A simple low cost latent fingerprint sensor based on deflectometry and WFT analysis
NASA Astrophysics Data System (ADS)
Dhanotia, Jitendra; Chatterjee, Amit; Bhatia, Vimal; Prakash, Shashi
2018-02-01
In criminal investigations, latent fingerprints are one of the most significant forms of evidence and most commonly used forensic investigation tool worldwide. The existing non-contact latent fingerprint detection systems are bulky, expensive and require environment which is shock and vibration resistant, thereby limiting their usability outside the laboratory. In this article, a compact, full field, low cost technique for profiling of fingerprints using deflectometry is proposed. Using inexpensive mobile phone screen based structured illumination, and windowed Fourier transform (WFT) based phase retrieval mechanism, the 2D and 3D phase plots reconstruct the profile information of the fingerprint. The phase information is also used to confirm a match between two fingerprints in real time. Since the proposed technique is non-interferometric, the measurements are least affected by environmental perturbations. Using the proposed technique, a portable sensor capable of field deployment has been realized.
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Dittmann, Jana
2015-03-01
The possibility of forging latent fingerprints at crime scenes is known for a long time. Ever since it has been stated that an expert is capable of recognizing the presence of multiple identical latent prints as an indicator towards forgeries. With the possibility of printing fingerprint patterns to arbitrary surfaces using affordable ink- jet printers equipped with artificial sweat, it is rather simple to create a multitude of fingerprints with slight variations to avoid raising any suspicion. Such artificially printed fingerprints are often hard to detect during the analysis procedure. Moreover, the visibility of particular detection properties might be decreased depending on the utilized enhancement and acquisition technique. In previous work primarily such detection properties are used in combination with non-destructive high resolution sensory and pattern recognition techniques to detect fingerprint forgeries. In this paper we apply Benford's Law in the spatial domain to differentiate between real latent fingerprints and printed fingerprints. This technique has been successfully applied in media forensics to detect image manipulations. We use the differences between Benford's Law and the distribution of the most significant digit of the intensity and topography data from a confocal laser scanning microscope as features for a pattern recognition based detection of printed fingerprints. Our evaluation based on 3000 printed and 3000 latent print samples shows a very good detection performance of up to 98.85% using WEKA's Bagging classifier in a 10-fold stratified cross-validation.
Security and matching of partial fingerprint recognition systems
NASA Astrophysics Data System (ADS)
Jea, Tsai-Yang; Chavan, Viraj S.; Govindaraju, Venu; Schneider, John K.
2004-08-01
Despite advances in fingerprint identification techniques, matching incomplete or partial fingerprints still poses a difficult challenge. While the introduction of compact silicon chip-based sensors that capture only a part of the fingerprint area have made this problem important from a commercial perspective, there is also considerable interest on the topic for processing partial and latent fingerprints obtained at crime scenes. Attempts to match partial fingerprints using singular ridge structures-based alignment techniques fail when the partial print does not include such structures (e.g., core or delta). We present a multi-path fingerprint matching approach that utilizes localized secondary features derived using only the relative information of minutiae. Since the minutia-based fingerprint representation, is an ANSI-NIST standard, our approach has the advantage of being directly applicable to already existing databases. We also analyze the vulnerability of partial fingerprint identification systems to brute force attacks. The described matching approach has been tested on one of FVC2002"s DB1 database11. The experimental results show that our approach achieves an equal error rate of 1.25% and a total error rate of 1.8% (with FAR at 0.2% and FRR at 1.6%).
Fingerprint pattern restoration by digital image processing techniques.
Wen, Che-Yen; Yu, Chiu-Chung
2003-09-01
Fingerprint evidence plays an important role in solving criminal problems. However, defective (lacking information needed for completeness) or contaminated (undesirable information included) fingerprint patterns make identifying and recognizing processes difficult. Unfortunately. this is the usual case. In the recognizing process (enhancement of patterns, or elimination of "false alarms" so that a fingerprint pattern can be searched in the Automated Fingerprint Identification System (AFIS)), chemical and physical techniques have been proposed to improve pattern legibility. In the identifying process, a fingerprint examiner can enhance contaminated (but not defective) fingerprint patterns under guidelines provided by the Scientific Working Group on Friction Ridge Analysis, Study and Technology (SWGFAST), the Scientific Working Group on Imaging Technology (SWGIT), and an AFIS working group within the National Institute of Justice. Recently, the image processing techniques have been successfully applied in forensic science. For example, we have applied image enhancement methods to improve the legibility of digital images such as fingerprints and vehicle plate numbers. In this paper, we propose a novel digital image restoration technique based on the AM (amplitude modulation)-FM (frequency modulation) reaction-diffusion method to restore defective or contaminated fingerprint patterns. This method shows its potential application to fingerprint pattern enhancement in the recognizing process (but not for the identifying process). Synthetic and real images are used to show the capability of the proposed method. The results of enhancing fingerprint patterns by the manual process and our method are evaluated and compared.
Semantically transparent fingerprinting for right protection of digital cinema
NASA Astrophysics Data System (ADS)
Wu, Xiaolin
2003-06-01
Digital cinema, a new frontier and crown jewel of digital multimedia, has the potential of revolutionizing the science, engineering and business of movie production and distribution. The advantages of digital cinema technology over traditional analog technology are numerous and profound. But without effective and enforceable copyright protection measures, digital cinema can be more susceptible to widespread piracy, which can dampen or even prevent the commercial deployment of digital cinema. In this paper we propose a novel approach of fingerprinting each individual distribution copy of a digital movie for the purpose of tracing pirated copies back to their source. The proposed fingerprinting technique presents a fundamental departure from the traditional digital watermarking/fingerprinting techniques. Its novelty and uniqueness lie in a so-called semantic or subjective transparency property. The fingerprints are created by editing those visual and audio attributes that can be modified with semantic and subjective transparency to the audience. Semantically-transparent fingerprinting or watermarking is the most robust kind among all existing watermarking techniques, because it is content-based not sample-based, and semantically-recoverable not statistically-recoverable.
Sun, Guoxiang; Zhang, Jingxian
2009-05-01
The three wavelength fusion high performance liquid chromatographic fingerprin (TWFFP) of Longdanxiegan pill (LDXGP) was established to identify the quality of LDXGP by the systematic quantified fingerprint method. The chromatographic fingerprints (CFPs) of the 12 batches of LDXGP were determined by reversed-phase high performance liquid chromatography. The technique of multi-wavelength fusion fingerprint was applied during processing the fingerprints. The TWFFPs containing 63 co-possessing peaks were obtained when choosing baicalin peak as the referential peak. The 12 batches of LDXGP were identified with hierarchical clustering analysis by using macro qualitative similarity (S(m)) as the variable. According to the results of classification, the referential fingerprint (RFP) was synthesized from 10 batches of LDXGP. Taking the RFP for the qualified model, all the 12 batches of LDXGP were evaluated by the systematic quantified fingerprint method. Among the 12 batches of LDXGP, 9 batches were completely qualified, the contents of 1 batch were obviously higher while the chemical constituents quantity and distributed proportion in 2 batches were not qualified. The systematic quantified fingerprint method based on the technique of multi-wavelength fusion fingerprint ca effectively identify the authentic quality of traditional Chinese medicine.
Capturing the vital vascular fingerprint with optical coherence tomography
Liu, Gangjun; Chen, Zhongping
2014-01-01
Using fingerprints as a method to identify an individual has been accepted in forensics since the nineteenth century, and the fingerprint has become one of the most widely used biometric characteristics. Most of the modern fingerprint recognition systems are based on the print pattern of the finger surface and are not robust against spoof attaching. We demonstrate a novel vital vascular fingerprint system using Doppler optical coherence tomography that provides highly sensitive and reliable personal identification. Because the system is based on blood flow, which only exists in a livng person, the technique is robust against spoof attaching. PMID:23913068
Fingerprint separation: an application of ICA
NASA Astrophysics Data System (ADS)
Singh, Meenakshi; Singh, Deepak Kumar; Kalra, Prem Kumar
2008-04-01
Among all existing biometric techniques, fingerprint-based identification is the oldest method, which has been successfully used in numerous applications. Fingerprint-based identification is the most recognized tool in biometrics because of its reliability and accuracy. Fingerprint identification is done by matching questioned and known friction skin ridge impressions from fingers, palms, and toes to determine if the impressions are from the same finger (or palm, toe, etc.). There are many fingerprint matching algorithms which automate and facilitate the job of fingerprint matching, but for any of these algorithms matching can be difficult if the fingerprints are overlapped or mixed. In this paper, we have proposed a new algorithm for separating overlapped or mixed fingerprints so that the performance of the matching algorithms will improve when they are fed with these inputs. Independent Component Analysis (ICA) has been used as a tool to separate the overlapped or mixed fingerprints.
Altered fingerprints: analysis and detection.
Yoon, Soweon; Feng, Jianjiang; Jain, Anil K
2012-03-01
The widespread deployment of Automated Fingerprint Identification Systems (AFIS) in law enforcement and border control applications has heightened the need for ensuring that these systems are not compromised. While several issues related to fingerprint system security have been investigated, including the use of fake fingerprints for masquerading identity, the problem of fingerprint alteration or obfuscation has received very little attention. Fingerprint obfuscation refers to the deliberate alteration of the fingerprint pattern by an individual for the purpose of masking his identity. Several cases of fingerprint obfuscation have been reported in the press. Fingerprint image quality assessment software (e.g., NFIQ) cannot always detect altered fingerprints since the implicit image quality due to alteration may not change significantly. The main contributions of this paper are: 1) compiling case studies of incidents where individuals were found to have altered their fingerprints for circumventing AFIS, 2) investigating the impact of fingerprint alteration on the accuracy of a commercial fingerprint matcher, 3) classifying the alterations into three major categories and suggesting possible countermeasures, 4) developing a technique to automatically detect altered fingerprints based on analyzing orientation field and minutiae distribution, and 5) evaluating the proposed technique and the NFIQ algorithm on a large database of altered fingerprints provided by a law enforcement agency. Experimental results show the feasibility of the proposed approach in detecting altered fingerprints and highlight the need to further pursue this problem.
A fingerprint key binding algorithm based on vector quantization and error correction
NASA Astrophysics Data System (ADS)
Li, Liang; Wang, Qian; Lv, Ke; He, Ning
2012-04-01
In recent years, researches on seamless combination cryptosystem with biometric technologies, e.g. fingerprint recognition, are conducted by many researchers. In this paper, we propose a binding algorithm of fingerprint template and cryptographic key to protect and access the key by fingerprint verification. In order to avoid the intrinsic fuzziness of variant fingerprints, vector quantization and error correction technique are introduced to transform fingerprint template and then bind with key, after a process of fingerprint registration and extracting global ridge pattern of fingerprint. The key itself is secure because only hash value is stored and it is released only when fingerprint verification succeeds. Experimental results demonstrate the effectiveness of our ideas.
NASA Astrophysics Data System (ADS)
Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing
2015-09-01
In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.
Comparative Analysis of RF Emission Based Fingerprinting Techniques for ZigBee Device Classification
quantify the differences invarious RF fingerprinting techniques via comparative analysis of MDA/ML classification results. The findings herein demonstrate...correct classification rates followed by COR-DNA and then RF-DNA in most test cases and especially in low Eb/N0 ranges, where ZigBee is designed to operate.
Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting
NASA Astrophysics Data System (ADS)
Lin, Shih-Schön; Yemelyanov, Konstantin M.; Pugh, Edward N., Jr.; Engheta, Nader
2006-09-01
In forensic science the finger marks left unintentionally by people at a crime scene are referred to as latent fingerprints. Most existing techniques to detect and lift latent fingerprints require application of a certain material directly onto the exhibit. The chemical and physical processing applied to the fingerprint potentially degrades or prevents further forensic testing on the same evidence sample. Many existing methods also have deleterious side effects. We introduce a method to detect and extract latent fingerprint images without applying any powder or chemicals on the object. Our method is based on the optical phenomena of polarization and specular reflection together with the physiology of fingerprint formation. The recovered image quality is comparable to existing methods. In some cases, such as the sticky side of tape, our method shows unique advantages.
Optimization of illuminating system to detect optical properties inside a finger
NASA Astrophysics Data System (ADS)
Sano, Emiko; Shikai, Masahiro; Shiratsuki, Akihide; Maeda, Takuji; Matsushita, Masahito; Sasakawa, Koichi
2007-01-01
Biometrics performs personal authentication using individual bodily features including fingerprints, faces, etc. These technologies have been studied and developed for many years. In particular, fingerprint authentication has evolved over many years, and fingerprinting is currently one of world's most established biometric authentication techniques. Not long ago this technique was only used for personal identification in criminal investigations and high-security facilities. In recent years, however, various biometric authentication techniques have appeared in everyday applications. Even though providing great convenience, they have also produced a number of technical issues concerning operation. Generally, fingerprint authentication is comprised of a number of component technologies: (1) sensing technology for detecting the fingerprint pattern; (2) image processing technology for converting the captured pattern into feature data that can be used for verification; (3) verification technology for comparing the feature data with a reference and determining whether it matches. Current fingerprint authentication issues, revealed in research results, originate with fingerprint sensing technology. Sensing methods for detecting a person's fingerprint pattern for image processing are particularly important because they impact overall fingerprint authentication performance. The following are the current problems concerning sensing methods that occur in some cases: Some fingers whose fingerprints used to be difficult to detect by conventional sensors. Fingerprint patterns are easily affected by the finger's surface condition, such noise as discontinuities and thin spots can appear in fingerprint patterns obtained from wrinkled finger, sweaty finger, and so on. To address these problems, we proposed a novel fingerprint sensor based on new scientific knowledge. A characteristic of this new method is that obtained fingerprint patterns are not easily affected by the finger's surface condition because it detects the fingerprint pattern inside the finger using transmitted light. We examined optimization of illumination system of this novel fingerprint sensor to detect contrasty fingerprint pattern from wide area and to improve image processing at (2).
Nandigam, Ravi K; Kim, Sangtae; Singh, Juswinder; Chuaqui, Claudio
2009-05-01
The desire to exploit structural information to aid structure based design and virtual screening led to the development of the interaction fingerprint for analyzing, mining, and filtering the binding patterns underlying the complex 3D data. In this paper we introduce a new approach, weighted SIFt (or w-SIFt), extending the concept of SIFt to capture the relative importance of different binding interactions. The methodology presented here for determining the weights in w-SIFt involves utilizing a dimensionality reduction technique for eliminating linear redundancies in the data followed by a stochastic optimization. We find that the relative weights of the fingerprint bits provide insight into what interactions are critical in determining inhibitor potency. Moreover, the weighted interaction fingerprint can serve as an interpretable position dependent scoring function for ligand protein interactions.
3D matching techniques using OCT fingerprint point clouds
NASA Astrophysics Data System (ADS)
Gutierrez da Costa, Henrique S.; Silva, Luciano; Bellon, Olga R. P.; Bowden, Audrey K.; Czovny, Raphael K.
2017-02-01
Optical Coherence Tomography (OCT) makes viable acquisition of 3D fingerprints from both dermis and epidermis skin layers and their interfaces, exposing features that can be explored to improve biometric identification such as the curvatures and distinctive 3D regions. Scanned images from eleven volunteers allowed the construction of the first OCT 3D fingerprint database, to our knowledge, containing epidermal and dermal fingerprints. 3D dermal fingerprints can be used to overcome cases of Failure to Enroll (FTE) due to poor ridge image quality and skin alterations, cases that affect 2D matching performance. We evaluate three matching techniques, including the well-established Iterative Closest Points algorithm (ICP), Surface Interpenetration Measure (SIM) and the well-known KH Curvature Maps, all assessed using a 3D OCT fingerprint database, the first one for this purpose. Two of these techniques are based on registration techniques and one on curvatures. These were evaluated, compared and the fusion of matching scores assessed. We applied a sequence of steps to extract regions of interest named (ROI) minutiae clouds, representing small regions around distinctive minutia, usually located at ridges/valleys endings or bifurcations. The obtained ROI is acquired from the epidermis and dermis-epidermis interface by OCT imaging. A comparative analysis of identification accuracy was explored using different scenarios and the obtained results shows improvements for biometric identification. A comparison against 2D fingerprint matching algorithms is also presented to assess the improvements.
Yamamoto, F; Yamamoto, M
2004-07-01
We previously developed a PCR-based DNA fingerprinting technique named the Methylation Sensitive (MS)-AFLP method, which permits comparative genome-wide scanning of methylation status with a manageable number of fingerprinting experiments. The technique uses the methylation sensitive restriction enzyme NotI in the context of the existing Amplified Fragment Length Polymorphism (AFLP) method. Here we report the successful conversion of this gel electrophoresis-based DNA fingerprinting technique into a DNA microarray hybridization technique (DNA Microarray MS-AFLP). By performing a total of 30 (15 x 2 reciprocal labeling) DNA Microarray MS-AFLP hybridization experiments on genomic DNA from two breast and three prostate cancer cell lines in all pairwise combinations, and Southern hybridization experiments using more than 100 different probes, we have demonstrated that the DNA Microarray MS-AFLP is a reliable method for genetic and epigenetic analyses. No statistically significant differences were observed in the number of differences between the breast-prostate hybridization experiments and the breast-breast or prostate-prostate comparisons.
Gabor filter based fingerprint image enhancement
NASA Astrophysics Data System (ADS)
Wang, Jin-Xiang
2013-03-01
Fingerprint recognition technology has become the most reliable biometric technology due to its uniqueness and invariance, which has been most convenient and most reliable technique for personal authentication. The development of Automated Fingerprint Identification System is an urgent need for modern information security. Meanwhile, fingerprint preprocessing algorithm of fingerprint recognition technology has played an important part in Automatic Fingerprint Identification System. This article introduces the general steps in the fingerprint recognition technology, namely the image input, preprocessing, feature recognition, and fingerprint image enhancement. As the key to fingerprint identification technology, fingerprint image enhancement affects the accuracy of the system. It focuses on the characteristics of the fingerprint image, Gabor filters algorithm for fingerprint image enhancement, the theoretical basis of Gabor filters, and demonstration of the filter. The enhancement algorithm for fingerprint image is in the windows XP platform with matlab.65 as a development tool for the demonstration. The result shows that the Gabor filter is effective in fingerprint image enhancement technology.
3D fingerprint imaging system based on full-field fringe projection profilometry
NASA Astrophysics Data System (ADS)
Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili
2014-01-01
As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.
NASA Astrophysics Data System (ADS)
Woolfitt, Adrian R.; Boyer, Anne E.; Quinn, Conrad P.; Hoffmaster, Alex R.; Kozel, Thomas R.; de, Barun K.; Gallegos, Maribel; Moura, Hercules; Pirkle, James L.; Barr, John R.
A range of mass spectrometry-based techniques have been used to identify, characterize and differentiate Bacillus anthracis, both in culture for forensic applications and for diagnosis during infection. This range of techniques could usefully be considered to exist as a continuum, based on the degrees of specificity involved. We show two examples here, a whole-organism fingerprinting method and a high-specificity assay for one unique protein, anthrax lethal factor.
Columnar-thin-film acquisition of fingerprint topology
NASA Astrophysics Data System (ADS)
Shaler, Robert C.; Lakhtakia, Akhlesh; Rogers, Jessica W.; Pulsifer, Drew P.; Martín-Palma, Raúl J.
2011-01-01
Fingerprint visualization obtained from physical evidence taken from crime scenes for subsequent comparison typically requires the use of physical and chemical techniques. One physical technique to visualize or develop sebaceous fingerprints on various surfaces employs the deposition of metals such as gold and zinc thereon. We have developed a different vacuum technology: the conformal-evaporated-film-by-rotation technique to deposit dense columnar thin films (CTFs) on latent fingerprints on different types of surfaces. Sample fingerprints, acting as nonplanar substrates, deposited on different surfaces were placed in a vacuum chamber with the fingerprint side facing a boat containing an evaporant material such as chalcogenide glass. Thermal evaporation of the solid material led to the formation of a dense CTF on the fingerprint, thereby capturing the topographical texture with high resolution. Our results show that it is possible to acquire the topology of latent fingerprints on nonporous surfaces. Additionally, deposition of CTFs on overlapping fingerprints suggested ours may be a technique for elucidating the sequence of deposition of the fingerprints at the scene.
Accessible biometrics: A frustrated total internal reflection approach to imaging fingerprints.
Smith, Nathan D; Sharp, James S
2017-05-01
Fingerprints are widely used as a means of identifying persons of interest because of the highly individual nature of the spatial distribution and types of features (or minuta) found on the surface of a finger. This individuality has led to their wide application in the comparison of fingerprints found at crime scenes with those taken from known offenders and suspects in custody. However, despite recent advances in machine vision technology and image processing techniques, fingerprint evidence is still widely being collected using outdated practices involving ink and paper - a process that can be both time consuming and expensive. Reduction of forensic service budgets increasingly requires that evidence be gathered and processed more rapidly and efficiently. However, many of the existing digital fingerprint acquisition devices have proven too expensive to roll out on a large scale. As a result new, low-cost imaging technologies are required to increase the quality and throughput of the processing of fingerprint evidence. Here we describe an inexpensive approach to digital fingerprint acquisition that is based upon frustrated total internal reflection imaging. The quality and resolution of the images produced are shown to be as good as those currently acquired using ink and paper based methods. The same imaging technique is also shown to be capable of imaging powdered fingerprints that have been lifted from a crime scene using adhesive tape or gel lifters. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.
Ishii, Satoshi; Sadowsky, Michael J
2009-04-01
A large number of repetitive DNA sequences are found in multiple sites in the genomes of numerous bacteria, archaea and eukarya. While the functions of many of these repetitive sequence elements are unknown, they have proven to be useful as the basis of several powerful tools for use in molecular diagnostics, medical microbiology, epidemiological analyses and environmental microbiology. The repetitive sequence-based PCR or rep-PCR DNA fingerprint technique uses primers targeting several of these repetitive elements and PCR to generate unique DNA profiles or 'fingerprints' of individual microbial strains. Although this technique has been extensively used to examine diversity among variety of prokaryotic microorganisms, rep-PCR DNA fingerprinting can also be applied to microbial ecology and microbial evolution studies since it has the power to distinguish microbes at the strain or isolate level. Recent advancement in rep-PCR methodology has resulted in increased accuracy, reproducibility and throughput. In this minireview, we summarize recent improvements in rep-PCR DNA fingerprinting methodology, and discuss its applications to address fundamentally important questions in microbial ecology and evolution.
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Kiltz, Stefan; Dittmann, Jana; Vielhauer, Claus
2014-02-01
In crime scene forensics latent fingerprints are found on various substrates. Nowadays primarily physical or chemical preprocessing techniques are applied for enhancing the visibility of the fingerprint trace. In order to avoid altering the trace it has been shown that contact-less sensors offer a non-destructive acquisition approach. Here, the exploitation of fingerprint or substrate properties and the utilization of signal processing techniques are an essential requirement to enhance the fingerprint visibility. However, especially the optimal sensory is often substrate-dependent. An enhanced generic pattern recognition based contrast enhancement approach for scans of a chromatic white light sensor is introduced in Hildebrandt et al.1 using statistical, structural and Benford's law2 features for blocks of 50 micron. This approach achieves very good results for latent fingerprints on cooperative, non-textured, smooth substrates. However, on textured and structured substrates the error rates are very high and the approach thus unsuitable for forensic use cases. We propose the extension of the feature set with semantic features derived from known Gabor filter based exemplar fingerprint enhancement techniques by suggesting an Epsilon-neighborhood of each block in order to achieve an improved accuracy (called fingerprint ridge orientation semantics). Furthermore, we use rotation invariant Hu moments as an extension of the structural features and two additional preprocessing methods (separate X- and Y Sobel operators). This results in a 408-dimensional feature space. In our experiments we investigate and report the recognition accuracy for eight substrates, each with ten latent fingerprints: white furniture surface, veneered plywood, brushed stainless steel, aluminum foil, "Golden-Oak" veneer, non-metallic matte car body finish, metallic car body finish and blued metal. In comparison to Hildebrandt et al.,1 our evaluation shows a significant reduction of the error rates by 15.8 percent points on brushed stainless steel using the same classifier. This also allows for a successful biometric matching of 3 of the 8 latent fingerprint samples with the corresponding exemplar fingerprint on this particular substrate. For contrast enhancement analysis of classification results we suggest to use known Visual Quality Indexes (VQI)3 as a contrast enhancement quality indicator and discuss our first preliminary results using the exemplary chosen VQI Edge Similarity Score (ESS),4 showing a tendency that higher image differences between a substrate containing a fingerprint and a substrate with a blank surface correlate with a higher recognition accuracy between a latent fingerprint and an exemplar fingerprint. Those first preliminary results support further research into VQIs as contrast enhancement quality indicator for a given feature space.
Straightforward fabrication of black nano silica dusting powder for latent fingerprint imaging
NASA Astrophysics Data System (ADS)
Komalasari, Isna; Krismastuti, Fransiska Sri Herwahyu; Elishian, Christine; Handayani, Eka Mardika; Nugraha, Willy Cahya; Ketrin, Rosi
2017-11-01
Imaging of latent fingerprint pattern (aka fingermark) is one of the most important and accurate detection methods in forensic investigation because of the characteristic of individual fingerprint. This detection technique relies on the mechanical adherence of fingerprint powder to the moisture and oily component of the skin left on the surface. The particle size of fingerprint powder is one of the critical parameter to obtain excellent fingerprint image. This study develops a simple, cheap and straightforward method to fabricate Nano size black dusting fingerprint powder based on Nano silica and applies the powder to visualize latent fingerprint. The nanostructured silica was prepared from tetraethoxysilane (TEOS) and then modified with Nano carbon, methylene blue and sodium acetate to color the powder. Finally, as a proof-of-principle, the ability of this black Nano silica dusting powder to image latent fingerprint is successfully demonstrated and the results show that this fingerprint powder provides clearer fingerprint pattern compared to the commercial one highlighting the potential application of the nanostructured silica in forensic science.
Detection of visible and latent fingerprints using micro-X-ray fluorescence elemental imaging.
Worley, Christopher G; Wiltshire, Sara S; Miller, Thomasin C; Havrilla, George J; Majidi, Vahid
2006-01-01
Using micro-X-ray fluorescence (MXRF), a novel means of detecting fingerprints was examined in which the prints were imaged based on their elemental composition. MXRF is a nondestructive technique. Although this method requires a priori knowledge about the approximate location of a print, it offers a new and complementary means for detecting fingerprints that are also left pristine for further analysis (including potential DNA extraction) or archiving purposes. Sebaceous fingerprints and those made after perspiring were detected based on elements such as potassium and chlorine present in the print residue. Unique prints were also detected including those containing lotion, saliva, banana, or sunscreen. This proof-of-concept study demonstrates the potential for visualizing fingerprints by MXRF on surfaces that can be problematic using current methods.
NASA Astrophysics Data System (ADS)
Merkel, Ronny; Gruhn, Stefan; Dittmann, Jana; Vielhauer, Claus; Bräutigam, Anja
2012-03-01
Determining the age of latent fingerprint traces found at crime scenes is an unresolved research issue since decades. Solving this issue could provide criminal investigators with the specific time a fingerprint trace was left on a surface, and therefore would enable them to link potential suspects to the time a crime took place as well as to reconstruct the sequence of events or eliminate irrelevant fingerprints to ensure privacy constraints. Transferring imaging techniques from different application areas, such as 3D image acquisition, surface measurement and chemical analysis to the domain of lifting latent biometric fingerprint traces is an upcoming trend in forensics. Such non-destructive sensor devices might help to solve the challenge of determining the age of a latent fingerprint trace, since it provides the opportunity to create time series and process them using pattern recognition techniques and statistical methods on digitized 2D, 3D and chemical data, rather than classical, contact-based capturing techniques, which alter the fingerprint trace and therefore make continuous scans impossible. In prior work, we have suggested to use a feature called binary pixel, which is a novel approach in the working field of fingerprint age determination. The feature uses a Chromatic White Light (CWL) image sensor to continuously scan a fingerprint trace over time and retrieves a characteristic logarithmic aging tendency for 2D-intensity as well as 3D-topographic images from the sensor. In this paper, we propose to combine such two characteristic aging features with other 2D and 3D features from the domains of surface measurement, microscopy, photography and spectroscopy, to achieve an increase in accuracy and reliability of a potential future age determination scheme. Discussing the feasibility of such variety of sensor devices and possible aging features, we propose a general fusion approach, which might combine promising features to a joint age determination scheme in future. We furthermore demonstrate the feasibility of the introduced approach by exemplary fusing the binary pixel features based on 2D-intensity and 3D-topographic images of the mentioned CWL sensor. We conclude that a formula based age determination approach requires very precise image data, which cannot be achieved at the moment, whereas a machine learning based classification approach seems to be feasible, if an adequate amount of features can be provided.
Columnar-thin-film acquisition of fingermark topology
NASA Astrophysics Data System (ADS)
Shaler, Robert C.; Lakhtakia, Akhlesh; Rogers, Jessica W.; Pulsifer, Drew P.; Martín-Palma, Raúl J.
2010-08-01
Fingerprint visualization obtained from physical evidence taken from crime scenes for subsequent comparison typically requires the use of physical and chemical techniques. One physical technique to visualize or develop sebaceous fingerprints on various surfaces employs the deposition of metals such as gold and zinc thereon. We have developed a different vacuum technology: the conformal-evaporated-film-by-rotation technique to deposit dense columnar thin films (CTFs) on latent fingerprints on different types of surfaces. Sample fingerprints, acting as nonplanar substrates, deposited on different surfaces were placed in a vacuum chamber with the fingerprint side facing a boat containing an evaporant material such as chalcogenide glass. Thermal evaporation of the solid material led to the formation of a dense CTF on the fingerprint, thereby capturing the topographical texture with high resolution. Our results show that it is possible to acquire the topology of latent fingerprints on non-porous surfaces. Additionally, deposition of CTFs on overlapping fingerprints suggested ours may be a technique for elucidating the sequence of deposition of the fingerprints at the scene.
Chen, Chi-Jim; Pai, Tun-Wen; Cheng, Mox
2015-01-01
A sweeping fingerprint sensor converts fingerprints on a row by row basis through image reconstruction techniques. However, a built fingerprint image might appear to be truncated and distorted when the finger was swept across a fingerprint sensor at a non-linear speed. If the truncated fingerprint images were enrolled as reference targets and collected by any automated fingerprint identification system (AFIS), successful prediction rates for fingerprint matching applications would be decreased significantly. In this paper, a novel and effective methodology with low time computational complexity was developed for detecting truncated fingerprints in a real time manner. Several filtering rules were implemented to validate existences of truncated fingerprints. In addition, a machine learning method of supported vector machine (SVM), based on the principle of structural risk minimization, was applied to reject pseudo truncated fingerprints containing similar characteristics of truncated ones. The experimental result has shown that an accuracy rate of 90.7% was achieved by successfully identifying truncated fingerprint images from testing images before AFIS enrollment procedures. The proposed effective and efficient methodology can be extensively applied to all existing fingerprint matching systems as a preliminary quality control prior to construction of fingerprint templates. PMID:25835186
NASA Astrophysics Data System (ADS)
Zhou, Huiping; Chang, Weina; Zhang, Longjiang
2016-08-01
Fingerprinting techniques have been widely used as a reasonable and reliable means for investigating sediment sources, especially in relatively large catchments in which there are significant differences in surface materials. However, the discrimination power of fingerprint properties for small catchments, in which the surface materials are relatively homogeneous and human interference is marked, may be affected by fragmentary or confused source information. Using fingerprinting techniques can be difficult, and there is still a need for further studies to verify the effectiveness of such techniques in these small catchments. A composite fingerprinting approach was used in this study to investigate the main sources of sediment output, as well as their relative contributions, from a small catchment (30 km2) with high levels of farming and mining activities. The impact of the selection of different potential sediment sources on the derivation of composite fingerprints and its discrimination power were also investigated by comparing the results from different combinations of potential source types. The initial source types and several samples that could cause confusion were adjusted. These adjustments improved the discrimination power of the composite fingerprints. The results showed that the composite fingerprinting approach used in this study had a discriminatory efficiency of 89.2% for different sediment sources and that the model had a mean goodness of fit of 0.90. Cultivated lands were the main sediment source. The sediment contribution of the studied cultivated lands ranged from 39.9% to 87.8%, with a mean of 76.6%, for multiple deposited sediment samples. The mean contribution of woodlands was 21.7%. Overall, the sediment contribution from mining and road areas was relatively low. The selection of potential sources is an important factor in the application of fingerprinting techniques and warrants more attention in future studies, as is the case with other uncertainty factors.
Separation of high-resolution samples of overlapping latent fingerprints using relaxation labeling
NASA Astrophysics Data System (ADS)
Qian, Kun; Schott, Maik; Schöne, Werner; Hildebrandt, Mario
2012-06-01
The analysis of latent fingerprint patterns generally requires clearly recognizable friction ridge patterns. Currently, overlapping latent fingerprints pose a major problem for traditional crime scene investigation. This is due to the fact that these fingerprints usually have very similar optical properties. Consequently, the distinction of two or more overlapping fingerprints from each other is not trivially possible. While it is possible to employ chemical imaging to separate overlapping fingerprints, the corresponding methods require sophisticated fingerprint acquisition methods and are not compatible with conventional forensic fingerprint data. A separation technique that is purely based on the local orientation of the ridge patterns of overlapping fingerprints is proposed by Chen et al. and quantitatively evaluated using off-the-shelf fingerprint matching software with mostly artificially composed overlapping fingerprint samples, which is motivated by the scarce availability of authentic test samples. The work described in this paper adapts the approach presented by Chen et al. for its application on authentic high resolution fingerprint samples acquired by a contactless measurement device based on a Chromatic White Light (CWL) sensor. An evaluation of the work is also given, with the analysis of all adapted parameters. Additionally, the separability requirement proposed by Chen et al. is also evaluated for practical feasibility. Our results show promising tendencies for the application of this approach on high-resolution data, yet the separability requirement still poses a further challenge.
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Kiltz, Stefan; Krapyvskyy, Dmytro; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus
2011-11-01
A machine-assisted analysis of traces from crime scenes might be possible with the advent of new high-resolution non-destructive contact-less acquisition techniques for latent fingerprints. This requires reliable techniques for the automatic extraction of fingerprint features from latent and exemplar fingerprints for matching purposes using pattern recognition approaches. Therefore, we evaluate the NIST Biometric Image Software for the feature extraction and verification of contact-lessly acquired latent fingerprints to determine potential error rates. Our exemplary test setup includes 30 latent fingerprints from 5 people in two test sets that are acquired from different surfaces using a chromatic white light sensor. The first test set includes 20 fingerprints on two different surfaces. It is used to determine the feature extraction performance. The second test set includes one latent fingerprint on 10 different surfaces and an exemplar fingerprint to determine the verification performance. This utilized sensing technique does not require a physical or chemical visibility enhancement of the fingerprint residue, thus the original trace remains unaltered for further investigations. No particular feature extraction and verification techniques have been applied to such data, yet. Hence, we see the need for appropriate algorithms that are suitable to support forensic investigations.
Enhancing security of fingerprints through contextual biometric watermarking.
Noore, Afzel; Singh, Richa; Vatsa, Mayank; Houck, Max M
2007-07-04
This paper presents a novel digital watermarking technique using face and demographic text data as multiple watermarks for verifying the chain of custody and protecting the integrity of a fingerprint image. The watermarks are embedded in selected texture regions of a fingerprint image using discrete wavelet transform. Experimental results show that modifications in these locations are visually imperceptible and maintain the minutiae details. The integrity of the fingerprint image is verified through the high matching scores obtained from an automatic fingerprint identification system. There is also a high degree of visual correlation between the embedded images, and the extracted images from the watermarked fingerprint. The degree of similarity is computed using pixel-based metrics and human visual system metrics. The results also show that the proposed watermarked fingerprint and the extracted images are resilient to common attacks such as compression, filtering, and noise.
Visualization of latent fingerprint corrosion of metallic surfaces.
Bond, John W
2008-07-01
Chemical reactions between latent fingerprints and a variety of metal surfaces are investigated by heating the metal up to temperatures of approximately 600 degrees C after deposition of the fingerprint. Ionic salts present in the fingerprint residue corrode the metal surface to produce an image of the fingerprint that is both durable and resistant to cleaning of the metal. The degree of fingerprint enhancement appears independent of the elapsed time between deposition and heating but is very dependent on both the composition of the metal and the level of salt secretion by the fingerprint donor. Results are presented that show practical applications for the enhancement to fingerprints deposited in arson crime scenes, contaminated by spray painting, or deposited on brass cartridge cases prior to discharge. The corrosion of the metal surface is further exploited by the demonstration of a novel technique for fingerprint enhancement based on the electrostatic charging of the metal and then the preferential adherence of a metallic powder to the corroded part of the metal surface.
Earthquake Fingerprints: Representing Earthquake Waveforms for Similarity-Based Detection
NASA Astrophysics Data System (ADS)
Bergen, K.; Beroza, G. C.
2016-12-01
New earthquake detection methods, such as Fingerprint and Similarity Thresholding (FAST), use fast approximate similarity search to identify similar waveforms in long-duration data without templates (Yoon et al. 2015). These methods have two key components: fingerprint extraction and an efficient search algorithm. Fingerprint extraction converts waveforms into fingerprints, compact signatures that represent short-duration waveforms for identification and search. Earthquakes are detected using an efficient indexing and search scheme, such as locality-sensitive hashing, that identifies similar waveforms in a fingerprint database. The quality of the search results, and thus the earthquake detection results, is strongly dependent on the fingerprinting scheme. Fingerprint extraction should map similar earthquake waveforms to similar waveform fingerprints to ensure a high detection rate, even under additive noise and small distortions. Additionally, fingerprints corresponding to noise intervals should have mutually dissimilar fingerprints to minimize false detections. In this work, we compare the performance of multiple fingerprint extraction approaches for the earthquake waveform similarity search problem. We apply existing audio fingerprinting (used in content-based audio identification systems) and time series indexing techniques and present modified versions that are specifically adapted for seismic data. We also explore data-driven fingerprinting approaches that can take advantage of labeled or unlabeled waveform data. For each fingerprinting approach we measure its ability to identify similar waveforms in a low signal-to-noise setting, and quantify the trade-off between true and false detection rates in the presence of persistent noise sources. We compare the performance using known event waveforms from eight independent stations in the Northern California Seismic Network.
Han, Chao; Chen, Junhui; Chen, Bo; Lee, Frank Sen-Chun; Wang, Xiaoru
2006-09-01
A simple and reliable high performance liquid chromatographic (HPLC) method has been developed and validated for the fingerprinting of extracts from the root of Pseudostellaria heterophylla (Miq.) Pax. HPLC with gradient elution was performed on an authentic reference standard of powdered P. heterophylla (Miq.) Pax root and 11 plant samples of the root were collected from different geographic locations. The HPLC chromatograms have been standardized through the selection and identification of reference peaks and the normalization of retention times and peak intensities of all the common peaks. The standardized HPLC fingerprints show high stability and reproducibility, and thus can be used effectively for the screening analysis or quality assessment of the root or its derived products. Similarity index calculations based on cosine angle values or correlation methods have been performed on the HPLC fingerprints. As a group, the fingerprints of the P. heterophylla (Miq.) Pax samples studied are highly correlated with closely similar fingerprints. Within the group, the samples can be further divided into subgroups based on hierarchical clustering analysis (HCA). Sample grouping based on HCA coincides nicely with those based on the geographical origins of the samples. The HPLC fingerprinting techniques thus have high potential in authentication or source-tracing types of applications.
NASA Astrophysics Data System (ADS)
Qin, Jin; Tang, Siqi; Han, Congying; Guo, Tiande
2018-04-01
Partial fingerprint identification technology which is mainly used in device with small sensor area like cellphone, U disk and computer, has taken more attention in recent years with its unique advantages. However, owing to the lack of sufficient minutiae points, the conventional method do not perform well in the above situation. We propose a new fingerprint matching technique which utilizes ridges as features to deal with partial fingerprint images and combines the modified generalized Hough transform and scoring strategy based on machine learning. The algorithm can effectively meet the real-time and space-saving requirements of the resource constrained devices. Experiments on in-house database indicate that the proposed algorithm have an excellent performance.
Secure Indoor Localization Based on Extracting Trusted Fingerprint
Yin, Xixi; Zheng, Yanliu; Wang, Chun
2018-01-01
Indoor localization based on WiFi has attracted a lot of research effort because of the widespread application of WiFi. Fingerprinting techniques have received much attention due to their simplicity and compatibility with existing hardware. However, existing fingerprinting localization algorithms may not resist abnormal received signal strength indication (RSSI), such as unexpected environmental changes, impaired access points (APs) or the introduction of new APs. Traditional fingerprinting algorithms do not consider the problem of new APs and impaired APs in the environment when using RSSI. In this paper, we propose a secure fingerprinting localization (SFL) method that is robust to variable environments, impaired APs and the introduction of new APs. In the offline phase, a voting mechanism and a fingerprint database update method are proposed. We use the mutual cooperation between reference anchor nodes to update the fingerprint database, which can reduce the interference caused by the user measurement data. We analyze the standard deviation of RSSI, mobilize the reference points in the database to vote on APs and then calculate the trust factors of APs based on the voting results. In the online phase, we first make a judgment about the new APs and the broken APs, then extract the secure fingerprints according to the trusted factors of APs and obtain the localization results by using the trusted fingerprints. In the experiment section, we demonstrate the proposed method and find that the proposed strategy can resist abnormal RSSI and can improve the localization accuracy effectively compared with the existing fingerprinting localization algorithms. PMID:29401755
Secure Indoor Localization Based on Extracting Trusted Fingerprint.
Luo, Juan; Yin, Xixi; Zheng, Yanliu; Wang, Chun
2018-02-05
[-5]Indoor localization based on WiFi has attracted a lot of research effort because of the widespread application of WiFi. Fingerprinting techniques have received much attention due to their simplicity and compatibility with existing hardware. However, existing fingerprinting localization algorithms may not resist abnormal received signal strength indication (RSSI), such as unexpected environmental changes, impaired access points (APs) or the introduction of new APs. Traditional fingerprinting algorithms do not consider the problem of new APs and impaired APs in the environment when using RSSI. In this paper, we propose a secure fingerprinting localization (SFL) method that is robust to variable environments, impaired APs and the introduction of new APs. In the offline phase, a voting mechanism and a fingerprint database update method are proposed. We use the mutual cooperation between reference anchor nodes to update the fingerprint database, which can reduce the interference caused by the user measurement data. We analyze the standard deviation of RSSI, mobilize the reference points in the database to vote on APs and then calculate the trust factors of APs based on the voting results. In the online phase, we first make a judgment about the new APs and the broken APs, then extract the secure fingerprints according to the trusted factors of APs and obtain the localization results by using the trusted fingerprints. In the experiment section, we demonstrate the proposed method and find that the proposed strategy can resist abnormal RSSI and can improve the localization accuracy effectively compared with the existing fingerprinting localization algorithms.
Watershed sediment source fingerprinting: a view under the hood
NASA Astrophysics Data System (ADS)
Smith, H.
2015-12-01
Sediment source fingerprinting procedures involve the discrimination of sediment sources based on physical and chemical properties and estimation of the contributions from those sources to mixtures of fine-grained sediment transported within watersheds. Sources of sediment widely considered include agricultural land uses, channel banks and geological zones. There has been a tendency in the literature for sediment fingerprinting to be presented as a technique that can deliver accurate and precise information on source contributions to sediment across a range of environments. However, recent research indicates that such a view of sediment fingerprinting cannot presently be supported. Furthermore, many past papers lack transparency in data processing and presentation that prevents the critical assessment of results and hinders wider uptake of the technique. Therefore, this contribution aims to delve 'under the hood' of sediment fingerprinting to promote further discussion and debate over future research needs and method limitations. It draws on important developments from the last two years concerning the effect of (i) tracer selection, (ii) tracer behaviour during transport, (iii) corrections to tracer datasets and (iv) the choice of mixing model on predictions of sediment source contributions. Sediment fingerprinting has the potential to make a very significant contribution to the measurement of contemporary sediment sources in watersheds, but cannot be viewed as an 'off-the-shelf' technique for widespread application until important challenges have been addressed.
Goecker, Zachary C; Swiontek, Stephen E; Lakhtakia, Akhlesh; Roy, Reena
2016-06-01
The development techniques employed to visualize fingerprints collected from crime scenes as well as post-development ageing may result in the degradation of the DNA present in low quantities in such evidence samples. Amplification of the DNA samples with short tandem repeat (STR) amplification kits may result in partial DNA profiles. A comparative study of two commercially available quantification kits, Quantifiler(®) Trio and InnoQuant™, was performed on latent fingerprint samples that were either (i) developed using one of three different techniques and then aged in ambient conditions or (ii) undeveloped and then aged in ambient conditions. The three fingerprint development techniques used were: cyanoacrylate fuming, dusting with black powder, and the columnar-thin-film (CTF) technique. In order to determine the differences between the expected quantities and actual quantities of DNA, manually degraded samples generated by controlled exposure of DNA standards to ultraviolet radiation were also analyzed. A total of 144 fingerprint and 42 manually degraded DNA samples were processed in this study. The results indicate that the InnoQuant™ kit is capable of producing higher degradation ratios compared to the Quantifiler(®) Trio kit. This was an expected result since the degradation ratio is a relative value specific for a kit based on the length and extent of amplification of the two amplicons that vary from one kit to the other. Additionally, samples with lower concentrations of DNA yielded non-linear relationships of degradation ratio with the duration of aging, whereas samples with higher concentrations of DNA yielded quasi-linear relationships. None of the three development techniques produced a noticeably different degradation pattern when compared to undeveloped fingerprints, and therefore do not impede downstream DNA analysis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Jun, An Won
2006-01-01
We implement a first practical holographic security system using electrical biometrics that combines optical encryption and digital holographic memory technologies. Optical information for identification includes a picture of face, a name, and a fingerprint, which has been spatially multiplexed by random phase mask used for a decryption key. For decryption in our biometric security system, a bit-error-detection method that compares the digital bit of live fingerprint with of fingerprint information extracted from hologram is used.
Chemical Fingerprinting of Materials Developed Due To Environmental Issues
NASA Technical Reports Server (NTRS)
Smith, Doris A.; McCool, A. (Technical Monitor)
2000-01-01
This paper presents viewgraphs on chemical fingerprinting of materials developed due to environmental issues. Some of the topics include: 1) Aerospace Materials; 2) Building Blocks of Capabilities; 3) Spectroscopic Techniques; 4) Chromatographic Techniques; 5) Factors that Determine Fingerprinting Approach; and 6) Fingerprinting: Combination of instrumental analysis methods that diagnostically characterize a material.
Muddukrishna, B S; Pai, Vasudev; Lobo, Richard; Pai, Aravinda
2017-11-22
In the present study, five important binary fingerprinting techniques were used to model novel flavones for the selective inhibition of Tankyrase I. From the fingerprints used: the fingerprint atom pairs resulted in a statistically significant 2D QSAR model using a kernel-based partial least square regression method. This model indicates that the presence of electron-donating groups positively contributes to activity, whereas the presence of electron withdrawing groups negatively contributes to activity. This model could be used to develop more potent as well as selective analogues for the inhibition of Tankyrase I. Schematic representation of 2D QSAR work flow.
Generation of DNA profiles from fingerprints developed with columnar thin film technique.
Plazibat, Stephanie L; Roy, Reena; Swiontek, Stephen E; Lakhtakia, Akhlesh
2015-12-01
Partial-bloody fingerprints and partial fingerprints with saliva are often encountered at crime scenes, potentially enabling the combination of fingerprint and DNA analyses for absolute identification, provided that the development technique for fingerprint analysis does not inhibit DNA analysis. 36 partial-bloody fingerprints and 30 fingerprints wetted with saliva, all deposited on brass, were first developed using the columnar-thin-film (CTF) technique and then subjected to short tandem repeat (STR) DNA analysis. Equal numbers of samples were subjected to the same DNA analysis without development. Tris (8-hydroxyquinolinato) aluminum, or Alq3, was evaporated to deposit CTFs for development of the prints. DNA was extracted from all 132 samples, quantified, and amplified with AmpFlSTR(®) Identifiler Plus Amplification Kit. Additionally, DNA analyses were conducted on four blood smears on un-fingerprinted brass that had been subjected to CTF deposition and four blood smears on un-fingerprinted brass that had not been subjected to CTF deposition. Complete and concordant autosomal STR profiles of the same quality were obtained from both undeveloped and CTF-developed fingerprints, indicating that CTF development of fingerprints preserves DNA and does not inhibit subsequent DNA analysis. Even when there were no fingerprints, CTF deposition did not lead to inhibition of DNA analysis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Evaluation of fingerprint deformation using optical coherence tomography
NASA Astrophysics Data System (ADS)
Gutierrez da Costa, Henrique S.; Maxey, Jessica R.; Silva, Luciano; Ellerbee, Audrey K.
2014-02-01
Biometric identification systems have important applications to privacy and security. The most widely used of these, print identification, is based on imaging patterns present in the fingers, hands and feet that are formed by the ridges, valleys and pores of the skin. Most modern print sensors acquire images of the finger when pressed against a sensor surface. Unfortunately, this pressure may result in deformations, characterized by changes in the sizes and relative distances of the print patterns, and such changes have been shown to negatively affect the performance of fingerprint identification algorithms. Optical coherence tomography (OCT) is a novel imaging technique that is capable of imaging the subsurface of biological tissue. Hence, OCT may be used to obtain images of subdermal skin structures from which one can extract an internal fingerprint. The internal fingerprint is very similar in structure to the commonly used external fingerprint and is of increasing interest in investigations of identify fraud. We proposed and tested metrics based on measurements calculated from external and internal fingerprints to evaluate the amount of deformation of the skin. Such metrics were used to test hypotheses about the differences of deformation between the internal and external images, variations with the type of finger and location inside the fingerprint.
Grant, Ashleigh; Wilkinson, T J; Holman, Derek R; Martin, Michael C
2005-09-01
Analysis of fingerprints has predominantly focused on matching the pattern of ridges to a specific person as a form of identification. The present work focuses on identifying extrinsic materials that are left within a person's fingerprint after recent handling of such materials. Specifically, we employed infrared spectromicroscopy to locate and positively identify microscopic particles from a mixture of common materials in the latent human fingerprints of volunteer subjects. We were able to find and correctly identify all test substances based on their unique infrared spectral signatures. Spectral imaging is demonstrated as a method for automating recognition of specific substances in a fingerprint. We also demonstrate the use of attenuated total reflectance (ATR) and synchrotron-based infrared spectromicroscopy for obtaining high-quality spectra from particles that were too thick or too small, respectively, for reflection/absorption measurements. We believe the application of this rapid, nondestructive analytical technique to the forensic study of latent human fingerprints has the potential to add a new layer of information available to investigators. Using fingerprints to not only identify who was present at a crime scene, but also to link who was handling key materials, will be a powerful investigative tool.
Advanced Fingerprint Analysis Project Fingerprint Constituents
DOE Office of Scientific and Technical Information (OSTI.GOV)
GM Mong; CE Petersen; TRW Clauss
The work described in this report was focused on generating fundamental data on fingerprint components which will be used to develop advanced forensic techniques to enhance fluorescent detection, and visualization of latent fingerprints. Chemical components of sweat gland secretions are well documented in the medical literature and many chemical techniques are available to develop latent prints, but there have been no systematic forensic studies of fingerprint sweat components or of the chemical and physical changes these substances undergo over time.
Linguistically informed digital fingerprints for text
NASA Astrophysics Data System (ADS)
Uzuner, Özlem
2006-02-01
Digital fingerprinting, watermarking, and tracking technologies have gained importance in the recent years in response to growing problems such as digital copyright infringement. While fingerprints and watermarks can be generated in many different ways, use of natural language processing for these purposes has so far been limited. Measuring similarity of literary works for automatic copyright infringement detection requires identifying and comparing creative expression of content in documents. In this paper, we present a linguistic approach to automatically fingerprinting novels based on their expression of content. We use natural language processing techniques to generate "expression fingerprints". These fingerprints consist of both syntactic and semantic elements of language, i.e., syntactic and semantic elements of expression. Our experiments indicate that syntactic and semantic elements of expression enable accurate identification of novels and their paraphrases, providing a significant improvement over techniques used in text classification literature for automatic copy recognition. We show that these elements of expression can be used to fingerprint, label, or watermark works; they represent features that are essential to the character of works and that remain fairly consistent in the works even when works are paraphrased. These features can be directly extracted from the contents of the works on demand and can be used to recognize works that would not be correctly identified either in the absence of pre-existing labels or by verbatim-copy detectors.
Rosa, Roberto; Veronesi, Paolo; Leonelli, Cristina
2013-09-01
The thermal development of latent fingerprints on paper surfaces is a simple, safe, and chemicals-free method, based on the faster heating of the substrate underlying the print residue. Microwave heating is proposed for the first time for the development of latent fingerprints on cellulose-based substrate, in order to add to the thermal development mechanism the further characteristic of being able to heat the fingerprint residues to a different extent with respect to the substrate, due to the intrinsic difference in their dielectric properties. Numerical simulation was performed to confirm and highlight the selectivity of microwaves, and preliminary experimental results point out the great potentialities of this technique, which allowed developing both latent sebaceous-rich and latent eccrine-rich fingerprints on different porous surfaces, in less than 30 sec time with an applied output power of 500 W. Microwaves demonstrated more effectiveness in the development of eccrine-rich residues, aged up to 12 weeks. © 2013 American Academy of Forensic Sciences.
NASA Astrophysics Data System (ADS)
Phungyimnoi, N.; Eksinitkun, G.; Phutdhawong, W.
2017-09-01
The vacuum vaporization technique is widely used to develop of visualized latent fingerprints on substrate surface for forensics investigation. In this study, we reported the first utilization of lawsone in the vacuum vaporization technique. The lawsone was sublimation in vacuum and showed the detected latent fingerprints on thermal papers. The method involves hanging the thermal paper samples 5, 10, 15 cm above a heating source with dispersed lawsone solids in a vacuum chamber. The optimized condition for lawsone sublimation are 50, 100, 150 mg with low-vacuum (0.1 mbar) and vaporizing temperature at 40-60°C. The sample fingerprints were left for 1, 3, 7 and 30 days before examination comparison between lawsone and fingerprint ink pad using an Automated Fingerprint Identification (AFIS). The resulted showed that using 100 mg lawsone sublimation on thermal paper at the range of 10 cm evidenced the clear, detectable minutiae which can be used for visualization and identification of latent prints without the background black staining known. Thus, this study might be interested application for developing latent fingerprints as a solvent free technique and non-hazardous materials.
High-speed biometrics ultrasonic system for 3D fingerprint imaging
NASA Astrophysics Data System (ADS)
Maev, Roman G.; Severin, Fedar
2012-10-01
The objective of this research is to develop a new robust fingerprint identification technology based upon forming surface-subsurface (under skin) ultrasonic 3D images of the finger pads. The presented work aims to create specialized ultrasonic scanning methods for biometric purposes. Preliminary research has demonstrated the applicability of acoustic microscopy for fingerprint reading. The additional information from internal skin layers and dermis structures contained in the scan can essentially improve confidence in the identification. Advantages of this system include high resolution and quick scanning time. Operating in pulse-echo mode provides spatial resolution up to 0.05 mm. Technology advantages of the proposed technology are the following: • Full-range scanning of the fingerprint area "nail to nail" (2.5 x 2.5 cm) can be done in less than 5 sec with a resolution of up to 1000 dpi. • Collection of information about the in-depth structure of the fingerprint realized by the set of spherically focused 50 MHz acoustic lens provide the resolution ~ 0.05 mm or better • In addition to fingerprints, this technology can identify sweat porous at the surface and under the skin • No sensitivity to the contamination of the finger's surface • Detection of blood velocity using Doppler effect can be implemented to distinguish living specimens • Utilization as polygraph device • Simple connectivity to fingerprint databases obtained with other techniques • The digitally interpolated images can then be enhanced allowing for greater resolution • Method can be applied to fingernails and underlying tissues, providing more information • A laboratory prototype of the biometrics system based on these described principles was designed, built and tested. It is the first step toward a practical implementation of this technique.
A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint
Zou, Jiaheng
2018-01-01
With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m. PMID:29494542
A Foot-Mounted Inertial Measurement Unit (IMU) Positioning Algorithm Based on Magnetic Constraint.
Wang, Yan; Li, Xin; Zou, Jiaheng
2018-03-01
With the development of related applications, indoor positioning techniques have been more and more widely developed. Based on Wi-Fi, Bluetooth low energy (BLE) and geomagnetism, indoor positioning techniques often rely on the physical location of fingerprint information. The focus and difficulty of establishing the fingerprint database are in obtaining a relatively accurate physical location with as little given information as possible. This paper presents a foot-mounted inertial measurement unit (IMU) positioning algorithm under the loop closure constraint based on magnetic information. It can provide relatively reliable position information without maps and geomagnetic information and provides a relatively accurate coordinate for the collection of a fingerprint database. In the experiment, the features extracted by the multi-level Fourier transform method proposed in this paper are validated and the validity of loop closure matching is tested with a RANSAC-based method. Moreover, the loop closure detection results show that the cumulative error of the trajectory processed by the graph optimization algorithm is significantly suppressed, presenting a good accuracy. The average error of the trajectory under loop closure constraint is controlled below 2.15 m.
