explain changes of RT under subthalamic DBS. Ten PD patients on-DBS and off-DBS and 10 healthy subjects performed a choice-response task (CRT), requiring either right or left finger button presses. At the same time, EEG recordings were performed, so that RTs could be assessed together with lateralized readiness potentials (LRP), indicative of movement preparation. Additionally, an oddball task (OT) was run, in which right finger responses to target stimuli were recorded along with cognitive P300 responses. Generally, PD patients off-DBS had longer RTs than controls. Subthalamic DBS accelerated RT only in CRT. This could largely be explained by analog shortenings of LRP. No DBS-dependent changes were identified in OT, neither on the level of RT nor on the level of P300 latencies. It follows that RT accelerations under DBS of the STN are predominantly due to effects on the timing of motor instead of nonmotor processes. This starting point explains why DBS gains of response speed are low in tasks in which reactions are initiated from an advanced level of movement preparation (as in OT), and high whenever motor responses have to be raised from scratch (as in CRT). © 2010 Movement Disorder Society.
Wright, Rachel L.; Spurgeon, Laura C.; Elliott, Mark T.
2014-01-01
Humans can synchronize movements with auditory beats or rhythms without apparent effort. This ability to entrain to the beat is considered automatic, such that any perturbations are corrected for, even if the perturbation was not consciously noted. Temporal correction of upper limb (e.g., finger tapping) and lower limb (e.g., stepping) movements to a phase perturbed auditory beat usually results in individuals being back in phase after just a few beats. When a metronome is presented in more than one sensory modality, a multisensory advantage is observed, with reduced temporal variability in finger tapping movements compared to unimodal conditions. Here, we investigate synchronization of lower limb movements (stepping in place) to auditory, visual and combined auditory-visual (AV) metronome cues. In addition, we compare movement corrections to phase advance and phase delay perturbations in the metronome for the three sensory modality conditions. We hypothesized that, as with upper limb movements, there would be a multisensory advantage, with stepping variability being lowest in the bimodal condition. As such, we further expected correction to the phase perturbation to be quickest in the bimodal condition. Our results revealed lower variability in the asynchronies between foot strikes and the metronome beats in the bimodal condition, compared to unimodal conditions. However, while participants corrected substantially quicker to perturbations in auditory compared to visual metronomes, there was no multisensory advantage in the phase correction task—correction under the bimodal condition was almost identical to the auditory-only (AO) condition. On the whole, we noted that corrections in the stepping task were smaller than those previously reported for finger tapping studies. We conclude that temporal corrections are not only affected by the reliability of the sensory information, but also the complexity of the movement itself. PMID:25309397
Quantifying excessive mirror overflow in children with attention-deficit/hyperactivity disorder
MacNeil, L.K.; Xavier, P.; Garvey, M.A.; Gilbert, D.L.; Ranta, M.E.; Denckla, M.B.
2011-01-01
Objectives: Qualitative observations have revealed that children with attention-deficit/hyperactivity disorder (ADHD) show increased overflow movements, a motor sign thought to reflect impaired inhibitory control. The goal of this study was to develop and implement methods for quantifying excessive mirror overflow movements in children with ADHD. Methods: Fifty right-handed children aged 8.2–13.3 years, 25 with ADHD (12 girls) and 25 typically developing (TD) control children (10 girls), performed a sequential finger-tapping task, completing both left-handed (LHFS) and right-handed finger sequencing (RHFS). Phasic overflow of the index and ring fingers was assessed in 34 children with video recording, and total overflow in 48 children was measured by calculating the total angular displacement of the index and ring fingers with electrogoniometer recordings. Results: Phasic overflow and total overflow across both hands were greater in children with ADHD than in TD children, particularly during LHFS. Separate gender analyses revealed that boys, but not girls, with ADHD showed significantly more total phasic overflow and total overflow than did their gender-matched control children. Conclusions: The quantitative overflow measures used in this study support past qualitative findings that motor overflow persists to a greater degree in children with ADHD than in age-matched TD peers. The quantitative findings further suggest that persistence of mirror overflow is more prominent during task execution of the nondominant hand and reveal gender-based differences in developmental neural systems critical to motor control. These quantitative measures will assist future physiologic investigation of the brain basis of motor control in ADHD. PMID:21321336
Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm.
Ulusoy, Melda; Sipahi, Rifat
2016-01-01
Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as "reversal". Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one's finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects' performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects' Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise.
Experimental Evaluation of a Braille-Reading-Inspired Finger Motion Adaptive Algorithm
2016-01-01
Braille reading is a complex process involving intricate finger-motion patterns and finger-rubbing actions across Braille letters for the stimulation of appropriate nerves. Although Braille reading is performed by smoothly moving the finger from left-to-right, research shows that even fluent reading requires right-to-left movements of the finger, known as “reversal”. Reversals are crucial as they not only enhance stimulation of nerves for correctly reading the letters, but they also show one to re-read the letters that were missed in the first pass. Moreover, it is known that reversals can be performed as often as in every sentence and can start at any location in a sentence. Here, we report experimental results on the feasibility of an algorithm that can render a machine to automatically adapt to reversal gestures of one’s finger. Through Braille-reading-analogous tasks, the algorithm is tested with thirty sighted subjects that volunteered in the study. We find that the finger motion adaptive algorithm (FMAA) is useful in achieving cooperation between human finger and the machine. In the presence of FMAA, subjects’ performance metrics associated with the tasks have significantly improved as supported by statistical analysis. In light of these encouraging results, preliminary experiments are carried out with five blind subjects with the aim to put the algorithm to test. Results obtained from carefully designed experiments showed that subjects’ Braille reading accuracy in the presence of FMAA was more favorable then when FMAA was turned off. Utilization of FMAA in future generation Braille reading devices thus holds strong promise. PMID:26849058
Arrhythmokinesis is evident during unimanual not bimanual finger tapping in Parkinson's disease.
Trager, Megan H; Velisar, Anca; Koop, Mandy Miller; Shreve, Lauren; Quinn, Emma; Bronte-Stewart, Helen
2015-01-01
Arrhythmokinesis, the variability in repetitive movements, is a fundamental feature of Parkinson's disease (PD). We hypothesized that unimanual repetitive alternating finger tapping (AFT) would reveal more arrhythmokinesis compared to bimanual single finger alternating hand tapping (SFT), in PD. The variability of inter-strike interval (CVISI) and of amplitude (CVAMP) during AFT and SFT were measured on an engineered, MRI-compatible keyboard in sixteen PD subjects off medication and in twenty-four age-matched controls. The CVISI and CVAMP of the more affected (MA) and less affected (LA) sides in PD subjects were greater during AFT than SFT (P < 0.05). However, there was no difference between AFT and SFT for controls. Both CVISI and CVAMP were greater in the MA and LA hands of PD subjects versus controls during AFT (P < 0.01). The CVISI and CVAMP of the MA, but not the LA hand, were greater in PDs versus controls during SFT (P < 0.05). Also, AFT, but not SFT, detected a difference between the MA and LA hands of PDs (P < 0.01). Unimanual, repetitive alternating finger tapping brings out more arrhythmokinesis compared to bimanual, single finger tapping in PDs but not in controls. Arrhythmokinesis during unimanual, alternating finger tapping captured a significant difference between both the MA and LA hands of PD subjects and controls, whereas that during a bimanual, single finger tapping task only distinguished between the MA hand and controls. Arrhythmokinesis underlies freezing of gait and may also underlie the freezing behavior documented in fine motor control if studied using a unimanual alternating finger tapping task.
Hasegawa, Keita; Kasuga, Shoko; Takasaki, Kenichi; Mizuno, Katsuhiro; Liu, Meigen; Ushiba, Junichi
2017-08-25
Motor planning, imagery or execution is associated with event-related desynchronization (ERD) of mu rhythm oscillations (8-13 Hz) recordable over sensorimotor areas using electroencephalography (EEG). It was shown that motor imagery involving distal muscles, e.g. finger movements, results in contralateral ERD correlating with increased excitability of the contralateral corticospinal tract (c-CST). Following the rationale that purposefully increasing c-CST excitability might facilitate motor recovery after stroke, ERD recently became an attractive target for brain-computer interface (BCI)-based neurorehabilitation training. It was unclear, however, whether ERD would also reflect excitability of the ipsilateral corticospinal tract (i-CST) that mainly innervates proximal muscles involved in e.g. shoulder movements. Such knowledge would be important to optimize and extend ERD-based BCI neurorehabilitation protocols, e.g. to restore shoulder movements after stroke. Here we used single-pulse transcranial magnetic stimulation (TMS) targeting the ipsilateral primary motor cortex to elicit motor evoked potentials (MEPs) of the trapezius muscle. To assess whether ERD reflects excitability of the i-CST, a correlation analysis between between MEP amplitudes and ipsilateral ERD was performed. Experiment 1 consisted of a motor execution task during which 10 healthy volunteers performed elevations of the shoulder girdle or finger pinching while a 128-channel EEG was recorded. Experiment 2 consisted of a motor imagery task during which 16 healthy volunteers imagined shoulder girdle elevations or finger pinching while an EEG was recorded; the participants simultaneously received randomly timed, single-pulse TMS to the ipsilateral primary motor cortex. The spatial pattern and amplitude of ERD and the amplitude of the agonist muscle's TMS-induced MEPs were analyzed. ERDs occurred bilaterally during both execution and imagery of shoulder girdle elevations, but were lateralized to the contralateral hemisphere during finger pinching. We found that trapezius MEPs increased during motor imagery of shoulder elevations and correlated with ipsilateral ERD amplitudes. Ipsilateral ERD during execution and imagery of shoulder girdle elevations appears to reflect the excitability of uncrossed pathways projecting to the shoulder muscles. As such, ipsilateral ERD could be used for neurofeedback training of shoulder movement, aiming at reanimation of the i-CST.
Shift of Manual Preference in Right-Handers Following Unimanual Practice
ERIC Educational Resources Information Center
Teixeira, Luis Augusto; Teixeira, Maria Candida Tocci
2007-01-01
The effect of unimanual practice of the non-preferred hand on manual asymmetry and manual preference for sequential finger movements was evaluated in right-handers before, immediately after, and 30 days following practice. The results demonstrate that unimanual practice induced a persistent shift of manual preference for the experimental task in…
Stability of hand force production. I. Hand level control variables and multifinger synergies.
Reschechtko, Sasha; Latash, Mark L
2017-12-01
We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to explore synergies stabilizing the hand action in accurate four-finger pressing tasks. In particular, we tested a hypothesis on two classes of synergies, those among the four fingers and those within a pair of control variables, stabilizing hand action under visual feedback and disappearing without visual feedback. Subjects performed four-finger total force and moment production tasks under visual feedback; the feedback was later partially or completely removed. The "inverse piano" device was used to lift and lower the fingers smoothly at the beginning and at the end of each trial. These data were used to compute pairs of hypothetical control variables. Intertrial analysis of variance within the finger force space was used to quantify multifinger synergies stabilizing both force and moment. A data permutation method was used to quantify synergies among control variables. Under visual feedback, synergies in the spaces of finger forces and hypothetical control variables were found to stabilize total force. Without visual feedback, the subjects showed a force drift to lower magnitudes and a moment drift toward pronation. This was accompanied by disappearance of the four-finger synergies and strong attenuation of the control variable synergies. The indexes of the two types of synergies correlated with each other. The findings are interpreted within the scheme with multiple levels of abundant variables. NEW & NOTEWORTHY We extended the idea of hierarchical control with referent spatial coordinates for the effectors and explored two types of synergies stabilizing multifinger force production tasks. We observed synergies among finger forces and synergies between hypothetical control variables that stabilized performance under visual feedback but failed to stabilize it after visual feedback had been removed. Indexes of two types of synergies correlated with each other. The data suggest the existence of multiple mechanisms stabilizing motor actions. Copyright © 2017 the American Physiological Society.
Slobounov, S; Tutwiler, R; Rearick, M; Challis, J H
1999-10-01
The present study was aimed to further address the general empirical question regarding the sensitivity of EEG correlates toward specific kinematic and/or kinetic movement parameters. In particular, we examined whether adding different inertial loads to the index finger, while a subject produced various amplitudes of discrete finger movements, influenced the movement-related potentials (MRP). Our experimental design systematically controlled the angular displacement, velocity and acceleration (kinematic) profiles of finger movement while torque (kinetics) was varied by adding different external loads opposing finger flexion movement. We applied time-domain averaging of EEG single trials in order to extract three movement-related potentials (BP-600 to -500 BP-100 to 0 and N0 to 100) preceding and accompanying 25, 50 and 75 degrees unilateral finger movements with no inertial load, small (100 g) and large (200 g) loading. It was shown that both inertial load and the degree of angular displacement of index finger flexion increased the amplitude of late components of MRP (BP-100 to 0 and N0 to 100) over frontal and precentral areas. In contrast, the external load and movement amplitude manipulations did not influence the earlier component of the MRP (BP- 600 to -500). Overall, the data demonstrate that adding inertial load to the finger with larger angular displacements involves systematic increase in activation across frontal and precentral areas that are related to movement initiation as reflected in BP-100 to 0 and N0 to 100.
Chen, Bing; Aruin, Alexander S
2013-11-27
The magnitude of grip force used to lift and transport a hand-held object is decreased if a light finger touch from the contralateral arm is provided to the wrist of the target arm. We investigated whether the type of contralateral arm sensory input that became available with the finger touch to the target arm affects the way grip force is reduced. Nine healthy subjects performed the same task of lifting and transporting an instrumented object with no involvement of the contralateral arm and when an index finger touch of the contralateral arm was provided to the wrist, elbow, and shoulder. Touching the wrist and elbow involved movements of the contralateral arm; no movements were produced while touching the shoulder. Grip force was reduced by approximately the same amount in all conditions with the finger touch compared to the no touch condition. This suggests that information from the muscle and joint receptors of the contralateral arm is used in control of grip force when a finger touch is provided to the wrist and elbow, and cutaneous information is utilized when lifting an object while touching the shoulder. The results of the study provide additional evidence to support the use of a second arm in the performance of activities of daily living and stress the importance of future studies investigating contralateral arm sensory input in grip force control. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Wang, W; Degenhart, A D; Collinger, J L; Vinjamuri, R; Sudre, G P; Adelson, P D; Holder, D L; Leuthardt, E C; Moran, D W; Boninger, M L; Schwartz, A B; Crammond, D J; Tyler-Kabara, E C; Weber, D J
2009-01-01
In this study human motor cortical activity was recorded with a customized micro-ECoG grid during individual finger movements. The quality of the recorded neural signals was characterized in the frequency domain from three different perspectives: (1) coherence between neural signals recorded from different electrodes, (2) modulation of neural signals by finger movement, and (3) accuracy of finger movement decoding. It was found that, for the high frequency band (60-120 Hz), coherence between neighboring micro-ECoG electrodes was 0.3. In addition, the high frequency band showed significant modulation by finger movement both temporally and spatially, and a classification accuracy of 73% (chance level: 20%) was achieved for individual finger movement using neural signals recorded from the micro-ECoG grid. These results suggest that the micro-ECoG grid presented here offers sufficient spatial and temporal resolution for the development of minimally-invasive brain-computer interface applications.
A wrist tendon travel assessment of hand movements associated with industrial repetitive activities.
Ugbolue, U Chris; Nicol, Alexander C
2012-01-01
To investigate slow and fast paced industrial activity hand repetitive movements associated with carpal tunnel syndrome where movements are evaluated based on finger and wrist tendon travel measurements. Nine healthy subjects were recruited for the study aged between 23 and 33 years. Participants mimicked an industrial repetitive task by performing the following activities: wrist flexion and extension task, palm open and close task; and pinch task. Each task was performed for a period of 5 minutes at a slow (0.33 Hz) and fast (1 Hz) pace for a duration of 3 minutes and 2 minutes respectively. Tendon displacement produced higher flexor digitorum superficialis (FDS) tendon travel when compared to the flexor digitorum profundus (FDP) tendons. The left hand mean (SD) tendon travel for the FDS tendon and FDP tendon were 11108 (5188) mm and 9244 (4328) mm while the right hand mean tendon travel (SD) for the FDS tendon and FDP tendon were 9225 (3441) mm and 7670 (2856) mm respectively. Of the three tasks mimicking an industrial repetitive activity, the wrist flexion and extension task produced the most tendon travel. The findings may be useful to researchers in classifying the level of strenuous activity in relation to tendon travel.
Getting a grip: different actions and visual guidance of the thumb and finger in precision grasping.
Melmoth, Dean R; Grant, Simon
2012-10-01
We manipulated the visual information available for grasping to examine what is visually guided when subjects get a precision grip on a common class of object (upright cylinders). In Experiment 1, objects (2 sizes) were placed at different eccentricities to vary the relative proximity to the participant's (n = 6) body of their thumb and finger contact positions in the final grip orientations, with vision available throughout or only for movement programming. Thumb trajectories were straighter and less variable than finger paths, and the thumb normally made initial contact with the objects at a relatively invariant landing site, but consistent thumb first-contacts were disrupted without visual guidance. Finger deviations were more affected by the object's properties and increased when vision was unavailable after movement onset. In Experiment 2, participants (n = 12) grasped 'glow-in-the-dark' objects wearing different luminous gloves in which the whole hand was visible or the thumb or the index finger was selectively occluded. Grip closure times were prolonged and thumb first-contacts disrupted when subjects could not see their thumb, whereas occluding the finger resulted in wider grips at contact because this digit remained distant from the object. Results were together consistent with visual feedback guiding the thumb in the period just prior to contacting the object, with the finger more involved in opening the grip and avoiding collision with the opposite contact surface. As people can overtly fixate only one object contact point at a time, we suggest that selecting one digit for online guidance represents an optimal strategy for initial grip placement. Other grasping tasks, in which the finger appears to be used for this purpose, are discussed.
Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.
2016-01-01
Objective We used native sensorimotor representations of fingers in a brain-machine interface to achieve immediate online control of individual prosthetic fingers. Approach Using high gamma responses recorded with a high-density ECoG array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: 1) if any finger was moving, and, if so, 2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory (JHU/APL) Modular Prosthetic Limb (MPL). Main Results The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time. PMID:26863276
NASA Astrophysics Data System (ADS)
Hotson, Guy; McMullen, David P.; Fifer, Matthew S.; Johannes, Matthew S.; Katyal, Kapil D.; Para, Matthew P.; Armiger, Robert; Anderson, William S.; Thakor, Nitish V.; Wester, Brock A.; Crone, Nathan E.
2016-04-01
Objective. We used native sensorimotor representations of fingers in a brain-machine interface (BMI) to achieve immediate online control of individual prosthetic fingers. Approach. Using high gamma responses recorded with a high-density electrocorticography (ECoG) array, we rapidly mapped the functional anatomy of cued finger movements. We used these cortical maps to select ECoG electrodes for a hierarchical linear discriminant analysis classification scheme to predict: (1) if any finger was moving, and, if so, (2) which digit was moving. To account for sensory feedback, we also mapped the spatiotemporal activation elicited by vibrotactile stimulation. Finally, we used this prediction framework to provide immediate online control over individual fingers of the Johns Hopkins University Applied Physics Laboratory modular prosthetic limb. Main results. The balanced classification accuracy for detection of movements during the online control session was 92% (chance: 50%). At the onset of movement, finger classification was 76% (chance: 20%), and 88% (chance: 25%) if the pinky and ring finger movements were coupled. Balanced accuracy of fully flexing the cued finger was 64%, and 77% had we combined pinky and ring commands. Offline decoding yielded a peak finger decoding accuracy of 96.5% (chance: 20%) when using an optimized selection of electrodes. Offline analysis demonstrated significant finger-specific activations throughout sensorimotor cortex. Activations either prior to movement onset or during sensory feedback led to discriminable finger control. Significance. Our results demonstrate the ability of ECoG-based BMIs to leverage the native functional anatomy of sensorimotor cortical populations to immediately control individual finger movements in real time.
Grip Forces During Object Manipulation: Experiment, Mathematical Model & Validation
Slota, Gregory P.; Latash, Mark L.; Zatsiorsky, Vladimir M.
2011-01-01
When people transport handheld objects, they change the grip force with the object movement. Circular movement patterns were tested within three planes at two different rates (1.0, 1.5 Hz), and two diameters (20, 40 cm). Subjects performed the task reasonably well, matching frequencies and dynamic ranges of accelerations within expectations. A mathematical model was designed to predict the applied normal forces from kinematic data. The model is based on two hypotheses: (a) the grip force changes during movements along complex trajectories can be represented as the sum of effects of two basic commands associated with the parallel and orthogonal manipulation, respectively; (b) different central commands are sent to the thumb and virtual finger (Vf- four fingers combined). The model predicted the actual normal forces with a total variance accounted for of better than 98%. The effects of the two components of acceleration—along the normal axis and the resultant acceleration within the shear plane—on the digit normal forces are additive. PMID:21735245
On-line confidence monitoring during decision making.
Dotan, Dror; Meyniel, Florent; Dehaene, Stanislas
2018-02-01
Humans can readily assess their degree of confidence in their decisions. Two models of confidence computation have been proposed: post hoc computation using post-decision variables and heuristics, versus online computation using continuous assessment of evidence throughout the decision-making process. Here, we arbitrate between these theories by continuously monitoring finger movements during a manual sequential decision-making task. Analysis of finger kinematics indicated that subjects kept separate online records of evidence and confidence: finger deviation continuously reflected the ongoing accumulation of evidence, whereas finger speed continuously reflected the momentary degree of confidence. Furthermore, end-of-trial finger speed predicted the post-decisional subjective confidence rating. These data indicate that confidence is computed on-line, throughout the decision process. Speed-confidence correlations were previously interpreted as a post-decision heuristics, whereby slow decisions decrease subjective confidence, but our results suggest an adaptive mechanism that involves the opposite causality: by slowing down when unconfident, participants gain time to improve their decisions. Copyright © 2017 Elsevier B.V. All rights reserved.
Excessive motor overflow reveals abnormal inter-hemispheric connectivity in Friedreich ataxia.
Low, Sze-Cheen; Corben, Louise A; Delatycki, Martin B; Ternes, Anne-Marie; Addamo, Patricia K; Georgiou-Karistianis, Nellie
2013-07-01
This study sought to characterise force variability and motor overflow in 12 individuals with Friedreich ataxia (FRDA) and 12 age- and gender-matched controls. Participants performed a finger-pressing task by exerting 30 and 70 % of their maximum finger force using the index finger of the right and left hand. Control of force production was measured as force variability, while any involuntary movements occurring on the finger of the other, passive hand, was measured as motor overflow. Significantly greater force variability in individuals with FRDA compared with controls is indicative of cortico-cerebellar disruption affecting motor control. Meanwhile, significantly greater motor overflow in this group provides the first evidence of possible abnormal inter-hemispheric activity that may be attributable to asymmetrical neuronal loss in the dentate nucleus. Overall, this study demonstrated a differential engagement in the underlying default processes of the motor system in FRDA.
Neuromagnetic Cerebellar Activity Entrains to the Kinematics of Executed Finger Movements.
Marty, Brice; Wens, V; Bourguignon, M; Naeije, G; Goldman, S; Jousmäki, V; De Tiège, X
2018-05-03
This magnetoencephalography (MEG) study aims at characterizing the coupling between cerebellar activity and the kinematics of repetitive self-paced finger movements. Neuromagnetic signals were recorded in 11 right-handed healthy adults while they performed repetitive flexion-extensions of right-hand fingers at three different movement rates: slow (~ 1 Hz), medium (~ 2 Hz), and fast (~ 3 Hz). Right index finger acceleration was monitored with an accelerometer. Coherence analysis was used to index the coupling between right index finger acceleration and neuromagnetic signals. Dynamic imaging of coherent sources was used to locate coherent sources. Coupling directionality between primary sensorimotor (SM1), cerebellar, and accelerometer signals was assessed with renormalized partial directed coherence. Permutation-based statistics coupled with maximum statistic over the entire brain volume or restricted to the cerebellum were used. At all movement rates, maximum coherence peaked at SM1 cortex contralateral to finger movements at movement frequency (F0) and its first harmonic (F1). Significant (statistics restricted to the cerebellum) coherence consistently peaked at the right posterior lobe of the cerebellum at F0 with no influence of movement rate. Coupling between Acc and cerebellar signals was significantly stronger in the afferent than in the efferent direction with no effective contribution of cortico-cerebellar or cerebello-cortical pathways. This study demonstrates the existence of significant coupling between finger movement kinematics and neuromagnetic activity at the posterior cerebellar lobe ipsilateral to finger movement at F0. This coupling is mainly driven by spinocerebellar, presumably proprioceptive, afferences.
Writing in the air: A visualization tool for written languages.
Itaguchi, Yoshihiro; Yamada, Chiharu; Yoshihara, Masahiro; Fukuzawa, Kazuyoshi
2017-01-01
The present study investigated interactions between cognitive processes and finger actions called "kusho," meaning "air-writing" in Japanese. Kanji-culture individuals often employ kusho behavior in which they move their fingers as a substitute for a pen to write mostly done when they are trying to recall the shape of a Kanji character or the spelling of an English word. To further examine the visualization role of kusho behavior on cognitive processing, we conducted a Kanji construction task in which a stimulus (i.e., sub-parts to be constructed) was simultaneously presented. In addition, we conducted a Kanji vocabulary test to reveal the relation between the kusho benefit and vocabulary size. The experiment provided two sets of novel findings. First, executing kusho behavior improved task performance (correct responses) as long as the participants watched their finger movements while solving the task. This result supports the idea that visual feedback of kusho behavior helps cognitive processing for the task. Second, task performance was positively correlated with the vocabulary score when stimuli were presented for a relatively long time, whereas the kusho benefits and vocabulary score were not correlated regardless of stimulus-presentation time. These results imply that a longer stimulus-presentation could allow participants to utilize their lexical resources for solving the task. The current findings together support the visualization role of kusho behavior, adding experimental evidence supporting the view that there are interactions between cognition and motor behavior.
Joundi, Raed A; Brittain, John-Stuart; Green, Alex L; Aziz, Tipu Z; Brown, Peter; Jenkinson, Ned
2013-03-01
The function of synchronous oscillatory activity at beta band (15-30Hz) frequencies within the basal ganglia is unclear. Here we sought support for the hypothesis that beta activity has a global function within the basal ganglia and is not directly involved in the coding of specific biomechanical parameters of movement. We recorded local field potential activity from the subthalamic nuclei of 11 patients with Parkinson's disease during a synchronized tapping task at three different externally cued rates. Beta activity was suppressed during tapping, reaching a minimum that differed little across the different tapping rates despite an increase in velocity of finger movements. Thus beta power suppression was independent of specific motor parameters. Moreover, although beta oscillations remained suppressed during all tapping rates, periods of resynchronization between taps were markedly attenuated during high rate tapping. As such, a beta rebound above baseline between taps at the lower rates was absent at the high rate. Our results demonstrate that beta desynchronization in the region of the subthalamic nucleus is independent of motor parameters and that the beta resynchronization is differentially modulated by rate of finger tapping, These findings implicate consistent beta suppression in the facilitation of continuous movement sequences. Copyright © 2012 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Robles-García, Verónica; Arias, Pablo; Sanmartín, Gabriel; Espinosa, Nelson; Flores, Julian; Grieve, Kenneth L; Cudeiro, Javier
2013-12-01
Impaired temporal stability and poor motor unit recruitment are key impairments in Parkinsonian motor control during a whole spectrum of rhythmic movements, from simple finger tapping to gait. Therapies based on imitation can be designed for patients with motor impairments and virtual-reality (VR) offers a new perspective. Motor actions are known to depend upon the dopaminergic system, whose involvement in imitation is unknown. We sought to understand this role and the underlying possibilities for motor rehabilitation, by observing the execution of different motor-patterns during imitation in a VR environment in subjects with and without dopaminergic deficits. 10 OFF-dose idiopathic Parkinson's Disease patients (PD), 9 age-matched and 9 young-subjects participated. Subjects performed finger-tapping at their "comfort" and "slow-comfort" rates, while immersed in VR presenting their "avatar" in 1st person perspective. Imitation was evaluated by asking subjects to replicate finger-tapping patterns different to their natural one. The finger-pattern presented matched their comfort and comfort-slow rates, but without a pause on the table (continuously moving). Patients were able to adapt their finger-tapping correctly, showing that in comparison with the control groups, the dopaminergic deficiency of PD did not impair imitation. During imitation the magnitude of EMG increased and the temporal variability of movement decreased. PD-patients have unaltered ability to imitate instructed motor-patterns, suggesting that a fully-functional dopaminergic system is not essential for such imitation. It should be further investigated if imitation training over a period of time induces positive off-line motor adaptations with transfer to non-imitation tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.
Finger impedance evaluation by means of hand exoskeleton.
Fiorilla, Angelo Emanuele; Nori, Francesco; Masia, Lorenzo; Sandini, Giulio
2011-12-01
Modulation of arm mechanical impedance is a fundamental aspect for interaction with the external environment and its regulation is essential for stability preservation during manipulation. Even though past research on human arm movements has suggested that models of human finger impedance would benefit the study of neural control mechanisms and the design of novel hand prostheses, relatively few studies have focused on finger and hand impedance. This article touches on the two main aspects of this research topic: first it introduces a mechanical refinement of a device that can be used to effectively measure finger impedance during manipulation tasks; then, it describes a pilot study aimed at identifying the inertia of the finger and the viscous and elastic properties of finger muscles. The proposed wearable exoskeleton, which has been designed to measure finger posture and impedance modulation while leaving the palm free, is capable of applying fast displacements while monitoring the interaction forces between the human finger and the robotic links. Moreover, due to the relatively small inertia of the fingers, it allows us to meet some stringent specifications, performing relatively large displacements (~45°) before the stretch reflex intervenes (~25 ms). The results of measurements on five subjects show that inertia, damping, and stiffness can be effectively identified and that the parameters obtained are comparable with values from previous studies.
Grabowska, Anna; Gut, Malgorzata; Binder, Marek; Forsberg, Lars; Rymarczyk, Krystyna; Urbanik, Andrzej
2012-01-01
The purpose of this study was to investigate the differences in the brain organization of motor control in left- and right-handers and to study whether early left-to-right handwriting switch changes the cortical representation of finger movements in the left and right hemispheres. Echo-planar MR imaging was performed in 52 subjects: consistent right-handers (RH), consistent left-handers (LH), and subjects who had been forced at an early age to switch their left-hand preferences toward the right side. The scanning was performed during simple (flexion/extension of the index finger) and complex (successive finger-thumb opposition) tasks. Subjects performed the tasks using both the preferred and non-preferred hand. In right-handers, there was a general predominance of left-hemisphere activation relative to right hemisphere activation. In lefthanders this pattern was reversed. The switched subjects showed no such volumetric asymmetry. Increasing levels of complexity of motor activity resulted in an increase in the volume of consistently activated areas and the involvement of the ipsilateral in addition to contralateral activations. In both right- and left-handers, movements of the preferred hand activated mainly the contralateral hemisphere, whereas movements of the non-preferred hand resulted in a more balanced pattern of activation in the two hemispheres, indicating greater involvement of the ipsilateral activations. Overall, this study shows that in both left- and right-handed subjects, the preferred hand is controlled mainly by the hemisphere contralateral to that hand, whereas the non-preferred hand is controlled by both hemispheres. The switched individuals share features of both lefthanders and right-handers regarding their motor control architectures.
Restricted transfer of learning between unimanual and bimanual finger sequences
Bai, Wenjun
2016-01-01
When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. PMID:27974447
Buczek, Frank L; Sinsel, Erik W; Gloekler, Daniel S; Wimer, Bryan M; Warren, Christopher M; Wu, John Z
2011-06-03
Upper extremity musculoskeletal disorders represent an important health issue across all industry sectors; as such, the need exists to develop models of the hand that provide comprehensive biomechanics during occupational tasks. Previous optical motion capture studies used a single marker on the dorsal aspect of finger joints, allowing calculation of one and two degree-of-freedom (DOF) joint angles; additional algorithms were needed to define joint centers and the palmar surface of fingers. We developed a 6DOF model (6DHand) to obtain unconstrained kinematics of finger segments, modeled as frusta of right circular cones that approximate the palmar surface. To evaluate kinematic performance, twenty subjects gripped a cylindrical handle as a surrogate for a powered hand tool. We hypothesized that accessory motions (metacarpophalangeal pronation/supination; proximal and distal interphalangeal radial/ulnar deviation and pronation/supination; all joint translations) would be small (less than 5° rotations, less than 2mm translations) if segment anatomical reference frames were aligned correctly, and skin movement artifacts were negligible. For the gripping task, 93 of 112 accessory motions were small by our definition, suggesting this 6DOF approach appropriately models joints of the fingers. Metacarpophalangeal supination was larger than expected (approximately 10°), and may be adjusted through local reference frame optimization procedures previously developed for knee kinematics in gait analysis. Proximal translations at the metacarpophalangeal joints (approximately 10mm) were explained by skin movement across the metacarpals, but would not corrupt inverse dynamics calculated for the phalanges. We assessed performance in this study; a more rigorous validation would likely require medical imaging. Published by Elsevier Ltd.
Quandt, F.; Reichert, C.; Hinrichs, H.; Heinze, H.J.; Knight, R.T.; Rieger, J.W.
2012-01-01
It is crucial to understand what brain signals can be decoded from single trials with different recording techniques for the development of Brain-Machine Interfaces. A specific challenge for non-invasive recording methods are activations confined to small spatial areas on the cortex such as the finger representation of one hand. Here we study the information content of single trial brain activity in non-invasive MEG and EEG recordings elicited by finger movements of one hand. We investigate the feasibility of decoding which of four fingers of one hand performed a slight button press. With MEG we demonstrate reliable discrimination of single button presses performed with the thumb, the index, the middle or the little finger (average over all subjects and fingers 57%, best subject 70%, empirical guessing level: 25.1%). EEG decoding performance was less robust (average over all subjects and fingers 43%, best subject 54%, empirical guessing level 25.1%). Spatiotemporal patterns of amplitude variations in the time series provided best information for discriminating finger movements. Non-phase-locked changes of mu and beta oscillations were less predictive. Movement related high gamma oscillations were observed in average induced oscillation amplitudes in the MEG but did not provide sufficient information about the finger's identity in single trials. Importantly, pre-movement neuronal activity provided information about the preparation of the movement of a specific finger. Our study demonstrates the potential of non-invasive MEG to provide informative features for individual finger control in a Brain-Machine Interface neuroprosthesis. PMID:22155040
NASA Technical Reports Server (NTRS)
Pigeon, Pascale; Bortolami, Simone B.; DiZio, Paul; Lackner, James R.
2003-01-01
When reaching movements involve simultaneous trunk rotation, additional interaction torques are generated on the arm that are absent when the trunk is stable. To explore whether the CNS compensates for such self-generated interaction torques, we recorded hand trajectories in reaching tasks involving various amplitudes and velocities of arm extension and trunk rotation. Subjects pointed to three targets on a surface slightly above waist level. Two of the target locations were chosen so that a similar arm configuration relative to the trunk would be required for reaching to them, one of these targets requiring substantial trunk rotation, the other very little. Significant trunk rotation was necessary to reach the third target, but the arm's radial distance to the body remained virtually unchanged. Subjects reached at two speeds-a natural pace (slow) and rapidly (fast)-under normal lighting and in total darkness. Trunk angular velocity and finger velocity relative to the trunk were higher in the fast conditions but were not affected by the presence or absence of vision. Peak trunk velocity increased with increasing trunk rotation up to a maximum of 200 degrees /s. In slow movements, peak finger velocity relative to the trunk was smaller when trunk rotation was necessary to reach the targets. In fast movements, peak finger velocity was approximately 1.7 m/s for all targets. Finger trajectories were more curved when reaching movements involved substantial trunk rotation; however, the terminal errors and the maximal deviation of the trajectory from a straight line were comparable in slow and fast movements. This pattern indicates that the larger Coriolis, centripetal, and inertial interaction torques generated during rapid reaches were compensated by additional joint torques. Trajectory characteristics did not vary with the presence or absence of vision, indicating that visual feedback was unnecessary for anticipatory compensations. In all reaches involving trunk rotation, the finger movement generally occurred entirely during the trunk movement, indicating that the CNS did not minimize Coriolis forces incumbent on trunk rotation by sequencing the arm and trunk motions into a turn followed by a reach. A simplified model of the arm/trunk system revealed that additional interaction torques generated on the arm during voluntary turning and reaching were equivalent to < or =1.8 g (1 g = 9.81 m/s(2)) of external force at the elbow but did not degrade performance. In slow-rotation room studies involving reaching movements during passive rotation, Coriolis forces as small as 0.2 g greatly deflect movement trajectories and endpoints. We conclude that compensatory motor innervations are engaged in a predictive fashion to counteract impending self-generated interaction torques during voluntary reaching movements.
Pigeon, Pascale; Bortolami, Simone B; DiZio, Paul; Lackner, James R
2003-01-01
When reaching movements involve simultaneous trunk rotation, additional interaction torques are generated on the arm that are absent when the trunk is stable. To explore whether the CNS compensates for such self-generated interaction torques, we recorded hand trajectories in reaching tasks involving various amplitudes and velocities of arm extension and trunk rotation. Subjects pointed to three targets on a surface slightly above waist level. Two of the target locations were chosen so that a similar arm configuration relative to the trunk would be required for reaching to them, one of these targets requiring substantial trunk rotation, the other very little. Significant trunk rotation was necessary to reach the third target, but the arm's radial distance to the body remained virtually unchanged. Subjects reached at two speeds-a natural pace (slow) and rapidly (fast)-under normal lighting and in total darkness. Trunk angular velocity and finger velocity relative to the trunk were higher in the fast conditions but were not affected by the presence or absence of vision. Peak trunk velocity increased with increasing trunk rotation up to a maximum of 200 degrees /s. In slow movements, peak finger velocity relative to the trunk was smaller when trunk rotation was necessary to reach the targets. In fast movements, peak finger velocity was approximately 1.7 m/s for all targets. Finger trajectories were more curved when reaching movements involved substantial trunk rotation; however, the terminal errors and the maximal deviation of the trajectory from a straight line were comparable in slow and fast movements. This pattern indicates that the larger Coriolis, centripetal, and inertial interaction torques generated during rapid reaches were compensated by additional joint torques. Trajectory characteristics did not vary with the presence or absence of vision, indicating that visual feedback was unnecessary for anticipatory compensations. In all reaches involving trunk rotation, the finger movement generally occurred entirely during the trunk movement, indicating that the CNS did not minimize Coriolis forces incumbent on trunk rotation by sequencing the arm and trunk motions into a turn followed by a reach. A simplified model of the arm/trunk system revealed that additional interaction torques generated on the arm during voluntary turning and reaching were equivalent to < or =1.8 g (1 g = 9.81 m/s(2)) of external force at the elbow but did not degrade performance. In slow-rotation room studies involving reaching movements during passive rotation, Coriolis forces as small as 0.2 g greatly deflect movement trajectories and endpoints. We conclude that compensatory motor innervations are engaged in a predictive fashion to counteract impending self-generated interaction torques during voluntary reaching movements.
Temporal Control and Hand Movement Efficiency in Skilled Music Performance
Goebl, Werner; Palmer, Caroline
2013-01-01
Skilled piano performance requires considerable movement control to accomplish the high levels of timing and force precision common among professional musicians, who acquire piano technique over decades of practice. Finger movement efficiency in particular is an important factor when pianists perform at very fast tempi. We document the finger movement kinematics of highly skilled pianists as they performed a five-finger melody at very fast tempi. A three-dimensional motion-capture system tracked the movements of finger joints, the hand, and the forearm of twelve pianists who performed on a digital piano at successively faster tempi (7–16 tones/s) until they decided to stop. Joint angle trajectories computed for all adjacent finger phalanges, the hand, and the forearm (wrist angle) indicated that the metacarpophalangeal joint contributed most to the vertical fingertip motion while the proximal and distal interphalangeal joints moved slightly opposite to the movement goal (finger extension). An efficiency measure of the combined finger joint angles corresponded to the temporal accuracy and precision of the pianists’ performances: Pianists with more efficient keystroke movements showed higher precision in timing and force measures. Keystroke efficiency and individual joint contributions remained stable across tempo conditions. Individual differences among pianists supported the view that keystroke efficiency is required for successful fast performance. PMID:23300946
Participation of primary motor cortex area 4a in complex sensory processing: 3.0-T fMRI study.
Terumitsu, Makoto; Ikeda, Kotaro; Kwee, Ingrid L; Nakada, Tsutomu
2009-05-06
The precise movement of human fingers requires continuous and reciprocal interaction between motor and sensory systems. Similar to other primates, there is double representation of the digits and wrists within the human primary motor cortex (M1), which are generally referred to as area 4 anterior (M1-4a) and area 4 posterior (M1-4p). In this high-field (3.0 T) functional magnetic resonance imaging (fMRI) study, we hypothesized that M1-4p is more important for initiation of motion, whereas M1-4a is important for execution of a given motion involving more complex sensoriomotor interaction. We investigated M1-4a and M1-4p activation associated with two representative motor tasks, namely, finger tapping (voluntary motion, VM) and passive finger movement accomplished by continuous pressure (passive motor, PM), and two representative sensory stimulations, namely, simple stimulation of flutter vibration (simple sensory, SS), and complex stimulation by a row of pins moving either vertically or horizontally (complex sensory, CS). Both M1-4a and M1-4p were activated in both motor tasks, VM and PM. M1-4p was not activated by either of the two sensory tasks, whereas M1-4a was activated by CS but not by SS. Analysis of the center of gravities (COG) of the activated areas showed that VM and PM moved COG towards M1-4p and 3a. SS moved COG towards somatosensory cortex Brodmann areas 1, 2, and 3b, whereas CS towards M1-4a. The result clearly showed that M1-4a represents the area of secondary motor execution, which actively participates in CS processing.
Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan
2014-01-01
Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2-4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG.
Muthuraman, Muthuraman; Hellriegel, Helge; Hoogenboom, Nienke; Anwar, Abdul Rauf; Mideksa, Kidist Gebremariam; Krause, Holger; Schnitzler, Alfons; Deuschl, Günther; Raethjen, Jan
2014-01-01
Electroencephalography (EEG) and magnetoencephalography (MEG) are the two modalities for measuring neuronal dynamics at a millisecond temporal resolution. Different source analysis methods, to locate the dipoles in the brain from which these dynamics originate, have been readily applied to both modalities alone. However, direct comparisons and possible advantages of combining both modalities have rarely been assessed during voluntary movements using coherent source analysis. In the present study, the cortical and sub-cortical network of coherent sources at the finger tapping task frequency (2–4 Hz) and the modes of interaction within this network were analysed in 15 healthy subjects using a beamformer approach called the dynamic imaging of coherent sources (DICS) with subsequent source signal reconstruction and renormalized partial directed coherence analysis (RPDC). MEG and EEG data were recorded simultaneously allowing the comparison of each of the modalities separately to that of the combined approach. We found the identified network of coherent sources for the finger tapping task as described in earlier studies when using only the MEG or combined MEG+EEG whereas the EEG data alone failed to detect single sub-cortical sources. The signal-to-noise ratio (SNR) level of the coherent rhythmic activity at the tapping frequency in MEG and combined MEG+EEG data was significantly higher than EEG alone. The functional connectivity analysis revealed that the combined approach had more active connections compared to either of the modalities during the finger tapping (FT) task. These results indicate that MEG is superior in the detection of deep coherent sources and that the SNR seems to be more vital than the sensitivity to theoretical dipole orientation and the volume conduction effect in the case of EEG. PMID:24618596
Kutz, Dieter F; Schmid, Barbara C; Meindl, Tobias; Timmann, Dagmar; Kolb, Florian P
2016-08-01
The "raspberry task" represents a precision grip task that requires continuous adjustment of grip forces and pull forces. During this task, subjects use a specialised grip rod and have to increase the pull force linearly while the rod is locked. The positions of the fingers are unrestrained and freely selectable. From the finger positions and the geometry of the grip rod, a physical lever was derived which is a comprehensive measurement of the subject's grip behaviour. In this study, the involvement of the cerebellum in establishing cued force changes (CFC) was examined. The auditory stimulus was associated with a motor behaviour that has to be readjusted during an ongoing movement that already started. Moreover, cerebellar involvement on grip behaviour was examined. The results show that patients presenting with degenerating cerebellar disease (CBL) were able to elicit CFC and were additionally able to optimise grip behaviour by minimising the lever. Comparison of the results of CBL with a control group of healthy subjects showed, however, that the CFC incidence was significantly lower and the reduction of the lever was less in CBL. Hence, the cerebellum is involved not only in the classical conditioning of reflexes but also in the association of sensory stimuli with complex changes in motor behaviour. Furthermore, the cerebellum is involved in the optimisation of grip behaviour during ongoing movements. Recent studies lead to the assumption that the cerebello-reticulo-spinal pathway might be important for the reduced optimisation of grip behaviour in CBL.
Directing visual attention during action observation modulates corticospinal excitability
Wood, Greg; Franklin, Zoe C.; Marshall, Ben; Riach, Martin; Holmes, Paul S.
2018-01-01
Transcranial magnetic stimulation (TMS) research has shown that corticospinal excitability is facilitated during the observation of human movement. However, the relationship between corticospinal excitability and participants’ visual attention during action observation is rarely considered. Nineteen participants took part in four conditions: (i) a static hand condition, involving observation of a right hand holding a ball between the thumb and index finger; (ii) a free observation condition, involving observation of the ball being pinched between thumb and index finger; and (iii and iv) finger-focused and ball-focused conditions, involving observation of the same ball pinch action with instructions to focus visual attention on either the index finger or the ball. Single-pulse TMS was delivered to the left motor cortex and motor evoked potentials (MEPs) were recorded from the first dorsal interosseous (FDI) and abductor digiti minimi muscles of the right hand. Eye movements were recorded simultaneously throughout each condition. The ball-focused condition produced MEPs of significantly larger amplitude in the FDI muscle, compared to the free observation or static hand conditions. Furthermore, regression analysis indicated that the number of fixations on the ball was a significant predictor of MEP amplitude in the ball-focused condition. These results have important implications for the design and delivery of action observation interventions in motor (re)learning settings. Specifically, providing viewing instructions that direct participants to focus visual attention on task-relevant objects affected by the observed movement promotes activity in the motor system in a more optimal manner than free observation or no instructions. PMID:29304044
Fujisawa, Yuhki; Okajima, Yasutomo
2015-11-01
There are several functional tests for evaluating manual performance; however, quantitative manual tests for ataxia, especially those for evaluating handwriting, are limited. This study aimed to investigate the characteristics of cerebellar ataxia by analyzing handwriting, with a special emphasis on correlation between the movement of the pen tip and the movement of the finger or wrist. This was an observational study. Eleven people who were right-handed and had cerebellar ataxia and 17 people to serve as controls were recruited. The Scale for the Assessment and Rating of Ataxia was used to grade the severity of ataxia. Handwriting movements of both hands were analyzed. The time required for writing a character, the variability of individual handwriting, and the correlation between the movement of the pen tip and the movement of the finger or wrist were evaluated for participants with ataxia and control participants. The writing time was longer and the velocity profile and shape of the track of movement of the pen tip were more variable in participants with ataxia than in control participants. For participants with ataxia, the direction of movement of the pen tip deviated more from that of the finger or wrist, and the shape of the track of movement of the pen tip differed more from that of the finger or wrist. The severity of upper extremity ataxia measured with the Scale for the Assessment and Rating of Ataxia was mostly correlated with the variability parameters. Furthermore, it was correlated with the directional deviation of the trajectory of movement of the pen tip from that of the finger and with increased dissimilarity of the shapes of the tracks. The results may have been influenced by the scale and parameters used to measure movement. Ataxic handwriting with increased movement noise is characterized by irregular pen tip movements unconstrained by the finger or wrist. The severity of ataxia is correlated with these unconstrained movements. © 2015 American Physical Therapy Association.
Gao, Fan; Latash, Mark L.
2010-01-01
We address issues of simultaneous control of the grasping force and the total moment of forces applied to a handheld object during its manipulation. Six young healthy male subjects grasped an instrumented handle and performed its cyclic motion in the vertical direction. The handle allowed for setting different clockwise (negative) or counterclockwise torques. Three movement frequencies: 1, 1.5 and 2 Hz, and five different torques: −1/3, −1/6, 0, 1/6 and 1/3 Nm, were used. The rotational equilibrium was maintained by two means: (1) Concerted changes of the moments produced by the normal and tangential forces, specifically anti-phase changes of the moments during the tasks with zero external torque and in-phase changes during the non-zero-torque tasks, and (2) Redistribution of the normal forces among individual fingers such that the agonist fingers—the fingers that resist external torque—increased the force in phase with the acceleration, while the forces of the antagonist fingers—those that assist the external torque—especially, the fingers with the large moment arms, the index and little fingers, stayed unchanged. The observed effects agree with the principle of superposition—according to which some complex actions, for example, prehension, can be decomposed into elemental actions controlled independently—and the mechanical advantage hypothesis according to which in moment production the fingers are activated in proportion to their moment arms with respect to the axis of rotation. We would like to emphasize the linearity of the observed relations, which was not prescribed by the task mechanics and seems to be produced by specific neural control mechanisms. PMID:16328302
Coordinated turn-and-reach movements. II. Planning in an external frame of reference
NASA Technical Reports Server (NTRS)
Pigeon, Pascale; Bortolami, Simone B.; DiZio, Paul; Lackner, James R.
2003-01-01
The preceding study demonstrated that normal subjects compensate for the additional interaction torques generated when a reaching movement is made during voluntary trunk rotation. The present paper assesses the influence of trunk rotation on finger trajectories and on interjoint coordination and determines whether simultaneous turn-and-reach movements are most simply described relative to a trunk-based or an external reference frame. Subjects reached to targets requiring different extents of arm joint and trunk rotation at a natural pace and quickly in normal lighting and in total darkness. We first examined whether the larger interaction torques generated during rapid turn-and-reach movements perturb finger trajectories and interjoint coordination and whether visual feedback plays a role in compensating for these torques. These issues were addressed using generalized Procrustes analysis (GPA), which attempts to overlap a group of configurations (e.g., joint trajectories) through translations and rotations in multi-dimensional space. We first used GPA to identify the mean intrinsic patterns of finger and joint trajectories (i.e., their average shape irrespective of location and orientation variability in the external and joint workspaces) from turn-and-reach movements performed in each experimental condition and then calculated their curvatures. We then quantified the discrepancy between each finger or joint trajectory and the intrinsic pattern both after GPA was applied individually to trajectories from a pair of experimental conditions and after GPA was applied to the same trajectories pooled together. For several subjects, joint trajectories but not finger trajectories were more curved in fast than slow movements. The curvature of both joint and finger trajectories of turn-and-reach movements was relatively unaffected by the vision conditions. Pooling across speed conditions significantly increased the discrepancy between joint but not finger trajectories for most subjects, indicating that subjects used different patterns of interjoint coordination in slow and fast movements while nevertheless preserving the shape of their finger trajectory. Higher movement speeds did not disrupt the arm joint rotations despite the larger interaction torques generated. Rather, subjects used the redundant degrees of freedom of the arm/trunk system to achieve similar finger trajectories with differing joint configurations. We examined finger movement patterns and velocity profiles to determine the frame of reference in which turn-and-reach movements could be most simply described. Finger trajectories of turn-and-reach movements had much larger curvatures and their velocity profiles were less smooth and less bell-like in trunk-based coordinates than in external coordinates. Taken together, these results support the conclusion that turn-and-reach movements are controlled in an external frame of reference.
Proportional estimation of finger movements from high-density surface electromyography.
Celadon, Nicolò; Došen, Strahinja; Binder, Iris; Ariano, Paolo; Farina, Dario
2016-08-04
The importance to restore the hand function following an injury/disease of the nervous system led to the development of novel rehabilitation interventions. Surface electromyography can be used to create a user-driven control of a rehabilitation robot, in which the subject needs to engage actively, by using spared voluntary activation to trigger the assistance of the robot. The study investigated methods for the selective estimation of individual finger movements from high-density surface electromyographic signals (HD-sEMG) with minimal interference between movements of other fingers. Regression was evaluated in online and offline control tests with nine healthy subjects (per test) using a linear discriminant analysis classifier (LDA), a common spatial patterns proportional estimator (CSP-PE), and a thresholding (THR) algorithm. In all tests, the subjects performed an isometric force tracking task guided by a moving visual marker indicating the contraction type (flexion/extension), desired activation level and the finger that should be moved. The outcome measures were mean square error (nMSE) between the reference and generated trajectories normalized to the peak-to-peak value of the reference, the classification accuracy (CA), the mean amplitude of the false activations (MAFA) and, in the offline tests only, the Pearson correlation coefficient (PCORR). The offline tests demonstrated that, for the reduced number of electrodes (≤24), the CSP-PE outperformed the LDA with higher precision of proportional estimation and less crosstalk between the movement classes (e.g., 8 electrodes, median MAFA ~ 0.6 vs. 1.1 %, median nMSE ~ 4.3 vs. 5.5 %). The LDA and the CSP-PE performed similarly in the online tests (median nMSE < 3.6 %, median MAFA < 0.7 %), but the CSP-PE provided a more stable performance across the tested conditions (less improvement between different sessions). Furthermore, THR, exploiting topographical information about the single finger activity from HD-sEMG, provided in many cases a regression accuracy similar to that of the pattern recognition techniques, but the performance was not consistent across subjects and fingers. The CSP-PE is a method of choice for selective individual finger control with the limited number of electrodes (<24), whereas for the higher resolution of the recording, either method (CPS-PA or LDA) can be used with a similar performance. Despite the abundance of detection points, the simple THR showed to be significantly worse compared to both pattern recognition/regression methods. Nevertheless, THR is a simple method to apply (no training), and it could still give satisfactory performance in some subjects and/or simpler scenarios (e.g., control of selected fingers). These conclusions are important for guiding future developments towards the clinical application of the methods for individual finger control in rehabilitation robotics.
Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses.
Ramos-Murguialday, Ander; Schürholz, Markus; Caggiano, Vittorio; Wildgruber, Moritz; Caria, Andrea; Hammer, Eva Maria; Halder, Sebastian; Birbaumer, Niels
2012-01-01
Brain computer interface (BCI) technology has been proposed for motor neurorehabilitation, motor replacement and assistive technologies. It is an open question whether proprioceptive feedback affects the regulation of brain oscillations and therefore BCI control. We developed a BCI coupled on-line with a robotic hand exoskeleton for flexing and extending the fingers. 24 healthy participants performed five different tasks of closing and opening the hand: (1) motor imagery of the hand movement without any overt movement and without feedback, (2) motor imagery with movement as online feedback (participants see and feel their hand, with the exoskeleton moving according to their brain signals, (3) passive (the orthosis passively opens and closes the hand without imagery) and (4) active (overt) movement of the hand and rest. Performance was defined as the difference in power of the sensorimotor rhythm during motor task and rest and calculated offline for different tasks. Participants were divided in three groups depending on the feedback receiving during task 2 (the other tasks were the same for all participants). Group 1 (n = 9) received contingent positive feedback (participants' sensorimotor rhythm (SMR) desynchronization was directly linked to hand orthosis movements), group 2 (n = 8) contingent "negative" feedback (participants' sensorimotor rhythm synchronization was directly linked to hand orthosis movements) and group 3 (n = 7) sham feedback (no link between brain oscillations and orthosis movements). We observed that proprioceptive feedback (feeling and seeing hand movements) improved BCI performance significantly. Furthermore, in the contingent positive group only a significant motor learning effect was observed enhancing SMR desynchronization during motor imagery without feedback in time. Furthermore, we observed a significantly stronger SMR desynchronization in the contingent positive group compared to the other groups during active and passive movements. To summarize, we demonstrated that the use of contingent positive proprioceptive feedback BCI enhanced SMR desynchronization during motor tasks.
Listening to music primes space: pianists, but not novices, simulate heard actions.
Taylor, J Eric T; Witt, Jessica K
2015-03-01
Musicians sometimes report twitching in their fingers or hands while listening to music. This anecdote could be indicative of a tendency for auditory-motor co-representation in musicians. Here, we describe two studies showing that pianists (Experiment 1), but not novices (Experiment 2) automatically generate spatial representations that correspond to learned musical actions while listening to music. Participants made one-handed movements to the left or right from a central location in response to visual stimuli while listening to task-irrelevant auditory stimuli, which were scales played on a piano. These task-irrelevant scales were either ascending (compatible with rightward movements) or descending (compatible with leftward movements). Pianists were faster to respond when the scale direction was compatible with the direction of response movement, whereas novices' movements were unaffected by the scale. These results are in agreement with existing research on action-effect coupling in musicians, which draw heavily on common coding theory. In addition, these results show how intricate auditory stimuli (ascending or descending scales) evoke coarse, domain-general spatial representations.
An fMRI study of finger tapping in children and adults.
Turesky, Ted K; Olulade, Olumide A; Luetje, Megan M; Eden, Guinevere F
2018-04-02
Functional brain imaging studies have characterized the neural bases of voluntary movement for finger tapping in adults, but equivalent information for children is lacking. When contrasted to adults, one would expect children to have relatively greater activation, reflecting compensation for an underdeveloped motor system combined with less experience in the execution of voluntary movement. To test this hypothesis, we acquired functional magnetic resonance imaging (fMRI) data on 17 healthy right-handed children (7.48 ± 0.66 years) and 15 adults (24.9 ± 2.9 years) while they performed an irregularly paced finger-tapping task in response to a visual cue (left- and right-hand examined separately). Whole-brain within-group analyses revealed that finger tapping in either age group and for either hand activated contralateral SM1, SMA, ipsilateral anterior cerebellum, and occipital cortices. We used an ANOVA factorial design to test for main effects of Age Group (children vs adults), Hand (left vs. right), and their interactions. For main effects of Age Group, children showed relatively greater activity in left SM1 (extending into bilateral SMA), and, surprisingly, adults exhibited relatively greater activity in right pre-SMA/SMA (extending into left pre-SMA/SMA), right lateral globus pallidus, left putamen, and right anterior cerebellum. The interaction of Age Group × Hand revealed that while both groups activated right SM1 during left finger tapping and exhibited signal decreases (i.e., below fixation baseline) during right finger tapping, both these responses were attenuated in children relative to adults. These data provide an important foundation by which to study children with motor disorders. © 2018 Wiley Periodicals, Inc.
Skin strain patterns provide kinaesthetic information to the human central nervous system.
Edin, B B; Johansson, N
1995-01-01
1. We investigated the contribution of skin strain-related sensory inputs to movement perception and execution in five normal volunteers. The dorsal and palmar skin of the middle phalanx and the proximal interphalangeal (PIP) joint were manipulated to generate specific strain patterns in the proximal part of the index finger. To mask sensations directly related to this manipulation, skin and deeper tissues were blocked distal to the mid-portion of the proximal phalanx of the index finger by local anaesthesia. 2. Subjects were asked to move their normal right index finger either to mimic any perceived movements of the anaesthetized finger or to touch the tip of the insentient finger. 3. All subjects readily reproduced actual movements induced by the experimenter at the anaesthetized PIP joint. However, all subjects also generated flexion movements when the experimenter did not induce actual movement but produced deformations in the sentient proximal skin that were similar to those observed during actual PIP joint flexion. Likewise, the subjects indicated extension movement at the PIP joint when strain patterns corresponding to extension movements were induced. 4. In contrast, when the skin strain in the proximal part of the index finger was damped by a ring applied just proximal to the PIP joint within the anaesthetized skin area, both tested subjects failed to perceive PIP movements that actually took place.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 PMID:7473253
Examining Age-Related Movement Representations for Sequential (Fine-Motor) Finger Movements
ERIC Educational Resources Information Center
Gabbard, Carl; Cacola, Priscila; Bobbio, Tatiana
2011-01-01
Theory suggests that imagined and executed movement planning relies on internal models for action. Using a chronometry paradigm to compare the movement duration of imagined and executed movements, we tested children aged 7-11 years and adults on their ability to perform sequential finger movements. Underscoring this tactic was our desire to gain a…
Patron, Jerome; Stapley, Paul; Pozzo, Thierry
2005-08-01
Previous experiments by our group in normal gravity (1 G) have revealed spatial relationships between postural and focal components of whole-body reaching and pointing movements. We suggested that these relationships could be explained partly through the use of gravity to displace the CoM and attain the object or target position. In this study we compared human whole-body reaching in 1 G and microgravity (0 G) in order to more fully investigate how gravity contributes to strategies adopted for task execution and to determine possible invariant temporal relationships between multiple segments. Whole-body reaching movements made from the standing position in two experimental conditions of execution speed (naturally paced and as fast as possible) were recorded during periods of 1 G and 0 G in parabolic flight. Overall, at each speed of reaching, movement times were significantly slower when performed in 0 G than in 1 G for two of the three subjects, but all subjects were able to produce significantly faster movements in 0 G than in 1 G. Despite similar general trends across subjects observed in 1 G, angular displacements of reaching movements performed in 0 G differed greatly between subjects. There were changes at all joints, but above all at the shoulder and the ankle. However, despite a high intersubject and intratrial variability in 0 G, in both gravity conditions all subjects demonstrated times to peak curvilinear velocity for the finger (end effector) and the whole-body centre of mass (CoM) that coincided, regardless of the speed of execution. Moreover, cross-correlations between multiple segment curvilinear velocities and those of the CoM revealed tight, highly correlated temporal relationships between segments proximal to the CoM (which was expected). However, for more distal segments, the correlations were weaker, and the movements lagged behind movements of the CoM. The major and most interesting finding of this study was that although the finger was the most distal within the segment chain, with respect to the CoM, it was highly correlated with the CoM (0.99--0.98, all conditions) and with no time lag. Despite the large intersubject and inter-environmental variability recorded in this study, temporal relationships between postural task components (CoM displacements) and those of the focal movement (end-effector trajectory) were consistently conserved.
Ockenfeld, Corinna; Tong, Raymond K Y; Susanto, Evan A; Ho, Sze-Kit; Hu, Xiao-ling
2013-06-01
Background and Purpose. Stroke survivors often show a limited recovery in the hand function to perform delicate motions, such as full hand grasping, finger pinching and individual finger movement. The purpose of this study is to describe the implementation of an exoskeleton robotic hand together with fine finger motor skill training on 2 chronic stroke patients. Case Descriptions. Two post-stroke patients participated in a 20-session training program by integrating 10 minutes physical therapy, 20 minutes robotic hand training and 15 minutes functional training tasks with delicate objects(card, pen and coin). These two patients (A and B) had cerebrovascular accident at 6 months and 11 months respectively when enrolled in this study. Outcomes. The results showed that both patients had improvements in Fugl-Meyer assessment (FM), Action Research Arm Test (ARAT). Patients had better isolation of the individual finger flexion and extension based on the reduced muscle co-contraction from the electromyographic(EMG) signals and finger extension force after 20 sessions of training. Discussion. This preliminary study showed that by focusing on the fine finger motor skills together with the exoskeleton robotic hand, it could improve the motor recovery of the upper extremity in the fingers and hand function, which were showed in the ARAT. Future randomized controlled trials are needed to evaluate the clinical effectiveness.
Investigations into haptic space and haptic perception of shape for active touch
NASA Astrophysics Data System (ADS)
Sanders, A. F. J.
2008-12-01
This thesis presents a number of psychophysical investigations into haptic space and haptic perception of shape. Haptic perception is understood to include the two subsystems of the cutaneous sense and kinesthesis. Chapter 2 provides an extensive quantitative study into haptic perception of curvature. I investigated bimanual curvature discrimination of cylindrically curved, hand-sized surfaces. I found that discrimination thresholds were in the same range as unimanual thresholds reported in previous studies. Moreover, the distance between the surfaces or the position of the setup with respect to the observer had no effect on thresholds. Finally, I found idiosyncratic biases: A number of observers judged two surfaces that had different radii as equally curved. Biases were of the same order of magnitude as thresholds. In Chapter 3, I investigated haptic space. Here, haptic space is understood to be (1) the set of observer’s judgments of spatial relations in physical space, and (2) a set of constraints by which these judgments are internally consistent. I asked blindfolded observers to construct straight lines in a number of different tasks. I show that the shape of the haptically straight line depends on the task used to produce it. I therefore conclude that there is no unique definition of the haptically straight line and that doubts are cast on the usefulness of the concept of haptic space. In Chapter 4, I present a new experiment into haptic length perception. I show that when observers trace curved pathways with their index finger and judge distance traversed, their distance estimates depend on the geometry of the paths: Lengths of convex, cylindrically curved pathways were overestimated and lengths of concave pathways were underestimated. In addition, I show that a kinematic mechanism must underlie this interaction: (1) the geometry of the path traced by the finger affects movement speed and consequently movement time, and (2) movement time is taken as a measure of traversed length. The study presented in Chapter 5 addresses the question of how kinematic properties of exploratory movements affect perceived shape. I identify a kinematic invariant for the case of a single finger moving across cylindrically curved strips under conditions of slip. I found that the rotation angle of the finger increased linearly with the curvature of the stimulus. In addition, I show that observers took rotation angle as their primary measure of perceived curvature: Observers rotated their finger less on a concave curvature by a constant amount, and consequently, they overestimated the radius of the concave strips compared to the convex ones. Finally, in Chapter 6, I investigated the haptic filled-space illusion for dynamic touch: Observers move their fingertip across an unfilled extent or an extent filled with intermediate stimulations. Previous researchers have reported lengths of filled extents to be overestimated, but the parameters affecting the strength of the illusion are still largely unknown. Factors investigated in this chapter include end point effects, filler density and overall average movement speed.
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement. PMID:24340080
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement.
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region.
NASA Technical Reports Server (NTRS)
Reid, Christopher R.; McFarland, Shane M.
2015-01-01
Injuries to the hands are common among astronauts who train for extravehicular activity (EVA). When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. A brief review of the Lifetime Surveillance of Astronaut Health's injury database reveals that 58% of total astronaut hand and arm injuries from NBL training between 1993 and 2010 occurred either to the fingernail, MCP, or fingertip. The purpose of this study was to assess the potential of using small sensors to measure force acting on the fingers and hand within pressurized gloves and other variables such as blood perfusion, skin temperature, humidity, fingernail strain, skin moisture, among others. Tasks were performed gloved and ungloved in a pressurizable glove box. The test demonstrated that fingernails saw greater transverse strain levels for tension or compression than for longitudinal strain, even during axial fingertip loading. Blood perfusion peaked and dropped as the finger deformed during finger presses, indicating an initial dispersion and decrease of blood perfusion levels. Force sensitive resistors to force plate comparisons showed similar force curve patterns as fingers were depressed, indicating suitable functionality for future testing. Strategies for proper placement and protection of these sensors for ideal data collection and longevity through the test session were developed and will be implemented going forward for future testing.
Ngeo, Jimson G; Tamei, Tomoya; Shibata, Tomohiro
2014-08-14
Surface electromyography (EMG) signals are often used in many robot and rehabilitation applications because these reflect motor intentions of users very well. However, very few studies have focused on the accurate and proportional control of the human hand using EMG signals. Many have focused on discrete gesture classification and some have encountered inherent problems such as electro-mechanical delays (EMD). Here, we present a new method for estimating simultaneous and multiple finger kinematics from multi-channel surface EMG signals. In this study, surface EMG signals from the forearm and finger kinematic data were extracted from ten able-bodied subjects while they were tasked to do individual and simultaneous multiple finger flexion and extension movements in free space. Instead of using traditional time-domain features of EMG, an EMG-to-Muscle Activation model that parameterizes EMD was used and shown to give better estimation performance. A fast feed forward artificial neural network (ANN) and a nonparametric Gaussian Process (GP) regressor were both used and evaluated to estimate complex finger kinematics, with the latter rarely used in the other related literature. The estimation accuracies, in terms of mean correlation coefficient, were 0.85 ± 0.07, 0.78 ± 0.06 and 0.73 ± 0.04 for the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and the distal interphalangeal (DIP) finger joint DOFs, respectively. The mean root-mean-square error in each individual DOF ranged from 5 to 15%. We show that estimation improved using the proposed muscle activation inputs compared to other features, and that using GP regression gave better estimation results when using fewer training samples. The proposed method provides a viable means of capturing the general trend of finger movements and shows a good way of estimating finger joint kinematics using a muscle activation model that parameterizes EMD. The results from this study demonstrates a potential control strategy based on EMG that can be applied for simultaneous and continuous control of multiple DOF(s) devices such as robotic hand/finger prostheses or exoskeletons.
Luo, Shi-Jian; Shu, Ge; Gong, Yan
2018-05-01
Individual finger force (FF) in a grip task is a vital concern in rehabilitation engineering and precise control of manipulators because disorders in any of the fingers will affect the stability or accuracy of the grip force (GF). To understand the functions of each finger in a dynamic grip exertion task, a GF following experiment with four individual fingers without thumb was designed. This study obtained four individual FFs from the distal phalanges with a cylindrical handle in dynamic GF following tasks. Ten healthy male subjects with similar hand sizes participated in the four-finger linear GF following tasks at different submaximal voluntary contraction (SMVC) levels. The total GF, individual FF, finger force contribution, and following error were subsequently calculated and analyzed. The statistics indicated the following: 1) the accuracy and stability of GF at low %MVC were significantly higher than those at high SMVC; 2) at low SMVC, the ability of the fingers to increase the GF was better than the ability to reduce it, but it was contrary at high SMVC; 3) when the target wave (TW) was changing, all four fingers strongly participated in the force exertion, but the participation of the little finger decreased significantly when TW remained stable; 4) the index finger and ring finger had a complementary relationship and played a vital role in the adjustment and control of GF. The middle finger and little finger had a minor influence on the force control and adjustment. In conclusion, each of the fingers had different functions in a GF following task. These findings can be used in the assessment of finger injury rehabilitation and for algorithms of precise control. Copyright © 2017 Elsevier Ltd. All rights reserved.
Okita, Manabu; Yukihiro, Takashi; Miyamoto, Kenzo; Morioka, Shu; Kaba, Hideto
2017-04-01
To explore the mechanism underlying the imitation of finger gestures, we devised a simple imitation task in which the patients were instructed to replicate finger configurations in two conditions: one in which they could see their hand (visual feedback: VF) and one in which they could not see their hand (non-visual feedback: NVF). Patients with left brain damage (LBD) or right brain damage (RBD), respectively, were categorized into two groups based on their scores on the imitation task in the NVF condition: the impaired imitation groups (I-LBD and I-RBD) who failed two or more of the five patterns and the control groups (C-LBD and C-RBD) who made one or no errors. We also measured the movement-production times for imitation. The I-RBD group performed significantly worse than the C-RBD group even in the VF condition. In contrast, the I-LBD group was selectively impaired in the NVF condition. The I-LBD group performed the imitations at a significantly slower rate than the C-LBD group in both the VF and NVF conditions. These results suggest that impaired imitation in patients with LBD is partly due to an abnormal integration of visual and somatosensory information based on the task specificity of the NVF condition. Copyright © 2017 Elsevier Inc. All rights reserved.
Post-exercise cortical depression following repetitive passive finger movement.
Otsuka, Ryohei; Sasaki, Ryoki; Tsuiki, Shota; Kojima, Sho; Onishi, Hideaki
2017-08-24
This study aimed to clarify the influence of range of repetitive passive finger movement on corticospinal excitability. Thirteen healthy subjects participated in this study. Passive index finger adduction-abduction movements were performed from 15° abduction to 15° adduction, 15° abduction to 0°, 0° to 15° adduction, and 15° adduction to 30° adduction, each at 15°/s for 10min on separate days. Motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation and M- and F-waves were measured before and after each repetitive passive index finger movement protocol to evaluate changes in corticospinal excitability. MEP amplitude significantly decreased after all passive movements, while F-wave amplitude, F-wave persistence, and M-wave amplitude remained stable. These results suggest that cortical excitability decreases after repetitive passive movement. However, the range of repetitive passive movement does not markedly influence the magnitude of cortical depression. Copyright © 2017 Elsevier B.V. All rights reserved.
Restricted transfer of learning between unimanual and bimanual finger sequences.
Yokoi, Atsushi; Bai, Wenjun; Diedrichsen, Jörn
2017-03-01
When training bimanual skills, such as playing piano, people sometimes practice each hand separately and at a later stage combine the movements of the two hands. This poses the critical question of whether motor skills can be acquired by separately practicing each subcomponent or should be trained as a whole. In the present study, we addressed this question by training human subjects for 4 days in a unimanual or bimanual version of the discrete sequence production task. Both groups were then tested on trained and untrained sequences on both unimanual and bimanual versions of the task. Surprisingly, we found no evidence of transfer from trained unimanual to bimanual or from trained bimanual to unimanual sequences. In half the participants, we also investigated whether cuing the sequences on the left and right hand with unique letters would change transfer. With these cues, untrained sequences that shared some components with the trained sequences were performed more quickly than sequences that did not. However, the amount of this transfer was limited to ∼10% of the overall sequence-specific learning gains. These results suggest that unimanual and bimanual sequences are learned in separate representations. Making participants aware of the interrelationship between sequences can induce some transferrable component, although the main component of the skill remains unique to unimanual or bimanual execution. NEW & NOTEWORTHY Studies in reaching movement demonstrated that approximately half of motor learning can transfer across unimanual and bimanual contexts, suggesting that neural representations for unimanual and bimanual movements are fairly overlapping at the level of elementary movement. In this study, we show that little or no transfer occurred across unimanual and bimanual sequential finger movements. This result suggests that bimanual sequences are represented at a level of the motor hierarchy that integrates movements of both hands. Copyright © 2017 the American Physiological Society.
Biomechanical analysis of the circular friction hand massage.
Ryu, Jeseong; Son, Jongsang; Ahn, Soonjae; Shin, Isu; Kim, Youngho
2015-01-01
A massage can be beneficial to relieve muscle tension on the neck and shoulder area. Various massage systems have been developed, but their motions are not uniform throughout different body parts nor specifically targeted to the neck and shoulder areas. Pressure pattern and finger movement trajectories of the circular friction hand massage on trapezius, levator scapulae, and deltoid muscles were determined to develop a massage system that can mimic the motion and the pressure of the circular friction massage. During the massage, finger movement trajectories were measured using a 3D motion capture system, and finger pressures were simultaneously obtained using a grip pressure sensor. Results showed that each muscle had different finger movement trajectory and pressure pattern. The trapezius muscle experienced a higher pressure, longer massage time (duration of pressurization), and larger pressure-time integral than the other muscles. These results could be useful to design a better massage system simulating human finger movements.
Forgetting motor programmes: retrieval dynamics in procedural memory.
Tempel, Tobias; Frings, Christian
2014-01-01
When motor sequences are stored in memory in a categorised manner, selective retrieval of some sequences can induce forgetting of the non-retrieved sequences. We show that such retrieval-induced forgetting (RIF) occurs not only in cued recall but also in a test assessing memory indirectly by providing novel test cues without involving recall of items. Participants learned several sequential finger movements (SFMs), each consisting of the movement of two fingers of either the left or the right hand. Subsequently, they performed retrieval practice on half of the sequences of one hand. A final task then required participants to enter letter dyads. A subset of these dyads corresponded to the previously learned sequences. RIF was present in the response times during the entering of the dyads. The finding of RIF in the slowed-down execution of motor programmes overlapping with initially trained motor sequences suggests that inhibition resolved interference between procedural representations of the acquired motor sequences of one hand during retrieval practice.
The "Motor" in Implicit Motor Sequence Learning: A Foot-stepping Serial Reaction Time Task.
Du, Yue; Clark, Jane E
2018-05-03
This protocol describes a modified serial reaction time (SRT) task used to study implicit motor sequence learning. Unlike the classic SRT task that involves finger-pressing movements while sitting, the modified SRT task requires participants to step with both feet while maintaining a standing posture. This stepping task necessitates whole body actions that impose postural challenges. The foot-stepping task complements the classic SRT task in several ways. The foot-stepping SRT task is a better proxy for the daily activities that require ongoing postural control, and thus may help us better understand sequence learning in real-life situations. In addition, response time serves as an indicator of sequence learning in the classic SRT task, but it is unclear whether response time, reaction time (RT) representing mental process, or movement time (MT) reflecting the movement itself, is a key player in motor sequence learning. The foot-stepping SRT task allows researchers to disentangle response time into RT and MT, which may clarify how motor planning and movement execution are involved in sequence learning. Lastly, postural control and cognition are interactively related, but little is known about how postural control interacts with learning motor sequences. With a motion capture system, the movement of the whole body (e.g., the center of mass (COM)) can be recorded. Such measures allow us to reveal the dynamic processes underlying discrete responses measured by RT and MT, and may aid in elucidating the relationship between postural control and the explicit and implicit processes involved in sequence learning. Details of the experimental set-up, procedure, and data processing are described. The representative data are adopted from one of our previous studies. Results are related to response time, RT, and MT, as well as the relationship between the anticipatory postural response and the explicit processes involved in implicit motor sequence learning.
Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Numerical analysis
NASA Astrophysics Data System (ADS)
Fernandez, D.; Binda, L.; Zalts, A.; El Hasi, C.; D'Onofrio, A.
2018-01-01
Numerical simulations were performed for Rayleigh-Taylor (RT) hydrodynamic instabilities when a frontier is present. The frontier formed by the interface between two fluids prevents the free movement of the fingers created by the instability. As a consequence, transversal movements at the rear of the fingers are observed in this area. These movements produce collapse of the fingers (two or more fingers join in one finger) or oscillations in the case that there is no collapse. The transversal velocity of the fingers, the amplitude of the oscillations, and the wave number of the RT instabilities as a function of the Rayleigh number (Ra) were studied near the frontier. We verified numerically that in classical RT instabilities, without a frontier, these lateral movements do not occur; only with a physical frontier, the transversal displacements of the fingers appear. The transverse displacement velocity and the initial wave number increase with Ra. This leads to the collapse of the fingers, diminishing the wave number of the instabilities at the interface. Instead, no significant changes in the amplitude of the oscillations are observed modifying Ra. The numerical results are independent of the type or origin of the frontier (gas-liquid, liquid-liquid, or solid-liquid). The numerical results are in good agreement with the experimental results reported by Binda et al. [Chaos 28, 013107 (2018)]. Based on these results, it was possible to determine the cause of the transverse displacements, which had not been explained until now.
Factor structure of paediatric timed motor examination and its relationship with IQ
MARTIN, REBECCA; TIGERA, CASSIE; DENCKLA, MARTHA B; MAHONE, E MARK
2012-01-01
AIM Brain systems supporting higher cognitive and motor control develop in a parallel manner, dependent on functional integrity and maturation of related regions, suggesting neighbouring neural circuitry. Concurrent examination of motor and cognitive control can provide a window into neurological development. However, identification of performance-based measures that do not correlate with IQ has been a challenge. METHOD Timed motor performance from the Physical and Neurological Examination of Subtle Signs and IQ were analysed in 136 children aged 6 to 16 (mean age 10y 2.6mo, SD 2y 6.4mo; 98 female, 38male) attending an outpatient neuropsychology clinic and 136 right-handed comparison individuals aged 6 to 16 (mean age 10y 3.1mo, SD 2y 6.1mo; 98 female, 38male). Timed activities – three repetitive movements (toe tapping, hand patting, finger tapping) and three sequenced movements (heel–toe tap, hand pronate/supinate, finger sequencing) each performed on the right and left – were included in exploratory factor analyses. RESULTS Among comparison individuals, factor analysis yielded two factors – repetitive and sequenced movements – with the sequenced factor significantly predictive of Verbal IQ (VIQ) (ΔR2=0.018, p=0.019), but not the repetitive factor (ΔR2=0.004, p=0.39). Factor analysis within the clinical group yielded two similar factors (repetitive and sequenced), both significantly predictive of VIQ, (ΔR2=0.028, p=0.015; ΔR2=0.046, p=0.002 respectively). INTERPRETATION Among typical children, repetitive timed tasks may be independent of IQ; however, sequenced tasks share more variance, implying shared neural substrates. Among neurologically vulnerable populations, however, both sequenced and repetitive movements covary with IQ, suggesting that repetitive speed is more indicative of underlying neurological integrity. PMID:20412260
Aging reduces experience-induced sensorimotor plasticity. A magnetoencephalographic study.
Mary, Alison; Bourguignon, Mathieu; Wens, Vincent; Op de Beeck, Marc; Leproult, Rachel; De Tiège, Xavier; Peigneux, Philippe
2015-01-01
Modulation of the mu-alpha and mu-beta spontaneous rhythms reflects plastic neural changes within the primary sensorimotor cortex (SM1). Using magnetoencephalography (MEG), we investigated how aging modifies experience-induced plasticity after learning a motor sequence, looking at post- vs. pre-learning changes in the modulation of mu rhythms during the execution of simple hand movements. Fifteen young (18-30 years) and fourteen older (65-75 years) right-handed healthy participants performed auditory-cued key presses using all four left fingers simultaneously (Simple Movement task - SMT) during two separate sessions. Following both SMT sessions, they repeatedly practiced a 5-elements sequential finger-tapping task (FTT). Mu power calculated during SMT was averaged across 18 gradiometers covering the right sensorimotor region and compared before vs. after sequence learning in the alpha (9/10/11Hz) and the beta (18/20/22Hz) bands separately. Source power maps in the mu-alpha and mu-beta bands were localized using Dynamic Statistical Parametric Mapping (dSPM). The FTT sequence was performed faster at retest than at the end of the learning session, indicating an offline boost in performance. Analyses conducted on SMT sessions revealed enhanced rebound after learning in the right SM1, 3000-3500ms after the initiation of movement, in young as compared to older participants. Source reconstruction indicated that mu-beta is located in the precentral gyrus (motor processes) and mu-alpha is located in the postcentral gyrus (somatosensory processes) in both groups. The enhanced post-movement rebound in young subjects potentially reflects post-training plastic changes in SM1. Age-related decreases in post-training modulatory effects suggest reduced experience-dependent plasticity in the aging brain. Copyright © 2014 Elsevier Inc. All rights reserved.
Bimanual proprioceptive performance differs for right- and left-handed individuals.
Han, Jia; Waddington, Gordon; Adams, Roger; Anson, Judith
2013-05-10
It has been proposed that asymmetry between the upper limbs in the utilization of proprioceptive feedback arises from functional differences in the roles of the preferred and non-preferred hands during bimanual tasks. The present study investigated unimanual and bimanual proprioceptive performance in right- and left-handed young adults with an active finger pinch movement discrimination task. With visual information removed, participants were required to make absolute judgments about the extent of pinch movements made to physical stops, either by one hand, or by both hands concurrently, with the sequence of presented movement extents varied randomly. Discrimination accuracy scores were derived from participants' responses using non-parametric signal detection analysis. Consistent with previous findings, a non-dominant hand/hemisphere superiority effect was observed, where the non-dominant hands of right- and left-handed individuals performed overall significantly better than their dominant hands. For all participants, bimanual movement discrimination scores were significantly lower than scores obtained in the unimanual task. However, the magnitude of the performance reduction, from the unimanual to the bimanual task, was significantly greater for left-handed individuals. The effect whereby bimanual proprioception was disproportionately affected in left-handed individuals could be due to enhanced neural communication between hemispheres in left-handed individuals leading to less distinctive separation of information obtained from the two hands in the cerebral cortex. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Enhanced Automatic Action Imitation and Intact Imitation-Inhibition in Schizophrenia.
Simonsen, Arndis; Fusaroli, Riccardo; Skewes, Joshua Charles; Roepstorff, Andreas; Campbell-Meiklejohn, Daniel; Mors, Ole; Bliksted, Vibeke
2018-02-21
Imitation plays a key role in social learning and in facilitating social interactions and likely constitutes a basic building block of social cognition that supports higher-level social abilities. Recent findings suggest that patients with schizophrenia have imitation impairments that could contribute to the social impairments associated with the disorder. However, extant studies have specifically assessed voluntary imitation or automatic imitation of emotional stimuli without controlling for potential confounders. The imitation impairments seen might therefore be secondary to other cognitive, motoric, or emotional deficits associated with the disorder. To overcome this issue, we used an automatic imitation paradigm with nonemotional stimuli to assess automatic imitation and the top-down modulation of imitation where participants were required to lift one of 2 fingers according to a number shown on the screen while observing the same or the other finger movement. In addition, we used a control task with a visual cue in place of a moving finger, to isolate the effect of observing finger movement from other visual cueing effects. Data from 33 patients (31 medicated) and 40 matched healthy controls were analyzed. Patients displayed enhanced imitation and intact top-down modulation of imitation. The enhanced imitation seen in patients may have been medication induced as larger effects were seen in patients receiving higher antipsychotic doses. In sum, we did not find an imitation impairment in schizophrenia. The results suggest that previous findings of impaired imitation in schizophrenia might have been due to other cognitive, motoric, and/or emotional deficits.
Abnormal maximal finger tapping in abstinent cannabis users.
Flavel, Stanley C; White, Jason M; Todd, Gabrielle
2013-11-01
To investigate movement speed and rhythmicity in abstinent cannabis users, we hypothesized that abstinent cannabis users exhibit decreased maximal finger tapping frequency and increased variability of tapping compared with non-drug users. The study involved 10 healthy adult cannabis users and 10 age-matched and gender-matched controls with no history of illicit drug use. Subjects underwent a series of screening tests prior to participation. Subjects were then asked to tap a strain gauge as fast as possible with the index finger of their dominant hand (duration 5 s). The average intertap interval did not significantly differ between groups, but the coefficient of variation of the intertap interval was significantly greater in the cannabis group than in controls (p=0.011). The cannabis group also exhibited a slow tapping frequency at the beginning of the task. Rhythmicity of finger tapping is abnormal in individuals with a history of cannabis use. The abnormality appears to be long lasting and adds to the list of functional changes present in abstinent cannabis users. Copyright © 2013 John Wiley & Sons, Ltd.
Bloemsaat, Gijs; Van Galen, Gerard P; Meulenbroek, Ruud G J
2003-05-01
This study investigated the combined effects of orthographical irregularity and auditory memory load on the kinematics of finger movements in a transcription-typewriting task. Eight right-handed touch-typists were asked to type 80 strings of ten seven-letter words. In half the trials an irregularly spelt target word elicited a specific key press sequence of either the left or right index finger. In the other trials regularly spelt target words elicited the same key press sequence. An auditory memory load was added in half the trials by asking participants to remember the pitch of a tone during task performance. Orthographical irregularity was expected to slow down performance. Auditory memory load, viewed as a low level stressor, was expected to affect performance only when orthographically irregular words needed to be typed. The hypotheses were confirmed. Additional analysis showed differential effects on the left and right hand, possibly related to verbal-manual interference and hand dominance. The results are discussed in relation to relevant findings of recent neuroimaging studies.
Exploration of Hand Grasp Patterns Elicitable Through Non-Invasive Proximal Nerve Stimulation.
Shin, Henry; Watkins, Zach; Hu, Xiaogang
2017-11-29
Various neurological conditions, such as stroke or spinal cord injury, result in an impaired control of the hand. One method of restoring this impairment is through functional electrical stimulation (FES). However, traditional FES techniques often lead to quick fatigue and unnatural ballistic movements. In this study, we sought to explore the capabilities of a non-invasive proximal nerve stimulation technique in eliciting various hand grasp patterns. The ulnar and median nerves proximal to the elbow joint were activated transcutanously using a programmable stimulator, and the resultant finger flexion joint angles were recorded using a motion capture system. The individual finger motions averaged across the three joints were analyzed using a cluster analysis, in order to classify the different hand grasp patterns. With low current intensity (<5 mA and 100 µs pulse width) stimulation, our results show that all of our subjects demonstrated a variety of consistent hand grasp patterns including single finger movement and coordinated multi-finger movements. This study provides initial evidence on the feasibility of a proximal nerve stimulation technique in controlling a variety of finger movements and grasp patterns. Our approach could also be developed into a rehabilitative/assistive tool that can result in flexible movements of the fingers.
Hughes, Barry; Van Gemmert, Arend W A; Stelmach, George E
2011-08-01
Recordings of the dominant finger during the reading of braille sentences by experienced readers reveal that the velocity of the finger changes frequently during the traverse of a line of text. These changes, not previously reported, involve a multitude of accelerations and decelerations, as well as reversals of direction. We investigated the origin of these velocity intermittencies (as well as movement reversals) by asking readers to twice read out-loud or silently sentences comprising high- or low-frequency words which combined to make grammatical sentences that were either meaningful or nonmeaningful. In a control condition we asked braille readers to smoothly scan lines of braille comprised of meaningless cell combinations. Word frequency and re-reading each contribute to the kinematics of finger movements, but neither sentence meaning nor the mode of reading do so. The velocity intermittencies were so pervasive that they are not easily attributable either to linguistic processing, text familiarity, mode of reading, or to sensory-motor interactions with the textured patterns of braille, but seem integral to all braille finger movements except reversals. While language-related processing can affect the finger movements, the effects are superimposed on a highly intermittent velocity profile whose origin appears to lie in the motor control of slow movements. Copyright © 2010 Elsevier B.V. All rights reserved.
Rashid, Nasir; Iqbal, Javaid; Javed, Amna; Tiwana, Mohsin I; Khan, Umar Shahbaz
2018-01-01
Brain Computer Interface (BCI) determines the intent of the user from a variety of electrophysiological signals. These signals, Slow Cortical Potentials, are recorded from scalp, and cortical neuronal activity is recorded by implanted electrodes. This paper is focused on design of an embedded system that is used to control the finger movements of an upper limb prosthesis using Electroencephalogram (EEG) signals. This is a follow-up of our previous research which explored the best method to classify three movements of fingers (thumb movement, index finger movement, and first movement). Two-stage logistic regression classifier exhibited the highest classification accuracy while Power Spectral Density (PSD) was used as a feature of the filtered signal. The EEG signal data set was recorded using a 14-channel electrode headset (a noninvasive BCI system) from right-handed, neurologically intact volunteers. Mu (commonly known as alpha waves) and Beta Rhythms (8-30 Hz) containing most of the movement data were retained through filtering using "Arduino Uno" microcontroller followed by 2-stage logistic regression to obtain a mean classification accuracy of 70%.
Towards the control of individual fingers of a prosthetic hand using surface EMG signals.
Tenore, Francesco; Ramos, Ander; Fahmy, Amir; Acharya, Soumyadipta; Etienne-Cummings, Ralph; Thakor, Nitish V
2007-01-01
The fast pace of development of upper-limb prostheses requires a paradigm shift in EMG-based controls. Traditional control schemes are only capable of providing 2 degrees of freedom, which is insufficient for dexterous control of individual fingers. We present a framework where myoelectric signals from natural hand and finger movements can be decoded with a high accuracy. 32 surface-EMG electrodes were placed on the forearm of an able-bodied subject while performing individual finger movements. Using time-domain feature extraction methods as inputs to a neural network classifier, we show that 12 individuated flexion and extension movements of the fingers can be decoded with an accuracy higher than 98%. To our knowledge, this is the first instance in which such movements have been successfully decoded using surface-EMG. These preliminary findings provide a framework that will allow the results to be extended to non-invasive control of the next generation of upper-limb prostheses for amputees.
The effects of muscle vibration on anticipatory postural adjustments.
Slijper, Harm; Latash, Mark L
2004-07-23
The current study investigated the influence of changes in sensory information related to postural stability on anticipatory postural adjustments (APAs) in standing subjects. Subjects performed fast arm movements and a load release task while standing on a stable force platform or on an unstable board. We manipulated sensory information through vibration of the Achilles tendons and additional finger touch (contact forces under 1 N). Changes in the background activity of leg, trunk, and arm muscles and displacements of the center of pressure (COP) were quantified within time intervals typical for APAs. In the arm movement task, leg and trunk muscles showed a significant drop in the APAs with finger touch, while the vibration and standing on the unstable board each led to an increase in the APA magnitude. In the load release task, ventral muscles decreased their APA activity with touch, while dorsal muscles showed increased inhibition during APAs. During vibration, dorsal and ventral muscles showed increased excitation and inhibition during APAs, respectively. An additional analysis of APAs at a joint level, has shown that in both tasks, an index related to the co-activation of agonist-antagonist muscle pairs (C-index) was modulated with touch, vibration, and stability particularly in leg muscles. Small changes in the other index related to reciprocal activation (R-index) were found only in trunk muscles. Light touch and vibration induced opposing changes in the C-index, suggesting their opposite effects on the stabilization of a reference point or vertical. We conclude that the central nervous system deploys patterns of adjustments in which increased co-contraction of distal muscles and reciprocal adjustments in trunk muscles are modified to ensure equilibrium under postural instability.
Gompf, Florian; Pflug, Anja; Laufs, Helmut; Kell, Christian A.
2017-01-01
Functional imaging studies using BOLD contrasts have consistently reported activation of the supplementary motor area (SMA) both during motor and internal timing tasks. Opposing findings, however, have been shown for the modulation of beta oscillations in the SMA. While movement suppresses beta oscillations in the SMA, motor and non-motor tasks that rely on internal timing increase the amplitude of beta oscillations in the SMA. These independent observations suggest that the relationship between beta oscillations and BOLD activation is more complex than previously thought. Here we set out to investigate this rapport by examining beta oscillations in the SMA during movement with varying degrees of internal timing demands. In a simultaneous EEG-fMRI experiment, 20 healthy right-handed subjects performed an auditory-paced finger-tapping task. Internal timing was operationalized by including conditions with taps on every fourth auditory beat, which necessitates generation of a slow internal rhythm, while tapping to every auditory beat reflected simple auditory-motor synchronization. In the SMA, BOLD activity increased and power in both the low and the high beta band decreased expectedly during each condition compared to baseline. Internal timing was associated with a reduced desynchronization of low beta oscillations compared to conditions without internal timing demands. In parallel with this relative beta power increase, internal timing activated the SMA more strongly in terms of BOLD. This documents a task-dependent non-linear relationship between BOLD and beta-oscillations in the SMA. We discuss different roles of beta synchronization and desynchronization in active processing within the same cortical region. PMID:29249950
Movement Anticipation and EEG: Implications for BCI-Contingent Robot Therapy
Norman, Sumner L.; Dennison, Mark; Wolbrecht, Eric; Cramer, Steven C.; Srinivasan, Ramesh; Reinkensmeyer, David J.
2017-01-01
Brain-computer interfacing is a technology that has the potential to improve patient engagement in robot-assisted rehabilitation therapy. For example, movement intention reduces mu (8-13 Hz) oscillation amplitude over the sensorimotor cortex, a phenomenon referred to as event-related desynchronization (ERD). In an ERD-contingent assistance paradigm, initial BCI-enhanced robotic therapy studies have used ERD to provide robotic assistance for movement. Here we investigated how ERD changed as a function of audio-visual stimuli, overt movement from the participant, and robotic assistance. Twelve unimpaired subjects played a computer game designed for rehabilitation therapy with their fingers using the FINGER robotic exoskeleton. In the game, the participant and robot matched movement timing to audio-visual stimuli in the form of notes approaching a target on the screen set to the consistent beat of popular music. The audio-visual stimulation of the game alone did not cause ERD, before or after training. In contrast, overt movement by the subject caused ERD, whether or not the robot assisted the finger movement. Notably, ERD was also present when the subjects remained passive and the robot moved their fingers to play the game. This ERD occurred in anticipation of the passive finger movement with similar onset timing as for the overt movement conditions. These results demonstrate that ERD can be contingent on expectation of robotic assistance; that is, the brain generates an anticipatory ERD in expectation of a robot-imposed but predictable movement. This is a caveat that should be considered in designing BCIs for enhancing patient effort in roboticallyassisted therapy. PMID:26891487
Liu, Xiaolin; Mosier, Kristine M; Mussa-Ivaldi, Ferdinando A; Casadio, Maura; Scheidt, Robert A
2011-01-01
We examined how people organize redundant kinematic control variables (finger joint configurations) while learning to make goal-directed movements of a virtual object (a cursor) within a low-dimensional task space (a computer screen). Subjects participated in three experiments performed on separate days. Learning progressed rapidly on day 1, resulting in reduced target capture error and increased cursor trajectory linearity. On days 2 and 3, one group of subjects adapted to a rotation of the nominal map, imposed either stepwise or randomly over trials. Another group experienced a scaling distortion. We report two findings. First, adaptation rates and memory-dependent motor command updating depended on distortion type. Stepwise application and removal of the rotation induced a marked increase in finger motion variability but scaling did not, suggesting that the rotation initiated a more exhaustive search through the space of viable finger motions to resolve the target capture task than did scaling. Indeed, subjects formed new coordination patterns in compensating the rotation but relied on patterns established during baseline practice to compensate the scaling. These findings support the idea that the brain compensates direction and extent errors separately and in computationally distinct ways, but are inconsistent with the idea that once a task is learned, command updating is limited to those degrees of freedom contributing to performance (thereby minimizing energetic or similar costs of control). Second, we report that subjects who learned a scaling while moving to just one target generalized more narrowly across directions than those who learned a rotation. This contrasts with results from whole-arm reaching studies, where a learned scaling generalizes more broadly across direction than rotation. Based on inverse- and forward-dynamics analyses of reaching with the arm, we propose the difference in results derives from extensive exposure in reaching with familiar arm dynamics versus the novelty of the manual task.
Fukuoka, Yutaka; Miyazawa, Kenji; Mori, Hiroki; Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira; Hoshino, Hiroshi; Noshiro, Makoto; Ueno, Akinori
2013-01-01
In this study, we developed a compact wireless Laplacian electrode module for electromyograms (EMGs). One of the advantages of the Laplacian electrode configuration is that EMGs obtained with it are expected to be sensitive to the firing of the muscle directly beneath the measurement site. The performance of the developed electrode module was investigated in two human interface applications: character-input interface and detection of finger movement during finger Braille typing. In the former application, the electrode module was combined with an EMG-mouse click converter circuit. In the latter, four electrode modules were used for detection of finger movements during finger Braille typing. Investigation on the character-input interface indicated that characters could be input stably by contraction of (a) the masseter, (b) trapezius, (c) anterior tibialis and (d) flexor carpi ulnaris muscles. This wide applicability is desirable when the interface is applied to persons with physical disabilities because the disability differs one to another. The investigation also demonstrated that the electrode module can work properly without any skin preparation. Finger movement detection experiments showed that each finger movement was more clearly detectable when comparing to EMGs recorded with conventional electrodes, suggesting that the Laplacian electrode module is more suitable for detecting the timing of finger movement during typing. This could be because the Laplacian configuration enables us to record EMGs just beneath the electrode. These results demonstrate the advantages of the Laplacian electrode module. PMID:23396194
Burdea, Grigore C; Polistico, Kevin; House, Gregory P; Liu, Richard R; Muñiz, Roberto; Macaro, Natalie A; Slater, Lisa M
2015-01-01
BrightBrainer™ integrative cognitive rehabilitation system evaluation in an Adult Day Program by a subject with Primary Progressive Aphasia (PPA) assumed to be of the mixed nonfluent/logopenic variant, and for determination of potential benefits. The subject was a 51-year-old Caucasian male diagnosed with PPA who had attended an Adult Day Program for 18 months prior to BrightBrainer training. The subject interacted with therapeutic games using a controller that measured 3D hand movements and flexion of both index fingers. The computer simulations adapted difficulty level based on task performance; results were stored on a remote server. The clinical trial consisted of 16 sessions, twice/week for 8 weeks. The subject was evaluated through neuropsychological measures, therapy notes and caregiver feedback forms. Neuropsychological testing indicated no depression (BDI 0) and severe dementia (BIMS 1 and MMSE 3). The 6.5 h of therapy consisted of games targeting Language comprehension; Executive functions; Focusing; Short-term memory; and Immediate/working memory. The subject attained the highest difficulty level in all-but-one game, while averaging 1300-arm task-oriented active movement repetitions and 320 index finger flexion movements per session. While neuropsychological testing showed no benefits, the caregiver reported strong improvements in verbal responses, vocabulary use, speaking in complete sentences, following one-step directions and participating in daily activities. This corroborated well with therapy notes. Preliminary findings demonstrate a meaningful reduction of PPA symptoms for the subject, suggesting follow-up imaging studies to detail neuronal changes induced by BrightBrainer system and controlled studies with a sufficiently large number of PPA subjects.
Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation
Knoblich, Günther; Dunne, Laura; Keller, Peter E.
2017-01-01
Abstract Synchronous movement is a key component of social behavior in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared with anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals’ (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. PMID:28119510
Interpersonal synchrony enhanced through 20 Hz phase-coupled dual brain stimulation.
Novembre, Giacomo; Knoblich, Günther; Dunne, Laura; Keller, Peter E
2017-01-24
Synchronous movement is a key component of social behaviour in several species including humans. Recent theories have suggested a link between interpersonal synchrony of brain oscillations and interpersonal movement synchrony. The present study investigated this link. Using transcranial alternating current stimulation (tACS) applied over the left motor cortex, we induced beta band (20 Hz) oscillations in pairs of individuals who both performed a finger-tapping task with the right hand. In-phase or anti-phase oscillations were delivered during a preparatory period prior to movement and while the tapping task was performed. In-phase 20 Hz stimulation enhanced interpersonal movement synchrony, compared to anti-phase or sham stimulation, particularly for the initial taps following the preparatory period. This was confirmed in an analysis comparing real vs. pseudo pair surrogate data. No enhancement was observed for stimulation frequencies of 2 Hz (matching the target movement frequency) or 10 Hz (alpha band). Thus, phase-coupling of beta band neural oscillations across two individuals' (resting) motor cortices supports the interpersonal alignment of sensorimotor processes that regulate rhythmic action initiation, thereby facilitating the establishment of synchronous movement. Phase-locked dual brain stimulation provides a promising method to study causal effects of interpersonal brain synchrony on social, sensorimotor and cognitive processes. © The Author (2017). Published by Oxford University Press.
Comparing Motor Skills in Autism Spectrum Individuals With and Without Speech Delay
Barbeau, Elise B.; Meilleur, Andrée‐Anne S.; Zeffiro, Thomas A.
2015-01-01
Movement atypicalities in speed, coordination, posture, and gait have been observed across the autism spectrum (AS) and atypicalities in coordination are more commonly observed in AS individuals without delayed speech (DSM‐IV Asperger) than in those with atypical or delayed speech onset. However, few studies have provided quantitative data to support these mostly clinical observations. Here, we compared perceptual and motor performance between 30 typically developing and AS individuals (21 with speech delay and 18 without speech delay) to examine the associations between limb movement control and atypical speech development. Groups were matched for age, intelligence, and sex. The experimental design included: an inspection time task, which measures visual processing speed; the Purdue Pegboard, which measures finger dexterity, bimanual performance, and hand‐eye coordination; the Annett Peg Moving Task, which measures unimanual goal‐directed arm movement; and a simple reaction time task. We used analysis of covariance to investigate group differences in task performance and linear regression models to explore potential associations between intelligence, language skills, simple reaction time, and visually guided movement performance. AS participants without speech delay performed slower than typical participants in the Purdue Pegboard subtests. AS participants without speech delay showed poorer bimanual coordination than those with speech delay. Visual processing speed was slightly faster in both AS groups than in the typical group. Altogether, these results suggest that AS individuals with and without speech delay differ in visually guided and visually triggered behavior and show that early language skills are associated with slower movement in simple and complex motor tasks. Autism Res 2015, 8: 682–693. © 2015 The Authors Autism Research published by Wiley Periodicals, Inc. on behalf of International Society for Autism Research PMID:25820662
Detecting delay in visual feedback of an action as a monitor of self recognition.
Hoover, Adria E N; Harris, Laurence R
2012-10-01
How do we distinguish "self" from "other"? The correlation between willing an action and seeing it occur is an important cue. We exploited the fact that this correlation needs to occur within a restricted temporal window in order to obtain a quantitative assessment of when a body part is identified as "self". We measured the threshold and sensitivity (d') for detecting a delay between movements of the finger (of both the dominant and non-dominant hands) and visual feedback as seen from four visual perspectives (the natural view, and mirror-reversed and/or inverted views). Each trial consisted of one presentation with minimum delay and another with a delay of between 33 and 150 ms. Participants indicated which presentation contained the delayed view. We varied the amount of efference copy available for this task by comparing performances for discrete movements and continuous movements. Discrete movements are associated with a stronger efference copy. Sensitivity to detect asynchrony between visual and proprioceptive information was significantly higher when movements were viewed from a "plausible" self perspective compared with when the view was reversed or inverted. Further, we found differences in performance between dominant and non-dominant hand finger movements across the continuous and single movements. Performance varied with the viewpoint from which the visual feedback was presented and on the efferent component such that optimal performance was obtained when the presentation was in the normal natural orientation and clear efferent information was available. Variations in sensitivity to visual/non-visual temporal incongruence with the viewpoint in which a movement is seen may help determine the arrangement of the underlying visual representation of the body.
rTMS with Motor Training Modulates Cortico-Basal Ganglia-Thalamocortical Circuits in Stroke Patients
Chang, Won Hyuk; Kim, Yun-Hee; Yoo, Woo-Kyoung; Goo, Kyoung-Hyup; Park, Chang-hyun; Kim, Sung Tae; Pascual-Leone, Alvaro
2013-01-01
Background and Purpose Repetitive transcranial magnetic stimulation (rTMS) may enhance plastic changes in the human cortex and modulation of behavior. However, the underlying neural mechanisms have not been sufficiently investigated. We examined the clinical effects and neural correlates of high-frequency rTMS coupled with motor training in patients with hemiparesis after stroke. Methods Twenty-one patients were randomly divided into two groups, and received either real or sham rTMS. Ten daily sessions of 1,000 pulses of real or sham rTMS were applied at 10 Hz over the primary motor cortex of the affected hemisphere, coupled with sequential finger motor training of the paretic hand. Functional MRIs were obtained before and after training using sequential finger motor tasks, and performances were assessed. Results Following rTMS intervention, movement accuracy of sequential finger motor tasks showed significantly greater improvement in the real group than in the sham group (p<0.05). Real rTMS modulated areas of brain activation during performance of motor tasks with a significant interaction effect in the sensorimotor cortex, thalamus, and caudate nucleus. Patients in the real rTMS group also showed significantly enhanced activation in the affected hemisphere compared to the sham rTMS group. Conclusion According to these results, a 10 day course of high-frequency rTMS coupled with motor training improved motor performance through modulation of activities in the cortico-basal ganglia-thalamocortical circuits. PMID:22555430
Distinct interneuronal networks influence excitability of the surround during movement initiation.
Thirugnanasambandam, Nivethida; Khera, Rohan; Wang, Han; Kukke, Sahana N; Hallett, Mark
2015-08-01
Surround inhibition (SI) is a feature of motor control in which activation of task-related muscles is associated with inhibition of neighboring, nonprotagonist muscles, allowing selective motor control. The physiological basis for SI still remains unknown. In all previous studies, SI in the motor system was measured during movement initiation by using transcranial magnetic stimulation (TMS) to deliver a posteroanterior current at a single suprathreshold intensity. To expand our understanding of SI, we explored this phenomenon at a wide range of intensities and by stimulating motor cortex with currents along anteroposterior and lateromedial directions. Fifteen healthy volunteers performed a brief isometric index finger flexion on hearing a tone. Electromyography was recorded from the synergist and surround finger muscles. Single-pulse TMS was applied to stimulate the surround muscle at different intensities at rest or movement initiation. The motor evoked potential (MEP) amplitudes were then plotted against stimulation intensities to obtain the MEP recruitment curves for the rest and movement initiation conditions and for the three current directions for every subject. From the recruitment curves, we found that surround inhibition could be elicited only by the posteroanterior current. Hence, we postulate that surround inhibition is mediated by intracortical circuits in the motor cortex. Also, for the first time, we observed surround facilitation when the motor cortex was stimulated with anteroposterior current. Further studies are needed to investigate the mechanisms underlying both these phenomena individually in healthy subjects and patients with dystonia and other movement disorders.
Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Saleh, Soha; Lafond, Ian; Davidow, Amy; Adamovich, Sergei V
2011-05-16
Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training.
2011-01-01
Background Recovery of upper extremity function is particularly recalcitrant to successful rehabilitation. Robotic-assisted arm training devices integrated with virtual targets or complex virtual reality gaming simulations are being developed to deal with this problem. Neural control mechanisms indicate that reaching and hand-object manipulation are interdependent, suggesting that training on tasks requiring coordinated effort of both the upper arm and hand may be a more effective method for improving recovery of real world function. However, most robotic therapies have focused on training the proximal, rather than distal effectors of the upper extremity. This paper describes the effects of robotically-assisted, integrated upper extremity training. Methods Twelve subjects post-stroke were trained for eight days on four upper extremity gaming simulations using adaptive robots during 2-3 hour sessions. Results The subjects demonstrated improved proximal stability, smoothness and efficiency of the movement path. This was in concert with improvement in the distal kinematic measures of finger individuation and improved speed. Importantly, these changes were accompanied by a robust 16-second decrease in overall time in the Wolf Motor Function Test and a 24-second decrease in the Jebsen Test of Hand Function. Conclusions Complex gaming simulations interfaced with adaptive robots requiring integrated control of shoulder, elbow, forearm, wrist and finger movements appear to have a substantial effect on improving hemiparetic hand function. We believe that the magnitude of the changes and the stability of the patient's function prior to training, along with maintenance of several aspects of the gains demonstrated at retention make a compelling argument for this approach to training. PMID:21575185
Rieger, Martina; Bart, Victoria K. E.
2016-01-01
We investigated to what extent different sources of information are used in typing on a computer keyboard. Using self-reports 10 finger typists and idiosyncratic typists estimated how much attention they pay to different sources of information during copy typing and free typing and how much they use them for error detection. 10 finger typists reported less attention to the keyboard and the fingers and more attention to the template and the screen than idiosyncratic typists. The groups did not differ in attention to touch/kinaesthesis in copy typing and free typing, but 10 finger typists reported more use of touch/kinaesthesis in error detection. This indicates that processing of tactile/kinaesthetic information may occur largely outside conscious control, as long as no errors occur. 10 finger typists reported more use of internal prediction of movement consequences for error detection than idiosyncratic typists, reflecting more precise internal models. Further in copy typing compared to free typing attention to the template is required, thus leaving less attentional capacity for other sources of information. Correlations showed that higher skilled typists, regardless of typing style, rely more on sources of information which are usually associated with 10 finger typing. One limitation of the study is that only self-reports were used. We conclude that typing task, typing proficiency, and typing style influence how attention is distributed during typing. PMID:28018256
Rieger, Martina; Bart, Victoria K E
2016-01-01
We investigated to what extent different sources of information are used in typing on a computer keyboard. Using self-reports 10 finger typists and idiosyncratic typists estimated how much attention they pay to different sources of information during copy typing and free typing and how much they use them for error detection. 10 finger typists reported less attention to the keyboard and the fingers and more attention to the template and the screen than idiosyncratic typists. The groups did not differ in attention to touch/kinaesthesis in copy typing and free typing, but 10 finger typists reported more use of touch/kinaesthesis in error detection. This indicates that processing of tactile/kinaesthetic information may occur largely outside conscious control, as long as no errors occur. 10 finger typists reported more use of internal prediction of movement consequences for error detection than idiosyncratic typists, reflecting more precise internal models. Further in copy typing compared to free typing attention to the template is required, thus leaving less attentional capacity for other sources of information. Correlations showed that higher skilled typists, regardless of typing style, rely more on sources of information which are usually associated with 10 finger typing. One limitation of the study is that only self-reports were used. We conclude that typing task, typing proficiency, and typing style influence how attention is distributed during typing.
Cho, Hyun Joo; Panyakaew, Pattamon; Thirugnanasambandam, Nivethida; Wu, Tianxia; Hallett, Mark
2016-06-01
During highly selective finger movement, corticospinal excitability is reduced in surrounding muscles at the onset of movement but this phenomenon has not been demonstrated during maintenance of movement. Sensorimotor integration may play an important role in selective movement. We sought to investigate how corticospinal excitability and short-latency afferent inhibition changes in active and surrounding muscles during onset and maintenance of selective finger movement. Using transcranial magnetic stimulation (TMS) and paired peripheral stimulation, input-output recruitment curve and short-latency afferent inhibition (SAI) were measured in the first dorsal interosseus and abductor digiti minimi muscles during selective index finger flexion. Motor surround inhibition was present only at the onset phase, but not at the maintenance phase of movement. SAI was reduced at onset but not at the maintenance phase of movement in both active and surrounding muscles. Our study showed dynamic changes in corticospinal excitability and sensorimotor modulation for active and surrounding muscles in different movement states. SAI does not appear to contribute to motor surround inhibition at the movement onset phase. Also, there seems to be different inhibitory circuit(s) other than SAI for the movement maintenance phase in order to delineate the motor output selectively when corticospinal excitability is increased in both active and surrounding muscles. This study enhances our knowledge of dynamic changes in corticospinal excitability and sensorimotor interaction in different movement states to understand normal and disordered movements. Published by Elsevier Ireland Ltd.
Henz, Sonja; Kutz, Dieter F.; Werner, Jana; Hürster, Walter; Kolb, Florian P.; Nida-Ruemelin, Julian
2015-01-01
The aim of the study was to determine whether a deliberative process, leading to a motor action, is detectable in high density EEG recordings. Subjects were required to press one of two buttons. In a simple motor task the subject knew which button to press, whilst in a color-word Stroop task subjects had to press the right button with the right index finger when meaning and color coincided, or the left button with the left index finger when meaning and color were disparate. EEG recordings obtained during the simple motor task showed a sequence of positive (P) and negative (N) cortical potentials (P1-N1-P2) which are assumed to be related to the processing of the movement. The sequence of cortical potentials was similar in EEG recordings of subjects having to deliberate over how to respond, but the above sequence (P1-N1-P2) was preceded by slowly increasing negativity (N0), with N0 being assumed to represent the end of the deliberation process. Our data suggest the existence of neurophysiological correlates of deliberative processes. PMID:26190987
Cellini, Cristiano; Scocchia, Lisa; Drewing, Knut
2016-10-01
In the flash-lag illusion, a brief visual flash and a moving object presented at the same location appear to be offset with the flash trailing the moving object. A considerable amount of studies investigated the visual flash-lag effect, and flash-lag-like effects have also been observed in audition, and cross-modally between vision and audition. In the present study, we investigate whether a similar effect can also be observed when using only haptic stimuli. A fast vibration (or buzz, lasting less than 20 ms) was applied to the moving finger of the observers and employed as a "haptic flash." Participants performed a two-alternative forced-choice (2AFC) task where they had to judge whether the moving finger was located to the right or to the left of the stationary finger at the time of the buzz. We used two different movement velocities (Slow and Fast conditions). We found that the moving finger was systematically misperceived to be ahead of the stationary finger when the two were physically aligned. This result can be interpreted as a purely haptic analogue of the flash-lag effect, which we refer to as "buzz-lag effect." The buzz-lag effect can be well accounted for by the temporal-sampling explanation of flash-lag-like effects.
Proximal arm kinematics affect grip force-load force coordination
Vermillion, Billy C.; Lum, Peter S.
2015-01-01
During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460
Javed, Amna; Tiwana, Mohsin I.; Khan, Umar Shahbaz
2018-01-01
Brain Computer Interface (BCI) determines the intent of the user from a variety of electrophysiological signals. These signals, Slow Cortical Potentials, are recorded from scalp, and cortical neuronal activity is recorded by implanted electrodes. This paper is focused on design of an embedded system that is used to control the finger movements of an upper limb prosthesis using Electroencephalogram (EEG) signals. This is a follow-up of our previous research which explored the best method to classify three movements of fingers (thumb movement, index finger movement, and first movement). Two-stage logistic regression classifier exhibited the highest classification accuracy while Power Spectral Density (PSD) was used as a feature of the filtered signal. The EEG signal data set was recorded using a 14-channel electrode headset (a noninvasive BCI system) from right-handed, neurologically intact volunteers. Mu (commonly known as alpha waves) and Beta Rhythms (8–30 Hz) containing most of the movement data were retained through filtering using “Arduino Uno” microcontroller followed by 2-stage logistic regression to obtain a mean classification accuracy of 70%. PMID:29888252
Self-powered Real-time Movement Monitoring Sensor Using Triboelectric Nanogenerator Technology.
Jin, Liangmin; Tao, Juan; Bao, Rongrong; Sun, Li; Pan, Caofeng
2017-09-05
The triboelectric nanogenerator (TENG) has great potential in the field of self-powered sensor fabrication. Recently, smart electronic devices and movement monitoring sensors have attracted the attention of scientists because of their application in the field of artificial intelligence. In this article, a TENG finger movement monitoring, self-powered sensor has been designed and analysed. Under finger movements, the TENG realizes the contact and separation to convert the mechanical energy into electrical signal. A pulse output current of 7.8 μA is generated by the bending and straightening motions of the artificial finger. The optimal output power can be realized when the external resistance is approximately 30 MΩ. The random motions of the finger are detected by the system with multiple TENG sensors in series. This type of flexible and self-powered sensor has potential applications in artificial intelligence and robot manufacturing.
Stability of multifinger action in different state spaces
Reschechtko, Sasha; Zatsiorsky, Vladimir M.
2014-01-01
We investigated stability of action by a multifinger system with three methods: analysis of intertrial variance, application of transient perturbations, and analysis of the system's motion in different state spaces. The “inverse piano” device was used to apply transient (lifting-and-lowering) perturbations to individual fingers during single- and two-finger accurate force production tasks. In each trial, the perturbation was applied either to a finger explicitly involved in the task or one that was not. We hypothesized that, in one-finger tasks, task-specific stability would be observed in the redundant space of finger forces but not in the nonredundant space of finger modes (commands to explicitly involved fingers). In two-finger tasks, we expected that perturbations applied to a nontask finger would not contribute to task-specific stability in mode space. In contrast to our expectations, analyses in both force and mode spaces showed lower stability in directions that did not change total force output compared with directions that did cause changes in total force. In addition, the transient perturbations led to a significant increase in the enslaving index. We consider these results within a theoretical scheme of control with referent body configurations organized hierarchically, using multiple few-to-many mappings organized in a synergic way. The observed volatility of enslaving, greater equifinality of total force compared with elemental variables, and large magnitude of motor equivalent motion in both force and mode spaces provide support for the concept of task-specific stability of performance and the existence of multiple neural loops, which ensure this stability. PMID:25253478
Stability of multifinger action in different state spaces.