NASA Astrophysics Data System (ADS)
Barthod, Louise; Lobb, David; Owens, Philip; Martinez-Carreras, Nuria; Koiter, Alexander; Petticrew, Ellen; McCullough, Gregory
2014-05-01
The development of beneficial management practises to minimize adverse impacts of agriculture on soil and water quality requires information on the sources of sediment at the watershed scale. Sediment fingerprinting allows for the determination of sediment sources and apportionment of their contribution within a watershed, using unique physical, radiochemical or biogeochemical properties, or fingerprints, of the potential sediment sources. The use of sediment colour as a fingerprint is an emerging technique that can provide a rapid and inexpensive means of investigating sediment sources. This technique is currently being utilized to determine sediment sources within the South Tobacco Creek Watershed, an agricultural watershed located in the Canadian prairies (south-central Manitoba). Suspended sediment and potential source (topsoil, channel bank and shale bedrock material) samples were collected between 2009 and 2011 at six locations along the main stem of the creek. Sample colour was quantified from diffuse reflectance spectrometry measurements over the visible wavelength range using a spectroradiometer (ASD Field Spec Pro, 400-2500 nm). Sixteen colour coefficients were derived from several colour space models (CIE XYZ, CIE xyY, CIE Lab, CIE Luv, CIE Lch, Landsat RGB, Redness Index). The individual discrimination power of the colour coefficients, after passing several prerequisite tests (e.g., linearly additive behaviour), was assessed using discriminant function analysis. A stepwise discriminant analysis, based on the Wilk's lambda criterion, was then performed in order to determine the best-suited colour coefficient fingerprints which maximized the discrimination between the potential sources. The selected fingerprints classified the source samples in the correct category 86% of the time. The misclassification is due to intra-source variability and source overlap which can lead to higher uncertainty in sediment source apportionment. The selected fingerprints were then included in a Bayesian mixing model using Monte-Carlo simulation (Stable Isotope Analysis in R, SIAR) in order to apportion the contribution of the different sources to the sediment collected at each location. A switch in the dominant sediment source between the headwaters and the outlet of the watershed is observed. Sediment is enriched with shale bedrock and depleted of topsoil sources as the stream crosses and down-cuts through the Manitoba Escarpment. The switch in sources highlights the importance of the sampling location in relation to the scale and geomorphic connectivity of the watershed. Although the results include considerable uncertainty, they are consistent with the findings from a classical fingerprinting approach undertaken in the same watershed (i.e., geochemical and radionuclide fingerprints), and confirm the potential of sediment colour parameters as suitable fingerprints.
An investigation into the enhancement of sea-spray exposed fingerprints on glass.
Goldstone, S L; Francis, S C; Gardner, S J
2015-07-01
Fingerprints are considered one of the best forms of personal identification. While numerous enhancement techniques exist to develop fingerprints under various conditions, the enhancement of fingerprints exposed to sea spray aerosol (SSA) still remains problematic. 1056 fingerprints from four donors, using a depletion series and triplicate repeats, were deposited onto glass panels and exposed to SSA for 1 week and 1 month. Control prints were deposited in the same manner and left under laboratory conditions. All prints were enhanced using fingerprint enhancement techniques available to Forensic Police Officers and subsequently examined for identifiability by a Fingerprint Expert. Significantly fewer identifiable prints (p<0.01) were developed after exposure to SSA for 1 month (11%) compared to exposure for 1 week (69%) (compared to the control prints 99%) for all enhancement techniques. After 1 week's exposure, all techniques enhanced over 50% of prints, except SPR white (12%), with iron (III) oxide and Wetwop™ white producing over 90% identifiable prints. Only iron (III) oxide, Wetwop™ white and SPR black returned any identifiable prints following 1 month's SSA exposure. Iron (III) oxide being significantly better (p<0.01, 67%) than the other techniques. Iron (III) oxide suspension and Wetwop™ white were found to be superior at enhancing prints at both SSA exposure times. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
OPTIMAL EXPERIMENT DESIGN FOR MAGNETIC RESONANCE FINGERPRINTING
Zhao, Bo; Haldar, Justin P.; Setsompop, Kawin; Wald, Lawrence L.
2017-01-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance. PMID:28268369
Optimal experiment design for magnetic resonance fingerprinting.
Bo Zhao; Haldar, Justin P; Setsompop, Kawin; Wald, Lawrence L
2016-08-01
Magnetic resonance (MR) fingerprinting is an emerging quantitative MR imaging technique that simultaneously acquires multiple tissue parameters in an efficient experiment. In this work, we present an estimation-theoretic framework to evaluate and design MR fingerprinting experiments. More specifically, we derive the Cramér-Rao bound (CRB), a lower bound on the covariance of any unbiased estimator, to characterize parameter estimation for MR fingerprinting. We then formulate an optimal experiment design problem based on the CRB to choose a set of acquisition parameters (e.g., flip angles and/or repetition times) that maximizes the signal-to-noise ratio efficiency of the resulting experiment. The utility of the proposed approach is validated by numerical studies. Representative results demonstrate that the optimized experiments allow for substantial reduction in the length of an MR fingerprinting acquisition, and substantial improvement in parameter estimation performance.
Yang, Jun-Ho; Yoh, Jack J
2018-01-01
A novel technique is reported for separating overlapping latent fingerprints using chemometric approaches that combine laser-induced breakdown spectroscopy (LIBS) and multivariate analysis. The LIBS technique provides the capability of real time analysis and high frequency scanning as well as the data regarding the chemical composition of overlapping latent fingerprints. These spectra offer valuable information for the classification and reconstruction of overlapping latent fingerprints by implementing appropriate statistical multivariate analysis. The current study employs principal component analysis and partial least square methods for the classification of latent fingerprints from the LIBS spectra. This technique was successfully demonstrated through a classification study of four distinct latent fingerprints using classification methods such as soft independent modeling of class analogy (SIMCA) and partial least squares discriminant analysis (PLS-DA). The novel method yielded an accuracy of more than 85% and was proven to be sufficiently robust. Furthermore, through laser scanning analysis at a spatial interval of 125 µm, the overlapping fingerprints were reconstructed as separate two-dimensional forms.
Generating One Biometric Feature from Another: Faces from Fingerprints
Ozkaya, Necla; Sagiroglu, Seref
2010-01-01
This study presents a new approach based on artificial neural networks for generating one biometric feature (faces) from another (only fingerprints). An automatic and intelligent system was designed and developed to analyze the relationships among fingerprints and faces and also to model and to improve the existence of the relationships. The new proposed system is the first study that generates all parts of the face including eyebrows, eyes, nose, mouth, ears and face border from only fingerprints. It is also unique and different from similar studies recently presented in the literature with some superior features. The parameter settings of the system were achieved with the help of Taguchi experimental design technique. The performance and accuracy of the system have been evaluated with 10-fold cross validation technique using qualitative evaluation metrics in addition to the expanded quantitative evaluation metrics. Consequently, the results were presented on the basis of the combination of these objective and subjective metrics for illustrating the qualitative properties of the proposed methods as well as a quantitative evaluation of their performances. Experimental results have shown that one biometric feature can be determined from another. These results have once more indicated that there is a strong relationship between fingerprints and faces. PMID:22399877
Ballistics projectile image analysis for firearm identification.
Li, Dongguang
2006-10-01
This paper is based upon the observation that, when a bullet is fired, it creates characteristic markings on the cartridge case and projectile. From these markings, over 30 different features can be distinguished, which, in combination, produce a "fingerprint" for a firearm. By analyzing features within such a set of firearm fingerprints, it will be possible to identify not only the type and model of a firearm, but also each and every individual weapon just as effectively as human fingerprint identification. A new analytic system based on the fast Fourier transform for identifying projectile specimens by the line-scan imaging technique is proposed in this paper. This paper develops optical, photonic, and mechanical techniques to map the topography of the surfaces of forensic projectiles for the purpose of identification. Experiments discussed in this paper are performed on images acquired from 16 various weapons. Experimental results show that the proposed system can be used for firearm identification efficiently and precisely through digitizing and analyzing the fired projectiles specimens.
Portillo, M C; Gonzalez, J M
2008-08-01
Molecular fingerprints of microbial communities are a common method for the analysis and comparison of environmental samples. The significance of differences between microbial community fingerprints was analyzed considering the presence of different phylotypes and their relative abundance. A method is proposed by simulating coverage of the analyzed communities as a function of sampling size applying a Cramér-von Mises statistic. Comparisons were performed by a Monte Carlo testing procedure. As an example, this procedure was used to compare several sediment samples from freshwater ponds using a relative quantitative PCR-DGGE profiling technique. The method was able to discriminate among different samples based on their molecular fingerprints, and confirmed the lack of differences between aliquots from a single sample.
Reconfigurable Gabor Filter For Fingerprint Recognition Using FPGA Verilog
NASA Astrophysics Data System (ADS)
Rosshidi, H. T.; Hadi, A. R.
2009-06-01
This paper present the implementations of Gabor filter for fingerprint recognition using Verilog HDL. This work demonstrates the application of Gabor Filter technique to enhance the fingerprint image. The incoming signal in form of image pixel will be filter out or convolute by the Gabor filter to define the ridge and valley regions of fingerprint. This is done with the application of a real time convolve based on Field Programmable Gate Array (FPGA) to perform the convolution operation. The main characteristic of the proposed approach are the usage of memory to store the incoming image pixel and the coefficient of the Gabor filter before the convolution matrix take place. The result was the signal convoluted with the Gabor coefficient.
SINE sequences detect DNA fingerprints in salmonid fishes.
Spruell, P; Thorgaard, G H
1996-04-01
DNA probes homologous to two previously described salmonid short interspersed nuclear elements (SINEs) detected DNA fingerprint patterns in 14 species of salmonid fishes. The probes showed more homology to some species than to others and little homology to three nonsalmonid fishes. The DNA fingerprint patterns derived from the SINE probes are individual-specific and inherited in a Mendelian manner. Probes derived from different regions of the same SINE detect only partially overlapping banding patterns, reflecting a more complex SINE structure than has been previously reported. Like the human Alu sequence, the SINEs found in salmonids could provide useful genetic markers and primer sites for PCR-based techniques. These elements may be more desirable for some applications than traditional DNA fingerprinting probes that detect tandemly repeated arrays.
The thermodynamics of latent fingerprint corrosion of metal elements and alloys.
Bond, John W
2008-11-01
Redox reactions taking place between the surface of a metal and fingerprint residue have been expressed thermodynamically in terms of both the Nernst equation for reduction potential and the complexation constant for the formation of complex metal halide ions in aqueous solution. These expressions are used to explain experimental results for the corrosion of 10 different metal elements by fingerprint residue in air at room temperature. Corrosion of noble metals, such as silver and gold, supports the proposition that the degree of metal corrosion is enhanced by the presence of chloride ions in eccrine sweat. Extending the experiments to include 10 metal alloys enabled the construction of a fingerprint corrosion series for 20 different metals. Fingerprint corrosion on metals alloyed with > approximately 40% copper was found to display third level fingerprint detail. A comparison of both conventional ink on paper and digital (Livescan) fingerprinting techniques with fingerprints deposited on 9 Karat gold alloy has shown that gold alloy depositions are least susceptible to third level detail obliteration by poor fingerprint capturing techniques.
NASA Astrophysics Data System (ADS)
Song, Wei; Mao, Zhu; Liu, Xiaojuan; Lu, Yong; Li, Zhishi; Zhao, Bing; Lu, Lehui
2012-03-01
The detection of metabolites is very important for the estimation of the health of human beings. Latent fingerprint contains many constituents and specific contaminants, which give much information of the individual, such as health status, drug abuse etc. For a long time, many efforts have been focused on visualizing latent fingerprints, but little attention has been paid to the detection of such substances at the same time. In this article, we have devised a versatile approach for the ultra-sensitive detection and identification of specific biomolecules deposited within fingerprints via a large-area SERS imaging technique. The antibody bound to the Raman probe modified silver nanoparticles enables the binding to specific proteins within the fingerprints to afford high-definition SERS images of the fingerprint pattern. The SERS spectra and images of Raman probes indirectly provide chemical information regarding the given proteins. By taking advantage of the high sensitivity and the capability of SERS technique to obtain abundant vibrational signatures of biomolecules, we have successfully detected minute quantities of protein present within a latent fingerprint. This technique provides a versatile and effective model to detect biomarkers within fingerprints for medical diagnostics, criminal investigation and other fields.
NASA Astrophysics Data System (ADS)
Dubey, Satish Kumar; Singh Mehta, Dalip; Anand, Arun; Shakher, Chandra
2008-01-01
We demonstrate simultaneous topography and tomography of latent fingerprints using full-field swept-source optical coherence tomography (OCT). The swept-source OCT system comprises a superluminescent diode (SLD) as broad-band light source, an acousto-optic tunable filter (AOTF) as frequency tuning device, and a compact, nearly common-path interferometer. Both the amplitude and the phase map of the interference fringe signal are reconstructed. Optical sectioning of the latent fingerprint sample is obtained by selective Fourier filtering and the topography is retrieved from the phase map. Interferometry, selective filtering, low coherence and hence better resolution are some of the advantages of the proposed system over the conventional fingerprint detection techniques. The present technique is non-invasive in nature and does not require any physical or chemical processing. Therefore, the quality of the sample does not alter and hence the same fingerprint can be used for other types of forensic test. Exploitation of low-coherence interferometry for fingerprint detection itself provides an edge over other existing techniques as fingerprints can even be lifted from low-reflecting surfaces. The proposed system is very economical and compact.
NASA Astrophysics Data System (ADS)
El-Saba, Aed; Alsharif, Salim; Jagapathi, Rajendarreddy
2011-04-01
Fingerprint recognition is one of the first techniques used for automatically identifying people and today it is still one of the most popular and effective biometric techniques. With this increase in fingerprint biometric uses, issues related to accuracy, security and processing time are major challenges facing the fingerprint recognition systems. Previous work has shown that polarization enhancementencoding of fingerprint patterns increase the accuracy and security of fingerprint systems without burdening the processing time. This is mainly due to the fact that polarization enhancementencoding is inherently a hardware process and does not have detrimental time delay effect on the overall process. Unpolarized images, however, posses a high visual contrast and when fused (without digital enhancement) properly with polarized ones, is shown to increase the recognition accuracy and security of the biometric system without any significant processing time delay.
Payne, Gemma; Reedy, Brian; Lennard, Chris; Comber, Bruce; Exline, David; Roux, Claude
2005-05-28
This study investigated the application of chemical imaging to the detection of latent fingerprints using the Condor macroscopic chemical imaging system (ChemImage Corp., Pittsburgh, USA). Methods were developed and optimised for the visualisation of untreated latent fingerprints and fingerprints processed with DFO, ninhydrin, cyanoacrylate, and cyanoacrylate plus rhodamine 6G stain. The results obtained with chemical imaging were compared to the detection achieved using conventional imaging techniques. The Condor significantly improved the detection of many prints, especially those that might be considered poor quality or borderline prints. Prints on newspaper treated with ninhydrin and DFO, and prints on white and yellow paper treated with ninhydrin, benefited the most from chemical imaging detection. In many cases, fingerprints undetectable using conventional imaging techniques could be visualised with chemical imaging. Ridge detail from untreated prints on yellow paper was also detected using the Condor. When prints of high quality were examined, both detection techniques produced quality results. The results of this project demonstrate that chemical imaging offers advantages over conventional visualisation techniques when examining latent fingerprints, especially those that would be considered difficult, such as weak prints or prints on surfaces that produce highly luminescent backgrounds. Standard testing procedures for the detection and enhancement of fingerprints by chemical imaging are presented and discussed.
Contactless optical scanning of fingerprints with 180 degrees view.
Palma, J; Liessner, C; Mil'shtein, S
2006-01-01
Fingerprint recognition technology is an integral part of criminal investigations. It is the basis for the design of numerous security systems in both the private and public sectors. In a recent study emulating the fingerprinting procedure with widely used optical scanners, it was found that, on average, the distance between ridges decreases about 20% when a finger is positioned on a scanner. Using calibrated silicon pressure sensors, the authors scanned the distribution of pressure across a finger, pixel by pixel, and also generated maps of the average pressure distribution during fingerprinting. Controlled loading of a finger demonstrated that it is impossible to reproduce the same distribution of pressure across a given finger during repeated fingerprinting procedures. Based on this study, a novel method of scanning the fingerprint with more than a 180 degrees view was developed. Using a camera rotated around the finger, small slices of the entire image of the finger were acquired. Equal sized slices of the image were processed with a special program assembling a more than 180 degrees view of the finger. Comparison of two images of the same fingerprint, namely the registered and actual images, could be performed by a new algorithm based on the symmetry of the correlation function. The novel method is the first contactless optical scanning technique to view 180 degrees of a fingerprint without moving the finger. In a machine which is under design, it is expected that the full view of one finger would be acquired in about a second.
Digital holographic-based cancellable biometric for personal authentication
NASA Astrophysics Data System (ADS)
Verma, Gaurav; Sinha, Aloka
2016-05-01
In this paper, we propose a new digital holographic-based cancellable biometric scheme for personal authentication and verification. The realization of cancellable biometric is presented by using an optoelectronic experimental approach, in which an optically recorded hologram of the fingerprint of a person is numerically reconstructed. Each reconstructed feature has its own perspective, which is utilized to generate user-specific fingerprint features by using a feature-extraction process. New representations of the user-specific fingerprint features can be obtained from the same hologram, by changing the reconstruction distance (d) by an amount Δd between the recording plane and the reconstruction plane. This parameter is the key to make the cancellable user-specific fingerprint features using a digital holographic technique, which allows us to choose different reconstruction distances when reissuing the user-specific fingerprint features in the event of compromise. We have shown theoretically that each user-specific fingerprint feature has a unique identity with a high discrimination ability, and the chances of a match between them are minimal. In this aspect, a recognition system has also been demonstrated using the fingerprint biometric of the enrolled person at a particular reconstruction distance. For the performance evaluation of a fingerprint recognition system—the false acceptance ratio, the false rejection ratio and the equal error rate are calculated using correlation. The obtained results show good discrimination ability between the genuine and the impostor populations with the highest recognition rate of 98.23%.
DNA fingerprinting in botany: past, present, future
2014-01-01
Almost three decades ago Alec Jeffreys published his seminal Nature papers on the use of minisatellite probes for DNA fingerprinting of humans (Jeffreys and colleagues Nature 1985, 314:67–73 and Nature 1985, 316:76–79). The new technology was soon adopted for many other organisms including plants, and when Hilde Nybom, Kurt Weising and Alec Jeffreys first met at the very First International Conference on DNA Fingerprinting in Berne, Switzerland, in 1990, everybody was enthusiastic about the novel method that allowed us for the first time to discriminate between humans, animals, plants and fungi on the individual level using DNA markers. A newsletter coined “Fingerprint News” was launched, T-shirts were sold, and the proceedings of the Berne conference filled a first book on “DNA fingerprinting: approaches and applications”. Four more conferences were about to follow, one on each continent, and Alec Jeffreys of course was invited to all of them. Since these early days, methodologies have undergone a rapid evolution and diversification. A multitude of techniques have been developed, optimized, and eventually abandoned when novel and more efficient and/or more reliable methods appeared. Despite some overlap between the lifetimes of the different technologies, three phases can be defined that coincide with major technological advances. Whereas the first phase of DNA fingerprinting (“the past”) was dominated by restriction fragment analysis in conjunction with Southern blot hybridization, the advent of the PCR in the late 1980s gave way to the development of PCR-based single- or multi-locus profiling techniques in the second phase. Given that many routine applications of plant DNA fingerprinting still rely on PCR-based markers, we here refer to these methods as “DNA fingerprinting in the present”, and include numerous examples in the present review. The beginning of the third phase actually dates back to 2005, when several novel, highly parallel DNA sequencing strategies were developed that increased the throughput over current Sanger sequencing technology 1000-fold and more. High-speed DNA sequencing was soon also exploited for DNA fingerprinting in plants, either in terms of facilitated marker development, or directly in the sense of “genotyping-by-sequencing”. Whereas these novel approaches are applied at an ever increasing rate also in non-model species, they are still far from routine, and we therefore treat them here as “DNA fingerprinting in the future”. PMID:24386986
Huys, Geert; Vanhoutte, Tom; Vandamme, Peter
2008-01-01
Sequence-dependent electrophoresis (SDE) fingerprinting techniques such as denaturing gradient gel electrophoresis (DGGE) have become commonplace in the field of molecular microbial ecology. The success of the SDE technology lays in the fact that it allows visualization of the predominant members of complex microbial ecosystems independent of their culturability and without prior knowledge on the complexity and diversity of the ecosystem. Mainly using the prokaryotic 16S rRNA gene as PCR amplification target, SDE-based community fingerprinting turned into one of the leading molecular tools to unravel the diversity and population dynamics of human intestinal microbiota. The first part of this review covers the methodological concept of SDE fingerprinting and the technical hurdles for analyzing intestinal samples. Subsequently, the current state-of-the-art of DGGE and related techniques to analyze human intestinal microbiota from healthy individuals and from patients with intestinal disorders is surveyed. In addition, the applicability of SDE analysis to monitor intestinal population changes upon nutritional or therapeutic interventions is critically evaluated. PMID:19277102
Zhang, Qi-Feng; Zhu, Long-Yin; Ding, Shu-Liang; Wang, Chen; Tu, Long-Fei
2008-03-01
The fingerprints for most of Chinese medicines based on their organic compositions have been well established. Nevertheless, there are very few known fingerprints which are based on inorganic elements. In order to identify the Da Huo Luo Dan and its efficiency from other Chinese medicines, the authors attempted to set up a fingerprint which could be determined by the measurement of inorganic elements in Da Huo Luo Dan and other Chinese medicines. In the present study, the authors first employed 28 batches of Da Huo Luo Dan produced by Zhang-Shu Pharmatheutical Company in Jiang Xi Province to screen 12 kinds of inorganic elements measured by atomic absorption spectrophotometer and established the atomic absorption fingerprints. Secondly, the authors tried to identify Da Huo Luo Dan and other Chinese medicines by using the similarly analysis of vectors and the statistical analysis of compositional data. The result showed that the methods the authors used here were predictable to tell the efficiency of Da Huo Luo Dan from others. The authors' study also proves that establishment of standard for quality control by analysis of inorganic elements in Chinese medicines is feasible. The present study provides a new idea and a new technique that serve for the establishment of industrial standards for analysis of inorganic elements fingerprint to explore the effects of Chinese medicines.
Variation in amino acid and lipid composition of latent fingerprints.
Croxton, Ruth S; Baron, Mark G; Butler, David; Kent, Terry; Sears, Vaughn G
2010-06-15
The enhancement of latent fingerprints, both at the crime scene and in the laboratory using an array of chemical, physical and optical techniques, permits their use for identification. Despite the plethora of techniques available, there are occasions when latent fingerprints are not successfully enhanced. An understanding of latent fingerprint chemistry and behaviour will aid the improvement of current techniques and the development of novel ones. In this study the amino acid and fatty acid content of 'real' latent fingerprints collected on a non-porous surface was analysed by gas chromatography-mass spectrometry. Squalene was also quantified in addition. Hexadecanoic acid, octadecanoic acid and cis-9-octadecenoic acid were the most abundant fatty acids in all samples. There was, however, wide variation in the relative amounts of each fatty acid in each sample. It was clearly demonstrated that touching sebum-rich areas of the face immediately prior to fingerprint deposition resulted in a significant increase in the amount of fatty acids and squalene deposited in the resulting 'groomed' fingerprints. Serine was the most abundant amino acid identified followed by glycine, alanine and aspartic acid. The significant quantitative differences between the 'natural' and 'groomed' fingerprint samples seen for fatty acids were not observed in the case of the amino acids. This study demonstrates the variation in latent fingerprint composition between individuals and the impact of the sampling protocol on the quantitative analysis of fingerprints. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
HPLC fingerprint analysis combined with chemometrics for pattern recognition of ginger.
Feng, Xu; Kong, Weijun; Wei, Jianhe; Ou-Yang, Zhen; Yang, Meihua
2014-03-01
Ginger, the fresh rhizome of Zingiber officinale Rosc. (Zingiberaceae), has been used worldwide; however, for a long time, there has been no standard approbated internationally for its quality control. To establish an efficacious and combinational method and pattern recognition technique for quality control of ginger. A simple, accurate and reliable method based on high-performance liquid chromatography with photodiode array (HPLC-PDA) detection was developed for establishing the chemical fingerprints of 10 batches of ginger from different markets in China. The method was validated in terms of precision, reproducibility and stability; and the relative standard deviations were all less than 1.57%. On the basis of this method, the fingerprints of 10 batches of ginger samples were obtained, which showed 16 common peaks. Coupled with similarity evaluation software, the similarities between each fingerprint of the sample and the simulative mean chromatogram were in the range of 0.998-1.000. Then, the chemometric techniques, including similarity analysis, hierarchical clustering analysis and principal component analysis were applied to classify the ginger samples. Consistent results were obtained to show that ginger samples could be successfully classified into two groups. This study revealed that HPLC-PDA method was simple, sensitive and reliable for fingerprint analysis, and moreover, for pattern recognition and quality control of ginger.
Song, Wei; Mao, Zhu; Liu, Xiaojuan; Lu, Yong; Li, Zhishi; Zhao, Bing; Lu, Lehui
2012-04-07
The detection of metabolites is very important for the estimation of the health of human beings. Latent fingerprint contains many constituents and specific contaminants, which give much information of the individual, such as health status, drug abuse etc. For a long time, many efforts have been focused on visualizing latent fingerprints, but little attention has been paid to the detection of such substances at the same time. In this article, we have devised a versatile approach for the ultra-sensitive detection and identification of specific biomolecules deposited within fingerprints via a large-area SERS imaging technique. The antibody bound to the Raman probe modified silver nanoparticles enables the binding to specific proteins within the fingerprints to afford high-definition SERS images of the fingerprint pattern. The SERS spectra and images of Raman probes indirectly provide chemical information regarding the given proteins. By taking advantage of the high sensitivity and the capability of SERS technique to obtain abundant vibrational signatures of biomolecules, we have successfully detected minute quantities of protein present within a latent fingerprint. This technique provides a versatile and effective model to detect biomarkers within fingerprints for medical diagnostics, criminal investigation and other fields. This journal is © The Royal Society of Chemistry 2012
NASA Astrophysics Data System (ADS)
Voss-de Haan, Patrick
2006-08-01
This article discusses a variety of aspects in the detection and development of fingerprints and the physics involved in it. It gives an introduction to some basic issues like composition and properties of fingerprint deposits and a rudimentary framework of dactyloscopy; it covers various techniques for the visualization of latent fingerprints; and it concludes with a view of current research topics. The techniques range from very common procedures, such as powdering and cyanoacrylate fuming, to more demanding methods, for example luminescence and vacuum metal deposition, to fairly unusual approaches like autoradiography. The emphasis is placed on the physical rather than the forensic aspects of these topics while trying to give the physicist—who is not dealing with fingerprinting and forensic science on a daily basis—a feeling for the problems and solutions in the visualization of latent fingerprints.
Yassin, Ali A
2014-01-01
Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification.
Yassin, Ali A.
2014-01-01
Now, the security of digital images is considered more and more essential and fingerprint plays the main role in the world of image. Furthermore, fingerprint recognition is a scheme of biometric verification that applies pattern recognition techniques depending on image of fingerprint individually. In the cloud environment, an adversary has the ability to intercept information and must be secured from eavesdroppers. Unluckily, encryption and decryption functions are slow and they are often hard. Fingerprint techniques required extra hardware and software; it is masqueraded by artificial gummy fingers (spoof attacks). Additionally, when a large number of users are being verified at the same time, the mechanism will become slow. In this paper, we employed each of the partial encryptions of user's fingerprint and discrete wavelet transform to obtain a new scheme of fingerprint verification. Moreover, our proposed scheme can overcome those problems; it does not require cost, reduces the computational supplies for huge volumes of fingerprint images, and resists well-known attacks. In addition, experimental results illustrate that our proposed scheme has a good performance of user's fingerprint verification. PMID:27355051
Mo, Yun; Zhang, Zhongzhao; Meng, Weixiao; Ma, Lin; Wang, Yao
2014-01-01
Indoor positioning systems based on the fingerprint method are widely used due to the large number of existing devices with a wide range of coverage. However, extensive positioning regions with a massive fingerprint database may cause high computational complexity and error margins, therefore clustering methods are widely applied as a solution. However, traditional clustering methods in positioning systems can only measure the similarity of the Received Signal Strength without being concerned with the continuity of physical coordinates. Besides, outage of access points could result in asymmetric matching problems which severely affect the fine positioning procedure. To solve these issues, in this paper we propose a positioning system based on the Spatial Division Clustering (SDC) method for clustering the fingerprint dataset subject to physical distance constraints. With the Genetic Algorithm and Support Vector Machine techniques, SDC can achieve higher coarse positioning accuracy than traditional clustering algorithms. In terms of fine localization, based on the Kernel Principal Component Analysis method, the proposed positioning system outperforms its counterparts based on other feature extraction methods in low dimensionality. Apart from balancing online matching computational burden, the new positioning system exhibits advantageous performance on radio map clustering, and also shows better robustness and adaptability in the asymmetric matching problem aspect. PMID:24451470
NASA Astrophysics Data System (ADS)
Smith, J. P.; Owens, P. N.; Gaspar, L.; Lobb, D. A.; Petticrew, E. L.
2015-12-01
An understanding of sediment redistribution processes and the main sediment sources within a watershed is needed to support watershed management strategies. The fingerprinting technique is increasingly being recognized as a method for establishing the source of the sediment transported within watersheds. However, the different behaviour of the various fingerprinting properties has been recognized as a major limitation of the technique, and the uncertainty associated with tracer selection needs to be addressed. There are also questions associated with which modelling approach (frequentist or Bayesian) is the best to unmix complex environmental mixtures, such as river sediment. This study aims to compare and evaluate the differences between fingerprinting predictions provided by a Bayesian unmixing model (MixSIAR) using different groups of tracer properties for use in sediment source identification. We used fallout radionuclides (e.g. 137Cs) and geochemical elements (e.g. As) as conventional fingerprinting properties, and colour parameters as emerging properties; both alone and in combination. These fingerprinting properties are being used (i.e. Koiter et al., 2013; Barthod et al., 2015) to determine the proportional contributions of fine sediment in the South Tobacco Creek Watershed, an agricultural watershed located in Manitoba, Canada. We show that the unmixing model using a combination of fallout radionuclides and geochemical tracers gave similar results to the model based on colour parameters. Furthermore, we show that a model that combines all tracers (i.e. radionuclide/geochemical and colour) gave similar results, showing that sediment sources change from predominantly topsoil in the upper reaches of the watershed to channel bank and bedrock outcrop material in the lower reaches. Barthod LRM et al. (2015). Selecting color-based tracers and classifying sediment sources in the assessment of sediment dynamics using sediment source fingerprinting. J Environ Qual. Doi:10.2134/jeq2015.01.0043 Koiter AJ et al. (2013). Investigating the role of connectivity and scale in assessing the sources of sediment in an agricultural watershed in the Canadian prairies using sediment source fingerprinting. J Soils Sediments, 13, 1676-1691.
Sisco, Edward; Demoranville, Leonard T; Gillen, Greg
2013-09-10
The feasibility of using C60(+) cluster primary ion bombardment secondary ion mass spectrometry (C60(+) SIMS) for the analysis of the chemical composition of fingerprints is evaluated. It was found that C60(+) SIMS could be used to detect and image the spatial localization of a number of sebaceous and eccrine components in fingerprints. These analyses were also found to not be hindered by the use of common latent print powder development techniques. Finally, the ability to monitor the depth distribution of fingerprint constituents was found to be possible - a capability which has not been shown using other chemical imaging techniques. This paper illustrates a number of strengths and potential weaknesses of C60(+) SIMS as an additional or complimentary technique for the chemical analysis of fingerprints. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Forensic Chemistry: The Revelation of Latent Fingerprints
ERIC Educational Resources Information Center
Friesen, J. Brent
2015-01-01
The visualization of latent fingerprints often involves the use of a chemical substance that creates a contrast between the fingerprint residues and the surface on which the print was deposited. The chemical-aided visualization techniques can be divided into two main categories: those that chemically react with the fingerprint residue and those…
Louws, F J; Bell, J; Medina-Mora, C M; Smart, C D; Opgenorth, D; Ishimaru, C A; Hausbeck, M K; de Bruijn, F J; Fulbright, D W
1998-08-01
ABSTRACT The genomic DNA fingerprinting technique known as repetitive-sequence-based polymerase chain reaction (rep-PCR) was evaluated as a tool to differentiate subspecies of Clavibacter michiganensis, with special emphasis on C. michiganensis subsp. michiganensis, the pathogen responsible for bacterial canker of tomato. DNA primers (REP, ERIC, and BOX), corresponding to conserved repetitive element motifs in the genomes of diverse bacterial species, were used to generate genomic fingerprints of C. michiganensis subsp. michiganensis, C. michiganensis subsp. sepedonicus, C. michiganensis subsp. nebraskensis, C. michiganensis subsp. tessellarius, and C. michiganensis subsp. insidiosum. The rep-PCR-generated patterns of DNA fragments observed after agarose gel electrophoresis support the current division of C. michiganensis into five subspecies. In addition, the rep-PCR fingerprints identified at least four types (A, B, C, and D) within C. michiganensis subsp. michiganensis based on limited DNA polymorphisms; the ability to differentiate individual strains may be of potential use in studies on the epidemiology and host-pathogen interactions of this organism. In addition, we have recovered from diseased tomato plants a relatively large number of naturally occurring avirulent C. michiganensis subsp. michiganensis strains with rep-PCR fingerprints identical to those of virulent C. michiganensis subsp. michiganensis strains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grant, Ashleigh; Wilkinson, T.J.; Holman, Thomas
Analysis of fingerprints has predominantly focused on matching the pattern of ridges to a specific person as a form of identification. The present work focuses on identifying extrinsic materials that are left within a person's fingerprint after recent handling of such materials. Specifically, we employed infrared spectromicroscopy to locate and positively identify microscopic particles from a mixture of common materials in the latent human fingerprints of volunteer subjects. We were able to find and correctly identify all test substances based on their unique infrared spectral signatures. Spectral imaging is demonstrated as a method for automating recognition of specific substances inmore » a fingerprint. We also demonstrate the use of Attenuated Total Reflectance (ATR) and synchrotron-based infrared spectromicroscopy for obtaining high-quality spectra from particles that were too thick or too small, respectively, for reflection/absorption measurements. We believe the application of this rapid, non-destructive analytical technique to the forensic study of latent human finger prints has the potential to add a new layer of information available to investigators. Using fingerprints to not only identify who was present at a crime scene, but also to link who was handling key materials will be a powerful investigative tool.« less
Fluorescent Nanomaterials for the Development of Latent Fingerprints in Forensic Sciences
Li, Ming; Yu, Aoyang; Zhu, Ye
2018-01-01
This review presents an overview on the application of latent fingerprint development techniques in forensic sciences. At present, traditional developing methods such as powder dusting, cyanoacrylate fuming, chemical method, and small particle reagent method, have all been gradually compromised given their emerging drawbacks such as low contrast, sensitivity, and selectivity, as well as high toxicity. Recently, much attention has been paid to the use of fluorescent nanomaterials including quantum dots (QDs) and rare earth upconversion fluorescent nanomaterials (UCNMs) due to their unique optical and chemical properties. Thus, this review lays emphasis on latent fingerprint development based on QDs and UCNMs. Compared to latent fingerprint development by traditional methods, the new methods using fluorescent nanomaterials can achieve high contrast, sensitivity, and selectivity while showing reduced toxicity. Overall, this review provides a systematic overview on such methods. PMID:29657570
Infrared Spectroscopic Imaging of Latent Fingerprints and Associated Forensic Evidence
Chen, Tsoching; Schultz, Zachary D.; Levin, Ira W.
2011-01-01
Fingerprints reflecting a specific chemical history, such as exposure to explosives, are clearly distinguished from overlapping, and interfering latent fingerprints using infrared spectroscopic imaging techniques and multivariate analysis. PMID:19684917
Tang, Xuemei; Huang, Lulu; Zhang, Wenyang; Zhong, Hongying
2015-03-03
Identification of endogenous and exogenous chemicals contained in latent fingerprints is important for forensic science in order to acquire evidence of criminal identities and contacts with specific chemicals. Mass spectrometry has emerged as a powerful technique for such applications without any derivatization or fluorescent tags. Among these techniques, MALDI (Matrix Assisted Laser Desorption Ionization) provides small beam size but has interferences with MALDI matrix materials, which cause ion suppressions as well as limited spatial resolution resulting from uneven distribution of MALDI matrix crystals with different sizes. LAET (Laser Activated Electron Tunneling) described in this work offers capabilities for chemical imaging through electron-directed soft ionization. A special film of semiconductors has been designed for collection of fingerprints. Nanoparticles of bismuth cobalt zinc oxide were compressed on a conductive metal substrate (Al or Cu sticky tape) under 10 MPa pressure. Resultant uniform thin films provide tight and shining surfaces on which fingers are impressed. Irradiation of ultraviolet laser pulses (355 nm) on the thin film instantly generates photoelectrons that can be captured by adsorbed organic molecules and subsequently cause electron-directed ionization and fragmentation. Imaging of latent fingerprints is achieved by visualization of the spatial distribution of these molecular ions and structural information-rich fragment ions. Atomic electron emission together with finely tuned laser beam size improve spatial resolution. With the LAET technique, imaging analysis not only can identify physical shapes but also reveal endogenous metabolites present in females and males, detect contacts with prohibited substances, and resolve overlapped latent fingerprints.
Neuroimaging techniques for memory detection: scientific, ethical, and legal issues.
Meegan, Daniel V
2008-01-01
There is considerable interest in the use of neuroimaging techniques for forensic purposes. Memory detection techniques, including the well-publicized Brain Fingerprinting technique (Brain Fingerprinting Laboratories, Inc., Seattle WA), exploit the fact that the brain responds differently to sensory stimuli to which it has been exposed before. When a stimulus is specifically associated with a crime, the resulting brain activity should differentiate between someone who was present at the crime and someone who was not. This article reviews the scientific literature on three such techniques: priming, old/new, and P300 effects. The forensic potential of these techniques is evaluated based on four criteria: specificity, automaticity, encoding flexibility, and longevity. This article concludes that none of the techniques are devoid of forensic potential, although much research is yet to be done. Ethical issues, including rights to privacy and against self-incrimination, are discussed. A discussion of legal issues concludes that current memory detection techniques do not yet meet United States standards of legal admissibility.
Detection of Fingerprints Based on Elemental Composition Using Micro-X-Ray Fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worley, C. G.; Wiltshire, S.; Miller, T. C.
A method was developed to detect fingerprints using a technique known as micro-X-ray fluorescence. The traditional method of detecting fingerprints involves treating the sample with certain powders, liquids, or vapors to add color to the fingerprint so that it can be easily seen and photographed for forensic purposes. This is known as contrast enhancement, and a multitude of chemical processing methods have been developed in the past century to render fingerprints visible. However, fingerprints present on certain substances such as fibrous papers and textiles, wood, leather, plastic, adhesives, and human skin can sometimes be difficult to detect by contrast enhancement.more » Children's fingerprints are also difficult to detect due to the absence of sebum on their skin, and detection of prints left on certain colored backgrounds can sometimes be problematic. Micro-X-ray fluorescence (MXRF) was studied here as a method to detect fingerprints based on chemical elements present in fingerprint residue. For example, salts such as sodium chloride and potassium chloride excreted in sweat are sometimes present in detectable quantities in fingerprints. We demonstrated that MXRF can be used to detect this sodium, potassium, and chlorine from such salts. Furthermore, using MXRF, each of these elements (and many other elements if present) can be detected as a function of location on a surface, so we were able to 'see' a fingerprint because these salts are deposited mainly along the patterns present in a fingerprint (traditionally called friction ridges in forensic science). MXRF is not a panacea for detecting all fingerprints; some prints will not contain enough detectable material to be 'seen'; however, determining an effective means of coloring a fingerprint with traditional contrast enhancement methods can sometimes be an arduous process with limited success. Thus, MXRF offers a possible alternative for detecting fingerprints, and it does not require any additional chemical treatment steps which can be time consuming and permanently alter the sample. Additionally, MXRF is noninvasive, so a fingerprint analyzed by this method is left pristine for examination by other methods (eg. DNA extraction). To the best of the author's knowledge, no studies have been published to date concerning the detection of fingerprints by micro-X-ray fluorescence. Some studies have been published in which other spectroscopic methods were employed to examine the chemical composition of fingerprints (eg. IR, SEM/EDX, and Auger), but very few papers discuss the actual detection and imaging of a complete fingerprint by any spectroscopic method. Thus, this work is unique.« less
A preliminary study of DTI Fingerprinting on stroke analysis.
Ma, Heather T; Ye, Chenfei; Wu, Jun; Yang, Pengfei; Chen, Xuhui; Yang, Zhengyi; Ma, Jingbo
2014-01-01
DTI (Diffusion Tensor Imaging) is a well-known MRI (Magnetic Resonance Imaging) technique which provides useful structural information about human brain. However, the quantitative measurement to physiological variation of subtypes of ischemic stroke is not available. An automatically quantitative method for DTI analysis will enhance the DTI application in clinics. In this study, we proposed a DTI Fingerprinting technology to quantitatively analyze white matter tissue, which was applied in stroke classification. The TBSS (Tract Based Spatial Statistics) method was employed to generate mask automatically. To evaluate the clustering performance of the automatic method, lesion ROI (Region of Interest) is manually drawn on the DWI images as a reference. The results from the DTI Fingerprinting were compared with those obtained from the reference ROIs. It indicates that the DTI Fingerprinting could identify different states of ischemic stroke and has promising potential to provide a more comprehensive measure of the DTI data. Further development should be carried out to improve DTI Fingerprinting technology in clinics.
High-resolution topograms of fingerprints using multiwavelength digital holography
NASA Astrophysics Data System (ADS)
Abeywickrema, Ujitha; Banerjee, Partha; Kota, Akash; Swiontek, Stephen E.; Lakhtakia, Akhlesh
2017-03-01
Fingerprint analysis is a popular identification technique due to the uniqueness of fingerprints and the convenience of recording them. The quality of a latent fingerprint on a surface can depend on various conditions, such as the time of the day, temperature, and the composition of sweat. We first developed latent fingerprints on transparent and blackened glass slides by depositing 1000-nm-thick columnar thin films (CTFs) of chalcogenide glass of nominal composition Ge28Sb12Se60. Then, we used transmission-/reflection-mode multiwavelength digital holography to construct the topograms of CTF-developed fingerprints on transparent/blackened glass slides. The two wavelengths chosen were 514.5 and 457.9 nm, yielding a synthetic wavelength of 4.1624 μm, which is sufficient to resolve pores of depths 1 to 2 μm. Thus, our method can be used to measure the level-3 details that are usually difficult to observe with most other techniques applied to latent fingerprints.
Advances in plant gene-targeted and functional markers: a review
2013-01-01
Public genomic databases have provided new directions for molecular marker development and initiated a shift in the types of PCR-based techniques commonly used in plant science. Alongside commonly used arbitrarily amplified DNA markers, other methods have been developed. Targeted fingerprinting marker techniques are based on the well-established practices of arbitrarily amplified DNA methods, but employ novel methodological innovations such as the incorporation of gene or promoter elements in the primers. These markers provide good reproducibility and increased resolution by the concurrent incidence of dominant and co-dominant bands. Despite their promising features, these semi-random markers suffer from possible problems of collision and non-homology analogous to those found with randomly generated fingerprints. Transposable elements, present in abundance in plant genomes, may also be used to generate fingerprints. These markers provide increased genomic coverage by utilizing specific targeted sites and produce bands that mostly seem to be homologous. The biggest drawback with most of these techniques is that prior genomic information about retrotransposons is needed for primer design, prohibiting universal applications. Another class of recently developed methods exploits length polymorphism present in arrays of multi-copy gene families such as cytochrome P450 and β-tubulin genes to provide cross-species amplification and transferability. A specific class of marker makes use of common features of plant resistance genes to generate bands linked to a given phenotype, or to reveal genetic diversity. Conserved DNA-based strategies have limited genome coverage and may fail to reveal genetic diversity, while resistance genes may be under specific evolutionary selection. Markers may also be generated from functional and/or transcribed regions of the genome using different gene-targeting approaches coupled with the use of RNA information. Such techniques have the potential to generate phenotypically linked functional markers, especially when fingerprints are generated from the transcribed or expressed region of the genome. It is to be expected that these recently developed techniques will generate larger datasets, but their shortcomings should also be acknowledged and carefully investigated. PMID:23406322
Subhani, Zuhaib; Daniel, Barbara; Frascione, Nunzianda
2018-05-25
This study evaluated the compatibility of the most common enhancement methods and lifting techniques with DNA profiling. Emphasis is placed on modern lifting techniques (i.e., gelatin lifters and Isomark™) and historical fingerprint lifts for which limited research has been previously conducted. A total of 180 fingerprints were deposited on a glass surface, enhanced, lifted, and processed for DNA typing. DNA could be extracted and profiled for all the powders and lifts tested and from both groomed fingerprints and natural prints with no significant difference in the percentage of profile recovered. DNA profiles could also be obtained from historical fingerprint lifts (79.2% of 72 lifts) with one or more alleles detected. These results demonstrate the compatibility between different powder/lift combinations and DNA profiling therefore augmenting the evidential value of fingerprints in forensic casework. © 2018 American Academy of Forensic Sciences.
Checking of individuality by DNA profiling.
Brdicka, R; Nürnberg, P
1993-08-25
A review of methods of DNA analysis used in forensic medicine for identification, paternity testing, etc. is provided. Among other techniques, DNA fingerprinting using different probes and polymerase chain reaction-based techniques such as amplified sequence polymorphisms and minisatellite variant repeat mapping are thoroughly described and both theoretical and practical aspects are discussed.
NASA Astrophysics Data System (ADS)
Darlow, Luke Nicholas; Connan, James
2015-11-01
Surface fingerprint scanners are limited to a two-dimensional representation of the fingerprint topography, and thus, are vulnerable to fingerprint damage, distortion, and counterfeiting. Optical coherence tomography (OCT) scanners are able to image (in three dimensions) the internal structure of the fingertip skin. Techniques for obtaining the internal fingerprint from OCT scans have since been developed. This research presents an internal fingerprint extraction algorithm designed to extract high-quality internal fingerprints from touchless OCT fingertip scans. Furthermore, it serves as a correlation study between surface and internal fingerprints. Provided the scanned region contains sufficient fingerprint information, correlation to the surface topography is shown to be good (74% have true matches). The cross-correlation of internal fingerprints (96% have true matches) is substantial that internal fingerprints can constitute a fingerprint database. The internal fingerprints' performance was also compared to the performance of cropped surface counterparts, to eliminate bias owing to information level present, showing that the internal fingerprints' performance is superior 63.6% of the time.
Fan, Chunlin; Deng, Jiewei; Yang, Yunyun; Liu, Junshan; Wang, Ying; Zhang, Xiaoqi; Fai, Kuokchiu; Zhang, Qingwen; Ye, Wencai
2013-10-01
An ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS) method integrating multi-ingredients determination and fingerprint analysis has been established for quality assessment and control of leaves from Ilex latifolia. The method possesses the advantages of speediness, efficiency, accuracy, and allows the multi-ingredients determination and fingerprint analysis in one chromatographic run within 13min. Multi-ingredients determination was performed based on the extracted ion chromatograms of the exact pseudo-molecular ions (with a 0.01Da window), and fingerprint analysis was performed based on the base peak chromatograms, obtained by negative-ion electrospray ionization QTOF-MS. The method validation results demonstrated our developed method possessing desirable specificity, linearity, precision and accuracy. The method was utilized to analyze 22 I. latifolia samples from different origins. The quality assessment was achieved by using both similarity analysis (SA) and principal component analysis (PCA), and the results from SA were consistent with those from PCA. Our experimental results demonstrate that the strategy integrated multi-ingredients determination and fingerprint analysis using UPLC-QTOF-MS technique is a useful approach for rapid pharmaceutical analysis, with promising prospects for the differentiation of origin, the determination of authenticity, and the overall quality assessment of herbal medicines. Copyright © 2013 Elsevier B.V. All rights reserved.
Indoor localization using FM radio and DTMB signals
NASA Astrophysics Data System (ADS)
Wu, H.; Wang, Q.; Zhao, Y.; Ma, X.; Yang, M.; Liu, B.; Tang, R.; Xu, X.
2016-07-01
Indoor localization systems based on Wi-Fi signal strength fingerprinting techniques are widely used in office buildings. However, a general problem of these systems pertains to Wi-Fi signal degradation due to the environmental factors. And also, these systems cannot be used in the environments not covered with Wi-Fi signals or the environments with only a single Wi-Fi access point. In this paper, a new indoor location fingerprinting system using both FM radio and Digital Television Terrestrial Multimedia Broadcasting (DTMB) signals is proposed. First, the indoor location fingerprinting using FM radio and DTMB signals is theoretically analyzed to confirm its feasibility. Then, a specially designed combined strength fingerprinting location algorithm is proposed for the location system, which is achieved on the USRP2 platform. Finally, the system is tested in a typical indoor environment. The theoretical analysis and the tests show that the indoor location fingerprinting system using FM radio and DTMB signals has a similar localization accuracy to the Wi-Fi signal strength fingerprinting location system, while it has a wider coverage area, a lower maintenance cost, and more stable signal strength, which makes it a practical indoor positioning method.
Fingerprinting of HLA class I genes for improved selection of unrelated bone marrow donors.
Martinelli, G; Farabegoli, P; Buzzi, M; Panzica, G; Zaccaria, A; Bandini, G; Calori, E; Testoni, N; Rosti, G; Conte, R; Remiddi, C; Salvucci, M; De Vivo, A; Tura, S
1996-02-01
The degree of matching of HLA genes between the selected donor and recipient is an important aspect of the selection of unrelated donors for allogeneic bone marrow transplantation (UBMT). The most sensitive methods currently used are serological typing of HLA class I genes, mixed lymphocyte culture (MLC), IEF and molecular genotyping of HLA class II genes by direct sequencing of PCR products. Serological typing of class I antigenes (A, B and C) fails to detect minor differences demonstrated by direct sequencing of DNA polymorphic regions. Molecular genotyping of HLA class I genes by DNA analysis is costly and work-intensive. To improve compatibility between donor and recipient, we have set up a new rapid and non-radioisotopic application of the 'fingerprinting PCR' technique for the analysis of the polymorphic second exon of the HLA class I A, B and C genes. This technique is based on the formation of specific patterns (PCR fingerprints) of homoduplexes and heteroduplexes between heterologous amplified DNA sequences. After an electrophoretic run on non-denaturing polyacrylamide gel, different HLA class I types give allele-specific banding patterns. HLA class I matching is performed, after the gel has been soaked in ethidium bromide or silver-stained, by visual comparison of patients' fingerprints with those of donors. Identity can be confirmed by mixing donor and recipient DNAs in an amplification cross-match. To assess the technique, 10 normal samples, 22 related allogeneic bone marrow transplanted pairs and 10 unrelated HLA-A and HLA-B serologically matched patient-donor pairs were analysed for HLA class I polymorphic regions. In all the related pairs and in 1/10 unrelated pairs, matched donor-recipient patterns were identified. This new application of PCR fingerprinting may confirm the HLA class I serological selection of unrelated marrow donors.
Imaging-based molecular barcoding with pixelated dielectric metasurfaces
NASA Astrophysics Data System (ADS)
Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N.; Kivshar, Yuri S.; Altug, Hatice
2018-06-01
Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices.
The FBI compression standard for digitized fingerprint images
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brislawn, C.M.; Bradley, J.N.; Onyshczak, R.J.
1996-10-01
The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the currentmore » status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.« less
FBI compression standard for digitized fingerprint images
NASA Astrophysics Data System (ADS)
Brislawn, Christopher M.; Bradley, Jonathan N.; Onyshczak, Remigius J.; Hopper, Thomas
1996-11-01
The FBI has formulated national standards for digitization and compression of gray-scale fingerprint images. The compression algorithm for the digitized images is based on adaptive uniform scalar quantization of a discrete wavelet transform subband decomposition, a technique referred to as the wavelet/scalar quantization method. The algorithm produces archival-quality images at compression ratios of around 15 to 1 and will allow the current database of paper fingerprint cards to be replaced by digital imagery. A compliance testing program is also being implemented to ensure high standards of image quality and interchangeability of data between different implementations. We will review the current status of the FBI standard, including the compliance testing process and the details of the first-generation encoder.
ESDA®-Lite collection of DNA from latent fingerprints on documents.
Plaza, Dane T; Mealy, Jamia L; Lane, J Nicholas; Parsons, M Neal; Bathrick, Abigail S; Slack, Donia P
2015-05-01
The ability to detect and non-destructively collect biological samples for DNA processing would benefit the forensic community by preserving the physical integrity of evidentiary items for more thorough evaluations by other forensic disciplines. The Electrostatic Detection Apparatus (ESDA®) was systemically evaluated for its ability to non-destructively collect DNA from latent fingerprints deposited on various paper substrates for short tandem repeat (STR) DNA profiling. Fingerprints were deposited on a variety of paper substrates that included resume paper, cotton paper, magazine paper, currency, copy paper, and newspaper. Three DNA collection techniques were performed: ESDA collection, dry swabbing, and substrate cutting. Efficacy of each collection technique was evaluated by the quantity of DNA present in each sample and the percent profile generated by each sample. Both the ESDA and dry swabbing non-destructive sampling techniques outperformed the destructive methodology of substrate cutting. A greater number of full profiles were generated from samples collected with the non-destructive dry swabbing collection technique than were generated from samples collected with the ESDA; however, the ESDA also allowed the user to visualize the area of interest while non-destructively collecting the biological material. The ability to visualize the biological material made sampling straightforward and eliminated the need for numerous, random swabbings/cuttings. Based on these results, the evaluated non-destructive ESDA collection technique has great potential for real-world forensic implementation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Biochemistry and Molecular Biology Techniques for Person Characterization
ERIC Educational Resources Information Center
Herrero, Salvador; Ivorra, Jose Luis; Garcia-Sogo, Magdalena; Martinez-Cortina, Carmen
2008-01-01
Using the traditional serological tests and the most novel techniques for DNA fingerprinting, forensic scientists scan different traits that vary from person to person and use the data to include or exclude suspects based on matching with the evidence obtained in a criminal case. Although the forensic application of these methods is well known,…
Santos, Rui; Pombo, Nuno; Flórez-Revuelta, Francisco
2018-01-01
An increase in the accuracy of identification of Activities of Daily Living (ADL) is very important for different goals of Enhanced Living Environments and for Ambient Assisted Living (AAL) tasks. This increase may be achieved through identification of the surrounding environment. Although this is usually used to identify the location, ADL recognition can be improved with the identification of the sound in that particular environment. This paper reviews audio fingerprinting techniques that can be used with the acoustic data acquired from mobile devices. A comprehensive literature search was conducted in order to identify relevant English language works aimed at the identification of the environment of ADLs using data acquired with mobile devices, published between 2002 and 2017. In total, 40 studies were analyzed and selected from 115 citations. The results highlight several audio fingerprinting techniques, including Modified discrete cosine transform (MDCT), Mel-frequency cepstrum coefficients (MFCC), Principal Component Analysis (PCA), Fast Fourier Transform (FFT), Gaussian mixture models (GMM), likelihood estimation, logarithmic moduled complex lapped transform (LMCLT), support vector machine (SVM), constant Q transform (CQT), symmetric pairwise boosting (SPB), Philips robust hash (PRH), linear discriminant analysis (LDA) and discrete cosine transform (DCT). PMID:29315232
NASA Astrophysics Data System (ADS)
Luthra, Deepali; Kumar, Sacheen
2018-05-01
Fingerprints are the very important evidence at the crime scene which must be developed clearly with shortest duration of time to solve the case. Metal oxide nanoparticles could be the mean to develop the latent fingerprints. Zinc oxide and Tin Oxide Nanoparticles were prepared by using chemical precipitation technique which were dried and characterized by X-ray diffraction, UV-Visible spectroscopy and FTIR. The size of zinc oxide crystallite was found to be 14.75 nm with minimum reflectance at 360 nm whereas tin oxide have the size of 90 nm and reflectance at minimum level 321 nm. By using these powdered samples on glass, plastic and glossy cardboard, latent fingerprints were developed. Zinc oxide was found to be better candidate than tin oxide for the fingerprint development on all the three types of substrates.
Johnson, LeeAnn K; Brown, Mary B; Carruthers, Ethan A; Ferguson, John A; Dombek, Priscilla E; Sadowsky, Michael J
2004-08-01
A horizontal, fluorophore-enhanced, repetitive extragenic palindromic-PCR (rep-PCR) DNA fingerprinting technique (HFERP) was developed and evaluated as a means to differentiate human from animal sources of Escherichia coli. Box A1R primers and PCR were used to generate 2,466 rep-PCR and 1,531 HFERP DNA fingerprints from E. coli strains isolated from fecal material from known human and 12 animal sources: dogs, cats, horses, deer, geese, ducks, chickens, turkeys, cows, pigs, goats, and sheep. HFERP DNA fingerprinting reduced within-gel grouping of DNA fingerprints and improved alignment of DNA fingerprints between gels, relative to that achieved using rep-PCR DNA fingerprinting. Jackknife analysis of the complete rep-PCR DNA fingerprint library, done using Pearson's product-moment correlation coefficient, indicated that animal and human isolates were assigned to the correct source groups with an 82.2% average rate of correct classification. However, when only unique isolates were examined, isolates from a single animal having a unique DNA fingerprint, Jackknife analysis showed that isolates were assigned to the correct source groups with a 60.5% average rate of correct classification. The percentages of correctly classified isolates were about 15 and 17% greater for rep-PCR and HFERP, respectively, when analyses were done using the curve-based Pearson's product-moment correlation coefficient, rather than the band-based Jaccard algorithm. Rarefaction analysis indicated that, despite the relatively large size of the known-source database, genetic diversity in E. coli was very great and is most likely accounting for our inability to correctly classify many environmental E. coli isolates. Our data indicate that removal of duplicate genotypes within DNA fingerprint libraries, increased database size, proper methods of statistical analysis, and correct alignment of band data within and between gels improve the accuracy of microbial source tracking methods.