Reschechtko, Sasha; Zatsiorsky, Vladimir M; Latash, Mark L
2014-12-15
We investigated stability of action by a multifinger system with three methods: analysis of intertrial variance, application of transient perturbations, and analysis of the system's motion in different state spaces. The "inverse piano" device was used to apply transient (lifting-and-lowering) perturbations to individual fingers during single- and two-finger accurate force production tasks. In each trial, the perturbation was applied either to a finger explicitly involved in the task or one that was not. We hypothesized that, in one-finger tasks, task-specific stability would be observed in the redundant space of finger forces but not in the nonredundant space of finger modes (commands to explicitly involved fingers). In two-finger tasks, we expected that perturbations applied to a nontask finger would not contribute to task-specific stability in mode space. In contrast to our expectations, analyses in both force and mode spaces showed lower stability in directions that did not change total force output compared with directions that did cause changes in total force. In addition, the transient perturbations led to a significant increase in the enslaving index. We consider these results within a theoretical scheme of control with referent body configurations organized hierarchically, using multiple few-to-many mappings organized in a synergic way. The observed volatility of enslaving, greater equifinality of total force compared with elemental variables, and large magnitude of motor equivalent motion in both force and mode spaces provide support for the concept of task-specific stability of performance and the existence of multiple neural loops, which ensure this stability. Copyright © 2014 the American Physiological Society.
Proximal and distal muscle fatigue differentially affect movement coordination
Cowley, Jeffrey C.
2017-01-01
Muscle fatigue can cause people to change their movement patterns and these changes could contribute to acute or overuse injuries. However, these effects depend on which muscles are fatigued. The purpose of this study was to determine the differential effects of proximal and distal upper extremity muscle fatigue on repetitive movements. Fourteen subjects completed a repetitive ratcheting task before and after a fatigue protocol on separate days. The fatigue protocol either fatigued the proximal (shoulder flexor) or distal (finger flexor) muscles. Pre/Post changes in trunk, shoulder, elbow, and wrist kinematics were compared to determine how proximal and distal fatigue affected multi-joint movement patterns and variability. Proximal fatigue caused a significant increase (7°, p < 0.005) in trunk lean and velocity, reduced humeral elevation (11°, p < 0.005), and increased elbow flexion (4°, p < 0.01). In contrast, distal fatigue caused small but significant changes in trunk angles (2°, p < 0.05), increased velocity of wrench movement relative to the hand (17°/s, p < 0.001), and earlier wrist extension (4%, p < 0.005). Movement variability increased at proximal joints but not distal joints after both fatigue protocols (p < 0.05). Varying movements at proximal joints may help people adapt to fatigue at either proximal or distal joints. The identified differences between proximal and distal muscle fatigue adaptations could facilitate risk assessment of occupational tasks. PMID:28235005
Reduced surround inhibition in musicians.
Shin, Hae-Won; Kang, Suk Y; Hallett, Mark; Sohn, Young H
2012-06-01
To investigate whether surround inhibition (SI) in the motor system is altered in professional musicians, we performed a transcranial magnetic stimulation (TMS) study in 10 professional musicians and 15 age-matched healthy non-musicians. TMS was set to be triggered by self-initiated flexion of the index finger at different intervals ranging from 3 to 1,000 ms. Average motor evoked potential (MEP) amplitudes obtained from self-triggered TMS were normalized to average MEPs of the control TMS at rest and expressed as a percentage. Normalized MEP amplitudes of the abductor digiti minimi (ADM) muscles were compared between the musicians and non-musicians with the primary analysis being the intervals between 3 and 80 ms (during the movement). A mixed-design ANOVA revealed a significant difference in normalized ADM MEPs during the index finger flexion between groups, with less SI in the musicians. This study demonstrated that the functional operation of SI is less strong in musicians than non-musicians, perhaps due to practice of movement synergies involving both muscles. Reduced SI, however, could lead susceptible musicians to be prone to develop task-specific dystonia.
Lateral movements in Rayleigh-Taylor instabilities due to frontiers. Experimental study
NASA Astrophysics Data System (ADS)
Binda, L.; Fernández, D.; El Hasi, C.; Zalts, A.; D'Onofrio, A.
2018-01-01
Lateral movements of the fingers in Rayleigh-Taylor hydrodynamic instabilities at the interface between two fluids are studied. We show that transverse movements appear when a physical boundary is present; these phenomena have not been explained until now. The boundary prevents one of the fluids from crossing it. Such frontiers can be buoyancy driven as, for example, the frontier to the passage of a less dense solution through a denser solution or when different aggregation states coexist (liquid and gaseous phases). An experimental study of the lateral movement velocity of the fingers was performed for different Rayleigh numbers (Ra), and when oscillations were detected, their amplitudes were studied. Liquid-liquid (L-L) and gas-liquid (G-L) systems were analysed. Aqueous HCl and Bromocresol Green (sodium salt, NaBCG) solutions were used in L-L experiments, and CO2 (gas) and aqueous NaOH, NaHCO3, and CaCl2 solutions were employed for the G-L studies. We observed that the lateral movement of the fingers and finger collapses near the interface are more notorious when Ra increases. The consequences of this, for each experience, are a decrease in the number of fingers and an increase in the velocity of the lateral finger movement close to the interface as time evolves. We found that the amplitude of the oscillations did not vary significantly within the considered Ra range. These results have an important implication when determining the wave number of instabilities in an evolving system. The wave number could be strongly diminished if there is a boundary.
Loss of laterality in chronic cocaine users: an fMRI investigation of sensorimotor control.
Hanlon, Colleen A; Wesley, Michael J; Roth, Alicia J; Miller, Mack D; Porrino, Linda J
2010-01-30
Movement disturbances are often overlooked consequences of chronic cocaine abuse. The purpose of this study was to systematically investigate sensorimotor performance in chronic cocaine users and characterize changes in brain activity among movement-related regions of interest (ROIs) in these users. Functional magnetic resonance imaging data were collected from 14 chronic cocaine users and 15 age- and gender-matched controls. All participants performed a sequential finger-tapping task with their dominant, right hand interleaved with blocks of rest. For each participant, percent signal change from rest was calculated for seven movement-related ROIs in both the left and right hemisphere. Cocaine users had significantly longer reaction times and higher error rates than controls. Whereas the controls used a left-sided network of motor-related brain areas to perform the task, cocaine users activated a less lateralized pattern of brain activity. Users had significantly more activity in the ipsilateral (right) motor and premotor cortical areas, anterior cingulate cortex and the putamen than controls. These data demonstrate that, in addition to the cognitive and affective consequences of chronic cocaine abuse, there are also pronounced alterations in sensorimotor control in these individuals, which are associated with functional alterations throughout movement-related neural networks.
Performance drifts in two-finger cyclical force production tasks performed by one and two actors.
Hasanbarani, Fariba; Reschechtko, Sasha; Latash, Mark L
2018-03-01
We explored changes in the cyclical two-finger force performance task caused by turning visual feedback off performed either by the index and middle fingers of the dominant hand or by two index fingers of two persons. Based on an earlier study, we expected drifts in finger force amplitude and midpoint without a drift in relative phase. The subjects performed two rhythmical tasks at 1 Hz while paced by an auditory metronome. One of the tasks required cyclical changes in total force magnitude without changes in the sharing of the force between the two fingers. The other task required cyclical changes in the force sharing without changing total force magnitude. Subjects were provided with visual feedback, which showed total force magnitude and force sharing via cursor motion along the vertical and horizontal axes, respectively. Further, visual feedback was turned off, first on the variable that was not required to change and then on both variables. Turning visual feedback off led to a mean force drift toward lower magnitudes while force amplitude increased. There was a consistent drift in the relative phase in the one-hand task with the index finger leading the middle finger. No consistent relative phase drift was seen in the two-person tasks. The shape of the force cycle changed without visual feedback reflected in the lower similarity to a perfect cosine shape and in the higher time spent at lower force magnitudes. The data confirm findings of earlier studies regarding force amplitude and midpoint changes, but falsify predictions of an earlier proposed model with respect to the relative phase changes. We discuss factors that could contribute to the observed relative phase drift in the one-hand tasks including the leader-follower pattern generalized for two-effector tasks performed by one person.
Somato-Motor Haptic Processing in Posterior Inner Perisylvian Region (SII/pIC) of the Macaque Monkey
Ishida, Hiroaki; Fornia, Luca; Grandi, Laura Clara; Umiltà, Maria Alessandra; Gallese, Vittorio
2013-01-01
The posterior inner perisylvian region including the secondary somatosensory cortex (area SII) and the adjacent region of posterior insular cortex (pIC) has been implicated in haptic processing by integrating somato-motor information during hand-manipulation, both in humans and in non-human primates. However, motor-related properties during hand-manipulation are still largely unknown. To investigate a motor-related activity in the hand region of SII/pIC, two macaque monkeys were trained to perform a hand-manipulation task, requiring 3 different grip types (precision grip, finger exploration, side grip) both in light and in dark conditions. Our results showed that 70% (n = 33/48) of task related neurons within SII/pIC were only activated during monkeys’ active hand-manipulation. Of those 33 neurons, 15 (45%) began to discharge before hand-target contact, while the remaining neurons were tonically active after contact. Thirty-percent (n = 15/48) of studied neurons responded to both passive somatosensory stimulation and to the motor task. A consistent percentage of task-related neurons in SII/pIC was selectively activated during finger exploration (FE) and precision grasping (PG) execution, suggesting they play a pivotal role in control skilled finger movements. Furthermore, hand-manipulation-related neurons also responded when visual feedback was absent in the dark. Altogether, our results suggest that somato-motor neurons in SII/pIC likely contribute to haptic processing from the initial to the final phase of grasping and object manipulation. Such motor-related activity could also provide the somato-motor binding principle enabling the translation of diachronic somatosensory inputs into a coherent image of the explored object. PMID:23936121
Multi-finger prehension: control of a redundant mechanical system.
Latash, Mark L; Zatsiorsky, Vladimir M
2009-01-01
The human hand has been a fascinating object of study for researchers in both biomechanics and motor control. Studies of human prehension have contributed significantly to the progress in addressing the famous problem of motor redundancy. After a brief review of the hand mechanics, we present results of recent studies that support a general view that the apparently redundant design of the hand is not a source of computational problems but a rich apparatus that allows performing a variety of tasks in a reliable and flexible way (the principle of abundance). Multi-digit synergies have been analyzed at two levels of a hypothetical hierarchy involved in the control of prehensile actions. At the upper level, forces and moments produced by the thumb and virtual finger (an imagined finger with a mechanical action equal to the combined mechanical action of all four fingers of the hand) co-vary to stabilize the gripping action and the orientation of the hand-held object. These results support the principle of superposition suggested earlier in robotics with respect to the control of artificial grippers. At the lower level of the hierarchy, forces and moments produced by individual fingers co-vary to stabilize the magnitude and direction of the force vector and the moment of force produced by the virtual finger. Adjustments to changes in task constraints (such as, for example, friction under individual digits) may be local and synergic. The latter reflect multi-digit prehension synergies and may be analyzed with the so-called chain effects: Sequences of relatively straightforward cause-effect links directly related to mechanical constraints leading to non-trivial strong co-variation between pairs of elemental variables. Analysis of grip force adjustments during motion of hand-held objects suggests that the central nervous system adjusts to gravitational and inertial loads differently. The human hand is a gold mine for researchers interested in the control of natural human movements.
Decoding Individual Finger Movements from One Hand Using Human EEG Signals
Gonzalez, Jania; Ding, Lei
2014-01-01
Brain computer interface (BCI) is an assistive technology, which decodes neurophysiological signals generated by the human brain and translates them into control signals to control external devices, e.g., wheelchairs. One problem challenging noninvasive BCI technologies is the limited control dimensions from decoding movements of, mainly, large body parts, e.g., upper and lower limbs. It has been reported that complicated dexterous functions, i.e., finger movements, can be decoded in electrocorticography (ECoG) signals, while it remains unclear whether noninvasive electroencephalography (EEG) signals also have sufficient information to decode the same type of movements. Phenomena of broadband power increase and low-frequency-band power decrease were observed in EEG in the present study, when EEG power spectra were decomposed by a principal component analysis (PCA). These movement-related spectral structures and their changes caused by finger movements in EEG are consistent with observations in previous ECoG study, as well as the results from ECoG data in the present study. The average decoding accuracy of 77.11% over all subjects was obtained in classifying each pair of fingers from one hand using movement-related spectral changes as features to be decoded using a support vector machine (SVM) classifier. The average decoding accuracy in three epilepsy patients using ECoG data was 91.28% with the similarly obtained features and same classifier. Both decoding accuracies of EEG and ECoG are significantly higher than the empirical guessing level (51.26%) in all subjects (p<0.05). The present study suggests the similar movement-related spectral changes in EEG as in ECoG, and demonstrates the feasibility of discriminating finger movements from one hand using EEG. These findings are promising to facilitate the development of BCIs with rich control signals using noninvasive technologies. PMID:24416360
NASA Technical Reports Server (NTRS)
Lee, Sukhan (Inventor)
1990-01-01
An artificial dexterous hand is provided for grasping and manipulating objects. The hand includes left and right thumbs that are operatively connected to an engagement assembly which causes movement of the left and right thumbs. The left thumb has a left thumb base and is movable about three separate first left thumb axes which run through the left thumb base. Correspondingly, the right thumb has a right thumb base and is movable about three separate first right thumb axes which run through the right thumb base. The engagement assembly has a gear assembly which is operatively connected to a motor assembly. Upon actuation by the motor assembly, the gear assembly causes movement of the left and right thumbs about the first left thumb axes and first right thumb axes respectively. The hand can also have a center finger which is operatively connected to the engagement assembly and which is interposed between the left and right thumbs. The finger has a finger base and is movable about two separate first finger axes running through the finger base. Therefore, upon actuation by the motor assembly, the gear assembly will also cause movement of the finger about the first finger axes.
Concatenation of Observed Grasp Phases with Observer’s Distal Movements: A Behavioural and TMS Study
De Stefani, Elisa; Innocenti, Alessandro; De Marco, Doriana; Gentilucci, Maurizio
2013-01-01
The present study aimed at determining how actions executed by two conspecifics can be coordinated with each other, or more specifically, how the observation of different phases of a reaching-grasping action is temporary related to the execution of a movement of the observer. Participants observed postures of initial finger opening, maximal finger aperture, and final finger closing of grasp after observation of an initial hand posture. Then, they opened or closed their right thumb and index finger (experiments 1, 2 and 3). Response times decreased, whereas acceleration and velocity of actual finger movements increased when observing the two late phases of grasp. In addition, the results ruled out the possibility that this effect was due to salience of the visual stimulus when the hand was close to the target and confirmed an effect of even hand postures in addition to hand apparent motion due to the succession of initial hand posture and grasp phase. In experiments 4 and 5, the observation of grasp phases modulated even foot movements and pronunciation of syllables. Finally, in experiment 6, transcranial magnetic stimulation applied to primary motor cortex 300 ms post-stimulus induced an increase in hand motor evoked potentials of opponens pollicis muscle when observing the two late phases of grasp. These data suggest that the observation of grasp phases induced simulation which was stronger during observation of finger closing. This produced shorter response times, greater acceleration and velocity of the successive movement. In general, our data suggest best concatenation between two movements (one observed and the other executed) when the observed (and simulated) movement was to be accomplished. The mechanism joining the observation of a conspecific’s action with our own movement may be precursor of social functions. It may be at the basis for interactions between conspecifics, and related to communication between individuals. PMID:24278395
On the evolution of handedness: evidence for feeding biases.
Flindall, Jason W; Gonzalez, Claudia L R
2013-01-01
Many theories have been put forward to explain the origins of right-handedness in humans. Here we present evidence that this preference may stem in part from a right hand advantage in grasping for feeding. Thirteen participants were asked to reach-to-grasp food items of 3 different sizes: SMALL (Cheerios®), MEDIUM (Froot Loops®), and LARGE (Oatmeal Squares®). Participants used both their right- and left-hands in separate blocks (50 trials each, starting order counterbalanced) to grasp the items. After each grasp, participants either a) ate the food item, or b) placed it inside a bib worn beneath his/her chin (25 trials each, blocked design, counterbalanced). The conditions were designed such that the outward and inward movement trajectories were similar, differing only in the final step of placing it in the mouth or bib. Participants wore Plato liquid crystal goggles that blocked vision between trials. All trials were conducted in closed-loop with 5000 ms of vision. Hand kinematics were recorded by an Optotrak Certus, which tracked the position of three infrared diodes attached separately to the index finger, thumb, and wrist. We found a task (EAT/PLACE) by hand (LEFT/RIGHT) interaction on maximum grip aperture (MGA; the maximum distance between the index finger and thumb achieved during grasp pre-shaping). MGAs were smaller during right-handed movements, but only when grasping with intent to eat. Follow-up tests show that the RIGHT-HAND/EAT MGA was significantly smaller than all other hand/task conditions. Because smaller grip apertures are typically associated with greater precision, our results demonstrate a right-hand advantage for the grasp-to-eat movement. From an evolutionary perspective, early humans may have preferred the hand that could grasp food with more precision, thereby maximizing the likelihood of retrieval, consumption, and consequently, survival.
Exogrip: assisted hand strength glove - biomed 2011.
Best, Jade E; Bostick, Nehemiah F; Connelly, John R; Dunn, Michael G; Gelles, Richard A; Norvell, Elizabeth K; Waugaman, William B; Mims, Capt Willie H
2011-01-01
A large number of American troops fighting in Afghanistan and Iraq have received wounds in their upper extremities leading to significant nerve damage and loss of strength. These injuries impair their ability to perform day-to-day tasks such as lifting a cup of coffee or opening a door. Although the cause of some injuries in service-people is often unique to their employment, civilian employees in other industries are also plagued with similar physical damage due to other kinds of injuries. Our goal is to develop a device to augment the strength of injured troops and civilian workers so they can perform everyday tasks despite their physical limitations. The ExoGrip is a glove designed to provide this necessary strength augmentation. The ExoGrip consists primarily of pressure sensors, linear actuators, and a microcontroller to provide a force multiplier based on a persons strength. The goal of the first phase of the project was to conduct research and also produce a working prototype of one finger. This goal was achieved by a group of classmates who started the project a year before. Their research and feasibility analysis ended in the mechanical movement of a single finger when the sensors were activated. The next phase of this project is to design and integrate a working prototype that manipulates all four fingers, while keeping the thumb in a fixed position. This paper describes the integration of new microcontrollers, linear actuators utilizing pulse width modulation technology, and improved pressure sensors needed to manipulate the fingers, as well as laying the foundation for future testing and development of a final product.
Comparison of dominant hand range of motion among throwing types in baseball pitchers.
Wang, Lin-Hwa; Kuo, Li-Chieh; Shih, Sheng-Wen; Lo, Kuo-Cheng; Su, Fong-Chin
2013-08-01
Previous research on baseball pitchers' wrists, elbows, and should joints contributes to our understanding of pitchers' control over delicate joint motion and ball release. However, limited research on forearm, wrist, and hand joints prevents full comprehension of the throwing mechanism. The present descriptive laboratory study quantifies angular performances of hand and wrist joints while pitching breaking balls, including fastballs, curveballs and sliders, among pitchers with different skill levels. Nineteen baseball pitchers performed required pitching tasks (10 from university and 9 from high school). A three-dimensional motion analysis system collected pitching motion data. The range of joint motion in the wrist and proximal interphalangeal (PIP) and metacarpophalangeal (MP) joints of the index and middle fingers were compared among fastballs, curveballs and sliders. Thirteen reflective markers were placed on selected anatomic landmarks of the wrist, middle and index fingers of the hand. Wrist flexion angle in the pitching acceleration phase was larger in fastballs (20.58±4.07°) and sliders (22.48±5.45°) than in curveballs (9.08±3.03°) (p = .001). The flexion angle of the PIP joint was significantly larger in curveballs (38.5±3.8°) than in fastballs (30.3±4.8°) and sliders (30.2±4.5°) (p=.004) of the middle finger. Abduction angle of MP joint on the middle finger was significantly larger in curveballs (15.4 ±3.6°) than in fastballs (8.9±1.2°) and sliders (6.9±2.9°) (p=.001) of the middle finger, and the abduction angle of index finger was significantly larger in sliders (13.5±15.0°) than in fastballs (7.2 ±2.8°) (p=.007). Hand and wrist motion and grip types affect the relative position between fingers and ball, which produces different types of baseball pitches. A larger extension angle of the wrist joint and the coordination of middle and index fingers are crucial when pitching a fastball. Abduction and flexion movement on the MP joint of the middle finger are important for a curveball. MP joint abduction and flexion movement of the index finger produce sliders. Understanding the control mechanism in a throwing hand can help improve training protocols in either injury prevention or performance improvement for baseball pitchers. Copyright © 2013 Elsevier B.V. All rights reserved.
Fischer, Petra; Tan, Huiling; Pogosyan, Alek; Brown, Peter
2016-09-01
Voluntary movements are followed by a post-movement electroencephalography (EEG) beta rebound, which increases with practice and confidence in a task. We hypothesized that greater beta modulation reflects less load on cognitive resources and may thus be associated with faster reactions to new stimuli. EEG was recorded in 17 healthy subjects during rhythmically paced index finger tapping. In a STOP condition, participants had to interrupt the upcoming tap in response to an auditory cue, which was timed such that stopping was successful only in ~ 50% of all trials. In a second condition, participants carried on tapping twice after the stop signal (CONTINUE condition). Thus the conditions were distinct in whether abrupt stopping was required as a second task. Modulation of 12-20 Hz power over motor and parietal areas developed with time on each trial and more so in the CONTINUE condition. Reduced modulation in the STOP condition went along with reduced negative mean asynchronies suggesting less confident anticipation of the timing of the next tap. Yet participants were more likely to stop when beta modulation prior to the stop cue was more pronounced. In the STOP condition, expectancy of the stop signal may have increased cognitive load during movement execution given that the task might have to be stopped abruptly. However, within this condition, stopping ability was increased if the preceding tap was followed by a relatively larger beta increase. Significant, albeit weak, correlations confirmed that increased post-movement beta power was associated with faster reactions to new stimuli, consistent with reduced cognitive load. © 2016 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Functional topography of the cerebellum for motor and cognitive tasks: an fMRI study
Stoodley, Catherine J.; Valera, Eve M.; Schmahmann, Jeremy D.
2011-01-01
Anatomical, clinical and imaging findings suggest that the cerebellum is engaged in cognitive and affective functions as well as motor control. Evidence from converging modalities also indicates that there is a functional topography in the human cerebellum for overt control of movement vs. higher functions, such that the cerebellum can be divided into zones depending on connectivity with sensorimotor vs. multimodal association cortices. Using functional MRI, we show that regions active during overt movement differ from those involved in higher-level language, spatial processing and working memory tasks. Nine healthy participants each completed five tasks in order to determine the relative activation patterns for the different paradigms. Right-handed finger-tapping activated right cerebellar lobules IV-V and VIII, consistent with descriptions of the cerebellar homunculi. Verb generation engaged right cerebellar lobules VI-Crus I and a second cluster in lobules VIIB-VIIIA. Mental rotation activation peaks were localized to medial left cerebellar lobule VII (Crus II). A 2-back working memory task activated bilateral regions of lobules VI-VII. Viewing arousing vs. neutral images did not reliably activate the cerebellum or cerebral limbic areas in this study. The cerebellar functional topography identified in this study reflects the involvement of different cerebro-cerebellar circuits depending on the demands of the task being performed: overt movement activated sensorimotor cortices along with contralateral cerebellar lobules IV-VI and VIII, whereas more cognitively demanding tasks engaged prefrontal and parietal cortices along with cerebellar lobules VI and VII. These findings provide further support for a cerebellar role in both motor and cognitive tasks, and better establish the existence of functional subregions in the cerebellum. Future studies are needed to determine the exact contribution of the cerebellum – and different cerebro-cerebellar circuits – to task performance. PMID:21907811
Sander, Tilmann H.; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz
2010-01-01
Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds. PMID:20145717
Sander, Tilmann H; Leistner, Stefanie; Wabnitz, Heidrun; Mackert, Bruno-Marcel; Macdonald, Rainer; Trahms, Lutz
2010-01-01
Neuronal and vascular responses due to finger movements were synchronously measured using dc-magnetoencephalography (dcMEG) and time-resolved near-infrared spectroscopy (trNIRS). The finger movements were monitored with electromyography (EMG). Cortical responses related to the finger movement sequence were extracted by independent component analysis from both the dcMEG and the trNIRS data. The temporal relations between EMG rate, dcMEG, and trNIRS responses were assessed pairwise using the cross-correlation function (CCF), which does not require epoch averaging. A positive lag on a scale of seconds was found for the maximum of the CCF between dcMEG and trNIRS. A zero lag is observed for the CCF between dcMEG and EMG. Additionally this CCF exhibits oscillations at the frequency of individual finger movements. These findings show that the dcMEG with a bandwidth up to 8 Hz records both slow and faster neuronal responses, whereas the vascular response is confirmed to change on a scale of seconds.
Aggarwal, Vikram; Thakor, Nitish V.; Schieber, Marc H.
2014-01-01
A few kinematic synergies identified by principal component analysis (PCA) account for most of the variance in the coordinated joint rotations of the fingers and wrist used for a wide variety of hand movements. To examine the possibility that motor cortex might control the hand through such synergies, we collected simultaneous kinematic and neurophysiological data from monkeys performing a reach-to-grasp task. We used PCA, jPCA and isomap to extract kinematic synergies from 18 joint angles in the fingers and wrist and analyzed the relationships of both single-unit and multiunit spike recordings, as well as local field potentials (LFPs), to these synergies. For most spike recordings, the maximal absolute cross-correlations of firing rates were somewhat stronger with an individual joint angle than with any principal component (PC), any jPC or any isomap dimension. In decoding analyses, where spikes and LFP power in the 100- to 170-Hz band each provided better decoding than other LFP-based signals, the first PC was decoded as well as the best decoded joint angle. But the remaining PCs and jPCs were predicted with lower accuracy than individual joint angles. Although PCs, jPCs or isomap dimensions might provide a more parsimonious description of kinematics, our findings indicate that the kinematic synergies identified with these techniques are not represented in motor cortex more strongly than the original joint angles. We suggest that the motor cortex might act to sculpt the synergies generated by subcortical centers, superimposing an ability to individuate finger movements and adapt the hand to grasp a wide variety of objects. PMID:24990564
Stability of Hand Force Production: II. Ascending and Descending Synergies.
Reschechtko, Sasha; Latash, Mark L
2018-06-06
We combined the theory of neural control of movement with referent coordinates and the uncontrolled manifold hypothesis to investigate multi-finger coordination. We tested hypotheses related to stabilization of performance by co-varying control variables, translated into apparent stiffness and referent coordinate, at different levels of an assumed hierarchy of control. Subjects produced an accurate combination of total force and total moment of force with the four fingers under visual feedback on both variables and after feedback was partly or completely removed. The "inverse piano" device was used to estimate control variables. We observed strong synergies in the space of hypothetical control variables which stabilized total force and moment of force, as well as weaker synergies stabilizing individual finger forces; while the former were attenuated by alteration of visual feedback, the latter were much less affected. In addition, we investigated the organization of "ascending synergies" stabilizing task-level control variables by co-varied adjustments of finger-level control variables. We observed inter-trial co-variation of individual fingers' referent coordinates stabilizing hand-level referent coordinate, but observed no such co-variation for apparent stiffness. The observations suggest the existence of both descending and ascending synergies in a hierarchical control system. They confirm a trade-off between synergies at different levels of control and corroborate the hypothesis on specialization of different fingers for the control of force and moment. The results provide strong evidence for the importance of central back-coupling loops in ensuring stability of action.
Multidigit movement synergies of the human hand in an unconstrained haptic exploration task.
Thakur, Pramodsingh H; Bastian, Amy J; Hsiao, Steven S
2008-02-06
Although the human hand has a complex structure with many individual degrees of freedom, joint movements are correlated. Studies involving simple tasks (grasping) or skilled tasks (typing or finger spelling) have shown that a small number of combined joint motions (i.e., synergies) can account for most of the variance in observed hand postures. However, those paradigms evoked a limited set of hand postures and as such the reported correlation patterns of joint motions may be task-specific. Here, we used an unconstrained haptic exploration task to evoke a set of hand postures that is representative of most naturalistic postures during object manipulation. Principal component analysis on this set revealed that the first seven principal components capture >90% of the observed variance in hand postures. Further, we identified nine eigenvectors (or synergies) that are remarkably similar across multiple subjects and across manipulations of different sets of objects within a subject. We then determined that these synergies are used broadly by showing that they account for the changes in hand postures during other tasks. These include hand motions such as reach and grasp of objects that vary in width, curvature and angle, and skilled motions such as precision pinch. Our results demonstrate that the synergies reported here generalize across tasks, and suggest that they represent basic building blocks underlying natural human hand motions.
Dexterity with numbers: rTMS over left angular gyrus disrupts finger gnosis and number processing.
Rusconi, Elena; Walsh, Vincent; Butterworth, Brian
2005-01-01
Since the original description of Gerstmann's syndrome with its four cardinal symptoms, among which are finger agnosia and acalculia, the neuro-cognitive relationship between fingers and calculation has been debated. We asked our participants to perform four different tasks, two of which involved fingers and the other two involving numbers, during repetitive transcranial magnetic stimulation (rTMS) over the posterior parietal lobe of either hemisphere. In the finger tasks, they were required to transform a tactile stimulus randomly delivered on one of their fingers into a speeded key-press response either with the same or with the homologous finger on the opposite hand. In the numerical tasks, they were asked to perform a magnitude or a parity matching on pairs of single digits, in the context of arithmetically related or unrelated numerical primes. In accordance with the original anatomical hypothesis put forward by Gerstmann [Gerstmann, J. (1924). Fingeragnosie: eine umschriebene Stoerung der Orienterung am eigenen Koerper. Wiener clinische Wochenschrift, 37, 1010-12], we found that rTMS over the left angular gyrus disrupted tasks requiring access to the finger schema and number magnitude processing in the same group of participants. In addition to the numerous studies which have employed special populations such as neurological patients and children, our data confirm the presence of a relationship between numbers and body knowledge in skilled adults who no longer use their fingers for solving simple arithmetical tasks.
Muthalib, Makii; Besson, Pierre; Rothwell, John; Ward, Tomas; Perrey, Stephane
2016-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive electrical brain stimulation technique that can modulate cortical neuronal excitability and activity. This study utilized functional near infrared spectroscopy (fNIRS) neuroimaging to determine the effects of anodal high-definition (HD)-tDCS on bilateral sensorimotor cortex (SMC) activation. Before (Pre), during (Online), and after (Offline) anodal HD-tDCS (2 mA, 20 min) targeting the left SMC, eight healthy subjects performed a simple finger sequence (SFS) task with their right or left hand in an alternating blocked design (30-s rest and 30-s SFS task, repeated five times). In order to determine the level of bilateral SMC activation during the SFS task, an Oxymon MkIII fNIRS system was used to measure from the left and right SMC, changes in oxygenated (O2Hb) and deoxygenated (HHb) haemoglobin concentration values. The fNIRS data suggests a finding that compared to the Pre condition both the "Online" and "Offline" anodal HD-tDCS conditions induced a significant reduction in bilateral SMC activation (i.e., smaller decrease in HHb) for a similar motor output (i.e., SFS tap rate). These findings could be related to anodal HD-tDCS inducing a greater efficiency of neuronal transmission in the bilateral SMC to perform the same SFS task.
Tactile suppression of displacement.
Ziat, Mounia; Hayward, Vincent; Chapman, C Elaine; Ernst, Marc O; Lenay, Charles
2010-10-01
In vision, the discovery of the phenomenon of saccadic suppression of displacement has made important contributions to the understanding of the stable world problem. Here, we report a similar phenomenon in the tactile modality. When scanning a single Braille dot with two fingers of the same hand, participants were asked to decide whether the dot was stationary or whether it was displaced from one location to another. The stimulus was produced by refreshable Braille devices that have dots that can be swiftly raised and recessed. In some conditions, the dot was stationary. In others, a displacement was created by monitoring the participant's finger position and by switching the dot activation when it was not touched by either finger. The dot displacement was of either 2.5 mm or 5 mm. We found that in certain cases, displaced dots were felt to be stationary. If the displacement was orthogonal to the finger movements, tactile suppression occurred effectively when it was of 2.5 mm, but when the displacement was of 5 mm, the participants easily detected it. If the displacement was medial-lateral, the suppression effect occurred as well, but less often when the apparent movement of the dot opposed the movement of the finger. In such cases, the stimulus appeared sooner than when the brain could predict it from finger movement, supporting a predictive rather than a postdictive differential processing hypothesis.
Kinematic Origins of Motor Inconsistency in Expert Pianists.
Tominaga, Kenta; Lee, André; Altenmüller, Eckart; Miyazaki, Fumio; Furuya, Shinichi
2016-01-01
For top performers, including athletes and musicians, even subtle inconsistencies in rhythm and force during movement production decrease the quality of performance. However, extensive training over many years beginning in childhood is unable to perfect dexterous motor performance so that it is without any error. To gain insight into the biological mechanisms underlying the subtle defects of motor actions, the present study sought to identify the kinematic origins of inconsistency of dexterous finger movements in musical performance. Seven highly-skilled pianists who have won prizes at international piano competitions played a short sequence of tones with the right hand at a predetermined tempo. Time-varying joint angles of the fingers were recorded using a custom-made data glove, and the timing and velocity of the individual keystrokes were recorded from a digital piano. Both ridge and stepwise multiple regression analyses demonstrated an association of the inter-trial variability of the inter-keystroke interval (i.e., rhythmic inconsistency) with both the rotational velocity of joints of the finger used for a keystroke (i.e., striking finger) and the movement independence between the striking and non-striking fingers. This indicates a relationship between rhythmic inconsistency in musical performance and the dynamic features of movements in not only the striking finger but also the non-striking fingers. In contrast, the inter-trial variability of the key-descending velocity (i.e., loudness inconsistency) was associated mostly with the kinematic features of the striking finger at the moment of the keystroke. Furthermore, there was no correlation between the rhythmic and loudness inconsistencies. The results suggest distinct kinematic origins of inconsistencies in rhythm and loudness in expert musical performance.
Status and Power Do Not Modulate Automatic Imitation of Intransitive Hand Movements
Farmer, Harry; Carr, Evan W.; Svartdal, Marita; Winkielman, Piotr; Hamilton, Antonia F. de C.
2016-01-01
The tendency to mimic the behaviour of others is affected by a variety of social factors, and it has been argued that such “mirroring” is often unconsciously deployed as a means of increasing affiliation during interpersonal interactions. However, the relationship between automatic motor imitation and status/power is currently unclear. This paper reports five experiments that investigated whether social status (Experiments 1, 2, and 3) or power (Experiments 4 and 5) had a moderating effect on automatic imitation (AI) in finger-movement tasks, using a series of different manipulations. Experiments 1 and 2 manipulated the social status of the observed person using an associative learning task. Experiment 3 manipulated social status via perceived competence at a simple computer game. Experiment 4 manipulated participants’ power (relative to the actors) in a card-choosing task. Finally, Experiment 5 primed participants using a writing task, to induce the sense of being powerful or powerless. No significant interactions were found between congruency and social status/power in any of the studies. Additionally, Bayesian hypothesis testing indicated that the null hypothesis should be favoured over the experimental hypothesis in all five studies. These findings are discussed in terms of their implications for AI tasks, social effects on mimicry, and the hypothesis of mimicry as a strategic mechanism to promote affiliation. PMID:27096167
Fluet, Gerard G; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V; Tunik, Eugene; Merians, Alma S
2017-07-01
The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.
Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size
Castillo-Castaneda, Eduardo
2016-01-01
Due to the growing demand for assistance in rehabilitation therapies for hand movements, a robotic system is proposed to mobilize the hand fingers in flexion and extension exercises. The robotic system is composed by four, type slider-crank, mechanisms that have the ability to fit the user fingers length from the index to the little finger, through the adjustment of only one link for each mechanism. The trajectory developed by each mechanism corresponds to the natural flexoextension path of each finger. The amplitude of the rotations for metacarpophalangeal joint (MCP) and proximal interphalangeal joint (PIP) varies from 0 to 90° and the distal interphalangeal joint (DIP) varies from 0 to 60°; the joint rotations are coordinated naturally. The four R-RRT mechanisms orientation allows a 15° abduction movement for index, ring, and little fingers. The kinematic analysis of this mechanism was developed in order to assure that the displacement speed and smooth acceleration into the desired range of motion and the simulation results are presented. The reconfiguration of mechanisms covers about 95% of hand sizes of a group of Mexican adult population. Maximum trajectory tracking error is less than 3% in full range of movement and it can be compensated by the additional rotation of finger joints without injury to the user. PMID:27524880
Design of a Reconfigurable Robotic System for Flexoextension Fitted to Hand Fingers Size.
Aguilar-Pereyra, J Felipe; Castillo-Castaneda, Eduardo
2016-01-01
Due to the growing demand for assistance in rehabilitation therapies for hand movements, a robotic system is proposed to mobilize the hand fingers in flexion and extension exercises. The robotic system is composed by four, type slider-crank, mechanisms that have the ability to fit the user fingers length from the index to the little finger, through the adjustment of only one link for each mechanism. The trajectory developed by each mechanism corresponds to the natural flexoextension path of each finger. The amplitude of the rotations for metacarpophalangeal joint (MCP) and proximal interphalangeal joint (PIP) varies from 0 to 90° and the distal interphalangeal joint (DIP) varies from 0 to 60°; the joint rotations are coordinated naturally. The four R-RRT mechanisms orientation allows a 15° abduction movement for index, ring, and little fingers. The kinematic analysis of this mechanism was developed in order to assure that the displacement speed and smooth acceleration into the desired range of motion and the simulation results are presented. The reconfiguration of mechanisms covers about 95% of hand sizes of a group of Mexican adult population. Maximum trajectory tracking error is less than 3% in full range of movement and it can be compensated by the additional rotation of finger joints without injury to the user.
Adaptive increase in force variance during fatigue in tasks with low redundancy.
Singh, Tarkeshwar; S K M, Varadhan; Zatsiorsky, Vladimir M; Latash, Mark L
2010-11-26
We tested a hypothesis that fatigue of an element (a finger) leads to an adaptive neural strategy that involves an increase in force variability in the other finger(s) and an increase in co-variation of commands to fingers to keep total force variability relatively unchanged. We tested this hypothesis using a system with small redundancy (two fingers) and a marginally redundant system (with an additional constraint related to the total moment of force produced by the fingers, unstable condition). The subjects performed isometric accurate rhythmic force production tasks by the index (I) finger and two fingers (I and middle, M) pressing together before and after a fatiguing exercise by the I finger. Fatigue led to a large increase in force variance in the I-finger task and a smaller increase in the IM-task. We quantified two components of variance in the space of hypothetical commands to fingers, finger modes. Under both stable and unstable conditions, there was a large increase in the variance component that did not affect total force and a much smaller increase in the component that did. This resulted in an increase in an index of the force-stabilizing synergy. These results indicate that marginal redundancy is sufficient to allow the central nervous system to use adaptive increase in variability to shield important variables from effects of fatigue. We offer an interpretation of these results based on a recent development of the equilibrium-point hypothesis known as the referent configuration hypothesis. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
van Elswijk, Gijs; Schot, Willemijn D; Stegeman, Dick F; Overeem, Sebastiaan
2008-01-01
Background Preparation of the direction of a forthcoming movement has a particularly strong influence on both reaction times and neuronal activity in the primate motor cortex. Here, we aimed to find direct neurophysiologic evidence for the preparation of movement direction in humans. We used single-pulse transcranial magnetic stimulation (TMS) to evoke isolated thumb-movements, of which the direction can be modulated experimentally, for example by training or by motor tasks. Sixteen healthy subjects performed brisk concentric voluntary thumb movements during a reaction time task in which the required movement direction was precued. We assessed whether preparation for the thumb movement lead to changes in the direction of TMS-evoked movements and to changes in amplitudes of motor-evoked potentials (MEPs) from the hand muscles. Results When the required movement direction was precued early in the preparatory interval, reaction times were 50 ms faster than when precued at the end of the preparatory interval. Over time, the direction of the TMS-evoked thumb movements became increasingly variable, but it did not turn towards the precued direction. MEPs from the thumb muscle (agonist) were differentially modulated by the direction of the precue, but only in the late phase of the preparatory interval and thereafter. MEPs from the index finger muscle did not depend on the precued direction and progressively decreased during the preparatory interval. Conclusion Our data show that the human corticospinal movement representation undergoes progressive changes during motor preparation. These changes are accompanied by inhibitory changes in corticospinal excitability, which are muscle specific and depend on the prepared movement direction. This inhibition might indicate a corticospinal braking mechanism that counteracts any preparatory motor activation. PMID:18559096
Bouffard, Jason; Yang, Chen; Begon, Mickael; Côté, Julie
2018-04-19
Muscle fatigue induced by repetitive movements contributes to the development of musculoskeletal disorders. Men and women respond differently to muscle fatigue during isometric single-joint efforts, but sex differences during dynamic multi-joint tasks have not been clearly identified. Moreover, most studies comparing men and women during fatigue development assessed endurance time. However, none evaluated sex differences in kinematic adaptations to fatigue during multi-joint dynamic tasks. The objective of the study was to compare how men and women adapt their upper body kinematics during a fatiguing repetitive pointing task. Forty men and 41 women performed repetitive pointing movements (one per second) between two targets while maintaining their elbow elevated at shoulder height. The task ended when participants rated a perceived level of fatigue of 8/10. Trunk, humerothoracic, and elbow angles were compared between the first and last 30 s of the experiment and between men and women. Linear positions of the index finger (distance from the target) and the elbow (arm elevation) as well as movement timing were documented as task performance measures. Men (7.4 ± 3.2 min) and women (8.3 ± 4.5 min) performed the repetitive pointing task for a similar duration. For both sex groups, trunk range of motion increased with fatigue while shoulder's and elbow's decreased. Moreover, participants modified their trunk posture to compensate for the decreased humerothoracic elevation. Movements at all joints also became more variable with fatigue. However, of the 24 joint angle variables assessed, only two Sex × Fatigue interactions were observed. Although average humerothoracic elevation angle decreased in both subgroups, this decrease was greater in men (standardized response mean [SRM] - 1.63) than in women (SRM - 1.44). Moreover, the movement-to-movement variability of humerothoracic elevation angle increased only in women (SRM 0.42). Despite many similarities between men's and women's response to fatigue induced by repetitive pointing movements, some sex differences were observed. Those subtle differences may indicate that men's shoulder muscles were more fatigued than women's despite a similar level of perceived exertion. They may also indicate that men and women do not adapt the exact same way to a similar fatigue.
Movement Kinematics of the Braille-Reading Finger
ERIC Educational Resources Information Center
Hughes, Barry
2011-01-01
A new means of measuring the movement properties of the braille-reading finger is described and exemplified in an experiment in which experienced readers of braille encountered sentences comprised of keywords in which word and orthographic frequencies were manipulated. These new data are considered in theoretical and practical terms. (Contains 2…
Quantifying palpation techniques in relation to performance in a clinical prostate exam.
Wang, Ninghuan; Gerling, Gregory J; Childress, Reba Moyer; Martin, Marcus L
2010-07-01
This paper seeks to quantify finger palpation techniques in the prostate clinical exam, determine their relationship with performance in detecting abnormalities, and differentiate the tendencies of nurse practitioner students and resident physicians. One issue with the digital rectal examination (DRE) is that performance in detecting abnormalities varies greatly and agreement between examiners is low. The utilization of particular palpation techniques may be one way to improve clinician ability. Based on past qualitative instruction, this paper algorithmically defines a set of palpation techniques for the DRE, i.e., global finger movement (GFM), local finger movement (LFM), and average intentional finger pressure, and utilizes a custom-built simulator to analyze finger movements in an experiment with two groups: 18 nurse practitioner students and 16 resident physicians. Although technique utilization varied, some elements clearly impacted performance. For example, those utilizing the LFM of vibration were significantly better at detecting abnormalities. Also, the V GFM led to greater success, but finger pressure played a lesser role. Interestingly, while the residents were clearly the superior performers, their techniques differed only subtly from the students. In summary, the quantified palpation techniques appear to account for examination ability at some level, but not entirely for differences between groups.
Eye movement accuracy determines natural interception strategies.
Fooken, Jolande; Yeo, Sang-Hoon; Pai, Dinesh K; Spering, Miriam
2016-11-01
Eye movements aid visual perception and guide actions such as reaching or grasping. Most previous work on eye-hand coordination has focused on saccadic eye movements. Here we show that smooth pursuit eye movement accuracy strongly predicts both interception accuracy and the strategy used to intercept a moving object. We developed a naturalistic task in which participants (n = 42 varsity baseball players) intercepted a moving dot (a "2D fly ball") with their index finger in a designated "hit zone." Participants were instructed to track the ball with their eyes, but were only shown its initial launch (100-300 ms). Better smooth pursuit resulted in more accurate interceptions and determined the strategy used for interception, i.e., whether interception was early or late in the hit zone. Even though early and late interceptors showed equally accurate interceptions, they may have relied on distinct tactics: early interceptors used cognitive heuristics, whereas late interceptors' performance was best predicted by pursuit accuracy. Late interception may be beneficial in real-world tasks as it provides more time for decision and adjustment. Supporting this view, baseball players who were more senior were more likely to be late interceptors. Our findings suggest that interception strategies are optimally adapted to the proficiency of the pursuit system.
Baldacchino, Tara; Jacobs, William R; Anderson, Sean R; Worden, Keith; Rowson, Jennifer
2018-01-01
This contribution presents a novel methodology for myolectric-based control using surface electromyographic (sEMG) signals recorded during finger movements. A multivariate Bayesian mixture of experts (MoE) model is introduced which provides a powerful method for modeling force regression at the fingertips, while also performing finger movement classification as a by-product of the modeling algorithm. Bayesian inference of the model allows uncertainties to be naturally incorporated into the model structure. This method is tested using data from the publicly released NinaPro database which consists of sEMG recordings for 6 degree-of-freedom force activations for 40 intact subjects. The results demonstrate that the MoE model achieves similar performance compared to the benchmark set by the authors of NinaPro for finger force regression. Additionally, inherent to the Bayesian framework is the inclusion of uncertainty in the model parameters, naturally providing confidence bounds on the force regression predictions. Furthermore, the integrated clustering step allows a detailed investigation into classification of the finger movements, without incurring any extra computational effort. Subsequently, a systematic approach to assessing the importance of the number of electrodes needed for accurate control is performed via sensitivity analysis techniques. A slight degradation in regression performance is observed for a reduced number of electrodes, while classification performance is unaffected.
Gloved Human-Machine Interface
NASA Technical Reports Server (NTRS)
Adams, Richard (Inventor); Hannaford, Blake (Inventor); Olowin, Aaron (Inventor)
2015-01-01
Certain exemplary embodiments can provide a system, machine, device, manufacture, circuit, composition of matter, and/or user interface adapted for and/or resulting from, and/or a method and/or machine-readable medium comprising machine-implementable instructions for, activities that can comprise and/or relate to: tracking movement of a gloved hand of a human; interpreting a gloved finger movement of the human; and/or in response to interpreting the gloved finger movement, providing feedback to the human.
Towards control of dexterous hand manipulations using a silicon Pattern Generator.
Russell, Alexander; Tenore, Francesco; Singhal, Girish; Thakor, Nitish; Etienne-Cummings, Ralph
2008-01-01
This work demonstrates how an in silico Pattern Generator (PG) can be used as a low power control system for rhythmic hand movements in an upper-limb prosthesis. Neural spike patterns, which encode rotation of a cylindrical object, were implemented in a custom Very Large Scale Integration chip. PG control was tested by using the decoded control signals to actuate the fingers of a virtual prosthetic arm. This system provides a framework for prototyping and controlling dexterous hand manipulation tasks in a compact and efficient solution.
Learning to combine high variability with high precision: lack of transfer to a different task.
Wu, Yen-Hsun; Truglio, Thomas S; Zatsiorsky, Vladimir M; Latash, Mark L
2015-01-01
The authors studied effects of practicing a 4-finger accurate force production task on multifinger coordination quantified within the uncontrolled manifold hypothesis. During practice, task instability was modified by changing visual feedback gain based on accuracy of performance. The authors also explored the retention of these effects, and their transfer to a prehensile task. Subjects practiced the force production task for 2 days. After the practice, total force variability decreased and performance became more accurate. In contrast, variance of finger forces showed a tendency to increase during the first practice session while in the space of finger modes (hypothetical commands to fingers) the increase was under the significance level. These effects were retained for 2 weeks. No transfer of these effects to the prehensile task was seen, suggesting high specificity of coordination changes. The retention of practice effects without transfer to a different task suggests that further studies on a more practical method of improving coordination are needed.
Dupan, Sigrid S G; Stegeman, Dick F; Maas, Huub
2018-06-01
Single finger force tasks lead to unintended activation of the non-instructed fingers, commonly referred to as enslaving. Both neural and mechanical factors have been associated with this absence of finger individuality. This study investigates the amplitude modulation of both intrinsic and extrinsic finger muscles during single finger isometric force tasks. Twelve participants performed single finger flexion presses at 20% of maximum voluntary contraction, while simultaneously the electromyographic activity of several intrinsic and extrinsic muscles associated with all four fingers was recorded using 8 electrode pairs in the hand and two 30-electrode grids on the lower arm. The forces exerted by each of the fingers, in both flexion and extension direction, were recorded with individual force sensors. This study shows distinct activation patterns in intrinsic and extrinsic hand muscles. Intrinsic muscles exhibited individuation, where the agonistic and antagonistic muscles associated with the instructed fingers showed the highest activation. This activation in both agonistic and antagonistic muscles appears to facilitate finger stabilisation during the isometric force task. Extrinsic muscles show an activation independent from instructed finger in both agonistic and antagonistic muscles, which appears to be associated with stabilisation of the wrist, with an additional finger-dependent modulation only present in the agonistic extrinsic muscles. These results indicate distinct muscle patterns in intrinsic and extrinsic hand muscles during single finger isometric force pressing. We conclude that the finger specific activation of intrinsic muscles is not sufficient to fully counteract enslaving caused by the broad activation of the extrinsic muscles. Copyright © 2018 Elsevier B.V. All rights reserved.
Compact Dexterous Robotic Hand
NASA Technical Reports Server (NTRS)
Lovchik, Christopher Scott (Inventor); Diftler, Myron A. (Inventor)
2001-01-01
A compact robotic hand includes a palm housing, a wrist section, and a forearm section. The palm housing supports a plurality of fingers and one or more movable palm members that cooperate with the fingers to grasp and/or release an object. Each flexible finger comprises a plurality of hingedly connected segments, including a proximal segment pivotally connected to the palm housing. The proximal finger segment includes at least one groove defining first and second cam surfaces for engagement with a cable. A plurality of lead screw assemblies each carried by the palm housing are supplied with power from a flexible shaft rotated by an actuator and output linear motion to a cable move a finger. The cable is secured within a respective groove and enables each finger to move between an opened and closed position. A decoupling assembly pivotally connected to a proximal finger segment enables a cable connected thereto to control movement of an intermediate and distal finger segment independent of movement of the proximal finger segment. The dexterous robotic hand closely resembles the function of a human hand yet is light weight and capable of grasping both heavy and light objects with a high degree of precision.
Changing motor perception by sensorimotor conflicts and body ownership
Salomon, R.; Fernandez, N. B.; van Elk, M.; Vachicouras, N.; Sabatier, F.; Tychinskaya, A.; Llobera, J.; Blanke, O.
2016-01-01
Experimentally induced sensorimotor conflicts can result in a loss of the feeling of control over a movement (sense of agency). These findings are typically interpreted in terms of a forward model in which the predicted sensory consequences of the movement are compared with the observed sensory consequences. In the present study we investigated whether a mismatch between movements and their observed sensory consequences does not only result in a reduced feeling of agency, but may affect motor perception as well. Visual feedback of participants’ finger movements was manipulated using virtual reality to be anatomically congruent or incongruent to the performed movement. Participants made a motor perception judgment (i.e. which finger did you move?) or a visual perceptual judgment (i.e. which finger did you see moving?). Subjective measures of agency and body ownership were also collected. Seeing movements that were visually incongruent to the performed movement resulted in a lower accuracy for motor perception judgments, but not visual perceptual judgments. This effect was modified by rotating the virtual hand (Exp.2), but not by passively induced movements (Exp.3). Hence, sensorimotor conflicts can modulate the perception of one’s motor actions, causing viewed “alien actions” to be felt as one’s own. PMID:27225834
Islam, Tina; Kupsch, Andreas; Bruhn, Harald; Scheurig, Christian; Schmidt, Sein; Hoffmann, Karl-Titus
2009-06-01
Functional magnetic resonance imaging was used to characterize patterns of cortical activation in response to sensory and motor tasks in patients with writer's cramp. 17 patients and 17 healthy subjects were examined during finger-tapping, index finger flexion, and electrical median nerve stimulation of both hands during electromyographic monitoring. SPM2 was used to evaluate Brodmann area (BA) 4, 1, 2, 3, 6, 40. Patients showed decreased activation in the left BA 4 with motor tasks of both hands and the left BA 1-3 with right finger-tapping. With left finger-tapping there was bilateral underactivation of single areas of the somatosensory cortex. Patients exhibited decreased activation in the bilateral BA 6 with left motor tasks and in the right BA 6 with right finger-tapping. Patients had decreased activation in bilateral BA 40 with finger-tapping of both hands. The findings suggest decreased baseline activity or an impaired activation in response to motor tasks in BA 1-4, 6, 40 in patients with writer's cramp for the dystonic and the clinically unaffected hand.
Eye movements in interception with delayed visual feedback.
Cámara, Clara; de la Malla, Cristina; López-Moliner, Joan; Brenner, Eli
2018-07-01
The increased reliance on electronic devices such as smartphones in our everyday life exposes us to various delays between our actions and their consequences. Whereas it is known that people can adapt to such delays, the mechanisms underlying such adaptation remain unclear. To better understand these mechanisms, the current study explored the role of eye movements in interception with delayed visual feedback. In two experiments, eye movements were recorded as participants tried to intercept a moving target with their unseen finger while receiving delayed visual feedback about their own movement. In Experiment 1, the target randomly moved in one of two different directions at one of two different velocities. The delay between the participant's finger movement and movement of the cursor that provided feedback about the finger movements was gradually increased. Despite the delay, participants followed the target with their gaze. They were quite successful at hitting the target with the cursor. Thus, they moved their finger to a position that was ahead of where they were looking. Removing the feedback showed that participants had adapted to the delay. In Experiment 2, the target always moved in the same direction and at the same velocity, while the cursor's delay varied across trials. Participants still always directed their gaze at the target. They adjusted their movement to the delay on each trial, often succeeding to intercept the target with the cursor. Since their gaze was always directed at the target, and they could not know the delay until the cursor started moving, participants must have been using peripheral vision of the delayed cursor to guide it to the target. Thus, people deal with delays by directing their gaze at the target and using both experience from previous trials (Experiment 1) and peripheral visual information (Experiment 2) to guide their finger in a way that will make the cursor hit the target.
Yarossi, Mathew; Manuweera, Thushini; Adamovich, Sergei V.; Tunik, Eugene
2017-01-01
Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1–B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability. PMID:28553218
Arias, Pablo; Robles-García, Verónica; Sanmartín, Gabriel; Flores, Julian; Cudeiro, Javier
2012-01-01
This work presents an immersive Virtual Reality (VR) system to evaluate, and potentially treat, the alterations in rhythmic hand movements seen in Parkinson's disease (PD) and the elderly (EC), by comparison with healthy young controls (YC). The system integrates the subjects into a VR environment by means of a Head Mounted Display, such that subjects perceive themselves in a virtual world consisting of a table within a room. In this experiment, subjects are presented in 1st person perspective, so that the avatar reproduces finger tapping movements performed by the subjects. The task, known as the finger tapping test (FT), was performed by all three subject groups, PD, EC and YC. FT was carried out by each subject on two different days (sessions), one week apart. In each FT session all subjects performed FT in the real world (FTREAL) and in the VR (FTVR); each mode was repeated three times in randomized order. During FT both the tapping frequency and the coefficient of variation of inter-tap interval were registered. FTVR was a valid test to detect differences in rhythm formation between the three groups. Intra-class correlation coefficients (ICC) and mean difference between days for FTVR (for each group) showed reliable results. Finally, the analysis of ICC and mean difference between FTVR vs FTREAL, for each variable and group, also showed high reliability. This shows that FT evaluation in VR environments is valid as real world alternative, as VR evaluation did not distort movement execution and detects alteration in rhythm formation. These results support the use of VR as a promising tool to study alterations and the control of movement in different subject groups in unusual environments, such as during fMRI or other imaging studies. PMID:22279559
Tagliabue, Michele; McIntyre, Joseph
2013-01-01
Several experimental studies in the literature have shown that even when performing purely kinesthetic tasks, such as reaching for a kinesthetically felt target with a hidden hand, the brain reconstructs a visual representation of the movement. In our previous studies, however, we did not observe any role of a visual representation of the movement in a purely kinesthetic task. This apparent contradiction could be related to a fundamental difference between the studied tasks. In our study subjects used the same hand to both feel the target and to perform the movement, whereas in most other studies, pointing to a kinesthetic target consisted of pointing with one hand to the finger of the other, or to some other body part. We hypothesize, therefore, that it is the necessity of performing inter-limb transformations that induces a visual representation of purely kinesthetic tasks. To test this hypothesis we asked subjects to perform the same purely kinesthetic task in two conditions: INTRA and INTER. In the former they used the right hand to both perceive the target and to reproduce its orientation. In the latter, subjects perceived the target with the left hand and responded with the right. To quantify the use of a visual representation of the movement we measured deviations induced by an imperceptible conflict that was generated between visual and kinesthetic reference frames. Our hypothesis was confirmed by the observed deviations of responses due to the conflict in the INTER, but not in the INTRA, condition. To reconcile these observations with recent theories of sensori-motor integration based on maximum likelihood estimation, we propose here a new model formulation that explicitly considers the effects of covariance between sensory signals that are directly available and internal representations that are ‘reconstructed’ from those inputs through sensori-motor transformations. PMID:23861903
Is the thumb a fifth finger? A study of digit interaction during force production tasks
Olafsdottir, Halla; Zatsiorsky, Vladimir M.; Latash, Mark L.
2010-01-01
We studied indices of digit interaction in single- and multi-digit maximal voluntary contraction (MVC) tests when the thumb acted either in parallel or in opposition to the fingers. The peak force produced by the thumb was much higher when the thumb acted in opposition to the fingers and its share of the total force in the five-digit MVC test increased dramatically. The fingers showed relatively similar peak forces and unchanged sharing patterns in the four-finger MVC task when the thumb acted in parallel and in opposition to the fingers. Enslaving during one-digit tasks showed relatively mild differences between the two conditions, while the differences became large when enslaving was quantified for multi-digit tasks. Force deficit was pronounced when the thumb acted in parallel to the fingers; it showed a monotonic increase with the number of explicitly involved digits up to four digits and then a drop when all five digits were involved. Force deficit all but disappeared when the thumb acted in opposition to the fingers. However, for both thumb positions, indices of digit interaction were similar for groups of digits that did or did not include the thumb. These results suggest that, given a certain hand configuration, the central nervous system treats the thumb as a fifth finger. They provide strong support for the hypothesis that indices of digit interaction reflect neural factors, not the peripheral design of the hand. An earlier formal model was able to account for the data when the thumb acted in parallel to the fingers. However, it failed for the data with the thumb acting in opposition to the fingers. PMID:15322785
Smart Sensor-Based Motion Detection System for Hand Movement Training in Open Surgery.
Sun, Xinyao; Byrns, Simon; Cheng, Irene; Zheng, Bin; Basu, Anup
2017-02-01
We introduce a smart sensor-based motion detection technique for objective measurement and assessment of surgical dexterity among users at different experience levels. The goal is to allow trainees to evaluate their performance based on a reference model shared through communication technology, e.g., the Internet, without the physical presence of an evaluating surgeon. While in the current implementation we used a Leap Motion Controller to obtain motion data for analysis, our technique can be applied to motion data captured by other smart sensors, e.g., OptiTrack. To differentiate motions captured from different participants, measurement and assessment in our approach are achieved using two strategies: (1) low level descriptive statistical analysis, and (2) Hidden Markov Model (HMM) classification. Based on our surgical knot tying task experiment, we can conclude that finger motions generated from users with different surgical dexterity, e.g., expert and novice performers, display differences in path length, number of movements and task completion time. In order to validate the discriminatory ability of HMM for classifying different movement patterns, a non-surgical task was included in our analysis. Experimental results demonstrate that our approach had 100 % accuracy in discriminating between expert and novice performances. Our proposed motion analysis technique applied to open surgical procedures is a promising step towards the development of objective computer-assisted assessment and training systems.
Single trial detection of hand poses in human ECoG using CSP based feature extraction.
Kapeller, C; Schneider, C; Kamada, K; Ogawa, H; Kunii, N; Ortner, R; Pruckl, R; Guger, C
2014-01-01
Decoding brain activity of corresponding highlevel tasks may lead to an independent and intuitively controlled Brain-Computer Interface (BCI). Most of today's BCI research focuses on analyzing the electroencephalogram (EEG) which provides only limited spatial and temporal resolution. Derived electrocorticographic (ECoG) signals allow the investigation of spatially highly focused task-related activation within the high-gamma frequency band, making the discrimination of individual finger movements or complex grasping tasks possible. Common spatial patterns (CSP) are commonly used for BCI systems and provide a powerful tool for feature optimization and dimensionality reduction. This work focused on the discrimination of (i) three complex hand movements, as well as (ii) hand movement and idle state. Two subjects S1 and S2 performed single `open', `peace' and `fist' hand poses in multiple trials. Signals in the high-gamma frequency range between 100 and 500 Hz were spatially filtered based on a CSP algorithm for (i) and (ii). Additionally, a manual feature selection approach was tested for (i). A multi-class linear discriminant analysis (LDA) showed for (i) an error rate of 13.89 % / 7.22 % and 18.42 % / 1.17 % for S1 and S2 using manually / CSP selected features, where for (ii) a two class LDA lead to a classification error of 13.39 % and 2.33 % for S1 and S2, respectively.
Cold-Blooded Attention: Finger Temperature Predicts Attentional Performance.
Vergara, Rodrigo C; Moënne-Loccoz, Cristóbal; Maldonado, Pedro E
2017-01-01
Thermal stress has been shown to increase the chances of unsafe behavior during industrial and driving performances due to reductions in mental and attentional resources. Nonetheless, establishing appropriate safety standards regarding environmental temperature has been a major problem, as modulations are also be affected by the task type, complexity, workload, duration, and previous experience with the task. To bypass this attentional and thermoregulatory problem, we focused on the body rather than environmental temperature. Specifically, we measured tympanic, forehead, finger and environmental temperatures accompanied by a battery of attentional tasks. We considered a 10 min baseline period wherein subjects were instructed to sit and relax, followed by three attentional tasks: a continuous performance task (CPT), a flanker task (FT) and a counting task (CT). Using multiple linear regression models, we evaluated which variable(s) were the best predictors of performance. The results showed a decrement in finger temperature due to instruction and task engagement that was absent when the subject was instructed to relax. No changes were observed in tympanic or forehead temperatures, while the environmental temperature remained almost constant for each subject. Specifically, the magnitude of the change in finger temperature was the best predictor of performance in all three attentional tasks. The results presented here suggest that finger temperature can be used as a predictor of alertness, as it predicted performance in attentional tasks better than environmental temperature. These findings strongly support that peripheral temperature can be used as a tool to prevent unsafe behaviors and accidents.
Chen, Wei-Ying; Wu, Sheng K; Song, Tai-Fen; Chou, Kuei-Ming; Wang, Kuei-Yuan; Chang, Yao-Ching; Goodbourn, Patrick T
2016-12-07
The specific demands of a combat-sport discipline may be reflected in the perceptual-motor performance of its athletes. Taekwondo, which emphasizes kicking, might require faster perceptual processing to compensate for longer latencies to initiate lower-limb movements and to give rapid visual feedback for dynamic postural control, while Karate, which emphasizes both striking with the hands and kicking, might require exceptional eye-hand coordination and fast perceptual processing. In samples of 38 Taekwondo athletes (16 females, 22 males; mean age = 19.9 years, SD = 1.2), 24 Karate athletes (9 females, 15 males; mean age = 18.9 years, SD = 0.9), and 35 Nonathletes (20 females, 15 males; mean age = 20.6 years, SD = 1.5), we measured eye-hand coordination with the Finger-Nose-Finger task, and both perceptual-processing speed and attentional control with the Covert Orienting of Visual Attention (COVAT) task. Eye-hand coordination was significantly better for Karate athletes than for Taekwondo athletes and Nonathletes, but reaction times for the upper extremities in the COVAT task-indicative of perceptual-processing speed-were faster for Taekwondo athletes than for Karate athletes and Nonathletes. In addition, we found no significant difference among groups in attentional control, as indexed by the reaction-time cost of an invalid cue in the COVAT task. The results suggest that athletes in different combat sports exhibit distinct profiles of perceptual-motor performance. © The Author(s) 2016.
Feature Selection Methods for Robust Decoding of Finger Movements in a Non-human Primate
Padmanaban, Subash; Baker, Justin; Greger, Bradley
2018-01-01
Objective: The performance of machine learning algorithms used for neural decoding of dexterous tasks may be impeded due to problems arising when dealing with high-dimensional data. The objective of feature selection algorithms is to choose a near-optimal subset of features from the original feature space to improve the performance of the decoding algorithm. The aim of our study was to compare the effects of four feature selection techniques, Wilcoxon signed-rank test, Relative Importance, Principal Component Analysis (PCA), and Mutual Information Maximization on SVM classification performance for a dexterous decoding task. Approach: A nonhuman primate (NHP) was trained to perform small coordinated movements—similar to typing. An array of microelectrodes was implanted in the hand area of the motor cortex of the NHP and used to record action potentials (AP) during finger movements. A Support Vector Machine (SVM) was used to classify which finger movement the NHP was making based upon AP firing rates. We used the SVM classification to examine the functional parameters of (i) robustness to simulated failure and (ii) longevity of classification. We also compared the effect of using isolated-neuron and multi-unit firing rates as the feature vector supplied to the SVM. Main results: The average decoding accuracy for multi-unit features and single-unit features using Mutual Information Maximization (MIM) across 47 sessions was 96.74 ± 3.5% and 97.65 ± 3.36% respectively. The reduction in decoding accuracy between using 100% of the features and 10% of features based on MIM was 45.56% (from 93.7 to 51.09%) and 4.75% (from 95.32 to 90.79%) for multi-unit and single-unit features respectively. MIM had best performance compared to other feature selection methods. Significance: These results suggest improved decoding performance can be achieved by using optimally selected features. The results based on clinically relevant performance metrics also suggest that the decoding algorithm can be made robust by using optimal features and feature selection algorithms. We believe that even a few percent increase in performance is important and improves the decoding accuracy of the machine learning algorithm potentially increasing the ease of use of a brain machine interface. PMID:29467602
Finger muscle control in children with dystonia.
Young, Scott J; van Doornik, Johan; Sanger, Terence D
2011-06-01
Childhood dystonia is a disorder that involves inappropriate muscle activation during attempts at voluntary movement. Few studies have investigated the muscle activity associated with dystonia in children, and none have done so in the hands. In this study, we measured surface electromyographic activity in four intrinsic hand muscles while participants attempted to perform an isometric tracking task using one of the muscles. Children with dystonia had greater tracking error with the task-related muscle and greater overflow to non-task muscles. Both tracking error and overflow correlated with the Barry-Albright Dystonia scale of the respective upper limb. Overflow also decreased when participants received visual feedback of non-task muscle activity. We conclude that two of the motor deficits in childhood dystonia--motor overflow and difficulties in actively controlling muscles--can be seen in the surface electromyographic activity of individual muscles during an isometric task. As expected from results in adults, overflow is an important feature of childhood dystonia. However, overflow may be at least partially dependent on an individual's level of awareness of their muscle activity. Most importantly, poor single-muscle tracking shows that children with dystonia have deficits of individual muscle control in addition to overflow or co-contraction. These results provide the first quantitative measures of the muscle activity associated with hand dystonia in children, and they suggest possible directions for control of dystonic symptoms. Copyright © 2011 Movement Disorder Society.
2017-10-01
potentials or multi-action potential activity from residual peripheral nerve while patient intends movements of amputated hand/arm Subtask 3.1: Mapping of...neural activity (Months 4 – 36) • Patients will be asked to intend a number of individual finger and multiple finger flexion, extension, adduction...intended movements. We will map the different intended movements onto the neural activity recorded on the electrodes of the micro-electrode array
2016-10-01
isolated action potentials or multi-action potential activity from residual peripheral nerve while patient intends movements of amputated hand/arm...Subtask 3.1: Mapping of neural activity (Months 4 – 36) • Patients will be asked to intend a number of individual finger and multiple finger flexion...during these intended movements. We will map the different intended movements onto the neural activity recorded on the electrodes of the micro-electrode
Contribution of finger tracing to the recognition of Chinese characters.
Yim-Ng, Y Y; Varley, R; Andrade, J
2000-01-01
Finger tracing is a simulation of the act of writing without the use of pen and paper. It is claimed to help in the processing of Chinese characters, possibly by providing additional motor coding. In this study, blindfolded subjects were equally good at identifying Chinese characters and novel visual stimuli through passive movements made with the index finger of the preferred hand and those made with the last finger of that hand. This suggests that finger tracing provides a relatively high level of coding specific to individual characters, but non-specific to motor effectors. Beginning each stroke from the same location, i.e. removing spatial information, impaired recognition of the familiar characters and the novel nonsense figures. Passively tracing the strokes in a random sequence also impaired recognition of the characters. These results therefore suggest that the beneficial effect of finger tracing on writing or recall of Chinese characters is mediated by sequence and spatial information embedded in the motor movements, and that proprioceptive channel may play a part in mediating visuo-spatial information. Finger tracing may be a useful strategy for remediation of Chinese language impairments.
Anwar, A R; Muthalib, M; Perrey, S; Galka, A; Granert, O; Wolff, S; Deuschl, G; Raethjen, J; Heute, U; Muthuraman, M
2012-01-01
Directionality analysis of signals originating from different parts of brain during motor tasks has gained a lot of interest. Since brain activity can be recorded over time, methods of time series analysis can be applied to medical time series as well. Granger Causality is a method to find a causal relationship between time series. Such causality can be referred to as a directional connection and is not necessarily bidirectional. The aim of this study is to differentiate between different motor tasks on the basis of activation maps and also to understand the nature of connections present between different parts of the brain. In this paper, three different motor tasks (finger tapping, simple finger sequencing, and complex finger sequencing) are analyzed. Time series for each task were extracted from functional magnetic resonance imaging (fMRI) data, which have a very good spatial resolution and can look into the sub-cortical regions of the brain. Activation maps based on fMRI images show that, in case of complex finger sequencing, most parts of the brain are active, unlike finger tapping during which only limited regions show activity. Directionality analysis on time series extracted from contralateral motor cortex (CMC), supplementary motor area (SMA), and cerebellum (CER) show bidirectional connections between these parts of the brain. In case of simple finger sequencing and complex finger sequencing, the strongest connections originate from SMA and CMC, while connections originating from CER in either direction are the weakest ones in magnitude during all paradigms.
Master, Sabah; Tremblay, François
2012-03-14
Haptic sensing with the fingers represents a unique class of manipulative actions, engaging motor, somatosensory and associative areas of the cortex while requiring only minimal forces and relatively simple movement patterns. Using transcranial magnetic stimulation (TMS), we investigated task-related changes in motor evoked potential (MEP) amplitude associated with unimanual haptic sensing in two related experiments. In Experiment I, we contrasted changes in the excitability of the hemisphere controlling the task hand in young and old adults under two trial conditions, i.e. when participants either touched a fine grating (smooth trials) or touched a coarse grating to detect its groove orientation (grating trials). In Experiment II, the same contrast between tasks was performed but with TMS applied over the hemisphere controlling the resting hand, while also addressing hemispheric (right vs. left) and age differences. In Experiment I, a main effect of trial type on MEP amplitude was detected (p = 0.001), MEPs in the task hand being ~50% larger during grating than smooth trials. No interaction with age was detected. Similar results were found for Experiment II, trial type having a large effect on MEP amplitude in the resting hand (p < 0.001) owing to selective increase in MEP size (~2.6 times greater) for grating trials. No interactions with age or side (right vs. left) were detected. Collectively, these results indicate that adding a haptic component to a simple unilateral finger action can elicit robust corticomotor facilitation not only in the working hemisphere but also in the opposite hemisphere. The fact that this facilitation seems well preserved with age, when task difficulty is adjusted, has some potential clinical implications.
Fehr, Thorsten; Code, Chris; Herrmann, Manfred
2007-10-03
The issue of how and where arithmetic operations are represented in the brain has been addressed in numerous studies. Lesion studies suggest that a network of different brain areas are involved in mental calculation. Neuroimaging studies have reported inferior parietal and lateral frontal activations during mental arithmetic using tasks of different complexities and using different operators (addition, subtraction, etc.). Indeed, it has been difficult to compare brain activation across studies because of the variety of different operators and different presentation modalities used. The present experiment examined fMRI-BOLD activity in participants during calculation tasks entailing different arithmetic operations -- addition, subtraction, multiplication and division -- of different complexities. Functional imaging data revealed a common activation pattern comprising right precuneus, left and right middle and superior frontal regions during all arithmetic operations. All other regional activations were operation specific and distributed in prominently frontal, parietal and central regions when contrasting complex and simple calculation tasks. The present results largely confirm former studies suggesting that activation patterns due to mental arithmetic appear to reflect a basic anatomical substrate of working memory, numerical knowledge and processing based on finger counting, and derived from a network originally related to finger movement. We emphasize that in mental arithmetic research different arithmetic operations should always be examined and discussed independently of each other in order to avoid invalid generalizations on arithmetics and involved brain areas.
An augmented reality home-training system based on the mirror training and imagery approach.
Trojan, Jörg; Diers, Martin; Fuchs, Xaver; Bach, Felix; Bekrater-Bodmann, Robin; Foell, Jens; Kamping, Sandra; Rance, Mariela; Maaß, Heiko; Flor, Herta
2014-09-01
Mirror training and movement imagery have been demonstrated to be effective in treating several clinical conditions, such as phantom limb pain, stroke-induced hemiparesis, and complex regional pain syndrome. This article presents an augmented reality home-training system based on the mirror and imagery treatment approaches for hand training. A head-mounted display equipped with cameras captures one hand held in front of the body, mirrors this hand, and displays it in real time in a set of four different training tasks: (1) flexing fingers in a predefined sequence, (2) moving the hand into a posture fitting into a silhouette template, (3) driving a "Snake" video game with the index finger, and (4) grasping and moving a virtual ball. The system records task performance and transfers these data to a central server via the Internet, allowing monitoring of training progress. We evaluated the system by having 7 healthy participants train with it over the course of ten sessions of 15-min duration. No technical problems emerged during this time. Performance indicators showed that the system achieves a good balance between relatively easy and more challenging tasks and that participants improved significantly over the training sessions. This suggests that the system is well suited to maintain motivation in patients, especially when it is used for a prolonged period of time.
Neural correlates of finger gnosis.
Rusconi, Elena; Tamè, Luigi; Furlan, Michele; Haggard, Patrick; Demarchi, Gianpaolo; Adriani, Michela; Ferrari, Paolo; Braun, Christoph; Schwarzbach, Jens
2014-07-02
Neuropsychological studies have described patients with a selective impairment of finger identification in association with posterior parietal lesions. However, evidence of the role of these areas in finger gnosis from studies of the healthy human brain is still scarce. Here we used functional magnetic resonance imaging to identify the brain network engaged in a novel finger gnosis task, the intermanual in-between task (IIBT), in healthy participants. Several brain regions exhibited a stronger blood oxygenation level-dependent (BOLD) response in IIBT than in a control task that did not explicitly rely on finger gnosis but used identical stimuli and motor responses as the IIBT. The IIBT involved stronger signal in the left inferior parietal lobule (IPL), bilateral precuneus (PCN), bilateral premotor cortex, and left inferior frontal gyrus. In all regions, stimulation of nonhomologous fingers of the two hands elicited higher BOLD signal than stimulation of homologous fingers. Only in the left anteromedial IPL (a-mIPL) and left PCN did signal strength decrease parametrically from nonhomology, through partial homology, to total homology with stimulation delivered synchronously to the two hands. With asynchronous stimulation, the signal was stronger in the left a-mIPL than in any other region, possibly indicating retention of task-relevant information. We suggest that the left PCN may contribute a supporting visuospatial representation via its functional connection to the right PCN. The a-mIPL may instead provide the core substrate of an explicit bilateral body structure representation for the fingers that when disrupted can produce the typical symptoms of finger agnosia. Copyright © 2014 the authors 0270-6474/14/339012-12$15.00/0.
Finger posture modulates structural body representations
Tamè, Luigi; Dransfield, Elanah; Quettier, Thomas; Longo, Matthew R.
2017-01-01
Patients with lesions of the left posterior parietal cortex commonly fail in identifying their fingers, a condition known as finger agnosia, yet are relatively unimpaired in sensation and skilled action. Such dissociations have traditionally been interpreted as evidence that structural body representations (BSR), such as the body structural description, are distinct from sensorimotor representations, such as the body schema. We investigated whether performance on tasks commonly used to assess finger agnosia is modulated by changes in hand posture. We used the ‘in between’ test in which participants estimate the number of unstimulated fingers between two touched fingers or a localization task in which participants judge which two fingers were stimulated. Across blocks, the fingers were placed in three levels of splay. Judged finger numerosity was analysed, in Exp. 1 by direct report and in Exp. 2 as the actual number of fingers between the fingers named. In both experiments, judgments were greater when non-adjacent stimulated fingers were positioned far apart compared to when they were close together or touching, whereas judgements were unaltered when adjacent fingers were stimulated. This demonstrates that BSRs are not fixed, but are modulated by the real-time physical distances between body parts. PMID:28223685
Compliant finger sensor for sensorimotor studies in MEG and MR environment
NASA Astrophysics Data System (ADS)
Li, Y.; Yong, X.; Cheung, T. P. L.; Menon, C.
2016-07-01
Magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI) are widely used for functional brain imaging. The correlations between the sensorimotor functions of the hand and brain activities have been investigated in MEG/fMRI studies. Currently, limited information can be drawn from these studies due to the limitations of existing motion sensors that are used to detect hand movements. One major challenge in designing these motion sensors is to limit the signal interference between the motion sensors and the MEG/fMRI. In this work, a novel finger motion sensor, which contains low-ferromagnetic and non-conductive materials, is introduced. The finger sensor consists of four air-filled chambers. When compressed by finger(s), the pressure change in the chambers can be detected by the electronics of the finger sensor. Our study has validated that the interference between the finger sensor and an MEG is negligible. Also, by applying a support vector machine algorithm to the data obtained from the finger sensor, at least 11 finger patterns can be discriminated. Comparing to the use of traditional electromyography (EMG) in detecting finger motion, our proposed finger motion sensor is not only MEG/fMRI compatible, it is also easy to use. As the signals acquired from the sensor have a higher SNR than that of the EMG, no complex algorithms are required to detect different finger movement patterns. Future studies can utilize this motion sensor to investigate brain activations during different finger motions and correlate the activations with the sensory and motor functions respectively.
On the Evolution of Handedness: Evidence for Feeding Biases
Flindall, Jason W.; Gonzalez, Claudia L. R.
2013-01-01
Many theories have been put forward to explain the origins of right-handedness in humans. Here we present evidence that this preference may stem in part from a right hand advantage in grasping for feeding. Thirteen participants were asked to reach-to-grasp food items of 3 different sizes: SMALL (Cheerios®), MEDIUM (Froot Loops®), and LARGE (Oatmeal Squares®). Participants used both their right- and left-hands in separate blocks (50 trials each, starting order counterbalanced) to grasp the items. After each grasp, participants either a) ate the food item, or b) placed it inside a bib worn beneath his/her chin (25 trials each, blocked design, counterbalanced). The conditions were designed such that the outward and inward movement trajectories were similar, differing only in the final step of placing it in the mouth or bib. Participants wore Plato liquid crystal goggles that blocked vision between trials. All trials were conducted in closed-loop with 5000 ms of vision. Hand kinematics were recorded by an Optotrak Certus, which tracked the position of three infrared diodes attached separately to the index finger, thumb, and wrist. We found a task (EAT/PLACE) by hand (LEFT/RIGHT) interaction on maximum grip aperture (MGA; the maximum distance between the index finger and thumb achieved during grasp pre-shaping). MGAs were smaller during right-handed movements, but only when grasping with intent to eat. Follow-up tests show that the RIGHT-HAND/EAT MGA was significantly smaller than all other hand/task conditions. Because smaller grip apertures are typically associated with greater precision, our results demonstrate a right-hand advantage for the grasp-to-eat movement. From an evolutionary perspective, early humans may have preferred the hand that could grasp food with more precision, thereby maximizing the likelihood of retrieval, consumption, and consequently, survival. PMID:24236078
Complementary Hand Responses Occur in Both Peri- and Extrapersonal Space.
Faber, Tim W; van Elk, Michiel; Jonas, Kai J
2016-01-01
Human beings have a strong tendency to imitate. Evidence from motor priming paradigms suggests that people automatically tend to imitate observed actions such as hand gestures by performing mirror-congruent movements (e.g., lifting one's right finger upon observing a left finger movement; from a mirror perspective). Many observed actions however, do not require mirror-congruent responses but afford complementary (fitting) responses instead (e.g., handing over a cup; shaking hands). Crucially, whereas mirror-congruent responses don't require physical interaction with another person, complementary actions often do. Given that most experiments studying motor priming have used stimuli devoid of contextual information, this space or interaction-dependency of complementary responses has not yet been assessed. To address this issue, we let participants perform a task in which they had to mirror or complement a hand gesture (fist or open hand) performed by an actor depicted either within or outside of reach. In three studies, we observed faster reaction times and less response errors for complementary relative to mirrored hand movements in response to open hand gestures (i.e., 'hand-shaking') irrespective of the perceived interpersonal distance of the actor. This complementary effect could not be accounted for by a low-level spatial cueing effect. These results demonstrate that humans have a strong and automatic tendency to respond by performing complementary actions. In addition, our findings underline the limitations of manipulations of space in modulating effects of motor priming and the perception of affordances.
Pre-movement planning processes in people with congenital mirror movements.
Franz, E A; Fu, Y
2017-10-01
Pre-movement processes were investigated in people with Congenital mirrormovement (CMM), a rare disorder in which bilateral movement (mirroring) occurs in the upper distal extremities (primarily the hands and fingers) during intended unilateral movements. Abnormal density of ipsilateral corticospinal projections is an established hallmark of CMM. This study tested whether the Lateralised Readiness Potential (LRP), which reflects movement planning and readiness, is also abnormal in people with CMM. Twenty-eight neurologically-normal controls and 8 people with CMM were tested on a unimanual Go/No-go task while electroencephalography (EEG) was recorded to assess the LRP. No significant group differences were found in reaction time (RT). However, significantly smaller LRP amplitudes were found, on average, in the CMM group compared to Controls at central-motor (C3,C4) sites in stimulus-locked and response-locked epochs; similar group differences were also found at further frontal sites (F3,F4) during response-locked epochs. Abnormal brain activity in pre-movement processes associated with response planning and preparation is present in people with CMM. Aberrant bilateral activity during pre-movement processes is clearly implicated; whether part of the etiology of CMM, or as a mechanism of neuro-compensation, is not yet known. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
The neural circuits recruited for the production of signs and fingerspelled words
Emmorey, Karen; Mehta, Sonya; McCullough, Stephen; Grabowski, Thomas J.
2016-01-01
Signing differs from typical non-linguistic hand actions because movements are not visually guided, finger movements are complex (particularly for fingerspelling), and signs are not produced as holistic gestures. We used positron emission tomography to investigate the neural circuits involved in the production of American Sign Language (ASL). Different types of signs (one-handed (articulated in neutral space), two-handed (neutral space), and one-handed body-anchored signs) were elicited by asking deaf native signers to produce sign translations of English words. Participants also fingerspelled (one-handed) printed English words. For the baseline task, participants indicated whether a word contained a descending letter. Fingerspelling engaged ipsilateral motor cortex and cerebellar cortex in contrast to both one-handed signs and the descender baseline task, which may reflect greater timing demands and complexity of handshape sequences required for fingerspelling. Greater activation in the visual word form area was also observed for fingerspelled words compared to one-handed signs. Body-anchored signs engaged bilateral superior parietal cortex to a greater extent than the descender baseline task and neutral space signs, reflecting the motor control and proprioceptive monitoring required to direct the hand toward a specific location on the body. Less activation in parts of the motor circuit was observed for two-handed signs compared to one-handed signs, possibly because, for half of the signs, handshape and movement goals were spread across the two limbs. Finally, the conjunction analysis comparing each sign type with the descender baseline task revealed common activation in the supramarginal gyrus bilaterally, which we interpret as reflecting phonological retrieval and encoding processes. PMID:27459390
Distinct Inter-Joint Coordination during Fast Alternate Keystrokes in Pianists with Superior Skill.
Furuya, Shinichi; Goda, Tatsushi; Katayose, Haruhiro; Miwa, Hiroyoshi; Nagata, Noriko
2011-01-01
Musical performance requires motor skills to coordinate the movements of multiple joints in the hand and arm over a wide range of tempi. However, it is unclear whether the coordination of movement across joints would differ for musicians with different skill levels and how inter-joint coordination would vary in relation to music tempo. The present study addresses these issues by examining the kinematics and muscular activity of the hand and arm movements of professional and amateur pianists who strike two keys alternately with the thumb and little finger at various tempi. The professionals produced a smaller flexion velocity at the thumb and little finger and greater elbow pronation and supination velocity than did the amateurs. The experts also showed smaller extension angles at the metacarpo-phalangeal joint of the index and middle fingers, which were not being used to strike the keys. Furthermore, muscular activity in the extrinsic finger muscles was smaller for the experts than for the amateurs. These findings indicate that pianists with superior skill reduce the finger muscle load during keystrokes by taking advantage of differences in proximal joint motion and hand postural configuration. With an increase in tempo, the experts showed larger and smaller increases in elbow velocity and finger muscle co-activation, respectively, compared to the amateurs, highlighting skill level-dependent differences in movement strategies for tempo adjustment. Finally, when striking as fast as possible, individual differences in the striking tempo among players were explained by their elbow velocities but not by their digit velocities. These findings suggest that pianists who are capable of faster keystrokes benefit more from proximal joint motion than do pianists who are not capable of faster keystrokes. The distinct movement strategy for tempo adjustment in pianists with superior skill would therefore ensure a wider range of musical expression.
Distinct Inter-Joint Coordination during Fast Alternate Keystrokes in Pianists with Superior Skill
Furuya, Shinichi; Goda, Tatsushi; Katayose, Haruhiro; Miwa, Hiroyoshi; Nagata, Noriko
2011-01-01
Musical performance requires motor skills to coordinate the movements of multiple joints in the hand and arm over a wide range of tempi. However, it is unclear whether the coordination of movement across joints would differ for musicians with different skill levels and how inter-joint coordination would vary in relation to music tempo. The present study addresses these issues by examining the kinematics and muscular activity of the hand and arm movements of professional and amateur pianists who strike two keys alternately with the thumb and little finger at various tempi. The professionals produced a smaller flexion velocity at the thumb and little finger and greater elbow pronation and supination velocity than did the amateurs. The experts also showed smaller extension angles at the metacarpo-phalangeal joint of the index and middle fingers, which were not being used to strike the keys. Furthermore, muscular activity in the extrinsic finger muscles was smaller for the experts than for the amateurs. These findings indicate that pianists with superior skill reduce the finger muscle load during keystrokes by taking advantage of differences in proximal joint motion and hand postural configuration. With an increase in tempo, the experts showed larger and smaller increases in elbow velocity and finger muscle co-activation, respectively, compared to the amateurs, highlighting skill level-dependent differences in movement strategies for tempo adjustment. Finally, when striking as fast as possible, individual differences in the striking tempo among players were explained by their elbow velocities but not by their digit velocities. These findings suggest that pianists who are capable of faster keystrokes benefit more from proximal joint motion than do pianists who are not capable of faster keystrokes. The distinct movement strategy for tempo adjustment in pianists with superior skill would therefore ensure a wider range of musical expression. PMID:21660290
Prehension synergies and control with referent hand configurations.
Latash, Mark L; Friedman, Jason; Kim, Sun Wook; Feldman, Anatol G; Zatsiorsky, Vladimir M
2010-04-01
We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb-virtual finger (VF) level (VF is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb-VF level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb-VF level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels.
Binocular and Monocular Depth Cues in Online Feedback Control of 3-D Pointing Movement
Hu, Bo; Knill, David C.
2012-01-01
Previous work has shown that humans continuously use visual feedback of the hand to control goal-directed movements online. In most studies, visual error signals were predominantly in the image plane and thus were available in an observer’s retinal image. We investigate how humans use visual feedback about finger depth provided by binocular and monocular depth cues to control pointing movements. When binocularly viewing a scene in which the hand movement was made in free space, subjects were about 60 ms slower in responding to perturbations in depth than in the image plane. When monocularly viewing a scene designed to maximize the available monocular cues to finger depth (motion, changing size and cast shadows), subjects showed no response to perturbations in depth. Thus, binocular cues from the finger are critical to effective online control of hand movements in depth. An optimal feedback controller that takes into account of the low peripheral stereoacuity and inherent ambiguity in cast shadows can explain the difference in response time in the binocular conditions and lack of response in monocular conditions. PMID:21724567
Multi-finger synergies and the muscular apparatus of the hand.
Cuadra, Cristian; Bartsch, Angelo; Tiemann, Paula; Reschechtko, Sasha; Latash, Mark L
2018-05-01
We explored whether the synergic control of the hand during multi-finger force production tasks depends on the hand muscles involved. Healthy subjects performed accurate force production tasks and targeted force pulses while pressing against loops positioned at the level of fingertips, middle phalanges, and proximal phalanges. This varied the involvement of the extrinsic and intrinsic finger flexors. The framework of the uncontrolled manifold (UCM) hypothesis was used to analyze the structure of inter-trial variance, motor equivalence, and anticipatory synergy adjustments prior to the force pulse in the spaces of finger forces and finger modes (hypothetical finger-specific control signals). Subjects showed larger maximal force magnitudes at the proximal site of force production. There were synergies stabilizing total force during steady-state phases across all three sites of force production; no differences were seen across the sites in indices of structure of variance, motor equivalence, or anticipatory synergy adjustments. Indices of variance, which did not affect the task (within the UCM), correlated with motor equivalent motion between the steady states prior to and after the force pulse; in contrast, variance affecting task performance did not correlate with non-motor equivalent motion. The observations are discussed within the framework of hierarchical control with referent coordinates for salient effectors at each level. The findings suggest that multi-finger synergies are defined at the level of abundant transformation between the low-dimensional hand level and higher dimensional finger level while being relatively immune to transformations between the finger level and muscle level. The results also support the scheme of control with two classes of neural variables that define referent coordinates and gains in back-coupling loops between hierarchical control levels.
Adaptation of reach-to-grasp movement in response to force perturbations.
Rand, M K; Shimansky, Y; Stelmach, G E; Bloedel, J R
2004-01-01
This study examined how reach-to-grasp movements are modified during adaptation to external force perturbations applied on the arm during reach. Specifically, we examined whether the organization of these movements was dependent upon the condition under which the perturbation was applied. In response to an auditory signal, all subjects were asked to reach for a vertical dowel, grasp it between the index finger and thumb, and lift it a short distance off the table. The subjects were instructed to do the task as fast as possible. The perturbation was an elastic load acting on the wrist at an angle of 105 deg lateral to the reaching direction. The condition was modified by changing the predictability with which the perturbation was applied in a given trial. After recording unperturbed control trials, perturbations were applied first on successive trials (predictable perturbations) and then were applied randomly (unpredictable perturbations). In the early predictable perturbation trials, reach path length became longer and reaching duration increased. As more predictable perturbations were applied, the reach path length gradually decreased and became similar to that of control trials. Reaching duration also decreased gradually as the subjects adapted by exerting force against the perturbation. In addition, the amplitude of peak grip aperture during arm transport initially increased in response to repeated perturbations. During the course of learning, it reached its maximum and thereafter slightly decreased. However, it did not return to the normal level. The subjects also adapted to the unpredictable perturbations through changes in both arm transport and grasping components, indicating that they can compensate even when the occurrence of the perturbation cannot be predicted during the inter-trial interval. Throughout random perturbation trials, large grip aperture values were observed, suggesting that a conservative aperture level is set regardless of whether the reaching arm is perturbed or not. In addition, the results of the predictable perturbations showed that the time from movement onset to the onset of grip aperture closure changed as adaptation occurred. However, the spatial location where the onset of finger closure occurred showed minimum changes with perturbation. These data suggest that the onset of finger closure is dependent upon distance to target rather than the temporal relationship of the grasp relative to the transport phase of the movement.
Design and fabrication of a three-finger prosthetic hand using SMA muscle wires
NASA Astrophysics Data System (ADS)
Simone, Filomena; York, Alexander; Seelecke, Stefan
2015-03-01
Bio-inspired hand-like gripper systems based on shape memory alloy (SMA) wire actuation have the potential to enable a number of useful applications in, e.g., the biomedical field or industrial assembly systems. The inherent high energy density makes SMA solutions a natural choice for systems with lightweight, low noise and high force requirements, such as hand prostheses or robotic systems in a human/machine environment. The focus of this research is the development, design and realization of a SMA-actuated prosthetic hand prototype with three fingers. The use of thin wires (100 μm diameter) allows for high cooling rates and therefore fast movement of each finger. Grouping several small wires mechanically in parallel allows for high force actuation. To save space and to allow for a direct transmission of the motion to each finger, the SMA wires are attached directly within each finger, across each phalanx. In this way, the contraction of the wires will allow the movement of the fingers without the use of any additional gears. Within each finger, two different bundles of wires are mounted: protagonist ones that create bending movement and the antagonist ones that enable stretching of each phalanx. The resistance change in the SMA wires is measured during actuation, which allows for monitoring of the wire stroke and potentially the gripping force without the use of additional sensors. The hand is built with modern 3D-printing technologies and its performance while grasping objects of different size and shape is experimentally investigated illustrating the usefulness of the actuator concept.
Koehne, Svenja; Behrends, Andrea; Fairhurst, Merle T; Dziobek, Isabel
2016-01-01
Since social cognition is impaired in individuals with autism spectrum disorder (ASD), this study aimed at establishing the efficacy of a newly developed imitation- and synchronization-based dance/movement intervention (SI-DMI) in fostering emotion inference and empathic feelings (emotional reaction to feelings of others) in adults with high-functioning ASD. Fifty-five adults with ASD (IQ ≥85) who were blinded to the aim of the study were assigned to receive either 10 weeks of a dance/movement intervention focusing on interpersonal movement imitation and synchronization (SI-DMI, n = 27) or a control movement intervention (CMI, n = 24) focusing on individual motor coordination (2 participants from each group declined before baseline testing). The primary outcome measure was the objective Multifaceted Empathy Test targeting emotion inference and empathic feelings. Secondary outcomes were scores on the self-rated Interpersonal Reactivity Index. The well-established automatic imitation task and synchronization finger-tapping task were used to quantify effects on imitation and synchronization functions, complemented by the more naturalistic Assessment of Spontaneous Interaction in Movement. Intention-to-treat analyses revealed that from baseline to 3 months, patients treated with SI-DMI showed a significantly larger improvement in emotion inference (d = 0.58), but not empathic feelings, than those treated with CMI (d = -0.04). On the close generalization level, SI-DMI increased synchronization skills and imitation tendencies, as well as whole-body imitation/synchronization and movement reciprocity/dialogue, compared to CMI. SI-DMI can be successful in promoting emotion inference in adults with ASD and warrants further investigation. © 2015 S. Karger AG, Basel.
Melodic Priming of Motor Sequence Performance: The Role of the Dorsal Premotor Cortex.
Stephan, Marianne A; Brown, Rachel; Lega, Carlotta; Penhune, Virginia
2016-01-01
The purpose of this study was to determine whether exposure to specific auditory sequences leads to the induction of new motor memories and to investigate the role of the dorsal premotor cortex (dPMC) in this crossmodal learning process. Fifty-two young healthy non-musicians were familiarized with the sound to key-press mapping on a computer keyboard and tested on their baseline motor performance. Each participant received subsequently either continuous theta burst stimulation (cTBS) or sham stimulation over the dPMC and was then asked to remember a 12-note melody without moving. For half of the participants, the contour of the melody memorized was congruent to a subsequently performed, but never practiced, finger movement sequence (Congruent group). For the other half, the melody memorized was incongruent to the subsequent finger movement sequence (Incongruent group). Hearing a congruent melody led to significantly faster performance of a motor sequence immediately thereafter compared to hearing an incongruent melody. In addition, cTBS speeded up motor performance in both groups, possibly by relieving motor consolidation from interference by the declarative melody memorization task. Our findings substantiate recent evidence that exposure to a movement-related tone sequence can induce specific, crossmodal encoding of a movement sequence representation. They further suggest that cTBS over the dPMC may enhance early offline procedural motor skill consolidation in cognitive states where motor consolidation would normally be disturbed by concurrent declarative memory processes. These findings may contribute to a better understanding of auditory-motor system interactions and have implications for the development of new motor rehabilitation approaches using sound and non-invasive brain stimulation as neuromodulatory tools.
Cortex Inspired Model for Inverse Kinematics Computation for a Humanoid Robotic Finger
Gentili, Rodolphe J.; Oh, Hyuk; Molina, Javier; Reggia, James A.; Contreras-Vidal, José L.
2013-01-01
In order to approach human hand performance levels, artificial anthropomorphic hands/fingers have increasingly incorporated human biomechanical features. However, the performance of finger reaching movements to visual targets involving the complex kinematics of multi-jointed, anthropomorphic actuators is a difficult problem. This is because the relationship between sensory and motor coordinates is highly nonlinear, and also often includes mechanical coupling of the two last joints. Recently, we developed a cortical model that learns the inverse kinematics of a simulated anthropomorphic finger. Here, we expand this previous work by assessing if this cortical model is able to learn the inverse kinematics for an actual anthropomorphic humanoid finger having its two last joints coupled and controlled by pneumatic muscles. The findings revealed that single 3D reaching movements, as well as more complex patterns of motion of the humanoid finger, were accurately and robustly performed by this cortical model while producing kinematics comparable to those of humans. This work contributes to the development of a bioinspired controller providing adaptive, robust and flexible control of dexterous robotic and prosthetic hands. PMID:23366569
Is it Finger or Wrist Dexterity That is Missing in Current Hand Prostheses?
Montagnani, Federico; Controzzi, Marco; Cipriani, Christian
2015-07-01
Building prostheses with dexterous motor function equivalent to that of the human hand is one of the ambitious goals of bioengineers. State of art prostheses lack several degrees of freedom (DoF) and force the individuals to compensate for them by changing the motions of their arms and body. However, such compensatory movements often result in residual limb pain and overuse syndromes. Significant efforts were spent in designing artificial hands with multiple allowed grasps but little work has been done with regards to wrist design, regardless the fact that the wrist contributes significantly to the execution of upper limb motor tasks. We hypothesized that a single DoF hand with wrist flexion/extension allowed function comparable to a highly performant multi DoF hand without wrist flexion/extension. To assess this we compared four emulated architectures of hand-wrist prostheses using the Southampton Hand Assessment Procedure and evaluating the extent of compensatory movements with unimpaired subjects wearing ortheses. Our findings show indeed that shifting the dexterity from the hand to the wrist could preserve the ability of transradial amputees in performing common tasks with limited effect on the compensatory movements. Hence, this study invites rehabilitation engineers to focus on novel artificial wrist architectures.
EMG finger movement classification based on ANFIS
NASA Astrophysics Data System (ADS)
Caesarendra, W.; Tjahjowidodo, T.; Nico, Y.; Wahyudati, S.; Nurhasanah, L.
2018-04-01
An increase number of people suffering from stroke has impact to the rapid development of finger hand exoskeleton to enable an automatic physical therapy. Prior to the development of finger exoskeleton, a research topic yet important i.e. machine learning of finger gestures classification is conducted. This paper presents a study on EMG signal classification of 5 finger gestures as a preliminary study toward the finger exoskeleton design and development in Indonesia. The EMG signals of 5 finger gestures were acquired using Myo EMG sensor. The EMG signal features were extracted and reduced using PCA. The ANFIS based learning is used to classify reduced features of 5 finger gestures. The result shows that the classification of finger gestures is less than the classification of 7 hand gestures.
du Plessis, Lindie; Jacobson, Sandra W; Molteno, Christopher D; Robertson, Frances C; Peterson, Bradley S; Jacobson, Joseph L; Meintjes, Ernesta M
2015-01-01
Classical eyeblink conditioning (EBC), an elemental form of learning, is among the most sensitive indicators of fetal alcohol spectrum disorders. The cerebellum plays a key role in maintaining timed movements with millisecond accuracy required for EBC. Functional MRI (fMRI) was used to identify cerebellar regions that mediate timing in healthy controls and the degree to which these areas are also recruited in children with prenatal alcohol exposure. fMRI data were acquired during an auditory rhythmic/non-rhythmic finger tapping task. We present results for 17 children with fetal alcohol syndrome (FAS) or partial FAS, 17 heavily exposed (HE) nonsyndromal children and 16 non- or minimally exposed controls. Controls showed greater cerebellar blood oxygen level dependent (BOLD) activation in right crus I, vermis IV-VI, and right lobule VI during rhythmic than non-rhythmic finger tapping. The alcohol-exposed children showed smaller activation increases during rhythmic tapping in right crus I than the control children and the most severely affected children with either FAS or PFAS showed smaller increases in vermis IV-V. Higher levels of maternal alcohol intake per occasion during pregnancy were associated with reduced activation increases during rhythmic tapping in all four regions associated with rhythmic tapping in controls. The four cerebellar areas activated by the controls more during rhythmic than non-rhythmic tapping have been implicated in the production of timed responses in several previous studies. These data provide evidence linking binge-like drinking during pregnancy to poorer function in cerebellar regions involved in timing and somatosensory processing needed for complex tasks requiring precise timing.
Perturbation-Induced False Starts as a Test of the Jirsa–Kelso Excitator Model
Fink, Philip W.; Kelso, J. A. Scott; Jirsa, Viktor K.
2009-01-01
One difference between the excitator model and other theoretical models of coordination is the mechanism of discrete movement initiation. In addition to an imperative signal common to all discrete movement initiation, the excitator model proposes that movements are initiated when a threshold element in state space, the so-called separatrix, is crossed as a consequence of stimulation or random fluctuations. The existence of a separatrix predicts that false starts will be caused by mechanical perturbations and that they depend on the perturbation's direction. The authors tested this prediction in a reaction-time task to an auditory stimulus. Participants applied perturbations in the direction of motion (i.e., index finger flexion) or opposed to the motion prior to the stimulus on 1/4 of the trials. The authors found false starts in 34% and 9% of trials following flexion perturbations and extension perturbations, respectively, as compared with only 2% of trials without perturbations, confirming a unique prediction of the excitator model. PMID:19201685
The development of consistency and flexibility in manual pointing during middle childhood.
Golenia, Laura; Schoemaker, Marina M; Otten, Egbert; Tuitert, Inge; Bongers, Raoul M
2018-05-21
Goal-directed actions become truly functional and skilled when they are consistent yet flexible. In manual pointing, end-effector consistency is characterized by the end position of the index fingertip, whereas flexibility in movement execution is captured by the use of abundant arm-joint configurations not affecting the index finger end position. Because adults have been shown to exploit their system's flexibility in challenging conditions, we wondered whether during middle childhood children are already able to exploit motor flexibility when demanded by the situation. We had children aged 5-10 years and adults perform pointing movements in a nonchallenging and challenging condition. Results showed that end-effector errors and flexibility in movement execution decreased with age. Importantly, only the 9-10-year-olds and adults showed increased flexibility in the challenging condition. Thus, while consistency increases and flexibility decreases during mid-childhood development, from the age of nine children appear able to employ more flexibility with increasing task demands. © 2018 Wiley Periodicals, Inc.
Developmental Trajectory of Motor Deficits in Preschool Children with ADHD.
Sweeney, Kristie L; Ryan, Matthew; Schneider, Heather; Ferenc, Lisa; Denckla, Martha Bridge; Mahone, E Mark
2018-01-01
Motor deficits persisting into childhood (>7 years) are associated with increased executive and cognitive dysfunction, likely due to parallel neural circuitry. This study assessed the longitudinal trajectory of motor deficits in preschool children with ADHD, compared to typically developing (TD) children, in order to identify individuals at risk for anomalous neurological development. Participants included 47 children (21 ADHD, 26 TD) ages 4-7 years who participated in three visits (V1, V2, V3), each one year apart (V1=48-71 months, V2=60-83 months, V3=72-95 months). Motor variables assessed included speed (finger tapping and sequencing), total overflow, and axial movements from the Revised Physical and Neurological Examination for Subtle Signs (PANESS). Effects for group, visit, and group-by-visit interaction were examined. There were significant effects for group (favoring TD) for finger tapping speed and total axial movements, visit (performance improving with age for all 4 variables), and a significant group-by-visit interaction for finger tapping speed. Motor speed (repetitive finger tapping) and quality of axial movements are sensitive markers of anomalous motor development associated with ADHD in children as young as 4 years. Conversely, motor overflow and finger sequencing speed may be less sensitive in preschool, due to ongoing wide variations in attainment of these milestones.
Behavioral and TMS Markers of Action Observation Might Reflect Distinct Neuronal Processes.
Hétu, Sébastien; Taschereau-Dumouchel, Vincent; Meziane, Hadj Boumediene; Jackson, Philip L; Mercier, Catherine
2016-01-01
Transcranial magnetic stimulation (TMS) studies have shown that observing an action induces muscle-specific changes in corticospinal excitability. From a signal detection theory standpoint, this pattern can be related to sensitivity, which here would measure the capacity to distinguish between two action observation conditions. In parallel to these TMS studies, action observation has also been linked to behavioral effects such as motor priming and interference. It has been hypothesized that behavioral markers of action observation could be related to TMS markers and thus represent a potentially cost-effective mean of assessing the functioning of the action-perception system. However, very few studies have looked at possible relationships between these two measures. The aim of this study was to investigate if individual differences in sensitivity to action observation could be related to the behavioral motor priming and interference effects produced by action observation. To this end, 14 healthy participants observed index and little finger movements during a TMS task and a stimulus-response compatibility task. Index muscle displayed sensitivity to action observation, and action observation resulted in significant motor priming+interference, while no significant effect was observed for the little finger in both task. Nevertheless, our results indicate that the sensitivity measured in TMS was not related to the behavioral changes measured in the stimulus-response compatibility task. Contrary to a widespread assumption, the current results indicate that individual differences in physiological and behavioral markers of action observation may be unrelated. This could have important impacts on the potential use of behavioral markers in place of more costly physiological markers of action observation in clinical settings.
Dalla Bella, Simone; Sowiński, Jakub
2015-03-16
A set of behavioral tasks for assessing perceptual and sensorimotor timing abilities in the general population (i.e., non-musicians) is presented here with the goal of uncovering rhythm disorders, such as beat deafness. Beat deafness is characterized by poor performance in perceiving durations in auditory rhythmic patterns or poor synchronization of movement with auditory rhythms (e.g., with musical beats). These tasks include the synchronization of finger tapping to the beat of simple and complex auditory stimuli and the detection of rhythmic irregularities (anisochrony detection task) embedded in the same stimuli. These tests, which are easy to administer, include an assessment of both perceptual and sensorimotor timing abilities under different conditions (e.g., beat rates and types of auditory material) and are based on the same auditory stimuli, ranging from a simple metronome to a complex musical excerpt. The analysis of synchronized tapping data is performed with circular statistics, which provide reliable measures of synchronization accuracy (e.g., the difference between the timing of the taps and the timing of the pacing stimuli) and consistency. Circular statistics on tapping data are particularly well-suited for detecting individual differences in the general population. Synchronized tapping and anisochrony detection are sensitive measures for identifying profiles of rhythm disorders and have been used with success to uncover cases of poor synchronization with spared perceptual timing. This systematic assessment of perceptual and sensorimotor timing can be extended to populations of patients with brain damage, neurodegenerative diseases (e.g., Parkinson's disease), and developmental disorders (e.g., Attention Deficit Hyperactivity Disorder).
Grip force and force sharing in two different manipulation tasks with bottles.
Cepriá-Bernal, Javier; Pérez-González, Antonio; Mora, Marta C; Sancho-Bru, Joaquín L
2017-07-01
Grip force and force sharing during two activities of daily living were analysed experimentally in 10 right-handed subjects. Four different bottles, filled to two different levels, were manipulated for two tasks: transporting and pouring. Each test subject's hand was instrumented with eight thin wearable force sensors. The grip force and force sharing were significantly different for each bottle model. Increasing the filling level resulted in an increase in grip force, but the ratio of grip force to load force was higher for lighter loads. The task influenced the force sharing but not the mean grip force. The contributions of the thumb and ring finger were higher in the pouring task, whereas the contributions of the palm and the index finger were higher in the transport task. Mean force sharing among fingers was 30% for index, 29% for middle, 22% for ring and 19% for little finger. Practitioner Summary: We analysed grip force and force sharing in two manipulation tasks with bottles: transporting and pouring. The objective was to understand the effects of the bottle features, filling level and task on the contribution of different areas of the hand to the grip force. Force sharing was different for each task and the bottles features affected to both grip force and force sharing.
Wachter, N J; Mentzel, M; Häderer, C; Krischak, G D; Gülke, J
2018-02-01
Ulnar nerve injuries can cause deficient hand movement patterns. Their assessment is important for diagnosis and rehabilitation in hand surgery cases. The purpose of this study was to quantify the changes in temporal coordination of the finger joints during different power grips with an ulnar nerve block by means of a sensor glove. In 21 healthy subjects, the onset and end of the active flexion of the 14 finger joints when gripping objects of different diameters was recorded by a sensor glove. The measurement was repeated after an ulnar nerve block was applied in a standardized setting. The change in the temporal coordination of the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints with and without the nerve block was calculated within the same subject. In healthy subjects, the MCP joints started their movement prior to the PIP joints in the middle and ring finger, whereas this occurred in the reverse order at the index and little finger. The DIP joint onset was significantly delayed (P<0.01). With the ulnar nerve block, this coordination shifted towards simultaneous onset of all joints, independent of the grip diameter. The thumb and index finger were affected the least. With an ulnar nerve block, the PIP joints completed their movement prior to the MCP joints when gripping small objects (G1 and G2), whereas the order was reversed with larger objects (G3 and G4). The alterations with ulnar nerve block affected mainly the little finger when gripping small objects. With larger diameter objects, all fingers had a significant delay at the end of the PIP joint movement relative to the MCP and DIP joints, and the PIP and DIP joint sequence was reversed (P<0.01). Based on the significant changes in temporal coordination of finger flexion during different power grips, there are biomechanical effects of loss of function of the intrinsic muscles caused by an ulnar nerve block on the fine motor skills of the hand. This can be important for the diagnosis and rehabilitation of ulnar nerve lesions of the hand. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.
Kakebeeke, Tanja H; Zysset, Annina E; Messerli-Bürgy, Nadine; Chaouch, Aziz; Stülb, Kerstin; Leeger-Aschmann, Claudia S; Schmutz, Einat A; Arhab, Amar; Rousson, Valentin; Kriemler, Susi; Munsch, Simone; Puder, Jardena J; Jenni, Oskar G
2018-02-01
Young children generally show contralateral associated movements (CAMs) when they are making an effort to perform a unimanual task. CAM and motor speed are two relevant aspects of motor proficiency in young children. These CAMs decrease over age, while motor speed increases. As both CAM and motor speed are associated with age, we were interested in whether these two parameters are also linked with each other. In this study, three manual dexterity tasks with the dominant and nondominant hands (pegboard, repetitive hand, and repetitive finger tasks) were used to investigate the effect of covariates (age, sex, socioeconomic status, total physical activity) on both motor speed and CAMs in preschool children. There was a significant age effect for both motor speed and CAMs in all tasks when the dominant hand was used. When the nondominant hand was used, the decrease in the intensity of CAMs over age was not consistently significant. The influence of physical activity and socioeconomic status on motor proficiency was small. Furthermore, the correlation between motor speed and CAMs, although significant, was low. Motor speed improved with age over three fine motor tasks in preschool children. Decrease in CAMs was observed but it was not always significant when the nondominant hand was working. Motor speed and CAMs were only weakly associated. We conclude that the excitatory pathways responsible for motor speed and inhibitory pathways responsible for reducing CAMs occupy two different domains in the brain and therefore mostly behave independently of each other.
Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.
Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay
2016-01-01
Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.
Fifty Years of Physics of Living Systems.
Latash, Mark L
2016-01-01
The equilibrium-point hypothesis and its more recent version, the referent configuration hypothesis, represent the physical approach to the neural control of action. This hypothesis can be naturally combined with the idea of hierarchical control of movements and of synergic organization of the abundant systems involved in all actions. Any action starts with defining trajectories of a few referent coordinates for a handful of salient task-specific variables. Further, referent coordinates at hierarchically lower levels emerge down to thresholds of the tonic stretch reflex for the participating muscles. Stability of performance with respect to salient variables is reflected in the structure of inter-trial variance and phenomena of motor equivalence. Three lines of recent research within this framework are reviewed. First, synergic adjustments of the referent coordinate and apparent stiffness have been demonstrated during finger force production supporting the main idea of control with referent coordinates. Second, the notion of unintentional voluntary movements has been introduced reflecting unintentional drifts in referent coordinates. Two types of unintentional movements have been observed with different characteristic times. Third, this framework has been applied to studies of impaired movements in neurological patients. Overall, the physical approach searching for laws of nature underlying biological movement has been highly stimulating and productive.
Slow Movements of Bio-Inspired Limbs
NASA Astrophysics Data System (ADS)
Babikian, Sarine; Valero-Cuevas, Francisco J.; Kanso, Eva
2016-10-01
Slow and accurate finger and limb movements are essential to daily activities, but the underlying mechanics is relatively unexplored. Here, we develop a mathematical framework to examine slow movements of tendon-driven limbs that are produced by modulating the tendons' stiffness parameters. Slow limb movements are driftless in the sense that movement stops when actuations stop. We demonstrate, in the context of a planar tendon-driven system representing a finger, that the control of stiffness suffices to produce stable and accurate limb postures and quasi-static (slow) transitions among them. We prove, however, that stable postures are achievable only when tendons are pretensioned, i.e., they cannot become slack. Our results further indicate that a non-smoothness in slow movements arises because the precision with which individual stiffnesses need to be altered changes substantially throughout the limb's motion.
2000-01-01
Disease Name thumbs pain at the base of the thumbs twisting and gripping butchers , house- keepers, packers, seam- stresses, cutters fingers De...Quervain’s disease difficulty moving finger; snapping and jerking movements repeatedly using the index fingers meatpackers, poultry workers, carpenters...line workers rotator cuff tendinitis hands, wrists pain, swelling repetitive or forceful hand and wrist motions core making, poultry process- ing
Mirror movements in healthy humans across the lifespan: effects of development and ageing.
Koerte, Inga; Eftimov, Lara; Laubender, Ruediger Paul; Esslinger, Olaf; Schroeder, Andreas Sebastian; Ertl-Wagner, Birgit; Wahllaender-Danek, Ute; Heinen, Florian; Danek, Adrian
2010-12-01
mirror movements are a transient phenomenon during childhood, which decrease in intensity with motor development. An increasing inhibitory competence resulting in the ability of movement lateralization is thought to be the underlying mechanism. We aimed to quantify unintended mirror movements systematically across the lifespan and to investigate the influences of age, sex, handedness, and task frequency. a total of 236 participants (127 females, 109 males; 216 right-handed, 20 left-handed; age range 3-96y, median 25y 8mo) first performed four clinical routine tests while mirror movements were rated by the observer. They were then asked to hold a force transducer in each hand between the thumb and index finger and to perform oscillatory grip force changes in one hand, while the other hand had to prevent the force transducer from dropping. age showed a strong nonlinear effect on the mirror-movement ratio (the amplitude ratio of the mirror and active hand, adjusted by the respective maximum grip force). Initially, there was a steep decline in the mirror-movement ratio during childhood and adolescence, followed by a gradual rise during adulthood. Males had lower mirror-movement ratios than females. The high-frequency condition triggered lower mirror-movement ratios. No significant differences of mirror movements between dominant and non-dominant hand, or left- and right-handed participants, were found. this study provides, for the first time to our knowledge, normative values of mirror movements across the lifespan that can aid differentiation between physiological and pathological mirror movements.
Integration of tactile input across fingers in a patient with finger agnosia.
Anema, Helen A; Overvliet, Krista E; Smeets, Jeroen B J; Brenner, Eli; Dijkerman, H Chris
2011-01-01
Finger agnosia has been described as an inability to explicitly individuate between the fingers, which is possibly due to fused neural representations of these fingers. Hence, are patients with finger agnosia unable to keep tactile information perceived over several fingers separate? Here, we tested a finger agnosic patient (GO) on two tasks that measured the ability to keep tactile information simultaneously perceived by individual fingers separate. In experiment 1 GO performed a haptic search task, in which a target (the absence of a protruded line) needed to be identified among distracters (protruded lines). The lines were presented simultaneously to the fingertips of both hands. Similarly to the controls, her reaction time decreased when her fingers were aligned as compared to when her fingers were stretched and in an unaligned position. This suggests that she can keep tactile input from different fingers separate. In experiment two, GO was required to judge the position of a target tactile stimulus to the index finger, relatively to a reference tactile stimulus to the middle finger, both in fingers uncrossed and crossed position. GO was able to indicate the relative position of the target stimulus as well as healthy controls, which indicates that she was able to keep tactile information perceived by two neighbouring fingers separate. Interestingly, GO performed better as compared to the healthy controls in the finger crossed condition. Together, these results suggest the GO is able to implicitly distinguish between tactile information perceived by multiple fingers. We therefore conclude that finger agnosia is not caused by minor disruptions of low-level somatosensory processing. These findings further underpin the idea of a selective impaired higher order body representation restricted to the fingers as underlying cause of finger agnosia. Copyright © 2010 Elsevier Ltd. All rights reserved.