NASA Astrophysics Data System (ADS)
Hildebrandt, Mario; Dittmann, Jana; Vielhauer, Claus; Leich, Marcus
2011-11-01
The preventive application of automated latent fingerprint acquisition devices can enhance the Homeland Defence, e.g. by improving the border security. Here, contact-less optical acquisition techniques for the capture of traces are subject to research; chromatic white light sensors allow for multi-mode operation using coarse or detailed scans. The presence of potential fingerprints could be detected using fast coarse scans. Those Regions-of- Interest can be acquired afterwards with high-resolution detailed scans to allow for a verification or identification of individuals. An acquisition and analysis of fingerprint traces on different objects that are imported or pass borders might be a great enhancement for security. Additionally, if suspicious objects require a further investigation, an initial securing of potential fingerprints could be very useful. In this paper we show current research results for the coarse detection of fingerprints to prepare the detailed acquisition from various surface materials that are relevant for preventive applications.
Multiparametric estimation of brain hemodynamics with MR fingerprinting ASL.
Su, Pan; Mao, Deng; Liu, Peiying; Li, Yang; Pinho, Marco C; Welch, Babu G; Lu, Hanzhang
2017-11-01
Assessment of brain hemodynamics without exogenous contrast agents is of increasing importance in clinical applications. This study aims to develop an MR perfusion technique that can provide noncontrast and multiparametric estimation of hemodynamic markers. We devised an arterial spin labeling (ASL) method based on the principle of MR fingerprinting (MRF), referred to as MRF-ASL. By taking advantage of the rich information contained in MRF sequence, up to seven hemodynamic parameters can be estimated concomitantly. Feasibility demonstration, flip angle optimization, comparison with Look-Locker ASL, reproducibility test, sensitivity to hypercapnia challenge, and initial clinical application in an intracranial steno-occlusive process, Moyamoya disease, were performed to evaluate this technique. Magnetic resonance fingerprinting ASL provided estimation of up to seven parameters, including B1+, tissue T 1 , cerebral blood flow (CBF), tissue bolus arrival time (BAT), pass-through arterial BAT, pass-through blood volume, and pass-through blood travel time. Coefficients of variation of the estimated parameters ranged from 0.2 to 9.6%. Hypercapnia resulted in an increase in CBF by 57.7%, and a decrease in BAT by 13.7 and 24.8% in tissue and vessels, respectively. Patients with Moyamoya disease showed diminished CBF and lengthened BAT that could not be detected with regular ASL. Magnetic resonance fingerprinting ASL is a promising technique for noncontrast, multiparametric perfusion assessment. Magn Reson Med 78:1812-1823, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Palazón, L; Navas, A
2017-06-01
Information on sediment contribution and transport dynamics from the contributing catchments is needed to develop management plans to tackle environmental problems related with effects of fine sediment as reservoir siltation. In this respect, the fingerprinting technique is an indirect technique known to be valuable and effective for sediment source identification in river catchments. Large variability in sediment delivery was found in previous studies in the Barasona catchment (1509 km 2 , Central Spanish Pyrenees). Simulation results with SWAT and fingerprinting approaches identified badlands and agricultural uses as the main contributors to sediment supply in the reservoir. In this study the <63 μm sediment fraction from the surface reservoir sediments (2 cm) are investigated following the fingerprinting procedure to assess how the use of different statistical procedures affects the amounts of source contributions. Three optimum composite fingerprints were selected to discriminate between source contributions based in land uses/land covers from the same dataset by the application of (1) discriminant function analysis; and its combination (as second step) with (2) Kruskal-Wallis H-test and (3) principal components analysis. Source contribution results were different between assessed options with the greatest differences observed for option using #3, including the two step process: principal components analysis and discriminant function analysis. The characteristics of the solutions by the applied mixing model and the conceptual understanding of the catchment showed that the most reliable solution was achieved using #2, the two step process of Kruskal-Wallis H-test and discriminant function analysis. The assessment showed the importance of the statistical procedure used to define the optimum composite fingerprint for sediment fingerprinting applications. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fu, Haiyan; Fan, Yao; Zhang, Xu; Lan, Hanyue; Yang, Tianming; Shao, Mei; Li, Sihan
2015-01-01
As an effective method, the fingerprint technique, which emphasized the whole compositions of samples, has already been used in various fields, especially in identifying and assessing the quality of herbal medicines. High-performance liquid chromatography (HPLC) and near-infrared (NIR), with their unique characteristics of reliability, versatility, precision, and simple measurement, played an important role among all the fingerprint techniques. In this paper, a supervised pattern recognition method based on PLSDA algorithm by HPLC and NIR has been established to identify the information of Hibiscus mutabilis L. and Berberidis radix, two common kinds of herbal medicines. By comparing component analysis (PCA), linear discriminant analysis (LDA), and particularly partial least squares discriminant analysis (PLSDA) with different fingerprint preprocessing of NIR spectra variables, PLSDA model showed perfect functions on the analysis of samples as well as chromatograms. Most important, this pattern recognition method by HPLC and NIR can be used to identify different collection parts, collection time, and different origins or various species belonging to the same genera of herbal medicines which proved to be a promising approach for the identification of complex information of herbal medicines. PMID:26345990
H.264/AVC digital fingerprinting based on spatio-temporal just noticeable distortion
NASA Astrophysics Data System (ADS)
Ait Saadi, Karima; Bouridane, Ahmed; Guessoum, Abderrezak
2014-01-01
This paper presents a robust adaptive embedding scheme using a modified Spatio-Temporal noticeable distortion (JND) model that is designed for tracing the distribution of the H.264/AVC video content and protecting them from unauthorized redistribution. The Embedding process is performed during coding process in selected macroblocks type Intra 4x4 within I-Frame. The method uses spread-spectrum technique in order to obtain robustness against collusion attacks and the JND model to dynamically adjust the embedding strength and control the energy of the embedded fingerprints so as to ensure their imperceptibility. Linear and non linear collusion attacks are performed to show the robustness of the proposed technique against collusion attacks while maintaining visual quality unchanged.
High Resolution Ultrasonic Method for 3D Fingerprint Representation in Biometrics
NASA Astrophysics Data System (ADS)
Maev, R. Gr.; Bakulin, E. Y.; Maeva, E. Y.; Severin, F. M.
Biometrics is an important field which studies different possible ways of personal identification. Among a number of existing biometric techniques fingerprint recognition stands alone - because very large database of fingerprints has already been acquired. Also, fingerprints are an important evidence that can be collected at a crime scene. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. Ultrasonic method of fingerprint imaging was originally introduced over a decade as the mapping of the reflection coefficient at the interface between the finger and a covering plate and has shown very good reliability and free from imperfections of previous two methods. This work introduces a newer development of the ultrasonic fingerprint imaging, focusing on the imaging of the internal structures of fingerprints (including sweat pores) with raw acoustic resolution of about 500 dpi (0.05 mm) using a scanning acoustic microscope to obtain images and acoustic data in the form of 3D data array. C-scans from different depths inside the fingerprint area of fingers of several volunteers were obtained and showed good contrast of ridges-and-valleys patterns and practically exact correspondence to the standard ink-and-paper prints of the same areas. Important feature reveled on the acoustic images was the clear appearance of the sweat pores, which could provide additional means of identification.
Banas, A; Banas, K; Breese, M B H; Loke, J; Lim, S K
2014-07-01
Fingerprint evidence offers great value to criminal investigations since it is an internationally recognized and established means of human identification. With recent advances in modern technology, scientists have started analyzing not only the ridge patterns of fingerprints but also substances which can be found within them. The aim of this work was to determine whether Fourier transform infrared (FTIR) spectromicroscopy could be used to detect contamination in a fingerprint which was dusted with powder (a technique already recognized as an effective and reliable method for developing latent fingerprints) and subsequently lifted off with adhesive tape. Explosive materials (pentaerythritol tetranitrate, C-4, TNT) and noncontrolled substances (sugar, aspirin) were used to prepare contaminated fingerprints on various substrates. Freshly deposited fingermarks with powders which were lifted off with adhesive tapes (provided by Singapore Police Force) were analyzed using a Bruker Hyperion 2000 microscope at the ISMI beamline (Singapore Synchrotron Light Source) with an attenuated total reflection objective. FTIR spectroscopy is a nondestructive technique which requires almost no sample preparation. Further, the fingerprint under analysis remains in pristine condition, allowing subsequent analysis if necessary. All analyzed substances were successfully distinguished using their FTIR spectra in powdered and lifted fingerprints. This method has the potential to significantly impact forensic science by greatly enhancing the information that can be obtained from the study of fingerprints.
Score-Level Fusion of Phase-Based and Feature-Based Fingerprint Matching Algorithms
NASA Astrophysics Data System (ADS)
Ito, Koichi; Morita, Ayumi; Aoki, Takafumi; Nakajima, Hiroshi; Kobayashi, Koji; Higuchi, Tatsuo
This paper proposes an efficient fingerprint recognition algorithm combining phase-based image matching and feature-based matching. In our previous work, we have already proposed an efficient fingerprint recognition algorithm using Phase-Only Correlation (POC), and developed commercial fingerprint verification units for access control applications. The use of Fourier phase information of fingerprint images makes it possible to achieve robust recognition for weakly impressed, low-quality fingerprint images. This paper presents an idea of improving the performance of POC-based fingerprint matching by combining it with feature-based matching, where feature-based matching is introduced in order to improve recognition efficiency for images with nonlinear distortion. Experimental evaluation using two different types of fingerprint image databases demonstrates efficient recognition performance of the combination of the POC-based algorithm and the feature-based algorithm.
Ahmed, Towfiq; Haraldsen, Jason T; Rehr, John J; Di Ventra, Massimiliano; Schuller, Ivan; Balatsky, Alexander V
2014-03-28
Nanopore-based sequencing has demonstrated a significant potential for the development of fast, accurate, and cost-efficient fingerprinting techniques for next generation molecular detection and sequencing. We propose a specific multilayered graphene-based nanopore device architecture for the recognition of single biomolecules. Molecular detection and analysis can be accomplished through the detection of transverse currents as the molecule or DNA base translocates through the nanopore. To increase the overall signal-to-noise ratio and the accuracy, we implement a new 'multi-point cross-correlation' technique for identification of DNA bases or other molecules on the single molecular level. We demonstrate that the cross-correlations between each nanopore will greatly enhance the transverse current signal for each molecule. We implement first-principles transport calculations for DNA bases surveyed across a multilayered graphene nanopore system to illustrate the advantages of the proposed geometry. A time-series analysis of the cross-correlation functions illustrates the potential of this method for enhancing the signal-to-noise ratio. This work constitutes a significant step forward in facilitating fingerprinting of single biomolecules using solid state technology.
Cheng, Yezeng; Larin, Kirill V
2006-12-20
Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.
NASA Astrophysics Data System (ADS)
Cheng, Yezeng; Larin, Kirill V.
2006-12-01
Fingerprint recognition is one of the most widely used methods of biometrics. This method relies on the surface topography of a finger and, thus, is potentially vulnerable for spoofing by artificial dummies with embedded fingerprints. In this study, we applied the optical coherence tomography (OCT) technique to distinguish artificial materials commonly used for spoofing fingerprint scanning systems from the real skin. Several artificial fingerprint dummies made from household cement and liquid silicone rubber were prepared and tested using a commercial fingerprint reader and an OCT system. While the artificial fingerprints easily spoofed the commercial fingerprint reader, OCT images revealed the presence of them at all times. We also demonstrated that an autocorrelation analysis of the OCT images could be potentially used in automatic recognition systems.
NASA Astrophysics Data System (ADS)
Cekli, Hakki Ergun; Nije, Jelle; Ypma, Alexander; Bastani, Vahid; Sonntag, Dag; Niesing, Henk; Zhang, Linmiao; Ullah, Zakir; Subramony, Venky; Somasundaram, Ravin; Susanto, William; Matsunobu, Masazumi; Johnson, Jeff; Tabery, Cyrus; Lin, Chenxi; Zou, Yi
2018-03-01
In addition to lithography process and equipment induced variations, processes like etching, annealing, film deposition and planarization exhibit variations, each having their own intrinsic characteristics and leaving an effect, a `fingerprint', on the wafers. With ever tighter requirements for CD and overlay, controlling these process induced variations is both increasingly important and increasingly challenging in advanced integrated circuit (IC) manufacturing. For example, the on-product overlay (OPO) requirement for future nodes is approaching <3nm, requiring the allowable budget for process induced variance to become extremely small. Process variance control is seen as an bottleneck to further shrink which drives the need for more sophisticated process control strategies. In this context we developed a novel `computational process control strategy' which provides the capability of proactive control of each individual wafer with aim to maximize the yield, without introducing a significant impact on metrology requirements, cycle time or productivity. The complexity of the wafer process is approached by characterizing the full wafer stack building a fingerprint library containing key patterning performance parameters like Overlay, Focus, etc. Historical wafer metrology is decomposed into dominant fingerprints using Principal Component Analysis. By associating observed fingerprints with their origin e.g. process steps, tools and variables, we can give an inline assessment of the strength and origin of the fingerprints on every wafer. Once the fingerprint library is established, a wafer specific fingerprint correction recipes can be determined based on its processing history. Data science techniques are used in real-time to ensure that the library is adaptive. To realize this concept, ASML TWINSCAN scanners play a vital role with their on-board full wafer detection and exposure correction capabilities. High density metrology data is created by the scanner for each wafer and on every layer during the lithography steps. This metrology data will be used to obtain the process fingerprints. Also, the per exposure and per wafer correction potential of the scanners will be utilized for improved patterning control. Additionally, the fingerprint library will provide early detection of excursions for inline root cause analysis and process optimization guidance.
Infrared spectroscopic imaging for noninvasive detection of latent fingerprints.
Crane, Nicole J; Bartick, Edward G; Perlman, Rebecca Schwartz; Huffman, Scott
2007-01-01
The capability of Fourier transform infrared (FTIR) spectroscopic imaging to provide detailed images of unprocessed latent fingerprints while also preserving important trace evidence is demonstrated. Unprocessed fingerprints were developed on various porous and nonporous substrates. Data-processing methods used to extract the latent fingerprint ridge pattern from the background material included basic infrared spectroscopic band intensities, addition and subtraction of band intensity measurements, principal components analysis (PCA) and calculation of second derivative band intensities, as well as combinations of these various techniques. Additionally, trace evidence within the fingerprints was recovered and identified.
Li, Guoxiao; Zhang, Rongbiao; Yang, Ning; Yin, Changsheng; Wei, Mingji; Zhang, Yecheng; Sun, Jian
2018-06-01
To overcome the drawbacks such as low automation and high cost, an approach for cell viability online detection is proposed, based on the extracted lensfree cell diffraction fingerprint characteristics. The cell fingerprints are acquired by a constructed large field-of-view (FOV) diffraction imaging platform without any lenses. The approach realizes distinguishing live and dead cells online and calculating cell viability index based on the number of live cells. With theoretical analysis and simulation, diffraction fingerprints of cells with different morphology are simulated and two characteristics are discovered to be able to reflect cell viability status effectively. Two parameters, fringe intensity contrast (FIC) and fringe dispersion (FD), are defined to quantify these two characteristics. They are verified to be reliable to identify live cells. In a cytotoxicity assay of different methyl mercury concentration on BRL cells, the proposed approach is used to detect cell viability. MTT method is also employed and the results of correlational analysis and Bland-Altman analysis prove the validity of the proposed approach. By comparison, it can be revealed that the proposed approach has some advantages over other present techniques. Therefore it may be widely used as a cell viability measurement method in drug screening, nutritional investigation and cell toxicology studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Collusion-resistant multimedia fingerprinting: a unified framework
NASA Astrophysics Data System (ADS)
Wu, Min; Trappe, Wade; Wang, Z. Jane; Liu, K. J. Ray
2004-06-01
Digital fingerprints are unique labels inserted in different copies of the same content before distribution. Each digital fingerprint is assigned to an inteded recipient, and can be used to trace the culprits who use their content for unintended purposes. Attacks mounted by multiple users, known as collusion attacks, provide a cost-effective method for attenuating the identifying fingerprint from each coluder, thus collusion poses a reeal challenge to protect the digital media data and enforce usage policies. This paper examines a few major design methodologies for collusion-resistant fingerprinting of multimedia, and presents a unified framework that helps highlight the common issues and the uniqueness of different fingerprinting techniques.
Raman chemical imaging of explosive-contaminated fingerprints.
Emmons, E D; Tripathi, A; Guicheteau, J A; Christesen, S D; Fountain, A W
2009-11-01
Raman chemical imaging (RCI) has been used to detect and identify explosives in contaminated fingerprints. Bright-field imaging is used to identify regions of interest within a fingerprint, which can then be examined to determine their chemical composition using RCI and fluorescence imaging. Results are presented where explosives in contaminated fingerprints are identified and their spatial distributions are obtained. Identification of explosives is obtained using Pearson's cosine cross-correlation technique using the characteristic region (500-1850 cm(-1)) of the spectrum. This study shows the ability to identify explosives nondestructively so that the fingerprint remains intact for further biometric analysis. Prospects for forensic examination of contaminated fingerprints are discussed.
NASA Astrophysics Data System (ADS)
West, Matthew J.; Went, Michael J.
2009-01-01
The application of powders to fingerprints has long been established as an effective and reliable method for developing latent fingerprints. Fingerprints developed in situ at a crime scene routinely undergo lifting with specialist tapes and are then stored in evidence bags to allow secure transit and also to preserve the chain of evidence. In a previous study we have shown that exogenous material within a fingerprint can be detected using Raman spectroscopy following development with powders and lifting with adhesive tapes. Other reports have detailed the use of Raman spectroscopy to the detection of drugs of abuse in latent fingerprints including cyanoacrylate-fumed fingerprints. This study involves the application of Raman spectroscopy for the analysis of drugs of abuse in latent fingerprints for fingerprints that had been treated with powders and also subsequently lifted with adhesive tapes. Samples of seized ecstasy, cocaine, ketamine and amphetamine were supplied by East Sussex Police and by the TICTAC unit at St. Georges Hospital Tooting. Contaminated fingerprints were deposited on clean glass slides. The application of aluminium or iron based powders to contaminated fingerprints did not interfere with the Raman spectra obtained for the contaminants. Contaminated fingerprints developed with powders and then lifted with lifting tapes were also examined. The combination of these two techniques did not interfere with the successful analysis. The lifting process was repeated using hinge lifters. As the hinge lifters exhibited strong Raman bands the spectroscopic analysis was more complex and an increase in the number of exposures to the detector allowed for improved clarification. Spectral subtraction was performed to remove peaks due to the hinge lifters using OMNIC software. Raman spectra of developed and lifted fingerprints recorded through evidence bags were obtained and it was found that the detection process was not compromised. Although the application of powders did not interfere with the detection process the time taken to locate the contaminant was increased due to the physical presence of more material within the fingerprint.
West, Matthew J; Went, Michael J
2009-01-01
The application of powders to fingerprints has long been established as an effective and reliable method for developing latent fingerprints. Fingerprints developed in situ at a crime scene routinely undergo lifting with specialist tapes and are then stored in evidence bags to allow secure transit and also to preserve the chain of evidence. In a previous study we have shown that exogenous material within a fingerprint can be detected using Raman spectroscopy following development with powders and lifting with adhesive tapes. Other reports have detailed the use of Raman spectroscopy to the detection of drugs of abuse in latent fingerprints including cyanoacrylate-fumed fingerprints. This study involves the application of Raman spectroscopy for the analysis of drugs of abuse in latent fingerprints for fingerprints that had been treated with powders and also subsequently lifted with adhesive tapes. Samples of seized ecstasy, cocaine, ketamine and amphetamine were supplied by East Sussex Police and by the TICTAC unit at St. Georges Hospital Tooting. Contaminated fingerprints were deposited on clean glass slides. The application of aluminium or iron based powders to contaminated fingerprints did not interfere with the Raman spectra obtained for the contaminants. Contaminated fingerprints developed with powders and then lifted with lifting tapes were also examined. The combination of these two techniques did not interfere with the successful analysis. The lifting process was repeated using hinge lifters. As the hinge lifters exhibited strong Raman bands the spectroscopic analysis was more complex and an increase in the number of exposures to the detector allowed for improved clarification. Spectral subtraction was performed to remove peaks due to the hinge lifters using OMNIC software. Raman spectra of developed and lifted fingerprints recorded through evidence bags were obtained and it was found that the detection process was not compromised. Although the application of powders did not interfere with the detection process the time taken to locate the contaminant was increased due to the physical presence of more material within the fingerprint.
An INS/WiFi Indoor Localization System Based on the Weighted Least Squares.
Chen, Jian; Ou, Gang; Peng, Ao; Zheng, Lingxiang; Shi, Jianghong
2018-05-07
For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m.
An INS/WiFi Indoor Localization System Based on the Weighted Least Squares
Chen, Jian; Ou, Gang; Zheng, Lingxiang; Shi, Jianghong
2018-01-01
For smartphone indoor localization, an INS/WiFi hybrid localization system is proposed in this paper. Acceleration and angular velocity are used to estimate step lengths and headings. The problem with INS is that positioning errors grow with time. Using radio signal strength as a fingerprint is a widely used technology. The main problem with fingerprint matching is mismatching due to noise. Taking into account the different shortcomings and advantages, inertial sensors and WiFi from smartphones are integrated into indoor positioning. For a hybrid localization system, pre-processing techniques are used to enhance the WiFi signal quality. An inertial navigation system limits the range of WiFi matching. A Multi-dimensional Dynamic Time Warping (MDTW) is proposed to calculate the distance between the measured signals and the fingerprint in the database. A MDTW-based weighted least squares (WLS) is proposed for fusing multiple fingerprint localization results to improve positioning accuracy and robustness. Using four modes (calling, dangling, handheld and pocket), we carried out walking experiments in a corridor, a study room and a library stack room. Experimental results show that average localization accuracy for the hybrid system is about 2.03 m. PMID:29735960
Jiang, Hua; Peng, Jin; Zhou, Zhi-yuan; Duan, Yu; Chen, Wei; Cai, Bin; Yang, Hao; Zhang, Wei
2010-09-01
Spinal cord injury (SCI) is a complex trauma that consists of multiple pathological mechanisms involving cytotoxic, oxidation stress and immune-endocrine. This study aimed to establish plasma metabonomics fingerprinting atlas for SCI using (1)H nuclear magnetic resonance (NMR) based metabonomics methodology and principal component analysis techniques. Nine Sprague-Dawley (SD) male rats were randomly divided into SCI, normal and sham-operation control groups. Plasma samples were collected for (1)H NMR spectroscopy 3 days after operation. The NMR data were analyzed using principal component analysis technique with Matlab software. Metabonomics analysis was able to distinguish the three groups (SCI, normal control, sham-operation). The fingerprinting atlas indicated that, compared with those without SCI, the SCI group demonstrated the following characteristics with regard to second principal component: it is made up of fatty acids, myc-inositol, arginine, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), triglyceride (TG), glucose, and 3-methyl-histamine. The data indicated that SCI results in several significant changes in plasma metabolism early on and that a metabonomics approach based on (1)H NMR spectroscopy can provide a metabolic profile comprising several metabolite classes and allow for relative quantification of such changes. The results also provided support for further development and application of metabonomics technologies for studying SCI and for the utilization of multivariate models for classifying the extent of trauma within an individual.
NASA Astrophysics Data System (ADS)
Rao, K. S.; Chaudhary, A. K.; Yehya, F.; Kumar, A. Sudheer
2015-08-01
We report a comparative study of acoustic fingerprints of nitromethane, nitrobenzene and some nitro rich triazole derivatives using pulsed photoacoustic technique. UV 266 nm wavelength i.e. Fourth harmonic of Q-switched Nd: YAG laser having pulse duration 7 ns and 10 Hz repetition rate is employed to record the time resolved PA spectrum. The PA fingerprint is produced due to absorption of incident UV light by molecule itself and photo dissociation of nitromethane and nitrobenzene at room temperature while in case of triazole it is attributed to the combination of thermal and photo-dissociation process. The entire dissociation process follows the root of cleavage of C-NO2 bond to produce free NO, NO2 and other by product gases due to π∗ ← n excitation. In addition, we have studied the thermal stability criteria of nitro rich triazoles based on the quality factor of acoustic resonance frequencies of the PA cavity. We have also studied the effect of data acquisition time to ascertain the decay behavior of HEMs samples.
Rao, K S; Chaudhary, A K; Yehya, F; Kumar, A Sudheer
2015-08-05
We report a comparative study of acoustic fingerprints of nitromethane, nitrobenzene and some nitro rich triazole derivatives using pulsed photoacoustic technique. UV 266 nm wavelength i.e. Fourth harmonic of Q-switched Nd: YAG laser having pulse duration 7 ns and 10 Hz repetition rate is employed to record the time resolved PA spectrum. The PA fingerprint is produced due to absorption of incident UV light by molecule itself and photo dissociation of nitromethane and nitrobenzene at room temperature while in case of triazole it is attributed to the combination of thermal and photo-dissociation process. The entire dissociation process follows the root of cleavage of C-NO₂ bond to produce free NO, NO₂ and other by product gases due to π(∗)←n excitation. In addition, we have studied the thermal stability criteria of nitro rich triazoles based on the quality factor of acoustic resonance frequencies of the PA cavity. We have also studied the effect of data acquisition time to ascertain the decay behavior of HEMs samples. Copyright © 2015 Elsevier B.V. All rights reserved.
Objective high Resolution Analysis over Complex Terrain with VERA
NASA Astrophysics Data System (ADS)
Mayer, D.; Steinacker, R.; Steiner, A.
2012-04-01
VERA (Vienna Enhanced Resolution Analysis) is a model independent, high resolution objective analysis of meteorological fields over complex terrain. This system consists of a special developed quality control procedure and a combination of an interpolation and a downscaling technique. Whereas the so called VERA-QC is presented at this conference in the contribution titled "VERA-QC, an approved Data Quality Control based on Self-Consistency" by Andrea Steiner, this presentation will focus on the method and the characteristics of the VERA interpolation scheme which enables one to compute grid point values of a meteorological field based on irregularly distributed observations and topography related aprior knowledge. Over a complex topography meteorological fields are not smooth in general. The roughness which is induced by the topography can be explained physically. The knowledge about this behavior is used to define the so called Fingerprints (e.g. a thermal Fingerprint reproducing heating or cooling over mountainous terrain or a dynamical Fingerprint reproducing positive pressure perturbation on the windward side of a ridge) under idealized conditions. If the VERA algorithm recognizes patterns of one or more Fingerprints at a few observation points, the corresponding patterns are used to downscale the meteorological information in a greater surrounding. This technique allows to achieve an analysis with a resolution much higher than the one of the observational network. The interpolation of irregularly distributed stations to a regular grid (in space and time) is based on a variational principle applied to first and second order spatial and temporal derivatives. Mathematically, this can be formulated as a cost function that is equivalent to the penalty function of a thin plate smoothing spline. After the analysis field has been divided into the Fingerprint components and the unexplained part respectively, the requirement of a smooth distribution is applied to the latter component only (the Fingerprint field is rough by definition). In order to obtain the final analysis field, the unexplained component has to be combined with the weighted Fingerprint patterns. Operationally, VERA is carried out at our Department on an hourly basis analyzing temperature measurements, pressure, wind and precipitation observations for several domains of the whole world. VERA analyses are used for nowcasting purposes, for establishing climate databases and model verification. Furthermore, VERA can be interesting for everyone who possesses a PC but does not have access to a complex data assimilation system which is in general only available at numerical weather prediction centers.
Cuadros-Rodríguez, Luis; Ruiz-Samblás, Cristina; Valverde-Som, Lucia; Pérez-Castaño, Estefanía; González-Casado, Antonio
2016-02-25
Fingerprinting methods describe a variety of analytical methods that provide analytical signals related to the composition of foodstuffs in a non-selective way such as by collecting a spectrum or a chromatogram. Mathematical processing of the information in such fingerprints may allow the characterisation and/or authentication of foodstuffs. In this context, the particular meaning of 'fingerprinting', in conjunction with 'profiling', is different from the original meanings used in metabolomics. This fact has produced some confusion with the use of these terms in analytical papers. Researchers coming from the metabolomic field could use 'profiling' or 'fingerprinting' on a different way to researchers who are devoted to food science. The arrival of an eclectic discipline, named 'foodomics' has not been enough to allay this terminological problem, since the authors keep on using the terms with both meanings. Thus, a first goal of this tutorial is to clarify the difference between both terms. In addition, the chemical approaches for food authentication, i.e., chemical markers, component profiling and instrumental fingerprinting, have been described. A new term, designated as 'food identitation', has been introduced in order to complete the life cycle of the chemical-based food authentication process. Chromatographic fingerprinting has been explained in detail and some strategies which could be applied has been clarified and discussed. Particularly, the strategies for chromatographic signals acquisition and chromatographic data handling are unified in a single framework. Finally, an overview about the applications of chromatographic (GC and LC) fingerprints in food authentication using different chemometric techniques has been included. Copyright © 2016 Elsevier B.V. All rights reserved.
Fatty Acid Structure and Degradation Analysis in Fingerprint Residues
NASA Astrophysics Data System (ADS)
Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter
2016-09-01
GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl- N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints.
Fatty Acid Structure and Degradation Analysis in Fingerprint Residues.
Pleik, Stefanie; Spengler, Bernhard; Schäfer, Thomas; Urbach, Dieter; Luhn, Steven; Kirsch, Dieter
2016-09-01
GC-MS investigations were carried out to elucidate the aging behavior of unsaturated fatty acids in fingerprint residues and to identify their degradation products in aged samples. For this purpose, a new sample preparation technique for fingerprint residues was developed that allows producing N-methyl-N-trimethylsilyl-trifluoroacetamide (MSTFA) derivatives of the analyzed unsaturated fatty acids and their degradation products. MSTFA derivatization catalyzed by iodotrimethylsilane enables the reliable identification of aldehydes and oxoacids as characteristic MSTFA derivatives in GCMS. The obtained results elucidate the degradation pathway of unsaturated fatty acids. Our study of aged fingerprint residues reveals that decanal is the main degradation product of the observed unsaturated fatty acids. Furthermore, oxoacids with different chain lengths are detected as specific degradation products of the unsaturated fatty acids. The detection of the degradation products and their chain length is a simple and effective method to determine the double bond position in unsaturated compounds. We can show that the hexadecenoic and octadecenoic acids found in fingerprint residues are not the pervasive fatty acids Δ9-hexadecenoic (palmitoleic acid) and Δ9-octadecenoic (oleic acid) acid but Δ6-hexadecenoic acid (sapienic acid) and Δ8-octadecenoic acid. The present study focuses on the structure identification of human sebum-specific unsaturated fatty acids in fingerprint residues based on the identification of their degradation products. These results are discussed for further investigations and method developments for age determination of fingerprints, which is still a tremendous challenge because of several factors affecting the aging behavior of individual compounds in fingerprints. Graphical Abstract ᅟ.
West, Matthew J; Went, Michael J
2008-01-15
The application of powders to fingerprints has long been established as an effective and reliable method for developing latent fingerprints. The powders adhere to the ridge pattern of the fingerprint only, thus allowing the image to be visualised. Fingerprints developed in situ at a crime scene routinely undergo lifting with specialist tapes to facilitate subsequent laboratory analysis. As with all recovered evidence these samples would be stored in evidence bags to allow secure transit from the scene to the laboratory and also to preserve the chain of evidence. In this paper, the application of Raman spectroscopy for the analysis of exogenous material in latent fingerprints is reported for contaminated fingerprints that had been treated with powders and also subsequently lifted with adhesive tapes. A selection of over the counter (OTC) analgesics were used as samples for the analysis and contaminated fingerprints were deposited on clean glass slides. The application of aluminium or iron based powders to contaminated fingerprints did not interfere with the Raman spectra obtained for the contaminants. In most cases background fluorescence attributed to the sebaceous content of the latent fingerprint was reduced by the application of the powder thus reducing spectral interference. Contaminated fingerprints developed with powders and then lifted with lifting tapes were also examined. The combination of these two techniques did not interfere with the successful analysis of exogenous contaminants by Raman spectroscopy. The lifting process was repeated using hinge lifters. As the hinge lifters exhibited strong Raman bands the spectroscopic analysis was more complex and an increase in the number of exposures to the detector allowed for improved clarification. Raman spectra of developed and lifted fingerprints recorded through evidence bags were obtained and it was found that the detection process was not compromised in any way. Although the application of powders did not interfere with the detection process the time taken to locate the contaminant was increased due to the physical presence of more material within the fingerprint. The presence of interfering Raman bands from lifting tapes is another potential complication. This, however, could be removed by spectral subtraction or by the choice of lifting tapes that have only weak Raman bands.
NASA Astrophysics Data System (ADS)
Gao, Feng; Han, Jiaxing; Lv, Caifeng; Wang, Qin; Zhang, Jun; Li, Qun; Bao, Liru; Li, Xin
2012-10-01
Fingerprint detection is important in criminal investigation. This paper reports a facile powder brushing technique for improving latent fingerprint detection using core-shell-structured CdTe@SiO2 quantum dots (QDs) as fluorescent labeling marks. Core-shell-structured CdTe@SiO2 QDs are prepared via a simple solution-based approach using NH2NH2·H2O as pH adjustor and stabilizer, and their application for improving latent fingerprint detection is explored. The obtained CdTe@SiO2 QDs show spherical shapes with well-defined core-shell structures encapsulating different amounts of QDs depending on the type of the pH adjustor and stabilizer. Moreover, the fluorescence of CdTe@SiO2 QDs is largely enhanced by surface modification of the SiO2 shell. The CdTe@SiO2 QDs overcome the oxidation problem of pure CdTe QDs in air, thus affording better variability with strong adhesive ability, better resolution, and bright emission colors for practical application in latent fingerprint detection. In comparison with the conventional fluorescence powders, silver powders, and others, the effectiveness of CdTe@SiO2 QD powders for detection of latent fingerprints present on a large variety of object surfaces is greatly improved. The synthesis method for CdTe@SiO2 QDs is simple, cheap, and easy for large-scale production, and thus offers many advantages in the practical application of fingerprint detection.
Recent advance in DNA-based traceability and authentication of livestock meat PDO and PGI products.
Nicoloso, Letizia; Crepaldi, Paola; Mazza, Raffaele; Ajmone-Marsan, Paolo; Negrini, Riccardo
2013-04-01
This review updates the available molecular techniques and technologies and discusses how they can be used for traceability, food control and enforcement activities. The review also provides examples on how molecular techniques succeeded to trace back unknowns to their breeds of origin, to fingerprint single individuals and to generate evidence in court cases. The examples demonstrate the potential of the DNA based traceability techniques and explore possibilities for translating the next generation genomics tools into a food and feed control and enforcement framework.
Efficient Fingercode Classification
NASA Astrophysics Data System (ADS)
Sun, Hong-Wei; Law, Kwok-Yan; Gollmann, Dieter; Chung, Siu-Leung; Li, Jian-Bin; Sun, Jia-Guang
In this paper, we present an efficient fingerprint classification algorithm which is an essential component in many critical security application systems e. g. systems in the e-government and e-finance domains. Fingerprint identification is one of the most important security requirements in homeland security systems such as personnel screening and anti-money laundering. The problem of fingerprint identification involves searching (matching) the fingerprint of a person against each of the fingerprints of all registered persons. To enhance performance and reliability, a common approach is to reduce the search space by firstly classifying the fingerprints and then performing the search in the respective class. Jain et al. proposed a fingerprint classification algorithm based on a two-stage classifier, which uses a K-nearest neighbor classifier in its first stage. The fingerprint classification algorithm is based on the fingercode representation which is an encoding of fingerprints that has been demonstrated to be an effective fingerprint biometric scheme because of its ability to capture both local and global details in a fingerprint image. We enhance this approach by improving the efficiency of the K-nearest neighbor classifier for fingercode-based fingerprint classification. Our research firstly investigates the various fast search algorithms in vector quantization (VQ) and the potential application in fingerprint classification, and then proposes two efficient algorithms based on the pyramid-based search algorithms in VQ. Experimental results on DB1 of FVC 2004 demonstrate that our algorithms can outperform the full search algorithm and the original pyramid-based search algorithms in terms of computational efficiency without sacrificing accuracy.
Fingerprint extraction from interference destruction terahertz spectrum.
Xiong, Wei; Shen, Jingling
2010-10-11
In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.
Localized Dictionaries Based Orientation Field Estimation for Latent Fingerprints.
Xiao Yang; Jianjiang Feng; Jie Zhou
2014-05-01
Dictionary based orientation field estimation approach has shown promising performance for latent fingerprints. In this paper, we seek to exploit stronger prior knowledge of fingerprints in order to further improve the performance. Realizing that ridge orientations at different locations of fingerprints have different characteristics, we propose a localized dictionaries-based orientation field estimation algorithm, in which noisy orientation patch at a location output by a local estimation approach is replaced by real orientation patch in the local dictionary at the same location. The precondition of applying localized dictionaries is that the pose of the latent fingerprint needs to be estimated. We propose a Hough transform-based fingerprint pose estimation algorithm, in which the predictions about fingerprint pose made by all orientation patches in the latent fingerprint are accumulated. Experimental results on challenging latent fingerprint datasets show the proposed method outperforms previous ones markedly.
A robust and non-invertible fingerprint template for fingerprint matching system.
Trivedi, Amit Kumar; Thounaojam, Dalton Meitei; Pal, Shyamosree
2018-05-20
Fingerprint Recognition System is widely deployed in variety of application domain, ranging from forensic to mobile phones. Its widespread deployment in various applications were person authentication are required, has caused concern that a leaked fingerprint template may be used to reconstruct the original fingerprint and the reconstructed fingerprint can be used to circumvent all the applications the person is enrolled. In this paper, a non-invertible fingerprint template that stores only the relative geometric information about the minutiae points is proposed. The spatial location of the minutiae points in original fingerprint and its orientations are not available in the proposed template which makes it impossible to estimate the orientation of fingerprint from the template. The proposed template is invariant to rotation, translation and distortion and immune to reconstruction algorithm. The proposed system is experimented using standard FVC2000 database and yields better results in terms of EER and FMR as compared with latest techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
Banas, A; Banas, K; Breese, M B H; Loke, J; Heng Teo, B; Lim, S K
2012-08-07
Synchrotron radiation-based Fourier transform infra-red (SR-FTIR) micro-imaging has been developed as a rapid, direct and non-destructive technique. This method, taking advantage of the high brightness and small effective source size of synchrotron light, is capable of exploring the molecular chemistry within the microstructures of microscopic particles without their destruction at high spatial resolutions. This is in contrast to traditional "wet" chemical methods, which, during processing for analysis, often caused destruction of the original samples. In the present study, we demonstrate the potential of SR-FTIR micro-imaging as an effective way to accurately identify microscopic particles deposited within latent fingerprints. These particles are present from residual amounts of materials left on a person's fingers after handling such materials. Fingerprints contaminated with various types of powders, creams, medications and high explosive materials (3-nitrooxy-2,2-bis(nitrooxymethyl)propyl nitrate (PETN), 1,3,5-trinitro-1,3,5-triazinane (RDX), 2-methyl-1,3,5-trinitrobenzene (TNT)) deposited on various - daily used - substrates have been analysed herein without any further sample preparation. A non-destructive method for the transfer of contaminated fingerprints from hard-to-reach areas of the substrates to the place of analysis is also presented. This method could have a significant impact on forensic science and could dramatically enhance the amount of information that can be obtained from the study of fingerprints.
DNA fingerprinting on trial: the dramatic early history of a new forensic technique.
Aronson, Jay D
2005-09-01
The early history of "DNA fingerprinting" in the UK might have been different were it not for the accounts of two dramatic courtroom trials, made by the participants and the media, in the mid-1980s. But these reports, which misrepresented the importance DNA evidence had in the trials, left a strong impression on the British public and on judges on both sides of the Atlantic. These trials, widely considered to be the first "victories" for DNA fingerprinting, have been frequently cited as proof of the utility and reliability of the technique, in both the UK and beyond. But in reality, it was the threat of DNA evidence being used rather than the integrity or validity of it that resolved these cases. At that time, DNA fingerprinting was still in its infancy, an untried and untested technology.
Torres Astorga, Romina; de Los Santos Villalobos, Sergio; Velasco, Hugo; Domínguez-Quintero, Olgioly; Pereira Cardoso, Renan; Meigikos Dos Anjos, Roberto; Diawara, Yacouba; Dercon, Gerd; Mabit, Lionel
2018-05-15
Identification of hot spots of land degradation is strongly related with the selection of soil tracers for sediment pathways. This research proposes the complementary and integrated application of two analytical techniques to select the most suitable fingerprint tracers for identifying the main sources of sediments in an agricultural catchment located in Central Argentina with erosive loess soils. Diffuse reflectance Fourier transformed in the mid-infrared range (DRIFT-MIR) spectroscopy and energy-dispersive X-ray fluorescence (EDXRF) were used for a suitable fingerprint selection. For using DRIFT-MIR spectroscopy as fingerprinting technique, calibration through quantitative parameters is needed to link and correlate DRIFT-MIR spectra with soil tracers. EDXRF was used in this context for determining the concentrations of geochemical elements in soil samples. The selected tracers were confirmed using two artificial mixtures composed of known proportions of soil collected in different sites with distinctive soil uses. These fingerprint elements were used as parameters to build a predictive model with the whole set of DRIFT-MIR spectra. Fingerprint elements such as phosphorus, iron, calcium, barium, and titanium were identified for obtaining a suitable reconstruction of the source proportions in the artificial mixtures. Mid-infrared spectra produced successful prediction models (R 2 = 0.91) for Fe content and moderate useful prediction (R 2 = 0.72) for Ti content. For Ca, P, and Ba, the R 2 were 0.44, 0.58, and 0.59 respectively.
NASA Astrophysics Data System (ADS)
Maev, R. Gr.; Bakulin, E. Yu.; Maeva, A.; Severin, F.
Biometrics is a rapidly evolving scientific and applied discipline that studies possible ways of personal identification by means of unique biological characteristics. Such identification is important in various situations requiring restricted access to certain areas, information and personal data and for cases of medical emergencies. A number of automated biometric techniques have been developed, including fingerprint, hand shape, eye and facial recognition, thermographic imaging, etc. All these techniques differ in the recognizable parameters, usability, accuracy and cost. Among these, fingerprint recognition stands alone since a very large database of fingerprints has already been acquired. Also, fingerprints are key evidence left at a crime scene and can be used to indentify suspects. Therefore, of all automated biometric techniques, especially in the field of law enforcement, fingerprint identification seems to be the most promising. We introduce a newer development of the ultrasonic fingerprint imaging. The proposed method obtains a scan only once and then varies the C-scan gate position and width to visualize acoustic reflections from any appropriate depth inside the skin. Also, B-scans and A-scans can be recreated from any position using such data array, which gives the control over the visualization options. By setting the C-scan gate deeper inside the skin, distribution of the sweat pores (which are located along the ridges) can be easily visualized. This distribution should be unique for each individual so this provides a means of personal identification, which is not affected by any changes (accidental or intentional) of the fingers' surface conditions. This paper discusses different setups, acoustic parameters of the system, signal and image processing options and possible ways of 3-dimentional visualization that could be used as a recognizable characteristic in biometric identification.
Imaging-based molecular barcoding with pixelated dielectric metasurfaces.
Tittl, Andreas; Leitis, Aleksandrs; Liu, Mingkai; Yesilkoy, Filiz; Choi, Duk-Yong; Neshev, Dragomir N; Kivshar, Yuri S; Altug, Hatice
2018-06-08
Metasurfaces provide opportunities for wavefront control, flat optics, and subwavelength light focusing. We developed an imaging-based nanophotonic method for detecting mid-infrared molecular fingerprints and implemented it for the chemical identification and compositional analysis of surface-bound analytes. Our technique features a two-dimensional pixelated dielectric metasurface with a range of ultrasharp resonances, each tuned to a discrete frequency; this enables molecular absorption signatures to be read out at multiple spectral points, and the resulting information is then translated into a barcode-like spatial absorption map for imaging. The signatures of biological, polymer, and pesticide molecules can be detected with high sensitivity, covering applications such as biosensing and environmental monitoring. Our chemically specific technique can resolve absorption fingerprints without the need for spectrometry, frequency scanning, or moving mechanical parts, thereby paving the way toward sensitive and versatile miniaturized mid-infrared spectroscopy devices. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Rasmussen, Ulla; Svenning, Mette M.
1998-01-01
The presence of repeated DNA (short tandemly repeated repetitive [STRR] and long tandemly repeated repetitive [LTRR]) sequences in the genome of cyanobacteria was used to generate a fingerprint method for symbiotic and free-living isolates. Primers corresponding to the STRR and LTRR sequences were used in the PCR, resulting in a method which generate specific fingerprints for individual isolates. The method was useful both with purified DNA and with intact cyanobacterial filaments or cells as templates for the PCR. Twenty-three Nostoc isolates from a total of 35 were symbiotic isolates from the angiosperm Gunnera species, including isolates from the same Gunnera species as well as from different species. The results show a genetic similarity among isolates from different Gunnera species as well as a genetic heterogeneity among isolates from the same Gunnera species. Isolates which have been postulated to be closely related or identical revealed similar results by the PCR method, indicating that the technique is useful for clustering of even closely related strains. The method was applied to nonheterocystus cyanobacteria from which a fingerprint pattern was obtained. PMID:16349487
In Vitro Propagation and Conservation of Withania somnifera (Dunal) L.
Fatima, Nigar; Ahmad, Naseem; Anis, Mohammad
2016-01-01
Plant tissue culture offers several techniques for rapid clonal propagation, germplasm conservation, regeneration of genetically manipulated superior clones, production of phyto-constituents, and ex vitro conservation of valuable phytodiversity. An improved and efficient micropropagation protocol for Withania somnifera (L.), a drug-producing medicinal plant, using juvenile explants (nodal explants) has been developed. Highest multiplication and subsequent elongation of shoots is observed on MS medium containing BA and NAA. The regenerated microshoots roots best on ½ MS medium containing NAA, established in earthen pots containing garden soil and are maintained in the greenhouse with 95 % survival rate. Genetic uniformity of micropropagated plants is confirmed by PCR-based DNA fingerprinting techniques, viz., RAPD and ISSR. No variation is observed in DNA fingerprinting patterns among the micropropagated plants, which are similar to that of the donor plant illustrating their genetic uniformity.
Piccinonna, Sara; Ragone, Rosa; Stocchero, Matteo; Del Coco, Laura; De Pascali, Sandra Angelica; Schena, Francesco Paolo; Fanizzi, Francesco Paolo
2016-05-15
Nuclear Magnetic Resonance (NMR) spectroscopy is emerging as a powerful technique in olive oil fingerprinting, but its analytical robustness has to be proved. Here, we report a comparative study between two laboratories on olive oil (1)H NMR fingerprinting, aiming to demonstrate the robustness of NMR-based metabolomics in generating comparable data sets for cultivar classification. Sample preparation and data acquisition were performed independently in two laboratories, equipped with different resolution spectrometers (400 and 500 MHz), using two identical sets of mono-varietal olive oils. Partial Least Squares (PLS)-based techniques were applied to compare the data sets produced by the two laboratories. Despite differences in spectrum baseline, and in intensity and shape of peaks, the amount of shared information was significant (almost 70%) and related to cultivar (same metabolites discriminated between cultivars). In conclusion, regardless of the variability due to operator and machine, the data sets from the two participating units were comparable for the purpose of classification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Malik, Akhtar Hussain; Kalita, Anamika; Iyer, Parameswar Krishnan
2017-10-25
The development of highly efficient latent fingerprint (LFP) technology remains extremely vital for forensic and criminal investigations. In this contribution, a straightforward, rapid, and cost-effective method has been established for the quick development of well-preserved latent fingerprint on multiple substrates, including plastic, glass, aluminum foil, metallic surfaces, and so forth, without any additional treatment, based on aggregation-induced enhanced emission-active conjugated polyelectrolyte (CPE) 3,3'-((2-(4-(1,2-diphenyl-2-(p-tolyl)vinyl)phenyl)-7-(7-methylbenzo[c][1,2,5]thiadiazol-4-yl)-9H-fluorene-9,9-diyl)bis(hexane-6,1-diyl))bis(1-methyl-1H-imidazol-3-ium) bromide, revealing clearly the third-level details (ridges, bifurcations, and pores) with high selectivity, high contrast, and no background interference even by blood stains, confirming the ability of the proposed technique for LFP detection with high resolution. The LFP development process was accomplished simply by immersing fingerprint-loaded substrate into the CPE solution for ∼1 min, followed by shaking off the residual polymer solution and then air drying. The CPE was readily transferred to the LFPs because of the strong electrostatic and hydrophobic interaction between the CPE molecules and the fingerprint components revealing distinct fluorescent images on various smooth nonporous surfaces.
NASA Astrophysics Data System (ADS)
Yang, Gongping; Zhou, Guang-Tong; Yin, Yilong; Yang, Xiukun
2010-12-01
A critical step in an automatic fingerprint recognition system is the segmentation of fingerprint images. Existing methods are usually designed to segment fingerprint images originated from a certain sensor. Thus their performances are significantly affected when dealing with fingerprints collected by different sensors. This work studies the sensor interoperability of fingerprint segmentation algorithms, which refers to the algorithm's ability to adapt to the raw fingerprints obtained from different sensors. We empirically analyze the sensor interoperability problem, and effectively address the issue by proposing a [InlineEquation not available: see fulltext.]-means based segmentation method called SKI. SKI clusters foreground and background blocks of a fingerprint image based on the [InlineEquation not available: see fulltext.]-means algorithm, where a fingerprint block is represented by a 3-dimensional feature vector consisting of block-wise coherence, mean, and variance (abbreviated as CMV). SKI also employs morphological postprocessing to achieve favorable segmentation results. We perform SKI on each fingerprint to ensure sensor interoperability. The interoperability and robustness of our method are validated by experiments performed on a number of fingerprint databases which are obtained from various sensors.
Bajoub, Aadil; Medina-Rodríguez, Santiago; Gómez-Romero, María; Ajal, El Amine; Bagur-González, María Gracia; Fernández-Gutiérrez, Alberto; Carrasco-Pancorbo, Alegría
2017-01-15
High Performance Liquid Chromatography (HPLC) with diode array (DAD) and fluorescence (FLD) detection was used to acquire the fingerprints of the phenolic fraction of monovarietal extra-virgin olive oils (extra-VOOs) collected over three consecutive crop seasons (2011/2012-2013/2014). The chromatographic fingerprints of 140 extra-VOO samples processed from olive fruits of seven olive varieties, were recorded and statistically treated for varietal authentication purposes. First, DAD and FLD chromatographic-fingerprint datasets were separately processed and, subsequently, were joined using "Low-level" and "Mid-Level" data fusion methods. After the preliminary examination by principal component analysis (PCA), three supervised pattern recognition techniques, Partial Least Squares Discriminant Analysis (PLS-DA), Soft Independent Modeling of Class Analogies (SIMCA) and K-Nearest Neighbors (k-NN) were applied to the four chromatographic-fingerprinting matrices. The classification models built were very sensitive and selective, showing considerably good recognition and prediction abilities. The combination "chromatographic dataset+chemometric technique" allowing the most accurate classification for each monovarietal extra-VOO was highlighted. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lavrieux, Marlène; Meusburger, Katrin; Birkholz, Axel; Alewell, Christine
2017-04-01
Slope destabilization and associated sediment transfer are among the major causes of aquatic ecosystems and surface water quality impairment. Through land uses and agricultural practices, human activities modify the soil erosive risk and the catchment connectivity, becoming a key factor of sediment dynamics. Hence, restoration and management plans of water bodies can only be efficient if the sediment sources and the proportion attributable to different land uses and agricultural practices are identified. Several sediment fingerprinting methods, based on the geochemical (elemental composition), color, magnetic or isotopic (137Cs) sediment properties, are currently in use. However, these tools are not suitable for a land-use based fingerprinting. New organic geochemical approaches are now developed to discriminate source-soil contributions under different land-uses: The compound-specific stable isotopes (CSSI) technique, based on the biomarkers isotopic signature (here, fatty acids δ13C) variability within the plant species, The analysis of highly specific (i.e. source-family- or even source-species-specific) biomarkers assemblages, which use is until now mainly restricted to palaeoenvironmental reconstructions, and which offer also promising prospects for tracing current sediment origin. The approach was applied to reconstruct the spatio-temporal variability of the main sediment sources of Baldegg Lake (Lucern Canton, Switzerland), which suffers from a substantial eutrophication, despite several restoration attempts during the last 40 years. The sediment supplying areas and the exported volumes were identified using CSSI technique and highly specific biomarkers, coupled to a sediment connectivity model. The sediment origin variability was defined through the analysis of suspended river sediments sampled at high flow conditions (short term), and by the analysis of a lake sediment core covering the last 130 years (long term). The results show the utility of biomarkers and CSSI to track organic sources in contrasted land-use settings. Associated to other fingerprinting methods, this approach could in the future become a decision support tool for catchments management.
Piao, Xinglin; Zhang, Yong; Li, Tingshu; Hu, Yongli; Liu, Hao; Zhang, Ke; Ge, Yun
2016-01-01
The Received Signal Strength (RSS) fingerprint-based indoor localization is an important research topic in wireless network communications. Most current RSS fingerprint-based indoor localization methods do not explore and utilize the spatial or temporal correlation existing in fingerprint data and measurement data, which is helpful for improving localization accuracy. In this paper, we propose an RSS fingerprint-based indoor localization method by integrating the spatio-temporal constraints into the sparse representation model. The proposed model utilizes the inherent spatial correlation of fingerprint data in the fingerprint matching and uses the temporal continuity of the RSS measurement data in the localization phase. Experiments on the simulated data and the localization tests in the real scenes show that the proposed method improves the localization accuracy and stability effectively compared with state-of-the-art indoor localization methods. PMID:27827882
MR Fingerprinting Using The Quick Echo Splitting NMR Imaging Technique
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A.
2016-01-01
Purpose The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining Magnetic Resonance Fingerprinting (MRF) technique with Quick Echo Splitting NMR Imaging Technique (QUEST). Methods A QUEST-based MRF sequence was implemented to acquire high order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T1 and T2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The SAR of QUEST-MRF was compared to the clinically available methods. Results MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head Specific Absorption Rate (SAR) of 0.03 W/kg. T1 and T2 values estimated by MRF-QUEST are in good agreement with the traditional methods. Conclusion The combination of the MRF and the QUEST provides an accurate quantification of T1 and T2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. PMID:26924639
Webb, N J; Ibrahim, K M; Bell, D J; Hewitt, G M
1995-04-01
A combination of behavioural observation, DNA fingerprinting, and allozyme analysis were used to examine natal dispersal in a wild rabbit population. Rabbits lived in territorial, warren based social groups. Over a 6-year period, significantly more male than female rabbits moved to a new social group before the start of their first breeding season. This pattern of female philopatry and male dispersal was reflected in the genetic structure of the population. DNA fingerprint band-sharing coefficients were significantly higher for females within the same group than for females between groups, while this was not the case for males. Wright's inbreeding coefficients were calculated from fingerprint band-sharing values and compared to those obtained from allozyme data. There was little correlation between the relative magnitudes of the F-statistics calculated using the two techniques for comparisons between different social groups. In contrast, two alternative methods for calculating FST from DNA fingerprints gave reasonably concordant values although those based on band-sharing were consistently lower than those calculated by an 'allele' frequency approach. A negative FIS value was obtained from allozyme data. Such excess heterozygosity within social groups is expected even under random mating given the social structure and sex-biased dispersal but it is argued that the possibility of behavioural avoidance of inbreeding should not be discounted in this species. Estimates of genetic differentiation obtained from allozyme and DNA fingerprint data agreed closely with reported estimates for the yellow-bellied marmot, a species with a very similar social structure to the European rabbit.
Liu, Xuan; Zaki, Farzana; Wang, Yahui; Huang, Qiongdan; Mei, Xin; Wang, Jiangjun
2017-03-10
Optical coherence tomography (OCT) allows noncontact acquisition of fingerprints and hence is a highly promising technology in the field of biometrics. OCT can be used to acquire both structural and microangiographic images of fingerprints. Microangiographic OCT derives its contrast from the blood flow in the vasculature of viable skin tissue, and microangiographic fingerprint imaging is inherently immune to fake fingerprint attack. Therefore, dual-modality (structural and microangiographic) OCT imaging of fingerprints will enable more secure acquisition of biometric data, which has not been investigated before. Our study on fingerprint identification based on structural and microangiographic OCT imaging is, we believe, highly innovative. In this study, we performed OCT imaging study for fingerprint acquisition, and demonstrated the capability of dual-modality OCT imaging for the identification of fake fingerprints.
Multilayer Statistical Intrusion Detection in Wireless Networks
NASA Astrophysics Data System (ADS)
Hamdi, Mohamed; Meddeb-Makhlouf, Amel; Boudriga, Noureddine
2008-12-01
The rapid proliferation of mobile applications and services has introduced new vulnerabilities that do not exist in fixed wired networks. Traditional security mechanisms, such as access control and encryption, turn out to be inefficient in modern wireless networks. Given the shortcomings of the protection mechanisms, an important research focuses in intrusion detection systems (IDSs). This paper proposes a multilayer statistical intrusion detection framework for wireless networks. The architecture is adequate to wireless networks because the underlying detection models rely on radio parameters and traffic models. Accurate correlation between radio and traffic anomalies allows enhancing the efficiency of the IDS. A radio signal fingerprinting technique based on the maximal overlap discrete wavelet transform (MODWT) is developed. Moreover, a geometric clustering algorithm is presented. Depending on the characteristics of the fingerprinting technique, the clustering algorithm permits to control the false positive and false negative rates. Finally, simulation experiments have been carried out to validate the proposed IDS.
Casale, M; Oliveri, P; Armanino, C; Lanteri, S; Forina, M
2010-06-04
Four rapid and low-cost vanguard analytical systems (NIR and UV-vis spectroscopy, a headspace-mass based artificial nose and a voltammetric artificial tongue), together with chemometric pattern recognition techniques, were applied and compared in addressing a food authentication problem: the distinction between wine samples from the same Italian oenological region, according to the grape variety. Specifically, 59 certified samples belonging to the Barbera d'Alba and Dolcetto d'Alba appellations and collected from the same vintage (2007) were analysed. The instrumental responses, after proper data pre-processing, were used as fingerprints of the characteristics of the samples: the results from principal component analysis and linear discriminant analysis were discussed, comparing the capability of the four analytical strategies in addressing the problem studied. Copyright 2010 Elsevier B.V. All rights reserved.