Rowe, Justin B; Chan, Vicky; Ingemanson, Morgan L; Cramer, Steven C; Wolbrecht, Eric T; Reinkensmeyer, David J
2017-08-01
Robots that physically assist movement are increasingly used in rehabilitation therapy after stroke, yet some studies suggest robotic assistance discourages effort and reduces motor learning. To determine the therapeutic effects of high and low levels of robotic assistance during finger training. We designed a protocol that varied the amount of robotic assistance while controlling the number, amplitude, and exerted effort of training movements. Participants (n = 30) with a chronic stroke and moderate hemiparesis (average Box and Blocks Test 32 ± 18 and upper extremity Fugl-Meyer score 46 ± 12) actively moved their index and middle fingers to targets to play a musical game similar to GuitarHero 3 h/wk for 3 weeks. The participants were randomized to receive high assistance (causing 82% success at hitting targets) or low assistance (55% success). Participants performed ~8000 movements during 9 training sessions. Both groups improved significantly at the 1-month follow-up on functional and impairment-based motor outcomes, on depression scores, and on self-efficacy of hand function, with no difference between groups in the primary endpoint (change in Box and Blocks). High assistance boosted motivation, as well as secondary motor outcomes (Fugl-Meyer and Lateral Pinch Strength)-particularly for individuals with more severe finger motor deficits. Individuals with impaired finger proprioception at baseline benefited less from the training. Robot-assisted training can promote key psychological outcomes known to modulate motor learning and retention. Furthermore, the therapeutic effectiveness of robotic assistance appears to derive at least in part from proprioceptive stimulation, consistent with a Hebbian plasticity model.
An estimation of finger-tapping rates and load capacities and the effects of various factors.
Ekşioğlu, Mahmut; İşeri, Ali
2015-06-01
The aim of this study was to estimate the finger-tapping rates and finger load capacities of eight fingers (excluding thumbs) for a healthy adult population and investigate the effects of various factors on tapping rate. Finger-tapping rate, the total number of finger taps per unit of time, can be used as a design parameter of various products and also as a psychomotor test for evaluating patients with neurologic problems. A 1-min tapping task was performed by 148 participants with maximum volitional tempo for each of eight fingers. For each of the tapping tasks, the participant with the corresponding finger tapped the associated key in the standard position on the home row of a conventional keyboard for touch typing. The index and middle fingers were the fastest fingers for both hands, and little fingers the slowest. All dominant-hand fingers, except little finger, had higher tapping rates than the fastest finger of the nondominant hand. Tapping rate decreased with age and smokers tapped faster than nonsmokers. Tapping duration and exercise had also significant effect on tapping rate. Normative data of tapping rates and load capacities of eight fingers were estimated for the adult population. In designs of psychomotor tests that require the use of tapping rate or finger load capacity data, the effects of finger, age, smoking, and tapping duration need to be taken into account. The findings can be used for ergonomic designs requiring finger-tapping capacity and also as a reference in psychomotor tests. © 2015, Human Factors and Ergonomics Society.
Strength training improves the tri-digit finger-pinch force control of older adults.
Keogh, Justin W; Morrison, Steve; Barrett, Rod
2007-08-01
To investigate the effect of unilateral upper-limb strength training on the finger-pinch force control of older men. Pretest and post-test 6-week intervention study. Exercise science research laboratory. Eleven neurologically fit older men (age range, 70-80y). The strength training group (n=7) trained twice a week for 6 weeks, performing dumbbell bicep curls, wrist flexions, and wrists extensions, while the control group subjects (n=4) maintained their normal activities. Changes in force variability, targeting error, peak power frequency, proportional power, sample entropy, digit force sharing, and coupling relations were assessed during a series of finger-pinch tasks. These tasks involved maintaining a constant or sinusoidal force output at 20% and 40% of each subject's maximum voluntary contraction. All participants performed the finger-pinch tasks with both the preferred and nonpreferred limbs. Analysis of covariance for between-group change scores indicated that the strength training group (trained limb) experienced significantly greater reductions in finger-pinch force variability and targeting error, as well as significantly greater increases in finger-pinch force, sample entropy, bicep curl, and wrist flexion strength than did the control group. A nonspecific upper-limb strength-training program may improve the finger-pinch force control of older men.
Finger Forces in Clarinet Playing
Hofmann, Alex; Goebl, Werner
2016-01-01
Clarinettists close and open multiple tone holes to alter the pitch of the tones. Their fingering technique must be fast, precise, and coordinated with the tongue articulation. In this empirical study, finger force profiles and tongue techniques of clarinet students (N = 17) and professional clarinettists (N = 6) were investigated under controlled performance conditions. First, in an expressive-performance task, eight selected excerpts from the first Weber Concerto were performed. These excerpts were chosen to fit in a 2 × 2 × 2 design (register: low–high; tempo: slow–fast, dynamics: soft–loud). There was an additional condition controlled by the experimenter, which determined the expression levels (low–high) of the performers. Second, a technical-exercise task, an isochronous 23-tone melody was designed that required different effectors to produce the sequence (finger-only, tongue-only, combined tongue-finger actions). The melody was performed in three tempo conditions (slow, medium, fast) in a synchronization-continuation paradigm. Participants played on a sensor-equipped Viennese clarinet, which tracked finger forces and reed oscillations simultaneously. From the data, average finger force (Fmean) and peak force (Fmax) were calculated. The overall finger forces were low (Fmean = 1.17 N, Fmax = 3.05 N) compared to those on other musical instruments (e.g., guitar). Participants applied the largest finger forces during the high expression level performance conditions (Fmean = 1.21 N). For the technical exercise task, timing and articulation information were extracted from the reed signal. Here, the timing precision of the fingers deteriorated the timing precision of the tongue for combined tongue-finger actions, especially for faster tempi. Although individual finger force profiles were overlapping, the group of professional players applied less finger force overall (Fmean = 0.54 N). Such sensor instruments provide useful insights into player-instrument interactions and can also be used in the future to give feedback to students in various learning and practising situations. PMID:27540367
Hove, Michael J.; Balasubramaniam, Ramesh; Keller, Peter E.
2014-01-01
Synchronizing movements with a beat requires rapid compensation for timing errors. The phase-correction response (PCR) has been studied extensively in finger tapping by shifting a metronome onset and measuring the adjustment of the following tap time. How the response unfolds during the subsequent tap cycle remains unknown. Using motion capture, we examined finger kinematics during the PCR. Participants tapped with a metronome containing phase perturbations. They tapped in ‘legato’ and ‘staccato’ style at various tempi, which altered the timing of the constituent movement stages (dwell at the surface, extension, flexion). After a phase perturbation, tapping kinematics changed compared to baseline, and the PCR was distributed differently across movement stages. In staccato tapping, the PCR trajectory changed primarily during finger extension across tempi. In legato tapping, at fast tempi the PCR occurred primarily during extension, whereas at slow tempi most phase correction was already completed during dwell. Across conditions, timing adjustments occurred primarily 100-250 ms into the following tap cycle. The change in movement around 100 ms represents the time to integrate information into an already planned movement and the rapidity suggests a subcortical route. PMID:25151103
Surmounting retraining limits in musicians' dystonia by transcranial stimulation.
Furuya, Shinichi; Nitsche, Michael A; Paulus, Walter; Altenmüller, Eckart
2014-05-01
Abnormal cortical excitability is evident in various movement disorders that compromise fine motor control. Here we tested whether skilled finger movements can be restored in musicians with focal hand dystonia through behavioral training assisted by transcranial direct current stimulation to the motor cortex of both hemispheres. The bilateral motor cortices of 20 pianists (10 with focal dystonia, 10 healthy controls) were electrically stimulated noninvasively during bimanual mirrored finger movements. We found improvement in the rhythmic accuracy of sequential finger movements with the affected hand during and after cathodal stimulation over the affected cortex and simultaneous anodal stimulation over the unaffected cortex. The improvement was retained 4 days after intervention. Neither a stimulation with the reversed montage of electrodes nor sham stimulation yielded any improvement. Furthermore, the amount of improvement was positively correlated with the severity of the symptoms. Bihemispheric stimulation without concurrent motor training failed to improve fine motor control, underlining the importance of combined retraining and stimulation for restoring the dystonic symptoms. For the healthy pianists, none of the stimulation protocols enhanced movement accuracy. These results suggest a therapeutic potential of behavioral training assisted by bihemispheric, noninvasive brain stimulation in restoring fine motor control in focal dystonia. © 2014 American Neurological Association.
Integrating optical finger motion tracking with surface touch events.
MacRitchie, Jennifer; McPherson, Andrew P
2015-01-01
This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction.
Integrating optical finger motion tracking with surface touch events
MacRitchie, Jennifer; McPherson, Andrew P.
2015-01-01
This paper presents a method of integrating two contrasting sensor systems for studying human interaction with a mechanical system, using piano performance as the case study. Piano technique requires both precise small-scale motion of fingers on the key surfaces and planned large-scale movement of the hands and arms. Where studies of performance often focus on one of these scales in isolation, this paper investigates the relationship between them. Two sensor systems were installed on an acoustic grand piano: a monocular high-speed camera tracking the position of painted markers on the hands, and capacitive touch sensors attach to the key surfaces which measure the location of finger-key contacts. This paper highlights a method of fusing the data from these systems, including temporal and spatial alignment, segmentation into notes and automatic fingering annotation. Three case studies demonstrate the utility of the multi-sensor data: analysis of finger flexion or extension based on touch and camera marker location, timing analysis of finger-key contact preceding and following key presses, and characterization of individual finger movements in the transitions between successive key presses. Piano performance is the focus of this paper, but the sensor method could equally apply to other fine motor control scenarios, with applications to human-computer interaction. PMID:26082732
Tamaru, Yoshiki; Naito, Yasuo; Nishikawa, Takashi
2017-11-01
Elderly people are less able to manipulate objects skilfully than young adults. Although previous studies have examined age-related deterioration of hand movements with a focus on the phase after grasping objects, the changes in the reaching phase have not been studied thus far. We aimed to examine whether changes in hand shape patterns during the reaching phase of grasping movements differ between young adults and the elderly. Ten healthy elderly adults and 10 healthy young adults were examined using the Simple Test for Evaluating Hand Functions and kinetic analysis of hand pre-shaping reach-to-grasp tasks. The results were then compared between the two groups. For kinetic analysis, we measured the time of peak tangential velocity of the wrist and the inter-fingertip distance (the distance between the tips of the thumb and index finger) at different time points. The results showed that the elderly group's performance on the Simple Test for Evaluating Hand Functions was significantly lower than that of the young adult group, irrespective of whether the dominant or non-dominant hand was used, indicating deterioration of hand movement in the elderly. The peak tangential velocity of the wrist in either hand appeared significantly earlier in the elderly group than in the young adult group. The elderly group also showed larger inter-fingertip distances with arch-like fingertip trajectories compared to the young adult group for all object sizes. To perform accurate prehension, elderly people have an earlier peak tangential velocity point than young adults. This allows for a longer adjustment time for reaching and grasping movements and for reducing errors in object prehension by opening the hand and fingers wider. Elderly individuals gradually modify their strategy based on previous successes and failures during daily living to compensate for their decline in dexterity and operational capabilities. © 2017 Japanese Psychogeriatric Society.
Gaetz, W; Macdonald, M; Cheyne, D; Snead, O C
2010-06-01
We measured visually-cued motor responses in two developmentally separate groups of children and compared these responses to a group of adults. We hypothesized that if post-movement beta rebound (PMBR) depends on developmentally sensitive processes, PMBR will be greatest in adults and progressively decrease in children performing a basic motor task as a function of age. Twenty children (10 young children 4-6 years; 10 adolescent children 11-13 years) and 10 adults all had MEG recorded during separate recordings of right and left index finger movements. Beta band (15-30 Hz) event-related desynchronization (ERD) of bi-lateral sensorimotor areas was observed to increase significantly from both contralateral and ipsilateral MI with age. Movement-related gamma synchrony (60-90 Hz) was also observed from contralateral MI for each age group. However, PMBR was significantly reduced in the 4-6 year group and, while more prominent, remained significantly diminished in the adolescent (11-13 year) age group as compared to adults. PMBR measures were weak or absent in the youngest children tested and appear maximally from bilateral MI in adults. Thus PMBR may reflect an age-dependent inhibitory process of the primary motor cortex which comes on-line with normal development. Previous studies have shown PMBR may be observed from MI following a variety of movement-related tasks in adult participants - however, the origin and purpose of the PMBR is unclear. The current study shows that the expected PMBR from MI observed from adults is increasingly diminished in adolescent and young children respectively. A reduction in PMBR from children may reflect reduced motor cortical inhibition. Relatively less motor inhibition may facilitate neuronal plasticity and promote motor learning in children. Copyright 2010 Elsevier Inc. All rights reserved.
Know thyself: behavioral evidence for a structural representation of the human body.
Rusconi, Elena; Gonzaga, Mirandola; Adriani, Michela; Braun, Christoph; Haggard, Patrick
2009-01-01
Representing one's own body is often viewed as a basic form of self-awareness. However, little is known about structural representations of the body in the brain. We developed an inter-manual version of the classical "in-between" finger gnosis task: participants judged whether the number of untouched fingers between two touched fingers was the same on both hands, or different. We thereby dissociated structural knowledge about fingers, specifying their order and relative position within a hand, from tactile sensory codes. Judgments following stimulation on homologous fingers were consistently more accurate than trials with no or partial homology. Further experiments showed that structural representations are more enduring than purely sensory codes, are used even when number of fingers is irrelevant to the task, and moreover involve an allocentric representation of finger order, independent of hand posture. Our results suggest the existence of an allocentric representation of body structure at higher stages of the somatosensory processing pathway, in addition to primary sensory representation.
Know Thyself: Behavioral Evidence for a Structural Representation of the Human Body
Rusconi, Elena; Gonzaga, Mirandola; Adriani, Michela; Braun, Christoph; Haggard, Patrick
2009-01-01
Background Representing one's own body is often viewed as a basic form of self-awareness. However, little is known about structural representations of the body in the brain. Methods and Findings We developed an inter-manual version of the classical “in-between” finger gnosis task: participants judged whether the number of untouched fingers between two touched fingers was the same on both hands, or different. We thereby dissociated structural knowledge about fingers, specifying their order and relative position within a hand, from tactile sensory codes. Judgments following stimulation on homologous fingers were consistently more accurate than trials with no or partial homology. Further experiments showed that structural representations are more enduring than purely sensory codes, are used even when number of fingers is irrelevant to the task, and moreover involve an allocentric representation of finger order, independent of hand posture. Conclusions Our results suggest the existence of an allocentric representation of body structure at higher stages of the somatosensory processing pathway, in addition to primary sensory representation. PMID:19412538
The transition to increased automaticity during finger sequence learning in adult males who stutter.
Smits-Bandstra, Sarah; De Nil, Luc; Rochon, Elizabeth
2006-01-01
The present study compared the automaticity levels of persons who stutter (PWS) and persons who do not stutter (PNS) on a practiced finger sequencing task under dual task conditions. Automaticity was defined as the amount of attention required for task performance. Twelve PWS and 12 control subjects practiced finger tapping sequences under single and then dual task conditions. Control subjects performed the sequencing task significantly faster and less variably under single versus dual task conditions while PWS' performance was consistently slow and variable (comparable to the dual task performance of control subjects) under both conditions. Control subjects were significantly more accurate on a colour recognition distracter task than PWS under dual task conditions. These results suggested that control subjects transitioned to quick, accurate and increasingly automatic performance on the sequencing task after practice, while PWS did not. Because most stuttering treatment programs for adults include practice and automatization of new motor speech skills, findings of this finger sequencing study and future studies of speech sequence learning may have important implications for how to maximize stuttering treatment effectiveness. As a result of this activity, the participant will be able to: (1) Define automaticity and explain the importance of dual task paradigms to investigate automaticity; (2) Relate the proposed relationship between motor learning and automaticity as stated by the authors; (3) Summarize the reviewed literature concerning the performance of PWS on dual tasks; and (4) Explain why the ability to transition to automaticity during motor learning may have important clinical implications for stuttering treatment effectiveness.
Arjunan, Sridhar P; Kumar, Dinesh K; Naik, Ganesh R
2010-01-01
This research paper reports an experimental study on identification of the changes in fractal properties of surface Electromyogram (sEMG) with the changes in the force levels during low-level finger flexions. In the previous study, the authors have identified a novel fractal feature, Maximum fractal length (MFL) as a measure of strength of low-level contractions and has used this feature to identify various wrist and finger movements. This study has tested the relationship between the MFL and force of contraction. The results suggest that changes in MFL is correlated with the changes in contraction levels (20%, 50% and 80% maximum voluntary contraction (MVC)) during low-level muscle activation such as finger flexions. From the statistical analysis and by visualisation using box-plot, it is observed that MFL (p ≈ 0.001) is a more correlated to force of contraction compared to RMS (p≈0.05), even when the muscle contraction is less than 50% MVC during low-level finger flexions. This work has established that this fractal feature will be useful in providing information about changes in levels of force during low-level finger movements for prosthetic control or human computer interface.
Aramaki, Yu; Haruno, Masahiko; Osu, Rieko; Sadato, Norihiro
2011-07-06
In periodic bimanual movements, anti-phase-coordinated patterns often change into in-phase patterns suddenly and involuntarily. Because behavior in the initial period of a sequence of cycles often does not show any obvious errors, it is difficult to predict subsequent movement errors in the later period of the cyclical sequence. Here, we evaluated performance in the later period of the cyclical sequence of bimanual periodic movements using human brain activity measured with functional magnetic resonance imaging as well as using initial movement features. Eighteen subjects performed a 30 s bimanual finger-tapping task. We calculated differences in initiation-locked transient brain activity between antiphase and in-phase tapping conditions. Correlation analysis revealed that the difference in the anterior putamen activity during antiphase compared within-phase tapping conditions was strongly correlated with future instability as measured by the mean absolute deviation of the left-hand intertap interval during antiphase movements relative to in-phase movements (r = 0.81). Among the initial movement features we measured, only the number of taps to establish the antiphase movement pattern exhibited a significant correlation. However, the correlation efficient of 0.60 was not high enough to predict the characteristics of subsequent movement. There was no significant correlation between putamen activity and initial movement features. It is likely that initiating unskilled difficult movements requires increased anterior putamen activity, and this activity increase may facilitate the initiation of movement via the basal ganglia-thalamocortical circuit. Our results suggest that initiation-locked transient activity of the anterior putamen can be used to predict future motor performance.
Development of an image operation system with a motion sensor in dental radiology.
Sato, Mitsuru; Ogura, Toshihiro; Yasumoto, Yoshiaki; Kadowaki, Yuta; Hayashi, Norio; Doi, Kunio
2015-07-01
During examinations and/or treatment, a dentist in the examination room needs to view images with a proper display system. However, they cannot operate the image display system by hands, because dentists always wear gloves to be kept their hands away from unsanitized materials. Therefore, we developed a new image operating system that uses a motion sensor. We used the Leap motion sensor technique to read the hand movements of a dentist. We programmed the system using C++ to enable various movements of the display system, i.e., click, double click, drag, and drop. Thus, dentists with their gloves on in the examination room can control dental and panoramic images on the image display system intuitively and quickly with movement of their hands only. We investigated the time required with the conventional method using a mouse and with the new method using the finger operation. The average operation time with the finger method was significantly shorter than that with the mouse method. This motion sensor method, with appropriate training for finger movements, can provide a better operating performance than the conventional mouse method.
Developmental Trajectory of Motor Deficits in Preschool Children with ADHD
Sweeney, Kristie L; Ryan, Matthew; Schneider, Heather; Ferenc, Lisa; Denckla, Martha Bridge; Mahone, E. Mark
2018-01-01
Motor deficits persisting into childhood (>7 years) are associated with increased executive and cognitive dysfunction, likely due to parallel neural circuitry. This study assessed the longitudinal trajectory of motor deficits in preschool children with ADHD, compared to typically developing (TD) children, in order to identify individuals at risk for anomalous neurological development. Participants included 47 children (21 ADHD, 26 TD) ages 4–7 years who participated in three visits (V1, V2, V3), each one year apart (V1=48–71 months, V2=60–83 months, V3=72–95 months). Motor variables assessed included speed (finger tapping and sequencing), total overflow, and axial movements from the Revised Physical and Neurological Examination for Subtle Signs (PANESS). Effects for group, visit, and group-by-visit interaction were examined. There were significant effects for group (favoring TD) for finger tapping speed and total axial movements, visit (performance improving with age for all 4 variables), and a significant group-by-visit interaction for finger tapping speed. Motor speed (repetitive finger tapping) and quality of axial movements are sensitive markers of anomalous motor development associated with ADHD in children as young as 4 years. Conversely, motor overflow and finger sequencing speed may be less sensitive in preschool, due to ongoing wide variations in attainment of these milestones. PMID:29757012
NASA Technical Reports Server (NTRS)
McFarland, Shane
2016-01-01
Injuries to the hands are common among astronauts who train for extravehicular activity. When the gloves are pressurized, they restrict movement and create pressure points during tasks, sometimes resulting in pain, muscle fatigue, abrasions, and occasionally more severe injuries such as onycholysis. A brief review of NASA's Lifetime Surveillance of Astronaut Health's injury database reveals that 76 percent of astronaut hand and arm injuries from training between 1993 and 2010 occurred either to the fingernail, finger crotch, metacarpophalangeal joint, or fingertip. The purpose of this study was to assess the potential of using small sensors to measure forces acting on the fingers and hand within pressurized gloves and other variables such as skin temperature, humidity, and fingernail strain of a NASA crewmember during typical NBL (Neutral Buoyancy Laboratory) training activity. During the 5-hour exercise, the crewmember seemed to exhibit very large forces on some fingers, resulting in higher strain than seen in previous glove-box testing. In addition, vital information was collected on the glove cavity environment with respect to temperature and humidity. All of this information gathered during testing will be carried forward into future testing, potentially in glove-box- or 1G- (1 gravitational force) or NBL-suited environments, to better characterize and understand the possible causes of hand injury amongst NASA crew.
NASA Astrophysics Data System (ADS)
Cao, Jianwei; Khan, Bilal; Hervey, Nathan; Tian, Fenghua; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Roberts, Heather; Tulchin-Francis, Kirsten; Shierk, Angela; Shagman, Laura; MacFarlane, Duncan; Liu, Hanli; Alexandrakis, George
2015-03-01
Sensorimotor cortex plasticity induced by constraint-induced movement therapy (CIMT) in six children (10.2 ± 2.1 years old) with hemiplegic cerebral palsy (CP) was assessed by functional near-infrared spectroscopy (fNIRS). The activation laterality index and time-to-peak/duration during a finger tapping task were quantified before, immediately after, and six months after CIMT. Five age-matched healthy children (9.8 ± 1.3 years old) were also imaged at the same time points to provide comparative activation metrics for normal controls. In children with CP the activation time-to-peak/duration for all sensorimotor centers displayed significant normalization immediately after CIMT that persisted six months later. In contrast to this longer term improvement in localized activation response, the laterality index that depended on communication between sensorimotor centers improved immediately after CIMT, but relapsed six months later.
Manual Dexterity in Schizophrenia—A Neglected Clinical Marker?
Térémetz, Maxime; Carment, Loïc; Brénugat-Herne, Lindsay; Croca, Marta; Bleton, Jean-Pierre; Krebs, Marie-Odile; Maier, Marc A.; Amado, Isabelle; Lindberg, Påvel G.
2017-01-01
Impaired manual dexterity is commonly observed in schizophrenia. However, a quantitative description of key sensorimotor components contributing to impaired dexterity is lacking. Whether the key components of dexterity are differentially affected and how they relate to clinical characteristics also remains unclear. We quantified the degree of dexterity in 35 stabilized patients with schizophrenia and in 20 age-matched control subjects using four visuomotor tasks: (i) force tracking to quantify visuomotor precision, (ii) sequential finger tapping to measure motor sequence recall, (iii) single-finger tapping to assess temporal regularity, and (iv) multi-finger tapping to measure independence of finger movements. Diverse clinical and neuropsychological tests were also applied. A patient subgroup (N = 15) participated in a 14-week cognitive remediation protocol and was assessed before and after remediation. Compared to control subjects, patients with schizophrenia showed greater error in force tracking, poorer recall of tapping sequences, decreased tapping regularity, and reduced degree of finger individuation. A composite performance measure discriminated patients from controls with sensitivity = 0.79 and specificity = 0.9. Aside from force-tracking error, no other dexterity components correlated with antipsychotic medication. In patients, some dexterity components correlated with neurological soft signs, Positive and Negative Syndrome Scale (PANSS), or neuropsychological scores. This suggests differential cognitive contributions to these components. Cognitive remediation lead to significant improvement in PANSS, tracking error, and sequence recall (without change in medication). These findings show that multiple aspects of sensorimotor control contribute to impaired manual dexterity in schizophrenia. Only visuomotor precision was related to antipsychotic medication. Good diagnostic accuracy and responsiveness to treatment suggest that manual dexterity may represent a useful clinical marker in schizophrenia. PMID:28740470
Laufer, Shlomi; D'Angelo, Anne-Lise D; Kwan, Calvin; Ray, Rebbeca D; Yudkowsky, Rachel; Boulet, John R; McGaghie, William C; Pugh, Carla M
2017-12-01
Develop new performance evaluation standards for the clinical breast examination (CBE). There are several, technical aspects of a proper CBE. Our recent work discovered a significant, linear relationship between palpation force and CBE accuracy. This article investigates the relationship between other technical aspects of the CBE and accuracy. This performance assessment study involved data collection from physicians (n = 553) attending 3 different clinical meetings between 2013 and 2014: American Society of Breast Surgeons, American Academy of Family Physicians, and American College of Obstetricians and Gynecologists. Four, previously validated, sensor-enabled breast models were used for clinical skills assessment. Models A and B had solitary, superficial, 2 cm and 1 cm soft masses, respectively. Models C and D had solitary, deep, 2 cm hard and moderately firm masses, respectively. Finger movements (search technique) from 1137 CBE video recordings were independently classified by 2 observers. Final classifications were compared with CBE accuracy. Accuracy rates were model A = 99.6%, model B = 89.7%, model C = 75%, and model D = 60%. Final classification categories for search technique included rubbing movement, vertical movement, piano fingers, and other. Interrater reliability was (k = 0.79). Rubbing movement was 4 times more likely to yield an accurate assessment (odds ratio 3.81, P < 0.001) compared with vertical movement and piano fingers. Piano fingers had the highest failure rate (36.5%). Regression analysis of search pattern, search technique, palpation force, examination time, and 6 demographic variables, revealed that search technique independently and significantly affected CBE accuracy (P < 0.001). Our results support measurement and classification of CBE techniques and provide the foundation for a new paradigm in teaching and assessing hands-on clinical skills. The newly described piano fingers palpation technique was noted to have unusually high failure rates. Medical educators should be aware of the potential differences in effectiveness for various CBE techniques.
Hutto, E.L.
1961-08-15
A manipulator is described for performing, within an entirely enclosed cell containling radioactive materials, various mechanical operations. A rod with flexible fingers is encompassed by a tubular sleeve shorter than the rod. Relative movement between the rod and sleeve causes the fingers to open and close. This relative movement is effected by relative movement of permanent magnets in magnetic coupling relation to magnetic followers affixed to the ends of the rod and sleeve. The rod and its sleeve may be moved as a unit axially or may be rotated by means of the magnetic couplings. The manipulator is enclosed within a tubular member which is flexibly sealed to an opening in the cell. (AEC)
Liu, Na; Yu, Ruifeng
2018-06-01
This study aimed to determine the touch characteristics during tapping tasks on membrane touch interface and investigate the effects of posture and gender on touch characteristics variables. One hundred participants tapped digits displayed on a membrane touch interface on sitting and standing positions using all fingers of the dominant hand. Touch characteristics measures included average force, contact area, and dwell time. Across fingers and postures, males exerted larger force and contact area than females, but similar dwell time. Across genders and postures, thumb exerted the largest force and the force of the other four fingers showed no significant difference. The contact area of the thumb was the largest, whereas that of the little finger was the smallest; the dwell time of the thumb was the longest, whereas that of the middle finger was the shortest. Relationships among finger sizes, gender, posture and touch characteristics were proposed. The findings helped direct membrane touch interface design for digital and numerical control products from hardware and software perspectives. Practitioner Summary: This study measured force, contact area, and dwell time in tapping tasks on membrane touch interface and examined effects of gender and posture on force, contact area, and dwell time. The findings will direct membrane touch interface design for digital and numerical control products from hardware and software perspectives.
Task-specific kinetic finger tremor affects the performance of carrom players.
Kahathuduwa, Chanaka N; Weerasinghe, Vajira S; Dassanayake, Tharaka L; Priyadarshana, Rajeewa; Dissanayake, Arunika L; Perera, Christine
2016-01-01
We aimed to determine the effect of task-specific kinetic finger tremor, as indexed by surface electromyography (EMG), on the accuracy of a carrom stroke. Surface EMG of extensor digitorum communis muscle of the playing arm was recorded during rest, isometric contraction and stroke execution in 17 male carrom players with clinically observed finger tremor and 18 skill- and age-matched controls. Log-transformed power spectral densities (LogPSDs) of surface EMG activity (signifying tremor severity) at a 1-s pre-execution period correlated with angular error of the stroke. LogPSDs in 4-10 Hz range were higher in players with tremor than controls during pre-execution (P < 0.001), but not during the resting state (P = 0.067). Pre-execution tremor amplitude correlated with angular deviation (r = 0.45, P = 0.007). For the first time, we document a task-specific kinetic finger tremor in carrom players. This finger tremor during the immediate pre-execution phase appears to be a significant determinant of stroke accuracy.
Moving a Rubber Hand that Feels Like Your Own: A Dissociation of Ownership and Agency
Kalckert, Andreas; Ehrsson, H. Henrik
2012-01-01
During voluntary hand movement, we sense that we generate the movement and that the hand is a part of our body. These feelings of control over bodily actions, or the sense of agency, and the ownership of body parts are two fundamental aspects of the way we consciously experience our bodies. However, little is known about how these processes are functionally linked. Here, we introduce a version of the rubber hand illusion in which participants control the movements of the index finger of a model hand, which is in full view, by moving their own right index finger. We demonstrated that voluntary finger movements elicit a robust illusion of owning the rubber hand and that the senses of ownership and agency over the model hand can be dissociated. We systematically varied the relative timing of the finger movements (synchronous versus asynchronous), the mode of movement (active versus passive), and the position of the model hand (anatomically congruent versus incongruent positions). Importantly, asynchrony eliminated both ownership and agency, passive movements abolished the sense of agency but left ownership intact, and incongruent positioning of the model hand diminished ownership but did not eliminate agency. These findings provide evidence for a double dissociation of ownership and agency, suggesting that they represent distinct cognitive processes. Interestingly, we also noted that the sense of agency was stronger when the hand was perceived to be a part of the body, and only in this condition did we observe a significant correlation between the subjects’ ratings of agency and ownership. We discuss this in the context of possible differences between agency over owned body parts and agency over actions that involve interactions with external objects. In summary, the results obtained in this study using a simple moving rubber hand illusion paradigm extend previous findings on the experience of ownership and agency and shed new light on their relationship. PMID:22435056
A Low-Cost Hand Trainer Device Based On Microcontroller Platform
NASA Astrophysics Data System (ADS)
Sabor, Muhammad Akmal Mohammad; Thamrin, Norashikin M.
2018-03-01
Conventionally, the rehabilitation equipment used in the hospital or recovery center to treat and train the muscle of the stroke patient is implementing the pneumatic or compressed air machine. The main problem caused by this equipment is that the arrangement of the machine is quite complex and the position of it has been locked and fixed, which can cause uncomfortable feeling to the patients throughout the recovery session. Furthermore, the harsh movement from the machine could harm the patient as it does not allow flexibility movement and the use of pneumatic actuator has increased the gripping force towards the patient which could hurt them. Therefore, the main aim of this paper is to propose the development of the Bionic Hand Trainer based on Arduino platform, for a low-cost solution for rehabilitation machine as well as allows flexibility and smooth hand movement for the patients during the healing process. The scope of this work is to replicate the structure of the hand only at the fingers structure that is the phalanges part, which inclusive the proximal, intermediate and distal of the fingers. In order to do this, a hand glove is designed by equipping with flex sensors at every finger and connected them to the Arduino platform. The movement of the hand will motorize the movement of the dummy hand that has been controlled by the servo motors, which have been equipped along the phalanges part. As a result, the bending flex sensors due to the movement of the fingers has doubled up the rotation of the servo motors to mimic this movement at the dummy hand. The voltage output from the bending sensors are ranging from 0 volt to 5 volts, which are suitable for low-cost hand trainer device implementation. Through this system, the patient will have the power to control their gripping operation slowly without having a painful force from the external actuators throughout the rehabilitation process.
Coordination of pincer grasp and transport after mechanical perturbation of the index finger
Schettino, Luis F.; Adamovich, Sergei V.
2017-01-01
Our understanding of reach-to-grasp movements has evolved from the original formulation of the movement as two semi-independent visuomotor channels to one of interdependence. Despite a number of important contributions involving perturbations of the reach or the grasp, some of the features of the movement, such as the presence or absence of coordination between the digits during the pincer grasp and the extent of spatio-temporal interdependence between the transport and the grasp, are still unclear. In this study, we physically perturbed the index finger into extension during grasping closure on a minority of trials to test whether modifying the movement of one digit would affect the movement of the opposite digit, suggestive of an overarching coordinative process. Furthermore, we tested whether disruption of the grasp results in the modification of kinematic parameters of the transport. Our results showed that a continuous perturbation to the index finger affected wrist velocity but not lateral displacement. Moreover, we found that the typical flexion of the thumb observed in nonperturbed trials was delayed until the index finger counteracted the extension force. These results suggest that physically perturbing the grasp modifies the kinematics of the transport component, indicating a two-way interdependence of the reach and the grasp. Furthermore, a perturbation to one digit affects the kinematics of the other, supporting a model of grasping in which the digits are coordinated by a higher-level process rather than being independently controlled. NEW & NOTEWORTHY A current debate concerning the neural control of prehension centers on the question of whether the digits in a pincer grasp are controlled individually or together. Employing a novel approach that perturbs mechanically the grasp component during a natural reach-to-grasp movement, this work is the first to test a key hypothesis: whether perturbing one of the digits during the movement affects the other. Our results support the idea that the digits are not independently controlled. PMID:28331008
Context effects on smooth pursuit and manual interception of a disappearing target.
Kreyenmeier, Philipp; Fooken, Jolande; Spering, Miriam
2017-07-01
In our natural environment, we interact with moving objects that are surrounded by richly textured, dynamic visual contexts. Yet most laboratory studies on vision and movement show visual objects in front of uniform gray backgrounds. Context effects on eye movements have been widely studied, but it is less well known how visual contexts affect hand movements. Here we ask whether eye and hand movements integrate motion signals from target and context similarly or differently, and whether context effects on eye and hand change over time. We developed a track-intercept task requiring participants to track the initial launch of a moving object ("ball") with smooth pursuit eye movements. The ball disappeared after a brief presentation, and participants had to intercept it in a designated "hit zone." In two experiments ( n = 18 human observers each), the ball was shown in front of a uniform or a textured background that either was stationary or moved along with the target. Eye and hand movement latencies and speeds were similarly affected by the visual context, but eye and hand interception (eye position at time of interception, and hand interception timing error) did not differ significantly between context conditions. Eye and hand interception timing errors were strongly correlated on a trial-by-trial basis across all context conditions, highlighting the close relation between these responses in manual interception tasks. Our results indicate that visual contexts similarly affect eye and hand movements but that these effects may be short-lasting, affecting movement trajectories more than movement end points. NEW & NOTEWORTHY In a novel track-intercept paradigm, human observers tracked a briefly shown object moving across a textured, dynamic context and intercepted it with their finger after it had disappeared. Context motion significantly affected eye and hand movement latency and speed, but not interception accuracy; eye and hand position at interception were correlated on a trial-by-trial basis. Visual context effects may be short-lasting, affecting movement trajectories more than movement end points. Copyright © 2017 the American Physiological Society.
Motor equivalence during multi-finger accurate force production
Mattos, Daniela; Schöner, Gregor; Zatsiorsky, Vladimir M.; Latash, Mark L.
2014-01-01
We explored stability of multi-finger cyclical accurate force production action by analysis of responses to small perturbations applied to one of the fingers and inter-cycle analysis of variance. Healthy subjects performed two versions of the cyclical task, with and without an explicit target. The “inverse piano” apparatus was used to lift/lower a finger by 1 cm over 0.5 s; the subjects were always instructed to perform the task as accurate as they could at all times. Deviations in the spaces of finger forces and modes (hypothetical commands to individual fingers) were quantified in directions that did not change total force (motor equivalent) and in directions that changed the total force (non-motor equivalent). Motor equivalent deviations started immediately with the perturbation and increased progressively with time. After a sequence of lifting-lowering perturbations leading to the initial conditions, motor equivalent deviations were dominating. These phenomena were less pronounced for analysis performed with respect to the total moment of force with respect to an axis parallel to the forearm/hand. Analysis of inter-cycle variance showed consistently higher variance in a subspace that did not change the total force as compared to the variance that affected total force. We interpret the results as reflections of task-specific stability of the redundant multi-finger system. Large motor equivalent deviations suggest that reactions of the neuromotor system to a perturbation involve large changes of neural commands that do not affect salient performance variables, even during actions with the purpose to correct those salient variables. Consistency of the analyses of motor equivalence and variance analysis provides additional support for the idea of task-specific stability ensured at a neural level. PMID:25344311
Chen, Po-Tsun; Lin, Chien-Ju; Jou, I-Ming; Chieh, Hsiao-Feng; Su, Fong-Chin; Kuo, Li-Chieh
2013-01-01
Most trigger digit (TD) patients complain that they have problems using their hand in daily or occupational tasks due to single or multiple digits being affected. Unfortunately, clinicians do not know much about how this disease affects the subtle force coordination among digits during manipulation. Thus, this study examined the differences in force patterns during cylindrical grasp between TD and healthy subjects. Forty-two TD patients with single digit involvement were included and sorted into four groups based on the involved digits, including thumb, index, middle and ring fingers. Twelve healthy subjects volunteered as healthy controls. Two testing tasks, holding and drinking, were performed by natural grasping with minimal forces. The relations between the force of the thumb and each finger were examined by Pearson correlation coefficients. The force amount and contribution of each digit were compared between healthy controls and each TD group by the independent t test. The results showed all TD groups demonstrated altered correlation patterns of the thumb relative to each finger. Larger forces and higher contributions of the index finger were found during holding by patients with index finger involved, and also during drinking by patients with affected thumb and with affected middle finger. Although no triggering symptom occurred during grasping, the patients showed altered force patterns which may be related to the role of the affected digit in natural grasping function. In conclusion, even if only one digit was affected, the subtle force coordination of all the digits was altered during simple tasks among the TD patients. This study provides the information for the future studies to further comprehend the possible injuries secondary to the altered finger coordination and also to adopt suitable treatment strategies. PMID:24391799
Chen, Po-Tsun; Lin, Chien-Ju; Jou, I-Ming; Chieh, Hsiao-Feng; Su, Fong-Chin; Kuo, Li-Chieh
2013-01-01
Most trigger digit (TD) patients complain that they have problems using their hand in daily or occupational tasks due to single or multiple digits being affected. Unfortunately, clinicians do not know much about how this disease affects the subtle force coordination among digits during manipulation. Thus, this study examined the differences in force patterns during cylindrical grasp between TD and healthy subjects. Forty-two TD patients with single digit involvement were included and sorted into four groups based on the involved digits, including thumb, index, middle and ring fingers. Twelve healthy subjects volunteered as healthy controls. Two testing tasks, holding and drinking, were performed by natural grasping with minimal forces. The relations between the force of the thumb and each finger were examined by Pearson correlation coefficients. The force amount and contribution of each digit were compared between healthy controls and each TD group by the independent t test. The results showed all TD groups demonstrated altered correlation patterns of the thumb relative to each finger. Larger forces and higher contributions of the index finger were found during holding by patients with index finger involved, and also during drinking by patients with affected thumb and with affected middle finger. Although no triggering symptom occurred during grasping, the patients showed altered force patterns which may be related to the role of the affected digit in natural grasping function. In conclusion, even if only one digit was affected, the subtle force coordination of all the digits was altered during simple tasks among the TD patients. This study provides the information for the future studies to further comprehend the possible injuries secondary to the altered finger coordination and also to adopt suitable treatment strategies.
Movement-related neuromagnetic fields in preschool age children.
Cheyne, Douglas; Jobst, Cecilia; Tesan, Graciela; Crain, Stephen; Johnson, Blake
2014-09-01
We examined sensorimotor brain activity associated with voluntary movements in preschool children using a customized pediatric magnetoencephalographic system. A videogame-like task was used to generate self-initiated right or left index finger movements in 17 healthy right-handed subjects (8 females, ages 3.2-4.8 years). We successfully identified spatiotemporal patterns of movement-related brain activity in 15/17 children using beamformer source analysis and surrogate MRI spatial normalization. Readiness fields in the contralateral sensorimotor cortex began ∼0.5 s prior to movement onset (motor field, MF), followed by transient movement-evoked fields (MEFs), similar to that observed during self-paced movements in adults, but slightly delayed and with inverted source polarities. We also observed modulation of mu (8-12 Hz) and beta (15-30 Hz) oscillations in sensorimotor cortex with movement, but with different timing and a stronger frequency band coupling compared to that observed in adults. Adult-like high-frequency (70-80 Hz) gamma bursts were detected at movement onset. All children showed activation of the right superior temporal gyrus that was independent of the side of movement, a response that has not been reported in adults. These results provide new insights into the development of movement-related brain function, for an age group in which no previous data exist. The results show that children under 5 years of age have markedly different patterns of movement-related brain activity in comparison to older children and adults, and indicate that significant maturational changes occur in the sensorimotor system between the preschool years and later childhood. Copyright © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Schroeder, Karen E.; Irwin, Zachary T.; Bullard, Autumn J.; Thompson, David E.; Bentley, J. Nicole; Stacey, William C.; Patil, Parag G.; Chestek, Cynthia A.
2017-08-01
Objective. Challenges in improving the performance of dexterous upper-limb brain-machine interfaces (BMIs) have prompted renewed interest in quantifying the amount and type of sensory information naturally encoded in the primary motor cortex (M1). Previous single unit studies in monkeys showed M1 is responsive to tactile stimulation, as well as passive and active movement of the limbs. However, recent work in this area has focused primarily on proprioception. Here we examined instead how tactile somatosensation of the hand and fingers is represented in M1. Approach. We recorded multi- and single units and thresholded neural activity from macaque M1 while gently brushing individual finger pads at 2 Hz. We also recorded broadband neural activity from electrocorticogram (ECoG) grids placed on human motor cortex, while applying the same tactile stimulus. Main results. Units displaying significant differences in firing rates between individual fingers (p < 0.05) represented up to 76.7% of sorted multiunits across four monkeys. After normalizing by the number of channels with significant motor finger responses, the percentage of electrodes with significant tactile responses was 74.9% ± 24.7%. No somatotopic organization of finger preference was obvious across cortex, but many units exhibited cosine-like tuning across multiple digits. Sufficient sensory information was present in M1 to correctly decode stimulus position from multiunit activity above chance levels in all monkeys, and also from ECoG gamma power in two human subjects. Significance. These results provide some explanation for difficulties experienced by motor decoders in clinical trials of cortically controlled prosthetic hands, as well as the general problem of disentangling motor and sensory signals in primate motor cortex during dextrous tasks. Additionally, examination of unit tuning during tactile and proprioceptive inputs indicates cells are often tuned differently in different contexts, reinforcing the need for continued refinement of BMI training and decoding approaches to closed-loop BMI systems for dexterous grasping.
LEFT-RIGHT DIFFERENCES ON TIMED MOTOR EXAMINATION IN CHILDREN
Roeder, Megan B.; Mahone, E. Mark; Larson, J. Gidley; Mostofsky, S. H.; Cutting, Laurie E.; Goldberg, Melissa C.; Denckla, Martha B.
2008-01-01
Age-related change in the difference between left- and right-side speed on motor examination may be an important indicator of maturation. Cortical maturation and myelination of the corpus callosum are considered to be related to increased bilateral skill and speed on timed motor tasks. We compared left minus right foot, hand, and finger speed differences using the Revised Physical and Neurological Assessment for Subtle Signs (PANESS; Denckla, 1985); examining 130 typically developing right-handed children (65 boys, 65 girls) ages 7−14. Timed tasks included right and left sets of 20 toe taps, 10 toe-heel alternation sequences, 20 hand pats, 10 hand pronate-supinate sets, 20 finger taps, and 5 sequences of each finger-to-thumb apposition. For each individual, six difference scores between left- and right-sided speeded performances of timed motor tasks were analyzed. Left-right differences decreased significantly with age on toe tapping, heel-toe alternations, hand pronation-supination, finger repetition, and finger sequencing. There were significant gender effects for heel-toe sequences (boys showing a greater left-right difference than girls), and a significant interaction between age and gender for hand pronation-supination, such that the magnitude of the left-right difference was similar for younger, compared with older girls, while the difference was significantly larger for younger, compared to older boys. Speed of performing right and left timed motor tasks equalizes with development; for some tasks, the equalization occurs earlier in girls than in boys. PMID:17852124
Finger tracking for hand-held device interface using profile-matching stereo vision
NASA Astrophysics Data System (ADS)
Chang, Yung-Ping; Lee, Dah-Jye; Moore, Jason; Desai, Alok; Tippetts, Beau
2013-01-01
Hundreds of millions of people use hand-held devices frequently and control them by touching the screen with their fingers. If this method of operation is being used by people who are driving, the probability of deaths and accidents occurring substantially increases. With a non-contact control interface, people do not need to touch the screen. As a result, people will not need to pay as much attention to their phones and thus drive more safely than they would otherwise. This interface can be achieved with real-time stereovision. A novel Intensity Profile Shape-Matching Algorithm is able to obtain 3-D information from a pair of stereo images in real time. While this algorithm does have a trade-off between accuracy and processing speed, the result of this algorithm proves the accuracy is sufficient for the practical use of recognizing human poses and finger movement tracking. By choosing an interval of disparity, an object at a certain distance range can be segmented. In other words, we detect the object by its distance to the cameras. The advantage of this profile shape-matching algorithm is that detection of correspondences relies on the shape of profile and not on intensity values, which are subjected to lighting variations. Based on the resulting 3-D information, the movement of fingers in space from a specific distance can be determined. Finger location and movement can then be analyzed for non-contact control of hand-held devices.
Control and prediction components of movement planning in stuttering vs. nonstuttering adults
Daliri, Ayoub; Prokopenko, Roman A.; Flanagan, J. Randall; Max, Ludo
2014-01-01
Purpose Stuttering individuals show speech and nonspeech sensorimotor deficiencies. To perform accurate movements, the sensorimotor system needs to generate appropriate control signals and correctly predict their sensory consequences. Using a reaching task, we examined the integrity of these control and prediction components, separately, for movements unrelated to the speech motor system. Method Nine stuttering and nine nonstuttering adults made fast reaching movements to visual targets while sliding an object under the index finger. To quantify control, we determined initial direction error and end-point error. To quantify prediction, we calculated the correlation between vertical and horizontal forces applied to the object—an index of how well vertical force (preventing slip) anticipated direction-dependent variations in horizontal force (moving the object). Results Directional and end-point error were significantly larger for the stuttering group. Both groups performed similarly in scaling vertical force with horizontal force. Conclusions The stuttering group's reduced reaching accuracy suggests limitations in generating control signals for voluntary movements, even for non-orofacial effectors. Typical scaling of vertical force with horizontal force suggests an intact ability to predict the consequences of planned control signals. Stuttering may be associated with generalized deficiencies in planning control signals rather than predicting the consequences of those signals. PMID:25203459
Improvement in children's fine motor skills following a computerized typing intervention.
McGlashan, Hannah L; Blanchard, Caroline C V; Sycamore, Nicole J; Lee, Rachel; French, Blandine; Holmes, Nicholas P
2017-12-01
Children spend a large proportion of their school day engaged in tasks that require manual dexterity. If children experience difficulties with their manual dexterity skills it can have a consequential effect on their academic achievement. The first aim of this paper was to explore whether an online interactive typing intervention could improve children's scores on a standardised measure of manual dexterity. The second aim was to implement a serial reaction time tapping task as an index of children's finger movement learning, and to see whether performance on this task would improve after the intervention. Seventy-eight typically developing children aged between 8 and 10 were tested at their school on the pre-intervention Movement Assessment Battery for Children (2nd edition; MABC-2) and tapping tasks. Twenty-eight of these children volunteered to be randomly allocated to the intervention or control group. Children in the intervention group had a choice of two online games to play at home over a period of four weeks, while the children in the control group were not given these games to play. The intervention and control groups were then re-tested on the MABC-2 manual dexterity and the tapping task. Children in the intervention group significantly improved their manual dexterity scores in the MABC-2 compared to the control group. On average, all children learnt the tapping sequence, however, there were no group differences and no effect of the intervention on the tapping task. These results have important implications for implementing a freely available, easy to administer, fun and interactive intervention to help children improve their manual dexterity skills. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Estimation method of finger tapping dynamics using simple magnetic detection system
NASA Astrophysics Data System (ADS)
Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo
2010-05-01
We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.
Estimation method of finger tapping dynamics using simple magnetic detection system.
Kandori, Akihiko; Sano, Yuko; Miyashita, Tsuyoshi; Okada, Yoshihisa; Irokawa, Masataka; Shima, Keisuke; Tsuji, Toshio; Yokoe, Masaru; Sakoda, Saburo
2010-05-01
We have developed the simple estimation method of a finger tapping dynamics model for investigating muscle resistance and stiffness during tapping movement in normal subjects. We measured finger tapping movements of 207 normal subjects using a magnetic finger tapping detection system. Each subject tapped two fingers in time with a metronome at 1, 2, 3, 4, and 5 Hz. The velocity and acceleration values for both the closing and opening tapping data were used to estimate a finger tapping dynamics model. Using the frequency response of the ratio of acceleration to velocity of the mechanical impedance parameters, we estimated the resistance (friction coefficient) and compliance (stiffness). We found two dynamics models for the maximum open position and tap position. In the maximum open position, the extensor muscle resistance was twice as high as the flexor muscle resistance and males had a higher spring constant. In the tap position, the flexor muscle resistance was much higher than the extensor muscle resistance. This indicates that the tapping dynamics in the maximum open position are controlled by the balance of extensor and flexor muscle friction resistances and the flexor stiffness, and the flexor friction resistance is the main component in the tap position. It can be concluded that our estimation method makes it possible to understand the tapping dynamics.
Engel, Annerose; Bangert, Marc; Horbank, David; Hijmans, Brenda S; Wilkens, Katharina; Keller, Peter E; Keysers, Christian
2012-11-01
To investigate the cross-modal transfer of movement patterns necessary to perform melodies on the piano, 22 non-musicians learned to play short sequences on a piano keyboard by (1) merely listening and replaying (vision of own fingers occluded) or (2) merely observing silent finger movements and replaying (on a silent keyboard). After training, participants recognized with above chance accuracy (1) audio-motor learned sequences upon visual presentation (89±17%), and (2) visuo-motor learned sequences upon auditory presentation (77±22%). The recognition rates for visual presentation significantly exceeded those for auditory presentation (p<.05). fMRI revealed that observing finger movements corresponding to audio-motor trained melodies is associated with stronger activation in the left rolandic operculum than observing untrained sequences. This region was also involved in silent execution of sequences, suggesting that a link to motor representations may play a role in cross-modal transfer from audio-motor training condition to visual recognition. No significant differences in brain activity were found during listening to visuo-motor trained compared to untrained melodies. Cross-modal transfer was stronger from the audio-motor training condition to visual recognition and this is discussed in relation to the fact that non-musicians are familiar with how their finger movements look (motor-to-vision transformation), but not with how they sound on a piano (motor-to-sound transformation). Copyright © 2012 Elsevier Inc. All rights reserved.
Movement amplitude and tempo change in piano performance
NASA Astrophysics Data System (ADS)
Palmer, Caroline
2004-05-01
Music performance places stringent temporal and cognitive demands on individuals that should yield large speed/accuracy tradeoffs. Skilled piano performance, however, shows consistently high accuracy across a wide variety of rates. Movement amplitude may affect the speed/accuracy tradeoff, so that high accuracy can be obtained even at very fast tempi. The contribution of movement amplitude changes in rate (tempo) is investigated with motion capture. Cameras recorded pianists with passive markers on hands and fingers, who performed on an electronic (MIDI) keyboard. Pianists performed short melodies at faster and faster tempi until they made errors (altering the speed/accuracy function). Variability of finger movements in the three motion planes indicated most change in the plane perpendicular to the keyboard across tempi. Surprisingly, peak amplitudes of motion before striking the keys increased as tempo increased. Increased movement amplitudes at faster rates may reduce or compensate for speed/accuracy tradeoffs. [Work supported by Canada Research Chairs program, HIMH R01 45764.
Joint-action coordination in transferring objects
Bosga, Jurjen; Hulstijn, Majken; Miedl, Stephan
2007-01-01
Here we report a study of joint-action coordination in transferring objects. Fourteen dyads were asked to repeatedly reposition a cylinder in a shared workspace without using dialogue. Variations in task constraints concerned the size of the two target regions in which the cylinder had to be (re)positioned and the size and weight of the transferred cylinder. Movements of the wrist, index finger and thumb of both actors were recorded by means of a 3D motion-tracking system. Data analyses focused on the interpersonal transfer of lifting-height and movement-speed variations. Whereas the analyses of variance did not reveal any interpersonal transfer effects targeted data comparisons demonstrated that the actor who fetched the cylinder from where the other actor had put it was systematically less surprised by cylinder-weight changes than the actor who was first confronted with such changes. In addition, a moderate, accuracy-constraint independent adaptation to each other’s movement speed was found. The current findings suggest that motor resonance plays only a moderate role in collaborative motor control and confirm the independency between sensorimotor and cognitive processing of action-related information. PMID:17256158
Tan, Francisca M; Caballero-Gaudes, César; Mullinger, Karen J; Cho, Siu-Yeung; Zhang, Yaping; Dryden, Ian L; Francis, Susan T; Gowland, Penny A
2017-11-01
Most functional MRI (fMRI) studies map task-driven brain activity using a block or event-related paradigm. Sparse paradigm free mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information, but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of activation likelihood estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the sensorimotor network (SMN) to six motor functions (left/right fingers, left/right toes, swallowing, and eye blinks). We validated the framework using simultaneous electromyography (EMG)-fMRI experiments and motor tasks with short and long duration, and random interstimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events were 77 ± 13% and 74 ± 16%, respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55% and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this article discusses methodological implications and improvements to increase the decoding performance. Hum Brain Mapp 38:5778-5794, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Tan, Francisca M.; Caballero-Gaudes, César; Mullinger, Karen J.; Cho, Siu-Yeung; Zhang, Yaping; Dryden, Ian L.; Francis, Susan T.; Gowland, Penny A.
2017-01-01
Most fMRI studies map task-driven brain activity using a block or event-related paradigm. Sparse Paradigm Free Mapping (SPFM) can detect the onset and spatial distribution of BOLD events in the brain without prior timing information; but relating the detected events to brain function remains a challenge. In this study, we developed a decoding method for SPFM using a coordinate-based meta-analysis method of Activation Likelihood Estimation (ALE). We defined meta-maps of statistically significant ALE values that correspond to types of events and calculated a summation overlap between the normalized meta-maps and SPFM maps. As a proof of concept, this framework was applied to relate SPFM-detected events in the Sensorimotor Network (SMN) to six motor function (left/right fingers, left/right toes, swallowing and eye blinks). We validated the framework using simultaneous Electromyography-fMRI experiments and motor tasks with short and long duration, and random inter-stimulus interval. The decoding scores were considerably lower for eye movements relative to other movement types tested. The average successful rate for short and long motor events was 77 ± 13% and 74 ± 16% respectively, excluding eye movements. We found good agreement between the decoding results and EMG for most events and subjects, with a range in sensitivity between 55 and 100%, excluding eye movements. The proposed method was then used to classify the movement types of spontaneous single-trial events in the SMN during resting state, which produced an average successful rate of 22 ± 12%. Finally, this paper discusses methodological implications and improvements to increase the decoding performance. PMID:28815863
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anthony L. Crawford
2012-08-01
Natural movements and force feedback are important elements in using teleoperated equipment if complex and speedy manipulation tasks are to be accomplished in remote and/or hazardous environments, such as hot cells, glove boxes, decommissioning, explosives disarmament, and space to name a few. In order to achieve this end the research presented in this paper has developed an admittance type exoskeleton like multi-fingered haptic hand user interface that secures the user’s palm and provides 3-dimensional force feedback to the user’s fingertips. Atypical to conventional haptic hand user interfaces that limit themselves to integrating the human hand’s characteristics just into the system’smore » mechanical design this system also perpetuates that inspiration into the designed user interface’s controller. This is achieved by manifesting the property differences of manipulation and grasping activities as they pertain to the human hand into a nonlinear master-slave force relationship. The results presented in this paper show that the admittance-type system has sufficient bandwidth that it appears nearly transparent to the user when the user is in free motion and when the system is subjected to a manipulation task, increased performance is achieved using the nonlinear force relationship compared to the traditional linear scaling techniques implemented in the vast majority of systems.« less
An interactive app for color deficient viewers
NASA Astrophysics Data System (ADS)
Lau, Cheryl; Perdu, Nicolas; Rodríguez-Pardo, Carlos E.; Süsstrunk, Sabine; Sharma, Gaurav
2015-01-01
Color deficient individuals have trouble seeing color contrasts that could be very apparent to individuals with normal color vision. For example, for some color deficient individuals, red and green apples do not have the striking contrast they have for those with normal color vision, or the abundance of red cherries in a tree is not immediately clear due to a lack of perceived contrast. We present a smartphone app that enables color deficient users to visualize such problematic color contrasts in order to help them with daily tasks. The user interacts with the app through the touchscreen. As the user traces a path around the touchscreen, the colors in the image change continuously via a transform that enhances contrasts that are weak or imperceptible for the user under native viewing conditions. Specifically, we propose a transform that shears the data along lines parallel to the dimension corresponding to the affected cone sensitivity of the user. The amount and direction of shear are controlled by the user's finger movement over the touchscreen allowing them to visualize these contrasts. Using the GPU, this simple transformation, consisting of a linear shear and translation, is performed efficiently on each pixel and in real-time with the changing position of the user's finger. The user can use the app to aid daily tasks such as distinguishing between red and green apples or picking out ripe bananas.
Development of reaching during mid-childhood from a Developmental Systems perspective.
Golenia, Laura; Schoemaker, Marina M; Otten, Egbert; Mouton, Leonora J; Bongers, Raoul M
2018-01-01
Inspired by the Developmental Systems perspective, we studied the development of reaching during mid-childhood (5-10 years of age) not just at the performance level (i.e., endpoint movements), as commonly done in earlier studies, but also at the joint angle level. Because the endpoint position (i.e., the tip of the index finger) at the reaching target can be achieved with multiple joint angle combinations, we partitioned variability in joint angles over trials into variability that does not (goal-equivalent variability, GEV) and that does (non-goal-equivalent variability, NGEV) influence the endpoint position, using the Uncontrolled Manifold method. Quantifying this structure in joint angle variability allowed us to examine whether and how spatial variability of the endpoint at the reaching target is related to variability in joint angles and how this changes over development. 6-, 8- and 10-year-old children and young adults performed reaching movements to a target with the index finger. Polynomial trend analysis revealed a linear and a quadratic decreasing trend for the variable error. Linear decreasing and cubic trends were found for joint angle standard deviations at movement end. GEV and NGEV decreased gradually with age, but interestingly, the decrease of GEV was steeper than the decrease of NGEV, showing that the different parts of the joint angle variability changed differently over age. We interpreted these changes in the structure of variability as indicating changes over age in exploration for synergies (a family of task solutions), a concept that links the performance level with the joint angle level. Our results suggest changes in the search for synergies during mid-childhood development.