3D fingerprint analysis using transmission-mode multi-wavelength digital holographic topography
NASA Astrophysics Data System (ADS)
Abeywickrema, Ujitha; Banerjee, Partha; Kota, Akash; Lakhtakia, Akhlesh; Swiontek, Stephen E.
2016-03-01
The analysis of fingerprints is important for biometric identification. Two-wavelength digital holographic interferometry is used to study the topography of various types of fingerprints. This topography depends on several conditions such as the temperature, time of the day, and the proportions of eccrine and sebaceous sweat. With two-wavelength holographic interferometry, surface information can be measured with a better accuracy compared to single-wavelength phase-retrieving techniques. Latent fingerprints on transparent glass, a forensically relevant substrate are first developed by the deposition of 50-1000-nm-thick columnar thin films, and then analyzed using the transmission-mode two-wavelength digital holographic technique. In this technique, a tunable Argon-ion laser (457.9 nm to 514.5 nm) is used and holograms are recorded on a CCD camera sequentially for several sets of two wavelengths. Then the phase is reconstructed for each wavelength, and the phase difference which corresponds to the synthetic wavelength (4 μm to 48 μm) is calculated. Finally, the topography is obtained by applying proper phase-unwrapping techniques to the phase difference. Interferometric setups that utilize light reflected from the surface of interest have several disadvantages such as the effect of multiple reflections as well as the effects of the tilt of the object and its shadow (for the Mach-Zehnder configuration). To overcome these drawbacks, digital holograms of fingerprints in a transmission geometry are used. An approximately in-line geometry employing a slightly tilted reference beam to facilitate separation of various diffraction orders during holographic reconstruction is employed.
NASA Astrophysics Data System (ADS)
Koiter, A. J.; Owens, P. N.; Petticrew, E. L.; Lobb, D. A.
2013-10-01
Sediment fingerprinting is a technique that is increasingly being used to improve the understanding of sediment dynamics within river basins. At present, one of the main limitations of the technique is the ability to link sediment back to their sources due to the non-conservative nature of many of the sediment properties. The processes that occur between the sediment source locations and the point of collection downstream are not well understood or quantified and currently represent a black-box in the sediment fingerprinting approach. The literature on sediment fingerprinting tends to assume that there is a direct connection between sources and sinks, while much of the broader environmental sedimentology literature identifies that numerous chemical, biological and physical transformations and alterations can occur as sediment moves through the landscape. The focus of this paper is on the processes that drive particle size and organic matter selectivity and biological, geochemical and physical transformations and how understanding these processes can be used to guide sampling protocols, fingerprint selection and data interpretation. The application of statistical approaches without consideration of how unique sediment fingerprints have developed and how robust they are within the environment is a major limitation of many recent studies. This review summarises the current information, identifies areas that need further investigation and provides recommendations for sediment fingerprinting that should be considered for adoption in future studies if the full potential and utility of the approach are to be realised.
Code of Federal Regulations, 2014 CFR
2014-10-01
... Public Web site (NSOPW), and (2) Either: (i) A name- or fingerprint-based search of the official state...) Submission of fingerprints through a state central record repository for a fingerprint-based Federal Bureau... Department of Justice (DOJ) National Sex Offender Public Web site (NSOPW); (ii) A name- or fingerprint-based...
ERIC Educational Resources Information Center
Moertel, Cheryl; Frutiger, Bruce
1996-01-01
Describes a DNA fingerprinting simulation that uses vegetable food coloring and plastic food containers instead of DNA and expensive gel electrophoresis chambers. Allows students to decipher unknown combinations of dyes in a method similar to that used to decipher samples of DNA in DNA fingerprint techniques. (JRH)
Federal Register 2010, 2011, 2012, 2013, 2014
2010-12-20
...-2008-0619] RIN 3150-AI25 Requirements for Fingerprint-Based Criminal History Records Checks for... a fingerprint- based criminal history records check before granting any individual unescorted access...
DNA fingerprinting, DNA barcoding, and next generation sequencing technology in plants.
Sucher, Nikolaus J; Hennell, James R; Carles, Maria C
2012-01-01
DNA fingerprinting of plants has become an invaluable tool in forensic, scientific, and industrial laboratories all over the world. PCR has become part of virtually every variation of the plethora of approaches used for DNA fingerprinting today. DNA sequencing is increasingly used either in combination with or as a replacement for traditional DNA fingerprinting techniques. A prime example is the use of short, standardized regions of the genome as taxon barcodes for biological identification of plants. Rapid advances in "next generation sequencing" (NGS) technology are driving down the cost of sequencing and bringing large-scale sequencing projects into the reach of individual investigators. We present an overview of recent publications that demonstrate the use of "NGS" technology for DNA fingerprinting and DNA barcoding applications.
49 CFR 1572.15 - Procedures for HME security threat assessment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... completes includes a fingerprint-based criminal history records check (CHRC), an intelligence-related background check, and a final disposition. (b) Fingerprint-based check. In order to conduct a fingerprint... before the date of the expiration of the HME. (2) Where the State elects to collect fingerprints and...
49 CFR 1572.15 - Procedures for HME security threat assessment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... completes includes a fingerprint-based criminal history records check (CHRC), an intelligence-related background check, and a final disposition. (b) Fingerprint-based check. In order to conduct a fingerprint... before the date of the expiration of the HME. (2) Where the State elects to collect fingerprints and...
49 CFR 1572.15 - Procedures for HME security threat assessment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... completes includes a fingerprint-based criminal history records check (CHRC), an intelligence-related background check, and a final disposition. (b) Fingerprint-based check. In order to conduct a fingerprint... before the date of the expiration of the HME. (2) Where the State elects to collect fingerprints and...
49 CFR 1572.15 - Procedures for HME security threat assessment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... completes includes a fingerprint-based criminal history records check (CHRC), an intelligence-related background check, and a final disposition. (b) Fingerprint-based check. In order to conduct a fingerprint... before the date of the expiration of the HME. (2) Where the State elects to collect fingerprints and...
49 CFR 1572.15 - Procedures for HME security threat assessment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... completes includes a fingerprint-based criminal history records check (CHRC), an intelligence-related background check, and a final disposition. (b) Fingerprint-based check. In order to conduct a fingerprint... before the date of the expiration of the HME. (2) Where the State elects to collect fingerprints and...
A fingerprint classification algorithm based on combination of local and global information
NASA Astrophysics Data System (ADS)
Liu, Chongjin; Fu, Xiang; Bian, Junjie; Feng, Jufu
2011-12-01
Fingerprint recognition is one of the most important technologies in biometric identification and has been wildly applied in commercial and forensic areas. Fingerprint classification, as the fundamental procedure in fingerprint recognition, can sharply decrease the quantity for fingerprint matching and improve the efficiency of fingerprint recognition. Most fingerprint classification algorithms are based on the number and position of singular points. Because the singular points detecting method only considers the local information commonly, the classification algorithms are sensitive to noise. In this paper, we propose a novel fingerprint classification algorithm combining the local and global information of fingerprint. Firstly we use local information to detect singular points and measure their quality considering orientation structure and image texture in adjacent areas. Furthermore the global orientation model is adopted to measure the reliability of singular points group. Finally the local quality and global reliability is weighted to classify fingerprint. Experiments demonstrate the accuracy and effectivity of our algorithm especially for the poor quality fingerprint images.
Radio Frequency Fingerprinting Techniques Through Preamble Modification in IEEE 802.11B
2014-06-30
As such, RSSI– based approaches work best in static environments where the locality of each station remains consistent [Wri03]. 2.8.3 MAC Spoofing...DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE INSTITUTE OF TECHNOLOGY Wright-Patterson Air Force Base , Ohio DISTRIBUTION STATEMENT A: APPROVED...45 4.3.1 Analysis of Intel– Based Transceivers . . . . . . . . . . . . . . . . 45 4.3.2 Results of the Intel 3945 Series transceiver
Development of latent fingerprints on thermal paper by the controlled application of heat.
Bond, John W
2013-05-01
Apparatus to produce a spatially and temporally uniform heat source is described and this is used to visualize latent fingerprints deposited onto thermal paper by raising the temperature of the paper. Results show an improvement over previous research when fingerprint deposits are aged or the developed fingerprints faint; visualization being enhanced by the use of a blue LED light source of 465 nm peak wavelength. An investigation of the components in fingerprint sweat likely to affect the solubility and hence color change of the dye present in the thermal paper has shown that polar protic solvents able to donate a proton are favored and a polar amino acid found commonly in eccrine fingerprint sweat (lysine) has been shown able to produce the desired color change. Aged fingerprint deposits on thermal paper from a variety of sources up to 4 years old have been visualized with this technique. © 2013 American Academy of Forensic Sciences.
Wang, Chuji; Sahay, Peeyush
2009-01-01
Breath analysis, a promising new field of medicine and medical instrumentation, potentially offers noninvasive, real-time, and point-of-care (POC) disease diagnostics and metabolic status monitoring. Numerous breath biomarkers have been detected and quantified so far by using the GC-MS technique. Recent advances in laser spectroscopic techniques and laser sources have driven breath analysis to new heights, moving from laboratory research to commercial reality. Laser spectroscopic detection techniques not only have high-sensitivity and high-selectivity, as equivalently offered by the MS-based techniques, but also have the advantageous features of near real-time response, low instrument costs, and POC function. Of the approximately 35 established breath biomarkers, such as acetone, ammonia, carbon dioxide, ethane, methane, and nitric oxide, 14 species in exhaled human breath have been analyzed by high-sensitivity laser spectroscopic techniques, namely, tunable diode laser absorption spectroscopy (TDLAS), cavity ringdown spectroscopy (CRDS), integrated cavity output spectroscopy (ICOS), cavity enhanced absorption spectroscopy (CEAS), cavity leak-out spectroscopy (CALOS), photoacoustic spectroscopy (PAS), quartz-enhanced photoacoustic spectroscopy (QEPAS), and optical frequency comb cavity-enhanced absorption spectroscopy (OFC-CEAS). Spectral fingerprints of the measured biomarkers span from the UV to the mid-IR spectral regions and the detection limits achieved by the laser techniques range from parts per million to parts per billion levels. Sensors using the laser spectroscopic techniques for a few breath biomarkers, e.g., carbon dioxide, nitric oxide, etc. are commercially available. This review presents an update on the latest developments in laser-based breath analysis. PMID:22408503
USDA-ARS?s Scientific Manuscript database
Techniques including ultraviolet-visible spectra (UV), high performance size-exclusion chromatography (HPSEC), fourier-transform infrared spectroscopy (FT-IR) and pre-column derivatization high-performance liquid chromatography (PCD-HPLC) were used in the fingerprinting analysis of Lycium barbarum p...
Fingerprint recognition system by use of graph matching
NASA Astrophysics Data System (ADS)
Shen, Wei; Shen, Jun; Zheng, Huicheng
2001-09-01
Fingerprint recognition is an important subject in biometrics to identify or verify persons by physiological characteristics, and has found wide applications in different domains. In the present paper, we present a finger recognition system that combines singular points and structures. The principal steps of processing in our system are: preprocessing and ridge segmentation, singular point extraction and selection, graph representation, and finger recognition by graphs matching. Our fingerprint recognition system is implemented and tested for many fingerprint images and the experimental result are satisfactory. Different techniques are used in our system, such as fast calculation of orientation field, local fuzzy dynamical thresholding, algebraic analysis of connections and fingerprints representation and matching by graphs. Wed find that for fingerprint database that is not very large, the recognition rate is very high even without using a prior coarse category classification. This system works well for both one-to-few and one-to-many problems.
Clutter, Susan Wright; Bailey, Robert; Everly, Jeff C; Mercer, Karl
2009-11-01
Throughout the United States, clearance rates for arson cases remain low due to fire's destructive nature, subsequent suppression, and a misconception by investigators that no forensic evidence remains. Recent research shows that fire scenes can yield fingerprints if soot layers are removed prior to using available fingerprinting processes. An experiment applying liquid latex to sooted surfaces was conducted to assess its potential to remove soot and yield fingerprints after the dried latex was peeled. Latent fingerprints were applied to glass and drywall surfaces, sooted in a controlled burn, and cooled. Liquid latex was sprayed on, dried, and peeled. Results yielded usable prints within the soot prior to removal techniques, but no further fingerprint enhancement was noted with Ninhydrin. Field studies using liquid latex will be continued by the (US) Virginia Fire Marshal Academy but it appears that liquid latex application is a suitable soot removal method for forensic applications.
Detection of Spoofed MAC Addresses in 802.11 Wireless Networks
NASA Astrophysics Data System (ADS)
Tao, Kai; Li, Jing; Sampalli, Srinivas
Medium Access Control (MAC) address spoofing is considered as an important first step in a hacker's attempt to launch a variety of attacks on 802.11 wireless networks. Unfortunately, MAC address spoofing is hard to detect. Most current spoofing detection systems mainly use the sequence number (SN) tracking technique, which has drawbacks. Firstly, it may lead to an increase in the number of false positives. Secondly, such techniques cannot be used in systems with wireless cards that do not follow standard 802.11 sequence number patterns. Thirdly, attackers can forge sequence numbers, thereby causing the attacks to go undetected. We present a new architecture called WISE GUARD (Wireless Security Guard) for detection of MAC address spoofing on 802.11 wireless LANs. It integrates three detection techniques - SN tracking, Operating System (OS) fingerprinting & tracking and Received Signal Strength (RSS) fingerprinting & tracking. It also includes the fingerprinting of Access Point (AP) parameters as an extension to the OS fingerprinting for detection of AP address spoofing. We have implemented WISE GUARD on a test bed using off-the-shelf wireless devices and open source drivers. Experimental results show that the new design enhances the detection effectiveness and reduces the number of false positives in comparison with current approaches.
6 CFR 37.45 - Background checks for covered employees.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., the validation of references from prior employment, a name-based and fingerprint-based criminal.... States must conduct a name-based and fingerprint-based criminal history records check (CHRC) using, at a minimum, the FBI's National Crime Information Center (NCIC) and the Integrated Automated Fingerprint...
6 CFR 37.45 - Background checks for covered employees.
Code of Federal Regulations, 2010 CFR
2010-01-01
..., the validation of references from prior employment, a name-based and fingerprint-based criminal.... States must conduct a name-based and fingerprint-based criminal history records check (CHRC) using, at a minimum, the FBI's National Crime Information Center (NCIC) and the Integrated Automated Fingerprint...
6 CFR 37.45 - Background checks for covered employees.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., the validation of references from prior employment, a name-based and fingerprint-based criminal.... States must conduct a name-based and fingerprint-based criminal history records check (CHRC) using, at a minimum, the FBI's National Crime Information Center (NCIC) and the Integrated Automated Fingerprint...
6 CFR 37.45 - Background checks for covered employees.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., the validation of references from prior employment, a name-based and fingerprint-based criminal.... States must conduct a name-based and fingerprint-based criminal history records check (CHRC) using, at a minimum, the FBI's National Crime Information Center (NCIC) and the Integrated Automated Fingerprint...
6 CFR 37.45 - Background checks for covered employees.
Code of Federal Regulations, 2011 CFR
2011-01-01
..., the validation of references from prior employment, a name-based and fingerprint-based criminal.... States must conduct a name-based and fingerprint-based criminal history records check (CHRC) using, at a minimum, the FBI's National Crime Information Center (NCIC) and the Integrated Automated Fingerprint...
Fast probabilistic file fingerprinting for big data
2013-01-01
Background Biological data acquisition is raising new challenges, both in data analysis and handling. Not only is it proving hard to analyze the data at the rate it is generated today, but simply reading and transferring data files can be prohibitively slow due to their size. This primarily concerns logistics within and between data centers, but is also important for workstation users in the analysis phase. Common usage patterns, such as comparing and transferring files, are proving computationally expensive and are tying down shared resources. Results We present an efficient method for calculating file uniqueness for large scientific data files, that takes less computational effort than existing techniques. This method, called Probabilistic Fast File Fingerprinting (PFFF), exploits the variation present in biological data and computes file fingerprints by sampling randomly from the file instead of reading it in full. Consequently, it has a flat performance characteristic, correlated with data variation rather than file size. We demonstrate that probabilistic fingerprinting can be as reliable as existing hashing techniques, with provably negligible risk of collisions. We measure the performance of the algorithm on a number of data storage and access technologies, identifying its strengths as well as limitations. Conclusions Probabilistic fingerprinting may significantly reduce the use of computational resources when comparing very large files. Utilisation of probabilistic fingerprinting techniques can increase the speed of common file-related workflows, both in the data center and for workbench analysis. The implementation of the algorithm is available as an open-source tool named pfff, as a command-line tool as well as a C library. The tool can be downloaded from http://biit.cs.ut.ee/pfff. PMID:23445565
A network identity authentication system based on Fingerprint identification technology
NASA Astrophysics Data System (ADS)
Xia, Hong-Bin; Xu, Wen-Bo; Liu, Yuan
2005-10-01
Fingerprint verification is one of the most reliable personal identification methods. However, most of the automatic fingerprint identification system (AFIS) is not run via Internet/Intranet environment to meet today's increasing Electric commerce requirements. This paper describes the design and implementation of the archetype system of identity authentication based on fingerprint biometrics technology, and the system can run via Internet environment. And in our system the COM and ASP technology are used to integrate Fingerprint technology with Web database technology, The Fingerprint image preprocessing algorithms are programmed into COM, which deployed on the internet information server. The system's design and structure are proposed, and the key points are discussed. The prototype system of identity authentication based on Fingerprint have been successfully tested and evaluated on our university's distant education applications in an internet environment.
Optical security verification for blurred fingerprints
NASA Astrophysics Data System (ADS)
Soon, Boon Y.; Karim, Mohammad A.; Alam, Mohammad S.
1998-12-01
Optical fingerprint security verification is gaining popularity, as it has the potential to perform correlation at the speed of light. With advancement in optical security verification techniques, authentication process can be almost foolproof and reliable for financial transaction, banking, etc. In law enforcement, when a fingerprint is obtained from a crime scene, it may be blurred and can be an unhealthy candidate for correlation purposes. Therefore, the blurred fingerprint needs to be clarified before it is used for the correlation process. There are a several different types of blur, such as linear motion blur and defocus blur, induced by aberration of imaging system. In addition, we may or may not know the blur function. In this paper, we propose the non-singularity inverse filtering in frequency/power domain for deblurring known motion-induced blur in fingerprints. This filtering process will be incorporated with the pow spectrum subtraction technique, uniqueness comparison scheme, and the separated target and references planes method in the joint transform correlator. The proposed hardware implementation is a hybrid electronic-optical correlator system. The performance of the proposed system would be verified with computer simulation for both cases: with and without additive random noise corruption.
Rodríguez-Maecker, Roman; Vyhmeister, Eduardo; Meisen, Stefan; Rosales Martinez, Antonio; Kuklya, Andriy; Telgheder, Ursula
2017-11-01
Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.
Naked-eye fingerprinting of single nucleotide polymorphisms on psoriasis patients
NASA Astrophysics Data System (ADS)
Valentini, Paola; Marsella, Alessandra; Tarantino, Paolo; Mauro, Salvatore; Baglietto, Silvia; Congedo, Maurizio; Paolo Pompa, Pier
2016-05-01
We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics.We report a low-cost test, based on gold nanoparticles, for the colorimetric (naked-eye) fingerprinting of a panel of single nucleotide polymorphisms (SNPs), relevant for the personalized therapy of psoriasis. Such pharmacogenomic tests are not routinely performed on psoriasis patients, due to the high cost of standard technologies. We demonstrated high sensitivity and specificity of our colorimetric test by validating it on a cohort of 30 patients, through a double-blind comparison with two state-of-the-art instrumental techniques, namely reverse dot blotting and sequencing, finding 100% agreement. This test offers high parallelization capabilities and can be easily generalized to other SNPs of clinical relevance, finding broad utility in diagnostics and pharmacogenomics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02200f
Colniță, Alia; Dina, Nicoleta Elena; Leopold, Nicolae; Vodnar, Dan Cristian; Bogdan, Diana; Porav, Sebastian Alin; David, Leontin
2017-09-01
Raman scattering and its particular effect, surface-enhanced Raman scattering (SERS), are whole-organism fingerprinting spectroscopic techniques that gain more and more popularity in bacterial detection. In this work, two relevant Gram-positive bacteria species, Lactobacillus casei ( L. casei ) and Listeria monocytogenes ( L. monocytogenes ) were characterized based on their Raman and SERS spectral fingerprints. The SERS spectra were used to identify the biochemical structures of the bacterial cell wall. Two synthesis methods of the SERS-active nanomaterials were used and the recorded spectra were analyzed. L. casei and L. monocytogenes were successfully discriminated by applying Principal Component Analysis (PCA) to their specific spectral data.
Leopold, Nicolae; Vodnar, Dan Cristian; Bogdan, Diana; Porav, Sebastian Alin; David, Leontin
2017-01-01
Raman scattering and its particular effect, surface-enhanced Raman scattering (SERS), are whole-organism fingerprinting spectroscopic techniques that gain more and more popularity in bacterial detection. In this work, two relevant Gram-positive bacteria species, Lactobacillus casei (L. casei) and Listeria monocytogenes (L. monocytogenes) were characterized based on their Raman and SERS spectral fingerprints. The SERS spectra were used to identify the biochemical structures of the bacterial cell wall. Two synthesis methods of the SERS-active nanomaterials were used and the recorded spectra were analyzed. L. casei and L. monocytogenes were successfully discriminated by applying Principal Component Analysis (PCA) to their specific spectral data. PMID:28862655
Attomole-level protein fingerprinting based on intrinsic peptide fluorescence.
Okerberg, E; Shear, J B
2001-04-01
Protein identification has relied heavily on proteolytic analysis, but current techniques are often slow and generally consume large quantities of valuable protein sample. We report the development of a rapid, ultralow volume protein analysis strategy based on tryptic digestion within the tip of a 1.5-microm capillary channel followed by separation of the proteolytic fragments using capillary electrophoresis (CE). Two-photon excitation is used to probe the intrinsic fluorescence of peptide fragments through "deep-UV" excitation of aromatic amino acid residues at the outlet of the CE channel. Detection limits using this technique are 0.7, 2.4, and 23 amol for the aromatic amino acids tryptophan, tyrosine, and phenylalanine, respectively. In these studies, we demonstrate the capacity to differentiate bovine and yeast cytochrome c variants using less than 15 amol of protein through tryptic fingerprinting. Moreover, the detection of a single amino acid substitution between bovine and canine cytochrome c illustrates the sensitivity of this approach to minor differences in protein sequence. The 2-pL sample volume required for this on-column tryptic digestion is, to our knowledge, the smallest yet reported for a proteolytic assay.
Peptide Mass Fingerprinting of Egg White Proteins
ERIC Educational Resources Information Center
Alty, Lisa T.; LaRiviere, Frederick J.
2016-01-01
Use of advanced mass spectrometry techniques in the undergraduate setting has burgeoned in the past decade. However, relatively few undergraduate experiments examine the proteomics tools of protein digestion, peptide accurate mass determination, and database searching, also known as peptide mass fingerprinting. In this experiment, biochemistry…
USDA-ARS?s Scientific Manuscript database
High performance liquid chromatography (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were tested for their potential in differentiating organic and conventional peppermint samples. Ten organic and ten conventional peppermint samples were examined using HPLC-UV and FI...
Yang, Zeyu; Hollebone, Bruce P; Wang, Zhendi; Yang, Chun; Brown, Carl; Landriault, Mike
2013-06-01
A case study is presented for the forensic identification of several spilled biodiesels and its blends with petroleum oil using integrated forensic oil fingerprinting techniques. The integrated fingerprinting techniques combined SPE with GC/MS for obtaining individual petroleum hydrocarbons (aliphatic hydrocarbons, polyaromatic hydrocarbons and their alkylated derivatives and biomarkers), and biodiesel hydrocarbons (fatty acid methyl esters, free fatty acids, glycerol, monoacylglycerides, and free sterols). HPLC equipped with evaporative scattering laser detector was also used for identifying the compounds that conventional GC/MS could not finish. The three environmental samples (E1, E2, and E3) and one suspected source sample (S2) were dominant with vegetable oil with high acid values and low concentration of fatty acid methyl ester. The suspected source sample S2 was responsible for the three spilled samples although E1 was slightly contaminated by petroleum oil with light hydrocarbons. The suspected source sample S1 exhibited with the high content of glycerol, low content of glycerides, and high polarity, indicating its difference from the other samples. These samples may be the separated byproducts in producing biodiesel. Canola oil source is the most possible feedstock for the three environmental samples and the suspected source sample S2. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
28 CFR 901.3 - Approval of delayed fingerprint submission requests.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 28 Judicial Administration 2 2012-07-01 2012-07-01 false Approval of delayed fingerprint... COMPACT COUNCIL FINGERPRINT SUBMISSION REQUIREMENTS § 901.3 Approval of delayed fingerprint submission requests. (a) A state may, based upon exigent circumstances, apply for delayed submission of fingerprints...
28 CFR 901.3 - Approval of delayed fingerprint submission requests.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 28 Judicial Administration 2 2013-07-01 2013-07-01 false Approval of delayed fingerprint... COMPACT COUNCIL FINGERPRINT SUBMISSION REQUIREMENTS § 901.3 Approval of delayed fingerprint submission requests. (a) A state may, based upon exigent circumstances, apply for delayed submission of fingerprints...
28 CFR 901.3 - Approval of delayed fingerprint submission requests.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Approval of delayed fingerprint... COMPACT COUNCIL FINGERPRINT SUBMISSION REQUIREMENTS § 901.3 Approval of delayed fingerprint submission requests. (a) A state may, based upon exigent circumstances, apply for delayed submission of fingerprints...
28 CFR 901.3 - Approval of delayed fingerprint submission requests.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 28 Judicial Administration 2 2011-07-01 2011-07-01 false Approval of delayed fingerprint... COMPACT COUNCIL FINGERPRINT SUBMISSION REQUIREMENTS § 901.3 Approval of delayed fingerprint submission requests. (a) A state may, based upon exigent circumstances, apply for delayed submission of fingerprints...
28 CFR 901.3 - Approval of delayed fingerprint submission requests.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 28 Judicial Administration 2 2014-07-01 2014-07-01 false Approval of delayed fingerprint... COMPACT COUNCIL FINGERPRINT SUBMISSION REQUIREMENTS § 901.3 Approval of delayed fingerprint submission requests. (a) A state may, based upon exigent circumstances, apply for delayed submission of fingerprints...
Exline, David L; Wallace, Christie; Roux, Claude; Lennard, Chris; Nelson, Matthew P; Treado, Patrick J
2003-09-01
Chemical imaging technology is a rapid examination technique that combines molecular spectroscopy and digital imaging, providing information on morphology, composition, structure, and concentration of a material. Among many other applications, chemical imaging offers an array of novel analytical testing methods, which limits sample preparation and provides high-quality imaging data essential in the detection of latent fingerprints. Luminescence chemical imaging and visible absorbance chemical imaging have been successfully applied to ninhydrin, DFO, cyanoacrylate, and luminescent dye-treated latent fingerprints, demonstrating the potential of this technology to aid forensic investigations. In addition, visible absorption chemical imaging has been applied successfully to visualize untreated latent fingerprints.
Sparse modeling applied to patient identification for safety in medical physics applications
NASA Astrophysics Data System (ADS)
Lewkowitz, Stephanie
Every scheduled treatment at a radiation therapy clinic involves a series of safety protocol to ensure the utmost patient care. Despite safety protocol, on a rare occasion an entirely preventable medical event, an accident, may occur. Delivering a treatment plan to the wrong patient is preventable, yet still is a clinically documented error. This research describes a computational method to identify patients with a novel machine learning technique to combat misadministration. The patient identification program stores face and fingerprint data for each patient. New, unlabeled data from those patients are categorized according to the library. The categorization of data by this face-fingerprint detector is accomplished with new machine learning algorithms based on Sparse Modeling that have already begun transforming the foundation of Computer Vision. Previous patient recognition software required special subroutines for faces and different tailored subroutines for fingerprints. In this research, the same exact model is used for both fingerprints and faces, without any additional subroutines and even without adjusting the two hyperparameters. Sparse modeling is a powerful tool, already shown utility in the areas of super-resolution, denoising, inpainting, demosaicing, and sub-nyquist sampling, i.e. compressed sensing. Sparse Modeling is possible because natural images are inherently sparse in some bases, due to their inherent structure. This research chooses datasets of face and fingerprint images to test the patient identification model. The model stores the images of each dataset as a basis (library). One image at a time is removed from the library, and is classified by a sparse code in terms of the remaining library. The Locally Competitive Algorithm, a truly neural inspired Artificial Neural Network, solves the computationally difficult task of finding the sparse code for the test image. The components of the sparse representation vector are summed by ℓ1 pooling, and correct patient identification is consistently achieved 100% over 1000 trials, when either the face data or fingerprint data are implemented as a classification basis. The algorithm gets 100% classification when faces and fingerprints are concatenated into multimodal datasets. This suggests that 100% patient identification will be achievable in the clinal setting.
Bearberry identification by a multidisciplinary study on commercial raw materials.
Gallo, Francesca Romana; Multari, Giuseppina; Pagliuca, Giordana; Panusa, Alessia; Palazzino, Giovanna; Giambenedetti, Massimo; Petitto, Valentina; Nicoletti, Marcello
2013-04-01
Herbal species different from the official bearberry, Arctostaphylos uva-ursi, are sold through conventional markets and also through non-controlled Internet websites, putting consumer safety at risk owing to the lack of quality control. Recently, Arctostaphylos pungens has become one of the most used species as a raw material for herbal medicines and dietary supplements in the place of official bearberry, a plant used for the treatment of various urinary disorders. A fingerprint identification based on an integrated application of different analytical techniques (HPTLC, NMR, HPLC-DAD and LC-ESI-MS) is here described to distinguish A. uva-ursi from A. pungens. The HPTLC and HPLC-DAD fingerprints resulted the simplest methods to differentiate the two species, whereas LC-ESI-MS was more useful to quantify arbutin, the main component of bearberry, and to evaluate its different content in the two species. This multidisciplinary study showed for the first time a specific phytochemical fingerprint of the new species A. pungens.
Longitudinal study of fingerprint recognition.
Yoon, Soweon; Jain, Anil K
2015-07-14
Human identification by fingerprints is based on the fundamental premise that ridge patterns from distinct fingers are different (uniqueness) and a fingerprint pattern does not change over time (persistence). Although the uniqueness of fingerprints has been investigated by developing statistical models to estimate the probability of error in comparing two random samples of fingerprints, the persistence of fingerprints has remained a general belief based on only a few case studies. In this study, fingerprint match (similarity) scores are analyzed by multilevel statistical models with covariates such as time interval between two fingerprints in comparison, subject's age, and fingerprint image quality. Longitudinal fingerprint records of 15,597 subjects are sampled from an operational fingerprint database such that each individual has at least five 10-print records over a minimum time span of 5 y. In regard to the persistence of fingerprints, the longitudinal analysis on a single (right index) finger demonstrates that (i) genuine match scores tend to significantly decrease when time interval between two fingerprints in comparison increases, whereas the change in impostor match scores is negligible; and (ii) fingerprint recognition accuracy at operational settings, nevertheless, tends to be stable as the time interval increases up to 12 y, the maximum time span in the dataset. However, the uncertainty of temporal stability of fingerprint recognition accuracy becomes substantially large if either of the two fingerprints being compared is of poor quality. The conclusions drawn from 10-finger fusion analysis coincide with the conclusions from single-finger analysis.
Longitudinal study of fingerprint recognition
Yoon, Soweon; Jain, Anil K.
2015-01-01
Human identification by fingerprints is based on the fundamental premise that ridge patterns from distinct fingers are different (uniqueness) and a fingerprint pattern does not change over time (persistence). Although the uniqueness of fingerprints has been investigated by developing statistical models to estimate the probability of error in comparing two random samples of fingerprints, the persistence of fingerprints has remained a general belief based on only a few case studies. In this study, fingerprint match (similarity) scores are analyzed by multilevel statistical models with covariates such as time interval between two fingerprints in comparison, subject’s age, and fingerprint image quality. Longitudinal fingerprint records of 15,597 subjects are sampled from an operational fingerprint database such that each individual has at least five 10-print records over a minimum time span of 5 y. In regard to the persistence of fingerprints, the longitudinal analysis on a single (right index) finger demonstrates that (i) genuine match scores tend to significantly decrease when time interval between two fingerprints in comparison increases, whereas the change in impostor match scores is negligible; and (ii) fingerprint recognition accuracy at operational settings, nevertheless, tends to be stable as the time interval increases up to 12 y, the maximum time span in the dataset. However, the uncertainty of temporal stability of fingerprint recognition accuracy becomes substantially large if either of the two fingerprints being compared is of poor quality. The conclusions drawn from 10-finger fusion analysis coincide with the conclusions from single-finger analysis. PMID:26124106
[Comparative GC analysis of essential oil in imported sandalwood].
Wang, Z; Hong, X
1991-01-01
The GC-fingerprint spectra of essential oils in imported sandalwood are established by the new technique of GC-relative retention value fingerprint spectrum (GC-FPS). According to the GC-FPS of samples, their chromatographic peaks, overlap ratio of peaks and eight strong peaks are studied comparatively.
Chen, Yanjun; Zhang, Yingchun; Tang, Shihuan; Wang, Shanshan; Shen, Dan; Wang, Xuguang; Lei, Yun; Li, Defeng; Zhang, Yi; Jin, Lan; Yang, Hongjun; Huang, Luqi
2013-01-01
Yuanhu Zhitong Tablet (YZT) is an example of a typical and relatively simple clinical herb formula that is widely used in clinics. It is generally believed that YZT play a therapeutical effect in vivo by the synergism of multiple constituents. Thus, it is necessary to build the relationship between the absorbed fingerprints and bioactivity so as to ensure the quality, safety and efficacy. In this study, a new combinative method, an intestinal absorption test coupled with a vasorelaxation bioactivity experiment in vitro, was a simple, sensitive, and feasible technique to study on the absorbed fingerprint-efficacy of YZT based on chemical analysis, vasorelaxation evaluation and data mining. As part of this method, an everted intestinal sac method was performed to determine the intestinal absorption of YZT solutions. YZT were dissolved in solution (n = 12), and the portion of the solution that was absorbed into intestinal sacs was analyzed using rapid-resolution liquid chromatography coupled with quadruple time-of-flight mass spectrometry (RRLC-Q-TOF/MS). Semi-quantitative analysis indicated the presence of 34 compounds. The effect of the intestinally absorbed solution on vasorelaxation of rat aortic rings with endothelium attached was then evaluated in vitro. The results showed that samples grouped by HCA from chemical profiles have similar bioactivity while samples in different groups displayed very different. Moreover, it established a relationship between the absorbed fingerprints and their bioactivity to identify important components by grey relational analysis, which could predict bioactive values based on chemical profiles and provide an evidence for the quantification of multi-constituents. PMID:24339904
Combining Digital Watermarking and Fingerprinting Techniques to Identify Copyrights for Color Images
Hsieh, Shang-Lin; Chen, Chun-Che; Shen, Wen-Shan
2014-01-01
This paper presents a copyright identification scheme for color images that takes advantage of the complementary nature of watermarking and fingerprinting. It utilizes an authentication logo and the extracted features of the host image to generate a fingerprint, which is then stored in a database and also embedded in the host image to produce a watermarked image. When a dispute over the copyright of a suspect image occurs, the image is first processed by watermarking. If the watermark can be retrieved from the suspect image, the copyright can then be confirmed; otherwise, the watermark then serves as the fingerprint and is processed by fingerprinting. If a match in the fingerprint database is found, then the suspect image will be considered a duplicated one. Because the proposed scheme utilizes both watermarking and fingerprinting, it is more robust than those that only adopt watermarking, and it can also obtain the preliminary result more quickly than those that only utilize fingerprinting. The experimental results show that when the watermarked image suffers slight attacks, watermarking alone is enough to identify the copyright. The results also show that when the watermarked image suffers heavy attacks that render watermarking incompetent, fingerprinting can successfully identify the copyright, hence demonstrating the effectiveness of the proposed scheme. PMID:25114966
Video-Based Fingerprint Verification
Qin, Wei; Yin, Yilong; Liu, Lili
2013-01-01
Conventional fingerprint verification systems use only static information. In this paper, fingerprint videos, which contain dynamic information, are utilized for verification. Fingerprint videos are acquired by the same capture device that acquires conventional fingerprint images, and the user experience of providing a fingerprint video is the same as that of providing a single impression. After preprocessing and aligning processes, “inside similarity” and “outside similarity” are defined and calculated to take advantage of both dynamic and static information contained in fingerprint videos. Match scores between two matching fingerprint videos are then calculated by combining the two kinds of similarity. Experimental results show that the proposed video-based method leads to a relative reduction of 60 percent in the equal error rate (EER) in comparison to the conventional single impression-based method. We also analyze the time complexity of our method when different combinations of strategies are used. Our method still outperforms the conventional method, even if both methods have the same time complexity. Finally, experimental results demonstrate that the proposed video-based method can lead to better accuracy than the multiple impressions fusion method, and the proposed method has a much lower false acceptance rate (FAR) when the false rejection rate (FRR) is quite low. PMID:24008283
A Fingerprint Encryption Scheme Based on Irreversible Function and Secure Authentication
Yu, Jianping; Zhang, Peng; Wang, Shulan
2015-01-01
A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes. PMID:25873989
A fingerprint encryption scheme based on irreversible function and secure authentication.
Yang, Yijun; Yu, Jianping; Zhang, Peng; Wang, Shulan
2015-01-01
A fingerprint encryption scheme based on irreversible function has been designed in this paper. Since the fingerprint template includes almost the entire information of users' fingerprints, the personal authentication can be determined only by the fingerprint features. This paper proposes an irreversible transforming function (using the improved SHA1 algorithm) to transform the original minutiae which are extracted from the thinned fingerprint image. Then, Chinese remainder theorem is used to obtain the biokey from the integration of the transformed minutiae and the private key. The result shows that the scheme has better performance on security and efficiency comparing with other irreversible function schemes.
49 CFR 1572.21 - Procedures for TWIC security threat assessment.
Code of Federal Regulations, 2012 CFR
2012-10-01
... conducts includes a fingerprint-based criminal history records check (CHRC), an intelligence-related check, and a final disposition. (b) Fingerprint-based check. The following procedures must be completed to conduct a fingerprint-based CHRC: (1) Consistent with the implementation schedule described in 49 CFR 1572...
49 CFR 1572.21 - Procedures for TWIC security threat assessment.
Code of Federal Regulations, 2013 CFR
2013-10-01
... conducts includes a fingerprint-based criminal history records check (CHRC), an intelligence-related check, and a final disposition. (b) Fingerprint-based check. The following procedures must be completed to conduct a fingerprint-based CHRC: (1) Consistent with the implementation schedule described in 49 CFR 1572...
75 FR 18887 - FBI Criminal Justice Information Services Division User Fees
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
.... SUMMARY: This notice establishes the user fee schedule for fingerprint- based and name-based criminal... fingerprint-based and other identification services as authorized by federal law. These fees apply to federal, state and any other authorized entities requesting fingerprint identification records and name checks...
49 CFR 1572.21 - Procedures for TWIC security threat assessment.
Code of Federal Regulations, 2010 CFR
2010-10-01
... conducts includes a fingerprint-based criminal history records check (CHRC), an intelligence-related check, and a final disposition. (b) Fingerprint-based check. The following procedures must be completed to conduct a fingerprint-based CHRC: (1) Consistent with the implementation schedule described in 49 CFR 1572...
49 CFR 1572.21 - Procedures for TWIC security threat assessment.
Code of Federal Regulations, 2011 CFR
2011-10-01
... conducts includes a fingerprint-based criminal history records check (CHRC), an intelligence-related check, and a final disposition. (b) Fingerprint-based check. The following procedures must be completed to conduct a fingerprint-based CHRC: (1) Consistent with the implementation schedule described in 49 CFR 1572...
49 CFR 1572.21 - Procedures for TWIC security threat assessment.
Code of Federal Regulations, 2014 CFR
2014-10-01
... conducts includes a fingerprint-based criminal history records check (CHRC), an intelligence-related check, and a final disposition. (b) Fingerprint-based check. The following procedures must be completed to conduct a fingerprint-based CHRC: (1) Consistent with the implementation schedule described in 49 CFR 1572...
MR fingerprinting using the quick echo splitting NMR imaging technique.
Jiang, Yun; Ma, Dan; Jerecic, Renate; Duerk, Jeffrey; Seiberlich, Nicole; Gulani, Vikas; Griswold, Mark A
2017-03-01
The purpose of the study is to develop a quantitative method for the relaxation properties with a reduced radio frequency (RF) power deposition by combining magnetic resonance fingerprinting (MRF) technique with quick echo splitting NMR imaging technique (QUEST). A QUEST-based MRF sequence was implemented to acquire high-order echoes by increasing the gaps between RF pulses. Bloch simulations were used to calculate a dictionary containing the range of physically plausible signal evolutions using a range of T 1 and T 2 values based on the pulse sequence. MRF-QUEST was evaluated by comparing to the results of spin-echo methods. The specific absorption rate (SAR) of MRF-QUEST was compared with the clinically available methods. MRF-QUEST quantifies the relaxation properties with good accuracy at the estimated head SAR of 0.03 W/kg. T 1 and T 2 values estimated by MRF-QUEST are in good agreement with the traditional methods. The combination of the MRF and the QUEST provides an accurate quantification of T 1 and T 2 simultaneously with reduced RF power deposition. The resulting lower SAR may provide a new acquisition strategy for MRF when RF energy deposition is problematic. Magn Reson Med 77:979-988, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Towards reconstruction of overlapping fingerprints using plasma spectroscopy
NASA Astrophysics Data System (ADS)
Yang, Jun-Ho; Choi, Soo-Jin; Yoh, Jack J.
2017-08-01
Chemical analysis is commonly used in the field of forensic science where the precise discrimination of primary evidence is of significant importance. Laser-Induced Breakdown Spectroscopy (LIBS) exceeds other spectroscopic methods in terms of the time required for pre- and post-sample preparation, the insensitivity to sample phase state be it solid, liquid, or gas, and the detection of two-dimensional spectral mapping from real time point measurements. In this research, fingerprint samples on various surface materials are considered in the chemical detection and reconstruction of fingerprints using the two-dimensional LIBS technique. Strong and distinct intensities of specific wavelengths represent visible ink, natural secretion of sweat, and contaminants from the environment, all of which can be present in latent fingerprints. The particular aim of the work presented here is to enhance the precision of the two-dimensional recreation of the fingerprints present on metal, plastic, and artificially prepared soil surface using LIBS with principal component analysis. By applying a distinct wavelength discrimination for two overlapping fingerprint samples, separation into two non-identical chemical fingerprints was successfully performed.
Acquiring a 2D rolled equivalent fingerprint image from a non-contact 3D finger scan
NASA Astrophysics Data System (ADS)
Fatehpuria, Abhishika; Lau, Daniel L.; Hassebrook, Laurence G.
2006-04-01
The use of fingerprints as a biometric is both the oldest mode of computer aided personal identification and the most relied-upon technology in use today. But current fingerprint scanning systems have some challenging and peculiar difficulties. Often skin conditions and imperfect acquisition circumstances cause the captured fingerprint image to be far from ideal. Also some of the acquisition techniques can be slow and cumbersome to use and may not provide the complete information required for reliable feature extraction and fingerprint matching. Most of the difficulties arise due to the contact of the fingerprint surface with the sensor platen. To attain a fast-capture, non-contact, fingerprint scanning technology, we are developing a scanning system that employs structured light illumination as a means for acquiring a 3-D scan of the finger with sufficiently high resolution to record ridge-level details. In this paper, we describe the postprocessing steps used for converting the acquired 3-D scan of the subject's finger into a 2-D rolled equivalent image.
An investigation of fake fingerprint detection approaches
NASA Astrophysics Data System (ADS)
Ahmad, Asraful Syifaa'; Hassan, Rohayanti; Othman, Razib M.
2017-10-01
The most reliable biometrics technology, fingerprint recognition is widely used in terms of security due to its permanence and uniqueness. However, it is also vulnerable to the certain type of attacks including presenting fake fingerprints to the sensor which requires the development of new and efficient protection measures. Particularly, the aim is to identify the most recent literature related to the fake fingerprint recognition and only focus on software-based approaches. A systematic review is performed by analyzing 146 primary studies from the gross collection of 34 research papers to determine the taxonomy, approaches, online public databases, and limitations of the fake fingerprint. Fourteen software-based approaches have been briefly described, four limitations of fake fingerprint image were revealed and two known fake fingerprint databases were addressed briefly in this review. Therefore this work provides an overview of an insight into the current understanding of fake fingerprint recognition besides identifying future research possibilities.
Understanding the chemistry of the development of latent fingerprints by superglue fuming.
Wargacki, Stephen P; Lewis, Linda A; Dadmun, Mark D
2007-09-01
Cyanoacrylate fuming is a widely used forensic tool for the development of latent fingerprints, however the mechanistic details of the reaction between the fingerprint residue and the cyanoacrylate vapor are not well understood. Here the polymerization of ethyl-cyanoacrylate vapor by sodium lactate or alanine solutions, two of the major components in fingerprint residue, has been examined by monitoring the time dependence of the mass uptake and resultant polymer molecular weight characteristics. This data provides insight into the molecular level actions in the efficient development of latent fingerprints by superglue fuming. The results show that the carboxylate moiety is the primary initiator of the polymerization process and that a basic environment inhibits chain termination while an acidic environment promotes it. The results also indicate that water cannot be the primary initiator in this forensic technique.
A Radio-Map Automatic Construction Algorithm Based on Crowdsourcing
Yu, Ning; Xiao, Chenxian; Wu, Yinfeng; Feng, Renjian
2016-01-01
Traditional radio-map-based localization methods need to sample a large number of location fingerprints offline, which requires huge amount of human and material resources. To solve the high sampling cost problem, an automatic radio-map construction algorithm based on crowdsourcing is proposed. The algorithm employs the crowd-sourced information provided by a large number of users when they are walking in the buildings as the source of location fingerprint data. Through the variation characteristics of users’ smartphone sensors, the indoor anchors (doors) are identified and their locations are regarded as reference positions of the whole radio-map. The AP-Cluster method is used to cluster the crowdsourced fingerprints to acquire the representative fingerprints. According to the reference positions and the similarity between fingerprints, the representative fingerprints are linked to their corresponding physical locations and the radio-map is generated. Experimental results demonstrate that the proposed algorithm reduces the cost of fingerprint sampling and radio-map construction and guarantees the localization accuracy. The proposed method does not require users’ explicit participation, which effectively solves the resource-consumption problem when a location fingerprint database is established. PMID:27070623
49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 49 Transportation 9 2011-10-01 2011-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...
49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 49 Transportation 9 2013-10-01 2013-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...
49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 49 Transportation 9 2012-10-01 2012-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...
49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 49 Transportation 9 2014-10-01 2014-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...
49 CFR 1544.230 - Fingerprint-based criminal history records checks (CHRC): Flightcrew members.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 9 2010-10-01 2010-10-01 false Fingerprint-based criminal history records checks (CHRC): Flightcrew members. 1544.230 Section 1544.230 Transportation Other Regulations Relating to... Fingerprint-based criminal history records checks (CHRC): Flightcrew members. (a) Scope. This section applies...
76 FR 78950 - FBI Criminal Justice Information Services Division; Revised User Fee Schedule
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-20
... fingerprint-based Criminal History Record Information (CHRI) checks for noncriminal justice purposes. DATES... user fees for authorized agencies requesting noncriminal fingerprint-based CHRI checks at 28 CFR 20.31(e). The FBI will periodically review the process of fingerprint- based CHRI checks to determine the...
A novel hand-type detection technique with fingerprint sensor
NASA Astrophysics Data System (ADS)
Abe, Narishige; Shinzaki, Takashi
2013-05-01
In large-scale biometric authentication systems such as the US-Visit (USA), a 10-fingerprints scanner which simultaneously captures four fingerprints is used. In traditional systems, specific hand-types (left or right) are indicated, but it is difficult to detect hand-type due to the hand rotation and the opening and closing of fingers. In this paper, we evaluated features that were extracted from hand images (which were captured by a general optical scanner) that are considered to be effective for detecting hand-type. Furthermore, we extended the knowledge to real fingerprint images, and evaluated the accuracy with which it detects hand-type. We obtained an accuracy of about 80% with only three fingers (index, middle, ring finger).
Rare Earth Fluorescent Nanomaterials for Enhanced Development of Latent Fingerprints.
Wang, Meng; Li, Ming; Yu, Aoyang; Wu, Jian; Mao, Chuanbin
2015-12-30
The most commonly found fingerprints at crime scenes are latent and, thus, an efficient method for detecting latent fingerprints is very important. However, traditional developing techniques have drawbacks such as low developing sensitivity, high background interference, complicated operation, and high toxicity. To tackle this challenge, we have synthesized two kinds of rare earth fluorescent nanomaterials, including the fluoresce red-emitting YVO4:Eu nanocrystals and green-emitting LaPO4:Ce,Tb nanobelts, and then used them as fluorescent labels for the development of latent fingerprints with high sensitivity, high contrast, high selectivity, high efficiency, and low background interference, on various substrates including noninfiltrating materials, semi-infiltrating materials, and infiltrating materials.
Collaborative WiFi Fingerprinting Using Sensor-Based Navigation on Smartphones.
Zhang, Peng; Zhao, Qile; Li, You; Niu, Xiaoji; Zhuang, Yuan; Liu, Jingnan
2015-07-20
This paper presents a method that trains the WiFi fingerprint database using sensor-based navigation solutions. Since micro-electromechanical systems (MEMS) sensors provide only a short-term accuracy but suffer from the accuracy degradation with time, we restrict the time length of available indoor navigation trajectories, and conduct post-processing to improve the sensor-based navigation solution. Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database. Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method. Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications.
Collaborative WiFi Fingerprinting Using Sensor-Based Navigation on Smartphones
Zhang, Peng; Zhao, Qile; Li, You; Niu, Xiaoji; Zhuang, Yuan; Liu, Jingnan
2015-01-01
This paper presents a method that trains the WiFi fingerprint database using sensor-based navigation solutions. Since micro-electromechanical systems (MEMS) sensors provide only a short-term accuracy but suffer from the accuracy degradation with time, we restrict the time length of available indoor navigation trajectories, and conduct post-processing to improve the sensor-based navigation solution. Different middle-term navigation trajectories that move in and out of an indoor area are combined to make up the database. Furthermore, we evaluate the effect of WiFi database shifts on WiFi fingerprinting using the database generated by the proposed method. Results show that the fingerprinting errors will not increase linearly according to database (DB) errors in smartphone-based WiFi fingerprinting applications. PMID:26205269
NASA Astrophysics Data System (ADS)
Syarifah, V. B.; Rafi, M.; Wahyuni, W. T.
2017-05-01
Brotowali (Tinospora crispa) is widely used in Indonesia as ingredient of herbal medicine formulation. To ensure the quality, safety, and efficacy of herbal medicine products, its chemical constituents should be continuously evaluated. High performance liquid chromatography (HPLC) fingerprint is one of powerful technique for this quality control process. In this study, HPLC fingerprint analysis method was developed for quality control of brotowali. HPLC analysis was performed in C18 column and detection was performed using photodiode array detector. The optimum mobile phase for brotowali fingerprint was acetonitrile (ACN) and 0.1% formic acid in gradient elution mode at a flow rate of 1 mL/min. The number of peaks detected in HPLC fingerprint of brotowali was 32 peaks and 23 peaks for stems and leaves, respectively. Berberine as marker compound was detected at retention time of 20.525 minutes. Evaluation of analytical performance including precision, reproducibility, and stability prove that this HPLC fingerprint analysis was reliable and could be applied for quality control of brotowali.
Fingerprint Recognition with Identical Twin Fingerprints
Yang, Xin; Tian, Jie
2012-01-01
Fingerprint recognition with identical twins is a challenging task due to the closest genetics-based relationship existing in the identical twins. Several pioneers have analyzed the similarity between twins' fingerprints. In this work we continue to investigate the topic of the similarity of identical twin fingerprints. Our study was tested based on a large identical twin fingerprint database that contains 83 twin pairs, 4 fingers per individual and six impressions per finger: 3984 (83*2*4*6) images. Compared to the previous work, our contributions are summarized as follows: (1) Two state-of-the-art fingerprint identification methods: P071 and VeriFinger 6.1 were used, rather than one fingerprint identification method in previous studies. (2) Six impressions per finger were captured, rather than just one impression, which makes the genuine distribution of matching scores more realistic. (3) A larger sample (83 pairs) was collected. (4) A novel statistical analysis, which aims at showing the probability distribution of the fingerprint types for the corresponding fingers of identical twins which have same fingerprint type, has been conducted. (5) A novel analysis, which aims at showing which finger from identical twins has higher probability of having same fingerprint type, has been conducted. Our results showed that: (a) A state-of-the-art automatic fingerprint verification system can distinguish identical twins without drastic degradation in performance. (b) The chance that the fingerprints have the same type from identical twins is 0.7440, comparing to 0.3215 from non-identical twins. (c) For the corresponding fingers of identical twins which have same fingerprint type, the probability distribution of five major fingerprint types is similar to the probability distribution for all the fingers' fingerprint type. (d) For each of four fingers of identical twins, the probability of having same fingerprint type is similar. PMID:22558204
Fingerprint recognition with identical twin fingerprints.
Tao, Xunqiang; Chen, Xinjian; Yang, Xin; Tian, Jie
2012-01-01
Fingerprint recognition with identical twins is a challenging task due to the closest genetics-based relationship existing in the identical twins. Several pioneers have analyzed the similarity between twins' fingerprints. In this work we continue to investigate the topic of the similarity of identical twin fingerprints. Our study was tested based on a large identical twin fingerprint database that contains 83 twin pairs, 4 fingers per individual and six impressions per finger: 3984 (83*2*4*6) images. Compared to the previous work, our contributions are summarized as follows: (1) Two state-of-the-art fingerprint identification methods: P071 and VeriFinger 6.1 were used, rather than one fingerprint identification method in previous studies. (2) Six impressions per finger were captured, rather than just one impression, which makes the genuine distribution of matching scores more realistic. (3) A larger sample (83 pairs) was collected. (4) A novel statistical analysis, which aims at showing the probability distribution of the fingerprint types for the corresponding fingers of identical twins which have same fingerprint type, has been conducted. (5) A novel analysis, which aims at showing which finger from identical twins has higher probability of having same fingerprint type, has been conducted. Our results showed that: (a) A state-of-the-art automatic fingerprint verification system can distinguish identical twins without drastic degradation in performance. (b) The chance that the fingerprints have the same type from identical twins is 0.7440, comparing to 0.3215 from non-identical twins. (c) For the corresponding fingers of identical twins which have same fingerprint type, the probability distribution of five major fingerprint types is similar to the probability distribution for all the fingers' fingerprint type. (d) For each of four fingers of identical twins, the probability of having same fingerprint type is similar.
Waveform Fingerprinting for Efficient Seismic Signal Detection
NASA Astrophysics Data System (ADS)
Yoon, C. E.; OReilly, O. J.; Beroza, G. C.
2013-12-01
Cross-correlating an earthquake waveform template with continuous waveform data has proven a powerful approach for detecting events missing from earthquake catalogs. If templates do not exist, it is possible to divide the waveform data into short overlapping time windows, then identify window pairs with similar waveforms. Applying these approaches to earthquake monitoring in seismic networks has tremendous potential to improve the completeness of earthquake catalogs, but because effort scales quadratically with time, it rapidly becomes computationally infeasible. We develop a fingerprinting technique to identify similar waveforms, using only a few compact features of the original data. The concept is similar to human fingerprints, which utilize key diagnostic features to identify people uniquely. Analogous audio-fingerprinting approaches have accurately and efficiently found similar audio clips within large databases; example applications include identifying songs and finding copyrighted content within YouTube videos. In order to fingerprint waveforms, we compute a spectrogram of the time series, and segment it into multiple overlapping windows (spectral images). For each spectral image, we apply a wavelet transform, and retain only the sign of the maximum magnitude wavelet coefficients. This procedure retains just the large-scale structure of the data, providing both robustness to noise and significant dimensionality reduction. Each fingerprint is a high-dimensional, sparse, binary data object that can be stored in a database without significant storage costs. Similar fingerprints within the database are efficiently searched using locality-sensitive hashing. We test this technique on waveform data from the Northern California Seismic Network that contains events not detected in the catalog. We show that this algorithm successfully identifies similar waveforms and detects uncataloged low magnitude events in addition to cataloged events, while running to completion faster than a comparison waveform autocorrelation code.
Identification and analysis of multigene families by comparison of exon fingerprints.
Brown, N P; Whittaker, A J; Newell, W R; Rawlings, C J; Beck, S
1995-06-02
Gene families are often recognised by sequence homology using similarity searching to find relationships, however, genomic sequence data provides gene architectural information not used by conventional search methods. In particular, intron positions and phases are expected to be relatively conserved features, because mis-splicing and reading frame shifts should be selected against. A fast search technique capable of detecting possible weak sequence homologies apparent at the intron/exon level of gene organization is presented for comparing spliceosomal genes and gene fragments. FINEX compares strings of exons delimited by intron/exon boundary positions and intron phases (exon fingerprint) using a global dynamic programming algorithm with a combined intron phase identity and exon size dissimilarity score. Exon fingerprints are typically two orders of magnitude smaller than their nucleic acid sequence counterparts giving rise to fast search times: a ranked search against a library of 6755 fingerprints for a typical three exon fingerprint completes in under 30 seconds on an ordinary workstation, while a worst case largest fingerprint of 52 exons completes in just over one minute. The short "sequence" length of exon fingerprints in comparisons is compensated for by the large exon alphabet compounded of intron phase types and a wide range of exon sizes, the latter contributing the most information to alignments. FINEX performs better in some searches than conventional methods, finding matches with similar exon organization, but low sequence homology. A search using a human serum albumin finds all members of the multigene family in the FINEX database at the top of the search ranking, despite very low amino acid percentage identities between family members. The method should complement conventional sequence searching and alignment techniques, offering a means of identifying otherwise hard to detect homologies where genomic data are available.
Odei-Lartey, Eliezer Ofori; Boateng, Dennis; Danso, Samuel; Kwarteng, Anthony; Abokyi, Livesy; Amenga-Etego, Seeba; Gyaase, Stephaney; Asante, Kwaku Poku; Owusu-Agyei, Seth
2016-01-01
Background The reliability of counts for estimating population dynamics and disease burdens in communities depends on the availability of a common unique identifier for matching general population data with health facility data. Biometric data has been explored as a feasible common identifier between the health data and sociocultural data of resident members in rural communities within the Kintampo Health and Demographic Surveillance System located in the central part of Ghana. Objective Our goal was to assess the feasibility of using fingerprint identification to link community data and hospital data in a rural African setting. Design A combination of biometrics and other personal identification techniques were used to identify individual's resident within a surveillance population seeking care in two district hospitals. Visits from resident individuals were successfully recorded and categorized by the success of the techniques applied during identification. The successes of visits that involved identification by fingerprint were further examined by age. Results A total of 27,662 hospital visits were linked to resident individuals. Over 85% of those visits were successfully identified using at least one identification method. Over 65% were successfully identified and linked using their fingerprints. Supervisory support from the hospital administration was critical in integrating this identification system into its routine activities. No concerns were expressed by community members about the fingerprint registration and identification processes. Conclusions Fingerprint identification should be combined with other methods to be feasible in identifying community members in African rural settings. This can be enhanced in communities with some basic Demographic Surveillance System or census information. PMID:26993473
Odei-Lartey, Eliezer Ofori; Boateng, Dennis; Danso, Samuel; Kwarteng, Anthony; Abokyi, Livesy; Amenga-Etego, Seeba; Gyaase, Stephaney; Asante, Kwaku Poku; Owusu-Agyei, Seth
2016-01-01
The reliability of counts for estimating population dynamics and disease burdens in communities depends on the availability of a common unique identifier for matching general population data with health facility data. Biometric data has been explored as a feasible common identifier between the health data and sociocultural data of resident members in rural communities within the Kintampo Health and Demographic Surveillance System located in the central part of Ghana. Our goal was to assess the feasibility of using fingerprint identification to link community data and hospital data in a rural African setting. A combination of biometrics and other personal identification techniques were used to identify individual's resident within a surveillance population seeking care in two district hospitals. Visits from resident individuals were successfully recorded and categorized by the success of the techniques applied during identification. The successes of visits that involved identification by fingerprint were further examined by age. A total of 27,662 hospital visits were linked to resident individuals. Over 85% of those visits were successfully identified using at least one identification method. Over 65% were successfully identified and linked using their fingerprints. Supervisory support from the hospital administration was critical in integrating this identification system into its routine activities. No concerns were expressed by community members about the fingerprint registration and identification processes. Fingerprint identification should be combined with other methods to be feasible in identifying community members in African rural settings. This can be enhanced in communities with some basic Demographic Surveillance System or census information.
NASA Astrophysics Data System (ADS)
Merkel, Ronny; Breuhan, Andy; Hildebrandt, Mario; Vielhauer, Claus; Bräutigam, Anja
2012-06-01
In the field of crime scene forensics, current methods of evidence collection, such as the acquisition of shoe-marks, tireimpressions, palm-prints or fingerprints are in most cases still performed in an analogue way. For example, fingerprints are captured by powdering and sticky tape lifting, ninhydrine bathing or cyanoacrylate fuming and subsequent photographing. Images of the evidence are then further processed by forensic experts. With the upcoming use of new multimedia systems for the digital capturing and processing of crime scene traces in forensics, higher resolutions can be achieved, leading to a much better quality of forensic images. Furthermore, the fast and mostly automated preprocessing of such data using digital signal processing techniques is an emerging field. Also, by the optical and non-destructive lifting of forensic evidence, traces are not destroyed and therefore can be re-captured, e.g. by creating time series of a trace, to extract its aging behavior and maybe determine the time the trace was left. However, such new methods and tools face different challenges, which need to be addressed before a practical application in the field. Based on the example of fingerprint age determination, which is an unresolved research challenge to forensic experts since decades, we evaluate the influences of different environmental conditions as well as different types of sweating and their implications to the capturing sensory, preprocessing methods and feature extraction. We use a Chromatic White Light (CWL) sensor to exemplary represent such a new optical and contactless measurement device and investigate the influence of 16 different environmental conditions, 8 different sweat types and 11 different preprocessing methods on the aging behavior of 48 fingerprint time series (2592 fingerprint scans in total). We show the challenges that arise for such new multimedia systems capturing and processing forensic evidence
49 CFR 1562.23 - Aircraft operator and passenger requirements.
Code of Federal Regulations, 2013 CFR
2013-10-01
... designated by an aircraft operator under paragraph (a) of this section: (1) Must undergo a fingerprint-based... compliance with the fingerprint-based criminal history records check requirements of §§ 1542.209, 1544.229... a fingerprint-based criminal history records check that does not disclose that he or she has a...
49 CFR 1562.23 - Aircraft operator and passenger requirements.
Code of Federal Regulations, 2011 CFR
2011-10-01
... designated by an aircraft operator under paragraph (a) of this section: (1) Must undergo a fingerprint-based... compliance with the fingerprint-based criminal history records check requirements of §§ 1542.209, 1544.229... a fingerprint-based criminal history records check that does not disclose that he or she has a...
Fu, Dan; Yu, Yong; Folick, Andrew; Currie, Erin; Farese, Robert V; Tsai, Tsung-Huang; Xie, Xiaoliang Sunney; Wang, Meng C
2014-06-18
Metabolic fingerprinting provides valuable information on the physiopathological states of cells and tissues. Traditional imaging mass spectrometry and magnetic resonance imaging are unable to probe the spatial-temporal dynamics of metabolites at the subcellular level due to either lack of spatial resolution or inability to perform live cell imaging. Here we report a complementary metabolic imaging technique that is based on hyperspectral stimulated Raman scattering (hsSRS). We demonstrated the use of hsSRS imaging in quantifying two major neutral lipids: cholesteryl ester and triacylglycerol in cells and tissues. Our imaging results revealed previously unknown changes of lipid composition associated with obesity and steatohepatitis. We further used stable-isotope labeling to trace the metabolic dynamics of fatty acids in live cells and live Caenorhabditis elegans with hsSRS imaging. We found that unsaturated fatty acid has preferential uptake into lipid storage while saturated fatty acid exhibits toxicity in hepatic cells. Simultaneous metabolic fingerprinting of deuterium-labeled saturated and unsaturated fatty acids in living C. elegans revealed that there is a lack of interaction between the two, unlike previously hypothesized. Our findings provide new approaches for metabolic tracing of neutral lipids and their precursors in living cells and organisms, and could potentially serve as a general approach for metabolic fingerprinting of other metabolites.
Stand-off detection of explosive particles by imaging Raman spectroscopy
NASA Astrophysics Data System (ADS)
Nordberg, Markus; Åkeson, Madeleine; Östmark, Henric; Carlsson, Torgny E.
2011-06-01
A multispectral imaging technique has been developed to detect and identify explosive particles, e.g. from a fingerprint, at stand-off distances using Raman spectroscopy. When handling IED's as well as other explosive devices, residues can easily be transferred via fingerprints onto other surfaces e.g. car handles, gear sticks and suite cases. By imaging the surface using multispectral imaging Raman technique the explosive particles can be identified and displayed using color-coding. The technique has been demonstrated by detecting fingerprints containing significant amounts of 2,4-dinitrotoulene (DNT), 2,4,6-trinitrotoulene (TNT) and ammonium nitrate at a distance of 12 m in less than 90 seconds (22 images × 4 seconds)1. For each measurement, a sequence of images, one image for each wave number, is recorded. The spectral data from each pixel is compared with reference spectra of the substances to be detected. The pixels are marked with different colors corresponding to the detected substances in the fingerprint. The system has now been further developed to become less complex and thereby less sensitive to the environment such as temperature fluctuations. The optical resolution has been improved to less than 70 μm measured at 546 nm wavelength. The total detection time is ranging from less then one minute to around five minutes depending on the size of the particles and how confident the identification should be. The results indicate a great potential for multi-spectral imaging Raman spectroscopy as a stand-off technique for detection of single explosive particles.
identification. URE from ten MSP430F5529 16-bit microcontrollers were analyzed using: 1) RF distinct native attributes (RF-DNA) fingerprints paired with multiple...discriminant analysis/maximum likelihood (MDA/ML) classification, 2) RF-DNA fingerprints paired with generalized relevance learning vector quantized
USDA-ARS?s Scientific Manuscript database
Burning, grazing, and baling (hay harvesting) are common management practices for tallgrass prairie. However, the impacts of these management practices on grassland phenology and carbon uptake are not well understood. Utilizing multiple observations to detect fingerprints of various management pract...
Serwaa-Bonsu, Adwoa; Herbst, Abraham J; Reniers, Georges; Ijaa, Wilfred; Clark, Benjamin; Kabudula, Chodziwadziwa; Sankoh, Osman
2010-02-24
In developing countries, Health and Demographic Surveillance Systems (HDSSs) provide a framework for tracking demographic and health dynamics over time in a defined geographical area. Many HDSSs co-exist with facility-based data sources in the form of Health Management Information Systems (HMIS). Integrating both data sources through reliable record linkage could provide both numerator and denominator populations to estimate disease prevalence and incidence rates in the population and enable determination of accurate health service coverage. To measure the acceptability and performance of fingerprint biometrics to identify individuals in demographic surveillance populations and those attending health care facilities serving the surveillance populations. Two HDSS sites used fingerprint biometrics for patient and/or surveillance population participant identification. The proportion of individuals for whom a fingerprint could be successfully enrolled were characterised in terms of age and sex. Adult (18-65 years) fingerprint enrolment rates varied between 94.1% (95% CI 93.6-94.5) for facility-based fingerprint data collection at the Africa Centre site to 96.7% (95% CI 95.9-97.6) for population-based fingerprint data collection at the Agincourt site. Fingerprint enrolment rates in children under 1 year old (Africa Centre site) were only 55.1% (95% CI 52.7-57.4). By age 5, child fingerprint enrolment rates were comparable to those of adults. This work demonstrates the feasibility of fingerprint-based individual identification for population-based research in developing countries. Record linkage between demographic surveillance population databases and health care facility data based on biometric identification systems would allow for a more comprehensive evaluation of population health, including the ability to study health service utilisation from a population perspective, rather than the more restrictive health service perspective.
A new method of artificial latent fingerprint creation using artificial sweat and inkjet printer.
Hong, Sungwook; Hong, Ingi; Han, Aleum; Seo, Jin Yi; Namgung, Juyoung
2015-12-01
In order to study fingerprinting in the field of forensic science, it is very important to have two or more latent fingerprints with identical chemical composition and intensity. However, it is impossible to obtain identical fingerprints, in reality, because fingerprinting comes out slightly differently every time. A previous research study had proposed an artificial fingerprint creation method in which inkjet ink was replaced with amino acids and sodium chloride solution: the components of human sweat. But, this method had some drawbacks: divalent cations were not added while formulating the artificial sweat solution, and diluted solutions were used for creating weakly deposited latent fingerprint. In this study, a method was developed for overcoming the drawbacks of the methods used in the previous study. Several divalent cations were added in this study because the amino acid-ninhydrin (or some of its analogues) complex is known to react with divalent cations to produce a photoluminescent product; and, similarly, the amino acid-1,2-indanedione complex is known to be catalyzed by a small amount of zinc ions to produce a highly photoluminescent product. Also, in this study, a new technique was developed which enables to adjust the intensity when printing the latent fingerprint patterns. In this method, image processing software is used to control the intensity of the master fingerprint patterns, which adjusts the printing intensity of the latent fingerprints. This new method opened the way to produce a more realistic artificial fingerprint in various strengths with one artificial sweat working solution. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Private content identification based on soft fingerprinting
NASA Astrophysics Data System (ADS)
Voloshynovskiy, Sviatoslav; Holotyak, Taras; Koval, Oleksiy; Beekhof, Fokko; Farhadzadeh, Farzad
2011-02-01
In many problems such as biometrics, multimedia search, retrieval, recommendation systems requiring privacypreserving similarity computations and identification, some binary features are stored in the public domain or outsourced to third parties that might raise certain privacy concerns about the original data. To avoid this privacy leak, privacy protection is used. In most cases, privacy protection is uniformly applied to all binary features resulting in data degradation and corresponding loss of performance. To avoid this undesirable effect we propose a new privacy amplification technique that is based on data hiding principles and benefits from side information about bit reliability a.k.a. soft fingerprinting. In this paper, we investigate the identification-rate vs privacy-leak trade-off. The analysis is performed for the case of a perfect match between side information shared between the encoder and decoder as well as for the case of partial side information.
Analysis of preparation of Chinese traditional medicine based on the fiber fingerprint drop trace
NASA Astrophysics Data System (ADS)
Zhang, Zhilin; Wang, Jialu; Sun, Weimin; Yan, Qi
2010-11-01
The purpose of the fiber micro-drop analyzing technique is to measure the characteristics of liquids using optical methods. The fiber fingerprint drop trace (FFDT) is a curve of light intensity vs. time. This curve indicates the forming, growing and dripping processes of the liquid drops. A pair of fibers was used to monitor the dripping process. The FFDTs are acquired and analyzed by a computer. Different liquid samples of many kinds of preparation of Chinese traditional medicines were tested by using the fiber micro-drop sensor in the experiments. The FFDTs of preparation of Chinese traditional medicines with different concentrations were analyzed in different ways. Considering the characters of the FFDTs, a novel method is proposed to measure the different preparation of Chinese traditional medicines and its concentration based on the corresponding relationship of FFDTs and the physical and chemical parameters of the liquids.
Novel nanoporous sorbent for solid-phase extraction in petroleum fingerprinting
NASA Astrophysics Data System (ADS)
Alayande, S. Oluwagbemiga; Hlengilizwe, Nyoni; Dare, E. Olugbenga; Msagati, Titus A. M.; Akinlabi, A. Kehinde; Aiyedun, P. O.
2016-04-01
Sample preparation is crucial in the analysis of petroleum and its derivatives. In this study, developing affordable sorbent for petroleum fingerprinting analysis using polymer waste such expanded polystyrene was explored. The potential of electrospun expanded polystyrene (EPS) as a sorbent for the solid-phase extraction (SPE) technique was investigated, and its efficiency was compared with commercial cartridges such as alumina, silica and alumina/silica hybrid commercial for petroleum fingerprinting analysis. The chromatograms showed that the packed electrospun EPS fibre demonstrated excellent properties for SPE applications relative to the hybrid cartridges.
Kellman, Philip J; Mnookin, Jennifer L; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E
2014-01-01
Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons.
Evidence acquisition tools for cyber sex crimes investigations
NASA Astrophysics Data System (ADS)
Novotny, Jon M.; Meehan, A.; Schulte, D.; Manes, Gavin W.; Shenoi, Sujeet
2002-08-01
Sexually explicit Internet chat rooms are increasingly used by pedophiles to reach potential victims. Logging and linking suspects to chat room conversations and e-mails exchanged with undercover detectives are crucial to prosecuting travelers, i.e., pedophiles who travel across state lines to engage in sexual acts with minors. This paper describes two tools, a chat room monitor and a remote fingerprinter, for acquiring and preserving evidence. The chat room monitor logs online communications as well as screen images and keystrokes of the undercover detective. stored to allow the chronological reconstruction and replay of the investigation. The remote fingerprinter uses sophisticated scanning techniques to capture and preserve a unique fingerprint of the suspect's computer over the Internet. Once the suspect's computer is seized, it is scanned again; matching this new fingerprint with the remotely acquired fingerprint establishes that the suspect's computer was used to communicate with the detective.
Fingerprinting of music scores
NASA Astrophysics Data System (ADS)
Irons, Jonathan; Schmucker, Martin
2004-06-01
Publishers of sheet music are generally reluctant in distributing their content via the Internet. Although online sheet music distribution's advantages are numerous the potential risk of Intellectual Property Rights (IPR) infringement, e.g. illegal online distributions, disables any innovation propensity. While active protection techniques only deter external risk factors, additional technology is necessary to adequately treat further risk factors. For several media types including music scores watermarking technology has been developed, which ebeds information in data by suitable data modifications. Furthermore, fingerprinting or perceptual hasing methods have been developed and are being applied especially for audio. These methods allow the identification of content without prior modifications. In this article we motivate the development of watermarking and fingerprinting technologies for sheet music. Outgoing from potential limitations of watermarking methods we explain why fingerprinting methods are important for sheet music and address potential applications. Finally we introduce a condept for fingerprinting of sheet music.
Immunological multimetal deposition for rapid visualization of sweat fingerprints.
He, Yayun; Xu, Linru; Zhu, Yu; Wei, Qianhui; Zhang, Meiqin; Su, Bin
2014-11-10
A simple method termed immunological multimetal deposition (iMMD) was developed for rapid visualization of sweat fingerprints with bare eyes, by combining the conventional MMD with the immunoassay technique. In this approach, antibody-conjugated gold nanoparticles (AuNPs) were used to specifically interact with the corresponding antigens in the fingerprint residue. The AuNPs serve as the nucleation sites for autometallographic deposition of silver particles from the silver staining solution, generating a dark ridge pattern for visual detection. Using fingerprints inked with human immunoglobulin G (hIgG), we obtained the optimal formulation of iMMD, which was then successfully applied to visualize sweat fingerprints through the detection of two secreted polypeptides, epidermal growth factor and lysozyme. In comparison with the conventional MMD, iMMD is faster and can provide additional information than just identification. Moreover, iMMD is facile and does not need expensive instruments. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liu, Meiqiong; Wu, Youjiao; Huang, Shushi; Liu, Huagang; Feng, Jie
2018-02-23
Curcuma aromatica is used as a traditional Chinese medicine, and it is mainly distributed in Guangxi, China. In this study, 10 batches of C. aromatica were collected from different origins in Guangxi. The fingerprints were established by HPLC technique to investigate the quality stability of C. aromatica. The spectrum-effect relationship between HPLC fingerprints and hypolipidemic effect of C. aromatica was assessed by similarity analysis, gray relational analysis and multiple linear regression analysis. From the results, the similarity values between each batch of C. aromatica and reference fingerprint were >0.880, indicating the good quality stability of the 10 batches of C. aromatica. Twenty common peaks were selected as the fingerprints to evaluate the quality and hypolipidemic effect of C. aromatica. The results of spectrum-effect relationship showed that peaks 10, 18, 13, 15 and 17 in the fingerprints were closely related to hypolipidemic effect. This study successfully established the spectrum-effect relationship between HPLC fingerprints and hypolipidemic effect of C. aromatica, which provided methods for quality control and more effectively studies on bioactive compounds of C. aromatica. It could also provide a new simple and effective method for utilizing the fingerprints to optimize the Chinese prescription and develop traditional Chinese medicine. Copyright © 2018 John Wiley & Sons, Ltd.
Bailey, Melanie J; Bradshaw, Robert; Francese, Simona; Salter, Tara L; Costa, Catia; Ismail, Mahado; P Webb, Roger; Bosman, Ingrid; Wolff, Kim; de Puit, Marcel
2015-09-21
Latent fingerprints provide a potential route to the secure, high throughput and non-invasive detection of drugs of abuse. In this study we show for the first time that the excreted metabolites of drugs of abuse can be detected in fingerprints using ambient mass spectrometry. Fingerprints and oral fluid were taken from patients attending a drug and alcohol treatment service. Gas chromatography mass spectrometry (GC-MS) was used to test the oral fluid of patients for the presence of cocaine and benzoylecgonine. The corresponding fingerprints were analysed using Desorption Electrospray Ionization (DESI) which operates under ambient conditions and Ion Mobility Tandem Mass Spectrometry Matrix Assisted Laser Desorption Ionization (MALDI-IMS-MS/MS) and Secondary Ion Mass Spectrometry (SIMS). The detection of cocaine, benzoylecgonine (BZE) and methylecgonine (EME) in latent fingerprints using both DESI and MALDI showed good correlation with oral fluid testing. The sensitivity of SIMS was found to be insufficient for this application. These results provide exciting opportunities for the use of fingerprints as a new sampling medium for secure, non-invasive drug detection. The mass spectrometry techniques used here offer a high level of selectivity and consume only a small area of a single fingerprint, allowing repeat and high throughput analyses of a single sample.
DOE Office of Scientific and Technical Information (OSTI.GOV)
I. W. Ginsberg
Multiresolutional decompositions known as spectral fingerprints are often used to extract spectral features from multispectral/hyperspectral data. In this study, the authors investigate the use of wavelet-based algorithms for generating spectral fingerprints. The wavelet-based algorithms are compared to the currently used method, traditional convolution with first-derivative Gaussian filters. The comparison analyses consists of two parts: (a) the computational expense of the new method is compared with the computational costs of the current method and (b) the outputs of the wavelet-based methods are compared with those of the current method to determine any practical differences in the resulting spectral fingerprints. The resultsmore » show that the wavelet-based algorithms can greatly reduce the computational expense of generating spectral fingerprints, while practically no differences exist in the resulting fingerprints. The analysis is conducted on a database of hyperspectral signatures, namely, Hyperspectral Digital Image Collection Experiment (HYDICE) signatures. The reduction in computational expense is by a factor of about 30, and the average Euclidean distance between resulting fingerprints is on the order of 0.02.« less
GNSS Receiver Identification Using Clock-Derived Metrics.
Borio, Daniele; Gioia, Ciro; Cano Pons, Eduardo; Baldini, Gianmarco
2017-09-15
Falsifying Global Navigation Satellite System (GNSS) data with a simulator or with a fake receiver can have a significant economic or safety impact in many transportation applications where Position, Velocity and Time (PVT) are used to enforce a regulation. In this context, the authentication of the source of the PVT data (i.e., the GNSS receiver) is a requirement since data faking can become a serious threat. Receiver fingerprinting techniques represent possible countermeasures to verify the authenticity of a GNSS receiver and of its data. Herein, the potential of clock-derived metrics for GNSS receiver fingerprinting is investigated, and a filter approach is implemented for feature selection. Novel experimental results show that three intrinsic features are sufficient to identify a receiver. Moreover, the adopted technique is time effective as data blocks of about 40 min are sufficient to produce stable features for fingerprinting.
Integrating Fingerprint Verification into the Smart Card-Based Healthcare Information System
NASA Astrophysics Data System (ADS)
Moon, Daesung; Chung, Yongwha; Pan, Sung Bum; Park, Jin-Won
2009-12-01
As VLSI technology has been improved, a smart card employing 32-bit processors has been released, and more personal information such as medical, financial data can be stored in the card. Thus, it becomes important to protect personal information stored in the card. Verification of the card holder's identity using a fingerprint has advantages over the present practices of Personal Identification Numbers (PINs) and passwords. However, the computational workload of fingerprint verification is much heavier than that of the typical PIN-based solution. In this paper, we consider three strategies to implement fingerprint verification in a smart card environment and how to distribute the modules of fingerprint verification between the smart card and the card reader. We first evaluate the number of instructions of each step of a typical fingerprint verification algorithm, and estimate the execution time of several cryptographic algorithms to guarantee the security/privacy of the fingerprint data transmitted in the smart card with the client-server environment. Based on the evaluation results, we analyze each scenario with respect to the security level and the real-time execution requirements in order to implement fingerprint verification in the smart card with the client-server environment.
Influence of Skin Diseases on Fingerprint Recognition
Drahansky, Martin; Dolezel, Michal; Urbanek, Jaroslav; Brezinova, Eva; Kim, Tai-hoon
2012-01-01
There are many people who suffer from some of the skin diseases. These diseases have a strong influence on the process of fingerprint recognition. People with fingerprint diseases are unable to use fingerprint scanners, which is discriminating for them, since they are not allowed to use their fingerprints for the authentication purposes. First in this paper the various diseases, which might influence functionality of the fingerprint-based systems, are introduced, mainly from the medical point of view. This overview is followed by some examples of diseased finger fingerprints, acquired both from dactyloscopic card and electronic sensors. At the end of this paper the proposed fingerprint image enhancement algorithm is described. PMID:22654483
Influence of skin diseases on fingerprint recognition.
Drahansky, Martin; Dolezel, Michal; Urbanek, Jaroslav; Brezinova, Eva; Kim, Tai-hoon
2012-01-01
There are many people who suffer from some of the skin diseases. These diseases have a strong influence on the process of fingerprint recognition. People with fingerprint diseases are unable to use fingerprint scanners, which is discriminating for them, since they are not allowed to use their fingerprints for the authentication purposes. First in this paper the various diseases, which might influence functionality of the fingerprint-based systems, are introduced, mainly from the medical point of view. This overview is followed by some examples of diseased finger fingerprints, acquired both from dactyloscopic card and electronic sensors. At the end of this paper the proposed fingerprint image enhancement algorithm is described.
Finger-vein and fingerprint recognition based on a feature-level fusion method
NASA Astrophysics Data System (ADS)
Yang, Jinfeng; Hong, Bofeng
2013-07-01
Multimodal biometrics based on the finger identification is a hot topic in recent years. In this paper, a novel fingerprint-vein based biometric method is proposed to improve the reliability and accuracy of the finger recognition system. First, the second order steerable filters are used here to enhance and extract the minutiae features of the fingerprint (FP) and finger-vein (FV). Second, the texture features of fingerprint and finger-vein are extracted by a bank of Gabor filter. Third, a new triangle-region fusion method is proposed to integrate all the fingerprint and finger-vein features in feature-level. Thus, the fusion features contain both the finger texture-information and the minutiae triangular geometry structure. Finally, experimental results performed on the self-constructed finger-vein and fingerprint databases are shown that the proposed method is reliable and precise in personal identification.
NASA Astrophysics Data System (ADS)
Lin, Kan; Zheng, Wei; Wang, Jianfeng; Lim, Chwee Ming; Huang, Zhiwei
2016-02-01
We report a unique simultaneous fingerprint (FP) and high-wavenumber (HW) fiber-optic confocal Raman spectroscopy for in vivo diagnosis of laryngeal cancer in the head and neck under wide-field endoscopic imaging. The simultaneous FP and HW Raman endoscopy technique was performed on 21 patients and differentiated laryngeal carcinoma from normal tissues with both sensitivity and specificity of ~85%. This study shows the great potential of the FP/HW Raman endoscopic technique developed for in vivo diagnosis of laryngeal carcinoma during routine endoscopic examination.
NASA Astrophysics Data System (ADS)
Mohammed Anzar, Sharafudeen Thaha; Sathidevi, Puthumangalathu Savithri
2014-12-01
In this paper, we have considered the utility of multi-normalization and ancillary measures, for the optimal score level fusion of fingerprint and voice biometrics. An efficient matching score preprocessing technique based on multi-normalization is employed for improving the performance of the multimodal system, under various noise conditions. Ancillary measures derived from the feature space and the score space are used in addition to the matching score vectors, for weighing the modalities, based on their relative degradation. Reliability (dispersion) and the separability (inter-/intra-class distance and d-prime statistics) measures under various noise conditions are estimated from the individual modalities, during the training/validation stage. The `best integration weights' are then computed by algebraically combining these measures using the weighted sum rule. The computed integration weights are then optimized against the recognition accuracy using techniques such as grid search, genetic algorithm and particle swarm optimization. The experimental results show that, the proposed biometric solution leads to considerable improvement in the recognition performance even under low signal-to-noise ratio (SNR) conditions and reduces the false acceptance rate (FAR) and false rejection rate (FRR), making the system useful for security as well as forensic applications.
Virtual screening by a new Clustering-based Weighted Similarity Extreme Learning Machine approach
Kudisthalert, Wasu
2018-01-01
Machine learning techniques are becoming popular in virtual screening tasks. One of the powerful machine learning algorithms is Extreme Learning Machine (ELM) which has been applied to many applications and has recently been applied to virtual screening. We propose the Weighted Similarity ELM (WS-ELM) which is based on a single layer feed-forward neural network in a conjunction of 16 different similarity coefficients as activation function in the hidden layer. It is known that the performance of conventional ELM is not robust due to random weight selection in the hidden layer. Thus, we propose a Clustering-based WS-ELM (CWS-ELM) that deterministically assigns weights by utilising clustering algorithms i.e. k-means clustering and support vector clustering. The experiments were conducted on one of the most challenging datasets–Maximum Unbiased Validation Dataset–which contains 17 activity classes carefully selected from PubChem. The proposed algorithms were then compared with other machine learning techniques such as support vector machine, random forest, and similarity searching. The results show that CWS-ELM in conjunction with support vector clustering yields the best performance when utilised together with Sokal/Sneath(1) coefficient. Furthermore, ECFP_6 fingerprint presents the best results in our framework compared to the other types of fingerprints, namely ECFP_4, FCFP_4, and FCFP_6. PMID:29652912
Zhou, Ru; Zhong, Dexing; Han, Jiuqiang
2013-01-01
The performance of conventional minutiae-based fingerprint authentication algorithms degrades significantly when dealing with low quality fingerprints with lots of cuts or scratches. A similar degradation of the minutiae-based algorithms is observed when small overlapping areas appear because of the quite narrow width of the sensors. Based on the detection of minutiae, Scale Invariant Feature Transformation (SIFT) descriptors are employed to fulfill verification tasks in the above difficult scenarios. However, the original SIFT algorithm is not suitable for fingerprint because of: (1) the similar patterns of parallel ridges; and (2) high computational resource consumption. To enhance the efficiency and effectiveness of the algorithm for fingerprint verification, we propose a SIFT-based Minutia Descriptor (SMD) to improve the SIFT algorithm through image processing, descriptor extraction and matcher. A two-step fast matcher, named improved All Descriptor-Pair Matching (iADM), is also proposed to implement the 1:N verifications in real-time. Fingerprint Identification using SMD and iADM (FISiA) achieved a significant improvement with respect to accuracy in representative databases compared with the conventional minutiae-based method. The speed of FISiA also can meet real-time requirements. PMID:23467056
Ultrasonic Fingerprinting of Structural Materials: Spent Nuclear Fuel Containers Case-Study
NASA Astrophysics Data System (ADS)
Sednev, D.; Lider, A.; Demyanuk, D.; Kroening, M.; Salchak, Y.
Nowadays, NDT is mainly focused on safety purposes, but it seems possible to apply those methods to provide national and IAEA safeguards. The containment of spent fuel in storage casks could be dramatically improved in case of development of so-called "smart" spent fuel storage and transfer casks. Such casks would have tamper indicating and monitoring/tracking features integrated directly into the cask design. The microstructure of the containers material as well as of the dedicated weld seam is applied to the lid and the cask body and provides a unique fingerprint of the full container, which can be reproducibly scanned by using an appropriate technique. The echo-sounder technique, which is the most commonly used method for material inspection, was chosen for this project. The main measuring parameter is acoustic noise, reflected from material's artefacts. The purpose is to obtain structural fingerprinting. Reference measurement and additional measurement results were compared. Obtained results have verified the appliance of structural fingerprint and the chosen control method. The successful authentication demonstrates the levels of the feature points' compliance exceeding the given threshold which differs considerably from the percentage of the concurrent points during authentication from other points. Since reproduction or doubling of the proposed unique identification characteristics is impossible at the current state science and technology, application of this technique is considered to identify the interference into the nuclear materials displacement with high accuracy.
Tumor margin detection using optical biopsy techniques
NASA Astrophysics Data System (ADS)
Zhou, Yan; Liu, Cheng-hui; Li, Jiyou; Li, Zhongwu; Zhou, Lixin; Chen, Ke; Pu, Yang; He, Yong; Zhu, Ke; Li, Qingbo; Alfano, Robert R.
2014-03-01
The aim of this study is to use the Resonance Raman (RR) and fluorescence spectroscopic technique for tumor margin detection with high accuracy based on native molecular fingerprints of breast and gastrointestinal (GI) tissues. This tumor margins detection method utilizes advantages of RR spectroscopic technique in situ and in real-time to diagnose tumor changes providing powerful tools for clinical guiding intraoperative margin assessments and postoperative treatments. The tumor margin detection procedures by RR spectroscopy were taken by scanning lesion from center or around tumor region in ex-vivo to find the changes in cancerous tissues with the rim of normal tissues using the native molecular fingerprints. The specimens used to analyze tumor margins include breast and GI carcinoma and normal tissues. The sharp margin of the tumor was found by the changes of RR spectral peaks within 2 mm distance. The result was verified using fluorescence spectra with 300 nm, 320 nm and 340 nm excitation, in a typical specimen of gastric cancerous tissue within a positive margin in comparison with normal gastric tissues. This study demonstrates the potential of RR and fluorescence spectroscopy as new approaches with labeling free to determine the intraoperative margin assessment.
Solomon, April D; Hytinen, Madison E; McClain, Aryn M; Miller, Marilyn T; Dawson Cruz, Tracey
2018-01-01
DNA profiles have been obtained from fingerprints, but there is limited knowledge regarding DNA analysis from archived latent fingerprints-touch DNA "sandwiched" between adhesive and paper. Thus, this study sought to comparatively analyze a variety of collection and analytical methods in an effort to seek an optimized workflow for this specific sample type. Untreated and treated archived latent fingerprints were utilized to compare different biological sampling techniques, swab diluents, DNA extraction systems, DNA concentration practices, and post-amplification purification methods. Archived latent fingerprints disassembled and sampled via direct cutting, followed by DNA extracted using the QIAamp® DNA Investigator Kit, and concentration with Centri-Sep™ columns increased the odds of obtaining an STR profile. Using the recommended DNA workflow, 9 of the 10 samples provided STR profiles, which included 7-100% of the expected STR alleles and two full profiles. Thus, with carefully selected procedures, archived latent fingerprints can be a viable DNA source for criminal investigations including cold/postconviction cases. © 2017 American Academy of Forensic Sciences.
Attard Montalto, Nicola; Ojeda, Jesús J; Jones, Benjamin J
2013-03-01
Time-of-flight secondary ion mass spectrometry (ToF-SIMS) chemical mapping was used to investigate the order of deposition of natural latent fingerprints and laser printed ink on paper. This feasibility study shows that sodium, potassium and C(3)H(5) positive ions were particularly abundant endogenous components of the natural fingerprints and also present in the paper examined, but were mostly absent in the laser printed ink. Mapping of these ions enables the observation of friction ridges from latent prints on the ink surface, only when a fingerprint was deposited above the layer of ink. As a demonstration of proof of concept, blind testing of 21 samples from three donors resulted in a 100% success rate. The sensitivity of this technique was investigated within this trial through the examination of up to fifth depletion fingerprints and ageing of up to 28 days. Migration of fingerprint and paper components to the ink surface, although observed with increased ageing time, was not found to compromise determination of the deposition sequence. Copyright © 2012. Published by Elsevier Ireland Ltd.
Oktem, Hale; Kurkcuoglu, Ayla; Pelin, Ismail Can; Yazici, Ayse Canan; Aktaş, Gulnihal; Altunay, Fikret
2015-05-01
Fingerprints are considered to be one of the most reliable methods of identification. Identification of an individual plays a vital part of any medico-legal investigations. Dermatoglyphics is a branch of science that studies epidermal ridges and ridge patterns. Epidermal ridges are polygenic characteristics that form intrauterine 10-18 weeks and considered fully developed by the sixth month of fetal growth. Fingerprints are permanent morphological characteristics and criminal detection based on fingerprints is based on the principle that no two people can have identical fingerprints. Sex determination from fingerprints has been examined in different population. In this study we aimed to study fingerprint ridge density in Turkish population sample of Baskent University students. Fingerprints were obtained from 118 women, 88 men a total of 206 students aged between 17 and 28 years old by means of simple inking method. Fingerprints from all right and left hands fingers were collected in three different area of each. The ridges on fingerprints were counted diagonally on squares measuring 5 mm × 5 mm on radial, ulnar and inferior areas. The fingerprint ridge density in radial, ulnar and inferior areas and between sexes was compared statistically Mann Whitney U test and Friedman test. The ridge density was significantly greater in women in every region studied and in all fingers when compared to men. The fingerprint ridge density in the ulnar and radial areas of the fingerprints was significantly greater than the lower area. Fingerprint ridge density can be used by medico-legal examination for sex identification. Copyright © 2015 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
MR fingerprinting reconstruction with Kalman filter.
Zhang, Xiaodi; Zhou, Zechen; Chen, Shiyang; Chen, Shuo; Li, Rui; Hu, Xiaoping
2017-09-01
Magnetic resonance fingerprinting (MR fingerprinting or MRF) is a newly introduced quantitative magnetic resonance imaging technique, which enables simultaneous multi-parameter mapping in a single acquisition with improved time efficiency. The current MRF reconstruction method is based on dictionary matching, which may be limited by the discrete and finite nature of the dictionary and the computational cost associated with dictionary construction, storage and matching. In this paper, we describe a reconstruction method based on Kalman filter for MRF, which avoids the use of dictionary to obtain continuous MR parameter measurements. With this Kalman filter framework, the Bloch equation of inversion-recovery balanced steady state free-precession (IR-bSSFP) MRF sequence was derived to predict signal evolution, and acquired signal was entered to update the prediction. The algorithm can gradually estimate the accurate MR parameters during the recursive calculation. Single pixel and numeric brain phantom simulation were implemented with Kalman filter and the results were compared with those from dictionary matching reconstruction algorithm to demonstrate the feasibility and assess the performance of Kalman filter algorithm. The results demonstrated that Kalman filter algorithm is applicable for MRF reconstruction, eliminating the need for a pre-define dictionary and obtaining continuous MR parameter in contrast to the dictionary matching algorithm. Copyright © 2017 Elsevier Inc. All rights reserved.
Electrochromic enhancement of latent fingerprints by poly(3,4-ethylenedioxythiophene).
Brown, Rachel M; Hillman, A Robert
2012-06-28
Spatially selective electrodeposition of poly-3,4-ethylenedioxythiophene (PEDOT) thin films on metallic surfaces is shown to be an effective means of visualizing latent fingerprints. The technique exploits the fingerprint deposit as an insulating mask, such that electrochemical processes (here, polymer deposition) may only take place on deposit-free areas of the surface between the ridges of the fingerprint deposit; the end result is a negative image of the fingermark. Use of a surfactant (sodium dodecylsulphate, SDS) to solubilise the EDOT monomer allows the use of an aqueous electrolyte. Electrochemical (coulometric) data provide a total assay of deposited material, yielding spatially averaged film thicknesses, which are commensurate with substantive filling of the trenches between fingerprint deposit ridges, but not overfilling to the extent that the ridge detail is covered. This is confirmed by optical microscopy and AFM images, which show continuous polymer deposition within the trenches and good definition at the ridge edges. Stainless steel substrates treated in this manner and transferred to background electrolyte (aqueous sulphuric acid) showed enhanced fingerprints when the contrast between the polymer background and fingerprint deposit was optimised using the electrochromic properties of the PEDOT films. The facility of the method to reveal fingerprints of various ages and subjected to plausible environmental histories was demonstrated. Comparison of this enhancement methodology with commonly used fingerprint enhancement methods (dusting with powder, application of wet powder suspensions and cyanoacrylate fuming) showed promising performance in selected scenarios of practical interest.
From template to image: reconstructing fingerprints from minutiae points.
Ross, Arun; Shah, Jidnya; Jain, Anil K
2007-04-01
Most fingerprint-based biometric systems store the minutiae template of a user in the database. It has been traditionally assumed that the minutiae template of a user does not reveal any information about the original fingerprint. In this paper, we challenge this notion and show that three levels of information about the parent fingerprint can be elicited from the minutiae template alone, viz., 1) the orientation field information, 2) the class or type information, and 3) the friction ridge structure. The orientation estimation algorithm determines the direction of local ridges using the evidence of minutiae triplets. The estimated orientation field, along with the given minutiae distribution, is then used to predict the class of the fingerprint. Finally, the ridge structure of the parent fingerprint is generated using streamlines that are based on the estimated orientation field. Line Integral Convolution is used to impart texture to the ensuing ridges, resulting in a ridge map resembling the parent fingerprint. The salient feature of this noniterative method to generate ridges is its ability to preserve the minutiae at specified locations in the reconstructed ridge map. Experiments using a commercial fingerprint matcher suggest that the reconstructed ridge structure bears close resemblance to the parent fingerprint.
Online fingerprint verification.
Upendra, K; Singh, S; Kumar, V; Verma, H K
2007-01-01
As organizations search for more secure authentication methods for user access, e-commerce, and other security applications, biometrics is gaining increasing attention. With an increasing emphasis on the emerging automatic personal identification applications, fingerprint based identification is becoming more popular. The most widely used fingerprint representation is the minutiae based representation. The main drawback with this representation is that it does not utilize a significant component of the rich discriminatory information available in the fingerprints. Local ridge structures cannot be completely characterized by minutiae. Also, it is difficult quickly to match two fingerprint images containing different number of unregistered minutiae points. In this study filter bank based representation, which eliminates these weakness, is implemented and the overall performance of the developed system is tested. The results have shown that this system can be used effectively for secure online verification applications.
Viswanathan, P; Krishna, P Venkata
2014-05-01
Teleradiology allows transmission of medical images for clinical data interpretation to provide improved e-health care access, delivery, and standards. The remote transmission raises various ethical and legal issues like image retention, fraud, privacy, malpractice liability, etc. A joint FED watermarking system means a joint fingerprint/encryption/dual watermarking system is proposed for addressing these issues. The system combines a region based substitution dual watermarking algorithm using spatial fusion, stream cipher algorithm using symmetric key, and fingerprint verification algorithm using invariants. This paper aims to give access to the outcomes of medical images with confidentiality, availability, integrity, and its origin. The watermarking, encryption, and fingerprint enrollment are conducted jointly in protection stage such that the extraction, decryption, and verification can be applied independently. The dual watermarking system, introducing two different embedding schemes, one used for patient data and other for fingerprint features, reduces the difficulty in maintenance of multiple documents like authentication data, personnel and diagnosis data, and medical images. The spatial fusion algorithm, which determines the region of embedding using threshold from the image to embed the encrypted patient data, follows the exact rules of fusion resulting in better quality than other fusion techniques. The four step stream cipher algorithm using symmetric key for encrypting the patient data with fingerprint verification system using algebraic invariants improves the robustness of the medical information. The experiment result of proposed scheme is evaluated for security and quality analysis in DICOM medical images resulted well in terms of attacks, quality index, and imperceptibility.
USDA-ARS?s Scientific Manuscript database
A database of Louisiana sugarcane molecular identity has been constructed and is being updated annually using FAM or HEX or NED fluorescence- and capillary electrophoresis (CE)-based microsatellite (SSR) fingerprinting information. The fingerprints are PCR-amplified from leaf DNA samples of current ...
Fingerprinting Communication and Computation on HPC Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peisert, Sean
2010-06-02
How do we identify what is actually running on high-performance computing systems? Names of binaries, dynamic libraries loaded, or other elements in a submission to a batch queue can give clues, but binary names can be changed, and libraries provide limited insight and resolution on the code being run. In this paper, we present a method for"fingerprinting" code running on HPC machines using elements of communication and computation. We then discuss how that fingerprint can be used to determine if the code is consistent with certain other types of codes, what a user usually runs, or what the user requestedmore » an allocation to do. In some cases, our techniques enable us to fingerprint HPC codes using runtime MPI data with a high degree of accuracy.« less
Serwaa-Bonsu, Adwoa; Herbst, Abraham J.; Reniers, Georges; Ijaa, Wilfred; Clark, Benjamin; Kabudula, Chodziwadziwa; Sankoh, Osman
2010-01-01
Background In developing countries, Health and Demographic Surveillance Systems (HDSSs) provide a framework for tracking demographic and health dynamics over time in a defined geographical area. Many HDSSs co-exist with facility-based data sources in the form of Health Management Information Systems (HMIS). Integrating both data sources through reliable record linkage could provide both numerator and denominator populations to estimate disease prevalence and incidence rates in the population and enable determination of accurate health service coverage. Objective To measure the acceptability and performance of fingerprint biometrics to identify individuals in demographic surveillance populations and those attending health care facilities serving the surveillance populations. Methodology Two HDSS sites used fingerprint biometrics for patient and/or surveillance population participant identification. The proportion of individuals for whom a fingerprint could be successfully enrolled were characterised in terms of age and sex. Results Adult (18–65 years) fingerprint enrolment rates varied between 94.1% (95% CI 93.6–94.5) for facility-based fingerprint data collection at the Africa Centre site to 96.7% (95% CI 95.9–97.6) for population-based fingerprint data collection at the Agincourt site. Fingerprint enrolment rates in children under 1 year old (Africa Centre site) were only 55.1% (95% CI 52.7–57.4). By age 5, child fingerprint enrolment rates were comparable to those of adults. Conclusion This work demonstrates the feasibility of fingerprint-based individual identification for population-based research in developing countries. Record linkage between demographic surveillance population databases and health care facility data based on biometric identification systems would allow for a more comprehensive evaluation of population health, including the ability to study health service utilisation from a population perspective, rather than the more restrictive health service perspective. PMID:20200659
Ultrasonic fingerprinting by phased array transducer
NASA Astrophysics Data System (ADS)
Sednev, D.; Kataeva, O.; Abramets, V.; Pushenko, P.; Tverdokhlebova, T.
2016-06-01
Increasing quantity of spent nuclear fuel that must be under national and international control requires a novel approach to safeguard techniques and equipment. One of the proposed approaches is utilize intrinsic features of casks with spent fuel. In this article an application of a phased array ultrasonic method is considered. This study describes an experimental results on ultrasonic fingerprinting of austenitic steel seam weld.
Cadd, Samuel; Li, Bo; Beveridge, Peter; O Hare, William T; Campbell, Andrew; Islam, Meez
2016-07-01
Bloodstains are often encountered at scenes of violent crime and have significant forensic value for criminal investigations. Blood is one of the most commonly encountered types of biological evidence and is the most commonly observed fingerprint contaminant. Presumptive tests are used to test blood stain and blood stained fingerprints are targeted with chemical enhancement methods, such as acid stains, including Acid Black 1, Acid Violet 17 or Acid Yellow 7. Although these techniques successfully visualise ridge detail, they are destructive, do not confirm the presence of blood and can have a negative impact on DNA sampling. A novel application of visible wavelength hyperspectral imaging (HSI) is used for the non-contact, non-destructive detection and identification of blood stained fingerprints on white tiles both before and after wet chemical enhancement using Acid Black 1. The identification was obtained in a non-contact and non-destructive manner, based on the unique visible absorption spectrum of haemoglobin between 400 and 500nm. Results from the exploration of the selectivity of the setup to detect blood against ten other non-blood protein contaminants are also presented. A direct comparison of the effectiveness of HSI with chemical enhancement using Acid Black 1 on white tiles is also shown. Copyright © 2016 The Chartered Society of Forensic Sciences. Published by Elsevier Ireland Ltd. All rights reserved.
Cai, Yong; Li, Xiwen; Wang, Runmiao; Yang, Qing; Li, Peng; Hu, Hao
2016-01-01
Currently, the chemical fingerprint comparison and analysis is mainly based on professional equipment and software, it's expensive and inconvenient. This study aims to integrate QR (Quick Response) code with quality data and mobile intelligent technology to develop a convenient query terminal for tracing quality in the whole industrial chain of TCM (traditional Chinese medicine). Three herbal medicines were randomly selected and their chemical two-dimensional barcode (2D) barcodes fingerprints were constructed. Smartphone application (APP) based on Android system was developed to read initial data of 2D chemical barcodes, and compared multiple fingerprints from different batches of same species or different species. It was demonstrated that there were no significant differences between original and scanned TCM chemical fingerprints. Meanwhile, different TCM chemical fingerprint QR codes could be rendered in the same coordinate and showed the differences very intuitively. To be able to distinguish the variations of chemical fingerprint more directly, linear interpolation angle cosine similarity algorithm (LIACSA) was proposed to get similarity ratio. This study showed that QR codes can be used as an effective information carrier to transfer quality data. Smartphone application can rapidly read quality information in QR codes and convert data into TCM chemical fingerprints.
Analysis of cellular and extracellular DNA in fingerprints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Button, Julie M.
It has been previously shown that DNA can be recovered from latent fingerprints left on various surfaces [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. However, the source of the DNA, extracellular versus cellular origin, is difficult to determine. If the DNA is cellular, it is believed to belong to skin cells while extracellular DNA is believed to originate from body fluids such as sweat [D. J. Daly et. al, Forensic Sci. Int. Genet. 6, 41-46 (2012); V. V. Vlassov et. al, BioEssays 29, 654-667 (2007)]. The origin of the DNA in fingerprints has implicationsmore » for processing and interpretation of forensic evidence. The determination of the origin of DNA in fingerprints is further complicated by the fact that the DNA in fingerprints tends to be at a very low quantity [R. A. H. van Oorschot and M. K. Jones, Nature 387, 767 (1997)]. This study examined fingerprints from five volunteers left on sterilized glass slides and plastic pens. Three fingerprints were left on each glass slide (thumb, index, and middle fingers) while the pens were held as if one was writing with them. The DNA was collected from the objects using the wet swabbing technique (TE buffer). Following collection, the cellular and extracellular components of each sample were separated using centrifugation and an acoustofluidics system. Centrifugation is still the primary separation technique utilized in forensics laboratories, while acoustic focusing uses sound waves to focus large particles (cells) into low pressure nodes, separating them from the rest of the sample matrix. After separation, all samples were quantified using real-time quantitative PCR (qPCR). The overall trend is that there is more DNA in the extracellular fractions than cellular fractions for both centrifugation and acoustofluidic processing. Additionally, more DNA was generally collected from the pen samples than the samples left on glass slides.« less
Collins, A.L; Pulley, S.; Foster, I.D.L; Gellis, Allen; Porto, P.; Horowitz, A.J.
2017-01-01
The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach.
Lead (Pb) isotopic fingerprinting and its applications in lead pollution studies in China: a review.
Cheng, Hefa; Hu, Yuanan
2010-05-01
As the most widely scattered toxic metal in the world, the sources of lead (Pb) observed in contamination investigation are often difficult to identify. This review presents an overview of the principles, analysis, and applications of Pb isotopic fingerprinting in tracing the origins and transport pathways of Pb in the environment. It also summarizes the history and current status of lead pollution in China, and illustrates the power of Pb isotopic fingerprinting with examples of its recent applications in investigating the effectiveness of leaded gasoline phase-out on atmospheric lead pollution, and the sources of Pb found in various environmental media (plants, sediments, and aquatic organisms) in China. The limitations of Pb isotopic fingerprinting technique are discussed and a perspective on its development is also presented. Further methodological developments and more widespread instrument availability are expected to make isotopic fingerprinting one of the key tools in lead pollution investigation. Copyright 2009 Elsevier Ltd. All rights reserved.
Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli (Lucy)
2014-01-01
Sweet basil, Ocimum basilicum., is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1 min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. PMID:24518341
Lu, Yingjian; Gao, Boyan; Chen, Pei; Charles, Denys; Yu, Liangli Lucy
2014-07-01
Sweet basil, Ocimum basilicum, is one of the most important and wildly used spices and has been shown to have antioxidant, antibacterial, and anti-diarrheal activities. In this study, high performance liquid chromatographic (HPLC) and flow-injection mass spectrometric (FIMS) fingerprinting techniques were used to differentiate organic and conventional sweet basil leaf samples. Principal component analysis (PCA) of the fingerprints indicated that both HPLC and FIMS fingerprints could effectively detect the chemical differences in the organic and conventional sweet basil leaf samples. This study suggested that the organic basil sample contained greater concentrations of almost all the major compounds than its conventional counterpart on a per same botanical weight basis. The FIMS method was able to rapidly differentiate the organic and conventional sweet basil leaf samples (1min analysis time), whereas the HPLC fingerprints provided more information about the chemical composition of the basil samples with a longer analytical time. Copyright © 2014 Elsevier Ltd. All rights reserved.
Kellman, Philip J.; Mnookin, Jennifer L.; Erlikhman, Gennady; Garrigan, Patrick; Ghose, Tandra; Mettler, Everett; Charlton, David; Dror, Itiel E.
2014-01-01
Latent fingerprint examination is a complex task that, despite advances in image processing, still fundamentally depends on the visual judgments of highly trained human examiners. Fingerprints collected from crime scenes typically contain less information than fingerprints collected under controlled conditions. Specifically, they are often noisy and distorted and may contain only a portion of the total fingerprint area. Expertise in fingerprint comparison, like other forms of perceptual expertise, such as face recognition or aircraft identification, depends on perceptual learning processes that lead to the discovery of features and relations that matter in comparing prints. Relatively little is known about the perceptual processes involved in making comparisons, and even less is known about what characteristics of fingerprint pairs make particular comparisons easy or difficult. We measured expert examiner performance and judgments of difficulty and confidence on a new fingerprint database. We developed a number of quantitative measures of image characteristics and used multiple regression techniques to discover objective predictors of error as well as perceived difficulty and confidence. A number of useful predictors emerged, and these included variables related to image quality metrics, such as intensity and contrast information, as well as measures of information quantity, such as the total fingerprint area. Also included were configural features that fingerprint experts have noted, such as the presence and clarity of global features and fingerprint ridges. Within the constraints of the overall low error rates of experts, a regression model incorporating the derived predictors demonstrated reasonable success in predicting objective difficulty for print pairs, as shown both in goodness of fit measures to the original data set and in a cross validation test. The results indicate the plausibility of using objective image metrics to predict expert performance and subjective assessment of difficulty in fingerprint comparisons. PMID:24788812
2014-09-18
radios in a cognitive radio network using a radio frequency fingerprinting based method. In IEEE International Conference on Communications (ICC...IMPROVEDWIRELESS SECURITY THROUGH PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Benjamin W. Ramsey, Captain...PHYSICAL LAYER PROTOCOL MANIPULATION AND RADIO FREQUENCY FINGERPRINTING DISSERTATION Presented to the Faculty Graduate School of Engineering and
Fingerprint recognition of wavelet-based compressed images by neuro-fuzzy clustering
NASA Astrophysics Data System (ADS)
Liu, Ti C.; Mitra, Sunanda
1996-06-01
Image compression plays a crucial role in many important and diverse applications requiring efficient storage and transmission. This work mainly focuses on a wavelet transform (WT) based compression of fingerprint images and the subsequent classification of the reconstructed images. The algorithm developed involves multiresolution wavelet decomposition, uniform scalar quantization, entropy and run- length encoder/decoder and K-means clustering of the invariant moments as fingerprint features. The performance of the WT-based compression algorithm has been compared with JPEG current image compression standard. Simulation results show that WT outperforms JPEG in high compression ratio region and the reconstructed fingerprint image yields proper classification.
Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus.
Rogers, Stephanie M; Payton, Mark; Allen, Robert W; Melcher, Ulrich; Carver, Jesse; Fletcher, Jacqueline
2012-05-17
The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit.
Method: a single nucleotide polymorphism genotyping method for Wheat streak mosaic virus
2012-01-01
Background The September 11, 2001 attacks on the World Trade Center and the Pentagon increased the concern about the potential for terrorist attacks on many vulnerable sectors of the US, including agriculture. The concentrated nature of crops, easily obtainable biological agents, and highly detrimental impacts make agroterrorism a potential threat. Although procedures for an effective criminal investigation and attribution following such an attack are available, important enhancements are still needed, one of which is the capability for fine discrimination among pathogen strains. The purpose of this study was to develop a molecular typing assay for use in a forensic investigation, using Wheat streak mosaic virus (WSMV) as a model plant virus. Method This genotyping technique utilizes single base primer extension to generate a genetic fingerprint. Fifteen single nucleotide polymorphisms (SNPs) within the coat protein and helper component-protease genes were selected as the genetic markers for this assay. Assay optimization and sensitivity testing was conducted using synthetic targets. WSMV strains and field isolates were collected from regions around the world and used to evaluate the assay for discrimination. The assay specificity was tested against a panel of near-neighbors consisting of genetic and environmental near-neighbors. Result Each WSMV strain or field isolate tested produced a unique SNP fingerprint, with the exception of three isolates collected within the same geographic location that produced indistinguishable fingerprints. The results were consistent among replicates, demonstrating the reproducibility of the assay. No SNP fingerprints were generated from organisms included in the near-neighbor panel, suggesting the assay is specific for WSMV. Using synthetic targets, a complete profile could be generated from as low as 7.15 fmoles of cDNA. Conclusion The molecular typing method presented is one tool that could be incorporated into the forensic science tool box after a thorough validation study. This method incorporates molecular biology techniques that are already well established in research and diagnostic laboratories, allowing for an easy introduction of this method into existing laboratories. Keywords: single nucleotide polymorphisms, genotyping, plant pathology, viruses, microbial forensics, Single base primer extension, SNaPshot Multiplex Kit PMID:22594601
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Y; Yoon, Y; Iwase, K
Purpose: We are trying to develop an image-searching technique to identify misfiled images in a picture archiving and communication system (PACS) server by using five biological fingerprints: the whole lung field, cardiac shadow, superior mediastinum, lung apex, and right lower lung. Each biological fingerprint in a chest radiograph includes distinctive anatomical structures to identify misfiled images. The whole lung field was less effective for evaluating the similarity between two images than the other biological fingerprints. This was mainly due to the variation in the positioning for chest radiographs. The purpose of this study is to develop new biological fingerprints thatmore » could reduce influence of differences in the positioning for chest radiography. Methods: Two hundred patients were selected randomly from our database (36,212 patients). These patients had two images each (current and previous images). Current images were used as the misfiled images in this study. A circumscribed rectangular area of the lung and the upper half of the rectangle were selected automatically as new biological fingerprints. These biological fingerprints were matched to all previous images in the database. The degrees of similarity between the two images were calculated for the same and different patients. The usefulness of new the biological fingerprints for automated patient recognition was examined in terms of receiver operating characteristic (ROC) analysis. Results: Area under the ROC curves (AUCs) for the circumscribed rectangle of the lung, upper half of the rectangle, and whole lung field were 0.980, 0.994, and 0.950, respectively. The new biological fingerprints showed better performance in identifying the patients correctly than the whole lung field. Conclusion: We have developed new biological fingerprints: circumscribed rectangle of the lung and upper half of the rectangle. These new biological fingerprints would be useful for automated patient identification system because they are less affected by positioning differences during imaging.« less
Liu, Zechang; Wang, Liping; Liu, Yumei
2018-01-18
Hops impart flavor to beer, with the volatile components characterizing the various hop varieties and qualities. Fingerprinting, especially flavor fingerprinting, is often used to identify 'flavor products' because inconsistencies in the description of flavor may lead to an incorrect definition of beer quality. Compared to flavor fingerprinting, volatile fingerprinting is simpler and easier. We performed volatile fingerprinting using head space-solid phase micro-extraction gas chromatography-mass spectrometry combined with similarity analysis and principal component analysis (PCA) for evaluating and distinguishing between three major Chinese hops. Eighty-four volatiles were identified, which were classified into seven categories. Volatile fingerprinting based on similarity analysis did not yield any obvious result. By contrast, hop varieties and qualities were identified using volatile fingerprinting based on PCA. The potential variables explained the variance in the three hop varieties. In addition, the dendrogram and principal component score plot described the differences and classifications of hops. Volatile fingerprinting plus multivariate statistical analysis can rapidly differentiate between the different varieties and qualities of the three major Chinese hops. Furthermore, this method can be used as a reference in other fields. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.
de Jongh, Arent; Lubach, Anko R; Lie Kwie, Sheryl L; Alberink, Ivo
2018-06-11
Latent print examiners often use their experience and knowledge to reach a conclusion on the identity of the source. Their conclusion is primarily based on their personal opinion on the rarity of the matching fingerprint features. Fingerprint patterns, if present, can play a significant role in the final assessment of a match. The authors believe that statistical data on the rarity of fingerprint patterns strengthens the subjective evaluation of the corresponding information. In order to provide fingerprint examiners with additional numerical support, fingerprint patterns were manually classified in a set of 24,104 fingerprints. In this study the frequencies of occurrence of 35 different fingerprint patterns have been obtained. The frequency data presented in this study can be used in the ACE-V process applied in forensic casework, allowing for the assessment of the evidential strength related to a specific fingerprint pattern type. © 2018 American Academy of Forensic Sciences.