Equifinality and its violations in a redundant system: multifinger accurate force production.
Wilhelm, Luke; Zatsiorsky, Vladimir M; Latash, Mark L
2013-10-01
We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The "inverse piano" device was used to lift and lower one of the fingers smoothly. The subjects were instructed "not to intervene voluntarily" with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis.
Analysis of prosody in finger braille using electromyography.
Miyagi, Manabi; Nishida, Masafumi; Horiuchi, Yasuo; Ichikawa, Akira
2006-01-01
Finger braille is one of the communication methods for the deaf blind. The interpreter types braille codes on the fingers of deaf blind. Finger braille seems to be the most suitable medium for real-time communication by its speed and accuracy of transmitting characters. We hypothesize that the prosody information exists in the time structure and strength of finger braille typing. Prosody is the paralinguistic information that has functions to transmit the sentence structure, prominence, emotions and other form of information in real time communication. In this study, we measured the surface electromyography (sEMG) of finger movement to analyze the typing strength of finger braille. We found that the typing strength increases at the beginning of a phrase and a prominent phrase. The result shows the possibility that the prosody in the typing strength of finger braille can be applied to create an interpreter system for the deafblind.
Volitional and automatic control of the hand when reaching to grasp objects.
Chen, Zhongting; Saunders, Jeffrey Allen
2018-06-01
When picking up an object, we tend to grasp at contact points that allow a stable grip. Recent studies have demonstrated that appropriate grasp points can be selected during an ongoing movement in response to unexpected perturbations of the target object. In this study, we tested whether such online grip adjustments are automatic responses or can be controlled volitionally. Subjects performed virtual grasping movements toward target 2D shapes that sometimes changed shape or orientation during movement. Unlike in previous studies, the conditions and task requirements discouraged any online adjustments toward the perturbed shapes. In Experiment 1, target shapes were perturbed briefly (200 ms) during movement before reverting to the original shape, and subjects were instructed to ignore the transient perturbations. Despite subjects' intentions, we observed online adjustments of grip orientation that were toward the expected grip axis of the briefly presented shape. In Experiment 2, we added a stop-signal to the grasping task, with target perturbation as the stop cue. We again observed unnecessary online adjustments toward the grip axis of the perturbed shape, with similar latency. Furthermore, the grip adjustments continued after the forward motion of the hand had stopped, indicating that the automatic response to the perturbed target shape co-occurred with the volitional response to the perturbation onset. Our results provide evidence that automatic control mechanisms are used to guide the fingers to appropriate grasp points and suggest that these mechanisms are distinct from those involved with volitional control. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Schack, Thomas; Ritter, Helge
2009-01-01
This paper examines the cognitive architecture of human action, showing how it is organized over several levels and how it is built up. Basic action concepts (BACs) are identified as major building blocks on a representation level. These BACs are cognitive tools for mastering the functional demands of movement tasks. Results from different lines of research showed that not only the structure formation of mental representations in long-term memory but also chunk formation in working memory are built up on BACs and relate systematically to movement structures. It is concluded that such movement representations might provide the basis for action implementation and action control in skilled voluntary movements in the form of cognitive reference structures. To simulate action implementation we discuss challenges and issues that arise when we try to replicate complex movement abilities in robots. Among the key issues to be addressed is the question how structured representations can arise during skill acquisition and how the underlying processes can be understood sufficiently succinctly to replicate them on robot platforms. Working towards this goal, we translate our findings in studies of motor control in humans into models that can guide the implementation of cognitive robot architectures. Focusing on the issue of manual action control, we illustrate some results in the context of grasping with a five-fingered anthropomorphic robot hand.
Role of vision in aperture closure control during reach-to-grasp movements.
Rand, Miya K; Lemay, Martin; Squire, Linda M; Shimansky, Yury P; Stelmach, George E
2007-08-01
We have previously shown that the distance from the hand to the target at which finger closure is initiated during the reach (aperture closure distance) depends on the amplitude of peak aperture, as well as hand velocity and acceleration. This dependence suggests the existence of a control law according to which a decision to initiate finger closure during the reach is made when the hand distance to target crosses a threshold that is a function of the above movement-related parameters. The present study examined whether the control law is affected by manipulating the visibility of the hand and the target. Young adults made reach-to-grasp movements to a dowel under conditions in which the target or the hand or both were either visible or not visible. Reaching for and grasping a target when the hand and/or target were not visible significantly increased transport time and widened peak aperture. Aperture closure distance was significantly lengthened and wrist peak velocity was decreased only when the target was not visible. Further analysis showed that the control law was significantly different between the visibility-related conditions. When either the hand or target was not visible, the aperture closure distance systematically increased compared to its value for the same amplitude of peak aperture, hand velocity, and acceleration under full visibility. This implies an increase in the distance-related safety margin for grasping when the hand or target is not visible. It has been also found that the same control law can be applied to all conditions, if variables describing hand and target visibility were included in the control law model, as the parameters of the task-related environmental context, in addition to the above movement-related parameters. This suggests that that the CNS utilizes those variables for controlling grasp initiation based on a general control law.
Role of vision in aperture closure control during reach-to-grasp movements
Rand, Miya K.; Lemay, Martin; Squire, Linda M.; Shimansky, Yury P.; Stelmach, George E.
2007-01-01
We have previously shown that the distance from the hand to the target at which finger closure is initiated during the reach (aperture closure distance) depends on the amplitude of peak aperture, as well as hand velocity and acceleration. This dependence suggests the existence of a control law according to which a decision to initiate finger closure during the reach is made when the hand distance to target crosses a threshold that is a function of the above movement-related parameters. The present study examined whether the control law is affected by manipulating the visibility of the hand and the target. Young adults made reach-to-grasp movements to a dowel under conditions in which the target or the hand or both were either visible or not visible. Reaching for and grasping a target when the hand and/or target were not visible significantly increased transport time and widened peak aperture. Aperture closure distance was significantly lengthened and wrist peak velocity was decreased only when the target was not visible. Further analysis showed that the control law was significantly different between the visibility-related conditions. When either the hand or target was not visible, the aperture closure distance systematically increased compared to its value for the same amplitude of peak aperture, hand velocity, and acceleration under full visibility. This implies an increase in the distance-related safety margin for grasping when the hand or target is not visible. It has been also found that the same control law can be applied to all conditions, if variables describing hand and target visibility were included in the control law model, as the parameters of the task-related environmental context, in addition to the above movement-related parameters. This suggests that that the CNS utilizes those variables for controlling grasp initiation based on a general control law. PMID:17476491
An involuntary stereotypical grasp tendency pervades voluntary dynamic multifinger manipulation
Rácz, Kornelius; Brown, Daniel
2012-01-01
We used a novel apparatus with three hinged finger pads to characterize collaborative multifinger interactions during dynamic manipulation requiring individuated control of fingertip motions and forces. Subjects placed the thumb, index, and middle fingertips on each hinged finger pad and held it—unsupported—with constant total grasp force while voluntarily oscillating the thumb's pad. This task combines the need to 1) hold the object against gravity while 2) dynamically reconfiguring the grasp. Fingertip force variability in this combined motion and force task exhibited strong synchrony among normal (i.e., grasp) forces. Mechanical analysis and simulation show that such synchronous variability is unnecessary and cannot be explained solely by signal-dependent noise. Surprisingly, such variability also pervaded control tasks requiring different individuated fingertip motions and forces, but not tasks without finger individuation such as static grasp. These results critically extend notions of finger force variability by exposing and quantifying a pervasive challenge to dynamic multifinger manipulation: the need for the neural controller to carefully and continuously overlay individuated finger actions over mechanically unnecessary synchronous interactions. This is compatible with—and may explain—the phenomenology of strong coupling of hand muscles when this delicate balance is not yet developed, as in early childhood, or when disrupted, as in brain injury. We conclude that the control of healthy multifinger dynamic manipulation has barely enough neuromechanical degrees of freedom to meet the multiple demands of ecological tasks and critically depends on the continuous inhibition of synchronous grasp tendencies, which we speculate may be of vestigial evolutionary origin. PMID:22956798
Adaptive flexibility of the within-hand attentional gradient in touch: An MEG study.
Kida, Tetsuo; Tanaka, Emi; Kakigi, Ryusuke
2018-06-21
Previous studies have demonstrated the cortical mechanisms for the gradient of spatial attention in vision and audition, whereas those for touch have yet to be elucidated in detail. In order to examine the within-hand gradient of tactile spatial attention in the cerebral cortex, we used magnetoencephalography (MEG) to record cortical responses to an electrocutaneous stimulation presented randomly to any of the five fingers of the right hand at a random interstimulus interval (750-1250 ms). Participants attended to the index finger, ring finger, or both to detect a rare target stimulus in a sequence of frequent standard stimuli presented to the attended finger(s) by silent counting. Neuromagnetic responses around the contralateral primary and secondary somatosensory cortices (SIc and SIIc) at 50-70 ms and 80-100 ms, respectively, for the stimulation of the index or ring finger were stronger when that finger was attended than when the distant finger was attended or at rest. The amplitude of the SIIc response was also intermediate when the index and ring fingers were simultaneously attended. The SIIc response to the task-irrelevant stimulation of the thumb or little finger increased when the index or ring finger was attended, respectively, suggesting an across-finger gradient of tactile attention. Simultaneous attention to the index and ring fingers decreased the SIIc response to the task-irrelevant stimulation of the intervening middle finger more than that with attention to either one of the two fingers. The earliest attentional sign was observed for the SI M40c response, with the amplitude increasing with the stimulation of the unattended finger. Furthermore, late responses in the temporo-parietal junction (TPJ) and prefrontal cortex (PFC) were stronger with the stimulation of the unattended finger than with that of the attended finger. Thus, the present study provides cortical evidence for the adaptive control of the within-hand, across-finger gradient of tactile attention that depends on whether attention is focused on a single finger or divided into non-adjacent different fingers. Copyright © 2018. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Nielsen, Kathleen; Henderson, Sheila; Barnett, Anna L.; Abbott, Robert D.; Berninger, Virginia
2018-01-01
Movement, which draws on motor skills and executive functions for managing them, plays an important role in literacy learning (e.g., movement of mouth during oral reading and movement of hand and fingers during writing); but relatively little research has focused on movement skills in students with specific learning disabilities as the current…
Fluet, Gerard G.; Patel, Jigna; Qiu, Qinyin; Yarossi, Matthew; Massood, Supriya; Adamovich, Sergei V.; Tunik, Eugene; Merians, Alma S.
2016-01-01
Purpose The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. Methods This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl–Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. Results Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. Conclusion This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. PMID:27669997
ERIC Educational Resources Information Center
Giesen, J. Martin; And Others
The study was designed to determine the reliability and criterion validity of a psychomotor performance test (the Fine Finger Dexterity Work Task Unit) with 40 partially or totally blind adults. Reliability was established by using the test-retest method. A supervisory rating was developed and the reliability established by using the split-half…
The Speech Focus Position Effect on Jaw-Finger Coordination in a Pointing Task
ERIC Educational Resources Information Center
Rochet-Capellan, Amelie; Laboissiere, Rafael; Galvan, Arturo; Schwartz, Jean-Luc
2008-01-01
Purpose: This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a 'CVCV (e.g., /'papa/) versus CV'CV (e.g., /pa'pa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the…
Ergonomic design and evaluation of new surgical scissors.
Shimomura, Yoshihiro; Shirakawa, Hironori; Sekine, Masashi; Katsuura, Tetsuo; Igarashi, Tatsuo
2015-01-01
The purpose of this study is to design a new surgical scissors handle and determine its effectiveness with various usability indices. A new scissors handle was designed that retains the professional grip but has the shapes of the eye rings modified to fit the thumb and ring finger and finger rests for the index and little finger. The newly designed scissors and traditional scissors were compared by electromyography, subjective evaluation and task performance in experiments using cutting and peeling tasks. The newly designed scissors reduced muscle load in both hand during cutting by the closing action, and reduced the muscle load in the left hand during peeling by the opening action through active use of the right hand. In evaluation by surgeons, task performance improved in addition to the decrease in muscle load. The newly designed scissors used in this study demonstrated high usability. A new scissors handle was designed that has the eye rings modified to fit the thumb and ring finger. The newly designed scissors reduced muscle load and enabled active use of the right hand. In evaluation by surgeons, task performance improved in addition to the decrease in muscle load.
Instrumented Glove Measures Positions Of Fingers
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1993-01-01
Glove instrumented with flat membrane potentiometers to obtain crude measurements of relative positions of fingers. Resistance of each potentiometer varies with position of associated finger; translator circuit connected to each potentiometer converts analog reading to 1 of 10 digital levels. Digitized outputs from all fingers fed to indicating, recording, and/or data-processing equipment. Gloves and circuits intended for use in biomedical research, training in critical manual tasks, and other specialized applications.
The speech focus position effect on jaw-finger coordination in a pointing task.
Rochet-Capellan, Amélie; Laboissière, Rafael; Galván, Arturo; Schwartz, Jean-Luc
2008-12-01
This article investigates jaw-finger coordination in a task involving pointing to a target while naming it with a CVCV (e.g., /papa/) versus CVCV (e.g., /papa/) word. According to the authors' working hypothesis, the pointing apex (gesture extremum) would be synchronized with the apex of the jaw-opening gesture corresponding to the stressed syllable. Jaw and finger motions were recorded using Optotrak (Northern Digital, Waterloo, Ontario, Canada). The effects of stress position on jaw-finger coordination were tested across different target positions (near vs. far) and different consonants in the target word (/t/ vs. /p/). Twenty native Portuguese Brazilian speakers participated in the experiment (all conditions). Jaw response starts earlier, and finger-target alignment period is longer for CVCV words than for CVCV ones. The apex of the jaw-opening gesture for the stressed syllable appears synchronized with the onset of the finger-target alignment period (corresponding to the pointing apex) for CVCV words and with the offset of that period for CVCV words. For both stress conditions, the stressed syllable occurs within the finger-target alignment period because of tight finger-jaw coordination. This result is interpreted as evidence for an anchoring of the speech deictic site (part of speech that shows) in the pointing gesture.
Dickins, Daina S. E.; Sale, Martin V.; Kamke, Marc R.
2015-01-01
Intermanual transfer refers to the phenomenon whereby unilateral motor training induces performance gains in both the trained limb and in the opposite, untrained limb. Evidence indicates that intermanual transfer is attenuated in older adults following training on a simple ballistic movement task, but not after training on a complex task. This study investigated whether differences in plasticity in bilateral motor cortices underlie these differential intermanual transfer effects in older adults. Twenty young (<35 years-old) and older adults (>65 years) trained on a simple (repeated ballistic thumb abduction) and complex (sequential finger-thumb opposition) task in separate sessions. Behavioral performance was used to quantify intermanual transfer between the dominant (trained) and non-dominant (untrained) hands. The amplitude of motor-evoked potentials induced by single pulse transcranial magnetic stimulation was used to investigate excitability changes in bilateral motor cortices. Contrary to predictions, both age groups exhibited performance improvements in both hands after unilateral skilled motor training with simple and complex tasks. These performance gains were accompanied by bilateral increases in cortical excitability in both groups for the simple but not the complex task. The findings suggest that advancing age does not necessarily influence the capacity for intermanual transfer after training with the dominant hand. PMID:25999856
Justen, Christoph; Herbert, Cornelia
2016-01-01
So far, neurophysiological studies have investigated implicit and explicit self-related processing particularly for self-related stimuli such as the own face or name. The present study extends previous research to the implicit processing of self-related movement sounds and explores their spatio-temporal dynamics. Event-related potentials (ERPs) were assessed while participants (N = 12 healthy subjects) listened passively to previously recorded self- and other-related finger snapping sounds, presented either as deviants or standards during an oddball paradigm. Passive listening to low (500 Hz) and high (1000 Hz) pure tones served as additional control. For self- vs. other-related finger snapping sounds, analysis of ERPs revealed significant differences in the time windows of the N2a/MMN and P3. An subsequent source localization analysis with standardized low-resolution brain electromagnetic tomography (sLORETA) revealed increased cortical activation in distinct motor areas such as the supplementary motor area (SMA) in the N2a/mismatch negativity (MMN) as well as the P3 time window during processing of self- and other-related finger snapping sounds. In contrast, brain regions associated with self-related processing [e.g., right anterior/posterior cingulate cortex (ACC/PPC)] as well as the right inferior parietal lobule (IPL) showed increased activation particularly during processing of self- vs. other-related finger snapping sounds in the time windows of the N2a/MMN (ACC/PCC) or the P3 (IPL). None of these brain regions showed enhanced activation while listening passively to low (500 Hz) and high (1000 Hz) pure tones. Taken together, the current results indicate (1) a specific role of motor regions such as SMA during auditory processing of movement-related information, regardless of whether this information is self- or other-related, (2) activation of neural sources such as the ACC/PCC and the IPL during implicit processing of self-related movement stimuli, and (3) their differential temporal activation during deviance (N2a/MMN – ACC/PCC) and target detection (P3 – IPL) of self- vs. other-related movement sounds. PMID:27777557
Control of multi-joint arm movements for the manipulation of touch in keystroke by expert pianists
2010-01-01
Background Production of a variety of finger-key touches in the piano is essential for expressive musical performance. However, it remains unknown how expert pianists control multi-joint finger and arm movements for manipulating the touch. The present study investigated differences in kinematics and kinetics of the upper-limb movements while expert pianists were depressing a key with two different touches: pressed and struck. The former starts key-depression with the finger-tip contacting the key, whereas the latter involves preparatory arm-lift before striking the key. To determine the effect of individual muscular torque (MUS) as well as non-muscular torques on joint acceleration, we performed a series of inverse and forward dynamics computations. Results The pressed touch showed smaller elbow extension velocity, and larger shoulder and finger flexion velocities during key-depression compared with the struck touch. The former touch also showed smaller elbow extension acceleration directly attributed to the shoulder MUS. In contrast, the shoulder flexion acceleration induced by elbow and wrist MUS was greater for the pressed touch than the struck touch. Towards the goal of producing the target finger-key contact dynamics, the pressed and struck touches effectively took advantage of the distal-to-proximal and proximal-to-distal inter-segmental dynamics, respectively. Furthermore, a psychoacoustic experiment confirmed that a tone elicited by the pressed touch was perceived softer than that by the struck touch. Conclusion The present findings suggest that manipulation of tone timbre depends on control of inter-segmental dynamics in piano keystroke. PMID:20630085
Dysrhythmia of timed movements in Parkinson's disease and freezing of gait.
Tolleson, Christopher M; Dobolyi, David G; Roman, Olivia C; Kanoff, Kristen; Barton, Scott; Wylie, Scott A; Kubovy, Michael; Claassen, Daniel O
2015-10-22
A well-established motor timing paradigm, the Synchronization-Continuation Task (SCT), quantifies how accurately participants can time finger tapping to a rhythmic auditory beat (synchronization phase) then maintain this rhythm after the external auditory cue is extinguished, where performance depends on an internal representation of the beat (continuation phase). In this study, we investigated the hypothesis that Parkinson's disease (PD) patients with clinical symptoms of freezing of gait (FOG) exhibit exaggerated motor timing deficits. We predicted that dysrhythmia is exacerbated when finger tapping is stopped temporarily and then reinitiated under the guidance of an internal representation of the beat. Healthy controls and PD patients with and without FOG performed the SCT with and without the insertion of a 7-s cessation of motor tapping between synchronization and continuation phases. With no interruption between synchronization and continuation phases, PD patients, especially those with FOG, showed pronounced motor timing hastening at the slowest inter-stimulus intervals during the continuation phase. The introduction of a gap prior to the continuation phase had a beneficial effect for healthy controls and PD patients without FOG, although patients with FOG continued to show pronounced and persistent motor timing hastening. Ratings of freezing of gait severity across the entire sample of PD tracked closely with the magnitude of hastening during the continuation phase. These results suggest that PD is accompanied by a unique dysrhythmia of measured movements, with FOG reflecting a particularly pronounced disruption to internal rhythmic timing. Copyright © 2015 Elsevier B.V. All rights reserved.
Response Preparation with Static versus Moving Hands
ERIC Educational Resources Information Center
Adam, Jos J.; Moresi, Sofie
2007-01-01
This research tested the response inhibition account of the hand-advantage found in the finger precuing task. According to this account, the advantage of preparing two fingers on one hand (represented in one hemisphere) as opposed to preparing two fingers on two hands (represented in two hemispheres) is due, in part, to a response inhibition…
Perceiving fingers in single-digit arithmetic problems.
Berteletti, Ilaria; Booth, James R
2015-01-01
In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense.
Perceiving fingers in single-digit arithmetic problems
Berteletti, Ilaria; Booth, James R.
2015-01-01
In this study, we investigate in children the neural underpinnings of finger representation and finger movement involved in single-digit arithmetic problems. Evidence suggests that finger representation and finger-based strategies play an important role in learning and understanding arithmetic. Because different operations rely on different networks, we compared activation for subtraction and multiplication problems in independently localized finger somatosensory and motor areas and tested whether activation was related to skill. Brain activations from children between 8 and 13 years of age revealed that only subtraction problems significantly activated finger motor areas, suggesting reliance on finger-based strategies. In addition, larger subtraction problems yielded greater somatosensory activation than smaller problems, suggesting a greater reliance on finger representation for larger numerical values. Interestingly, better performance in subtraction problems was associated with lower activation in the finger somatosensory area. Our results support the importance of fine-grained finger representation in arithmetical skill and are the first neurological evidence for a functional role of the somatosensory finger area in proficient arithmetical problem solving, in particular for those problems requiring quantity manipulation. From an educational perspective, these results encourage investigating whether different finger-based strategies facilitate arithmetical understanding and encourage educational practices aiming at integrating finger representation and finger-based strategies as a tool for instilling stronger numerical sense. PMID:25852582
Equifinality and its violations in a redundant system: multifinger accurate force production
Wilhelm, Luke; Zatsiorsky, Vladimir M.
2013-01-01
We explored a hypothesis that transient perturbations applied to a redundant system result in equifinality in the space of task-related performance variables but not in the space of elemental variables. The subjects pressed with four fingers and produced an accurate constant total force level. The “inverse piano” device was used to lift and lower one of the fingers smoothly. The subjects were instructed “not to intervene voluntarily” with possible force changes. Analysis was performed in spaces of finger forces and finger modes (hypothetical neural commands to fingers) as elemental variables. Lifting a finger led to an increase in its force and a decrease in the forces of the other three fingers; the total force increased. Lowering the finger back led to a drop in the force of the perturbed finger. At the final state, the sum of the variances of finger forces/modes computed across repetitive trials was significantly higher than the variance of the total force/mode. Most variance of the individual finger force/mode changes between the preperturbation and postperturbation states was compatible with constant total force. We conclude that a transient perturbation applied to a redundant system leads to relatively small variance in the task-related performance variable (equifinality), whereas in the space of elemental variables much more variance occurs that does not lead to total force changes. We interpret the results within a general theoretical scheme that incorporates the ideas of hierarchically organized control, control with referent configurations, synergic control, and the uncontrolled manifold hypothesis. PMID:23904497
Interaction of finger enslaving and error compensation in multiple finger force production.
Martin, Joel R; Latash, Mark L; Zatsiorsky, Vladimir M
2009-01-01
Previous studies have documented two patterns of finger interaction during multi-finger pressing tasks, enslaving and error compensation, which do not agree with each other. Enslaving is characterized by positive correlation between instructed (master) and non-instructed (slave) finger(s) while error compensation can be described as a pattern of negative correlation between master and slave fingers. We hypothesize that pattern of finger interaction, enslaving or compensation depends on the initial force level and the magnitude of the targeted force change. Subjects were instructed to press with four fingers (I index, M middle, R ring, and L little) from a specified initial force to target forces following a ramp target line. Force-force relations between master and each of three slave fingers were analyzed during the ramp phase of trials by calculating correlation coefficients within each master-slave pair and then two-factor ANOVA was performed to determine effect of initial force and force increase on the correlation coefficients. It was found that, as initial force increased, the value of the correlation coefficient decreased and in some cases became negative, i.e. the enslaving transformed into error compensation. Force increase magnitude had a smaller effect on the correlation coefficients. The observations support the hypothesis that the pattern of inter-finger interaction--enslaving or compensation--depends on the initial force level and, to a smaller degree, on the targeted magnitude of the force increase. They suggest that the controller views tasks with higher steady-state forces and smaller force changes as implying a requirement to avoid large changes in the total force.
Kazennikov, Oleg; Wiesendanger, Mario
2009-07-01
Music performance is based on demanding motor control with much practice from young age onward. We have chosen to investigate basic bimanual movements played by violin amateurs and professionals. We posed the question whether position and string changes, two frequent mechanisms, may influence the time interval bowing (right)-fingering (left) coordination. The objective was to measure bimanual coordination, i.e., with or without position changes and string changes. The tendency was that the bimanual coordination was statistically only slightly increased or even unchanged but not perceptible. We conclude that the coordination index is limited up to 100 ms intervals, without any erroneous perception. Although the mentioned position changes and string changes are movements with their timing, they are executed in parallel rather than in series with the bow-fingering coordination.
ERIC Educational Resources Information Center
Morimoto, Chie; Hida, Eisuke; Shima, Keisuke; Okamura, Hitoshi
2018-01-01
To identify a specific sensorimotor impairment feature of autism spectrum disorder (ASD), we focused on temporal processing with millisecond accuracy. A synchronized finger-tapping task was used to characterize temporal processing in individuals with ASD as compared to typically developing (TD) individuals. We found that individuals with ASD…
Phase and amplitude analysis in time-frequency space--application to voluntary finger movement.
Ginter, J; Blinowska, K J; Kamiński, M; Durka, P J
2001-09-30
Two methods operating in time-frequency space were applied to analysis of EEG activity accompanying voluntary finger movements. The first one, based on matching pursuit approach provided high-resolution distributions of power in time-frequency space. The phenomena of event related desynchronization (ERD) and synchronization (ERS) were investigated without the need of band-pass filtering. Time evolution of mu- and beta-components was observed in a detailed way. The second method was based on a multichannel autoregressive model (MVAR) adapted for investigation of short-time changes in EEG signal. The direction and spectral content of the EEG activity propagation was estimated by means of short-time directed transfer function (SDTF). The evidence of 'cross-talk' between different areas of motor and sensory cortex was found. The earlier known phenomena, connected with voluntary movements, were confirmed and a new evidence concerning focal ERD/surround ERS and beta activity post-movement synchronization was found.
Pfordresher, Peter Q; Mantell, James T
2012-01-01
We report an experiment that tested whether effects of altered auditory feedback (AAF) during piano performance differ from its effects during singing. These effector systems differ with respect to the mapping between motor gestures and pitch content of auditory feedback. Whereas this action-effect mapping is highly reliable during phonation in any vocal motor task (singing or speaking), mapping between finger movements and pitch occurs only in limited situations, such as piano playing. Effects of AAF in both tasks replicated results previously found for keyboard performance (Pfordresher, 2003), in that asynchronous (delayed) feedback slowed timing whereas alterations to feedback pitch increased error rates, and the effect of asynchronous feedback was similar in magnitude across tasks. However, manipulations of feedback pitch had larger effects on singing than on keyboard production, suggesting effector-specific differences in sensitivity to action-effect mapping with respect to feedback content. These results support the view that disruption from AAF is based on abstract, effector independent, response-effect associations but that the strength of associations differs across effector systems. Copyright © 2011. Published by Elsevier B.V.
Berns, G S; Song, A W; Mao, H
1999-07-15
Linear experimental designs have dominated the field of functional neuroimaging, but although successful at mapping regions of relative brain activation, the technique assumes that both cognition and brain activation are linear processes. To test these assumptions, we performed a continuous functional magnetic resonance imaging (MRI) experiment of finger opposition. Subjects performed a visually paced bimanual finger-tapping task. The frequency of finger tapping was continuously varied between 1 and 5 Hz, without any rest blocks. After continuous acquisition of fMRI images, the task-related brain regions were identified with independent components analysis (ICA). When the time courses of the task-related components were plotted against tapping frequency, nonlinear "dose- response" curves were obtained for most subjects. Nonlinearities appeared in both the static and dynamic sense, with hysteresis being prominent in several subjects. The ICA decomposition also demonstrated the spatial dynamics with different components active at different times. These results suggest that the brain response to tapping frequency does not scale linearly, and that it is history-dependent even after accounting for the hemodynamic response function. This implies that finger tapping, as measured with fMRI, is a nonstationary process. When analyzed with a conventional general linear model, a strong correlation to tapping frequency was identified, but the spatiotemporal dynamics were not apparent.
An effective 3-fingered augmenting exoskeleton for the human hand.
Gearhart, C J; Varone, B; Stella, M H; BuSha, B F
2016-08-01
Every year, thousands of Americans suffer from pathological and traumatic events that result in loss of dexterity and strength of the hand. Although many supportive devices have been designed to restore functional hand movement, most are very complex and expensive. The goal of this project was to design and implement a cost-effective, electrically powered exoskeleton for the human hand that could improve grasping strength. A 3-D printed thermoplastic exoskeleton that allowed independent and enhanced movement of the index, middle and ring fingers was constructed. In addition, a 3-D printed structure was designed to house three linear actuators, an Arduino-based control system, and a power supply. A single force sensing resistor was located on the lower inner-surface of the index fingertip which was used to proportionally activate the three motors, one motor per finger, as a function of finger force applied to the sensor. The device was tested on 4 normal human subjects. Results showed that the activation of the motor control system significantly reduced the muscle effort needed to maintain a sub-maximal grasp effort.
Coarsening in the buoyancy-driven instability of a reaction-diffusion front.
Böckmann, Martin; Müller, Stefan C
2004-10-01
When propagating in a vertical direction an autocatalytic reaction front associated with a change in density can become buoyantly unstable, leading to the formation of a fingerlike pattern. Later on these fingers start to interact. Their temporal evolution is studied experimentally by tracking the horizontal and vertical locations of the extrema of the front pattern. A proceeding development towards larger spatial scales is found. This is reflected in the differences in the vertical speed of neighboring fingers: continually some fingers start to decelerate and vanish finally in the neighboring ones which show a simultaneous acceleration. In addition, weak lateral movements of fingers towards gaps are observed, but there is no evidence for a correlation with the extinction of fingers.
Osumi, Michihiro; Sumitani, Masahiko; Otake, Yuko; Morioka, Shu
2018-01-01
Pain-related fear can exacerbate physical disability and pathological pain in complex regional pain syndrome (CRPS) patients. We conducted a kinematic analysis of grasping movements with a pediatric patient suffering from CRPS in an upper limb to investigate how pain-related fear affects motor control. Using a three-dimensional measurement system, we recorded the patient's movement while grasping three vertical bars of different diameters (thin, middle, thick) with the affected and intact hands. We analyzed the maximum grasp distance between the thumb and the index finger (MGD), the peak velocity of the grasp movement (PV), and the time required for the finger opening phase (TOP) and closing phase (TCP). Consequently, the MGD and PV of grasp movements in the affected hand were significantly smaller than those of the intact hand when grasping the middle and thick bars. This might reflect pain-related fear against visual information of the target size which evokes sensation of difficulty in opening fingers widely to grasp the middle and thick bars. Although MGD and PV increased with target size, the TOP was longer in the affected hand when grasping the thick bar. These findings indicate that pain-related fear impairs motor commands that are sent to the musculoskeletal system, subsequently disrupting executed movements and their sensory feedback. Using kinematic analysis, we objectively demonstrated that pain-related fear affects the process of sending motor commands towards the musculoskeletal system in the CRPS-affected hand, providing a possible explanatory model of pathological pain. Copyright © 2017 Elsevier Ltd. All rights reserved.
Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery.
Ahn, Sangtae; Ahn, Minkyu; Cho, Hohyun; Chan Jun, Sung
2014-12-01
We propose a new hybrid brain-computer interface (BCI) system that integrates two different EEG tasks: tactile selective attention (TSA) using a vibro-tactile stimulator on the left/right finger and motor imagery (MI) of left/right hand movement. Event-related desynchronization (ERD) from the MI task and steady-state somatosensory evoked potential (SSSEP) from the TSA task are retrieved and combined into two hybrid senses. One hybrid approach is to measure two tasks simultaneously; the features of each task are combined for testing. Another hybrid approach is to measure two tasks consecutively (TSA first and MI next) using only MI features. For comparison with the hybrid approaches, the TSA and MI tasks are measured independently. Using a total of 16 subject datasets, we analyzed the BCI classification performance for MI, TSA and two hybrid approaches in a comparative manner; we found that the consecutive hybrid approach outperformed the others, yielding about a 10% improvement in classification accuracy relative to MI alone. It is understood that TSA may play a crucial role as a prestimulus in that it helps to generate earlier ERD prior to MI and thus sustains ERD longer and to a stronger degree; this ERD may give more discriminative information than ERD in MI alone. Overall, our proposed consecutive hybrid approach is very promising for the development of advanced BCI systems.
Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery
NASA Astrophysics Data System (ADS)
Ahn, Sangtae; Ahn, Minkyu; Cho, Hohyun; Jun, Sung Chan
2014-12-01
Objective. We propose a new hybrid brain-computer interface (BCI) system that integrates two different EEG tasks: tactile selective attention (TSA) using a vibro-tactile stimulator on the left/right finger and motor imagery (MI) of left/right hand movement. Event-related desynchronization (ERD) from the MI task and steady-state somatosensory evoked potential (SSSEP) from the TSA task are retrieved and combined into two hybrid senses. Approach. One hybrid approach is to measure two tasks simultaneously; the features of each task are combined for testing. Another hybrid approach is to measure two tasks consecutively (TSA first and MI next) using only MI features. For comparison with the hybrid approaches, the TSA and MI tasks are measured independently. Main results. Using a total of 16 subject datasets, we analyzed the BCI classification performance for MI, TSA and two hybrid approaches in a comparative manner; we found that the consecutive hybrid approach outperformed the others, yielding about a 10% improvement in classification accuracy relative to MI alone. It is understood that TSA may play a crucial role as a prestimulus in that it helps to generate earlier ERD prior to MI and thus sustains ERD longer and to a stronger degree; this ERD may give more discriminative information than ERD in MI alone. Significance. Overall, our proposed consecutive hybrid approach is very promising for the development of advanced BCI systems.
Marchese, Roberta; Bove, Marco; Abbruzzese, Giovanni
2003-06-01
To analyse the effect of concomitant cognitive or motor task performance on balance control in Parkinson's disease (PD), we performed a posturographic study in 24 PD patients and in 20 sex- and age-matched control subjects. Postural sway was measured with eyes open (EO) and eyes closed (EC) during quiet stance and during performance of calculation or motor sequence of thumb opposition to the other fingers. No difference of centre of foot pressure (COP) parameters was observed during quiet standing (either EO or EC) between patients and controls, but visual deprivation induced in both groups a worsening of postural stability. COP area was significantly increased in PD patients during dual task performance, whereas no difference of COP path and x-y axes was observed. The effects induced by the performance of cognitive or motor task were significantly more evident in PD patients with clinical evidence of postural instability (presence of prior falls in the history). This study demonstrates that dual task interference on postural control can be observed in PD patients during performance of cognitive as well as motor tasks. The balance deterioration during dual task performance was significantly enhanced in patients with history of prior falls. These findings have some implications for the strategies to be used in reducing the risk of fall in PD. Copyright 2003 Movement Disorder Society
Static Prehension of a Horizontally Oriented Object in Three Dimensions
Wu, Yen-Hsun; Zatsiorsky, Vladimir M.; Latash, Mark L.
2011-01-01
We studied static prehension of a horizontally oriented object. Specific hypotheses were explored addressing such issues as the sharing patterns of the total moment of force across the digits, presence of mechanically unnecessary digit forces, and trade-off between multi-digit synergies at the two levels of the assumed control hierarchy. Within the assumed hierarchy, at the upper level, the task is shared between the thumb and virtual finger (an imagined finger producing a wrench equal to the sum of the wrenches of individual fingers). At the lower level, action of the virtual finger is shared among the four actual fingers. The subjects held statically a horizontally oriented handle instrumented with six-component force/torque sensors with different loads and torques acting about the long axis of the handle. The thumb acted from above while the four fingers supported the weight of the object. When the external torque was zero, the thumb produced mechanically unnecessary force of about 2.8 N, which did not depend on the external load magnitude. When the external torque was not zero, tangential forces produced over 80% of the total moment of force. The normal forces by the middle and ring fingers produced consistent moments against the external torque, while the normal forces of the index and little fingers did not. Force and moment variables at both hierarchical levels were stabilized by co-varied across trials adjustments of forces/moments produced by individual digits with the exception of the normal force analyzed at the lower level of the hierarchy. There was a trade-off between synergy indices computed at the two levels of the hierarchy for the three components of the total force vector, but not for the moment of force components. Overall, the results have shown that task mechanics are only one factor that defines forces produced by individual digits. Other factors, such as loading sensory receptors may lead to mechanically unnecessary forces. There seems to be no single rule (for example, ensuring similar safety margin values) that would describe sharing of the normal and tangential forces and be valid across tasks. Fingers that are traditionally viewed as less accurate (e.g., the ring finger) may perform more consistently in certain tasks. The observations of the trade-off between the synergy indices computed at two levels for the force variables but not for the moment of force variables suggest that the degree of redundancy (the number of excessive elemental variables) at the higher level is an important factor. PMID:22071684
A three-finger multisensory hand for dexterous space robotic tasks
NASA Technical Reports Server (NTRS)
Murase, Yuichi; Komada, Satoru; Uchiyama, Takashi; Machida, Kazuo; Akita, Kenzo
1994-01-01
The National Space Development Agency of Japan will launch ETS-7 in 1997, as a test bed for next generation space technology of RV&D and space robot. MITI has been developing a three-finger multisensory hand for complex space robotic tasks. The hand can be operated under remote control or autonomously. This paper describes the design and development of the hand and the performance of a breadboard model.
ERIC Educational Resources Information Center
Cacola, Priscila; Roberson, Jerroed; Gabbard, Carl
2013-01-01
Studies show that as we enter older adulthood (greater than 64 years), our ability to mentally represent action in the form of using motor imagery declines. Using a chronometry paradigm to compare the movement duration of imagined and executed movements, we tested young-, middle-aged, and older adults on their ability to perform sequential finger…
Rong, Wei; Tong, Kai Yu; Hu, Xiao Ling; Ho, Sze Kit
2015-03-01
An electromyography-driven robot system integrated with neuromuscular electrical stimulation (NMES) was developed to investigate its effectiveness on post-stroke rehabilitation. The performance of this system in assisting finger flexion/extension with different assistance combinations was evaluated in five stroke subjects. Then, a pilot study with 20-sessions training was conducted to evaluate the training's effectiveness. The results showed that combined assistance from the NMES-robot could improve finger movement accuracy, encourage muscle activation of the finger muscles and suppress excessive muscular activities in the elbow joint. When assistances from both NMES and the robot were 50% of their maximum assistances, finger-tracking performance had the best results, with the lowest root mean square error, greater range of motion, higher voluntary muscle activations of the finger joints and lower muscle co-contraction in the finger and elbow joints. Upper limb function improved after the 20-session training, indicated by the increased clinical scores of Fugl-Meyer Assessment, Action Research Arm Test and Wolf Motor Function Test. Muscle co-contraction was reduced in the finger and elbow joints reflected by the Modified Ashworth Scale. The findings demonstrated that an electromyography-driven NMES-robot used for chronic stroke improved hand function and tracking performance. Further research is warranted to validate the method on a larger scale. Implications for Rehabilitation The hand robotics and neuromuscular electrical stimulation (NMES) techniques are still separate systems in current post-stroke hand rehabilitation. This is the first study to investigate the combined effects of the NMES and robot on hand rehabilitation. The finger tracking performance was improved with the combined assistance from the EMG-driven NMES-robot hand system. The assistance from the robot could improve the finger movement accuracy and the assistance from the NMES could reduce the muscle co-contraction on finger and elbow joints. The upper limb functions were improved on chronic stroke patients after the pilot study of 20-session hand training with the combined assistance from the EMG-driven NMES-robot. The muscle spasticity on finger and elbow joints was reduced after the training.
Likability’s Effect on Interpersonal Motor Coordination: Exploring Natural Gaze Direction
Zhao, Zhong; Salesse, Robin N.; Marin, Ludovic; Gueugnon, Mathieu; Bardy, Benoît G.
2017-01-01
Although existing studies indicate a positive effect of interpersonal motor coordination (IMC) on likability, no consensus has been reached as for the effect of likability back onto IMC. The present study specifically investigated the causal effect of likability on IMC and explored, by tracking the natural gaze direction, the possible underlying mechanisms. Twenty-two participants were engaged in an interpersonal finger-tapping task with a confederate in three likability conditions (baseline, likable, and unlikable), while wearing an eye tracker. They had to perform finger tapping at their comfort tempo with the confederate who tapped at the same or 1.5 times of the participant’s preferred frequency. Results showed that when tapping at the same frequency, the effect of likability on IMC varied with time. Participants coordinated at a higher level in the baseline condition at the beginning of the coordination task, and a facilitative effect of likability on IMC was revealed in the last session. As a novelty, our results evidenced a positive correlation between IMC and the amount of gaze onto the coordination partner’s movement only in the likable condition. No effect of likability was found when the confederate was tapping at 1.5 times of the participant’s preferred frequency. Our research suggests that the psychosocial property of the coordinating partner should be taken into consideration when investigating the performance of IMC and that IMC is a parameter that is sensitive to multiple factors. PMID:29123495
Feld, Gordon B; Wilhem, Ines; Benedict, Christian; Rüdel, Benjamin; Klameth, Corinna; Born, Jan; Hallschmid, Manfred
2016-05-01
The neurochemical underpinnings of sleep's contribution to the establishment and maintenance of memory traces are largely unexplored. Considering that intranasal insulin administration to the CNS improves memory functions in healthy and memory-impaired humans, we tested whether brain insulin signaling and sleep interact to enhance memory consolidation in healthy participants. We investigated the effect of intranasal insulin on sleep-associated neurophysiological and neuroendocrine parameters and memory consolidation in 16 men and 16 women (aged 18-30 years), who learned a declarative word-pair task and a procedural finger sequence tapping task in the evening before intranasal insulin (160 IU) or placebo administration and 8 h of nocturnal sleep. On the subsequent evening, they learned interfering word-pairs and a new finger sequence before retrieving the original memories. Insulin increased growth hormone concentrations in the first night-half and EEG delta power during the second 90 min of non-rapid-eye-movement sleep. Insulin treatment impaired the acquisition of new contents in both the declarative and procedural memory systems on the next day, whereas retrieval of original memories was unchanged. Results indicate that sleep-associated memory consolidation is not a primary mediator of insulin's acute memory-improving effect, but that the peptide acts on mechanisms that diminish the subsequent encoding of novel information. Thus, by inhibiting processes of active forgetting during sleep, central nervous insulin might reduce the interfering influence of encoding new information.
Anticipatory synergy adjustments reflect individual performance of feedforward force control.
Togo, Shunta; Imamizu, Hiroshi
2016-10-06
We grasp and dexterously manipulate an object through multi-digit synergy. In the framework of the uncontrolled manifold (UCM) hypothesis, multi-digit synergy is defined as the coordinated control mechanism of fingers to stabilize variable important for task success, e.g., total force. Previous studies reported anticipatory synergy adjustments (ASAs) that correspond to a drop of the synergy index before a quick change of the total force. The present study compared ASA's properties with individual performances of feedforward force control to investigate a relationship of those. Subjects performed a total finger force production task that consisted of a phase in which subjects tracked target line with visual information and a phase in which subjects produced total force pulse without visual information. We quantified their multi-digit synergy through UCM analysis and observed significant ASAs before producing total force pulse. The time of the ASA initiation and the magnitude of the drop of the synergy index were significantly correlated with the error of force pulse, but not with the tracking error. Almost all subjects showed a significant increase of the variance that affected the total force. Our study directly showed that ASA reflects the individual performance of feedforward force control independently of target-tracking performance and suggests that the multi-digit synergy was weakened to adjust the multi-digit movements based on a prediction error so as to reduce the future error. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Deficit in motor cortical activity for simultaneous bimanual responses.
Taniguchi, Y; Burle, B; Vidal, F; Bonnet, M
2001-04-01
Reaction time (RT) is known to be longer for simultaneous bimanual responses than for unimanual ones. This phenomenon is called "bilateral deficit". To identify the mechanisms subserving the bilateral deficit, brain electrical activity was examined, with a source derivation method, in 12 right-handed subjects, during the preparation and execution periods of a RT task. The responses were either unilateral or bilateral index finger flexion, performed either in a simple RT condition, with 20% catch trials, or in a choice RT condition. A deficit was observed in RT for the bilateral response for the right-index finger movement. In cerebral electrical activities, no evidence of a correlate of a bilateral deficit was found during the preparatory period. Conversely, during the execution period, an EEG correlate of the bilateral deficit was found. For the right hand, the activation of the sensorimotor area directly involved in the voluntary control was weaker for bilateral than for unilateral contralateral responses. The reasons for such a bilateral command weakness are discussed in the context of our RT task. First, the constraint of synchronisation included in the bilateral response might require an interhemispheric information transmission that resulted in a braking effect. Second, given that an ipsilateral inhibition is present in case of choice between the two hands of one particular unimanual response, and given that this ipsilateral inhibition is also present in case of simple unimanual trials, we hypothesise that a mutual transcallosal inhibitory effect also persists in the bilateral response.
Pogosyan, Alek; Ashkan, Keyoumars; Cheeran, Binith; FitzGerald, James J.; Green, Alexander L.; Aziz, Tipu; Foltynie, Thomas; Limousin, Patricia; Zrinzo, Ludvic; Brown, Peter
2015-01-01
Local field potential (LFP) recordings from patients with deep brain stimulation electrodes in the basal ganglia have suggested that frequency-specific activities correlate with force or effort, but previous studies have not been able to disambiguate the two. Here, we dissociated effort from actual force generated by contrasting the force generation of different fingers while recording LFP activity from the subthalamic nucleus (STN) in patients with Parkinson's disease who had undergone functional surgery. Patients were studied while on their normal dopaminergic medication. We investigated the relationship between frequency-specific oscillatory activity in the STN and voluntary flexion of either the index or little finger at different effort levels. At each tested effort level (10%, 25%, and 40% of the maximal voluntary contraction force of each individual finger), the index finger generated larger force than the little finger. Movement-related suppression of beta-band power in the STN LFP was significantly modulated by effort, but not by which finger was used, suggesting that the beta suppression in the STN LFP during sustained contraction serves as a proxy for effort. The absolute force scaled with beta power suppression, but with the scaling determined by the maximal voluntary contraction force of the motor effector. Our results argue against the hypothesis that the basal ganglia are directly involved in the parameterization of force during movement and support a role of the STN in the control of motor effort to be attributed to a response. PMID:25878267
On the Signals Underlying Conscious Awareness of Action
ERIC Educational Resources Information Center
Obhi, Sukhvinder S.; Planetta, Peggy J.; Scantlebury, Jordan
2009-01-01
To investigate whether conscious judgments of movement onset are based solely on pre-movement signals (i.e., premotor or efference copy signals) or whether sensory feedback (i.e., reafferent) signals also play a role, participants judged the onset of finger and toe movements that were either active (i.e., self initiated) or passive (i.e.,…
Yamaura, Hiroshi; Matsushita, Kojiro; Kato, Ryu; Yokoi, Hiroshi
2009-01-01
We have developed a hand rehabilitation system for patients suffering from paralysis or contracture. It consists of two components: a hand rehabilitation machine, which moves human finger joints with motors, and a data glove, which provides control of the movement of finger joints attached to the rehabilitation machine. The machine is based on the arm structure type of hand rehabilitation machine; a motor indirectly moves a finger joint via a closed four-link mechanism. We employ a wire-driven mechanism and develop a compact design that can control all three joints (i.e., PIP, DIP and MP ) of a finger and that offers a wider range of joint motion than conventional systems. Furthermore, we demonstrate the hand rehabilitation process, finger joints of the left hand attached to the machine are controlled by the finger joints of the right hand wearing the data glove.
Speed-Dependent Contribution of Callosal Pathways to Ipsilateral Movements
Tazoe, Toshiki
2013-01-01
Transcallosal inhibitory interactions between primary motor cortices are important to suppress unintended movements in a resting limb during voluntary activation of the contralateral limb. The functional contribution of transcallosal inhibition targeting the voluntary active limb remains unknown. Using transcranial magnetic stimulation, we examined transcallosal inhibition [by measuring interhemispheric inhibition (IHI) and the ipsilateral silent period (iSP)] in the preparatory and execution phases of isotonic slower self-paced and ballistic movements performed by the ipsilateral index finger into abduction and the elbow into flexion in intact humans. We demonstrate decreased IHI in the preparatory phase of self-paced and ballistic index finger and elbow movements compared to rest; the decrease in IHI was larger during ballistic than self-paced movements. In contrast, in the execution phase, IHI and the iSP increased during ballistic compared to self-paced movements. Transcallosal inhibition was negatively correlated with reaction times in the preparatory phase and positively correlated with movement amplitude in the execution phase. Together, our results demonstrate a widespread contribution of transcallosal inhibition to ipsilateral movements of different speeds with a functional role during rapid movements; at faster speeds, decreased transcallosal inhibition in the preparatory phase may contribute to start movements rapidly, while the increase in the execution phase may contribute to stop the movement. We argue that transcallosal pathways enable signaling of the time of discrete behavioral events during ipsilateral movements, which is amplified by the speed of a movement. PMID:24107950
The kinetics and acoustics of fingering and note transitions on the flute.
Almeida, André; Chow, Renee; Smith, John; Wolfe, Joe
2009-09-01
Motion of the keys was measured in a transverse flute while beginner, amateur, and professional flutists played a range of exercises. The time taken for a key to open or close was typically 10 ms when pushed by a finger or 16 ms when moved by a spring. Because the opening and closing of keys will never be exactly simultaneous, transitions between notes that involve the movement of multiple fingers can occur via several possible pathways with different intermediate fingerings. A transition is classified as "safe" if it is possible to be slurred from the initial to final note with little perceptible change in pitch or volume. Some transitions are "unsafe" and possibly involve a transient change in pitch or a decrease in volume. Players, on average, used safe transitions more frequently than unsafe transitions. Delays between the motion of the fingers were typically tens of milliseconds, with longer delays as more fingers become involved. Professionals exhibited smaller average delays between the motion of their fingers than did amateurs.
Circuit For Control Of Electromechanical Prosthetic Hand
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr.
1995-01-01
Proposed circuit for control of electromechanical prosthetic hand derives electrical control signals from shoulder movements. Updated, electronic version of prosthesis, that includes two hooklike fingers actuated via cables from shoulder harness. Circuit built around favored shoulder harness, provides more dexterous movement, without incurring complexity of computer-controlled "bionic" or hydraulically actuated devices. Additional harness and potentiometer connected to similar control circuit mounted on other shoulder. Used to control stepping motor rotating hand about prosthetic wrist to one of number of angles consistent with number of digital outputs. Finger-control signals developed by circuit connected to first shoulder harness transmitted to prosthetic hand via sliprings at prosthetic wrist joint.
Kinematic analysis of the finger exoskeleton using MATLAB/Simulink.
Nasiłowski, Krzysztof; Awrejcewicz, Jan; Lewandowski, Donat
2014-01-01
A paralyzed and not fully functional part of human body can be supported by the properly designed exoskeleton system with motoric abilities. It can help in rehabilitation, or movement of a disabled/paralyzed limb. Both suitably selected geometry and specialized software are studied applying the MATLAB environment. A finger exoskeleton was the base for MATLAB/Simulink model. Specialized software, such as MATLAB/Simulink give us an opportunity to optimize calculation reaching precise results, which help in next steps of design process. The calculations carried out yield information regarding movement relation between three functionally connected actuators and showed distance and velocity changes during the whole simulation time.
Motor neuronopathy with dropped hands and downbeat nystagmus: a distinctive disorder? A case report.
Thakore, Nimish J; Pioro, Erik P; Rucker, Janet C; Leigh, R John
2006-01-12
Eye movements are clinically normal in most patients with motor neuron disorders until late in the disease course. Rare patients are reported to show slow vertical saccades, impaired smooth pursuit, and gaze-evoked nystagmus. We report clinical and oculomotor findings in three patients with motor neuronopathy and downbeat nystagmus, a classic sign of vestibulocerebellar disease. All patients had clinical and electrodiagnostic features of anterior horn cell disease. Involvement of finger and wrist extensors predominated, causing finger and wrist drop. Bulbar or respiratory dysfunction did not occur. All three had clinically evident downbeat nystagmus worse on lateral and downgaze, confirmed on eye movement recordings using the magnetic search coil technique in two patients. Additional oculomotor findings included alternating skew deviation and intermittent horizontal saccadic oscillations, in one patient each. One patient had mild cerebellar atrophy, while the other two had no cerebellar or brainstem abnormality on neuroimaging. The disorder is slowly progressive, with survival up to 30 years from the time of onset. The combination of motor neuronopathy, characterized by early and prominent wrist and finger extensor weakness, and downbeat nystagmus with or without other cerebellar eye movement abnormalities may represent a novel motor neuron syndrome.
Motor neuronopathy with dropped hands and downbeat nystagmus: A distinctive disorder? A case report
Thakore, Nimish J; Pioro, Erik P; Rucker, Janet C; Leigh, R John
2006-01-01
Background Eye movements are clinically normal in most patients with motor neuron disorders until late in the disease course. Rare patients are reported to show slow vertical saccades, impaired smooth pursuit, and gaze-evoked nystagmus. We report clinical and oculomotor findings in three patients with motor neuronopathy and downbeat nystagmus, a classic sign of vestibulocerebellar disease. Case presentation All patients had clinical and electrodiagnostic features of anterior horn cell disease. Involvement of finger and wrist extensors predominated, causing finger and wrist drop. Bulbar or respiratory dysfunction did not occur. All three had clinically evident downbeat nystagmus worse on lateral and downgaze, confirmed on eye movement recordings using the magnetic search coil technique in two patients. Additional oculomotor findings included alternating skew deviation and intermittent horizontal saccadic oscillations, in one patient each. One patient had mild cerebellar atrophy, while the other two had no cerebellar or brainstem abnormality on neuroimaging. The disorder is slowly progressive, with survival up to 30 years from the time of onset. Conclusion The combination of motor neuronopathy, characterized by early and prominent wrist and finger extensor weakness, and downbeat nystagmus with or without other cerebellar eye movement abnormalities may represent a novel motor neuron syndrome. PMID:16409626
2017-01-01
Decoding neural activities related to voluntary and involuntary movements is fundamental to understanding human brain motor circuits and neuromotor disorders and can lead to the development of neuromotor prosthetic devices for neurorehabilitation. This study explores using recorded deep brain local field potentials (LFPs) for robust movement decoding of Parkinson's disease (PD) and Dystonia patients. The LFP data from voluntary movement activities such as left and right hand index finger clicking were recorded from patients who underwent surgeries for implantation of deep brain stimulation electrodes. Movement-related LFP signal features were extracted by computing instantaneous power related to motor response in different neural frequency bands. An innovative neural network ensemble classifier has been proposed and developed for accurate prediction of finger movement and its forthcoming laterality. The ensemble classifier contains three base neural network classifiers, namely, feedforward, radial basis, and probabilistic neural networks. The majority voting rule is used to fuse the decisions of the three base classifiers to generate the final decision of the ensemble classifier. The overall decoding performance reaches a level of agreement (kappa value) at about 0.729 ± 0.16 for decoding movement from the resting state and about 0.671 ± 0.14 for decoding left and right visually cued movements. PMID:29201041
Koh, Kyung; Kwon, Hyun Joon; Yoon, Bum Chul; Cho, Yongseok; Shin, Joon-Ho; Hahn, Jin-Oh; Miller, Ross H; Kim, Yoon Hyuk; Shim, Jae Kun
2015-09-01
The hand, one of the most versatile but mechanically redundant parts of the human body, must overcome imperfect motor commands and inherent noise in both the sensory and motor systems in order to produce desired motor actions. For example, it is nearly impossible to produce a perfectly consistent note during a single violin stroke or to produce the exact same note over multiple strokes, which we denote online and offline control, respectively. To overcome these challenges, the central nervous system synergistically integrates multiple sensory modalities and coordinates multiple motor effectors. Among these sensory modalities, tactile sensation plays an important role in manual motor tasks by providing hand-object contact information. The purpose of this study was to investigate the role of tactile feedback in individual finger actions and multi-finger interactions during constant force production tasks. We developed analytical techniques for the linear decomposition of the overall variance in the motor system in both online and offline control. We removed tactile feedback from the fingers and demonstrated that tactile sensors played a critical role in the online control of synergistic interactions between fingers. In contrast, the same sensors did not contribute to offline control. We also demonstrated that when tactile feedback was removed from the fingers, the combined motor output of individual fingers did not change while individual finger behaviors did. This finding supports the idea of hierarchical control where individual fingers at the lower level work together to stabilize the performance of combined motor output at the higher level.
Interference effects between memory systems in the acquisition of a skill.
Gagné, Marie-Hélène; Cohen, Henri
2016-10-01
There is now converging evidence that the declarative memory system (hippocampus dependent) contributes to sequential motor learning in concert with the procedural memory system (striatum dependent). Because of the competition for shared neuronal resources, introducing a declarative memory task can impair learning of a new motor sequence and interference may occur during the procedural consolidation process. Here, we investigated the extent to which interference effects between memory systems are seen at the retrieval phase of skill learning. Healthy participants were assigned to a control (n = 15) or a declarative condition (n = 15) and trained on a sequence of finger movements (FOS task). Both groups showed similar improvement at the end of the practice session on the first day. Twenty-four hours later, controls were tested solely on the FOS task, while subjects in the declarative condition first engaged in a visuospatial task. Additional offline gains in performance were observed only in the control condition. The introduction of a visuospatial memory task just before retrieval of the motor skill was sufficient to eliminate these gains. This suggests that interference between procedural and declarative memory systems may also occur during subsequent motor recall. It is proposed that the interference effects are linked, in part, to the spatial nature of the motor and declarative tasks, which specifically depends upon hippocampal involvement.