Gender determination: Role of lip prints, finger prints and mandibular canine index
KRISHNAN, RESHMA POOTHAKULATH; THANGAVELU, RADHIKA; RATHNAVELU, VIDHYA; NARASIMHAN, MALATHI
2016-01-01
Personal identification has a pivotal role in forensic investigations. Gender determination is an essential step in personal identification. Despite the advent of advanced techniques such as DNA fingerprinting, methods such as lip print and fingerprint analysis and mandibular canine index calculations are routinely used in gender determination, as they are simple and cost-effective. The present study investigated the hypothesis that lip print analysis is an effective tool in gender determination compared with fingerprint analysis and the mandibular canine index. The predominant patterns of lip prints and fingerprints were analyzed in males and females, and the efficacy of the mandibular canine index in gender determination was evaluated. The study group comprised 50 students, 25 males and 25 females who were 18–25 years of age. Lip prints and fingerprints were obtained and classified according to Tsuchihashi's classification and Kücken and Newell's classification, respectively. Mandibular impressions were made and the mandibular canine index was calculated. Type I and Type I' lip prints were predominant in females, and Type IV lip prints were predominant in males. The analysis of fingerprints revealed that the loop fingerprint pattern was predominant in both males and females. The mandibular canine index was not found to be significant in gender identification. The predominant patterns of lip prints were distinct for males and females; conversely, fingerprints were demonstrated to be similar in both genders. Therefore, lip prints hold an increased potential for gender determination, as compared with fingerprints, and the mandibular canine index is not a reliable indicator of gender. PMID:27284316
Multispectral imaging for biometrics
NASA Astrophysics Data System (ADS)
Rowe, Robert K.; Corcoran, Stephen P.; Nixon, Kristin A.; Ostrom, Robert E.
2005-03-01
Automated identification systems based on fingerprint images are subject to two significant types of error: an incorrect decision about the identity of a person due to a poor quality fingerprint image and incorrectly accepting a fingerprint image generated from an artificial sample or altered finger. This paper discusses the use of multispectral sensing as a means to collect additional information about a finger that significantly augments the information collected using a conventional fingerprint imager based on total internal reflectance. In the context of this paper, "multispectral sensing" is used broadly to denote a collection of images taken under different polarization conditions and illumination configurations, as well as using multiple wavelengths. Background information is provided on conventional fingerprint imaging. A multispectral imager for fingerprint imaging is then described and a means to combine the two imaging systems into a single unit is discussed. Results from an early-stage prototype of such a system are shown.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille
2016-04-01
This contribution presents for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a structure part of a complex fold and thrust belts. We report a high-resolution deformation and stress history that was experienced by Meso-Cenozoic limestone strata in the overturned Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). New methodological development enables an easier use for the inversion technique of sedimentary and tectonic stylolite roughness. A stylolite-fracture network developed during layer-parallel shortening (LPS), as well as syn- and post-folding. Stress fingerprinting shows how stress builds up in the sedimentary strata during LPS with variations of differential stress before folding around a value of 50 MPa. The stress regime oscillated between strike-slip and compressional during LPS and became transiently extensional in limbs of developing fold due to a coeval increase of vertical stress related to local burial and decrease of maximum horizontal stress related to hinge development, before ultimately becoming strike-slip again during late stage fold tightening. Our case study shows that stress fingerprinting is possible and that this novel method can be used to unravel complex temporal relationships that relate to local variations within evolving regional orogenic stresses. Beyond regional implication, this study validates our approach as a new exciting toolbox to high-resolution stress fingerprinting in basins and orogens.
NASA Astrophysics Data System (ADS)
Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Lecouty, Alexandre; Billi, Andrea; Aharonov, Einat; Parlangeau, Camille
2016-07-01
In this study we show for the first time how quantitative stress estimates can be derived by combining calcite twinning and stylolite roughness stress fingerprinting techniques in a fold-and-thrust belt. First, we present a new method that gives access to stress inversion using tectonic stylolites without access to the stylolite surface and compare results with calcite twin inversion. Second, we use our new approach to present a high-resolution deformation and stress history that affected Meso-Cenozoic limestone strata in the Monte Nero Anticline during its late Miocene-Pliocene growth in the Umbria-Marche Arcuate Ridge (northern Apennines, Italy). In this area an extensive stylolite-joint/vein network developed during layer-parallel shortening (LPS), as well as during and after folding. Stress fingerprinting illustrates how stress in the sedimentary strata did build up prior to folding during LPS. The stress regime oscillated between strike slip and compressional during LPS before ultimately becoming strike slip again during late stage fold tightening. Our case study shows that high-resolution stress fingerprinting is possible and that this novel method can be used to unravel temporal relationships that relate to local variations of regional orogenic stresses. Beyond regional implications, this study validates our approach as a new powerful toolbox to high-resolution stress fingerprinting in basins and orogens combining joint and vein analysis with sedimentary and tectonic stylolite and calcite twin inversion techniques.
NASA Astrophysics Data System (ADS)
Dsouza, Roshan I.; Zam, Azhar; Subhash, Hrebesh M.; Larin, Kirill V.; Leahy, Martin
2013-02-01
We describe a novel application of correlation mapping optical coherence tomography (cmOCT) for sub-surface fingerprint biometric identification. Fingerprint biometrics including automated fingerprint identification systems, are commonly used to recognise the fingerprint, since they constitute simple, effective and valuable physical evidence. Spoofing of biometric fingerprint devices can be easily done because of the limited information obtained from the surface topography. In order to overcome this limitation a potentially more secure source of information is required for biometric identification applications. In this study, we retrieve the microcirculation map of the subsurface fingertip by use of the cmOCT technique. To increase probing depth of the sub surface microcirculation, an optical clearing agent composed of 75% glycerol in aqueous solution was applied topically and kept in contact for 15 min. OCT intensity images were acquired from commercial research grade swept source OCT system (model OCT1300SS, Thorlabs Inc. USA). A 3D OCT scan of the fingertip was acquired over an area of 5x5 mm using 1024x1024 A-scans in approximately 70 s. The resulting volume was then processed using the cmOCT technique with a 7x7 kernel to provide a microcirculation map. We believe these results will demonstrate an enhanced security level over artificial fingertips. To the best of our knowledge, this is the first demonstration of imaging microcirculation map of the subsurface fingertip.
Chemical Fingerprinting of Materials Developed Due to Environmental Issues
NASA Technical Reports Server (NTRS)
Smith, Doris A.; McCool, A. (Technical Monitor)
2000-01-01
Instrumental chemical analysis methods are developed and used to chemically fingerprint new and modified External Tank materials made necessary by changing environmental requirements. Chemical fingerprinting can detect and diagnose variations in material composition. To chemically characterize each material, fingerprint methods are selected from an extensive toolbox based on the material's chemistry and the ability of the specific methods to detect the material's critical ingredients. Fingerprint methods have been developed for a variety of materials including Thermal Protection System foams, adhesives, primers, and composites.
Signature-based store checking buffer
Sridharan, Vilas; Gurumurthi, Sudhanva
2015-06-02
A system and method for optimizing redundant output verification, are provided. A hardware-based store fingerprint buffer receives multiple instances of output from multiple instances of computation. The store fingerprint buffer generates a signature from the content included in the multiple instances of output. When a barrier is reached, the store fingerprint buffer uses the signature to verify the content is error-free.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-14
... consisting of a fingerprint-based background check against applicable Federal Bureau of Investigation (FBI... completed hard-copy FBI Form FD- 258, ``Fingerprint Card,'' to the NRC as specified in Attachment 3, for all... Section 161A.b. shall be subject to a background check by the Attorney General, based on fingerprints and...
Gao, Boyan; Qin, Fang; Ding, Tingting; Chen, Yineng; Lu, Weiying; Yu, Liangli Lucy
2014-08-13
Ultraperformance liquid chromatography mass spectrometry (UPLC-MS), flow injection mass spectrometry (FIMS), and headspace gas chromatography (headspace-GC) combined with multivariate data analysis techniques were examined and compared in differentiating organically grown oregano from that grown conventionally. It is the first time that headspace-GC fingerprinting technology is reported in differentiating organically and conventionally grown spice samples. The results also indicated that UPLC-MS, FIMS, and headspace-GC-FID fingerprints with OPLS-DA were able to effectively distinguish oreganos under different growing conditions, whereas with PCA, only FIMS fingerprint could differentiate the organically and conventionally grown oregano samples. UPLC fingerprinting provided detailed information about the chemical composition of oregano with a longer analysis time, whereas FIMS finished a sample analysis within 1 min. On the other hand, headspace GC-FID fingerprinting required no sample pretreatment, suggesting its potential as a high-throughput method in distinguishing organically and conventionally grown oregano samples. In addition, chemical components in oregano were identified by their molecular weight using QTOF-MS and headspace-GC-MS.
Fingerprint image enhancement by differential hysteresis processing.
Blotta, Eduardo; Moler, Emilce
2004-05-10
A new method to enhance defective fingerprints images through image digital processing tools is presented in this work. When the fingerprints have been taken without any care, blurred and in some cases mostly illegible, as in the case presented here, their classification and comparison becomes nearly impossible. A combination of spatial domain filters, including a technique called differential hysteresis processing (DHP), is applied to improve these kind of images. This set of filtering methods proved to be satisfactory in a wide range of cases by uncovering hidden details that helped to identify persons. Dactyloscopy experts from Policia Federal Argentina and the EAAF have validated these results.
Typing DNA profiles from previously enhanced fingerprints using direct PCR.
Templeton, Jennifer E L; Taylor, Duncan; Handt, Oliva; Linacre, Adrian
2017-07-01
Fingermarks are a source of human identification both through the ridge patterns and DNA profiling. Typing nuclear STR DNA markers from previously enhanced fingermarks provides an alternative method of utilising the limited fingermark deposit that can be left behind during a criminal act. Dusting with fingerprint powders is a standard method used in classical fingermark enhancement and can affect DNA data. The ability to generate informative DNA profiles from powdered fingerprints using direct PCR swabs was investigated. Direct PCR was used as the opportunity to generate usable DNA profiles after performing any of the standard DNA extraction processes is minimal. Omitting the extraction step will, for many samples, be the key to success if there is limited sample DNA. DNA profiles were generated by direct PCR from 160 fingermarks after treatment with one of the following dactyloscopic fingerprint powders: white hadonite; silver aluminium; HiFi Volcano silk black; or black magnetic fingerprint powder. This was achieved by a combination of an optimised double-swabbing technique and swab media, omission of the extraction step to minimise loss of critical low-template DNA, and additional AmpliTaq Gold ® DNA polymerase to boost the PCR. Ninety eight out of 160 samples (61%) were considered 'up-loadable' to the Australian National Criminal Investigation DNA Database (NCIDD). The method described required a minimum of working steps, equipment and reagents, and was completed within 4h. Direct PCR allows the generation of DNA profiles from enhanced prints without the need to increase PCR cycle numbers beyond manufacturer's recommendations. Particular emphasis was placed on preventing contamination by applying strict protocols and avoiding the use of previously used fingerprint brushes. Based on this extensive survey, the data provided indicate minimal effects of any of these four powders on the chance of obtaining DNA profiles from enhanced fingermarks. Copyright © 2017 Elsevier B.V. All rights reserved.
Merkel, Ronny; Gruhn, Stefan; Dittmann, Jana; Vielhauer, Claus; Bräutigam, Anja
2012-10-10
The feasibility of 2D-intensity and 3D-topography images from a non-invasive Chromatic White Light (CWL) sensor for the age determination of latent fingerprints is investigated. The proposed method might provide the means to solve the so far unresolved issue of determining a fingerprints age in forensics. Conducting numerous experiments for an indoor crime scene using selected surfaces, different influences on the aging of fingerprints are investigated and the resulting aging variability is determined in terms of inter-person, intra-person, inter-finger and intra-finger variation. Main influence factors are shown to be the sweat composition, temperature, humidity, wind, UV-radiation, surface type, contamination of the finger with water-containing substances, resolution and measured area size, whereas contact time, contact pressure and smearing of the print seem to be of minor importance. Such influences lead to a certain experimental variability in inter-person and intra-person variation, which is higher than the inter-finger and intra-finger variation. Comparing the aging behavior of 17 different features using 1490 time series with a total of 41,520 fingerprint images, the great potential of the CWL technique in combination with the binary pixel feature from prior work is shown. Performing three different experiments for the classification of fingerprints into the two time classes [0, 5 h] and [5, 24 h], a maximum classification performance of 79.29% (kappa=0.46) is achieved for a general case, which is further improved for special cases. The statistical significance of the two best-performing features (both binary pixel versions based on 2D-intensity images) is manually shown and a feature fusion is performed, highlighting the strong dependency of the features on each other. It is concluded that such method might be combined with additional capturing devices, such as microscopes or spectroscopes, to a very promising age estimation scheme. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ultrafast fingerprint indexing for embedded systems
NASA Astrophysics Data System (ADS)
Zhou, Ru; Sin, Sang Woo; Li, Dongju; Isshiki, Tsuyoshi; Kunieda, Hiroaki
2011-10-01
A novel core-based fingerprint indexing scheme for embedded systems is presented in this paper. Our approach is enabled by our new precise and fast core-detection algorithm with the direction map. It introduces the feature of CMP (core minutiae pair), which describes the coordinates of minutiae and the direction of ridges associated with the minutiae based on the uniquely defined core coordinates. Since each CMP is identical against the shift and rotation of the fingerprint image, the CMP comparison between a template and an input image can be performed without any alignment. The proposed indexing algorithm based on CMP is suitable for embedded systems because the tremendous speed up and the memory reduction are achieved. In fact, the experiments with the fingerprint database FVC2002 show that its speed for the identifications becomes about 40 times faster than conventional approaches, even though the database includes fingerprints with no core.
Performance characterization of structured light-based fingerprint scanner
NASA Astrophysics Data System (ADS)
Hassebrook, Laurence G.; Wang, Minghao; Daley, Raymond C.
2013-05-01
Our group believes that the evolution of fingerprint capture technology is in transition to include 3-D non-contact fingerprint capture. More specifically we believe that systems based on structured light illumination provide the highest level of depth measurement accuracy. However, for these new technologies to be fully accepted by the biometric community, they must be compliant with federal standards of performance. At present these standards do not exist for this new biometric technology. We propose and define a set of test procedures to be used to verify compliance with the Federal Bureau of Investigation's image quality specification for Personal Identity Verification single fingerprint capture devices. The proposed test procedures include: geometric accuracy, lateral resolution based on intensity or depth, gray level uniformity and flattened fingerprint image quality. Several 2-D contact analogies, performance tradeoffs and optimization dilemmas are evaluated and proposed solutions are presented.
NASA Astrophysics Data System (ADS)
Xu, Rong; Sun, Suqin; Zhu, Weicheng; Xu, Changhua; Liu, Yougang; Shen, Liang; Shi, Yue; Chen, Jun
2014-07-01
The genus Cistanche generally has four species in China, including C. deserticola (CD), C. tubulosa (CT), C. salsa (CS) and C. sinensis (CSN), among which CD and CT are official herbal sources of Cistanche Herba (CH). To clarify the sources of CH and ensure the clinical efficacy and safety, a multi-step IR macro-fingerprint method was developed to analyze and evaluate the ethanol extracts of the four species. Through this method, the four species were distinctively distinguished, and the main active components phenylethanoid glycosides (PhGs) were estimated rapidly according to the fingerprint features in the original IR spectra, second derivative spectra, correlation coefficients and 2D-IR correlation spectra. The exclusive IR fingerprints in the spectra including the positions, shapes and numbers of peaks indicated that constitutes of CD were the most abundant, and CT had the highest level of PhGs. The results deduced by some macroscopic features in IR fingerprint were in agreement with the HPLC fingerprint of PhGs from the four species, but it should be noted that the IR provided more chemical information than HPLC. In conclusion, with the advantages of high resolution, cost effective and speediness, the macroscopic IR fingerprint method should be a promising analytical technique for discriminating extremely similar herbal medicine, monitoring and tracing the constituents of different extracts and even for quality control of the complex systems such as TCM.
Detection of latent fingerprint hidden beneath adhesive tape by optical coherence tomography.
Zhang, Ning; Wang, Chengming; Sun, Zhenwen; Li, Zhigang; Xie, Lanchi; Yan, Yuwen; Xu, Lei; Guo, Jingjing; Huang, Wei; Li, Zhihui; Xue, Jing; Liu, Huan; Xu, Xiaojing
2018-06-01
Adhesive tape is one type of common item which can be encountered in criminal cases involving rape, murder, kidnapping and explosives. It is often the case that a suspect deposits latent fingerprints on the sticky side of adhesive tape material when tying up victims, manufacturing improvised explosive devices or packaging illegal goods. However, the adhesive tapes found at crime scenes are usually stuck together or attached to a certain substrate, and thus the latent fingerprints may be hidden beneath the tapes. Current methods to detect latent fingerprint hidden beneath adhesive tape need to peel it off first and then apply physical or chemical methods to develop the fingerprint, which undergo complicated procedures and would affect the original condition of latent print. Optical coherence tomography (OCT) is a novel applied techniques in forensics which enables obtaining cross-sectional structure with the advantages of non-invasive, in-situ, high resolution and high speed. In this paper, a custom-built spectral-domain OCT (SD-OCT) system with a hand-held probe was employed to detect fingerprints hidden beneath different types of adhesive tapes. Three-dimensional (3D) OCT reconstructions were performed and the en face images were presented to reveal the hidden fingerprints. The results demonstrate that OCT is a promising tool for rapidly detecting and recovering high quality image of latent fingerprint hidden beneath adhesive tape without any changes to the original state and preserve the integrity of the evidence. Copyright © 2018 Elsevier B.V. All rights reserved.
Wang, Xijun; Lv, Haitao; Sun, Hui; Jiang, Xingang; Wu, Zeming; Sun, Wenjun; Wang, Ping; Liu, Lian; Bi, Kaishun
2008-01-01
A completely validated method based on HPLC coupled with photodiode array detector (HPLC-UV) was described for evaluating and controlling quality of Yin Chen Hao Tang extract (YCHTE). First, HPLC-UV fingerprint chromatogram of YCHTE was established for preliminarily elucidating amount and chromatographic trajectory of chemical constituents in YCHTE. Second, for the first time, five mainly bioactive constituents in YCHTE were simultaneously determined based on fingerprint chromatogram for furthermore controlling the quality of YCHTE quantitatively. The developed method was applied to analyze 12 batches of YCHTE samples which consisted of herbal drugs from different places of production, showed acceptable linearity, intraday (RSD <5%), interday precision (RSD <4.80%), and accuracy (RSD <2.80%). As a result, fingerprint chromatogram determined 15 representative general fingerprint peaks, and the fingerprint chromatogram resemblances are all better than 0.9996. The contents of five analytes in different batches of YCHTE samples do not indicate significant difference. So, it is concluded that the developed HPLC-UV method is a more fully validated and complete method for evaluating and controlling the quality of YCHTE.
Molecular graph convolutions: moving beyond fingerprints
NASA Astrophysics Data System (ADS)
Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick
2016-08-01
Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.
Molecular graph convolutions: moving beyond fingerprints.
Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick
2016-08-01
Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.
Marti, Guillaume; Boccard, Julien; Mehl, Florence; Debrus, Benjamin; Marcourt, Laurence; Merle, Philippe; Delort, Estelle; Baroux, Lucie; Sommer, Horst; Rudaz, Serge; Wolfender, Jean-Luc
2014-05-01
The detailed characterization of cold-pressed lemon oils (CPLOs) is of great importance for the flavor and fragrance (F&F) industry. Since a control of authenticity by standard analytical techniques can be bypassed using elaborated adulterated oils to pretend a higher quality, a combination of advanced orthogonal methods has been developed. The present study describes a combined metabolomic approach based on UHPLC-TOF-MS profiling and (1)H NMR fingerprinting to highlight metabolite differences on a set of representative samples used in the F&F industry. A new protocol was set up and adapted to the use of CPLO residues. Multivariate analysis based on both fingerprinting methods showed significant chemical variations between Argentinian and Italian samples. Discriminating markers identified in mixtures belong to furocoumarins, flavonoids, terpenoids and fatty acids. Quantitative NMR revealed low citropten and high bergamottin content in Italian samples. The developed metabolomic approach applied to CPLO residues gives some new perspectives for authenticity assessment. Copyright © 2013 Elsevier Ltd. All rights reserved.
A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure.
Chen, Xinjian; Tian, Jie; Yang, Xin
2006-03-01
Coping with nonlinear distortions in fingerprint matching is a challenging task. This paper proposes a novel algorithm, normalized fuzzy similarity measure (NFSM), to deal with the nonlinear distortions. The proposed algorithm has two main steps. First, the template and input fingerprints were aligned. In this process, the local topological structure matching was introduced to improve the robustness of global alignment. Second, the method NFSM was introduced to compute the similarity between the template and input fingerprints. The proposed algorithm was evaluated on fingerprints databases of FVC2004. Experimental results confirm that NFSM is a reliable and effective algorithm for fingerprint matching with nonliner distortions. The algorithm gives considerably higher matching scores compared to conventional matching algorithms for the deformed fingerprints.
Microorganism Identification Based On MALDI-TOF-MS Fingerprints
NASA Astrophysics Data System (ADS)
Elssner, Thomas; Kostrzewa, Markus; Maier, Thomas; Kruppa, Gary
Advances in MALDI-TOF mass spectrometry have enabled the development of a rapid, accurate and specific method for the identification of bacteria directly from colonies picked from culture plates, which we have named the MALDI Biotyper. The picked colonies are placed on a target plate, a drop of matrix solution is added, and a pattern of protein molecular weights and intensities, "the protein fingerprint" of the bacteria, is produced by the MALDI-TOF mass spectrometer. The obtained protein mass fingerprint representing a molecular signature of the microorganism is then matched against a database containing a library of previously measured protein mass fingerprints, and scores for the match to every library entry are produced. An ID is obtained if a score is returned over a pre-set threshold. The sensitivity of the techniques is such that only approximately 104 bacterial cells are needed, meaning that an overnight culture is sufficient, and the results are obtained in minutes after culture. The improvement in time to result over biochemical methods, and the capability to perform a non-targeted identification of bacteria and spores, potentially makes this method suitable for use in the detect-to-treat timeframe in a bioterrorism event. In the case of white-powder samples, the infectious spore is present in sufficient quantity in the powder so that the MALDI Biotyper result can be obtained directly from the white powder, without the need for culture. While spores produce very different patterns from the vegetative colonies of the corresponding bacteria, this problem is overcome by simply including protein fingerprints of the spores in the library. Results on spores can be returned within minutes, making the method suitable for use in the "detect-to-protect" timeframe.
New Insights for Diagnosis of Pineapple Fusariosis by MALDI-TOF MS Technique.
Santos, Cledir; Ventura, José Aires; Lima, Nelson
2016-08-01
Fusarium is one of the most economically important fungal genus, since it includes many pathogenic species which cause a wide range of plant diseases. Morphological or molecular biology identification of Fusarium species is a limiting step in the fast diagnosis and treatment of plant disease caused by these fungi. Mass spectrometry by matrix-assisted laser/desorption ionisation-time-of-flight (MALDI-TOF)-based fingerprinting approach was applied to the fungal growth monitoring and direct detection of strain Fusarium guttiforme E-480 inoculated in both pineapple cultivars Pérola and Imperial side shoots, that are susceptible and resistant, respectively, to this fungal strain. MALDI-TOF MS technique was capable to detect fungal molecular mass peaks in the susceptible pineapple stem side shoot tissue. It is assumed that these molecular masses are mainly constituted by ribosomal proteins. MALDI-TOF-based fingerprinting approach has herein been demonstrated to be sensitive and accurate for the direct detection of F. guttiforme E-480 molecular masses on both susceptible and resistant pineapple side stem free of any pre-treatment. According to the results obtained, the changing on molecular mass peaks of infected susceptible pineapple tissue together with the possibility of fungal molecular masses analysis into this pineapple tissue can be a good indication for an early diagnosis by MALDI-TOF MS of pineapple fusariosis.
Cai, Yong; Li, Xiwen; Wang, Runmiao; Yang, Qing; Li, Peng; Hu, Hao
2016-01-01
Currently, the chemical fingerprint comparison and analysis is mainly based on professional equipment and software, it’s expensive and inconvenient. This study aims to integrate QR (Quick Response) code with quality data and mobile intelligent technology to develop a convenient query terminal for tracing quality in the whole industrial chain of TCM (traditional Chinese medicine). Three herbal medicines were randomly selected and their chemical two-dimensional barcode (2D) barcodes fingerprints were constructed. Smartphone application (APP) based on Android system was developed to read initial data of 2D chemical barcodes, and compared multiple fingerprints from different batches of same species or different species. It was demonstrated that there were no significant differences between original and scanned TCM chemical fingerprints. Meanwhile, different TCM chemical fingerprint QR codes could be rendered in the same coordinate and showed the differences very intuitively. To be able to distinguish the variations of chemical fingerprint more directly, linear interpolation angle cosine similarity algorithm (LIACSA) was proposed to get similarity ratio. This study showed that QR codes can be used as an effective information carrier to transfer quality data. Smartphone application can rapidly read quality information in QR codes and convert data into TCM chemical fingerprints. PMID:27780256
A framework of multitemplate ensemble for fingerprint verification
NASA Astrophysics Data System (ADS)
Yin, Yilong; Ning, Yanbin; Ren, Chunxiao; Liu, Li
2012-12-01
How to improve performance of an automatic fingerprint verification system (AFVS) is always a big challenge in biometric verification field. Recently, it becomes popular to improve the performance of AFVS using ensemble learning approach to fuse related information of fingerprints. In this article, we propose a novel framework of fingerprint verification which is based on the multitemplate ensemble method. This framework is consisted of three stages. In the first stage, enrollment stage, we adopt an effective template selection method to select those fingerprints which best represent a finger, and then, a polyhedron is created by the matching results of multiple template fingerprints and a virtual centroid of the polyhedron is given. In the second stage, verification stage, we measure the distance between the centroid of the polyhedron and a query image. In the final stage, a fusion rule is used to choose a proper distance from a distance set. The experimental results on the FVC2004 database prove the improvement on the effectiveness of the new framework in fingerprint verification. With a minutiae-based matching method, the average EER of four databases in FVC2004 drops from 10.85 to 0.88, and with a ridge-based matching method, the average EER of these four databases also decreases from 14.58 to 2.51.
NASA Astrophysics Data System (ADS)
Wang, Jianfeng; Lin, Kan; Zheng, Wei; Yu Ho, Khek; Teh, Ming; Guan Yeoh, Khay; Huang, Zhiwei
2015-08-01
This work aims to evaluate clinical value of a fiber-optic Raman spectroscopy technique developed for in vivo diagnosis of esophageal squamous cell carcinoma (ESCC) during clinical endoscopy. We have developed a rapid fiber-optic Raman endoscopic system capable of simultaneously acquiring both fingerprint (FP)(800-1800 cm-1) and high-wavenumber (HW)(2800-3600 cm-1) Raman spectra from esophageal tissue in vivo. A total of 1172 in vivo FP/HW Raman spectra were acquired from 48 esophageal patients undergoing endoscopic examination. The total Raman dataset was split into two parts: 80% for training; while 20% for testing. Partial least squares-discriminant analysis (PLS-DA) and leave-one patient-out, cross validation (LOPCV) were implemented on training dataset to develop diagnostic algorithms for tissue classification. PLS-DA-LOPCV shows that simultaneous FP/HW Raman spectroscopy on training dataset provides a diagnostic sensitivity of 97.0% and specificity of 97.4% for ESCC classification. Further, the diagnostic algorithm applied to the independent testing dataset based on simultaneous FP/HW Raman technique gives a predictive diagnostic sensitivity of 92.7% and specificity of 93.6% for ESCC identification, which is superior to either FP or HW Raman technique alone. This work demonstrates that the simultaneous FP/HW fiber-optic Raman spectroscopy technique improves real-time in vivo diagnosis of esophageal neoplasia at endoscopy.
Extracting valley-ridge lines from point-cloud-based 3D fingerprint models.
Pang, Xufang; Song, Zhan; Xie, Wuyuan
2013-01-01
3D fingerprinting is an emerging technology with the distinct advantage of touchless operation. More important, 3D fingerprint models contain more biometric information than traditional 2D fingerprint images. However, current approaches to fingerprint feature detection usually must transform the 3D models to a 2D space through unwrapping or other methods, which might introduce distortions. A new approach directly extracts valley-ridge features from point-cloud-based 3D fingerprint models. It first applies the moving least-squares method to fit a local paraboloid surface and represent the local point cloud area. It then computes the local surface's curvatures and curvature tensors to facilitate detection of the potential valley and ridge points. The approach projects those points to the most likely valley-ridge lines, using statistical means such as covariance analysis and cross correlation. To finally extract the valley-ridge lines, it grows the polylines that approximate the projected feature points and removes the perturbations between the sampled points. Experiments with different 3D fingerprint models demonstrate this approach's feasibility and performance.
Detection and Rectification of Distorted Fingerprints.
Si, Xuanbin; Feng, Jianjiang; Zhou, Jie; Luo, Yuxuan
2015-03-01
Elastic distortion of fingerprints is one of the major causes for false non-match. While this problem affects all fingerprint recognition applications, it is especially dangerous in negative recognition applications, such as watchlist and deduplication applications. In such applications, malicious users may purposely distort their fingerprints to evade identification. In this paper, we proposed novel algorithms to detect and rectify skin distortion based on a single fingerprint image. Distortion detection is viewed as a two-class classification problem, for which the registered ridge orientation map and period map of a fingerprint are used as the feature vector and a SVM classifier is trained to perform the classification task. Distortion rectification (or equivalently distortion field estimation) is viewed as a regression problem, where the input is a distorted fingerprint and the output is the distortion field. To solve this problem, a database (called reference database) of various distorted reference fingerprints and corresponding distortion fields is built in the offline stage, and then in the online stage, the nearest neighbor of the input fingerprint is found in the reference database and the corresponding distortion field is used to transform the input fingerprint into a normal one. Promising results have been obtained on three databases containing many distorted fingerprints, namely FVC2004 DB1, Tsinghua Distorted Fingerprint database, and the NIST SD27 latent fingerprint database.
Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.
Awale, Mahendra; Jin, Xian; Reymond, Jean-Louis
2015-01-01
Tools to explore large compound databases in search for analogs of query molecules provide a strategically important support in drug discovery to help identify available analogs of any given reference or hit compound by ligand based virtual screening (LBVS). We recently showed that large databases can be formatted for very fast searching with various 2D-fingerprints using the city-block distance as similarity measure, in particular a 2D-atom pair fingerprint (APfp) and the related category extended atom pair fingerprint (Xfp) which efficiently encode molecular shape and pharmacophores, but do not perceive stereochemistry. Here we investigated related 3D-atom pair fingerprints to enable rapid stereoselective searches in the ZINC database (23.2 million 3D structures). Molecular fingerprints counting atom pairs at increasing through-space distance intervals were designed using either all atoms (16-bit 3DAPfp) or different atom categories (80-bit 3DXfp). These 3D-fingerprints retrieved molecular shape and pharmacophore analogs (defined by OpenEye ROCS scoring functions) of 110,000 compounds from the Cambridge Structural Database with equal or better accuracy than the 2D-fingerprints APfp and Xfp, and showed comparable performance in recovering actives from decoys in the DUD database. LBVS by 3DXfp or 3DAPfp similarity was stereoselective and gave very different analogs when starting from different diastereomers of the same chiral drug. Results were also different from LBVS with the parent 2D-fingerprints Xfp or APfp. 3D- and 2D-fingerprints also gave very different results in LBVS of folded molecules where through-space distances between atom pairs are much shorter than topological distances. 3DAPfp and 3DXfp are suitable for stereoselective searches for shape and pharmacophore analogs of query molecules in large databases. Web-browsers for searching ZINC by 3DAPfp and 3DXfp similarity are accessible at www.gdb.unibe.ch and should provide useful assistance to drug discovery projects. Graphical abstractAtom pair fingerprints based on through-space distances (3DAPfp) provide better shape encoding than atom pair fingerprints based on topological distances (APfp) as measured by the recovery of ROCS shape analogs by fp similarity.
Underwater DVI: Simple fingerprint technique for positive identification.
Khoo, Lay See; Hasmi, Ahmad Hafizam; Mahmood, Mohd Shah; Vanezis, Peter
2016-09-01
An underwater disaster can be declared when a maritime accident occurred or when an aircraft is plunged into water area, be it ocean, sea or river. Nevertheless, handling of human remains in an underwater recovery operation is often a difficult and demanding task as working conditions may be challenging with poor to no visibility, location of remains at considerable depths and associated hazards from surrounding water. A case of the recent helicopter crash, into a famous river in Sarawak, domiciled by huge crocodiles, is discussed in this paper. Search and recovery team as well as the combat divers from the Special Elite Troop Commando, known as VAT 69, were deployed to the scene to perform the underwater recovery to search for all the victims on board involving five Malaysians with a pilot of Philippines nationality. This paper highlights the limitations and challenges faced during the underwater search and recovery. All the bodies recovered were in moderate decomposition stage with crushed injuries and mutilated face and body. A simple and conventional fingerprint technique were used to record the fingerprint. The prints impressions were later photographed using a smartphone and transferred back to the RMP headquarters in Kuala Lumpur for fingerprint match by using WhatsApp Messenger, a phone application. All the first five victims were identified within an average of 10min. The last victim recovered was the pilot. For foreign nationals, the Immigration Department of Malaysia will record the prints of both index fingers only. The lifting of the fingerprint of the last victim was the most challenging in which only one index finger left that can be used for comparison. A few techniques were attempted using the black printer's ink, glass and tape techniques for the last victim. Subsequently, images of the prints impression were taken using the same smartphone with additional macro lens attached to it to enhance the resolution. The images were transferred to the RMP headquarters through WhatsApp Messenger. The prints were confirmed to be the pilot 20min later. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fast fingerprint database maintenance for indoor positioning based on UGV SLAM.
Tang, Jian; Chen, Yuwei; Chen, Liang; Liu, Jingbin; Hyyppä, Juha; Kukko, Antero; Kaartinen, Harri; Hyyppä, Hannu; Chen, Ruizhi
2015-03-04
Indoor positioning technology has become more and more important in the last two decades. Utilizing Received Signal Strength Indicator (RSSI) fingerprints of Signals of OPportunity (SOP) is a promising alternative navigation solution. However, as the RSSIs vary during operation due to their physical nature and are easily affected by the environmental change, one challenge of the indoor fingerprinting method is maintaining the RSSI fingerprint database in a timely and effective manner. In this paper, a solution for rapidly updating the fingerprint database is presented, based on a self-developed Unmanned Ground Vehicles (UGV) platform NAVIS. Several SOP sensors were installed on NAVIS for collecting indoor fingerprint information, including a digital compass collecting magnetic field intensity, a light sensor collecting light intensity, and a smartphone which collects the access point number and RSSIs of the pre-installed WiFi network. The NAVIS platform generates a map of the indoor environment and collects the SOPs during processing of the mapping, and then the SOP fingerprint database is interpolated and updated in real time. Field tests were carried out to evaluate the effectiveness and efficiency of the proposed method. The results showed that the fingerprint databases can be quickly created and updated with a higher sampling frequency (5Hz) and denser reference points compared with traditional methods, and the indoor map can be generated without prior information. Moreover, environmental changes could also be detected quickly for fingerprint indoor positioning.
Wlan-Based Indoor Localization Using Neural Networks
NASA Astrophysics Data System (ADS)
Saleem, Fasiha; Wyne, Shurjeel
2016-07-01
Wireless indoor localization has generated recent research interest due to its numerous applications. This work investigates Wi-Fi based indoor localization using two variants of the fingerprinting approach. Specifically, we study the application of an artificial neural network (ANN) for implementing the fingerprinting approach and compare its localization performance with a probabilistic fingerprinting method that is based on maximum likelihood estimation (MLE) of the user location. We incorporate spatial correlation of fading into our investigations, which is often neglected in simulation studies and leads to erroneous location estimates. The localization performance is quantified in terms of accuracy, precision, robustness, and complexity. Multiple methods for handling the case of missing APs in online stage are investigated. Our results indicate that ANN-based fingerprinting outperforms the probabilistic approach for all performance metrics considered in this work.
NASA Astrophysics Data System (ADS)
Pittman, Cheryl
Pioneered by NASA-JSC scientists, Marilyn Lindstorm and Jaclyn Allen, the partnering of teachers with scientists has ventured into the realms of the extreme... extreme life, that is. In 1998, two years after the announcement that possible evidence of life had been discovered within a Martian rock, teachers from region served by JSC were brought together with the Mars Meteorite research team. The goal was to familiarize the teachers with research being done in the search for evidence of extra-terrestrial life and Earth analogues. The teachers would then design curriculum to translate the research into a format that could be utilized in the classroom. "Fingerprints of Life", a work-in-progress, is a CD-rom /web-based curriculum derived from that collaboration. Modeling the actual science being done, the CD contains laboratory and classroom activities utilizing Astrobiology as the 'hook' to teach basic science skills of observation, description, communication of ideas and laboratory techniques. In addition, electron microscopy images and video clips give background information for the uninitiated. From "Wold Trap", which is based upon an actual experiment designed for the Mars Viking missions, to "Creature Feature", which deals with observation and communication, the labs and activities are appropriate for multiple grade levels. Designed to be user-friendly and tested in the classroom, "Fingerprints" uses materials that can be purchased inexpensively at the grocery store, or recycled from other sources.
NASA Astrophysics Data System (ADS)
He, Fei; Liu, Yuanning; Zhu, Xiaodong; Huang, Chun; Han, Ye; Chen, Ying
2014-05-01
A multimodal biometric system has been considered a promising technique to overcome the defects of unimodal biometric systems. We have introduced a fusion scheme to gain a better understanding and fusion method for a face-iris-fingerprint multimodal biometric system. In our case, we use particle swarm optimization to train a set of adaptive Gabor filters in order to achieve the proper Gabor basic functions for each modality. For a closer analysis of texture information, two different local Gabor features for each modality are produced by the corresponding Gabor coefficients. Next, all matching scores of the two Gabor features for each modality are projected to a single-scalar score via a trained, supported, vector regression model for a final decision. A large-scale dataset is formed to validate the proposed scheme using the Facial Recognition Technology database-fafb and CASIA-V3-Interval together with FVC2004-DB2a datasets. The experimental results demonstrate that as well as achieving further powerful local Gabor features of multimodalities and obtaining better recognition performance by their fusion strategy, our architecture also outperforms some state-of-the-art individual methods and other fusion approaches for face-iris-fingerprint multimodal biometric systems.
Filteau, Marie; Lagacé, Luc; LaPointe, Gisèle; Roy, Denis
2010-04-01
An arbitrary primed community PCR fingerprinting technique based on capillary electrophoresis was developed to study maple sap microbial community characteristics among 19 production sites in Québec over the tapping season. Presumptive fragment identification was made with corresponding fingerprint profiles of bacterial isolate cultures. Maple sap microbial communities were subsequently compared using a representative subset of 13 16S rRNA gene clone libraries followed by gene sequence analysis. Results from both methods indicated that all maple sap production sites and flow periods shared common microbiota members, but distinctive features also existed. Changes over the season in relative abundance of predominant populations showed evidence of a common pattern. Pseudomonas (64%) and Rahnella (8%) were the most abundantly and frequently represented genera of the 2239 sequences analyzed. Janthinobacterium, Leuconostoc, Lactococcus, Weissella, Epilithonimonas and Sphingomonas were revealed as occasional contaminants in maple sap. Maple sap microbiota showed a low level of deep diversity along with a high variation of similar 16S rRNA gene sequences within the Pseudomonas genus. Predominance of Pseudomonas is suggested as a typical feature of maple sap microbiota across geographical regions, production sites, and sap flow periods.
Microsatellite-Based Fingerprinting of Western Blackberries from Plants, IQF Berries and Puree
USDA-ARS?s Scientific Manuscript database
The blackberry industry needs a reliable method to ensure trueness-to-type of blackberry products. Microsatellite markers or simple sequence repeats (SSRs) are ideal for cultivar fingerprinting, paternity testing and identity certification. Fingerprinting is valuable for variety identification, qual...
Electronic fingerprints of DNA bases on graphene.
Ahmed, Towfiq; Kilina, Svetlana; Das, Tanmoy; Haraldsen, Jason T; Rehr, John J; Balatsky, Alexander V
2012-02-08
We calculate the electronic local density of states (LDOS) of DNA nucleotide bases (A,C,G,T), deposited on graphene. We observe significant base-dependent features in the LDOS in an energy range within a few electronvolts of the Fermi level. These features can serve as electronic fingerprints for the identification of individual bases in scanning tunneling spectroscopy (STS) experiments that perform image and site dependent spectroscopy on biomolecules. Thus the fingerprints of DNA-graphene hybrid structures may provide an alternative route to DNA sequencing using STS. © 2012 American Chemical Society
Video fingerprinting for copy identification: from research to industry applications
NASA Astrophysics Data System (ADS)
Lu, Jian
2009-02-01
Research that began a decade ago in video copy detection has developed into a technology known as "video fingerprinting". Today, video fingerprinting is an essential and enabling tool adopted by the industry for video content identification and management in online video distribution. This paper provides a comprehensive review of video fingerprinting technology and its applications in identifying, tracking, and managing copyrighted content on the Internet. The review includes a survey on video fingerprinting algorithms and some fundamental design considerations, such as robustness, discriminability, and compactness. It also discusses fingerprint matching algorithms, including complexity analysis, and approximation and optimization for fast fingerprint matching. On the application side, it provides an overview of a number of industry-driven applications that rely on video fingerprinting. Examples are given based on real-world systems and workflows to demonstrate applications in detecting and managing copyrighted content, and in monitoring and tracking video distribution on the Internet.
Kuwayama, Kenji; Miyaguchi, Hajime; Yamamuro, Tadashi; Tsujikawa, Kenji; Kanamori, Tatsuyuki; Iwata, Yuko T; Inoue, Hiroyuki
2016-07-01
In forensic drug testing, it is important to immediately take biological specimens from suspects and victims to prove their drug intake. We evaluated the effectiveness of saliva and fingerprints as alternative specimens to urine and blood in terms of ease of sampling, drug detection sensitivity, and drug detection periods for each specimen type. After four commercially available pharmaceutical products were administered to healthy subjects, each in a single dose, their urine, blood, saliva, and fingerprints were taken at predetermined sampling times over approximately four weeks. Fourteen analytes (the administered drugs and their main metabolites) were extracted from each specimen using simple pretreatments, such as dilution and deproteinization, and were analyzed using liquid chromatography/mass spectrometry (LC/MS). Most of the analytes were detected in saliva and fingerprints, as well as in urine and blood. The time-courses of drug concentrations were similar between urine and fingerprints, and between blood and saliva. Compared to the other compounds, the acidic compounds, for example ibuprofen, acetylsalicylic acid, were more difficult to detect in all specimens. Acetaminophen, dihydrocodeine, and methylephedrine were detected in fingerprints at later sampling times than in urine. However, a relationship between the drug structures and their detection periods in each specimen was not found. Saliva and fingerprints could be easily sampled on site without using special techniques or facilities. In addition, fingerprints could be immediately analyzed after simple and rapid treatment. In cases where it would be difficult to immediately obtain urine and blood, saliva and fingerprints could be effective alternative specimens for drug testing. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Nakamura, Atsushi; Okuda, Hidekazu; Nagaoka, Takashi; Akiba, Norimitsu; Kurosawa, Kenji; Kuroki, Kenro; Ichikawa, Fumihiko; Torao, Akira; Sota, Takayuki
2015-09-01
Untreated latent fingerprints are known to exhibit fluorescence under UV laser excitation. Previously, the hyperspectral imager (HSI) has been primarily evaluated in terms of its potential to enhance the sensitivity of latent fingerprint detection following treatment by conventional chemical methods in the forensic science field. In this study however, the potential usability of the HSI for the visualization and detection of untreated latent fingerprints by measuring their inherent fluorescence under continuous wave (CW) visible laser excitation was examined. Its potential to undertake spectral separation of overlapped fingerprints was also evaluated. The excitation wavelength dependence of fluorescent images was examined using an untreated palm print on a steel based wall, and it was found that green laser excitation is superior to blue and yellow lasers' excitation for the production of high contrast fluorescence images. In addition, a spectral separation method for overlapped fingerprints/palm prints on a plaster wall was proposed using new images converted by the division and subtraction of two single wavelength images constructed based on measured hyperspectral data (HSD). In practical tests, the relative isolation of two overlapped fingerprints/palm prints was successful in twelve out of seventeen cases. Only one fingerprint/palm print was extracted for an additional three cases. These results revealed that the feasibility of overlapped fingerprint/palm print spectral separation depends on the difference in the temporal degeneration of each fluorescence spectrum. The present results demonstrate that a combination of a portable HSI and CW green laser has considerable potential for the identification and detection of untreated latent fingerprints/palm prints on the walls under study, while the use of HSD makes it practically possible for doubly overlapped fingerprints/palm prints to be separated spectrally. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
DWI-based neural fingerprinting technology: a preliminary study on stroke analysis.
Ye, Chenfei; Ma, Heather Ting; Wu, Jun; Yang, Pengfei; Chen, Xuhui; Yang, Zhengyi; Ma, Jingbo
2014-01-01
Stroke is a common neural disorder in neurology clinics. Magnetic resonance imaging (MRI) has become an important tool to assess the neural physiological changes under stroke, such as diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI). Quantitative analysis of MRI images would help medical doctors to localize the stroke area in the diagnosis in terms of structural information and physiological characterization. However, current quantitative approaches can only provide localization of the disorder rather than measure physiological variation of subtypes of ischemic stroke. In the current study, we hypothesize that each kind of neural disorder would have its unique physiological characteristics, which could be reflected by DWI images on different gradients. Based on this hypothesis, a DWI-based neural fingerprinting technology was proposed to classify subtypes of ischemic stroke. The neural fingerprint was constructed by the signal intensity of the region of interest (ROI) on the DWI images under different gradients. The fingerprint derived from the manually drawn ROI could classify the subtypes with accuracy 100%. However, the classification accuracy was worse when using semiautomatic and automatic method in ROI segmentation. The preliminary results showed promising potential of DWI-based neural fingerprinting technology in stroke subtype classification. Further studies will be carried out for enhancing the fingerprinting accuracy and its application in other clinical practices.
Collins, A L; Pulley, S; Foster, I D L; Gellis, A; Porto, P; Horowitz, A J
2017-06-01
The growing awareness of the environmental significance of fine-grained sediment fluxes through catchment systems continues to underscore the need for reliable information on the principal sources of this material. Source estimates are difficult to obtain using traditional monitoring techniques, but sediment source fingerprinting or tracing procedures, have emerged as a potentially valuable alternative. Despite the rapidly increasing numbers of studies reporting the use of sediment source fingerprinting, several key challenges and uncertainties continue to hamper consensus among the international scientific community on key components of the existing methodological procedures. Accordingly, this contribution reviews and presents recent developments for several key aspects of fingerprinting, namely: sediment source classification, catchment source and target sediment sampling, tracer selection, grain size issues, tracer conservatism, source apportionment modelling, and assessment of source predictions using artificial mixtures. Finally, a decision-tree representing the current state of knowledge is presented, to guide end-users in applying the fingerprinting approach. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Performance analysis of three-dimensional ridge acquisition from live finger and palm surface scans
NASA Astrophysics Data System (ADS)
Fatehpuria, Abhishika; Lau, Daniel L.; Yalla, Veeraganesh; Hassebrook, Laurence G.
2007-04-01
Fingerprints are one of the most commonly used and relied-upon biometric technology. But often the captured fingerprint image is far from ideal due to imperfect acquisition techniques that can be slow and cumbersome to use without providing complete fingerprint information. Most of the diffculties arise due to the contact of the fingerprint surface with the sensor platen. To overcome these diffculties we have been developing a noncontact scanning system for acquiring a 3-D scan of a finger with suffciently high resolution which is then converted into a 2-D rolled equivalent image. In this paper, we describe certain quantitative measures evaluating scanner performance. Specifically, we use some image software components developed by the National Institute of Standards and Technology, to derive our performance metrics. Out of the eleven identified metrics, three were found to be most suitable for evaluating scanner performance. A comparison is also made between 2D fingerprint images obtained by the traditional means and the 2D images obtained after unrolling the 3D scans and the quality of the acquired scans is quantified using the metrics.
The Ins and Outs of DNA Fingerprinting the Infectious Fungi
Soll, David R.
2000-01-01
DNA fingerprinting methods have evolved as major tools in fungal epidemiology. However, no single method has emerged as the method of choice, and some methods perform better than others at different levels of resolution. In this review, requirements for an effective DNA fingerprinting method are proposed and procedures are described for testing the efficacy of a method. In light of the proposed requirements, the most common methods now being used to DNA fingerprint the infectious fungi are described and assessed. These methods include restriction fragment length polymorphisms (RFLP), RFLP with hybridization probes, randomly amplified polymorphic DNA and other PCR-based methods, electrophoretic karyotyping, and sequencing-based methods. Procedures for computing similarity coefficients, generating phylogenetic trees, and testing the stability of clusters are then described. To facilitate the analysis of DNA fingerprinting data, computer-assisted methods are described. Finally, the problems inherent in the collection of test and control isolates are considered, and DNA fingerprinting studies of strain maintenance during persistent or recurrent infections, microevolution in infecting strains, and the origin of nosocomial infections are assessed in light of the preceding discussion of the ins and outs of DNA fingerprinting. The intent of this review is to generate an awareness of the need to verify the efficacy of each DNA fingerprinting method for the level of genetic relatedness necessary to answer the epidemiological question posed, to use quantitative methods to analyze DNA fingerprint data, to use computer-assisted DNA fingerprint analysis systems to analyze data, and to file data in a form that can be used in the future for retrospective and comparative studies. PMID:10756003
NASA Astrophysics Data System (ADS)
Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei
2013-03-01
We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm-1 1750 to 3600 cm-1) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm-1 within 1.0 s with a spectral resolution of 3 to 6 cm-1 during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.
NASA Astrophysics Data System (ADS)
Kouhpeima, A.; Feiznia, S.; Ahmadi, H.; Hashemi, S. A.; Zareiee, A. R.
2010-09-01
The targeting of sediment management strategies is a key requirement in developing countries including Iran because of the limited resources available. These targeting is, however hampered by the lack of reliable information on catchment sediment sources. This paper reports the results of using a quantitative composite fingerprinting technique to estimate the relative importance of the primary potential sources within the Amrovan and Royan catchments in Semnan Province, Iran. Fifteen tracers were first selected for tracing and samples were analyzed in the laboratory for these parameters. Statistical methods were applied to the data including nonparametric Kruskal-Wallis test and Differentiation Function Analysis (DFA). For Amrovan catchment three parameters (N, Cr and Co) were found to be not significant in making the discrimination. The optimum fingerprint, comprising Oc, PH, Kaolinite and K was able to distinguish correctly 100% of the source material samples. For the Royan catchment, all of the 15 properties were able to distinguish between the six source types and the optimum fingerprint provided by stepwise DFA (Cholorite, XFD, N and C) correctly classifies 92.9% of the source material samples. The mean contributions from each sediment source obtained by multivariate mixing model varied at two catchments. For Amrovan catchment Upper Red formation is the main sediment sources as this sediment source approximately supplies 36% of the reservoir sediment whereas the dominant sediment source for the Royan catchment is from Karaj formation that supplies 33% of the reservoir sediments. Results indicate that the source fingerprinting approach appears to work well in the study catchments and to generate reliable results.
Fingerprint imaging from the inside of a finger with full-field optical coherence tomography
Auksorius, Egidijus; Boccara, A. Claude
2015-01-01
Imaging below fingertip surface might be a useful alternative to the traditional fingerprint sensing since the internal finger features are more reliable than the external ones. One of the most promising subsurface imaging technique is optical coherence tomography (OCT), which, however, has to acquire 3-D data even when a single en face image is required. This makes OCT inherently slow for en face imaging and produce unnecessary large data sets. Here we demonstrate that full-field optical coherence tomography (FF-OCT) can be used to produce en face images of sweat pores and internal fingerprints, which can be used for the identification purposes. PMID:26601009
NASA Astrophysics Data System (ADS)
Kim, Hyun-Sok; Hyun, Min-Sung; Ju, Jae-Wuk; Kim, Young-Sik; Lambregts, Cees; van Rhee, Peter; Kim, Johan; McNamara, Elliott; Tel, Wim; Böcker, Paul; Oh, Nang-Lyeom; Lee, Jun-Hyung
2018-03-01
Computational metrology has been proposed as the way forward to resolve the need for increased metrology density, resulting from extending correction capabilities, without adding actual metrology budget. By exploiting TWINSCAN based metrology information, dense overlay fingerprints for every wafer can be computed. This extended metrology dataset enables new use cases, such as monitoring and control based on fingerprints for every wafer of the lot. This paper gives a detailed description, discusses the accuracy of the fingerprints computed, and will show results obtained in a DRAM HVM manufacturing environment. Also an outlook for improvements and extensions will be shared.
De Vuyst, Luc; Camu, Nicholas; De Winter, Tom; Vandemeulebroecke, Katrien; Van de Perre, Vincent; Vancanneyt, Marc; De Vos, Paul; Cleenwerck, Ilse
2008-06-30
Amplification of repetitive bacterial DNA elements through the polymerase chain reaction (rep-PCR fingerprinting) using the (GTG)(5) primer, referred to as (GTG)(5)-PCR fingerprinting, was found a promising genotypic tool for rapid and reliable speciation of acetic acid bacteria (AAB). The method was evaluated with 64 AAB reference strains, including 31 type strains, and 132 isolates from Ghanaian, fermented cocoa beans, and was validated with DNA:DNA hybridization data. Most reference strains, except for example all Acetobacter indonesiensis strains and Gluconacetobacter liquefaciens LMG 1509, grouped according to their species designation, indicating the usefulness of this technique for identification to the species level. Moreover, exclusive patterns were obtained for most strains, suggesting that the technique can also be used for characterization below species level or typing of AAB strains. The (GTG)(5)-PCR fingerprinting allowed us to differentiate four major clusters among the fermented cocoa bean isolates, namely A. pasteurianus (cluster I, 100 isolates), A. syzygii- or A. lovaniensis-like (cluster II, 23 isolates), and A. tropicalis-like (clusters III and IV containing 4 and 5 isolates, respectively). A. syzygii-like and A. tropicalis-like strains from cocoa bean fermentations were reported for the first time. Validation of the method and indications for reclassifications of AAB species and existence of new Acetobacter species were obtained through 16S rRNA sequencing analyses and DNA:DNA hybridizations. Reclassifications refer to A. aceti LMG 1531, Ga. xylinus LMG 1518, and Ga. xylinus subsp. sucrofermentans LMG 18788(T).
MR Vascular Fingerprinting in Stroke and Brain Tumors Models
NASA Astrophysics Data System (ADS)
Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.
2016-11-01
In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.
MR Vascular Fingerprinting in Stroke and Brain Tumors Models
Lemasson, B.; Pannetier, N.; Coquery, N.; Boisserand, Ligia S. B.; Collomb, Nora; Schuff, N.; Moseley, M.; Zaharchuk, G.; Barbier, E. L.; Christen, T.