Tang, Rixin; Whitwell, Robert L; Goodale, Melvyn A
2015-05-01
Goal-directed movements, such as reaching out to grasp an object, are necessarily constrained by the spatial properties of the target such as its size, shape, and position. For example, during a reach-to-grasp movement, the peak width of the aperture formed by the thumb and fingers in flight (peak grip aperture, PGA) is linearly related to the target's size. Suppressing vision throughout the movement (visual open loop) has a small though significant effect on this relationship. Visual open loop conditions also produce a large increase in the PGA compared to when vision is available throughout the movement (visual closed loop). Curiously, this differential effect of the availability of visual feedback is influenced by the presentation order: the difference in PGA between closed- and open-loop trials is smaller when these trials are intermixed (an effect we have called 'homogenization'). Thus, grasping movements are affected not only by the availability of visual feedback (closed loop or open loop) but also by what happened on the previous trial. It is not clear, however, whether this carry-over effect is mediated through motor (or sensorimotor) memory or through the interference of different task sets for closed-loop and open-loop feedback that determine when the movements are fully specified. We reasoned that sensorimotor memory, but not a task set for closed and open loop feedback, would be specific to the type of response. We tested this prediction in a condition in which pointing to targets was alternated with grasping those same targets. Critically, in this condition, when pointing was performed in open loop, grasping was always performed in closed loop (and vice versa). Despite the fact that closed- and open-loop trials were alternating in this condition, we found no evidence for homogenization of the PGA. Homogenization did occur, however, in a follow-up experiment in which grasping movements and visual feedback were alternated between the left and the right hand, indicating that sensorimotor (or motor) memory can operate both within and between hands when the response type is kept the same. In a final experiment, we ruled out the possibility that simply alternating the hand used to perform the grasp interferes with motor or sensorimotor memory. We did this by showing that when the hand was alternated within a block of exclusively closed- or open-loop trials, homogenization of the PGA did not occur. Taken together, the results suggest that (1) interference from simply switching between task sets for closed or open-loop feedback or from switching between the hands cannot account homogenization in the PGA and that (2) the programming and execution of grasps can borrow not only from grasping movements executed in the past by the same hand, but also from grasping movements executed with the other hand. Copyright © 2015 Elsevier B.V. All rights reserved.
Force illusions and drifts observed during muscle vibration.
Reschechtko, Sasha; Cuadra, Cristian; Latash, Mark L
2018-01-01
We explored predictions of a scheme that views position and force perception as a result of measuring proprioceptive signals within a reference frame set by ongoing efferent process. In particular, this hypothesis predicts force illusions caused by muscle vibration and mediated via changes in both afferent and efferent components of kinesthesia. Healthy subjects performed accurate steady force production tasks by pressing with the four fingers of one hand (the task hand) on individual force sensors with and without visual feedback. At various times during the trials, subjects matched the perceived force using the other hand. High-frequency vibration was applied to one or both of the forearms (over the hand and finger extensors). Without visual feedback, subjects showed a drop in the task hand force, which was significantly smaller under the vibration of that forearm. Force production by the matching hand was consistently higher than that of the task hand. Vibrating one of the forearms affected the matching hand in a manner consistent with the perception of higher magnitude of force produced by the vibrated hand. The findings were consistent between the dominant and nondominant hands. The effects of vibration on both force drift and force mismatching suggest that vibration led to shifts in both signals from proprioceptors and the efferent component of perception, the referent coordinate and/or coactivation command. The observations fit the hypothesis on combined perception of kinematic-kinetic variables with little specificity of different groups of peripheral receptors that all contribute to perception of forces and coordinates. NEW & NOTEWORTHY We show that vibration of hand/finger extensors produces consistent errors in finger force perception. Without visual feedback, finger force drifted to lower values without a drift in the matching force produced by the other hand; hand extensor vibration led to smaller finger force drift. The findings fit the scheme with combined perception of kinematic-kinetic variables and suggest that vibration leads to consistent shifts of the referent coordinate and, possibly, of coactivation command to the effector.
Advanced analysis of finger-tapping performance: a preliminary study.
Barut, Cağatay; Kızıltan, Erhan; Gelir, Ethem; Köktürk, Fürüzan
2013-06-01
The finger-tapping test is a commonly employed quantitative assessment tool used to measure motor performance in the upper extremities. This task is a complex motion that is affected by external stimuli, mood and health status. The complexity of this task is difficult to explain with a single average intertap-interval value (time difference between successive tappings) which only provides general information and neglects the temporal effects of the aforementioned factors. This study evaluated the time course of average intertap-interval values and the patterns of variation in both the right and left hands of right-handed subjects using a computer-based finger-tapping system. Cross sectional study. Thirty eight male individuals aged between 20 and 28 years (Mean±SD = 22.24±1.65) participated in the study. Participants were asked to perform single-finger-tapping test for 10 seconds of test period. Only the results of right-handed (RH) 35 participants were considered in this study. The test records the time of tapping and saves data as the time difference between successive tappings for further analysis. The average number of tappings and the temporal fluctuation patterns of the intertap-intervals were calculated and compared. The variations in the intertap-interval were evaluated with the best curve fit method. An average tapping speed or tapping rate can reliably be defined for a single-finger tapping test by analysing the graphically presented data of the number of tappings within the test period. However, a different presentation of the same data, namely the intertap-interval values, shows temporal variation as the number of tapping increases. Curve fitting applications indicate that the variation has a biphasic nature. The measures obtained in this study reflect the complex nature of the finger-tapping task and are suggested to provide reliable information regarding hand performance. Moreover, the equation reflects both the variations in and the general patterns associated with the task.
Niki, Chiharu; Maruyama, Takashi; Muragaki, Yoshihiro; Kumada, Takatsune
2014-01-01
Background. Perseveration has been observed in a number of behavioural contexts, including speaking, writing, and drawing. However, no previous report describes patients who show perseveration only for drawing a human figure. Objective. The present report describes a group of patients who show body awareness-related cognitive impairment during a human figure drawing task, a different presentation from previously described neuropsychological cases. Methods. Participants were 15 patients who had a frontal lobe brain tumour around the insula cortex of the right hemisphere and had subsequently undergone a neurosurgical resective operation. Participants were asked to draw a human figure in both “hands-down” and “hands-up” configurations. Results. Eight of the 15 patients drew a human figure with six fingers during the “hands-up” and the “hands-down” human figure drawing tasks (one patient drew eight fingers). A statistical analysis of potential lesion areas revealed damage to the right anterior frontal insula and operculum in this group of patients relative to the five-finger drawing group. Conclusions. Our findings reveal a newly described neuropsychological phenomenon that could reflect impairment in attention directed towards body representations. PMID:24876665
Weber (slope) analyses of timing variability in tapping and drawing tasks.
Spencer, Rebecca M C; Zelaznik, Howard N
2003-12-01
Timing variability in continuous drawing tasks has not been found to be correlated with timing variability in repetitive finger tapping in recent studies (S. D. Robertson et al., 1999; H. N. Zelaznik, R. M. C. Spencer, & R. B. Ivry, 2002). Furthermore, the central component of timing variability, as measured by the slope of the timing variance versus the square of the timed interval, differed for tapping and drawing tasks. On the basis of those results, the authors posited that timing in tapping is explicit and as such uses a central representation of the interval to be timed, whereas timing in drawing tasks is implicit, that is, the temporal component is an emergent property of the trajectory produced. The authors examined that hypothesis in the present study by determining the linear relationship between timing variance and squared duration for tapping, circle-drawing, and line-drawing tasks. Participants (N = 50) performed 1 of 5 tasks: finger tapping, line drawing in the x dimension, line drawing in the y dimension, continuous circle drawing timed in the x dimension, or continuous circle drawing timed in the y dimension. The slopes differed significantly between finger tapping, line drawing, and circle drawing, suggesting separable sources of timing variability. The slopes of the 2 circle-drawing tasks did not differ from one another, nor did the slopes of the 2 line-drawing tasks differ significantly, suggesting a shared timing process within those tasks. Those results are evidence of a high degree of specificity in timing processes.
Use of an AC induction motor system for producing finger movements in human subjects.
Proudlock, F A; Scott, J J
1998-12-01
This report describes the set-up and evaluation of a novel system for producing precise finger movements, for tests of movement perception. The specifications were to construct a system using commercially available components that were easy to use but which offered both flexibility and also high precision control. The system was constructed around an industrial AC induction motor with an optical encoder, controlled by an AC servo digital control module that could be programmed using a simple, high-level language. This set-up fulfilled the requirements regarding position and velocity control for a range of movements and also the facility for the subject to move the joint voluntarily while still attached to the motor. However a number of problems were encountered, the most serious being the level of vibration and the inability to vary the torque during movements. The vibration was reduced to the point where it did not affect the subject, by the introduction of mechanical dampening using an anti-vibration coupling and a pneumatic splint. The torque control could not be modified during rotation and so the system could only be operated using constant torque for any given movement.
Varlet, Manuel; Novembre, Giacomo; Keller, Peter E
2017-06-01
Spontaneous modulations of corticospinal excitability during action observation have been interpreted as evidence for the activation of internal motor representations equivalent to the observed action. Alternatively or complementary to this perspective, growing evidence shows that motor activity during observation of rhythmic movements can be modulated by direct visuomotor couplings and dynamical entrainment. In-phase and anti-phase entrainment spontaneously occur, characterized by cyclic movements proceeding simultaneously in the same (in-phase) or opposite (anti-phase) direction. Here we investigate corticospinal excitability during the observation of vertical oscillations of an index finger using Transcranial Magnetic Stimulation (TMS). Motor-evoked potentials (MEPs) were recorded from participants' flexor and extensor muscles of the right index finger, placed in either a maximal steady flexion or extension position, with stimulations delivered at maximal flexion, maximal extension or mid-trajectory of the observed finger oscillations. Consistent with the occurrence of dynamical motor entrainment, increased and decreased MEP responses - suggesting the facilitation of stable in-phase and anti-phase relations but not an unstable 90° phase relation - were found in participants' flexors. Anti-phase motor facilitation contrasts with the activation of internal motor representation as it involves activity in the motor system opposite from activity required for the execution of the observed movement. These findings demonstrate the relevance of dynamical entrainment theories and methods for understanding spontaneous motor activity in the brain during action observation and the mechanisms underpinning coordinated movements during social interaction. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Building intelligent communication systems for handicapped aphasiacs.
Fu, Yu-Fen; Ho, Cheng-Seen
2010-01-01
This paper presents an intelligent system allowing handicapped aphasiacs to perform basic communication tasks. It has the following three key features: (1) A 6-sensor data glove measures the finger gestures of a patient in terms of the bending degrees of his fingers. (2) A finger language recognition subsystem recognizes language components from the finger gestures. It employs multiple regression analysis to automatically extract proper finger features so that the recognition model can be fast and correctly constructed by a radial basis function neural network. (3) A coordinate-indexed virtual keyboard allows the users to directly access the letters on the keyboard at a practical speed. The system serves as a viable tool for natural and affordable communication for handicapped aphasiacs through continuous finger language input.
Interpersonal synergies: static prehension tasks performed by two actors.
Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L
2016-08-01
We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.
Finger tapping and pre-attentive sensorimotor timing in adults with ADHD.
Hove, Michael J; Gravel, Nickolas; Spencer, Rebecca M C; Valera, Eve M
2017-12-01
Sensorimotor timing deficits are considered central to attention-deficit/hyperactivity disorder (ADHD). However, the tasks establishing timing impairments often involve interconnected processes, including low-level sensorimotor timing and higher level executive processes such as attention. Thus, the source of timing deficits in ADHD remains unclear. Low-level sensorimotor timing can be isolated from higher level processes in a finger-tapping task that examines the motor response to unexpected shifts of metronome onsets. In this study, adults with ADHD and ADHD-like symptoms (n = 25) and controls (n = 26) performed two finger-tapping tasks. The first assessed tapping variability in a standard tapping task (metronome-paced and unpaced). In the other task, participants tapped along with a metronome that contained unexpected shifts (±15, 50 ms); the timing adjustment on the tap following the shift captures pre-attentive sensorimotor timing (i.e., phase correction) and thus should be free of potential higher order confounds (e.g., attention). In the standard tapping task, as expected, the ADHD group had higher timing variability in both paced and unpaced tappings. However, in the pre-attentive task, performance did not differ between the ADHD and control groups. Together, results suggest that low-level sensorimotor timing and phase correction are largely preserved in ADHD and that some timing impairments observed in ADHD may stem from higher level factors (such as sustained attention).
Movement-related phase locking in the delta-theta frequency band.
Popovych, S; Rosjat, N; Toth, T I; Wang, B A; Liu, L; Abdollahi, R O; Viswanathan, S; Grefkes, C; Fink, G R; Daun, S
2016-10-01
Movements result from a complex interplay of multiple brain regions. These regions are assembled into distinct functional networks depending on the specific properties of the action. However, the nature and details of the dynamics of this complex assembly process are unknown. In this study, we sought to identify key markers of the neural processes underlying the preparation and execution of motor actions that always occur irrespective of differences in movement initiation, hence the specific neural processes and functional networks involved. To this end, EEG activity was continuously recorded from 18 right-handed healthy participants while they performed a simple motor task consisting of button presses with the left or right index finger. The movement was performed either in response to a visual cue or at a self-chosen, i.e., non-cued point in time. Despite these substantial differences in movement initiation, dynamic properties of the EEG signals common to both conditions could be identified using time-frequency and phase locking analysis of the EEG data. In both conditions, a significant phase locking effect was observed that started prior to the movement onset in the δ-θ frequency band (2-7Hz), and that was strongest at the electrodes nearest to the contralateral motor region (M1). This phase locking effect did not have a counterpart in the corresponding power spectra (i.e., amplitudes), or in the event-related potentials. Our finding suggests that phase locking in the δ-θ frequency band is a ubiquitous movement-related signal independent of how the actual movement has been initiated. We therefore suggest that phase-locked neural oscillations in the motor cortex are a prerequisite for the preparation and execution of motor actions. Copyright © 2016 Elsevier Inc. All rights reserved.
Sano, Yuko; Kandori, Akihiko; Shima, Keisuke; Yamaguchi, Yuki; Tsuji, Toshio; Noda, Masafumi; Higashikawa, Fumiko; Yokoe, Masaru; Sakoda, Saburo
2016-06-01
We propose a novel index of Parkinson's disease (PD) finger-tapping severity, called "PDFTsi," for quantifying the severity of symptoms related to the finger tapping of PD patients with high accuracy. To validate the efficacy of PDFTsi, the finger-tapping movements of normal controls and PD patients were measured by using magnetic sensors, and 21 characteristics were extracted from the finger-tapping waveforms. To distinguish motor deterioration due to PD from that due to aging, the aging effect on finger tapping was removed from these characteristics. Principal component analysis (PCA) was applied to the age-normalized characteristics, and principal components that represented the motion properties of finger tapping were calculated. Multiple linear regression (MLR) with stepwise variable selection was applied to the principal components, and PDFTsi was calculated. The calculated PDFTsi indicates that PDFTsi has a high estimation ability, namely a mean square error of 0.45. The estimation ability of PDFTsi is higher than that of the alternative method, MLR with stepwise regression selection without PCA, namely a mean square error of 1.30. This result suggests that PDFTsi can quantify PD finger-tapping severity accurately. Furthermore, the result of interpreting a model for calculating PDFTsi indicated that motion wideness and rhythm disorder are important for estimating PD finger-tapping severity.
On the origins of logarithmic number-to-position mapping.
Dotan, Dror; Dehaene, Stanislas
2016-11-01
The number-to-position task, in which children and adults are asked to place numbers on a spatial number line, has become a classic measure of number comprehension. We present a detailed experimental and theoretical dissection of the processing stages that underlie this task. We used a continuous finger-tracking technique, which provides detailed information about the time course of processing stages. When adults map the position of 2-digit numbers onto a line, their final mapping is essentially linear, but intermediate finger location show a transient logarithmic mapping. We identify the origins of this log effect: Small numbers are processed faster than large numbers, so the finger deviates toward the target position earlier for small numbers than for large numbers. When the trajectories are aligned on the finger deviation onset, the log effect disappears. The small-number advantage and the log effect are enhanced in dual-task setting and are further enhanced when the delay between the 2 tasks is shortened, suggesting that these effects originate from a central stage of quantification and decision making. We also report cases of logarithmic mapping-by children and by a brain-injured individual-which cannot be explained by faster responding to small numbers. We show that these findings are captured by an ideal-observer model of the number-to-position mapping task, comprising 3 distinct stages: a quantification stage, whose duration is influenced by both exact and approximate representations of numerical quantity; a Bayesian accumulation-of-evidence stage, leading to a decision about the target location; and a pointing stage. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C.; Haberfield, Miranda; Edwards, Hannah; White, Jason M.
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use. PMID:26819778
Todd, Gabrielle; Pearson-Dennett, Verity; Flavel, Stanley C; Haberfield, Miranda; Edwards, Hannah; White, Jason M
2016-01-01
Little is known about the long-lasting effect of use of illicit stimulant drugs on learning of new motor skills. We hypothesised that abstinent individuals with a history of primarily methamphetamine and ecstasy use would exhibit normal learning of a visuomotor tracking task compared to controls. The study involved three groups: abstinent stimulant users (n = 21; 27 ± 6 yrs) and two gender-matched control groups comprising nondrug users (n = 16; 22 ± 4 yrs) and cannabis users (n = 16; 23 ± 5 yrs). Motor learning was assessed with a three-minute visuomotor tracking task. Subjects were instructed to follow a moving target on a computer screen with movement of the index finger. Metacarpophalangeal joint angle and first dorsal interosseous electromyographic activity were recorded. Pattern matching was assessed by cross-correlation of the joint angle and target traces. Distance from the target (tracking error) was also calculated. Motor learning was evident in the visuomotor task. Pattern matching improved over time (cross-correlation coefficient) and tracking error decreased. However, task performance did not differ between the groups. The results suggest that learning of a new fine visuomotor skill is unchanged in individuals with a history of illicit stimulant use.
Typing pictures: Linguistic processing cascades into finger movements.
Scaltritti, Michele; Arfé, Barbara; Torrance, Mark; Peressotti, Francesca
2016-11-01
The present study investigated the effect of psycholinguistic variables on measures of response latency and mean interkeystroke interval in a typewritten picture naming task, with the aim to outline the functional organization of the stages of cognitive processing and response execution associated with typewritten word production. Onset latencies were modulated by lexical and semantic variables traditionally linked to lexical retrieval, such as word frequency, age of acquisition, and naming agreement. Orthographic variables, both at the lexical and sublexical level, appear to influence just within-word interkeystroke intervals, suggesting that orthographic information may play a relevant role in controlling actual response execution. Lexical-semantic variables also influenced speed of execution. This points towards cascaded flow of activation between stages of lexical access and response execution. Copyright © 2016 Elsevier B.V. All rights reserved.
Martin, J.R.; Budgeon, M.K.; Zatsiorsky, V.M.; Latash, M.L.
2010-01-01
When one finger changes its force, other fingers of the hand can show unintended force changes in the same direction (enslaving) and in the opposite direction (error compensation). We tested a hypothesis that externally imposed changes in finger force predominantly lead to error compensation effects in other fingers thus stabilizing the total force. A novel device, the “inverse piano”, was used to impose controlled displacements to one of the fingers over different magnitudes and at different rates. Subjects (n =10) pressed with four fingers at a constant force level and then one of the fingers was unexpectedly raised. The subjects were instructed not to interfere with possible changes in the finger forces. Raising a finger caused an increase in its force and a drop in the force of the other three fingers. Overall, total force showed a small increase. Larger force drops were seen in neighbors of the raised finger (proximity effect). The results show that multi-finger force stabilizing synergies dominate during involuntary reactions to externally imposed finger force changes. Within the referent configuration hypothesis, the data suggest that the instruction “not to interfere” leads to adjustments of the referent coordinates of all the individual fingers. PMID:21450360
Development of a parametric kinematic model of the human hand and a novel robotic exoskeleton.
Burton, T M W; Vaidyanathan, R; Burgess, S C; Turton, A J; Melhuish, C
2011-01-01
This paper reports the integration of a kinematic model of the human hand during cylindrical grasping, with specific focus on the accurate mapping of thumb movement during grasping motions, and a novel, multi-degree-of-freedom assistive exoskeleton mechanism based on this model. The model includes thumb maximum hyper-extension for grasping large objects (~> 50 mm). The exoskeleton includes a novel four-bar mechanism designed to reproduce natural thumb opposition and a novel synchro-motion pulley mechanism for coordinated finger motion. A computer aided design environment is used to allow the exoskeleton to be rapidly customized to the hand dimensions of a specific patient. Trials comparing the kinematic model to observed data of hand movement show the model to be capable of mapping thumb and finger joint flexion angles during grasping motions. Simulations show the exoskeleton to be capable of reproducing the complex motion of the thumb to oppose the fingers during cylindrical and pinch grip motions. © 2011 IEEE
Structural Integration and Control of Peerless Human-like Prosthetic Hand
NASA Astrophysics Data System (ADS)
Dave, Ankit; Muthu, P.; Karthikraj, V.; Latha, S.
2018-04-01
Limb damage can create severe disturbance in movement and operative abilities wherein the prosthetic rehabilitation has the potential to replace function and enhance the quality of life. This paper presents a humanlike prosthetic hand using such unique design concept of hand model using artificial bones, ligaments, and tendons controlled using Arduino. Amongst various platforms available, Arduino is known for its adaptability, adoration and low cost. The design of prosthetic hand has a unique structure with all carpal, metacarpal, and phalanges which are bones of the hand. These bones are attached to each other following the pattern of human hand using the polymeric rubber as a functioning ligament. Furthermore, this structure of finger is driven by tendons attached to all fingers and passes through the ligaments working as pulley resulting in more degrees of freedom. The motor can twitch the tendons to achieve the action of fingers. Thus the servos, controlled by an Arduino, are used to regulate the movement mechanism of the prosthetic hand.
Decoding flexion of individual fingers using electrocorticographic signals in humans
NASA Astrophysics Data System (ADS)
Kubánek, J.; Miller, K. J.; Ojemann, J. G.; Wolpaw, J. R.; Schalk, G.
2009-12-01
Brain signals can provide the basis for a non-muscular communication and control system, a brain-computer interface (BCI), for people with motor disabilities. A common approach to creating BCI devices is to decode kinematic parameters of movements using signals recorded by intracortical microelectrodes. Recent studies have shown that kinematic parameters of hand movements can also be accurately decoded from signals recorded by electrodes placed on the surface of the brain (electrocorticography (ECoG)). In the present study, we extend these results by demonstrating that it is also possible to decode the time course of the flexion of individual fingers using ECoG signals in humans, and by showing that these flexion time courses are highly specific to the moving finger. These results provide additional support for the hypothesis that ECoG could be the basis for powerful clinically practical BCI systems, and also indicate that ECoG is useful for studying cortical dynamics related to motor function.
Arjunan, Sridhar Poosapadi; Kumar, Dinesh Kant
2010-10-21
Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface.
2010-01-01
Background Identifying finger and wrist flexion based actions using a single channel surface electromyogram (sEMG) can lead to a number of applications such as sEMG based controllers for near elbow amputees, human computer interface (HCI) devices for elderly and for defence personnel. These are currently infeasible because classification of sEMG is unreliable when the level of muscle contraction is low and there are multiple active muscles. The presence of noise and cross-talk from closely located and simultaneously active muscles is exaggerated when muscles are weakly active such as during sustained wrist and finger flexion. This paper reports the use of fractal properties of sEMG to reliably identify individual wrist and finger flexion, overcoming the earlier shortcomings. Methods SEMG signal was recorded when the participant maintained pre-specified wrist and finger flexion movements for a period of time. Various established sEMG signal parameters such as root mean square (RMS), Mean absolute value (MAV), Variance (VAR) and Waveform length (WL) and the proposed fractal features: fractal dimension (FD) and maximum fractal length (MFL) were computed. Multi-variant analysis of variance (MANOVA) was conducted to determine the p value, indicative of the significance of the relationships between each of these parameters with the wrist and finger flexions. Classification accuracy was also computed using the trained artificial neural network (ANN) classifier to decode the desired subtle movements. Results The results indicate that the p value for the proposed feature set consisting of FD and MFL of single channel sEMG was 0.0001 while that of various combinations of the five established features ranged between 0.009 - 0.0172. From the accuracy of classification by the ANN, the average accuracy in identifying the wrist and finger flexions using the proposed feature set of single channel sEMG was 90%, while the average accuracy when using a combination of other features ranged between 58% and 73%. Conclusions The results show that the MFL and FD of a single channel sEMG recorded from the forearm can be used to accurately identify a set of finger and wrist flexions even when the muscle activity is very weak. A comparison with other features demonstrates that this feature set offers a dramatic improvement in the accuracy of identification of the wrist and finger movements. It is proposed that such a system could be used to control a prosthetic hand or for a human computer interface. PMID:20964863
Multi-Finger Interaction and Synergies in Finger Flexion and Extension Force Production
Park, Jaebum; Xu, Dayuan
2017-01-01
The aim of this study was to discover finger interaction indices during single-finger ramp tasks and multi-finger coordination during a steady state force production in two directions, flexion, and extension. Furthermore, the indices of anticipatory adjustment of elemental variables (i.e., finger forces) prior to a quick pulse force production were quantified. It is currently unknown whether the organization and anticipatory modulation of stability properties are affected by force directions and strengths of in multi-finger actions. We expected to observe a smaller finger independency and larger indices of multi-finger coordination during extension than during flexion due to both neural and peripheral differences between the finger flexion and extension actions. We also examined the indices of the anticipatory adjustment between different force direction conditions. The anticipatory adjustment could be a neural process, which may be affected by the properties of the muscles and by the direction of the motions. The maximal voluntary contraction (MVC) force was larger for flexion than for extension, which confirmed the fact that the strength of finger flexor muscles (e.g., flexor digitorum profundus) was larger than that of finger extensor (e.g., extensor digitorum). The analysis within the uncontrolled manifold (UCM) hypothesis was used to quantify the motor synergy of elemental variables by decomposing two sources of variances across repetitive trials, which identifies the variances in the uncontrolled manifold (VUCM) and that are orthogonal to the UCM (VORT). The presence of motor synergy and its strength were quantified by the relative amount of VUCM and VORT. The strength of motor synergies at the steady state was larger in the extension condition, which suggests that the stability property (i.e., multi-finger synergies) may be a direction specific quantity. However, the results for the existence of anticipatory adjustment; however, no difference between the directional conditions suggests that feed-forward synergy adjustment (changes in the stability property) may be at least independent of the magnitude of the task-specific apparent performance variables and its direction (e.g., flexion and extension forces). PMID:28674489
Spectral Variability in the Aged Brain during Fine Motor Control
Quandt, Fanny; Bönstrup, Marlene; Schulz, Robert; Timmermann, Jan E.; Zimerman, Maximo; Nolte, Guido; Hummel, Friedhelm C.
2016-01-01
Physiological aging is paralleled by a decline of fine motor skills accompanied by structural and functional alterations of the underlying brain network. Here, we aim to investigate age-related changes in the spectral distribution of neuronal oscillations during fine skilled motor function. We employ the concept of spectral entropy in order to describe the flatness and peaked-ness of a frequency spectrum to quantify changes in the spectral distribution of the oscillatory motor response in the aged brain. Electroencephalogram was recorded in elderly (n = 32) and young (n = 34) participants who performed either a cued finger movement or a pinch or a whole hand grip task with their dominant right hand. Whereas young participant showed distinct, well-defined movement-related power decreases in the alpha and upper beta band, elderly participants exhibited a flat broadband, frequency-unspecific power desynchronization. This broadband response was reflected by an increase of spectral entropy over sensorimotor and frontal areas in the aged brain. Neuronal activation patterns differed between motor tasks in the young brain, while the aged brain showed a similar activation pattern in all tasks. Moreover, we found a wider recruitment of the cortical motor network in the aged brain. The present study adds to the understanding of age-related changes of neural coding during skilled motor behavior, revealing a less predictable signal with great variability across frequencies in a wide cortical motor network in the aged brain. The increase in entropy in the aged brain could be a reflection of random noise-like activity or could represent a compensatory mechanism that serves a functional role. PMID:28066231
Barlow, Steven M; Hozan, Mohsen; Lee, Jaehoon; Greenwood, Jake; Custead, Rebecca; Wardyn, Brianna; Tippin, Kaytlin
2018-04-27
The relation among several parameters of the ramp-and-hold isometric force contraction (peak force and dF/dt max during the initial phase of force recruitment, and the proportion of hold-phase at target) was quantified for the right and left thumb-index finger pinch, and lower lip midline compression in 40 neurotypical right-handed young adults (20 female/20 males) using wireless force sensors and data acquisition technology developed in our laboratory. In this visuomotor control task, participants produced ramp-and-hold isometric forces as 'rapidly and accurately' as possible to end-point target levels at 0.25, 0.5, 1 and 2 Newtons presented to a computer monitor in a randomized block design. Significant relations were found between the parameters of the ramp-and-hold lip force task and target force level, including the peak rate of force change (dF/dt max ), peak force, and the criterion percentage of force within ±5% of target during the contraction hold phase. A significant performance advantage was found among these force variables for the thumb-index finger over the lower lip. The maximum voluntary compression force (MVCF) task revealed highly significant differences in force output between the thumb-index fingers and lower lip (∼4.47-4.70 times greater for the digits versus lower lip), a significant advantage of the right thumb-index finger over the non-dominant left thumb-index finger (12% and 25% right hand advantage for males and females, respectively), and a significant sex difference (∼1.65-1.73 times greater among males). Copyright © 2018 Elsevier Ltd. All rights reserved.
Bouncing Ball with a Uniformly Varying Velocity in a Metronome Synchronization Task.
Huang, Yingyu; Gu, Li; Yang, Junkai; Wu, Xiang
2017-09-21
Sensorimotor synchronization (SMS), a fundamental human ability to coordinate movements with external rhythms, has long been thought to be modality specific. In the canonical metronome synchronization task that requires tapping a finger along with an isochronous sequence, a well-established finding is that synchronization is much more stable to an auditory sequence consisting of auditory tones than to a visual sequence consisting of visual flashes. However, recent studies have shown that periodically moving visual stimuli can substantially improve synchronization compared with visual flashes. In particular, synchronization of a visual bouncing ball that has a uniformly varying velocity was found to be not less stable than synchronization of auditory tones. Here, the current protocol describes the application of the bouncing ball with a uniformly varying velocity in a metronome synchronization task. The usage of the bouncing ball in sequences with different inter-onset intervals (IOI) is included. The representative results illustrate synchronization performance of the bouncing ball, as compared with the performances of auditory tones and visual flashes. Given its comparable synchronization performance to that of auditory tones, the bouncing ball is of particular importance for addressing the current research topic of whether modality-specific mechanisms underlay SMS.
NASA Astrophysics Data System (ADS)
Paik, Seung-ho; Kim, Beop-Min
2016-03-01
fNIRS is a neuroimaging technique which uses near-infrared light source in the 700-1000 nm range and enables to detect hemodynamic changes (i.e., oxygenated hemoglobin, deoxygenated hemoglobin, blood volume) as a response to various brain processes. In this study, we developed a new, portable, prefrontal fNIRS system which has 12 light sources, 15 detectors and 108 channels with a sampling rate of 2 Hz. The wavelengths of light source are 780nm and 850nm. ATxmega128A1, 8bit of Micro controller unit (MCU) with 200~4095 resolution along with MatLab data acquisition algorithm was utilized. We performed a simple left and right finger movement imagery tasks which produced statistically significant changes of oxyhemoglobin concentrations in the dorsolateral prefrontal cortex (dlPFC) areas. We observed that the accuracy of the imagery tasks can be improved by carrying out neurofeedback training, during which a real-time feedback signal is provided to a participating subject. The effects of the neurofeedback training was later visually verified using the 3D NIRfast imaging. Our portable fNIRS system may be useful in non-constraint environment for various clinical diagnoses.
An fMRI study comparing rhythmic finger tapping in children and adults
De Guio, François; Jacobson, Sandra W.; Molteno, Christopher D.; Jacobson, Joseph L.; Meintjes, Ernesta M.
2011-01-01
This study compared brain activations during unpaced rhythmic finger tapping in 12-year old children with those of adults. The subject pressed a button at a pace initially indicated by a metronome (12 consecutive tones) and then continued for 16 seconds of unpaced tapping to provide an assessment of his/her ability to maintain a steady rhythm. In particular, the analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. 12 adults and 12 children performed this rhythmic finger tapping task in a 3T scanner. Whole-brain analyses were performed in Brain Voyager with a random effects analysis of variance using the general linear model. A dedicated cerebellar atlas was used to localise cerebellar activations. As in adults, unpaced rhythmic finger tapping in children showed activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different in that adults showed much more deactivation in response to the task, particularly in the occipital and frontal cortex. The other main differences were additional recruitment of motor and premotor areas in children compared to adults along with increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who needed to recruit the superior vermis more intensively to maintain the rhythm, even though they performed somewhat more poorly than the adults. PMID:22264703
De Guio, François; Jacobson, Sandra W; Molteno, Christopher D; Jacobson, Joseph L; Meintjes, Ernesta M
2012-02-01
This study compared brain activation during unpaced rhythmic finger tapping in 12-year-old children with that of adults. Subjects pressed a button at a pace initially indicated by a metronome (12 consecutive tones), and then continued for 16 seconds of unpaced tapping to provide an assessment of their ability to maintain a steady rhythm. These analyses focused on the superior vermis of the cerebellum, which is known to play a key role in timing. Twelve adults and 12 children performed this rhythmic finger tapping task in a 3 T scanner. Whole-brain analyses were performed in Brain Voyager, with a random-effects analysis of variance using a general linear model. A dedicated cerebellar atlas was used to localize cerebellar activations. As in adults, unpaced rhythmic finger tapping in children demonstrated activations in the primary motor cortex, premotor cortex, and cerebellum. However, overall activation was different, in that adults demonstrated much more deactivation in response to the task, particularly in the occipital and frontal cortices. The other main differences involved the additional recruitment of motor and premotor areas in children compared with adults, and increased activity in the vermal region of the cerebellum. These findings suggest that the timing component of the unpaced rhythmic finger tapping task is less efficient and automatic in children, who need to recruit the superior vermis more intensively to maintain the rhythm, although they performed somewhat more poorly than adults. Copyright © 2012 Elsevier Inc. All rights reserved.
Lee, Songil; Kyung, Gyouhyung; Lee, Jungyong; Moon, Seung Ki; Park, Kyoung Jong
2016-11-01
Recently, some smartphones have introduced index finger interaction functions on the rear surface. The current study investigated the effects of task type, phone width, and hand length on grasp, index finger reach zone, discomfort, and muscle activation during such interaction. We considered five interaction tasks (neutral, comfortable, maximum, vertical, and horizontal strokes), two device widths (60 and 90 mm) and three hand lengths. Horizontal (vertical) strokes deviated from the horizontal axis in the range from -10.8° to -13.5° (81.6-88.4°). Maximum strokes appeared to be excessive as these caused 43.8% greater discomfort than did neutral strokes. The 90-mm width also appeared to be excessive as it resulted in 12.3% increased discomfort relative to the 60-mm width. The small-hand group reported 11.9-18.2% higher discomfort ratings, and the percent maximum voluntary exertion of their flexor digitorum superficialis muscle, pertaining to index finger flexion, was also 6.4% higher. These findings should be considered to make smartphone rear interaction more comfortable. Practitioner Summary: Among neutral, comfortable, maximum, horizontal, and vertical index finger strokes on smartphone rear surfaces, maximum vs. neutral strokes caused 43.8% greater discomfort. Horizontal (vertical) strokes deviated from the horizontal (vertical) axis. Discomfort increased by 12.3% with 90-mm- vs. 60-mm-wide devices. Rear interaction regions of five commercialised smartphones should be lowered 20 to 30 mm for more comfortable rear interaction.
Haptic identification of objects and their depictions.
Klatzky, R L; Loomis, J M; Lederman, S J; Wake, H; Fujita, N
1993-08-01
Haptic identification of real objects is superior to that of raised two-dimensional (2-D) depictions. Three explanations of real-object superiority were investigated: contribution of material information, contribution of 3-D shape and size, and greater potential for integration across the fingers. In Experiment 1, subjects, while wearing gloves that gently attenuated material information, haptically identified real objects that provided reduced cues to compliance, mass, and part motion. The gloves permitted exploration with free hand movement, a single outstretched finger, or five outstretched fingers. Performance decreased over these three conditions but was superior to identification of pictures of the same objects in all cases, indicating the contribution of 3-D structure and integration across the fingers. Picture performance was also better with five fingers than with one. In Experiment 2, the subjects wore open-fingered gloves, which provided them with material information. Consequently, the effect of type of exploration was substantially reduced but not eliminated. Material compensates somewhat for limited access to object structure but is not the primary basis for haptic object identification.
Finger Muscle Control in Children with Dystonia
Young, Scott J.; van Doornik, Johan; Sanger, Terence D.
2010-01-01
Childhood dystonia is a disorder that involves inappropriate muscle activation during attempts at voluntary movement. Few studies have investigated the muscle activity associated with dystonia in children, and none have done so in the hands. In this study, we measured surface electromyographic activity in four intrinsic hand muscles while participants attempted to perform an isometric tracking task using one of the muscles. Children with dystonia had greater tracking error with the task-related muscle and greater overflow to non-task muscles. Both tracking error and overflow correlated with the Barry-Albright Dystonia scale of the respective upper limb. Overflow also decreased when participants received visual feedback of non-task muscle activity. We conclude that two of the motor deficits in childhood dystonia—motor overflow and difficulties in actively controlling muscles—can be seen in the surface electromyographic activity of individual muscles during an isometric task. As expected from results in adults, overflow is an important feature of childhood dystonia. However, overflow may be at least partially dependent on an individual’s level of awareness of their muscle activity. Most importantly, poor single-muscle tracking shows that children with dystonia have deficits of individual muscle control in addition to overflow or co-contraction. These results provide the first quantitative measures of the muscle activity associated with hand dystonia in children, and they suggest possible directions for control of dystonic symptoms. PMID:21449015
Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H.; Pulvermüller, Friedemann
2012-01-01
The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. PMID:22133748
Kumaresan, Ramesh; Ponnusami, Karthikeyan; Karthikeyan, Priyadarshini
2014-12-01
The treatment of maxillofacial fractures involves different methods from bandages and splinting to methods of open reduction and internal fixation and usually requires control of the dental occlusion with the help of intermaxillary fixation (IMF). Different wiring techniques have been used to aid in IMF including placement of custom-made arch bars, eyelet etc. However, these wiring techniques are with a constant danger of trauma to the surgeon's fingers by their sharp ends. Though there exist a variety of commercially available barrier products and customized techniques to prevent wire-stick injury, cost factor, touch sensitivity, and comfort aspect restrain their acquirement and exploit. This technical note describes the construction of a simple and economical finger guard made of soft thermoplastic material that provides an added protection to fingers from wire-stick type injuries, and its flexible nature permits a comfortable finger flexion movement and acceptable touch sensitivity. This is a simple, economical, reusable puncture, and cut-resistance figure guard by which we can avoid wire-stick type injury to the operator's fingers during wiring technique.
The impact of finger counting habits on arithmetic in adults and children.
Newman, Sharlene D; Soylu, Firat
2014-07-01
Here, we explored the impact of finger counting habits on arithmetic in both adults and children. Two groups of participants were examined, those that begin counting with their left hand (left-starters) and those that begin counting with their right hand (right-starters). For the adults, performance on an addition task in which participants added 2 two-digit numbers was compared. The results revealed that left-starters were slower than right-starters when adding and they had lower forward and backward digit-span scores. The children (aged 5-12) showed similar results on a single-digit timed addition task-right-starters outperformed left-starters. However, the children did not reveal differences in working memory or verbal and non-verbal intelligence as a function of finger counting habit. We argue that the motor act of finger counting influences how number is represented and suggest that left-starters may have a more bilateral representation that accounts for the slower processing.
Husain, Masud; Wiestler, Tobias; Diedrichsen, Jörn
2014-01-01
Complex manual tasks—everything from buttoning up a shirt to playing the piano—fundamentally involve two components: (1) generating specific patterns of muscle activity (here, termed “synergies”); and (2) stringing these into purposeful sequences. Although transcranial direct current stimulation (tDCS) of the primary motor cortex (M1) has been found to increase the learning of motor sequences, it is unknown whether it can similarly facilitate motor synergy learning. Here, we determined the effects of tDCS on the learning of motor synergies using a novel hand configuration task that required the production of difficult muscular activation patterns. Bihemispheric tDCS was applied to M1 of healthy, right-handed human participants during 4 d of repetitive left-hand configuration training in a double-blind design. tDCS augmented synergy learning, leading subsequently to faster and more synchronized execution. This effect persisted for at least 4 weeks after training. Qualitatively similar tDCS-associated improvements occurred during training of finger sequences in a separate subject cohort. We additionally determined whether tDCS only improved the acquisition of motor memories for specific synergies/sequences or whether it also facilitated more general parts of the motor representations, which could be transferred to novel movements. Critically, we observed that tDCS effects generalized to untrained hand configurations and untrained finger sequences (i.e., were nonspecific), as well as to the untrained hand (i.e., were effector-independent). Hence, bihemispheric tDCS may be a promising adjunct to neurorehabilitative training regimes, in which broad transfer to everyday tasks is highly desirable. PMID:24431461
Corticospinal excitability in the non-dominant hand is affected by BDNF genotype.
Chang, Won Hyuk; Hwang, Jung Min; Uhm, Kyeong Eun; Pascual-Leone, Alvaro; Kim, Yun-Hee
2017-02-01
The objective of this study was to assess the functional state of corticospinal projections in the non-dominant hand according to brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms. We investigated this in 34 healthy right-handed individuals (12 men, mean age 27.4 ± 3.4 years) who underwent two experimental sessions consisting of corticospinal excitability measurements with single-pulse transcranial magnetic stimulation (TMS) and hand motor function assessments with a sequential finger motor task of the non-dominant hand. Experimental sessions were separated by periods of at least 2 days to avoid carryover effects. Data were analyzed according to BDNF polymorphism (Val/Val vs. Val/Met vs. Met/Met group). Ten (29.4%), seventeen (50.0%), and seven (20.6%) participants were allocated to the Val/Val, Val/Met, and Met/Met groups, respectively. Motor thresholds to TMS did not differ among groups, but the amplitude of the motor-evoked potentials in the non-dominant hand induced by suprathreshold (120% of MT) TMS was significantly lower in the Met/Met group than in the other two groups (p < 0.05). Movement accuracy and reaction time in the sequential finger motor task showed no significant differences among groups. These results indicate that Met/Met BDNF homozygote status affects corticospinal excitability, and should be controlled for in studies of motor system function using brain stimulation. Our findings may have clinical implications regarding further investigation of the impact of BDNF genotype on the human motor system.
Kashou, Nasser H.; Giacherio, Brenna M.; Nahhas, Ramzi W.; Jadcherla, Sudarshan R.
2016-01-01
Abstract. Despite promising advantages such as low cost and portability of functional near-infrared spectroscopy (fNIRS), it has yet to be widely implemented outside of basic research. Specifically, fNIRS has yet to be proven as a standalone tool within a clinical setting. The objective of this study was to assess hemodynamic concentration changes at the primary and premotor motor cortices as a result of simple whole-hand grasping and sequential finger-opposition (tapping) tasks. These tasks were repeated over 3 days in a randomized manner. Ten healthy young adults (23.8±4.8 years) participated in the study. Quantitatively, no statistically significant differences were discovered between the levels of activation for the two motor tasks (p>0.05). Overall, the signals were consistent across all 3 days. The findings show that both finger-opposition and hand grasping can be used interchangeably in fNIRS for assessment of motor function which would be useful in further advancing techniques for clinical implementation. PMID:27335888
Tactile spatial resolution in blind braille readers.
Van Boven, R W; Hamilton, R H; Kauffman, T; Keenan, J P; Pascual-Leone, A
2000-06-27
To determine if blind people have heightened tactile spatial acuity. Recently, studies using magnetic source imaging and somatosensory evoked potentials have shown that the cortical representation of the reading fingers of blind Braille readers is expanded compared to that of fingers of sighted subjects. Furthermore, the visual cortex is activated during certain tactile tasks in blind subjects but not sighted subjects. The authors hypothesized that the expanded cortical representation of fingers used in Braille reading may reflect an enhanced fidelity in the neural transmission of spatial details of a stimulus. If so, the quantitative limit of spatial acuity would be superior in blind people. The authors employed a grating orientation discrimination task in which threshold performance is accounted for by the spatial resolution limits of the neural image evoked by a stimulus. The authors quantified the psychophysical limits of spatial acuity at the middle and index fingers of 15 blind Braille readers and 15 sighted control subjects. The mean grating orientation threshold was significantly (p = 0.03) lower in the blind group (1.04 mm) compared to the sighted group (1.46 mm). The self-reported dominant reading finger in blind subjects had a mean grating orientation threshold of 0.80 mm, which was significantly better than other fingers tested. Thresholds at non-Braille reading fingers in blind subjects averaged 1.12 mm, which were also superior to sighted subjects' performances. Superior tactile spatial acuity in blind Braille readers may represent an adaptive, behavioral correlate of cortical plasticity.
Leeb, Robert; Gubler, Miguel; Tavella, Michele; Miller, Heather; Del Millan, Jose R
2010-01-01
To patients who have lost the functionality of their hands as a result of a severe spinal cord injury or brain stroke, the development of new techniques for grasping is indispensable for reintegration and independency in daily life. Functional Electrical Stimulation (FES) of residual muscles can reproduce the most dominant grasping tasks and can be initialized by brain signals. However, due to the very complex hand anatomy and current limitations in FES-technology with surface electrodes, these grasp patterns cannot be smoothly executed. In this paper, we present an adaptable passive hand orthosis which is capable of producing natural and smooth movements when coupled with FES. It evenly synchronizes the grasping movements and applied forces on all fingers, allowing for naturalistic gestures and functional grasps of everyday objects. The orthosis is also equipped with a lock, which allows it to remain in the desired position without the need for long-term stimulation. Furthermore, we quantify improvements offered by the orthosis compare them with natural grasps on healthy subjects.
A direct comparison of short-term audiomotor and visuomotor memory.
Ward, Amanda M; Loucks, Torrey M; Ofori, Edward; Sosnoff, Jacob J
2014-04-01
Audiomotor and visuomotor short-term memory are required for an important variety of skilled movements but have not been compared in a direct manner previously. Audiomotor memory capacity might be greater to accommodate auditory goals that are less directly related to movement outcome than for visually guided tasks. Subjects produced continuous isometric force with the right index finger under auditory and visual feedback. During the first 10 s of each trial, subjects received continuous auditory or visual feedback. For the following 15 s, feedback was removed but the force had to be maintained accurately. An internal effort condition was included to test memory capacity in the same manner but without external feedback. Similar decay times of ~5-6 s were found for vision and audition but the decay time for internal effort was ~4 s. External feedback thus provides an advantage in maintaining a force level after feedback removal, but may not exclude some contribution from a sense of effort. Short-term memory capacity appears longer than certain previous reports but there may not be strong distinctions in capacity across different sensory modalities, at least for isometric force.
Guo, Xinyao; Xiang, Jing; Wang, Yingying; O’Brien, Hope; Kabbouche, Marielle; Horn, Paul; Powers, Scott W.; Hershey, Andrew D.
2012-01-01
Migraine attacks have been shown to interfere with normal function in the brain such as motor or sensory function. However, to date, there has been no clinical neurophysiology study focusing on the motor function in children with migraine during headache attacks. To investigate the motor function in children with migraine, twenty-six children with acute migraine, meeting International Classification of Headache Disorders criteria and age- and gender-matched healthy children were studied using a 275-channel magnetoencephalography system. A finger-tapping paradigm was designed to elicit neuromagnetic activation in the motor cortex. Children with migraine showed significantly prolonged latency of movement-evoked magnetic fields (MEF) during finger movement compared with the controls. The correlation coefficient of MEF latency and age in children with migraine was significantly different from that in healthy controls. The spectral power of high gamma (65–150 Hz) oscillations during finger movement in the primary motor cortex is also significantly higher in children with migraine than in controls. The alteration of responding latency and aberrant high gamma oscillations suggest that the developmental trajectory of motor function in children with migraine is impaired during migraine attacks and/or developmentally delayed. This finding indicates that childhood migraine may affect the development of brain function and result in long-term problems. PMID:23185541
Halliday, Drew W R; Stawski, Robert S; MacDonald, Stuart W S
2017-02-01
Response time inconsistency (RTI) in cognitive performance predicts deleterious health outcomes in late-life; however, RTI estimates are often confounded by additional influences (e.g., individual differences in learning). Finger tapping is a basic sensorimotor measure largely independent of higher-order cognition that may circumvent such confounds of RTI estimates. We examined the within-person coupling of finger-tapping mean and RTI on working memory, and the moderation of these associations by cognitive status. A total of 262 older adults were recruited and classified as controls, cognitively-impaired-not-demented (CIND) unstable or CIND stable. Participants completed finger-tapping and working-memory tasks during multiple weekly assessments, repeated annually for 4 years. Within-person coupling estimates from multilevel models indicated that on occasions when RTI was greater, working-memory response latency was slower for the CIND-stable, but not for the CIND-unstable or control individuals. The finger-tapping task shows potential for minimizing confounds on RTI estimates, and for yielding RTI estimates sensitive to central nervous system function and cognitive status. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Crouch, Dustin L.; (Helen Huang, He
2017-06-01
Objective. We investigated the feasibility of a novel, customizable, simplified EMG-driven musculoskeletal model for estimating coordinated hand and wrist motions during a real-time path tracing task. Approach. A two-degree-of-freedom computational musculoskeletal model was implemented for real-time EMG-driven control of a stick figure hand displayed on a computer screen. After 5-10 minutes of undirected practice, subjects were given three attempts to trace 10 straight paths, one at a time, with the fingertip of the virtual hand. Able-bodied subjects completed the task on two separate test days. Main results. Across subjects and test days, there was a significant linear relationship between log-transformed measures of accuracy and speed (Pearson’s r = 0.25, p < 0.0001). The amputee subject could coordinate movement between the wrist and MCP joints, but favored metacarpophalangeal joint motion more highly than able-bodied subjects in 8 of 10 trials. For able-bodied subjects, tracing accuracy was lower at the extremes of the model’s range of motion, though there was no apparent relationship between tracing accuracy and fingertip location for the amputee. Our result suggests that, unlike able-bodied subjects, the amputee’s motor control patterns were not accustomed to the multi-joint dynamics of the wrist and hand, possibly as a result of post-amputation cortical plasticity, disuse, or sensory deficits. Significance. To our knowledge, our study is one of very few that have demonstrated the real-time simultaneous control of multi-joint movements, especially wrist and finger movements, using an EMG-driven musculoskeletal model, which differs from the many data-driven algorithms that dominate the literature on EMG-driven prosthesis control. Real-time control was achieved with very little training and simple, quick (~15 s) calibration. Thus, our model is potentially a practical and effective control platform for multifunctional myoelectric prostheses that could restore more life-like hand function for individuals with upper limb amputation.
A loud auditory stimulus overcomes voluntary movement limitation in cervical dystonia.
Serranová, Tereza; Jech, Robert; Martí, Maria José; Modreanu, Raluca; Valldeoriola, Francesc; Sieger, Tomáš; Růžička, Evžen; Valls-Solé, Josep
2012-01-01
Patients with cervical dystonia (CD) present with an impaired performance of voluntary neck movements, which are usually slow and limited. We hypothesized that such abnormality could involve defective preparation for task execution. Therefore, we examined motor preparation in CD patients using the StartReact method. In this test, a startling auditory stimulus (SAS) is delivered unexpectedly at the time of the imperative signal (IS) in a reaction time task to cause a faster execution of the prepared motor programme. We expected that CD patients would show an abnormal StartReact phenomenon. Fifteen CD patients and 15 age matched control subjects (CS) were asked to perform a rotational movement (RM) to either side as quick as possible immediately after IS perception (a low intensity electrical stimulus to the II finger). In randomly interspersed test trials (25%) a 130 dB SAS was delivered simultaneously with the IS. We recorded RMs in the horizontal plane with a high speed video camera (2.38 ms per frame) in synchronization with the IS. The RM kinematic-parameters (latency, velocity, duration and amplitude) were analyzed using video-editing software and screen protractor. Patients were asked to rate the difficulty of their RMs in a numerical rating scale. In control trials, CD patients executed slower RMs (repeated measures ANOVA, p<0.10(-5)), and reached a smaller final head position angle relative to the midline (p<0.05), than CS. In test trials, SAS improved all RMs in both groups (p<0.10(-14)). In addition, patients were more likely to reach beyond their baseline RM than CS (χ(2), p<0.001) and rated their performance better than in control trials (t-test, p<0.01). We found improvement of kinematic parameters and subjective perception of motor performance in CD patients with StartReact testing. Our results suggest that CD patients reach an adequate level of motor preparation before task execution.
Examining impairment of adaptive compensation for stabilizing motor repetitions in stroke survivors.
Kim, Yushin; Koh, Kyung; Yoon, BumChul; Kim, Woo-Sub; Shin, Joon-Ho; Park, Hyung-Soon; Shim, Jae Kun
2017-12-01
The hand, one of the most versatile but mechanically redundant parts of the human body, suffers more and longer than other body parts after stroke. One of the rehabilitation paradigms, task-oriented rehabilitation, encourages motor repeatability, the ability to produce similar motor performance over repetitions through compensatory strategies while taking advantage of the motor system's redundancy. The previous studies showed that stroke survivors inconsistently performed a given motor task with limited motor solutions. We hypothesized that stroke survivors would exhibit deficits in motor repeatability and adaptive compensation compared to healthy controls in during repetitive force-pulse (RFP) production tasks using multiple fingers. Seventeen hemiparetic stroke survivors and seven healthy controls were asked to repeatedly press force sensors as fast as possible using the four fingers of each hand. The hierarchical variability decomposition model was employed to compute motor repeatability and adaptive compensation across finger-force impulses, respectively. Stroke survivors showed decreased repeatability and adaptive compensation of force impulses between individual fingers as compared to the control (p < 0.05). The stroke survivors also showed decreased pulse frequency and greater peak-to-peak time variance than the control (p < 0.05). Force-related variables, such as mean peak force and peak force interval variability, demonstrated no significant difference between groups. Our findings indicate that stroke-induced brain injury negatively affects their ability to exploit their redundant or abundant motor system in an RFP task.
NASA Technical Reports Server (NTRS)
Wesselski, Clarence J. (Inventor); Nagy, Kornel (Inventor)
1992-01-01
A latching device is disclosed which is lever operated sequentially to actuate a set of collet fingers to provide a radial expansion and to actuate a force mechanism to provide a compressive gripping force for attaching first and second devices to one another. The latching device includes a body member having elongated collet fingers which, in a deactuated condition, is insertable through bores on the first and second devices so that gripping terminal portions on the collet fingers are proximate to the end of the bore of the first device while a spring assembly on the body member is located proximate to the outer surface of a second device. A lever is rotatable through 90 deg to move a latching rod to sequentially actuate and expand collet fingers and to actuate the spring assembly by compressing it. During the first 30 deg of movement of the lever, the collet fingers are actuated by the latching rod to provide a radial expansion and during the last 60 deg of movement of the lever, the spring assembly acts as a force mechanism and is actuated to develop a compressive latching force on the devices. The latching rod and lever are connected by a camming mechanism. The amount of spring force in the spring assembly can be adjusted; the body member can be permanently attached by a telescoping assembly to one of the devices; and the structure can be used as a pulling device for removing annular bearings or the like from blind bores.
Niechwiej-Szwedo, Ewa; Gonzalez, David; Nouredanesh, Mina; Tung, James
2018-01-01
Kinematic analysis of upper limb reaching provides insight into the central nervous system control of movements. Until recently, kinematic examination of motor control has been limited to studies conducted in traditional research laboratories because motion capture equipment used for data collection is not easily portable and expensive. A recently developed markerless system, the Leap Motion Controller (LMC), is a portable and inexpensive tracking device that allows recording of 3D hand and finger position. The main goal of this study was to assess the concurrent reliability and validity of the LMC as compared to the Optotrak, a criterion-standard motion capture system, for measures of temporal accuracy and peak velocity during the performance of upper limb, visually-guided movements. In experiment 1, 14 participants executed aiming movements to visual targets presented on a computer monitor. Bland-Altman analysis was conducted to assess the validity and limits of agreement for measures of temporal accuracy (movement time, duration of deceleration interval), peak velocity, and spatial accuracy (endpoint accuracy). In addition, a one-sample t-test was used to test the hypothesis that the error difference between measures obtained from Optotrak and LMC is zero. In experiment 2, 15 participants performed a Fitts' type aiming task in order to assess whether the LMC is capable of assessing a well-known speed-accuracy trade-off relationship. Experiment 3 assessed the temporal coordination pattern during the performance of a sequence consisting of a reaching, grasping, and placement task in 15 participants. Results from the t-test showed that the error difference in temporal measures was significantly different from zero. Based on the results from the 3 experiments, the average temporal error in movement time was 40±44 ms, and the error in peak velocity was 0.024±0.103 m/s. The limits of agreement between the LMC and Optotrak for spatial accuracy measures ranged between 2-5 cm. Although the LMC system is a low-cost, highly portable system, which could facilitate collection of kinematic data outside of the traditional laboratory settings, the temporal and spatial errors may limit the use of the device in some settings.
Gonzalez, David; Nouredanesh, Mina; Tung, James
2018-01-01
Kinematic analysis of upper limb reaching provides insight into the central nervous system control of movements. Until recently, kinematic examination of motor control has been limited to studies conducted in traditional research laboratories because motion capture equipment used for data collection is not easily portable and expensive. A recently developed markerless system, the Leap Motion Controller (LMC), is a portable and inexpensive tracking device that allows recording of 3D hand and finger position. The main goal of this study was to assess the concurrent reliability and validity of the LMC as compared to the Optotrak, a criterion-standard motion capture system, for measures of temporal accuracy and peak velocity during the performance of upper limb, visually-guided movements. In experiment 1, 14 participants executed aiming movements to visual targets presented on a computer monitor. Bland-Altman analysis was conducted to assess the validity and limits of agreement for measures of temporal accuracy (movement time, duration of deceleration interval), peak velocity, and spatial accuracy (endpoint accuracy). In addition, a one-sample t-test was used to test the hypothesis that the error difference between measures obtained from Optotrak and LMC is zero. In experiment 2, 15 participants performed a Fitts’ type aiming task in order to assess whether the LMC is capable of assessing a well-known speed-accuracy trade-off relationship. Experiment 3 assessed the temporal coordination pattern during the performance of a sequence consisting of a reaching, grasping, and placement task in 15 participants. Results from the t-test showed that the error difference in temporal measures was significantly different from zero. Based on the results from the 3 experiments, the average temporal error in movement time was 40±44 ms, and the error in peak velocity was 0.024±0.103 m/s. The limits of agreement between the LMC and Optotrak for spatial accuracy measures ranged between 2–5 cm. Although the LMC system is a low-cost, highly portable system, which could facilitate collection of kinematic data outside of the traditional laboratory settings, the temporal and spatial errors may limit the use of the device in some settings. PMID:29529064
Top-down modulation of motor priming by belief about animacy.
Liepelt, Roman; Brass, Marcel
2010-01-01
There is recent evidence that we directly map observed actions of other agents onto our own motor repertoire, referred to as direct matching (Iacoboni et al., 1999). This was shown when we are actively engaged in joint action with others' (Sebanz et al. 2003) and also when observing irrelevant movements while executing congruent or incongruent movements (Brass et al., 2000). However, an open question is whether direct matching in human beings is limited to the perception of intentional agents. Recent research provides contradictory evidence with respect to the question whether the direct matching system has a biological bias possibly emerging from perceptual differences of the stimulus display. In this study all participants performed a motor priming task observing the identical animation showing finger lifting movements of a hand in a leather glove. Before running the experiment we presented either a human hand or a wooden analog hand wearing the leather glove. We found a motor priming effect for both human and wooden hands. However, motor priming was larger when participants believed that they interacted with a human hand than when they believed to interact with a wooden hand. The stronger motor priming effect for the biological agent suggests that the "direct matching system" is tuned to represent actions of animate agents.