2016-01-01
In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases. PMID:27883015
Separation and sequence detection of overlapped fingerprints: experiments and first results
NASA Astrophysics Data System (ADS)
Kärgel, Rainer; Giebel, Sascha; Leich, Marcus; Dittmann, Jana
2011-11-01
Latent fingerprints provide vital information in modern crime scene investigation. On frequently touched surfaces the fingerprints may overlap which poses a major problem for forensic analysis. In order to make such overlapping fingerprints available for analysis, they have to be separated. An additional evaluation of the sequence in which the fingerprints were brought onto the surface can help to reconstruct the progression of events. Advances in both tasks can considerably aid crime investigation agencies and are the subject of this work. Here, a statistical approach, initially devised for the separation of overlapping text patterns by Tonazzini et al.,1 is employed to separate overlapping fingerprints. The method involves a maximum a posteriori estimation of the single fingerprints and the mixing coefficients, computed by an expectation-maximization algorithm. A fingerprint age determination feature based on corrosion is evaluated for sequence estimation. The approaches are evaluated using 30 samples of overlapping latent fingerprints on two different substrates. The fingerprint images are acquired with a non-destructive chromatic white light surface measurement device, each sample containing exactly two fingerprints that overlap in the center of the image. Since forensic investigations rely on manual assessment of acquired fingerprints by forensics experts, a subjective scale ranging from 0 to 8 is used to rate the separation results. Our results indicate that the chosen method can separate overlapped fingerprints which exhibit strong differences in contrast, since results gradually improve with the growing contrast difference of the overlapping fingerprints. Investigating the effects of corrosion leads to a reliable determination of the fingerprints' sequence as the timespan between their leaving increases.
Fast Fingerprint Database Maintenance for Indoor Positioning Based on UGV SLAM
Tang, Jian; Chen, Yuwei; Chen, Liang; Liu, Jingbin; Hyyppä, Juha; Kukko, Antero; Kaartinen, Harri; Hyyppä, Hannu; Chen, Ruizhi
2015-01-01
Indoor positioning technology has become more and more important in the last two decades. Utilizing Received Signal Strength Indicator (RSSI) fingerprints of Signals of OPportunity (SOP) is a promising alternative navigation solution. However, as the RSSIs vary during operation due to their physical nature and are easily affected by the environmental change, one challenge of the indoor fingerprinting method is maintaining the RSSI fingerprint database in a timely and effective manner. In this paper, a solution for rapidly updating the fingerprint database is presented, based on a self-developed Unmanned Ground Vehicles (UGV) platform NAVIS. Several SOP sensors were installed on NAVIS for collecting indoor fingerprint information, including a digital compass collecting magnetic field intensity, a light sensor collecting light intensity, and a smartphone which collects the access point number and RSSIs of the pre-installed WiFi network. The NAVIS platform generates a map of the indoor environment and collects the SOPs during processing of the mapping, and then the SOP fingerprint database is interpolated and updated in real time. Field tests were carried out to evaluate the effectiveness and efficiency of the proposed method. The results showed that the fingerprint databases can be quickly created and updated with a higher sampling frequency (5Hz) and denser reference points compared with traditional methods, and the indoor map can be generated without prior information. Moreover, environmental changes could also be detected quickly for fingerprint indoor positioning. PMID:25746096
Jan Evangelista Purkynje (1787-1869): first to describe fingerprints.
Grzybowski, Andrzej; Pietrzak, Krzysztof
2015-01-01
Fingerprints have been used for years as the accepted tool in criminology and for identification. The first system of classification of fingerprints was introduced by Jan Evangelista Purkynje (1787-1869), a Czech physiologist, in 1823. He divided the papillary lines into nine types, based on their geometric arrangement. This work, however, was not recognized internationally for many years. In 1858, Sir William Herschel (1833-1917) registered fingerprints for those signing documents at the Indian magistrate's office in Jungipoor. Henry Faulds (1843-1930) in 1880 proposed using ink for fingerprint determination and people identification, and Francis Galton (1822-1911) collected 8000 fingerprints and developed their classification based on the spirals, loops, and arches. In 1892, Juan Vucetich (1858-1925) created his own fingerprint identification system and proved that a woman was responsible for killing two of her sons. In 1896, a London police officer Edward Henry (1850-1931) expanded on earlier systems of classification and used papillary lines to identify criminals; it was his system that was adopted by the forensic world. The work of Jan Evangelista Purkynje (1787-1869) (Figure 1), who in 1823 was the first to describe in detail fingerprints, is almost forgotten. He also established their classification. The year 2013 marked the 190th anniversary of the publication of his work on this topic. Our contribution is an attempt to introduce the reader to this scientist and his discoveries in the field of fingerprint identification. Copyright © 2015.
Accurate Classification of RNA Structures Using Topological Fingerprints
Li, Kejie; Gribskov, Michael
2016-01-01
While RNAs are well known to possess complex structures, functionally similar RNAs often have little sequence similarity. While the exact size and spacing of base-paired regions vary, functionally similar RNAs have pronounced similarity in the arrangement, or topology, of base-paired stems. Furthermore, predicted RNA structures often lack pseudoknots (a crucial aspect of biological activity), and are only partially correct, or incomplete. A topological approach addresses all of these difficulties. In this work we describe each RNA structure as a graph that can be converted to a topological spectrum (RNA fingerprint). The set of subgraphs in an RNA structure, its RNA fingerprint, can be compared with the fingerprints of other RNA structures to identify and correctly classify functionally related RNAs. Topologically similar RNAs can be identified even when a large fraction, up to 30%, of the stems are omitted, indicating that highly accurate structures are not necessary. We investigate the performance of the RNA fingerprint approach on a set of eight highly curated RNA families, with diverse sizes and functions, containing pseudoknots, and with little sequence similarity–an especially difficult test set. In spite of the difficult test set, the RNA fingerprint approach is very successful (ROC AUC > 0.95). Due to the inclusion of pseudoknots, the RNA fingerprint approach both covers a wider range of possible structures than methods based only on secondary structure, and its tolerance for incomplete structures suggests that it can be applied even to predicted structures. Source code is freely available at https://github.rcac.purdue.edu/mgribsko/XIOS_RNA_fingerprint. PMID:27755571
Anti-collusion forensics of multimedia fingerprinting using orthogonal modulation.
Wang, Z Jane; Wu, Min; Zhao, Hong Vicky; Trappe, Wade; Liu, K J Ray
2005-06-01
Digital fingerprinting is a method for protecting digital data in which fingerprints that are embedded in multimedia are capable of identifying unauthorized use of digital content. A powerful attack that can be employed to reduce this tracing capability is collusion, where several users combine their copies of the same content to attenuate/remove the original fingerprints. In this paper, we study the collusion resistance of a fingerprinting system employing Gaussian distributed fingerprints and orthogonal modulation. We introduce the maximum detector and the thresholding detector for colluder identification. We then analyze the collusion resistance of a system to the averaging collusion attack for the performance criteria represented by the probability of a false negative and the probability of a false positive. Lower and upper bounds for the maximum number of colluders K(max) are derived. We then show that the detectors are robust to different collusion attacks. We further study different sets of performance criteria, and our results indicate that attacks based on a few dozen independent copies can confound such a fingerprinting system. We also propose a likelihood-based approach to estimate the number of colluders. Finally, we demonstrate the performance for detecting colluders through experiments using real images.
2012-06-01
Source Compositions for HPS Dataset ...........................................78 Figure 25 Comparison of Source Apportionment for HPS Dataset...The similarity in the three source patterns from HPS makes the apportionment less certain at that site compared to the four source patterns at... apportionment of these sources across the site. Overall these techniques passed all the performance assessment tests that are presented in Section 6. 3.3
A kind of improved fingerprinting indoor location method based on WiFi
NASA Astrophysics Data System (ADS)
Zeng, Xi; Lin, Wei
2017-08-01
In the prior inventions, because of the complexity of the indoor environment, it is hard to guarantee position precision. In this paper provides an improved method that can be adopted to increase the indoor positioning accuracy of handheld positioning device. This method will be the direction of the handheld device position Angle and number of access points two characteristics to join the fingerprint. The two parameters make our normal fingerprint database more abundant. The positioning test results from comparing the normal fingerprint database with the improved fingerprint database prove the later positioning more accurate.
Neural-network-based system for recognition of partially occluded shapes and patterns
NASA Astrophysics Data System (ADS)
Mital, Dinesh P.; Teoh, Eam-Khwang; Amarasinghe, S. K.; Suganthan, P. N.
1996-10-01
The purpose of this paper is to demonstrate how a structural matching approach can be used to perfonn effective rotational invariant fingerprint identification. In this approach, each of the exiracted features is correlated with Live of its nearest neighbouring features to form a local feature gmup for a first-stage matching. After that, the feature with the highest match is used as a central feature whereby all the other features are correlated to form a global feature group for a second.stage matching. The correlation between the features is in terms of distance and relative angle. This approach actually make the matching method rotational invariant A substantial amount of testing was carried out and it shows that this matching technique is capable of matching the four basic fingerprint patterns with an average matching time of4 seconds on a 66Mhz, 486 DX personal computer.
Fast dictionary generation and searching for magnetic resonance fingerprinting.
Jun Xie; Mengye Lyu; Jian Zhang; Hui, Edward S; Wu, Ed X; Ze Wang
2017-07-01
A super-fast dictionary generation and searching (DGS) algorithm was developed for MR parameter quantification using magnetic resonance fingerprinting (MRF). MRF is a new technique for simultaneously quantifying multiple MR parameters using one temporally resolved MR scan. But it has a multiplicative computation complexity, resulting in a big burden of dictionary generating, saving, and retrieving, which can easily be intractable for any state-of-art computers. Based on retrospective analysis of the dictionary matching object function, a multi-scale ZOOM like DGS algorithm, dubbed as MRF-ZOOM, was proposed. MRF ZOOM is quasi-parameter-separable so the multiplicative computation complexity is broken into additive one. Evaluations showed that MRF ZOOM was hundreds or thousands of times faster than the original MRF parameter quantification method even without counting the dictionary generation time in. Using real data, it yielded nearly the same results as produced by the original method. MRF ZOOM provides a super-fast solution for MR parameter quantification.
[Infrared spectroscopy based on quantum cascade lasers].
Wen, Zhong-Quan; Chen, Gang; Peng, Chen; Yuan, Wei-Qing
2013-04-01
Quantum cascade lasers (QCLs) are promising infrared coherent sources. Thanks to the quantum theory and band-gap engineering, QCL can access the wavelength in the range from 3 to 100 microm. Since the fingerprint spectrum of most gases are located in the mid-infrared range, mid-infrared quantum cascade laser based gas sensing technique has become the research focus world wide because of its high power, narrow linewidth and fast scanning. Recent progress in the QCL technology leads to a great improvement in laser output power and efficiency, which stimulates a fast development in the infrared laser spectroscopy. The present paper gives a broad review on the QCL based spectroscopy techniques according to their working principles. A discussion on their applications in gas sensing and explosive detecting is also given at the end of the paper.
42 CFR 424.518 - Screening levels for Medicare providers and suppliers.
Code of Federal Regulations, 2012 CFR
2012-10-01
... this section. (ii)(A) Requires the submission of a set of fingerprints for a national background check... provider or supplier; and (B) Conducts a fingerprint-based criminal history record check of the Federal Bureau of Investigation's Integrated Automated Fingerprint Identification System on all individuals who...
42 CFR 424.518 - Screening levels for Medicare providers and suppliers.
Code of Federal Regulations, 2014 CFR
2014-10-01
... this section. (ii)(A) Requires the submission of a set of fingerprints for a national background check... provider or supplier; and (B) Conducts a fingerprint-based criminal history record check of the Federal Bureau of Investigation's Integrated Automated Fingerprint Identification System on all individuals who...
42 CFR 424.518 - Screening levels for Medicare providers and suppliers.
Code of Federal Regulations, 2011 CFR
2011-10-01
...) Requires the submission of a set of fingerprints for a national background check from all individuals who...) Conducts a fingerprint-based criminal history record check of the Federal Bureau of Investigation's Integrated Automated Fingerprint Identification System on all individuals who maintain a 5 percent or greater...
42 CFR 424.518 - Screening levels for Medicare providers and suppliers.
Code of Federal Regulations, 2013 CFR
2013-10-01
... this section. (ii)(A) Requires the submission of a set of fingerprints for a national background check... provider or supplier; and (B) Conducts a fingerprint-based criminal history record check of the Federal Bureau of Investigation's Integrated Automated Fingerprint Identification System on all individuals who...
Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles.
Rácz, Anita; Andrić, Filip; Bajusz, Dávid; Héberger, Károly
2018-01-01
Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.
Fingerprint multicast in secure video streaming.
Zhao, H Vicky; Liu, K J Ray
2006-01-01
Digital fingerprinting is an emerging technology to protect multimedia content from illegal redistribution, where each distributed copy is labeled with unique identification information. In video streaming, huge amount of data have to be transmitted to a large number of users under stringent latency constraints, so the bandwidth-efficient distribution of uniquely fingerprinted copies is crucial. This paper investigates the secure multicast of anticollusion fingerprinted video in streaming applications and analyzes their performance. We first propose a general fingerprint multicast scheme that can be used with most spread spectrum embedding-based multimedia fingerprinting systems. To further improve the bandwidth efficiency, we explore the special structure of the fingerprint design and propose a joint fingerprint design and distribution scheme. From our simulations, the two proposed schemes can reduce the bandwidth requirement by 48% to 87%, depending on the number of users, the characteristics of video sequences, and the network and computation constraints. We also show that under the constraint that all colluders have the same probability of detection, the embedded fingerprints in the two schemes have approximately the same collusion resistance. Finally, we propose a fingerprint drift compensation scheme to improve the quality of the reconstructed sequences at the decoder's side without introducing extra communication overhead.
Visualization of latent fingerprints beneath opaque electrical tapes by optical coherence tomography
NASA Astrophysics Data System (ADS)
Liu, Kangkang; Zhang, Ning; Meng, Li; Li, Zhigang; Xu, Xiaojing
2018-03-01
Electrical tape is found as one type of important trace evidence in crime scene. For example, it is very frequently used to insulate wires in explosive devices in many criminal cases. The fingerprints of the suspects were often left on the adhesive side of the tapes, which can provide very useful clues for the investigation and make it possible for individual identification. The most commonly used method to detect and visualize those latent fingerprints is to peel off each layer of the tapes first and then adopt the chemical methods to develop the fingerprints on the tapes. However, the peeling-off and chemical development process would degrade and contaminate the fingerprints and thus adversely affect the accuracy of identification. Optical coherence tomography (OCT) is a novel forensic imaging modality based on lowcoherence interferometry, which has the advantages of non-destruction, micrometer-level high resolution and crosssectional imaging. In this study, a fiber-based spectral-domain OCT (SD-OCT) system with {6μm resolution was employed to obtain the image of fingerprint sandwiched between two opaque electrical tapes without any pre-processing procedure like peeling-off. Three-dimensional (3D) OCT reconstruction was performed and the subsurface image was produced to visualize the latent fingerprints. The results demonstrate that OCT is a promising tool for recovering the latent fingerprints hidden beneath opaque electrical tape non-destructively and rapidly.
Open-source platform to benchmark fingerprints for ligand-based virtual screening
2013-01-01
Similarity-search methods using molecular fingerprints are an important tool for ligand-based virtual screening. A huge variety of fingerprints exist and their performance, usually assessed in retrospective benchmarking studies using data sets with known actives and known or assumed inactives, depends largely on the validation data sets used and the similarity measure used. Comparing new methods to existing ones in any systematic way is rather difficult due to the lack of standard data sets and evaluation procedures. Here, we present a standard platform for the benchmarking of 2D fingerprints. The open-source platform contains all source code, structural data for the actives and inactives used (drawn from three publicly available collections of data sets), and lists of randomly selected query molecules to be used for statistically valid comparisons of methods. This allows the exact reproduction and comparison of results for future studies. The results for 12 standard fingerprints together with two simple baseline fingerprints assessed by seven evaluation methods are shown together with the correlations between methods. High correlations were found between the 12 fingerprints and a careful statistical analysis showed that only the two baseline fingerprints were different from the others in a statistically significant way. High correlations were also found between six of the seven evaluation methods, indicating that despite their seeming differences, many of these methods are similar to each other. PMID:23721588
A Noninvasive and Speculative Method of Visualizing Latent Fingerprint Deposits on Thermal Paper.
Bond, John W
2015-07-01
Latent fingerprint deposits on thermal paper have been visualized noninvasively at visible wavelengths when illuminated with a UV-A light source (peak 365 nm). A higher intensity UV source (250 W/m(2) at 0.38 m) gave superior fingerprint visibility when compared with a 60 W/m(2) (at 0.4 m) source. Removing the visible (blue) component of the light source emission did not adversely affect the visibility of the fingerprint. Sample fingerprints from 100 donors, when examined 24 h after deposition, produced identifiable fingerprints from nearly 34% of fingerprint deposits. A mechanism for the observed visibility is proposed based on low emission of visible wavelengths from areas of thermal paper coincident with the fingerprint deposit, when illuminated with UV. This is likely due to a weak color change in the thermal paper dye arising from protonated amino acid components of the sweat. This effect was not observed on nonthermal paper. © 2015 American Academy of Forensic Sciences.
Cai, Yong; Li, Xiwen; Li, Mei; Chen, Xiaojia; Hu, Hao; Ni, Jingyun; Wang, Yitao
2015-01-01
Chemical fingerprinting is currently a widely used tool that enables rapid and accurate quality evaluation of Traditional Chinese Medicine (TCM). However, chemical fingerprints are not amenable to information storage, recognition, and retrieval, which limit their use in Chinese medicine traceability. In this study, samples of three kinds of Chinese medicines were randomly selected and chemical fingerprints were then constructed by using high performance liquid chromatography. Based on chemical data, the process of converting the TCM chemical fingerprint into two-dimensional code is presented; preprocess and filtering algorithm are also proposed aiming at standardizing the large amount of original raw data. In order to know which type of two-dimensional code (2D) is suitable for storing data of chemical fingerprints, current popular types of 2D codes are analyzed and compared. Results show that QR Code is suitable for recording the TCM chemical fingerprint. The fingerprint information of TCM can be converted into data format that can be stored as 2D code for traceability and quality control.
SVM-Based Synthetic Fingerprint Discrimination Algorithm and Quantitative Optimization Strategy
Chen, Suhang; Chang, Sheng; Huang, Qijun; He, Jin; Wang, Hao; Huang, Qiangui
2014-01-01
Synthetic fingerprints are a potential threat to automatic fingerprint identification systems (AFISs). In this paper, we propose an algorithm to discriminate synthetic fingerprints from real ones. First, four typical characteristic factors—the ridge distance features, global gray features, frequency feature and Harris Corner feature—are extracted. Then, a support vector machine (SVM) is used to distinguish synthetic fingerprints from real fingerprints. The experiments demonstrate that this method can achieve a recognition accuracy rate of over 98% for two discrete synthetic fingerprint databases as well as a mixed database. Furthermore, a performance factor that can evaluate the SVM's accuracy and efficiency is presented, and a quantitative optimization strategy is established for the first time. After the optimization of our synthetic fingerprint discrimination task, the polynomial kernel with a training sample proportion of 5% is the optimized value when the minimum accuracy requirement is 95%. The radial basis function (RBF) kernel with a training sample proportion of 15% is a more suitable choice when the minimum accuracy requirement is 98%. PMID:25347063
Super fast detection of latent fingerprints with water soluble CdTe quantum dots.
Cai, Kaiyang; Yang, Ruiqin; Wang, Yanji; Yu, Xuejiao; Liu, Jianjun
2013-03-10
A new method based on the use of highly fluorescent water-soluble cadmium telluride (CdTe) quantum dots (QDs) capped with mercaptosuccinic acid (MSA) was explored to develop latent fingerprints. After optimized the effectiveness of QDs method contains pH value and developing time, super fast detection was achieved. Excellent fingerprint images were obtained in 1-3s after immersed the latent fingerprints into quantum dots solution on various non-porous surfaces, i.e. adhesive tape, transparent tape, aluminum foil and stainless steel. High sensitivity of the new latent fingerprints develop method was obtained by developing the fingerprints pressed on aluminum foil successively with the same finger. Compared with methyl violet and rhodamine 6G, the MSA-CdTe QDs showed the higher develop speed and fingerprint image quality. Clear image can be maintained for months by extending exposure time of CCD camera, storing fingerprints in a low temperature condition and secondary development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
RF-Based Location Using Interpolation Functions to Reduce Fingerprint Mapping
Ezpeleta, Santiago; Claver, José M.; Pérez-Solano, Juan J.; Martí, José V.
2015-01-01
Indoor RF-based localization using fingerprint mapping requires an initial training step, which represents a time consuming process. This location methodology needs a database conformed with RSSI (Radio Signal Strength Indicator) measures from the communication transceivers taken at specific locations within the localization area. But, the real world localization environment is dynamic and it is necessary to rebuild the fingerprint database when some environmental changes are made. This paper explores the use of different interpolation functions to complete the fingerprint mapping needed to achieve the sought accuracy, thereby reducing the effort in the training step. Also, different distributions of test maps and reference points have been evaluated, showing the validity of this proposal and necessary trade-offs. Results reported show that the same or similar localization accuracy can be achieved even when only 50% of the initial fingerprint reference points are taken. PMID:26516862
NASA Astrophysics Data System (ADS)
Zhao, Weichen; Sun, Zhuo; Kong, Song
2016-10-01
Wireless devices can be identified by the fingerprint extracted from the signal transmitted, which is useful in wireless communication security and other fields. This paper presents a method that extracts fingerprint based on phase noise of signal and multiple level wavelet decomposition. The phase of signal will be extracted first and then decomposed by multiple level wavelet decomposition. The statistic value of each wavelet coefficient vector is utilized for constructing fingerprint. Besides, the relationship between wavelet decomposition level and recognition accuracy is simulated. And advertised decomposition level is revealed as well. Compared with previous methods, our method is simpler and the accuracy of recognition remains high when Signal Noise Ratio (SNR) is low.
Water content of latent fingerprints - Dispelling the myth.
Kent, Terry
2016-09-01
Changing procedures in the handling of rare and precious documents in museums and elsewhere, based on assumptions about constituents of latent fingerprints, have led the author to an examination of available data. These changes appear to have been triggered by one paper using general biological data regarding eccrine sweat production to infer that deposited fingerprints are mostly water. Searching the fingerprint literature has revealed a number of reference works similarly quoting figures for average water content of deposited fingerprints of 98% or more. Whilst accurate estimation is difficult there is no evidence that the residue on fingers could be anything like 98% water, even if there were no contamination from sebaceous glands. Consideration of published analytical data of real fingerprints, and several theoretical considerations regarding evaporation and replenishment rates, indicates a probable initial average water content of a fingerprint, soon after deposition, of 20% or less. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Fingerprint recognition of alien invasive weeds based on the texture character and machine learning
NASA Astrophysics Data System (ADS)
Yu, Jia-Jia; Li, Xiao-Li; He, Yong; Xu, Zheng-Hao
2008-11-01
Multi-spectral imaging technique based on texture analysis and machine learning was proposed to discriminate alien invasive weeds with similar outline but different categories. The objectives of this study were to investigate the feasibility of using Multi-spectral imaging, especially the near-infrared (NIR) channel (800 nm+/-10 nm) to find the weeds' fingerprints, and validate the performance with specific eigenvalues by co-occurrence matrix. Veronica polita Pries, Veronica persica Poir, longtube ground ivy, Laminum amplexicaule Linn. were selected in this study, which perform different effect in field, and are alien invasive species in China. 307 weed leaves' images were randomly selected for the calibration set, while the remaining 207 samples for the prediction set. All images were pretreated by Wallis filter to adjust the noise by uneven lighting. Gray level co-occurrence matrix was applied to extract the texture character, which shows density, randomness correlation, contrast and homogeneity of texture with different algorithms. Three channels (green channel by 550 nm+/-10 nm, red channel by 650 nm+/-10 nm and NIR channel by 800 nm+/-10 nm) were respectively calculated to get the eigenvalues.Least-squares support vector machines (LS-SVM) was applied to discriminate the categories of weeds by the eigenvalues from co-occurrence matrix. Finally, recognition ratio of 83.35% by NIR channel was obtained, better than the results by green channel (76.67%) and red channel (69.46%). The prediction results of 81.35% indicated that the selected eigenvalues reflected the main characteristics of weeds' fingerprint based on multi-spectral (especially by NIR channel) and LS-SVM model.
Intra-field on-product overlay improvement by application of RegC and TWINSCAN corrections
NASA Astrophysics Data System (ADS)
Sharoni, Ofir; Dmitriev, Vladimir; Graitzer, Erez; Perets, Yuval; Gorhad, Kujan; van Haren, Richard; Cekli, Hakki E.; Mulkens, Jan
2015-03-01
The on product overlay specification and Advanced Process Control (APC) is getting extremely challenging particularly after the introduction of multi-patterning applications like Spacer Assisted Double Patterning (SADP) and multipatterning techniques like N-repetitive Litho-Etch steps (LEN, N >= 2). When the latter is considered, most of the intrafield overlay contributors drop out of the overlay budget. This is a direct consequence of the fact that the scanner settings (like dose, illumination settings, etc.) as well as the subsequent processing steps can be made very similar for two consecutive Litho-Etch layers. The major overlay contributor that may require additional attention is the Image Placement Error (IPE). When the inter-layer overlay is considered, controlling the intra-field overlay contribution gets more complicated. In addition to the IPE contribution, the TWINSCANTM lens fingerprint in combination with the exposure settings is going to play a role as well. Generally speaking, two subsequent functional layers have different exposure settings. This results in a (non-reticle) additional overlay contribution. In this paper, we have studied the wafer overlay correction capability by RegC® in addition to the TWINSCANTM intrafield corrections to improve the on product overlay performance. RegC® is a reticle intra-volume laser writing technique that causes a predictable deformation element (RegC® deformation element) inside the quartz (Qz) material of a reticle. This technique enables to post-process an existing reticle to correct for instance for IPE. Alternatively, a pre-determined intra-field fingerprint can be added to the reticle such that it results in a straight field after exposure. This second application might be very powerful to correct for instance for (cold) lens fingerprints that cannot be corrected by the scanner itself. Another possible application is the intra-field processing fingerprint. One should realize that a RegC® treatment of a reticle generally results in global distortion of the reticle. This is not a problem as long as these global distortions can be corrected by the TWINSCANTM system (currently up to the third order). It is anticipated that the combination of the RegC® and the TWINSCANTM corrections act as complementary solutions. These solutions perfectly fit into the ASML Litho InSight (LIS) product in which feedforward and feedback corrections based on YieldStar overlay measurements are used to improve the on product overlay.
We need techniques that verify that groundwater is not contaminated from hydraulic fracturing. Groundwater contamination can come from sources which may carry a fingerprint that identifies the source, or the process which led to the contamination.
Restrepo, S; Duque, M; Tohme, J; Verdier, V
1999-01-01
Xanthomonas axonopodis pv. manihotis (Xam) is the causative agent of cassava bacterial blight (CBB), a worldwide disease that is particularly destructive in South America and Africa. CBB is controlled essentially through the use of resistant varieties. To develop an appropriate disease management strategy, the genetic diversity of the pathogen's populations must be assessed. Until now, the genetic diversity of Xam was characterized by RFLP analyses using ribotyping, and plasmid and genomic Xam probes. We used AFLP (amplified fragment length polymorphism), a novel PCR-based technique, to characterize the genetic diversity of Colombian Xam isolates. Six Xam strains were tested with 65 AFLP primer combinations to identify the best selective primers. Eight primer combinations were selected according to their reproducibility, number of polymorphic bands and polymorphism detected between Xam strains. Forty-seven Xam strains, originating from different Colombian ecozones, were analysed with the selected combinations. Results obtained with AFLP are consistent with those obtained with RFLP, using plasmid DNA as a probe. Some primer combinations differentiated Xam strains that were not distinguished by RFLP analyses, thus AFLP fingerprinting allowed a better definition of the genetic relationships between Xam strains.
NASA Astrophysics Data System (ADS)
Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D. D.; Reeves, C. E.; Schlager, H.; Atlas, E.; Blake, D. R.; Coe, H.; Crosier, J.; Flocke, F. M.; Holloway, J. S.; Hopkins, J. R.; McQuaid, J.; Purvis, R.; Rappenglück, B.; Singh, H. B.; Watson, N. M.; Whalley, L. K.; Williams, P. I.
2006-12-01
The ITCT-Lagrangian-2K4 (Intercontinental Transport and Chemical Transformation) experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end, attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts from two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique then identifies Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these "coincident matches" is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown, and the downwind minus upwind differences in tracers are discussed.
NASA Technical Reports Server (NTRS)
Methven, J.; Arnold, S. R.; Stohl, A.; Evans, M. J.; Avery, M.; Law, K.; Lewis, A. C.; Monks, P. S.; Parrish, D.; Reeves, C.;
2006-01-01
The International Consortium for Atmospheric Research on Transport and Transformation (ICARTT)-Lagrangian experiment was conceived with an aim to quantify the effects of photochemistry and mixing on the transformation of air masses in the free troposphere away from emissions. To this end attempts were made to intercept and sample air masses several times during their journey across the North Atlantic using four aircraft based in New Hampshire (USA), Faial (Azores) and Creil (France). This article begins by describing forecasts using two Lagrangian models that were used to direct the aircraft into target air masses. A novel technique is then used to identify Lagrangian matches between flight segments. Two independent searches are conducted: for Lagrangian model matches and for pairs of whole air samples with matching hydrocarbon fingerprints. The information is filtered further by searching for matching hydrocarbon samples that are linked by matching trajectories. The quality of these coincident matches is assessed using temperature, humidity and tracer observations. The technique pulls out five clear Lagrangian cases covering a variety of situations and these are examined in detail. The matching trajectories and hydrocarbon fingerprints are shown and the downwind minus upwind differences in tracers are discussed.
The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J.N.; Brislawn, C.M.; Hopper, T.
1993-05-01
The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI`s Integrated Automated Fingerprint Identification System.
The FBI wavelet/scalar quantization standard for gray-scale fingerprint image compression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, J.N.; Brislawn, C.M.; Hopper, T.
1993-01-01
The FBI has recently adopted a standard for the compression of digitized 8-bit gray-scale fingerprint images. The standard is based on scalar quantization of a 64-subband discrete wavelet transform decomposition of the images, followed by Huffman coding. Novel features of the algorithm include the use of symmetric boundary conditions for transforming finite-length signals and a subband decomposition tailored for fingerprint images scanned at 500 dpi. The standard is intended for use in conjunction with ANSI/NBS-CLS 1-1993, American National Standard Data Format for the Interchange of Fingerprint Information, and the FBI's Integrated Automated Fingerprint Identification System.
Reference point detection for camera-based fingerprint image based on wavelet transformation.
Khalil, Mohammed S
2015-04-30
Fingerprint recognition systems essentially require core-point detection prior to fingerprint matching. The core-point is used as a reference point to align the fingerprint with a template database. When processing a larger fingerprint database, it is necessary to consider the core-point during feature extraction. Numerous core-point detection methods are available and have been reported in the literature. However, these methods are generally applied to scanner-based images. Hence, this paper attempts to explore the feasibility of applying a core-point detection method to a fingerprint image obtained using a camera phone. The proposed method utilizes a discrete wavelet transform to extract the ridge information from a color image. The performance of proposed method is evaluated in terms of accuracy and consistency. These two indicators are calculated automatically by comparing the method's output with the defined core points. The proposed method is tested on two data sets, controlled and uncontrolled environment, collected from 13 different subjects. In the controlled environment, the proposed method achieved a detection rate 82.98%. In uncontrolled environment, the proposed method yield a detection rate of 78.21%. The proposed method yields promising results in a collected-image database. Moreover, the proposed method outperformed compare to existing method.
Neural dynamics based on the recognition of neural fingerprints
Carrillo-Medina, José Luis; Latorre, Roberto
2015-01-01
Experimental evidence has revealed the existence of characteristic spiking features in different neural signals, e.g., individual neural signatures identifying the emitter or functional signatures characterizing specific tasks. These neural fingerprints may play a critical role in neural information processing, since they allow receptors to discriminate or contextualize incoming stimuli. This could be a powerful strategy for neural systems that greatly enhances the encoding and processing capacity of these networks. Nevertheless, the study of information processing based on the identification of specific neural fingerprints has attracted little attention. In this work, we study (i) the emerging collective dynamics of a network of neurons that communicate with each other by exchange of neural fingerprints and (ii) the influence of the network topology on the self-organizing properties within the network. Complex collective dynamics emerge in the network in the presence of stimuli. Predefined inputs, i.e., specific neural fingerprints, are detected and encoded into coexisting patterns of activity that propagate throughout the network with different spatial organization. The patterns evoked by a stimulus can survive after the stimulation is over, which provides memory mechanisms to the network. The results presented in this paper suggest that neural information processing based on neural fingerprints can be a plausible, flexible, and powerful strategy. PMID:25852531
NASA Astrophysics Data System (ADS)
Pahlavani, P.; Gholami, A.; Azimi, S.
2017-09-01
This paper presents an indoor positioning technique based on a multi-layer feed-forward (MLFF) artificial neural networks (ANN). Most of the indoor received signal strength (RSS)-based WLAN positioning systems use the fingerprinting technique that can be divided into two phases: the offline (calibration) phase and the online (estimation) phase. In this paper, RSSs were collected for all references points in four directions and two periods of time (Morning and Evening). Hence, RSS readings were sampled at a regular time interval and specific orientation at each reference point. The proposed ANN based model used Levenberg-Marquardt algorithm for learning and fitting the network to the training data. This RSS readings in all references points and the known position of these references points was prepared for training phase of the proposed MLFF neural network. Eventually, the average positioning error for this network using 30% check and validation data was computed approximately 2.20 meter.
Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone.
Harvey, Virginia L; Egerton, Victoria M; Chamberlain, Andrew T; Manning, Phillip L; Buckley, Michael
2016-01-01
Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six (14)C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated (14)C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 1(4)C analysis.
Collagen Fingerprinting: A New Screening Technique for Radiocarbon Dating Ancient Bone
Harvey, Virginia L.; Egerton, Victoria M.; Chamberlain, Andrew T.; Manning, Phillip L.; Buckley, Michael
2016-01-01
Collagen is the dominant organic component of bone and is intimately locked within the hydroxyapatite structure of this ubiquitous biomaterial that dominates archaeological and palaeontological assemblages. Radiocarbon analysis of extracted collagen is one of the most common approaches to dating bone from late Pleistocene or Holocene deposits, but dating is relatively expensive compared to other biochemical techniques. Numerous analytical methods have previously been investigated for the purpose of screening out samples that are unlikely to yield reliable dates including histological analysis, UV-stimulated fluorescence and, most commonly, the measurement of percentage nitrogen (%N) and ratio of carbon to nitrogen (C:N). Here we propose the use of collagen fingerprinting (also known as Zooarchaeology by Mass Spectrometry, or ZooMS, when applied to species identification) as an alternative screening method for radiocarbon dating, due to its ability to provide information on collagen presence and quality, alongside species identification. The method was tested on a series of sub-fossil bone specimens from cave systems on Cayman Brac (Cayman Islands), chosen due to the observable range in diagenetic alteration, and in particular, the extent of mineralisation. Six 14C dates, of 18 initial attempts, were obtained from remains of extinct hutia, Capromys sp. (Rodentia; Capromyidae), recovered from five distinct caves on Cayman Brac, and ranging from 393 ± 25 to 1588 ± 26 radiocarbon years before present (yr BP). All of the bone samples that yielded radiocarbon dates generated excellent collagen fingerprints, and conversely those that gave poor fingerprints also failed dating. Additionally, two successfully fingerprinted bone samples were screened out from a set of 81. Both subsequently generated 14C dates, demonstrating successful utilisation of ZooMS as an alternative screening mechanism to identify bone samples that are suitable for 14C analysis. PMID:26938469
Kobayashi, Akira; Yokogawa, Hideaki; Sugiyama, Kazuhisa
2012-01-01
The purpose of this study was to investigate pathological changes of the corneal cell layer in patients with map-dot-fingerprint (epithelial basement membrane) dystrophy by in vivo laser corneal confocal microscopy. Two patients were evaluated using a cornea-specific in vivo laser scanning confocal microscope (Heidelberg Retina Tomograph 2 Rostock Cornea Module, HRT 2-RCM). The affected corneal areas of both patients were examined. Image analysis was performed to identify corneal epithelial and stromal deposits correlated with this dystrophy. Variously shaped (linear, multilaminar, curvilinear, ring-shape, geographic) highly reflective materials were observed in the "map" area, mainly in the basal epithelial cell layer. In "fingerprint" lesions, multiple linear and curvilinear hyporeflective lines were observed. Additionally, in the affected corneas, infiltration of possible Langerhans cells and other inflammatory cells was observed as highly reflective Langerhans cell-like or dot images. Finally, needle-shaped materials were observed in one patient. HRT 2-RCM laser confocal microscopy is capable of identifying corneal microstructural changes related to map-dot-fingerprint corneal dystrophy in vivo. The technique may be useful in elucidating the pathogenesis and natural course of map-dot-fingerprint corneal dystrophy and other similar basement membrane abnormalities.
NASA Astrophysics Data System (ADS)
Carvalho, Luis Felipe C. S.; Bonnier, Franck; O'Callaghan, Kate; O'Sullivan, Jeff; Flint, Stephen; Neto, Lazaro P. M.; Soto, Cláudio A. T.; dos Santos, Laurita; Martin, Airton A.; Byrne, Hugh J.; Lyng, Fiona M.
2015-06-01
Raman spectroscopy can provide a molecular-level signature of the biochemical composition and structure of cells with excellent spatial resolution and could be useful to monitor changes in composition for early stage and non-invasive cancer diagnosis, both ex-vivo and in vivo. In particular, the fingerprint spectral region (400-1,800 cm-1) has been shown to be very promising for optical biopsy purposes. However, limitations to discrimination of dysplastic and inflammatory processes based on the fingerprint region still persist. In addition, the Raman spectral signal of dysplastic cells is one important source of misdiagnosis of normal versus pathological tissues. The high wavenumber region (2,800-3,600 cm-1) provides more specific information based on N-H, O-H and C-H vibrations and can be used to identify the subtle changes which could be important for discrimination of samples. In this study, we demonstrate the potential of the highwavenumber spectral region by collecting Raman spectra of nucleoli, nucleus and cytoplasm from oral epithelial cancer (SCC-4) and dysplastic (DOK) cell lines and from normal oral epithelial primary cells, in vitro, which were then analyzed by area under the curve as a method to discriminate the spectra. In this region, we will show the discriminatory potential of the CH vibrational modes of nucleic acids, proteins and lipids. This technique demonstrated more efficient discrimination than the fingerprint region when we compared the cell cultures.
Radzol, A R M; Lee, Khuan Y; Mansor, W
2013-01-01
SERS is a form of Raman spectroscopy that is enhanced with nano-sensing chip as substrate. It can yield distinct biochemical fingerprint for molecule of solids, liquids and gases. Vice versa, it can be used to identify unknown molecule. It has further advantage of being non-invasive, non-contact and cheap, as compared to other existing laboratory based techniques. NS1 has been clinically accepted as an alternative biomarker to IgM in diagnosing viral diseases carried by virus of flaviviridae. Its presence in the blood serum at febrile stage of the flavivirus infection has been proven. Being an antigen, it allows early detection that can help to reduce the mortality rate. This paper proposes SERS as a technique for detection of NS1 from its scattering spectrum. Contribution from our work so far has never been reported. From our experiments, it is found that NS1 protein is Raman active. Its spectrum exhibits five prominent peaks at Raman shift of 548, 1012, 1180, 1540 and 1650 cm(-1). Of these, peak at 1012 cm(-1) scales the highest intensity. It is singled out as the peak to fingerprint the NS1 protein. This is because its presence is verified by the ring breathing vibration of the benzene ring structure side chain molecule. The characteristic peak is found to vary in proportion to concentration. It is found that for a 99% change in concentration, a 96.7% change in intensity is incurred. This yields a high sensitivity of about one a.u. per ppm. Further investigation from the characterization graph shows a correlation coefficient of 0.9978 and a standard error estimation of 0.02782, which strongly suggests a linear relationship between the concentration and characteristic peak intensity of NS1. Our finding produces favorable evidence to the use of SERS technique for detection of NS1 protein for early detection of flavivirus infected diseases with gold substrate.
Gutiérrez-Redomero, Esperanza; Rivaldería, Noemí; Alonso-Rodríguez, Concepción; Sánchez-Andrés, Ángeles
2014-05-01
In recent times, some studies have explored the forensic application of dermatoglyphic traits such as the epidermal ridge breadth or ridge density (RD) toward the inference of sex and population from fingerprints of unknown origin, as it has been demonstrated that there exist significant differences of fingerprints between sexes and between populations. Part of the population differences found between these studies could be of methodological nature, due both to the lack of standardisation in the position of the counting area, as well as to the differences in the method used for obtaining the fingerprint. Therefore, the aim of this study was to check whether there are differences between the RD of fingerprints depending on where the counting area is placed and how the fingerprints are obtained. Fingerprints of each finger were obtained from 102 adult Spanish subjects (50 females and 52 males), using two methods (plain and rolled). The ridge density of each fingerprint was assessed in five different areas of the dactylogram: two closer to the core area (one on the radial and the other on the ulnar side), two closer to the outermost area of each of the sides (radial and ulnar), and another one in the proximal region of the fingertip. Regardless of the method used and of the position of the counting area, thumbs and forefingers show a higher RD than middle, ring, and little fingers in both sexes, and females present a higher RD than males in all areas and fingers. In both males and females, RD values on the core region are higher than those on the outer region, irrespective of the technique of fingerprinting used (rolled or plain). Regardless of the sex and location of the count area (core or outer), the rolled fingerprints exhibit RD greater than that of the plain ones in both radial and proximal areas, whereas the trend is inverted in the ulnar area, where rolled fingerprints demonstrate RD lesser than that of the plain ones. Therefore, in order for the results of different studies to be comparable, it is necessary to standardise the position of the count area and to use the same method of obtaining the fingerprint, especially when involving a forensic application. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-11
...-Based Criminal History Records Checks for Individuals Seeking Unescorted Access to Non-Power Reactors... reactor (NPR) licensees to obtain fingerprint-based criminal history records checks before granting any...) identification and criminal history records checks of individuals permitted unescorted access to a utilization...
Lazzi, Camilla; Bove, Claudio Giorgio; Sgarbi, Elisa; Gatti, Monica; Monica, Gatti; La Gioia, Federica; Torriani, Sandra; Sandra, Torriani; Neviani, Erasmo
2009-10-01
Streptococcus thermophilus is a lactic acid bacteria (LAB) widely used in milk fermentation processes as a starter culture. In this work the genetic diversity of S. thermophilus isolates from different sources was analyzed using Amplified Fragment Length Polymorphism fingerprinting (AFLP). Since this is the first report that indicates the application of AFLP in order to study genotypic polymorphism in S. thermophilus species, an optimization of experimental conditions was carried out to decide the optimal AFLP analysis protocol. Furthermore the fingerprinting resolutions of AFLP and RAPD (Random Amplified Polymorphic DNA) were evaluated and compared. The overall data suggest that genotypic characterization performed by AFLP provide a better view of microbial diversity of S. thermophilus, indicating that RAPD is less discriminating than AFLP. The successful use of AFLP analysis in the characterization of S. thermophilus strains reported in this study suggests the potential uses for this technique to define the whole-genome diversity of each specific strain, as an alternative to the fingerprinting methods used till now.
Jain, Anil K; Feng, Jianjiang
2011-01-01
Latent fingerprint identification is of critical importance to law enforcement agencies in identifying suspects: Latent fingerprints are inadvertent impressions left by fingers on surfaces of objects. While tremendous progress has been made in plain and rolled fingerprint matching, latent fingerprint matching continues to be a difficult problem. Poor quality of ridge impressions, small finger area, and large nonlinear distortion are the main difficulties in latent fingerprint matching compared to plain or rolled fingerprint matching. We propose a system for matching latent fingerprints found at crime scenes to rolled fingerprints enrolled in law enforcement databases. In addition to minutiae, we also use extended features, including singularity, ridge quality map, ridge flow map, ridge wavelength map, and skeleton. We tested our system by matching 258 latents in the NIST SD27 database against a background database of 29,257 rolled fingerprints obtained by combining the NIST SD4, SD14, and SD27 databases. The minutiae-based baseline rank-1 identification rate of 34.9 percent was improved to 74 percent when extended features were used. In order to evaluate the relative importance of each extended feature, these features were incrementally used in the order of their cost in marking by latent experts. The experimental results indicate that singularity, ridge quality map, and ridge flow map are the most effective features in improving the matching accuracy.
Roy, Subarna; Biswas, Debabrata; Vijayachari, P; Sugunan, A P; Sehgal, Subhash C
2004-11-01
To evaluate the discriminatory power and usefulness of arbitrarily primed-polymerase chain reaction (AP-PCR) characterization of leptospires with M16 primer. AP-PCR fingerprints of 20 reference strains of Leptospira representing 20 different serovars belonging to seven genospecies (Leptospira interrogans, 11; L. noguchii, 2; L. borgpetersenii, 1; L. santarosai, 2; L. biflexa, 2; L. kirschneri, 1; L. weilii, 1) were generated by employing M16 primer. Fingerprints generated with this primer were compared with those generated with two other commonly used primers PB1, and L10. An attempt was also made to type 20 leptospiral isolates with the M16 primer. Fingerprints with M16 primer could not only differentiate between strains of different genospecies, but also between strains of the same genospecies belonging to different serovars. While two commonly used primers (PB1 and L10) failed to discriminate between some of the different serovars belonging to the same genospecies, this primer was able to generate discriminatory fingerprints for all strains tested. All 20 Leptospira isolates, recovered from patients in Andaman Islands, could also be typed by fingerprints generated with the M16 primer. The discriminatory power of M16 primer adds more specificity to the rapidity of this system of characterization and can be used as an excellent tool in epidemiological studies on Leptospira.
Monson, Keith L; Ali, Sherine; Brandhagen, Michael D; Duff, Martine C; Fisher, Constance L; Lowe, Karen K; Meyer, Carna E; Roberts, Maria A; Tom, Kyle R; Washington, Aaron L
2018-03-01
An extensive literature review and new post-irradiation experimental results are presented of genotyping blood stains and hair, and physical examinations of latent fingerprints, hairs, and fibers. Results indicate that successful development of nuclear short tandem repeat (STR) and mitochondrial DNA sequence profiles from human blood and hair evidence is possible-up to a point-following exposure to gamma, neutron, beta, and alpha radiation at several levels that would most likely be present at this type of crime scene (i.e., a "dirty bomb," etc.). Commencing at gamma radiation levels between 90 and 900kGy, DNA analysis using conventional DNA techniques was unsuccessful. In general, irradiation negatively affected the quality of latent fingerprints. All four radiation types degraded most fingerprint samples at all doses; nevertheless, many fingerprints remained of value for potential use in comparison. Although variable from one hair to another, microscopic changes observed for all types and levels of irradiation could potentially result in false exclusions. Negligible microscopic changes were observed in papers and fibers (used as substrates for fingerprints and bloodstains) up to 90kGy gamma, but fluorescence of fibers began to change above that dose. Paper and fibers, as well as plastic evidence enclosures, became extremely brittle leading to breakage after a gamma dose of 900kGy. Published by Elsevier B.V.
SODa: an Mn/Fe superoxide dismutase prediction and design server.
Kwasigroch, Jean Marc; Wintjens, René; Gilis, Dimitri; Rooman, Marianne
2008-06-02
Superoxide dismutases (SODs) are ubiquitous metalloenzymes that play an important role in the defense of aerobic organisms against oxidative stress, by converting reactive oxygen species into nontoxic molecules. We focus here on the SOD family that uses Fe or Mn as cofactor. The SODa webtool http://babylone.ulb.ac.be/soda predicts if a target sequence corresponds to an Fe/Mn SOD. If so, it predicts the metal ion specificity (Fe, Mn or cambialistic) and the oligomerization mode (dimer or tetramer) of the target. In addition, SODa proposes a list of residue substitutions likely to improve the predicted preferences for the metal cofactor and oligomerization mode. The method is based on residue fingerprints, consisting of residues conserved in SOD sequences or typical of SOD subgroups, and of interaction fingerprints, containing residue pairs that are in contact in SOD structures. SODa is shown to outperform and to be more discriminative than traditional techniques based on pairwise sequence alignments. Moreover, the fact that it proposes selected mutations makes it a valuable tool for rational protein design.
Code of Federal Regulations, 2011 CFR
2011-10-01
... alternative procedures in conducting a State criminal registry check? (a) FBI fingerprint-based check. If you or your designee conduct and document a fingerprint-based criminal history check through the Federal...
Code of Federal Regulations, 2012 CFR
2012-10-01
... criminal registry check for a covered position? (a) FBI fingerprint-based check. If you conduct and document a fingerprint-based criminal history check through the Federal Bureau of Investigation, you will...
Code of Federal Regulations, 2010 CFR
2010-10-01
... criminal registry check for a covered position? (a) FBI fingerprint-based check. If you conduct and document a fingerprint-based criminal history check through the Federal Bureau of Investigation, you will...
Code of Federal Regulations, 2010 CFR
2010-10-01
... alternative procedures in conducting a State criminal registry check? (a) FBI fingerprint-based check. If you or your designee conduct and document a fingerprint-based criminal history check through the Federal...
Code of Federal Regulations, 2010 CFR
2010-10-01
... alternative procedures in conducting a State criminal registry check? (a) FBI fingerprint-based check. If you or your designee conduct and document a fingerprint-based criminal history check through the Federal...
Code of Federal Regulations, 2012 CFR
2012-10-01
... alternative procedures in conducting a State criminal registry check? (a) FBI fingerprint-based check. If you or your designee conduct and document a fingerprint-based criminal history check through the Federal...
Code of Federal Regulations, 2011 CFR
2011-10-01
... alternative procedures in conducting a State criminal registry check? (a) FBI fingerprint-based check. If you or your designee conduct and document a fingerprint-based criminal history check through the Federal...
Code of Federal Regulations, 2012 CFR
2012-10-01
... alternative procedures in conducting a State criminal registry check? (a) FBI fingerprint-based check. If you or your designee conduct and document a fingerprint-based criminal history check through the Federal...
Code of Federal Regulations, 2011 CFR
2011-10-01
... criminal registry check for a covered position? (a) FBI fingerprint-based check. If you conduct and document a fingerprint-based criminal history check through the Federal Bureau of Investigation, you will...
Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M; Kim, Euntai
2017-01-13
Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort.
Hernández, Noelia; Ocaña, Manuel; Alonso, Jose M.; Kim, Euntai
2017-01-01
Although much research has taken place in WiFi indoor localization systems, their accuracy can still be improved. When designing this kind of system, fingerprint-based methods are a common choice. The problem with fingerprint-based methods comes with the need of site surveying the environment, which is effort consuming. In this work, we propose an approach, based on support vector regression, to estimate the received signal strength at non-site-surveyed positions of the environment. Experiments, performed in a real environment, show that the proposed method could be used to improve the resolution of fingerprint-based indoor WiFi localization systems without increasing the site survey effort. PMID:28098773
Biometric template transformation: a security analysis
NASA Astrophysics Data System (ADS)
Nagar, Abhishek; Nandakumar, Karthik; Jain, Anil K.
2010-01-01
One of the critical steps in designing a secure biometric system is protecting the templates of the users that are stored either in a central database or on smart cards. If a biometric template is compromised, it leads to serious security and privacy threats because unlike passwords, it is not possible for a legitimate user to revoke his biometric identifiers and switch to another set of uncompromised identifiers. One methodology for biometric template protection is the template transformation approach, where the template, consisting of the features extracted from the biometric trait, is transformed using parameters derived from a user specific password or key. Only the transformed template is stored and matching is performed directly in the transformed domain. In this paper, we formally investigate the security strength of template transformation techniques and define six metrics that facilitate a holistic security evaluation. Furthermore, we analyze the security of two wellknown template transformation techniques, namely, Biohashing and cancelable fingerprint templates based on the proposed metrics. Our analysis indicates that both these schemes are vulnerable to intrusion and linkage attacks because it is relatively easy to obtain either a close approximation of the original template (Biohashing) or a pre-image of the transformed template (cancelable fingerprints). We argue that the security strength of template transformation techniques must consider also consider the computational complexity of obtaining a complete pre-image of the transformed template in addition to the complexity of recovering the original biometric template.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-04
... also requires that ``all fingerprints obtained by a Licensee or applicant * * * shall be submitted to... 2 to this Order as part of his or her job duties. A.3. Fingerprints for unescorted access need not... history records results based upon a fingerprint identification check. The NRC will determine whether...
NASA Astrophysics Data System (ADS)
Mundhenk, T. Nathan; Ni, Kang-Yu; Chen, Yang; Kim, Kyungnam; Owechko, Yuri
2012-01-01
An aerial multiple camera tracking paradigm needs to not only spot unknown targets and track them, but also needs to know how to handle target reacquisition as well as target handoff to other cameras in the operating theater. Here we discuss such a system which is designed to spot unknown targets, track them, segment the useful features and then create a signature fingerprint for the object so that it can be reacquired or handed off to another camera. The tracking system spots unknown objects by subtracting background motion from observed motion allowing it to find targets in motion, even if the camera platform itself is moving. The area of motion is then matched to segmented regions returned by the EDISON mean shift segmentation tool. Whole segments which have common motion and which are contiguous to each other are grouped into a master object. Once master objects are formed, we have a tight bound on which to extract features for the purpose of forming a fingerprint. This is done using color and simple entropy features. These can be placed into a myriad of different fingerprints. To keep data transmission and storage size low for camera handoff of targets, we try several different simple techniques. These include Histogram, Spatiogram and Single Gaussian Model. These are tested by simulating a very large number of target losses in six videos over an interval of 1000 frames each from the DARPA VIVID video set. Since the fingerprints are very simple, they are not expected to be valid for long periods of time. As such, we test the shelf life of fingerprints. This is how long a fingerprint is good for when stored away between target appearances. Shelf life gives us a second metric of goodness and tells us if a fingerprint method has better accuracy over longer periods. In videos which contain multiple vehicle occlusions and vehicles of highly similar appearance we obtain a reacquisition rate for automobiles of over 80% using the simple single Gaussian model compared with the null hypothesis of <20%. Additionally, the performance for fingerprints stays well above the null hypothesis for as much as 800 frames. Thus, a simple and highly compact single Gaussian model is useful for target reacquisition. Since the model is agnostic to view point and object size, it is expected to perform as well on a test of target handoff. Since some of the performance degradation is due to problems with the initial target acquisition and tracking, the simple Gaussian model may perform even better with an improved initial acquisition technique. Also, since the model makes no assumption about the object to be tracked, it should be possible to use it to fingerprint a multitude of objects, not just cars. Further accuracy may be obtained by creating manifolds of objects from multiple samples.
Enhancement of plant metabolite fingerprinting by machine learning.
Scott, Ian M; Vermeer, Cornelia P; Liakata, Maria; Corol, Delia I; Ward, Jane L; Lin, Wanchang; Johnson, Helen E; Whitehead, Lynne; Kular, Baldeep; Baker, John M; Walsh, Sean; Dave, Anuja; Larson, Tony R; Graham, Ian A; Wang, Trevor L; King, Ross D; Draper, John; Beale, Michael H
2010-08-01
Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was performed by (1)H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spectrometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was competitive for discriminating mutants, other than those affected in only low-abundance metabolites. Despite their rapidity and complexity, fingerprints yielded metabolomic insights (e.g. that effects of single lesions were usually not confined to individual pathways). Among fingerprint techniques, (1)H-nuclear magnetic resonance discriminated the most mutant phenotypes from the wild type and Fourier transform infrared discriminated the fewest. To maximize information from fingerprints, data analysis was crucial. One-third of distinctive phenotypes might have been overlooked had data models been confined to principal component analysis score plots. Among several methods tested, machine learning (ML) algorithms, namely support vector machine or random forest (RF) classifiers, were unsurpassed for phenotype discrimination. Support vector machines were often the best performing classifiers, but RFs yielded some particularly informative measures. First, RFs estimated margins between mutant phenotypes, whose relations could then be visualized by Sammon mapping or hierarchical clustering. Second, RFs provided importance scores for the features within fingerprints that discriminated mutants. These scores correlated with analysis of variance F values (as did Kruskal-Wallis tests, true- and false-positive measures, mutual information, and the Relief feature selection algorithm). ML classifiers, as models trained on one data set to predict another, were ideal for focused metabolomic queries, such as the distinctiveness and consistency of mutant phenotypes. Accessible software for use of ML in plant physiology is highlighted.
Detection and analysis of diamond fingerprinting feature and its application
NASA Astrophysics Data System (ADS)
Li, Xin; Huang, Guoliang; Li, Qiang; Chen, Shengyi
2011-01-01
Before becoming a jewelry diamonds need to be carved artistically with some special geometric features as the structure of the polyhedron. There are subtle differences in the structure of this polyhedron in each diamond. With the spatial frequency spectrum analysis of diamond surface structure, we can obtain the diamond fingerprint information which represents the "Diamond ID" and has good specificity. Based on the optical Fourier Transform spatial spectrum analysis, the fingerprinting identification of surface structure of diamond in spatial frequency domain was studied in this paper. We constructed both the completely coherent diamond fingerprinting detection system illuminated by laser and the partially coherent diamond fingerprinting detection system illuminated by led, and analyzed the effect of the coherence of light source to the diamond fingerprinting feature. We studied rotation invariance and translation invariance of the diamond fingerprinting and verified the feasibility of real-time and accurate identification of diamond fingerprint. With the profit of this work, we can provide customs, jewelers and consumers with a real-time and reliable diamonds identification instrument, which will curb diamond smuggling, theft and other crimes, and ensure the healthy development of the diamond industry.
Cai, Yong; Li, Xiwen; Li, Mei; Chen, Xiaojia; Ni, Jingyun; Wang, Yitao
2015-01-01
Chemical fingerprinting is currently a widely used tool that enables rapid and accurate quality evaluation of Traditional Chinese Medicine (TCM). However, chemical fingerprints are not amenable to information storage, recognition, and retrieval, which limit their use in Chinese medicine traceability. In this study, samples of three kinds of Chinese medicines were randomly selected and chemical fingerprints were then constructed by using high performance liquid chromatography. Based on chemical data, the process of converting the TCM chemical fingerprint into two-dimensional code is presented; preprocess and filtering algorithm are also proposed aiming at standardizing the large amount of original raw data. In order to know which type of two-dimensional code (2D) is suitable for storing data of chemical fingerprints, current popular types of 2D codes are analyzed and compared. Results show that QR Code is suitable for recording the TCM chemical fingerprint. The fingerprint information of TCM can be converted into data format that can be stored as 2D code for traceability and quality control. PMID:26089936
Identifying sediment sources in the sediment TMDL process
Gellis, Allen C.; Fitzpatrick, Faith A.; Schubauer-Berigan, Joseph P.; Landy, R.B.; Gorman Sanisaca, Lillian E.