Unreal Interactive Puppet Game Development Using Leap Motion
NASA Astrophysics Data System (ADS)
Huang, An-Pin; Huang, Fay; Jhu, Jing-Siang
2018-04-01
This paper proposed a novel puppet play method utilizing recent technology. An interactive puppet game has been developed based on the theme of a famous Chinese classical novel. This project was implemented using Unreal Engine, which is a leading software of integrated tools for developers to design and build games. On the other hand, Leap Motion Controller is a sensor device for recognizing hand movements and gestures. It is commonly used in systems which require close-range finger-based user interaction. In order to manipulate puppets’ movements, the developed program employs the Leap Motion SDK, which provides a friendly way to add motion-controlled 3D hands to an Unreal game. The novelty of our project is to replace 3D model of rigged hands by two 3D humanoid rigged characters. The challenges of this task are two folds. First, the skeleton structure of a human hand and a humanoid character (i.e., puppets) are totally different. Making the puppets to follow the hand poses of the user and yet ensuring reasonable puppets’ movements has not been discussed in the literatures nor in the developer forums. Second, there are only a limited number of built-in recognizable hand gestures. More recognizable hand gestures need to be created for the interactive game. This paper reports the proposed solutions to these challenges.
Motor resonance may originate from sensorimotor experience.
Petroni, Agustín; Baguear, Federico; Della-Maggiore, Valeria
2010-10-01
In humans, the motor system can be activated by passive observation of actions or static pictures with implied action. The origin of this facilitation is of major interest to the field of motor control. Recently it has been shown that sensorimotor learning can reconfigure the motor system during action observation. Here we tested directly the hypothesis that motor resonance arises from sensorimotor contingencies by measuring corticospinal excitability in response to abstract non-action cues previously associated with an action. Motor evoked potentials were measured from the first dorsal interosseus (FDI) while human subjects observed colored stimuli that had been visually or motorically associated with a finger movement (index or little finger abduction). Corticospinal excitability was higher during the observation of a colored cue that preceded a movement involving the recorded muscle than during the observation of a different colored cue that preceded a movement involving a different muscle. Crucially this facilitation was only observed when the cue was associated with an executed movement but not when it was associated with an observed movement. Our findings provide solid evidence in support of the sensorimotor hypothesis of action observation and further suggest that the physical nature of the observed stimulus mediating this phenomenon may in fact be irrelevant.
Spatiotemporal integration for tactile localization during arm movements: a probabilistic approach.
Maij, Femke; Wing, Alan M; Medendorp, W Pieter
2013-12-01
It has been shown that people make systematic errors in the localization of a brief tactile stimulus that is delivered to the index finger while they are making an arm movement. Here we modeled these spatial errors with a probabilistic approach, assuming that they follow from temporal uncertainty about the occurrence of the stimulus. In the model, this temporal uncertainty converts into a spatial likelihood about the external stimulus location, depending on arm velocity. We tested the prediction of the model that the localization errors depend on arm velocity. Participants (n = 8) were instructed to localize a tactile stimulus that was presented to their index finger while they were making either slow- or fast-targeted arm movements. Our results confirm the model's prediction that participants make larger localization errors when making faster arm movements. The model, which was used to fit the errors for both slow and fast arm movements simultaneously, accounted very well for all the characteristics of these data with temporal uncertainty in stimulus processing as the only free parameter. We conclude that spatial errors in dynamic tactile perception stem from the temporal precision with which tactile inputs are processed.
Cortical and reticular contributions to human precision and power grip.
Tazoe, Toshiki; Perez, Monica A
2017-04-15
The corticospinal tract contributes to the control of finger muscles during precision and power grip. We explored the neural mechanisms contributing to changes in corticospinal excitability during these gripping configurations. Motor evoked potentials (MEPs) elicited by cortical, but not by subcortical, stimulation were more suppressed during power grip compared with precision grip and index finger abduction. Intracortical inhibition was more reduced during power grip compared with the other tasks. An acoustic startle cue, a stimulus that engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks at a cortical level and this positively correlated with changes in intracortical inhibition. Our findings suggest that changes in corticospinal excitability during gross more than fine finger manipulations are largely cortical in origin and that the reticular system contributed, at least in part, to these effects. It is well accepted that the corticospinal tract contributes to the control of finger muscles during precision and power grip in humans but the neural mechanisms involved remain poorly understood. Here, we examined motor evoked potentials elicited by cortical and subcortical stimulation of corticospinal axons (MEPs and CMEPs, respectively) and the activity in intracortical circuits (suppression of voluntary electromyography) and spinal motoneurons (F-waves) in an intrinsic hand muscle during index finger abduction, precision grip and power grip. We found that the size of MEPs, but not CMEPs, was more suppressed during power grip compared with precision grip and index finger abduction, suggesting a cortical origin for these effects. Notably, intracortical inhibition was more reduced during power grip compared with the other tasks. To further examine the origin of changes in intracortical inhibition we assessed the contribution of the reticular system, which projects to cortical neurons, and projects to spinal motoneurons controlling hand muscles. An acoustic startle cue, which engages the reticular system, suppressed MEP size during power grip to a lesser extent than during the other tasks and this positively correlated with changes in intracortical inhibition. A startle cue decreased intracortical inhibition, but not CMEPs, during power grip. F-waves remained unchanged across conditions. Our novel findings show that changes in corticospinal excitability present during power grip compared with fine finger manipulations are largely cortical in origin and suggest that the reticular system contributed, at least in part, to these effects. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Motor Recovery After Subcortical Stroke Depends on Modulation of Extant Motor Networks.
Sharma, Nikhil; Baron, Jean-Claude
2015-01-01
Stroke is the leading cause of long-term disability. Functional imaging studies report widespread changes in movement-related cortical networks after stroke. Whether these are a result of stroke-specific cognitive processes or reflect modulation of existing movement-related networks is unknown. Understanding this distinction is critical in establishing more effective restorative therapies after stroke. Using multivariate analysis (tensor-independent component analysis - TICA), we map the neural networks involved during motor imagery (MI) and executed movement (EM) in subcortical stroke patients and age-matched controls. Twenty subcortical stroke patients and 17 age-matched controls were recruited. They were screened for their ability to carry out MI (Chaotic MI Assessment). The fMRI task was a right-hand finger-thumb opposition sequence (auditory-paced 1 Hz; 2, 3, 4, 5, 2…). Two separate runs were acquired (MI and rest and EM and rest; block design). There was no distinction between groups or tasks until the last stage of analysis, which allowed TICA to identify independent components (ICs) that were common or distinct to each group or task with no prior assumptions. TICA defined 28 ICs. ICs representing artifacts were excluded. ICs were only included if the subject scores were significant (for either EM or MI). Seven ICs remained that involved the primary and secondary motor networks. All ICs were shared between the stroke and age-matched controls. Five ICs were common to both tasks and three were exclusive to EM. Two ICs were related to motor recovery and one with time since stroke onset, but all were shared with age-matched controls. No IC was exclusive to stroke patients. We report that the cortical networks in stroke patients that relate to recovery of motor function represent modulation of existing cortical networks present in age-matched controls. The absence of cortical networks specific to stroke patients suggests that motor adaptation and other potential confounders (e.g., effort and additional muscle use) are not responsible for the changes in the cortical networks reported after stroke. This highlights that recovery of motor function after subcortical stroke involves preexisting cortical networks that could help identify more effective restorative therapies.
Design-validation of a hand exoskeleton using musculoskeletal modeling.
Hansen, Clint; Gosselin, Florian; Ben Mansour, Khalil; Devos, Pierre; Marin, Frederic
2018-04-01
Exoskeletons are progressively reaching homes and workplaces, allowing interaction with virtual environments, remote control of robots, or assisting human operators in carrying heavy loads. Their design is however still a challenge as these robots, being mechanically linked to the operators who wear them, have to meet ergonomic constraints besides usual robotic requirements in terms of workspace, speed, or efforts. They have in particular to fit the anthropometry and mobility of their users. This traditionally results in numerous prototypes which are progressively fitted to each individual person. In this paper, we propose instead to validate the design of a hand exoskeleton in a fully digital environment, without the need for a physical prototype. The purpose of this study is thus to examine whether finger kinematics are altered when using a given hand exoskeleton. Therefore, user specific musculoskeletal models were created and driven by a motion capture system to evaluate the fingers' joint kinematics when performing two industrial related tasks. The kinematic chain of the exoskeleton was added to the musculoskeletal models and its compliance with the hand movements was evaluated. Our results show that the proposed exoskeleton design does not influence fingers' joints angles, the coefficient of determination between the model with and without exoskeleton being consistently high (R 2 ¯=0.93) and the nRMSE consistently low (nRMSE¯ = 5.42°). These results are promising and this approach combining musculoskeletal and robotic modeling driven by motion capture data could be a key factor in the ergonomics validation of the design of orthotic devices and exoskeletons prior to manufacturing. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cortical correlates of neuromotor development in healthy children.
Garvey, M A; Ziemann, U; Bartko, J J; Denckla, M B; Barker, C A; Wassermann, E M
2003-09-01
To examine the relationship between acquisition of fine motor skills in childhood and development of the motor cortex. We measured finger tapping speed and mirror movements in 43 healthy right-handed subjects (6-26 years of age). While recording surface electromyographic activity from right and left first dorsal interosseus, we delivered focal transcranial magnetic stimulation (TMS) over the hand areas of each motor cortex. We measured motor evoked potential (MEP) threshold, and ipsilateral (iSP) and contralateral (CSP) silent periods. As children got older, finger speeds got faster, MEP threshold decreased, iSP duration increased and latency decreased. Finger tapping speed got faster as motor thresholds and iSP latency decreased, but was unrelated to CSP duration. In all subjects right hemisphere MEP thresholds were higher than those on the left and duration of right hemisphere CSP was longer than that on the left. Children under 10 years of age had higher left hand mirror movement scores, and fewer left hemisphere iSPs which were of longer duration. Maturation of finger tapping skills is closely related to developmental changes in the motor threshold and iSP latency. Studies are warranted to explore the relationship between these measures and other neuromotor skills in children with motor disorders. TMS can provide important insights into certain functional aspects of neurodevelopment in children.
Sensory-guided motor tasks benefit from mental training based on serial prediction
Binder, Ellen; Hagelweide, Klara; Wang, Ling E.; Kornysheva, Katja; Grefkes, Christian; Fink, Gereon R.; Schubotz, Ricarda I.
2017-01-01
Mental strategies have been suggested to constitute a promising approach to improve motor abilities in both healthy subjects and patients. This behavioural effect has been shown to be associated with changes of neural activity in premotor areas, not only during movement execution, but also while performing motor imagery or action observation. However, how well such mental tasks are performed is often difficult to assess, especially in patients. We here used a novel mental training paradigm based on the serial prediction task (SPT) in order to activate premotor circuits in the absence of a motor task. We then tested whether this intervention improves motor-related performance such as sensorimotor transformation. Two groups of healthy young participants underwent a single-blinded five-day cognitive training schedule and were tested in four different motor tests on the day before and after training. One group (N = 22) received the SPT-training and the other one (N = 21) received a control training based on a serial match-to-sample task. The results revealed significant improvements of the SPT-group in a sensorimotor timing task, i.e. synchronization of finger tapping to a visually presented rhythm, as well as improved visuomotor coordination in a sensory-guided pointing task compared to the group that received the control training. However, mental training did not show transfer effects on motor abilities in healthy subjects beyond the trained modalities as evident by non-significant changes in the Jebsen–Taylor handfunctiontest. In summary, the data suggest that mental training based on the serial prediction task effectively engages sensorimotor circuits and thereby improves motor behaviour. PMID:24321273
Whole body pointing movements in transient microgravity: preliminary results.
Tagliabue, Michele; Pedrocchi, Alessandra; Gower, Valerio; Ferrigno, Giancarlo; Pozzo, Thierry
2004-07-01
The aim of the present study is a better comprehension of strategies of motor coordination during complex movements. In this field of research microgravity represent a unique experimental condition for the investigation of the role of equilibrium control in movement planning. Namely, here we focus on two important issues: the centre of mass control and the endpoint trajectory. Preliminary results of the center of mass position and the finger path curvature during pointing movements performed under normal and transient microgravity conditions are presented.
Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M; Latash, Mark L
2017-05-14
The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1Hz, paced by an auditory metronome. One - Force task - required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task - Share task - required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Reschechtko, Sasha; Hasanbarani, Fariba; Akulin, Vladimir M.; Latash, Mark L.
2017-01-01
The study explored unintentional force changes elicited by removing visual feedback during cyclical, two-finger isometric force production tasks. Subjects performed two types of tasks at 1 Hz, paced by an auditory metronome. One – Force task – required cyclical changes in total force while maintaining the sharing, defined as relative contribution of a finger to total force. The other task – Share task – required cyclical changes in sharing while keeping total force unchanged. Each trial started under full visual feedback on both force and sharing; subsequently, feedback on the variable that was instructed to stay constant was frozen, and finally feedback on the other variable was also removed. In both tasks, turning off visual feedback on total force elicited a drop in the mid-point of the force cycle and an increase in the peak-to-peak force amplitude. Turning off visual feedback on sharing led to a drift of mean share toward 50:50 across both tasks. Without visual feedback there was consistent deviation of the two force time series from the in-phase pattern (typical of the Force task) and from the out-of-phase pattern (typical of the Share task). This finding is in contrast to most earlier studies that demonstrated only two stable patterns, in-phase and out-of-phase. We interpret the results as consequences of drifts of parameters in a dynamical system leading in particular to drifts in the referent finger coordinates toward their actual coordinates. The relative phase desynchronization is caused by the right-left differences in the hypothesized drift processes, consistent with the dynamic dominance hypothesis. PMID:28344070
On the Nonsmooth, Nonconstant Velocity of Braille Reading and Reversals
ERIC Educational Resources Information Center
Hughes, Barry; McClelland, Amber; Henare, Dion
2014-01-01
Relative to print reading, braille-reading finger movements are held to be of more constant speed, with continuous and exhaustive contact with all words. However, the continuity of movements is intermittent in two distinct ways: (a) readers reverse direction and reread material already encountered and (b) the continual fluctuations of velocity…
"Digit Anatomy": A New Technique for Learning Anatomy Using Motor Memory
ERIC Educational Resources Information Center
Oh, Chang-Seok; Won, Hyung-Sun; Kim, Kyong-Jee; Jang, Dong-Su
2011-01-01
Gestural motions of the hands and fingers are powerful tools for expressing meanings and concepts, and the nervous system has the capacity to retain multiple long-term motor memories, especially including movements of the hands. We developed many sets of successive movements of both hands, referred to as "digit anatomy," and made…
Prehension Synergies in Three Dimensions
Shim, Jae Kun; Latash, Mark L.; Zatsiorsky, Vladimir M.
2010-01-01
The goal of this study was to investigate the conjoint changes of digit forces/moments in 3 dimensions during static prehension under external torques acting on the object in one plane. The experimental paradigm was similar to holding a book vertically in the air where the center of mass of the book is located farther from the hand than the points of digit contacts. Three force and 3 moment components from each digit were recorded during static prehension of a customized handle. Subjects produced forces and moments in all 3 directions, although the external torques were exerted on the handheld object about only the Z-axis. The 3-dimensional response to a 2-dimensional task was explained by the cause– effect chain effects prompted by the noncollinearity of the normal forces of the thumb and the 4 fingers (represented by the “virtual finger”). Because the forces are not collinear (not along the same line), they generate moments of force about X- and Y-axes that are negated by the finger forces along the Y- and X-directions. The magnitudes of forces produced by lateral fingers (index and little) with longer moment arms were larger compared with the central fingers (middle and ring). At the virtual finger (an imaginary digit whose mechanical action is equivalent to the summed action of the 4 fingers) level, the relative contribution of different fractions of the resistive moment produced by subjects did not depend on the torque magnitude. We conclude that the CNS 1) solves a planar prehension task by producing forces and moments in all 3 directions, 2) uses mechanical advantage of fingers, and 3) shares the total torque among finger forces and moments in a particular way disregarding the torque magnitude. PMID:15456799
Finger-Based Numerical Skills Link Fine Motor Skills to Numerical Development in Preschoolers.
Suggate, Sebastian; Stoeger, Heidrun; Fischer, Ursula
2017-12-01
Previous studies investigating the association between fine-motor skills (FMS) and mathematical skills have lacked specificity. In this study, we test whether an FMS link to numerical skills is due to the involvement of finger representations in early mathematics. We gave 81 pre-schoolers (mean age of 4 years, 9 months) a set of FMS measures and numerical tasks with and without a specific finger focus. Additionally, we used receptive vocabulary and chronological age as control measures. FMS linked more closely to finger-based than to nonfinger-based numerical skills even after accounting for the control variables. Moreover, the relationship between FMS and numerical skill was entirely mediated by finger-based numerical skills. We concluded that FMS are closely related to early numerical skill development through finger-based numerical counting that aids the acquisition of mathematical mental representations.
Jin, Seung-Hyun; Joutsen, Atte; Poston, Brach; Aizen, Joshua; Ellenstein, Aviva; Hallett, Mark
2012-01-01
Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC–M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group (n = 8) learned by visual and the other (n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC–M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC–M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal–motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC–M1 connectivity returns to baseline. PMID:22442568
A finger-free wrist-worn pulse oximeter for the monitoring of chronic obstructive pulmonary disease
NASA Astrophysics Data System (ADS)
Chu, Chang-Sheng; Chuang, Shuang-Chao; Lee, Yeh Wen; Fan, Chih-Hsun; Chung, Lung Pin; Li, Yu-Tang; Chen, Jyh-Chern
2016-03-01
Herein, a finger-free wrist-worn pulse oximeter is presented. This device allows patients to measure blood oxygen level and pulse rate without hindering their normal finger movement. This wrist-worn pulse oximeter is built with a reflectance oximetry sensor, which consists of light emitting diodes and photodiode light detectors located side by side. This reflectance oximetry sensor is covered with an optical element with micro structured surface. This micro structured optical element is designed to modulate photon propagation beneath the skin tissue so that the photoplethysmogram signals of reflected lights or backscattered lights detected by the photodetector are therefore enhanced.
Page, Stephen J; Hade, Erinn; Persch, Andrew
2015-01-01
There remains a need for a quickly administered, stroke-specific, bedside measure of active wrist and finger movement for the expanding stroke population. The wrist stability and hand mobility scales of the upper extremity Fugl-Meyer Assessment (w/h UE FM) constitute a valid, reliable measure of paretic UE impairment in patients with active wrist and finger movement. The aim of this study was to determine performance on the w/h UE FM in a stable cohort of survivors of stroke with only palpable movement in their paretic wrist flexors. A single-center cohort study was conducted. Thirty-two individuals exhibiting stable, moderate upper extremity hemiparesis (15 male, 17 female; mean age=56.6 years, SD=10.1; mean time since stroke=4.6 years, SD=5.8) participated in the study, which was conducted at an outpatient rehabilitation clinic in the midwestern United States. The w/h UE FM and Action Research Arm Test (ARAT) were administered twice. Intraclass correlation coefficients (ICCs), Cronbach alpha, and ordinal alpha were computed to determine reliability, and Spearman rank correlation coefficients and Bland-Altman plots were computed to establish validity. Intraclass correlation coefficients for the w/h UE FM and ARAT were .95 and .99, respectively. The w/h UE FM intrarater reliability and internal consistency were greater than .80, and concurrent validity was greater than .70. This also was the first stroke rehabilitative study to apply ordinal alpha to examine internal consistency values, revealing w/h UE FM levels greater than .85. Concurrent validity findings were corroborated by Bland-Altman plots. It appears that the w/h UE FM is a promising tool to measure distal upper extremity movement in patients with little active paretic wrist and finger movement. This finding widens the segment of patients on whom the w/h UE FM can be effectively used and addresses a gap, as commonly used measures necessitate active distal upper extremity movement. © 2015 American Physical Therapy Association.
Precision manipulation with a dextrous robot hand
NASA Astrophysics Data System (ADS)
Michelman, Paul
1994-01-01
In this thesis, we discuss a framework for describing and synthesizing precision manipulation tasks with a robot hand. Precision manipulations are those in which the motions of grasped objects are caused by finger motions alone (as distinct from arm or wrist motion). Experiments demonstrating the capabilities of the Utah-MIT hand are presented. This work begins by examining current research on biological motor control to raise a number of questions. For example, is the control centralized and organized by a central processor? Or is the control distributed throughout the nervous system? Motor control research on manipulation has focused on developing classifications of hand motions, concentrating solely on finger motions, while neglecting grasp stability and interaction forces that occur in manipulation. In addition, these taxonomies have not been explicitly functional. This thesis defines and analyzes a basic set of manipulation strategies that includes both position and force trajectories. The fundamental purposes of the manipulations are: (1) rectilinear and rotational motion of grasped objects of different geometries; and (2) the application of forces and moments against the environment by the grasped objects. First, task partitioning is described to allocate the fingers their roles in the task. Second, for each strategy, the mechanics and workspace of the tasks are analyzed geometrically to determine the gross finger trajectories required to achieve the tasks. Techniques illustrating the combination of simple manipulations into complex, multiple degree-of-freedom tasks are presented. There is a discussion of several tasks that use multiple elementary strategies. The tasks described are removing the top of a childproof medicine bottle, putting the top back on, rotating and regrasping a block and a cylinder within the grasp. Finally, experimental results are presented. The experimental setup at Columbia University's Center for Research in Intelligent Systems and experiments with a Utah-MIT hand is discussed. First, the overall system design is described. Two hybrid position/force controllers were designed and built. After a discussion of the entire system, experimental results are presented describing each of the basic manipulation and complex manipulation strategies.
Hand synergies during reach-to-grasp.
Mason, C R; Gomez, J E; Ebner, T J
2001-12-01
An emerging viewpoint is that the CNS uses synergies to simplify the control of the hand. Previous work has shown that static hand postures for mimed grasps can be described by a few principal components in which the higher order components explained only a small fraction of the variance yet provided meaningful information. Extending that earlier work, this study addressed whether the entire act of grasp can be described by a small number of postural synergies and whether these synergies are similar for different grasps. Five right-handed adults performed five types of reach-to-grasps including power grasp, power grasp with a lift, precision grasp, and mimed power grasp and mimed precision grasp of 16 different objects. The object shapes were cones, cylinders, and spindles, systematically varied in size to produce a large range of finger joint angle combinations. Three-dimensional reconstructions of 21 positions on the hand and wrist throughout the reach-to-grasp were obtained using a four-camera video system. Singular value decomposition on the temporal sequence of the marker positions was used to identify the common patterns ("eigenpostures") across the 16 objects for each task and their weightings as a function of time. The first eigenposture explained an average of 97.3 +/- 0.89% (mean +/- SD) of the variance of the hand shape, and the second another 1.9 +/- 0.85%. The first eigenposture was characterized by an open hand configuration that opens and closes during reach. The second eigenposture contributed to the control of the thumb and long fingers, particularly in the opening of the hand during the reach and the closing in preparation for object grasp. The eigenpostures and their temporal evolutions were similar across subjects and grasps. The higher order eigenpostures, although explaining only small amounts of the variance, contributed to the movements of the fingers and thumb. These findings suggest that much of reach-to-grasp is effected using a base posture with refinements in finger and thumb positions added in time to yield unique hand shapes.
Fixation Biases towards the Index Finger in Almost-Natural Grasping
Voudouris, Dimitris; Smeets, Jeroen B. J.; Brenner, Eli
2016-01-01
We use visual information to guide our grasping movements. When grasping an object with a precision grip, the two digits need to reach two different positions more or less simultaneously, but the eyes can only be directed to one position at a time. Several studies that have examined eye movements in grasping have found that people tend to direct their gaze near where their index finger will contact the object. Here we aimed at better understanding why people do so by asking participants to lift an object off a horizontal surface. They were to grasp the object with a precision grip while movements of their hand, eye and head were recorded. We confirmed that people tend to look closer to positions that a digit needs to reach more accurately. Moreover, we show that where they look as they reach for the object depends on where they were looking before, presumably because they try to minimize the time during which the eyes are moving so fast that no new visual information is acquired. Most importantly, we confirmed that people have a bias to direct gaze towards the index finger’s contact point rather than towards that of the thumb. In our study, this cannot be explained by the index finger contacting the object before the thumb. Instead, it appears to be because the index finger moves to a position that is hidden behind the object that is grasped, probably making this the place at which one is most likely to encounter unexpected problems that would benefit from visual guidance. However, this cannot explain the bias that was found in previous studies, where neither contact point was hidden, so it cannot be the only explanation for the bias. PMID:26766551
Superior haptic-to-visual shape matching in autism spectrum disorders.
Nakano, Tamami; Kato, Nobumasa; Kitazawa, Shigeru
2012-04-01
A weak central coherence theory in autism spectrum disorder (ASD) proposes that a cognitive bias toward local processing in ASD derives from a weakness in integrating local elements into a coherent whole. Using this theory, we hypothesized that shape perception through active touch, which requires sequential integration of sensorimotor traces of exploratory finger movements into a shape representation, would be impaired in ASD. Contrary to our expectation, adults with ASD showed superior performance in a haptic-to-visual delayed shape-matching task compared to adults without ASD. Accuracy in discriminating haptic lengths or haptic orientations, which lies within the somatosensory modality, did not differ between adults with ASD and adults without ASD. Moreover, this superior ability in inter-modal haptic-to-visual shape matching was not explained by the score in a unimodal visuospatial rotation task. These results suggest that individuals with ASD are not impaired in integrating sensorimotor traces into a global visual shape and that their multimodal shape representations and haptic-to-visual information transfer are more accurate than those of individuals without ASD. Copyright © 2012 Elsevier Ltd. All rights reserved.
Subjective Estimation of Task Time and Task Difficulty of Simple Movement Tasks.
Chan, Alan H S; Hoffmann, Errol R
2017-01-01
It has been demonstrated in previous work that the same neural structures are used for both imagined and real movements. To provide a strong test of the similarity of imagined and actual movement times, 4 simple movement tasks were used to determine the relationship between estimated task time and actual movement time. The tasks were single-component visually controlled movements, 2-component visually controlled, low index of difficulty (ID) moves and pin-to-hole transfer movements. For each task there was good correspondence between the mean estimated times and actual movement times. In all cases, the same factors determined the actual and estimated movement times: the amplitudes of movement and the IDs of the component movements, however the contribution of each of these variables differed for the imagined and real tasks. Generally, the standard deviations of the estimated times were linearly related to the estimated time values. Overall, the data provide strong evidence for the same neural structures being used for both imagined and actual movements.
NASA Technical Reports Server (NTRS)
2004-01-01
The Robot Systems Technology Branch at NASA's Johnson Space Center collaborated with the Defense Advanced Research Projects Agency to design Robonaut, a humanoid robot developed to assist astronauts with Extra Vehicular Activities (EVA) such as space structure assembly and repair operations. By working side-by-side with astronauts or going where risks are too great for people, Robonaut is expected to expand the Space Agency s ability for construction and discovery. NASA engineers equipped Robonaut with human-looking, dexterous hands complete with five fingers to accomplish its tasks. The Robonaut hand is one of the first being developed for space EVA use and is the closest in size and capability to a suited astronaut s hand. As part of the development process, an advanced sensor system was needed to provide an improved method to measure the movement and forces exerted by Robonaut s forearms and hands.
Tschentscher, Nadja; Hauk, Olaf; Fischer, Martin H; Pulvermüller, Friedemann
2012-02-15
The embodied cognition framework suggests that neural systems for perception and action are engaged during higher cognitive processes. In an event-related fMRI study, we tested this claim for the abstract domain of numerical symbol processing: is the human cortical motor system part of the representation of numbers, and is organization of numerical knowledge influenced by individual finger counting habits? Developmental studies suggest a link between numerals and finger counting habits due to the acquisition of numerical skills through finger counting in childhood. In the present study, digits 1 to 9 and the corresponding number words were presented visually to adults with different finger counting habits, i.e. left- and right-starters who reported that they usually start counting small numbers with their left and right hand, respectively. Despite the absence of overt hand movements, the hemisphere contralateral to the hand used for counting small numbers was activated when small numbers were presented. The correspondence between finger counting habits and hemispheric motor activation is consistent with an intrinsic functional link between finger counting and number processing. Copyright © 2011 Elsevier Inc. All rights reserved.
The Role of Response Repetition in Task Switching
ERIC Educational Resources Information Center
Cooper, Stephen; Mari-Beffa, Paloma
2008-01-01
When switching between tasks, participants are sometimes required to use different response sets for each task. Thus, task switch and response set switch are confounded. In 5 experiments, the authors examined transitions of response within a linear 4-finger arrangement. A random baseline condition was compared with the cuing of specific response…
Bidirectional transfer between joint and individual actions in a task of discrete force production.
Masumoto, Junya; Inui, Nobuyuki
2017-07-01
The present study examined bidirectional learning transfer between joint and individual actions involving discrete isometric force production with the right index finger. To examine the effects of practice of joint action on performance of the individual action, participants performed a pre-test (individual condition), practice blocks (joint condition), and a post-test (individual condition) (IJI task). To examine the effects of practice of the individual action on performance during the joint action, the participants performed a pre-test (joint condition), practice blocks (individual condition), and a post-test (joint condition) (JIJ task). Whereas one participant made pressing movements with a target peak force of 10% maximum voluntary contraction (MVC) in the individual condition, two participants produced the target force of the sum of 10% MVC produced by each of them in the joint condition. In both the IJI and JIJ tasks, absolute errors and standard deviations of peak force were smaller post-test than pre-test, indicating bidirectional transfer between individual and joint conditions for force accuracy and variability. Although the negative correlation between forces produced by two participants (complementary force production) became stronger with practice blocks in the IJI task, there was no difference between the pre- and post-tests for the negative correlation in the JIJ task. In the JIJ task, the decrease in force accuracy and variability during the individual action did not facilitate complementary force production during the joint action. This indicates that practice performed by two people is essential for complementary force production in joint action.
Effect of hypersaline cooling canals on aquifer salinization
Hughes, Joseph D.; Langevin, Christian D.; Brakefield-Goswami, Linzy
2010-01-01
The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.
Jepsen, H; Gaehtgens, P
1993-09-01
Laser-Doppler (LD) fluxmetry was performed in the palmar finger skin of healthy subjects to study the mechanisms contributing to the postural vascular response. Local transmural pressure in the skin blood vessels of the region studied was altered for 1 min in two experimental series either by passive movement of the arm to different vertical hand positions relative to heart level or by application of external pressure (-120-180 mmHg) to the finger. Heart and respiratory rate, arterial blood pressure, and LD flux in the contralateral finger (kept at heart level) were measured. The measurements suggest a compound reaction of local (myogenic) and systemic (neurogenic) mechanisms: the local regulatory component appears as a graded active vascular response elicited by passive vessel distension or compression. A systemic component, associated with a single deep inspiration, is frequently observed during the actual movement of the arm. In addition, prolonged holding of the test hand in a given vertical position also elicits a delayed vascular response in the control hand at heart level, which may be generated by volume receptors in the intrathoracic low-pressure system.
Robot-Assisted Guitar Hero for Finger Rehabilitation after Stroke
Taheri, Hossein; Rowe, Justin B.; Gardner, David; Chan, Vicky; Reinkensmeyer, David J.; Wolbrecht, Eric T.
2014-01-01
This paper describes the design and testing of a robotic device for finger therapy after stroke: FINGER (Finger Individuating Grasp Exercise Robot). FINGER makes use of stacked single degree-of-freedom mechanisms to assist subjects in moving individual fingers in a naturalistic grasping pattern through much of their full range of motion. The device has a high bandwidth of control (−3dB at approximately 8 Hz) and is backdriveable. These characteristics make it capable of assisting in grasping tasks that require precise timing. We therefore used FINGER to assist individuals with a stroke (n = 8) and without impairment (n = 4) in playing a game similar to Guitar Hero©. The subjects attempted to move their fingers to target positions at times specified by notes that were graphically streamed to popular music. We show here that by automatically adjusting the robot gains, it is possible to use FINGER to modulate the subject’s success rate at the game, across a range of impairment levels. Modulating success rates did not alter the stroke subject’s effort, although the unimpaired subjects exerted more force when they were made less successful. We also present a novel measure of finger individuation that can be assessed as individuals play Guitar Hero with FINGER. The results demonstrate the ability of FINGER to provide controlled levels of assistance during an engaging computer game, and to quantify finger individuation after stroke. PMID:23366783
Neural networks for Braille reading by the blind.
Sadato, N; Pascual-Leone, A; Grafman, J; Deiber, M P; Ibañez, V; Hallett, M
1998-07-01
To explore the neural networks used for Braille reading, we measured regional cerebral blood flow with PET during tactile tasks performed both by Braille readers blinded early in life and by sighted subjects. Eight proficient Braille readers were studied during Braille reading with both right and left index fingers. Eight-character, non-contracted Braille-letter strings were used, and subjects were asked to discriminate between words and non-words. To compare the behaviour of the brain of the blind and the sighted directly, non-Braille tactile tasks were performed by six different blind subjects and 10 sighted control subjects using the right index finger. The tasks included a non-discrimination task and three discrimination tasks (angle, width and character). Irrespective of reading finger (right or left), Braille reading by the blind activated the inferior parietal lobule, primary visual cortex, superior occipital gyri, fusiform gyri, ventral premotor area, superior parietal lobule, cerebellum and primary sensorimotor area bilaterally, also the right dorsal premotor cortex, right middle occipital gyrus and right prefrontal area. During non-Braille discrimination tasks, in blind subjects, the ventral occipital regions, including the primary visual cortex and fusiform gyri bilaterally were activated while the secondary somatosensory area was deactivated. The reverse pattern was found in sighted subjects where the secondary somatosensory area was activated while the ventral occipital regions were suppressed. These findings suggest that the tactile processing pathways usually linked in the secondary somatosensory area are rerouted in blind subjects to the ventral occipital cortical regions originally reserved for visual shape discrimination.
Development of a CPM Machine for Injured Fingers.
Fu, Yili; Zhang, Fuxiang; Ma, Xin; Meng, Qinggang
2005-01-01
Human fingers are easy to be injured. A CPM machine is a mechanism based on the rehabilitation theory of continuous passive motion (CPM). To develop a CPM machine for the clinic application in the rehabilitation of injured fingers is a significant task. Therefore, based on the theories of evidence based medicine (EBM) and CPM, we've developed a set of biomimetic mechanism after modeling the motions of fingers and analyzing its kinematics and dynamics analysis. We also design an embedded operating system based on ARM (a kind of 32-bit RISC microprocessor). The equipment can achieve the precise control of moving scope of fingers, finger's force and speed. It can serves as a rational checking method and a way of assessment for functional rehabilitation of human hands. Now, the first prototype has been finished and will start the clinical testing in Harbin Medical University shortly.
Accelerometer telemetry system
NASA Technical Reports Server (NTRS)
Konigsberg, E. (Inventor)
1976-01-01
An accelerometer telemetry system incorporated in a finger ring is used for monitoring the motor responses of a subject. The system includes an accelerometer, battery, and transmitter and provides information to a remote receiver regarding hand movements of a subject wearing the ring, without the constraints of wires. Possible applications include the detection of fatigue from the hand movements of the wearer.
Gage for evaluating rheumatoid hands
NASA Technical Reports Server (NTRS)
Houge, J. C.; Plautz, K. A.
1981-01-01
Two-axis goniometer accurately measures movements of fingers about knuckle joints, diagnosing hands structurally changed by rheumatoid arthritis. Instrument measures lateral movement which is small in normal knuckles but increased in diseased joints. Goniometer is two connected protractors that simultaneously measure angles in perpindicular planes. Dials are offset to clear bony protuberances; extension and offset adjustments span any hand size.
Sensorimotor synchronization: neurophysiological markers of the asynchrony in a finger-tapping task.
Bavassi, Luz; Kamienkowski, Juan E; Sigman, Mariano; Laje, Rodrigo
2017-01-01
Sensorimotor synchronization (SMS) is a form of referential behavior in which an action is coordinated with a predictable external stimulus. The neural bases of the synchronization ability remain unknown, even in the simpler, paradigmatic task of finger tapping to a metronome. In this task the subject is instructed to tap in synchrony with a periodic sequence of brief tones, and the time difference between each response and the corresponding stimulus tone (asynchrony) is recorded. We make a step towards the identification of the neurophysiological markers of SMS by recording high-density EEG event-related potentials and the concurrent behavioral response-stimulus asynchronies during an isochronous paced finger-tapping task. Using principal component analysis, we found an asymmetry between the traces for advanced and delayed responses to the stimulus, in accordance with previous behavioral observations from perturbation studies. We also found that the amplitude of the second component encodes the higher-level percept of asynchrony 100 ms after the current stimulus. Furthermore, its amplitude predicts the asynchrony of the next step, past 300 ms from the previous stimulus, independently of the period length. Moreover, the neurophysiological processing of synchronization errors is performed within a fixed-duration interval after the stimulus. Our results suggest that the correction of a large asynchrony in a periodic task and the recovery of synchrony after a perturbation could be driven by similar neural processes.
Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas
2013-01-01
Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888
In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy.
Golomb, Meredith R; McDonald, Brenna C; Warden, Stuart J; Yonkman, Janell; Saykin, Andrew J; Shirley, Bridget; Huber, Meghan; Rabin, Bryan; Abdelbaky, Moustafa; Nwosu, Michelle E; Barkat-Masih, Monica; Burdea, Grigore C
2010-01-01
Golomb MR, McDonald BC, Warden SJ, Yonkman J, Saykin AJ, Shirley B, Huber M, Rabin B, AbdelBaky M, Nwosu ME, Barkat-Masih M, Burdea GC. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. To investigate whether in-home remotely monitored virtual reality videogame-based telerehabilitation in adolescents with hemiplegic cerebral palsy can improve hand function and forearm bone health, and demonstrate alterations in motor circuitry activation. A 3-month proof-of-concept pilot study. Virtual reality videogame-based rehabilitation systems were installed in the homes of 3 participants and networked via secure Internet connections to the collaborating engineering school and children's hospital. Adolescents (N=3) with severe hemiplegic cerebral palsy. Participants were asked to exercise the plegic hand 30 minutes a day, 5 days a week using a sensor glove fitted to the plegic hand and attached to a remotely monitored videogame console installed in their home. Games were custom developed, focused on finger movement, and included a screen avatar of the hand. Standardized occupational therapy assessments, remote assessment of finger range of motion (ROM) based on sensor glove readings, assessment of plegic forearm bone health with dual-energy x-ray absorptiometry (DXA) and peripheral quantitative computed tomography (pQCT), and functional magnetic resonance imaging (fMRI) of hand grip task. All 3 adolescents showed improved function of the plegic hand on occupational therapy testing, including increased ability to lift objects, and improved finger ROM based on remote measurements. The 2 adolescents who were most compliant showed improvements in radial bone mineral content and area in the plegic arm. For all 3 adolescents, fMRI during grip task contrasting the plegic and nonplegic hand showed expanded spatial extent of activation at posttreatment relative to baseline in brain motor circuitry (eg, primary motor cortex and cerebellum). Use of remotely monitored virtual reality videogame telerehabilitation appears to produce improved hand function and forearm bone health (as measured by DXA and pQCT) in adolescents with chronic disability who practice regularly. Improved hand function appears to be reflected in functional brain changes. Copyright (c) 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Variation in dual-task performance reveals late initiation of speech planning in turn-taking.
Sjerps, Matthias J; Meyer, Antje S
2015-03-01
The smooth transitions between turns in natural conversation suggest that speakers often begin to plan their utterances while listening to their interlocutor. The presented study investigates whether this is indeed the case and, if so, when utterance planning begins. Two hypotheses were contrasted: that speakers begin to plan their turn as soon as possible (in our experiments less than a second after the onset of the interlocutor's turn), or that they do so close to the end of the interlocutor's turn. Turn-taking was combined with a finger tapping task to measure variations in cognitive load. We assumed that the onset of speech planning in addition to listening would be accompanied by deterioration in tapping performance. Two picture description experiments were conducted. In both experiments there were three conditions: (1) Tapping and Speaking, where participants tapped a complex pattern while taking over turns from a pre-recorded speaker, (2) Tapping and Listening, where participants carried out the tapping task while overhearing two pre-recorded speakers, and (3) Speaking Only, where participants took over turns as in the Tapping and Speaking condition but without tapping. The experiments differed in the amount of tapping training the participants received at the beginning of the session. In Experiment 2, the participants' eye-movements were recorded in addition to their speech and tapping. Analyses of the participants' tapping performance and eye movements showed that they initiated the cognitively demanding aspects of speech planning only shortly before the end of the turn of the preceding speaker. We argue that this is a smart planning strategy, which may be the speakers' default in many everyday situations. Copyright © 2014 Elsevier B.V. All rights reserved.
One hand or the other? Effector selection biases in right and left handers.
Main, Julie C; Carey, David P
2014-11-01
Much debate in the handedness literature has centred on the relative merits of questionnaire-based measures assessing hand preference versus simple movement tasks such as peg moving or finger tapping, assessing hand performance. A third paradigm has grown in popularity, which assesses choices by participants when either hand could be used to execute movements. These newer measures may be useful in predicting possible "reversed" asymmetries in proportions of non-right handed ("adextral") people. In the current studies we examine hand choice in large samples of dextral (right handed) and adextral participants. Unlike in some previous experiments on choice, we found that left handers were as biased towards their dominant hand as were right handers, for grasping during a puzzle-making task (study 1). In a second study, participants had to point to either of two suddenly appearing targets with one hand or the other. In study 2, left handers were not significantly less one handed than their right-handed counterparts as in study 1. In a final study, we used random effects meta analysis to summarise the possible differences in hand choice between left handers and right handers across all hand choice studies published to date. The meta analysis suggests that right handers use their dominant hand 12.5% more than left handers favour their dominant hand (with 95% confidence that the real difference lies between 7% and 18%). These last results suggest that our two experiments reported here may represent statistical Type 2 errors. This mean difference may be related to greater left hemispheric language and praxic laterality in right handers. Nevertheless, more data are needed regarding the precise proportions of left and right handers who favour their preferred hands for different tasks. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schiller, Peter H; Kwak, Michelle C; Slocum, Warren M
2012-08-01
This study examined how effectively visual and auditory cues can be integrated in the brain for the generation of motor responses. The latencies with which saccadic eye movements are produced in humans and monkeys form, under certain conditions, a bimodal distribution, the first mode of which has been termed express saccades. In humans, a much higher percentage of express saccades is generated when both visual and auditory cues are provided compared with the single presentation of these cues [H. C. Hughes et al. (1994) J. Exp. Psychol. Hum. Percept. Perform., 20, 131-153]. In this study, we addressed two questions: first, do monkeys also integrate visual and auditory cues for express saccade generation as do humans and second, does such integration take place in humans when, instead of eye movements, the task is to press levers with fingers? Our results show that (i) in monkeys, as in humans, the combined visual and auditory cues generate a much higher percentage of express saccades than do singly presented cues and (ii) the latencies with which levers are pressed by humans are shorter when both visual and auditory cues are provided compared with the presentation of single cues, but the distribution in all cases is unimodal; response latencies in the express range seen in the execution of saccadic eye movements are not obtained with lever pressing. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Enhanced emotional responses during social coordination with a virtual partner
Dumas, Guillaume; Kelso, J.A. Scott; Tognoli, Emmanuelle
2016-01-01
Emotion and motion, though seldom studied in tandem, are complementary aspects of social experience. This study investigates variations in emotional responses during movement coordination between a human and a Virtual Partner (VP), an agent whose virtual finger movements are driven by the Haken-Kelso-Bunz (HKB) equations of Coordination Dynamics. Twenty-one subjects were instructed to coordinate finger movements with the VP in either inphase or antiphase patterns. By adjusting model parameters, we manipulated the ‘intention’ of VP as cooperative or competitive with the human's instructed goal. Skin potential responses (SPR) were recorded to quantify the intensity of emotional response. At the end of each trial, subjects rated the VP's intention and whether they thought their partner was another human being or a machine. We found greater emotional responses when subjects reported that their partner was human and when coordination was stable. That emotional responses are strongly influenced by dynamic features of the VP's behavior, has implications for mental health, brain disorders and the design of socially cooperative machines. PMID:27094374
Lavasani, Negar Miri; Stagnitti, Karen
2011-06-01
The aim of this study was to compare the fine motor skills of two groups of Iranian children. Of the 55 male Tehranian children aged 6 to 10 years, 29 children were typically developing and 26 were identified as attention deficit hyperactivity disorder (ADHD) using the Diagnostic and Statistical Manual of Mental Disorder. All children were assessed using the Raven Intelligence Test and nine fine motor tasks. There were no significant differences between the groups based on intelligence. In eight of the fine motor tasks, there was a significant difference between the groups. These tasks were cutting, placing dots in a grid pattern without direction, threading beads, drawing a line within 1 and 2 minutes, finger movements and Purdue pegboard. Boys who have been identified as ADHD have poorer fine motor skills compared to typically developing boys of the same age. Children aged 6 to 10 years who have been identified as ADHD will require more attention to their fine motor skill performance to enable greater participation in daily living tasks in Tehran such as writing, fine arts and dressing which require fast and quick hand motor skills. There are still limitations in this area; therefore, research in fine motor skills and ADHD children are recommended for future research. Copyright © 2010 John Wiley & Sons, Ltd.
Gentili, Rodolphe J; Oh, Hyuk; Kregling, Alissa V; Reggia, James A
2016-05-19
The human hand's versatility allows for robust and flexible grasping. To obtain such efficiency, many robotic hands include human biomechanical features such as fingers having their two last joints mechanically coupled. Although such coupling enables human-like grasping, controlling the inverse kinematics of such mechanical systems is challenging. Here we propose a cortical model for fine motor control of a humanoid finger, having its two last joints coupled, that learns the inverse kinematics of the effector. This neural model functionally mimics the population vector coding as well as sensorimotor prediction processes of the brain's motor/premotor and parietal regions, respectively. After learning, this neural architecture could both overtly (actual execution) and covertly (mental execution or motor imagery) perform accurate, robust and flexible finger movements while reproducing the main human finger kinematic states. This work contributes to developing neuro-mimetic controllers for dexterous humanoid robotic/prosthetic upper-extremities, and has the potential to promote human-robot interactions.
Orbital maneuvering end effectors
NASA Technical Reports Server (NTRS)
Myers, W. Neill (Inventor); Forbes, John C. (Inventor); Barnes, Wayne L. (Inventor)
1986-01-01
This invention relates to an end effector device for grasping and maneuvering objects such as berthing handles of a space telescope. The device includes a V-shaped capture window defined as inclined surfaces in parallel face plates which converge toward a retainer recess in which the handle is retained. A pivotal finger (30) meshes with a pair of pivoted fingers which rotate in counterrotation. The fingers rotate to pull a handle within the capture window into recess where latches lock handle in the recess. To align the capture window, plates may be cocked plus or minus five degrees on base. Drive means is included in the form of a motor coupled with a harmonic drive speed reducer, which provides for slow movement of the fingers at a high torque so that large articles may be handled. Novelty of the invention is believed to reside in the combined intermeshing finger structure, drive means and the harmonic drive speed reducer, which features provide the required maneuverability and strength.
Upper limb motor rehabilitation impacts white matter microstructure in multiple sclerosis.
Bonzano, Laura; Tacchino, Andrea; Brichetto, Giampaolo; Roccatagliata, Luca; Dessypris, Adriano; Feraco, Paola; Lopes De Carvalho, Maria L; Battaglia, Mario A; Mancardi, Giovanni L; Bove, Marco
2014-04-15
Upper limb impairments can occur in patients with multiple sclerosis, affecting daily living activities; however there is at present no definite agreement on the best rehabilitation treatment strategy to pursue. Moreover, motor training has been shown to induce changes in white matter architecture in healthy subjects. This study aimed at evaluating the motor behavioral and white matter microstructural changes following a 2-month upper limb motor rehabilitation treatment based on task-oriented exercises in patients with multiple sclerosis. Thirty patients (18 females and 12 males; age=43.3 ± 8.7 years) in a stable phase of the disease presenting with mild or moderate upper limb sensorimotor deficits were randomized into two groups of 15 patients each. Both groups underwent twenty 1-hour treatment sessions, three times a week. The "treatment group" received an active motor rehabilitation treatment, based on voluntary exercises including task-oriented exercises, while the "control group" underwent passive mobilization of the shoulder, elbow, wrist and fingers. Before and after the rehabilitation protocols, motor performance was evaluated in all patients with standard tests. Additionally, finger motor performance accuracy was assessed by an engineered glove. In the same sessions, every patient underwent diffusion tensor imaging to obtain parametric maps of fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity. The mean value of each parameter was separately calculated within regions of interest including the fiber bundles connecting brain areas involved in voluntary movement control: the corpus callosum, the corticospinal tracts and the superior longitudinal fasciculi. The two rehabilitation protocols induced similar effects on unimanual motor performance, but the bimanual coordination task revealed that the residual coordination abilities were maintained in the treated patients while they significantly worsened in the control group (p=0.002). Further, in the treatment group white matter integrity in the corpus callosum and corticospinal tracts was preserved while a microstructural integrity worsening was found in the control group (fractional anisotropy of the corpus callosum and corticospinal tracts: p=0.033 and p=0.022; radial diffusivity of the corpus callosum and corticospinal tracts: p=0.004 and p=0.008). Conversely, a significant increase of radial diffusivity was observed in the superior longitudinal fasciculi in both groups (p=0.02), indicating lack of treatment effects on this structure, showing damage progression likely due to a demyelination process. All these findings indicate the importance of administering, when possible, a rehabilitation treatment consisting of voluntary movements. We also demonstrated that the beneficial effects of a rehabilitation treatment are task-dependent and selective in their target; this becomes crucial towards the implementation of tailored rehabilitative approaches. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Human cortical activity related to unilateral movements. A high resolution EEG study.
Urbano, A; Babiloni, C; Onorati, P; Babiloni, F
1996-12-20
In the present study a modern high resolution electroencephalography (EEG) technique was used to investigate the dynamic functional topography of human cortical activity related to simple unilateral internally triggered finger movements. The sensorimotor area (M1-S1) contralateral to the movement as well as the supplementary motor area (SMA) and to a lesser extent the ipsilateral M1-S1 were active during the preparation and execution of these movements. These findings suggest that both hemispheres may cooperate in both planning and production of simple unilateral volitional acts.
Brain Activations for Vestibular Stimulation and Dual Tasking Change with Spaceflight
NASA Technical Reports Server (NTRS)
Yuan, Peng; Koppelmans, Vincent; Reuter-Lorenz, Patricia; De Dios, Yiri; Gadd, Nichole; Wood, Scott; Riascos, Roy; Kofman, Igor; Bloomberg, Jacob; Mulavara, Ajitkumar;
2017-01-01
Previous studies have documented the effects of spaceflight on human physiology and behavior, including muscle mass, cardiovascular function, gait, balance, manual motor control, and cognitive performance. An understanding of spaceflight-related changes provides important information about human adaptive plasticity and facilitates future space travel. In the current study, we evaluated how brain activations associated with vestibular stimulation and dual tasking change as a function of spaceflight. Five crewmembers were included in this study. The durations of their spaceflight missions ranged from 3 months to 7 months. All of them completed at least two preflight assessments and at least one postflight assessment. The preflight sessions occurred, on average, about 198 days and 51 days before launch; the first postflight sessions were scheduled 5 days after return. Functional MRI was acquired during vestibular stimulation and dual tasking, at each session. Vestibular stimulation was administered via skull taps delivered by a pneumatic tactile pulse system placed over the lateral cheekbones. The magnitude of brain activations for vestibular stimulation increased with spaceflight relative to the preflight levels, in frontal areas and the precuneus. In addition, longer flight duration was associated with greater preflight-to-postflight increases in vestibular activation in frontal regions. Functional MRI for finger tapping was acquired during both single-task (finger tapping only) and dual-task (simultaneously performing finger tapping and a secondary counting task) conditions. Preflight-to-post-spaceflight decreases in brain activations for dual tasking were observed in the right postcentral cortex. An association between flight duration and amplitude of flight-related change in activations for dual tasking was observed in the parietal cortex. The spaceflight-related increase in vestibular brain activations suggests that after a long-term spaceflight, more neural resources are required to process vestibular input.
Cortical processing during smartphone text messaging.
Tatum, William O; DiCiaccio, Benedetto; Yelvington, Kirsten H
2016-06-01
The objective of this study was to report the EEG features of text messaging using smartphones. One hundred twenty-nine patients were prospectively evaluated during video-EEG monitoring (VEM) over 16months. A reproducible texting rhythm (TR) present during active text messaging with a smartphone was compared with passive and forced audio telephone use, thumb/finger movements, cognitive testing/calculation, scanning eye movements, and speech/language tasks in patients with and without epilepsy. Statistical significance was set at p<0.05. Twenty-seven patients with a TR were identified from a cohort of 129 (93 female, mean age: 36; range: 18-71) unselected VEM patients. Fifty-three out of 129 patients had epileptic seizures (ES), 74/129 had nonepileptic seizures (NES), and 2/129 were dual-diagnosed. A reproducible TR was present in 27/129 (20.9%) specific to text messaging (p<0.0001) and present in 28% of patients with ES and 16% of patients with NES (p=NS). The TR was absent during independent tasks and audio cellular telephone use (p<0.0001). Age, gender, epilepsy type, MRI results, and EEG lateralization in patients with focal seizures were unrelated (p=NS). Our results suggest that the TR on scalp EEG represents a novel technology-specific neurophysiological alteration of brain networks. We propose that cortical processing in the contemporary brain is uniquely activated by the use of PEDs. These findings have practical implications that could impact industry and research in nonverbal communication. Copyright © 2016 Elsevier Inc. All rights reserved.
... thallium, and lead Solvents such as toluene or carbon tetrachloride Other causes include: Certain cancers, in which ... system and muscles, paying careful attention to walking, balance, and coordination of pointing with fingers and toes. ...
Design and Dynamic Modeling of Flexible Rehabilitation Mechanical Glove
NASA Astrophysics Data System (ADS)
Lin, M. X.; Ma, G. Y.; Liu, F. Q.; Sun, Q. S.; Song, A. Q.
2018-03-01
Rehabilitation gloves are equipment that helps rehabilitation doctors perform finger rehabilitation training, which can greatly reduce the labour intensity of rehabilitation doctors and make more people receive finger rehabilitation training. In the light of the defects of the existing rehabilitation gloves such as complicated structure and stiff movement, a rehabilitation mechanical glove is designed, which provides driving force by using the air cylinder and adopts a rope-spring mechanism to ensure the flexibility of the movement. In order to fit the size of different hands, the bandage ring which can adjust size is used to make the mechanism fixed. In the interest of solve the complex problem of dynamic equation, dynamic simulation is carried out by using Adams to obtain the motion curve, which is easy to optimize the structure of ring position.
van den Noort, Josien C; Verhagen, Rens; van Dijk, Kees J; Veltink, Peter H; Vos, Michelle C P M; de Bie, Rob M A; Bour, Lo J; Heida, Ciska T
2017-10-01
This proof-of-principle study describes the methodology and explores and demonstrates the applicability of a system, existing of miniature inertial sensors on the hand and a separate force sensor, to objectively quantify hand motor symptoms in patients with Parkinson's disease (PD) in a clinical setting (off- and on-medication condition). Four PD patients were measured in off- and on- dopaminergic medication condition. Finger tapping, rapid hand opening/closing, hand pro/supination, tremor during rest, mental task and kinetic task, and wrist rigidity movements were measured with the system (called the PowerGlove). To demonstrate applicability, various outcome parameters of measured hand motor symptoms of the patients in off- vs. on-medication condition are presented. The methodology described and results presented show applicability of the PowerGlove in a clinical research setting, to objectively quantify hand bradykinesia, tremor and rigidity in PD patients, using a single system. The PowerGlove measured a difference in off- vs. on-medication condition in all tasks in the presented patients with most of its outcome parameters. Further study into the validity and reliability of the outcome parameters is required in a larger cohort of patients, to arrive at an optimal set of parameters that can assist in clinical evaluation and decision-making.
Potential interactions among linguistic, autonomic, and motor factors in speech.
Kleinow, Jennifer; Smith, Anne
2006-05-01
Though anecdotal reports link certain speech disorders to increases in autonomic arousal, few studies have described the relationship between arousal and speech processes. Additionally, it is unclear how increases in arousal may interact with other cognitive-linguistic processes to affect speech motor control. In this experiment we examine potential interactions between autonomic arousal, linguistic processing, and speech motor coordination in adults and children. Autonomic responses (heart rate, finger pulse volume, tonic skin conductance, and phasic skin conductance) were recorded simultaneously with upper and lower lip movements during speech. The lip aperture variability (LA variability index) across multiple repetitions of sentences that varied in length and syntactic complexity was calculated under low- and high-arousal conditions. High arousal conditions were elicited by performance of the Stroop color word task. Children had significantly higher lip aperture variability index values across all speaking tasks, indicating more variable speech motor coordination. Increases in syntactic complexity and utterance length were associated with increases in speech motor coordination variability in both speaker groups. There was a significant effect of Stroop task, which produced increases in autonomic arousal and increased speech motor variability in both adults and children. These results provide novel evidence that high arousal levels can influence speech motor control in both adults and children. (c) 2006 Wiley Periodicals, Inc.
Masked response priming in expert typists.
Heinemann, Alexander; Kiesel, Andrea; Pohl, Carsten; Kunde, Wilfried
2010-03-01
In masked priming tasks responses are usually faster when prime and target require identical rather than different responses. Previous research has extensively manipulated the nature and number of response-affording stimuli. However, little is known about the constraints of masked priming regarding the nature and number of response alternatives. The present study explored the limits of masked priming in a six-choice reaction time task, where responses from different fingers of both hands were required. We studied participants that were either experts for the type of response (skilled typists) or novices. Masked primes facilitated responding to targets that required the same response, responses with a different finger of the same hand, and with a homologous finger of the other hand. These effects were modulated by expertise. The results show that masked primes facilitate responding especially for experts in the S-R mapping and with increasing similarity of primed and required response.
A quantitative model for designing keyboard layout.
Shieh, K K; Lin, C C
1999-02-01
This study analyzed the quantitative relationship between keytapping times and ergonomic principles in typewriting skills. Keytapping times and key-operating characteristics of a female subject typing on the Qwerty and Dvorak keyboards for six weeks each were collected and analyzed. The results showed that characteristics of the typed material and the movements of hands and fingers were significantly related to keytapping times. The most significant factors affecting keytapping times were association frequency between letters, consecutive use of the same hand or finger, and the finger used. A regression equation for relating keytapping times to ergonomic principles was fitted to the data. Finally, a protocol for design of computerized keyboard layout based on the regression equation was proposed.
Finger tips detection for two handed gesture recognition
NASA Astrophysics Data System (ADS)
Bhuyan, M. K.; Kar, Mithun Kumar; Neog, Debanga Raj
2011-10-01
In this paper, a novel algorithm is proposed for fingertips detection in view of two-handed static hand pose recognition. In our method, finger tips of both hands are detected after detecting hand regions by skin color-based segmentation. At first, the face is removed in the image by using Haar classifier and subsequently, the regions corresponding to the gesturing hands are isolated by a region labeling technique. Next, the key geometric features characterizing gesturing hands are extracted for two hands. Finally, for all possible/allowable finger movements, a probabilistic model is developed for pose recognition. Proposed method can be employed in a variety of applications like sign language recognition and human-robot-interactions etc.