2015-01-01
Sediment is an important pollutant contributing to aquatic-habitat degradation in many waterways of the United States. This paper discusses the application of sediment budgets in conjunction with sediment fingerprinting as tools to determine the sources of sediment in impaired waterways. These approaches complement monitoring, assessment, and modeling of sediment erosion, transport, and storage in watersheds. Combining the sediment fingerprinting and sediment budget approaches can help determine specific adaptive management plans and techniques applied to targeting hot spots or areas of high erosion.
Review of passive-blind detection in digital video forgery based on sensing and imaging techniques
NASA Astrophysics Data System (ADS)
Tao, Junjie; Jia, Lili; You, Ying
2016-01-01
Advances in digital video compression and IP communication technologies raised new issues and challenges concerning the integrity and authenticity of surveillance videos. It is so important that the system should ensure that once recorded, the video cannot be altered; ensuring the audit trail is intact for evidential purposes. This paper gives an overview of passive techniques of Digital Video Forensics which are based on intrinsic fingerprints inherent in digital surveillance videos. In this paper, we performed a thorough research of literatures relevant to video manipulation detection methods which accomplish blind authentications without referring to any auxiliary information. We presents review of various existing methods in literature, and much more work is needed to be done in this field of video forensics based on video data analysis and observation of the surveillance systems.
[Baking method of Platycladi Cacumen Carbonisatum based on similarity of UPLC fingerprints].
Shan, Mingqiu; Chen, Chao; Yao, Xiaodong; Ding, Anwei
2010-09-01
To establish a baking method of Platycladi Cacumen Carbonisatum for providing a new idea to Carbonic Herbs' research. Samples were prepared in an oven for different time at different temperatures separately. Then the fingerprints of the samples were determined by UPLC. According to the standard fingerprint, the similarities of the samples' fingerprints were compared. The similarities of 3 samples, which were baked at 230 degrees C for 20 min, 30 min and at 240 degrees C for 20 min, were above 0.96. According to the similarities of the fingerprints and in view of the appearances, Platycladi Cacumen Carbonizing should be baked at 230 degrees C for 20 min.
Integrated fingerprinting in secure digital cinema projection
NASA Astrophysics Data System (ADS)
Delannay, Damien; Delaigle, Jean-Francois; Macq, Benoit M. M.; Quisquater, Jean-Jacques; Mas Ribes, Joan M.; Boucqueau, Jean M.; Nivart, Jean-Francois
2001-12-01
This paper describes the functional model of a combined conditional access and fingerprinting copyright (-or projectionright) protection system in a digital cinema framework. In the cinema industry, a large part of early movie piracy comes from copies made in the theater itself with a camera. The evolution towards digital cinema broadcast enables watermark based fingerprinting protection systems. Besides an appropriate fingerprinting technology, a number of well defined security/cryptographic tools are integrated in order to guaranty the integrity of the whole system. The requirements are two-fold: On one side, we must ensure that the media content is only accessible at exhibition time (under specific authorization obtained after an ad-hoc film rental agreement) and contains the related exhibition fingerprint. At the other end, we must prove our ability to retrieve the fingerprint information from an illegal copy of the media.
Bergholt, Mads Sylvest; Zheng, Wei; Huang, Zhiwei
2013-03-01
We report on the development of a novel multiplexing Raman spectroscopy technique using a single laser light together with a volume phase holographic (VPH) grating that simultaneously acquires both fingerprint (FP) and high wavenumber (HW) tissue Raman spectra at endoscopy. We utilize a customized VPH dual-transmission grating, which disperses the incident Raman scattered light vertically onto two separate segments (i.e., -150 to 1950 cm⁻¹; 1750 to 3600 cm⁻¹) of a charge-coupled device camera. We demonstrate that the multiplexing Raman technique can acquire high quality in vivo tissue Raman spectra ranging from 800 to 3600 cm⁻¹ within 1.0 s with a spectral resolution of 3 to 6 cm⁻¹ during clinical endoscopy. The rapid multiplexing Raman spectroscopy technique covering both FP and HW ranges developed in this work has potential for improving in vivo tissue diagnosis and characterization at endoscopy.
Targeted versus statistical approaches to selecting parameters for modelling sediment provenance
NASA Astrophysics Data System (ADS)
Laceby, J. Patrick
2017-04-01
One effective field-based approach to modelling sediment provenance is the source fingerprinting technique. Arguably, one of the most important steps for this approach is selecting the appropriate suite of parameters or fingerprints used to model source contributions. Accordingly, approaches to selecting parameters for sediment source fingerprinting will be reviewed. Thereafter, opportunities and limitations of these approaches and some future research directions will be presented. For properties to be effective tracers of sediment, they must discriminate between sources whilst behaving conservatively. Conservative behavior is characterized by constancy in sediment properties, where the properties of sediment sources remain constant, or at the very least, any variation in these properties should occur in a predictable and measurable way. Therefore, properties selected for sediment source fingerprinting should remain constant through sediment detachment, transportation and deposition processes, or vary in a predictable and measurable way. One approach to select conservative properties for sediment source fingerprinting is to identify targeted tracers, such as caesium-137, that provide specific source information (e.g. surface versus subsurface origins). A second approach is to use statistical tests to select an optimal suite of conservative properties capable of modelling sediment provenance. In general, statistical approaches use a combination of a discrimination (e.g. Kruskal Wallis H-test, Mann-Whitney U-test) and parameter selection statistics (e.g. Discriminant Function Analysis or Principle Component Analysis). The challenge is that modelling sediment provenance is often not straightforward and there is increasing debate in the literature surrounding the most appropriate approach to selecting elements for modelling. Moving forward, it would be beneficial if researchers test their results with multiple modelling approaches, artificial mixtures, and multiple lines of evidence to provide secondary support to their initial modelling results. Indeed, element selection can greatly impact modelling results and having multiple lines of evidence will help provide confidence when modelling sediment provenance.
Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol; Kwak, Jin
2013-01-01
The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility.
Ju, Seung-hwan; Seo, Hee-suk; Han, Sung-hyu; Ryou, Jae-cheol
2013-01-01
The prevalence of computers and the development of the Internet made us able to easily access information. As people are concerned about user information security, the interest of the user authentication method is growing. The most common computer authentication method is the use of alphanumerical usernames and passwords. The password authentication systems currently used are easy, but only if you know the password, as the user authentication is vulnerable. User authentication using fingerprints, only the user with the information that is specific to the authentication security is strong. But there are disadvantage such as the user cannot change the authentication key. In this study, we proposed authentication methodology that combines numeric-based password and biometric-based fingerprint authentication system. Use the information in the user's fingerprint, authentication keys to obtain security. Also, using numeric-based password can to easily change the password; the authentication keys were designed to provide flexibility. PMID:24151601
jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints
2011-01-01
Background The decomposition of a chemical graph is a convenient approach to encode information of the corresponding organic compound. While several commercial toolkits exist to encode molecules as so-called fingerprints, only a few open source implementations are available. The aim of this work is to introduce a library for exactly defined molecular decompositions, with a strong focus on the application of these features in machine learning and data mining. It provides several options such as search depth, distance cut-offs, atom- and pharmacophore typing. Furthermore, it provides the functionality to combine, to compare, or to export the fingerprints into several formats. Results We provide a Java 1.6 library for the decomposition of chemical graphs based on the open source Chemistry Development Kit toolkit. We reimplemented popular fingerprinting algorithms such as depth-first search fingerprints, extended connectivity fingerprints, autocorrelation fingerprints (e.g. CATS2D), radial fingerprints (e.g. Molprint2D), geometrical Molprint, atom pairs, and pharmacophore fingerprints. We also implemented custom fingerprints such as the all-shortest path fingerprint that only includes the subset of shortest paths from the full set of paths of the depth-first search fingerprint. As an application of jCompoundMapper, we provide a command-line executable binary. We measured the conversion speed and number of features for each encoding and described the composition of the features in detail. The quality of the encodings was tested using the default parametrizations in combination with a support vector machine on the Sutherland QSAR data sets. Additionally, we benchmarked the fingerprint encodings on the large-scale Ames toxicity benchmark using a large-scale linear support vector machine. The results were promising and could often compete with literature results. On the large Ames benchmark, for example, we obtained an AUC ROC performance of 0.87 with a reimplementation of the extended connectivity fingerprint. This result is comparable to the performance achieved by a non-linear support vector machine using state-of-the-art descriptors. On the Sutherland QSAR data set, the best fingerprint encodings showed a comparable or better performance on 5 of the 8 benchmarks when compared against the results of the best descriptors published in the paper of Sutherland et al. Conclusions jCompoundMapper is a library for chemical graph fingerprints with several tweaking possibilities and exporting options for open source data mining toolkits. The quality of the data mining results, the conversion speed, the LPGL software license, the command-line interface, and the exporters should be useful for many applications in cheminformatics like benchmarks against literature methods, comparison of data mining algorithms, similarity searching, and similarity-based data mining. PMID:21219648
Liu, Yingchun; Liu, Zhongbo; Sun, Guoxiang; Wang, Yan; Ling, Junhong; Gao, Jiayue; Huang, Jiahao
2015-01-01
A combination method of multi-wavelength fingerprinting and multi-component quantification by high performance liquid chromatography (HPLC) coupled with diode array detector (DAD) was developed and validated to monitor and evaluate the quality consistency of herbal medicines (HM) in the classical preparation Compound Bismuth Aluminate tablets (CBAT). The validation results demonstrated that our method met the requirements of fingerprint analysis and quantification analysis with suitable linearity, precision, accuracy, limits of detection (LOD) and limits of quantification (LOQ). In the fingerprint assessments, rather than using conventional qualitative "Similarity" as a criterion, the simple quantified ratio fingerprint method (SQRFM) was recommended, which has an important quantified fingerprint advantage over the "Similarity" approach. SQRFM qualitatively and quantitatively offers the scientific criteria for traditional Chinese medicines (TCM)/HM quality pyramid and warning gate in terms of three parameters. In order to combine the comprehensive characterization of multi-wavelength fingerprints, an integrated fingerprint assessment strategy based on information entropy was set up involving a super-information characteristic digitized parameter of fingerprints, which reveals the total entropy value and absolute information amount about the fingerprints and, thus, offers an excellent method for fingerprint integration. The correlation results between quantified fingerprints and quantitative determination of 5 marker compounds, including glycyrrhizic acid (GLY), liquiritin (LQ), isoliquiritigenin (ILG), isoliquiritin (ILQ) and isoliquiritin apioside (ILA), indicated that multi-component quantification could be replaced by quantified fingerprints. The Fenton reaction was employed to determine the antioxidant activities of CBAT samples in vitro, and they were correlated with HPLC fingerprint components using the partial least squares regression (PLSR) method. In summary, the method of multi-wavelength fingerprints combined with antioxidant activities has been proved to be a feasible and scientific procedure for monitoring and evaluating the quality consistency of CBAT.
Code of Federal Regulations, 2013 CFR
2013-10-01
... description. (ii) You are not required to conduct the fingerprint-based FBI criminal history check on... prior approval of the Corporation. You are not required to conduct the fingerprint-based FBI criminal...
Code of Federal Regulations, 2014 CFR
2014-10-01
... description. (ii) You are not required to conduct the fingerprint-based FBI criminal history check on... prior approval of the Corporation. You are not required to conduct the fingerprint-based FBI criminal...
Stevenage, Sarah V; Bennett, Alice
2017-07-01
One study is presented which explores the biasing effects of irrelevant contextual information on a fingerprint matching task. Bias was introduced by providing the outcomes of a DNA test relating to each fictitious case under consideration. This was engineered to suggest either a match, no match, or an inconclusive outcome, and was thus either consistent, misleading or unbiased depending on the ground truth of each fingerprint pair. The results suggested that, when the difficulty of the fingerprint matching task was measurably increased, participants became more vulnerable to the biasing information. Under such conditions, when performance was good, misleading evidence lowered accuracy, and when performance was weaker, consistent evidence improved accuracy. As such, the results confirmed existing demonstrations of cognitive bias from contextual information in the fingerprint task. Moreover, by taking a process-based approach, it became possible to articulate the concerns, and the potential solutions, at each stage of the workflow. The results offer value for the forensic science community in extending the evidence-base regarding cognitive bias, and in articulating routes to improve the credibility of fingerprint decisions. Copyright © 2017. Published by Elsevier B.V.
Guinan, Taryn M; Gustafsson, Ove J R; McPhee, Gordon; Kobus, Hilton; Voelcker, Nicolas H
2015-11-17
Nanostructure imaging mass spectrometry (NIMS) using porous silicon (pSi) is a key technique for molecular imaging of exogenous and endogenous low molecular weight compounds from fingerprints. However, high-mass-accuracy NIMS can be difficult to achieve as time-of-flight (ToF) mass analyzers, which dominate the field, cannot sufficiently compensate for shifts in measured m/z values. Here, we show internal recalibration using a thin layer of silver (Ag) sputter-coated onto functionalized pSi substrates. NIMS peaks for several previously reported fingerprint components were selected and mass accuracy was compared to theoretical values. Mass accuracy was improved by more than an order of magnitude in several cases. This straightforward method should form part of the standard guidelines for NIMS studies for spatial characterization of small molecules.
Privacy protection schemes for fingerprint recognition systems
NASA Astrophysics Data System (ADS)
Marasco, Emanuela; Cukic, Bojan
2015-05-01
The deployment of fingerprint recognition systems has always raised concerns related to personal privacy. A fingerprint is permanently associated with an individual and, generally, it cannot be reset if compromised in one application. Given that fingerprints are not a secret, potential misuses besides personal recognition represent privacy threats and may lead to public distrust. Privacy mechanisms control access to personal information and limit the likelihood of intrusions. In this paper, image- and feature-level schemes for privacy protection in fingerprint recognition systems are reviewed. Storing only key features of a biometric signature can reduce the likelihood of biometric data being used for unintended purposes. In biometric cryptosystems and biometric-based key release, the biometric component verifies the identity of the user, while the cryptographic key protects the communication channel. Transformation-based approaches only a transformed version of the original biometric signature is stored. Different applications can use different transforms. Matching is performed in the transformed domain which enable the preservation of low error rates. Since such templates do not reveal information about individuals, they are referred to as cancelable templates. A compromised template can be re-issued using a different transform. At image-level, de-identification schemes can remove identifiers disclosed for objectives unrelated to the original purpose, while permitting other authorized uses of personal information. Fingerprint images can be de-identified by, for example, mixing fingerprints or removing gender signature. In both cases, degradation of matching performance is minimized.
Zhou, Wei; Song, Xiang-gang; Chen, Chao; Wang, Shu-mei; Liang, Sheng-wang
2015-08-01
Action mechanism and material base of compound Danshen dripping pills in treatment of carotid atherosclerosis were discussed based on gene expression profile and molecular fingerprint in this paper. First, gene expression profiles of atherosclerotic carotid artery tissues and histologically normal tissues in human body were collected, and were screened using significance analysis of microarray (SAM) to screen out differential gene expressions; then differential genes were analyzed by Gene Ontology (GO) analysis and KEGG pathway analysis; to avoid some genes with non-outstanding differential expression but biologically importance, Gene Set Enrichment Analysis (GSEA) were performed, and 7 chemical ingredients with higher negative enrichment score were obtained by Cmap method, implying that they could reversely regulate the gene expression profiles of pathological tissues; and last, based on the hypotheses that similar structures have similar activities, 336 ingredients of compound Danshen dripping pills were compared with 7 drug molecules in 2D molecular fingerprints method. The results showed that 147 differential genes including 60 up-regulated genes and 87 down regulated genes were screened out by SAM. And in GO analysis, Biological Process ( BP) is mainly concerned with biological adhesion, response to wounding and inflammatory response; Cellular Component (CC) is mainly concerned with extracellular region, extracellular space and plasma membrane; while Molecular Function (MF) is mainly concerned with antigen binding, metalloendopeptidase activity and peptide binding. KEGG pathway analysis is mainly concerned with JAK-STAT, RIG-I like receptor and PPAR signaling pathway. There were 10 compounds, such as hexadecane, with Tanimoto coefficients greater than 0.85, which implied that they may be the active ingredients (AIs) of compound Danshen dripping pills in treatment of carotid atherosclerosis (CAs). The present method can be applied to the research on material base and molecular action mechanism of TCM.
(GTG)5 MSP-PCR fingerprinting as a technique for discrimination of wine associated yeasts?
Ramírez-Castrillón, Mauricio; Mendes, Sandra Denise Camargo; Inostroza-Ponta, Mario; Valente, Patricia
2014-01-01
In microbiology, identification of all isolates by sequencing is still unfeasible in small research laboratories. Therefore, many yeast diversity studies follow a screening procedure consisting of clustering the yeast isolates using MSP-PCR fingerprinting, followed by identification of one or a few selected representatives of each cluster by sequencing. Although this procedure has been widely applied in the literature, it has not been properly validated. We evaluated a standardized protocol using MSP-PCR fingerprinting with the primers (GTG)5 and M13 for the discrimination of wine associated yeasts in South Brazil. Two datasets were used: yeasts isolated from bottled wines and vineyard environments. We compared the discriminatory power of both primers in a subset of 16 strains, choosing the primer (GTG)5 for further evaluation. Afterwards, we applied this technique to 245 strains, and compared the results with the identification obtained by partial sequencing of the LSU rRNA gene, considered as the gold standard. An array matrix was constructed for each dataset and used as input for clustering with two methods (hierarchical dendrograms and QAPGrid layout). For both yeast datasets, unrelated species were clustered in the same group. The sensitivity score of (GTG)5 MSP-PCR fingerprinting was high, but specificity was low. As a conclusion, the yeast diversity inferred in several previous studies may have been underestimated and some isolates were probably misidentified due to the compliance to this screening procedure.
(GTG)5 MSP-PCR Fingerprinting as a Technique for Discrimination of Wine Associated Yeasts?
Inostroza-Ponta, Mario; Valente, Patricia
2014-01-01
In microbiology, identification of all isolates by sequencing is still unfeasible in small research laboratories. Therefore, many yeast diversity studies follow a screening procedure consisting of clustering the yeast isolates using MSP-PCR fingerprinting, followed by identification of one or a few selected representatives of each cluster by sequencing. Although this procedure has been widely applied in the literature, it has not been properly validated. We evaluated a standardized protocol using MSP-PCR fingerprinting with the primers (GTG)5 and M13 for the discrimination of wine associated yeasts in South Brazil. Two datasets were used: yeasts isolated from bottled wines and vineyard environments. We compared the discriminatory power of both primers in a subset of 16 strains, choosing the primer (GTG)5 for further evaluation. Afterwards, we applied this technique to 245 strains, and compared the results with the identification obtained by partial sequencing of the LSU rRNA gene, considered as the gold standard. An array matrix was constructed for each dataset and used as input for clustering with two methods (hierarchical dendrograms and QAPGrid layout). For both yeast datasets, unrelated species were clustered in the same group. The sensitivity score of (GTG)5 MSP-PCR fingerprinting was high, but specificity was low. As a conclusion, the yeast diversity inferred in several previous studies may have been underestimated and some isolates were probably misidentified due to the compliance to this screening procedure. PMID:25171185
A Large-Scale Study of Fingerprint Matching Systems for Sensor Interoperability Problem
Hussain, Muhammad; AboAlSamh, Hatim; AlZuair, Mansour
2018-01-01
The fingerprint is a commonly used biometric modality that is widely employed for authentication by law enforcement agencies and commercial applications. The designs of existing fingerprint matching methods are based on the hypothesis that the same sensor is used to capture fingerprints during enrollment and verification. Advances in fingerprint sensor technology have raised the question about the usability of current methods when different sensors are employed for enrollment and verification; this is a fingerprint sensor interoperability problem. To provide insight into this problem and assess the status of state-of-the-art matching methods to tackle this problem, we first analyze the characteristics of fingerprints captured with different sensors, which makes cross-sensor matching a challenging problem. We demonstrate the importance of fingerprint enhancement methods for cross-sensor matching. Finally, we conduct a comparative study of state-of-the-art fingerprint recognition methods and provide insight into their abilities to address this problem. We performed experiments using a public database (FingerPass) that contains nine datasets captured with different sensors. We analyzed the effects of different sensors and found that cross-sensor matching performance deteriorates when different sensors are used for enrollment and verification. In view of our analysis, we propose future research directions for this problem. PMID:29597286
A Large-Scale Study of Fingerprint Matching Systems for Sensor Interoperability Problem.
AlShehri, Helala; Hussain, Muhammad; AboAlSamh, Hatim; AlZuair, Mansour
2018-03-28
The fingerprint is a commonly used biometric modality that is widely employed for authentication by law enforcement agencies and commercial applications. The designs of existing fingerprint matching methods are based on the hypothesis that the same sensor is used to capture fingerprints during enrollment and verification. Advances in fingerprint sensor technology have raised the question about the usability of current methods when different sensors are employed for enrollment and verification; this is a fingerprint sensor interoperability problem. To provide insight into this problem and assess the status of state-of-the-art matching methods to tackle this problem, we first analyze the characteristics of fingerprints captured with different sensors, which makes cross-sensor matching a challenging problem. We demonstrate the importance of fingerprint enhancement methods for cross-sensor matching. Finally, we conduct a comparative study of state-of-the-art fingerprint recognition methods and provide insight into their abilities to address this problem. We performed experiments using a public database (FingerPass) that contains nine datasets captured with different sensors. We analyzed the effects of different sensors and found that cross-sensor matching performance deteriorates when different sensors are used for enrollment and verification. In view of our analysis, we propose future research directions for this problem.
Castillo-Cara, Manuel; Lovón-Melgarejo, Jesús; Bravo-Rocca, Gusseppe; Orozco-Barbosa, Luis; García-Varea, Ismael
2017-01-01
Nowadays, there is a great interest in developing accurate wireless indoor localization mechanisms enabling the implementation of many consumer-oriented services. Among the many proposals, wireless indoor localization mechanisms based on the Received Signal Strength Indication (RSSI) are being widely explored. Most studies have focused on the evaluation of the capabilities of different mobile device brands and wireless network technologies. Furthermore, different parameters and algorithms have been proposed as a means of improving the accuracy of wireless-based localization mechanisms. In this paper, we focus on the tuning of the RSSI fingerprint to be used in the implementation of a Bluetooth Low Energy 4.0 (BLE4.0) Bluetooth localization mechanism. Following a holistic approach, we start by assessing the capabilities of two Bluetooth sensor/receiver devices. We then evaluate the relevance of the RSSI fingerprint reported by each BLE4.0 beacon operating at various transmission power levels using feature selection techniques. Based on our findings, we use two classification algorithms in order to improve the setting of the transmission power levels of each of the BLE4.0 beacons. Our main findings show that our proposal can greatly improve the localization accuracy by setting a custom transmission power level for each BLE4.0 beacon. PMID:28590413
Castillo-Cara, Manuel; Lovón-Melgarejo, Jesús; Bravo-Rocca, Gusseppe; Orozco-Barbosa, Luis; García-Varea, Ismael
2017-06-07
Nowadays, there is a great interest in developing accurate wireless indoor localization mechanisms enabling the implementation of many consumer-oriented services. Among the many proposals, wireless indoor localization mechanisms based on the Received Signal Strength Indication (RSSI) are being widely explored. Most studies have focused on the evaluation of the capabilities of different mobile device brands and wireless network technologies. Furthermore, different parameters and algorithms have been proposed as a means of improving the accuracy of wireless-based localization mechanisms. In this paper, we focus on the tuning of the RSSI fingerprint to be used in the implementation of a Bluetooth Low Energy 4.0 (BLE4.0) Bluetooth localization mechanism. Following a holistic approach, we start by assessing the capabilities of two Bluetooth sensor/receiver devices. We then evaluate the relevance of the RSSI fingerprint reported by each BLE4.0 beacon operating at various transmission power levels using feature selection techniques. Based on our findings, we use two classification algorithms in order to improve the setting of the transmission power levels of each of the BLE4.0 beacons. Our main findings show that our proposal can greatly improve the localization accuracy by setting a custom transmission power level for each BLE4.0 beacon.
Optical Methods in Fingerprint Imaging for Medical and Personality Applications
Wang, Jing-Wein; Lin, Ming-Hsun; Chang, Yao-Lang; Kuo, Chia-Ming
2017-01-01
Over the years, analysis and induction of personality traits has been a topic for individual subjective conjecture or speculation, rather than a focus of inductive scientific analysis. This study proposes a novel framework for analysis and induction of personality traits. First, 14 personality constructs based on the “Big Five” personality factors were developed. Next, a new fingerprint image algorithm was used for classification, and the fingerprints were classified into eight types. The relationship between personality traits and fingerprint type was derived from the results of the questionnaire survey. After comparison of pre-test and post-test results, this study determined the induction ability of personality traits from fingerprint type. Experimental results showed that the left/right thumbprint type of a majority of subjects was left loop/right loop and that the personalities of individuals with this fingerprint type were moderate with no significant differences in the 14 personality constructs. PMID:29065556
Optical Methods in Fingerprint Imaging for Medical and Personality Applications.
Wang, Chia-Nan; Wang, Jing-Wein; Lin, Ming-Hsun; Chang, Yao-Lang; Kuo, Chia-Ming
2017-10-23
Over the years, analysis and induction of personality traits has been a topic for individual subjective conjecture or speculation, rather than a focus of inductive scientific analysis. This study proposes a novel framework for analysis and induction of personality traits. First, 14 personality constructs based on the "Big Five" personality factors were developed. Next, a new fingerprint image algorithm was used for classification, and the fingerprints were classified into eight types. The relationship between personality traits and fingerprint type was derived from the results of the questionnaire survey. After comparison of pre-test and post-test results, this study determined the induction ability of personality traits from fingerprint type. Experimental results showed that the left/right thumbprint type of a majority of subjects was left loop/right loop and that the personalities of individuals with this fingerprint type were moderate with no significant differences in the 14 personality constructs.
Easmin, Sabina; Sarker, Md Zaidul Islam; Ghafoor, Kashif; Ferdosh, Sahena; Jaffri, Juliana; Ali, Md Eaqub; Mirhosseini, Hamed; Al-Juhaimi, Fahad Y; Perumal, Vikneswari; Khatib, Alfi
2017-04-01
Phaleria macrocarpa, known as "Mahkota Dewa", is a widely used medicinal plant in Malaysia. This study focused on the characterization of α-glucosidase inhibitory activity of P. macrocarpa extracts using Fourier transform infrared spectroscopy (FTIR)-based metabolomics. P. macrocarpa and its extracts contain thousands of compounds having synergistic effect. Generally, their variability exists, and there are many active components in meager amounts. Thus, the conventional measurement methods of a single component for the quality control are time consuming, laborious, expensive, and unreliable. It is of great interest to develop a rapid prediction method for herbal quality control to investigate the α-glucosidase inhibitory activity of P. macrocarpa by multicomponent analyses. In this study, a rapid and simple analytical method was developed using FTIR spectroscopy-based fingerprinting. A total of 36 extracts of different ethanol concentrations were prepared and tested on inhibitory potential and fingerprinted using FTIR spectroscopy, coupled with chemometrics of orthogonal partial least square (OPLS) at the 4000-400 cm -1 frequency region and resolution of 4 cm -1 . The OPLS model generated the highest regression coefficient with R 2 Y = 0.98 and Q 2 Y = 0.70, lowest root mean square error estimation = 17.17, and root mean square error of cross validation = 57.29. A five-component (1+4+0) predictive model was build up to correlate FTIR spectra with activity, and the responsible functional groups, such as -CH, -NH, -COOH, and -OH, were identified for the bioactivity. A successful multivariate model was constructed using FTIR-attenuated total reflection as a simple and rapid technique to predict the inhibitory activity. Copyright © 2016. Published by Elsevier B.V.
Experimental evaluation of fingerprint verification system based on double random phase encoding
NASA Astrophysics Data System (ADS)
Suzuki, Hiroyuki; Yamaguchi, Masahiro; Yachida, Masuyoshi; Ohyama, Nagaaki; Tashima, Hideaki; Obi, Takashi
2006-03-01
We proposed a smart card holder authentication system that combines fingerprint verification with PIN verification by applying a double random phase encoding scheme. In this system, the probability of accurate verification of an authorized individual reduces when the fingerprint is shifted significantly. In this paper, a review of the proposed system is presented and preprocessing for improving the false rejection rate is proposed. In the proposed method, the position difference between two fingerprint images is estimated by using an optimized template for core detection. When the estimated difference exceeds the permissible level, the user inputs the fingerprint again. The effectiveness of the proposed method is confirmed by a computational experiment; its results show that the false rejection rate is improved.
Hierarchical minutiae matching for fingerprint and palmprint identification.
Chen, Fanglin; Huang, Xiaolin; Zhou, Jie
2013-12-01
Fingerprints and palmprints are the most common authentic biometrics for personal identification, especially for forensic security. Previous research have been proposed to speed up the searching process in fingerprint and palmprint identification systems, such as those based on classification or indexing, in which the deterioration of identification accuracy is hard to avert. In this paper, a novel hierarchical minutiae matching algorithm for fingerprint and palmprint identification systems is proposed. This method decomposes the matching step into several stages and rejects many false fingerprints or palmprints on different stages, thus it can save much time while preserving a high identification rate. Experimental results show that the proposed algorithm can save almost 50% searching time compared with traditional methods and illustrate its effectiveness.
NASA Astrophysics Data System (ADS)
Lucena, P.; Gaona, I.; Moros, J.; Laserna, J. J.
2013-07-01
Detection of explosive-contaminated human fingerprints constitutes an analytical challenge of high significance in security issues and in forensic sciences. The use of a laser-induced breakdown spectroscopy (LIBS) sensor working at 31 m distance to the target, fitted with 2D scanning capabilities and designed for capturing spectral information from laser-induced plasmas of fingerprints is presented. Distribution chemical maps based on Na and CN emissions are used to locate and detect chloratite, DNT, TNT, RDX and PETN residues that have been deposited on the surface of aluminum and glass substrates. An effectiveness of 100% on fingerprints detection, regardless the substrate scanned, is reached. Environmental factors that affect the prevalence of the fingerprint LIBS response are discussed.
Chemometric techniques in oil classification from oil spill fingerprinting.
Ismail, Azimah; Toriman, Mohd Ekhwan; Juahir, Hafizan; Kassim, Azlina Md; Zain, Sharifuddin Md; Ahmad, Wan Kamaruzaman Wan; Wong, Kok Fah; Retnam, Ananthy; Zali, Munirah Abdul; Mokhtar, Mazlin; Yusri, Mohd Ayub
2016-10-15
Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources. Copyright © 2016. Published by Elsevier Ltd.
2015-04-01
Current routine MRI examinations rely on the acquisition of qualitative images that have a contrast "weighted" for a mixture of (magnetic) tissue properties. Recently, a novel approach was introduced, namely MR Fingerprinting (MRF) with a completely different approach to data acquisition, post-processing and visualization. Instead of using a repeated, serial acquisition of data for the characterization of individual parameters of interest, MRF uses a pseudo randomized acquisition that causes the signals from different tissues to have a unique signal evolution or 'fingerprint' that is simultaneously a function of the multiple material properties under investigation. The processing after acquisition involves a pattern recognition algorithm to match the fingerprints to a predefined dictionary of predicted signal evolutions. These can then be translated into quantitative maps of the magnetic parameters of interest. MR Fingerprinting (MRF) is a technique that could theoretically be applied to most traditional qualitative MRI methods and replaces them with acquisition of truly quantitative tissue measures. MRF is, thereby, expected to be much more accurate and reproducible than traditional MRI and should improve multi-center studies and significantly reduce reader bias when diagnostic imaging is performed. Key Points • MR fingerprinting (MRF) is a new approach to data acquisition, post-processing and visualization.• MRF provides highly accurate quantitative maps of T1, T2, proton density, diffusion.• MRF may offer multiparametric imaging with high reproducibility, and high potential for multicenter/ multivendor studies.
Oelofse, A; Malherbe, S; Pretorius, I S; Du Toit, M
2010-10-15
The objective of this study was to evaluate different infrared spectroscopy methods in combination with chemometrics for the differentiation between Brettanomyces bruxellensis strains. These methods of discrimination were applied to intact yeast cells of B. bruxellensis strains and on wines spoiled by the same strains. Eleven wine isolates of B. bruxellensis were evaluated for volatile phenol production in red wine and their genetic diversity was determined by Restriction Endonuclease Analysis-Pulsed Field Gel Electrophoresis (REA-PFGE). Fourier transform mid-infrared (FTMIR) spectroscopy was used to obtain spectral fingerprints of the spoiled wines. Attenuated total reflectance (ATR) was used to obtain spectral fingerprints from the intact cells of the 11 B. bruxellensis strains. The groupings from the genetic fingerprints obtained with REA-PFGE were used as reference firstly for comparison with the groupings observed with the FTMIR spectral fingerprint of the wines and secondly for the FTIR-ATR spectral fingerprints from the whole cells. Results indicated that ATR-IR spectra obtained by scanning whole cells of B. bruxellensis could be useful for rapid strain typing in comparison or complementary to molecular techniques and FTMIR spectra from wines provide a useful resource for the discrimination between B. bruxellensis contaminated wines. Copyright © 2010 Elsevier B.V. All rights reserved.
Du, Wen-Juan; Ji, Jun; Wang, Ling; Lan, Xin-Yi; Li, Jia; Lei, Jun-Qiu; He, Xin; Zhang, Chun-Feng; Huang, Wen-Zhe; Wang, Zhen-Zhong; Xiao, Wei; Wang, Chong-Zhi; Yuan, Chun-Su
2017-12-01
Daphne genkwa Sieb.et Zucc. is a well-known medicinal plant. This study was designed to apply the ultra-high performance liquid chromatography system to establish a quality control method for D. genkwa. Data revealed that there were 15 common peaks in 10 batches of D. genkwa Sieb. Et Zucc. (Thymelaeaceae) from different provinces of China. On this basis, the fingerprint chromatogram was established to provide references for quality control. Afterwards, the chemical constitutions of these common peaks were analyzed using the UPLC-Q-TOF-MS system and nine of them were identified. In addition, LPS-stimulated RAW264.7 murine macrophages and DPPH assay were used to study the anti-inflammatory and anti-oxidation effects of D. genkwa. Then the fingerprint-efficacy relationships between UPLC fingerprints and pharmacodynamic data were studied with canonical correlation analysis. Analysis results indicated that the anti-inflammatory and anti-oxidation effects differed among the 10 D. genkwa samples owing to their inherent differences of chemical compositions. Taken together, this research established a fingerprint-efficacy relationship model of D. genkwa plant by combining the UPLC analytic technique and pharmacological research, which provided references for the detection of the principal components of traditional Chinese medicine on bioactivity. Copyright © 2017 John Wiley & Sons, Ltd.
Enhancement of Plant Metabolite Fingerprinting by Machine Learning1[W
Scott, Ian M.; Vermeer, Cornelia P.; Liakata, Maria; Corol, Delia I.; Ward, Jane L.; Lin, Wanchang; Johnson, Helen E.; Whitehead, Lynne; Kular, Baldeep; Baker, John M.; Walsh, Sean; Dave, Anuja; Larson, Tony R.; Graham, Ian A.; Wang, Trevor L.; King, Ross D.; Draper, John; Beale, Michael H.
2010-01-01
Metabolite fingerprinting of Arabidopsis (Arabidopsis thaliana) mutants with known or predicted metabolic lesions was performed by 1H-nuclear magnetic resonance, Fourier transform infrared, and flow injection electrospray-mass spectrometry. Fingerprinting enabled processing of five times more plants than conventional chromatographic profiling and was competitive for discriminating mutants, other than those affected in only low-abundance metabolites. Despite their rapidity and complexity, fingerprints yielded metabolomic insights (e.g. that effects of single lesions were usually not confined to individual pathways). Among fingerprint techniques, 1H-nuclear magnetic resonance discriminated the most mutant phenotypes from the wild type and Fourier transform infrared discriminated the fewest. To maximize information from fingerprints, data analysis was crucial. One-third of distinctive phenotypes might have been overlooked had data models been confined to principal component analysis score plots. Among several methods tested, machine learning (ML) algorithms, namely support vector machine or random forest (RF) classifiers, were unsurpassed for phenotype discrimination. Support vector machines were often the best performing classifiers, but RFs yielded some particularly informative measures. First, RFs estimated margins between mutant phenotypes, whose relations could then be visualized by Sammon mapping or hierarchical clustering. Second, RFs provided importance scores for the features within fingerprints that discriminated mutants. These scores correlated with analysis of variance F values (as did Kruskal-Wallis tests, true- and false-positive measures, mutual information, and the Relief feature selection algorithm). ML classifiers, as models trained on one data set to predict another, were ideal for focused metabolomic queries, such as the distinctiveness and consistency of mutant phenotypes. Accessible software for use of ML in plant physiology is highlighted. PMID:20566707
Science in Drama: Using Television Programmes to Teach Concepts and Techniques
ERIC Educational Resources Information Center
Rutter, Gordon
2011-01-01
By using a specific episode of the popular television cartoon series "The Simpsons," a range of techniques can be communicated, including microscope setup and use, simple chemical analysis, observation, and interpretation. Knowledge of blood groups and typing, morphological comparison of hair samples, fingerprint analysis, and DNA fingerprinting…
Diversity of sulfate-reducing bacteria in a plant using deep geothermal energy
NASA Astrophysics Data System (ADS)
Alawi, Mashal; Lerm, Stephanie; Vetter, Alexandra; Wolfgramm, Markus; Seibt, Andrea; Würdemann, Hilke
2011-06-01
Enhanced process understanding of engineered geothermal systems is a prerequisite to optimize plant reliability and economy. We investigated microbial, geochemical and mineralogical aspects of a geothermal groundwater system located in the Molasse Basin by fluid analysis. Fluids are characterized by temperatures ranging from 61°C to 103°C, salinities from 600 to 900 mg/l and a dissolved organic carbon content (DOC) between 6.4 to 19.3 mg C/l. The microbial population of fluid samples was analyzed by genetic fingerprinting techniques based on PCR-amplified 16S rRNA- and dissimilatory sulfite reductase genes. Despite of the high temperatures, microbes were detected in all investigated fluids. Fingerprinting and DNA sequencing enabled a correlation to metabolic classes and biogeochemical processes. The analysis revealed a broad diversity of sulfate-reducing bacteria. Overall, the detection of microbes known to be involved in biocorrosion and mineral precipitation indicates that microorganisms could play an important role for the understanding of processes in engineered geothermal systems.
Characterization and Differentiation of Petroleum-Derived Products by E-Nose Fingerprints
Ferreiro-González, Marta; Palma, Miguel; Ayuso, Jesús; Álvarez, José A.; Barroso, Carmelo G.
2017-01-01
Characterization of petroleum-derived products is an area of continuing importance in environmental science, mainly related to fuel spills. In this study, a non-separative analytical method based on E-Nose (Electronic Nose) is presented as a rapid alternative for the characterization of several different petroleum-derived products including gasoline, diesel, aromatic solvents, and ethanol samples, which were poured onto different surfaces (wood, cork, and cotton). The working conditions about the headspace generation were 145 °C and 10 min. Mass spectroscopic data (45–200 m/z) combined with chemometric tools such as hierarchical cluster analysis (HCA), later principal component analysis (PCA), and finally linear discriminant analysis (LDA) allowed for a full discrimination of the samples. A characteristic fingerprint for each product can be used for discrimination or identification. The E-Nose can be considered as a green technique, and it is rapid and easy to use in routine analysis, thus providing a good alternative to currently used methods. PMID:29113069
Use of UV Sources for Detection and Identification of Explosives
NASA Technical Reports Server (NTRS)
Hug, William; Reid, Ray; Bhartia, Rohit; Lane, Arthur
2009-01-01
Measurement of Raman and native fluorescence emission using ultraviolet (UV) sources (<400 nm) on targeted materials is suitable for both sensitive detection and accurate identification of explosive materials. When the UV emission data are analyzed using a combination of Principal Component Analysis (PCA) and cluster analysis, chemicals and biological samples can be differentiated based on the geometric arrangement of molecules, the number of repeating aromatic rings, associated functional groups (nitrogen, sulfur, hydroxyl, and methyl), microbial life cycles (spores vs. vegetative cells), and the number of conjugated bonds. Explosive materials can be separated from one another as well as from a range of possible background materials, which includes microbes, car doors, motor oil, and fingerprints on car doors, etc. Many explosives are comprised of similar atomic constituents found in potential background samples such as fingerprint oils/skin, motor oil, and soil. This technique is sensitive to chemical bonds between the elements that lead to the discriminating separability between backgrounds and explosive materials.
Becerra-Martínez, Elvia; Florentino-Ramos, Elideth; Pérez-Hernández, Nury; Gerardo Zepeda-Vallejo, L; Villa-Ruano, Nemesio; Velázquez-Ponce, Manuel; García-Mendoza, Felipe; Bañuelos-Hernández, Angel E
2017-12-01
Chili pepper (Capsicum annuum) is the most important and emblematic condiment in Mexican food. Serrano pepper is a variety of C. annuum that is traditionally cultivated in Mexico and commercialized in local markets. The aim of this study was to describe the 1 H NMR metabolomic profiling of the aqueous phase of serrano peppers harvested from two distinct regions, in the states of Veracruz and Oaxaca, Mexico. According to the current results, aspartate citrate, lactate, leucine and sucrose were found at higher amount in the serrano peppers from Veracruz. On the other hand, acetate, formate, fumarate, malonate, phosphocholine, pyruvate and succinate showed the highest abundance in this product from Oaxaca. These are the main metabolites that distinguish one group from the other. The spectrometric method reported presently is characterized by great simplicity, robustness and reproducibility. Thus, this technique can be used for establishing reliable metabolomic fingerprints of serrano peppers grown under different environmental conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Suneel, V; Vethamony, P; Zakaria, M P; Naik, B G; Prasad, K V S R
2013-05-15
Deposition of tar balls along the coast of Goa, India is a common phenomenon during the southwest monsoon. Representative tar ball samples collected from various beaches of Goa and one Bombay High (BH) crude oil sample were subjected to fingerprint analysis based on diagnostic ratios of n-alkane, biomarkers of pentacyclic tri-terpanes and compound specific stable carbon isotope (δ¹³C) analysis to confirm the source. The results were compared with the published data of Middle East Crude Oil (MECO) and South East Asian Crude Oil (SEACO). The results revealed that the tar balls were from tanker-wash derived spills. The study also confirmed that the source is not the BH, but SEACO. The present study suggests that the biomarkers of alkanes and hopanes coupled with stable carbon isotope analysis act as a powerful tool for tracing the source of tar balls, particularly when the source specific biomarkers fail to distinguish the source. Copyright © 2013 Elsevier Ltd. All rights reserved.
Physics in Police Investigations.
ERIC Educational Resources Information Center
Young, Peter
1980-01-01
Described are several techniques and pieces of equipment developed by the Police Scientific Department Branch in its application of physics to police problems. Topics discussed include fingerprints, documents, and photographs. (Author/DS)
Identification of cow milk in goat milk by nonlinear chemical fingerprint technique.
Ma, Yong-Jie; Dong, Wen-Bin; Fan, Cheng; Wang, Er-Dan
2017-10-01
The objective of this paper was to develop a nonlinear chemical fingerprint technique for identifying and detecting adulteration of goat milk with cow milk. In this study, by taking the Belousov-Zhabotinsky oscillatory chemical reaction using acetone and substrates in goat milk or cow milk as main dissipative substances, when the same dosage of goat milk and cow milk was introduced to the "H + + Mn 2+ + BrO 3 - + acetone" oscillating system respectively, nonlinear chemical fingerprints were obtained for goat milk and cow milk from the same origin. The results showed that inductive time value and the content of cow milk in goat milk had a linear relationship in the range of 0-100% and the corresponding regression coefficient was 0.9991. A detection limit of 0.0107 g/g was obtained, and the content of cow milk in mixed milk was calculated. The proposed method in this study was simple, economical and effective. In addition, the method did not need the pretreatment and separation of samples for identifying and evaluating cow milk adulteration in goat milk. Copyright © 2017. Published by Elsevier B.V.
Nikolausz, M; Walter, R F H; Sträuber, H; Liebetrau, J; Schmidt, T; Kleinsteuber, S; Bratfisch, F; Günther, U; Richnow, H H
2013-03-01
Laboratory biogas reactors were operated under various conditions using maize silage, chicken manure, or distillers grains as substrate. In addition to the standard process parameters, the hydrogen and carbon stable isotopic composition of biogas was analyzed to estimate the predominant methanogenic pathways as a potential process control tool. The isotopic fingerprinting technique was evaluated by parallel analysis of mcrA genes and their transcripts to study the diversity and activity of methanogens. The dominant hydrogenotrophs were Methanomicrobiales, while aceticlastic methanogens were represented by Methanosaeta and Methanosarcina at low and high organic loading rates, respectively. Major changes in the relative abundance of mcrA transcripts were observed compared to the results obtained from DNA level. In agreement with the molecular results, the isotope data suggested the predominance of the hydrogenotrophic pathway in one reactor fed with chicken manure, while both pathways were important in the other reactors. Short-term changes in the isotopic composition were followed, and a significant change in isotope values was observed after feeding a reactor digesting maize silage. This ability of stable isotope fingerprinting to follow short-term activity changes shows potential for indicating process failures and makes it a promising technology for process control.
Oxidation management of white wines using cyclic voltammetry and multivariate process monitoring.
Martins, Rui C; Oliveira, Raquel; Bento, Fatima; Geraldo, Dulce; Lopes, Vitor V; Guedes de Pinho, Paula; Oliveira, Carla M; Silva Ferreira, Antonio C
2008-12-24
The development of a fingerprinting strategy capable to evaluate the "oxidation status" of white wines based on cyclic voltammetry is proposed here. It is known that the levels of specific antioxidants and redox mechanisms may be evaluated by cyclic voltammetry. This electrochemical technique was applied on two sets of samples. One group was composed of normal aged white wines and a second group obtained from a white wine forced aging protocol with different oxygen, SO(2), pH, and temperature regimens. A study of antioxidant additions, namely ascorbic acid, was also made in order to establish a statistical link between voltammogram fingerprints and chemical antioxidant substances. It was observed that the oxidation curve presented typical features, which enables sample discrimination according to age, oxygen consumption, and antioxidant additions. In fact, it was possible to place the results into four significant orthogonal directions, compressing 99.8% of nonrandom features. Attempts were made to make voltammogram fingerprinting a tool for monitoring oxidation management. For this purpose, a supervised multivariate control chart was developed using a control sample as reference. When white wines are plotted onto the chart, it is possible to monitor the oxidation status and to diagnose the effects of oxygen regimes and antioxidant activity. Finally, quantification of substances implicated in the oxidation process as reagents (antioxidants) and products (off-flavors) was tried using a supervised algorithmic the partial least square regression analysis. Good correlations (r > 0.93) were observed for ascorbic acid, Folin-Ciocalteu index, total SO(2), methional, and phenylacetaldehyde. These results show that cyclic voltammetry fingerprinting can be used to monitor and diagnose the effects of wine oxidation.
Mohkam, Milad; Nezafat, Navid; Berenjian, Aydin; Mobasher, Mohammad Ali; Ghasemi, Younes
2016-03-01
Some Bacillus species, especially Bacillus subtilis and Bacillus pumilus groups, have highly similar 16S rRNA gene sequences, which are hard to identify based on 16S rDNA sequence analysis. To conquer this drawback, rpoB, recA sequence analysis along with randomly amplified polymorphic (RAPD) fingerprinting was examined as an alternative method for differentiating Bacillus species. The 16S rRNA, rpoB and recA genes were amplified via a polymerase chain reaction using their specific primers. The resulted PCR amplicons were sequenced, and phylogenetic analysis was employed by MEGA 6 software. Identification based on 16S rRNA gene sequencing was underpinned by rpoB and recA gene sequencing as well as RAPD-PCR technique. Subsequently, concatenation and phylogenetic analysis showed that extent of diversity and similarity were better obtained by rpoB and recA primers, which are also reinforced by RAPD-PCR methods. However, in one case, these approaches failed to identify one isolate, which in combination with the phenotypical method offsets this issue. Overall, RAPD fingerprinting, rpoB and recA along with concatenated genes sequence analysis discriminated closely related Bacillus species, which highlights the significance of the multigenic method in more precisely distinguishing Bacillus strains. This research emphasizes the benefit of RAPD fingerprinting, rpoB and recA sequence analysis superior to 16S rRNA gene sequence analysis for suitable and effective identification of Bacillus species as recommended for probiotic products.
Music-based magnetic resonance fingerprinting to improve patient comfort during MRI examinations.
Ma, Dan; Pierre, Eric Y; Jiang, Yun; Schluchter, Mark D; Setsompop, Kawin; Gulani, Vikas; Griswold, Mark A
2016-06-01
Unpleasant acoustic noise is a drawback of almost every MRI scan. Instead of reducing acoustic noise to improve patient comfort, we propose a technique for mitigating the noise problem by producing musical sounds directly from the switching magnetic fields while simultaneously quantifying multiple important tissue properties. MP3 music files were converted to arbitrary encoding gradients, which were then used with varying flip angles and repetition times in a two- and three-dimensional magnetic resonance fingerprinting (MRF) examination. This new acquisition method, named MRF-Music, was used to quantify T1 , T2 , and proton density maps simultaneously while providing pleasing sounds to the patients. MRF-Music scans improved patient comfort significantly during MRI examinations. The T1 and T2 values measured from phantom are in good agreement with those from the standard spin echo measurements. T1 and T2 values from the brain scan are also close to previously reported values. MRF-Music sequence provides significant improvement in patient comfort compared with the MRF scan and other fast imaging techniques such as echo planar imaging and turbo spin echo scans. It is also a fast and accurate quantitative method that quantifies multiple relaxation parameters simultaneously. Magn Reson Med 75:2303-2314, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Longobardi, F; Ventrella, A; Bianco, A; Catucci, L; Cafagna, I; Gallo, V; Mastrorilli, P; Agostiano, A
2013-12-01
In this study, non-targeted (1)H NMR fingerprinting was used in combination with multivariate statistical techniques for the classification of Italian sweet cherries based on their different geographical origins (Emilia Romagna and Puglia). As classification techniques, Soft Independent Modelling of Class Analogy (SIMCA), Partial Least Squares Discriminant Analysis (PLS-DA), and Linear Discriminant Analysis (LDA) were carried out and the results were compared. For LDA, before performing a refined selection of the number/combination of variables, two different strategies for a preliminary reduction of the variable number were tested. The best average recognition and CV prediction abilities (both 100.0%) were obtained for all the LDA models, although PLS-DA also showed remarkable performances (94.6%). All the statistical models were validated by observing the prediction abilities with respect to an external set of cherry samples. The best result (94.9%) was obtained with LDA by performing a best subset selection procedure on a set of 30 principal components previously selected by a stepwise decorrelation. The metabolites that mostly contributed to the classification performances of such LDA model, were found to be malate, glucose, fructose, glutamine and succinate. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Darlow, Luke N.; Akhoury, Sharat S.; Connan, James
2015-02-01
Standard surface fingerprint scanners are vulnerable to counterfeiting attacks and also failure due to skin damage and distortion. Thus a high security and damage resistant means of fingerprint acquisition is needed, providing scope for new approaches and technologies. Optical Coherence Tomography (OCT) is a high resolution imaging technology that can be used to image the human fingertip and allow for the extraction of a subsurface fingerprint. Being robust toward spoofing and damage, the subsurface fingerprint is an attractive solution. However, the nature of the OCT scanning process induces speckle: a correlative and multiplicative noise. Six speckle reducing filters for the digital enhancement of OCT fingertip scans have been evaluated. The optimized Bayesian non-local means algorithm improved the structural similarity between processed and reference images by 34%, increased the signal-to-noise ratio, and yielded the most promising visual results. An adaptive wavelet approach, originally designed for ultrasound imaging, and a speckle reducing anisotropic diffusion approach also yielded promising results. A reformulation of these in future work, with an OCT-speckle specific model, may improve their performance.
Fingerprint identification: advances since the 2009 National Research Council report
Champod, Christophe
2015-01-01
This paper will discuss the major developments in the area of fingerprint identification that followed the publication of the National Research Council (NRC, of the US National Academies of Sciences) report in 2009 entitled: Strengthening Forensic Science in the United States: A Path Forward. The report portrayed an image of a field of expertise used for decades without the necessary scientific research-based underpinning. The advances since the report and the needs in selected areas of fingerprinting will be detailed. It includes the measurement of the accuracy, reliability, repeatability and reproducibility of the conclusions offered by fingerprint experts. The paper will also pay attention to the development of statistical models allowing assessment of fingerprint comparisons. As a corollary of these developments, the next challenge is to reconcile a traditional practice dominated by deterministic conclusions with the probabilistic logic of any statistical model. There is a call for greater candour and fingerprint experts will need to communicate differently on the strengths and limitations of their findings. Their testimony will have to go beyond the blunt assertion of the uniqueness of fingerprints or the opinion delivered ispe dixit. PMID:26101284
Sensor-oriented feature usability evaluation in fingerprint segmentation
NASA Astrophysics Data System (ADS)
Li, Ying; Yin, Yilong; Yang, Gongping
2013-06-01
Existing fingerprint segmentation methods usually process fingerprint images captured by different sensors with the same feature or feature set. We propose to improve the fingerprint segmentation result in view of an important fact that images from different sensors have different characteristics for segmentation. Feature usability evaluation, which means to evaluate the usability of features to find the personalized feature or feature set for different sensors to improve the performance of segmentation. The need for feature usability evaluation for fingerprint segmentation is raised and analyzed as a new issue. To address this issue, we present a decision-tree-based feature-usability evaluation method, which utilizes a C4.5 decision tree algorithm to evaluate and pick the best suitable feature or feature set for fingerprint segmentation from a typical candidate feature set. We apply the novel method on the FVC2002 database of fingerprint images, which are acquired by four different respective sensors and technologies. Experimental results show that the accuracy of segmentation is improved, and time consumption for feature extraction is dramatically reduced with selected feature(s).
Chemical changes exhibited by latent fingerprints after exposure to vacuum conditions.
Bright, Nicholas J; Willson, Terry R; Driscoll, Daniel J; Reddy, Subrayal M; Webb, Roger P; Bleay, Stephen; Ward, Neil I; Kirkby, Karen J; Bailey, Melanie J
2013-07-10
The effect of vacuum exposure on latent fingerprint chemistry has been evaluated. Fingerprints were analysed using a quartz crystal microbalance to measure changes in mass, gas chromatography mass spectrometry to measure changes in lipid composition and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) to determine changes in the content of water, fatty acids and their esters after exposure to vacuum. The results are compared with samples aged under ambient conditions. It was found that fingerprints lose around 26% of their mass when exposed to vacuum conditions, equivalent to around 5 weeks ageing under ambient conditions. Further exposure to vacuum causes a significant reduction in the lipid composition of a fingerprint, in particular with the loss of tetradecanoic and pentadecanoic acid, that was not observed in ambient aged samples. There are therefore implications for sequence in which fingerprint development procedures (for example vacuum metal deposition) are carried out, as well as the use of vacuum based methods such as secondary ion mass spectrometry (SIMS) and matrix-assisted laser desorption ionisation (MALDI) in the study of fingerprint chemistry. Copyright © 2013. Published by Elsevier Ireland Ltd.
Ni, Yongnian; Lai, Yanhua; Brandes, Sarina; Kokot, Serge
2009-08-11
Multi-wavelength fingerprints of Cassia seed, a traditional Chinese medicine (TCM), were collected by high-performance liquid chromatography (HPLC) at two wavelengths with the use of diode array detection. The two data sets of chromatograms were combined by the data fusion-based method. This data set of fingerprints was compared separately with the two data sets collected at each of the two wavelengths. It was demonstrated with the use of principal component analysis (PCA), that multi-wavelength fingerprints provided a much improved representation of the differences in the samples. Thereafter, the multi-wavelength fingerprint data set was submitted for classification to a suite of chemometrics methods viz. fuzzy clustering (FC), SIMCA and the rank ordering MCDM PROMETHEE and GAIA. Each method highlighted different properties of the data matrix according to the fingerprints from different types of Cassia seeds. In general, the PROMETHEE and GAIA MCDM methods provided the most comprehensive information for matching and discrimination of the fingerprints, and appeared to be best suited for quality assurance purposes for these and similar types of sample.
Muhamadali, Howbeer; Weaver, Danielle; Subaihi, Abdu; AlMasoud, Najla; Trivedi, Drupad K; Ellis, David I; Linton, Dennis; Goodacre, Royston
2016-01-07
Campylobacter species are one of the main causes of food poisoning worldwide. Despite the availability of established culturing and molecular techniques, due to the fastidious nature of these microorganisms, simultaneous detection and species differentiation still remains challenging. This study focused on the differentiation of eleven Campylobacter strains from six species, using Fourier transform infrared (FT-IR) and Raman spectroscopies, together with matrix-assisted laser desorption ionisation-time of flight-mass spectrometry (MALDI-TOF-MS), as physicochemical approaches for generating biochemical fingerprints. Cluster analysis of data from each of the three analytical approaches provided clear differentiation of each Campylobacter species, which was generally in agreement with a phylogenetic tree based on 16S rRNA gene sequences. Notably, although C. fetus subspecies fetus and venerealis are phylogenetically very closely related, using FT-IR and MALDI-TOF-MS data these subspecies were readily differentiated based on differences in the lipid (2920 and 2851 cm(-1)) and fingerprint regions (1500-500 cm(-1)) of the FT-IR spectra, and the 500-2000 m/z region of the MALDI-TOF-MS data. A finding that was further investigated with targeted lipidomics using liquid chromatography-mass spectrometry (LC-MS). Our results demonstrate that such metabolomics approaches combined with molecular biology techniques may provide critical information and knowledge related to the risk factors, virulence, and understanding of the distribution and transmission routes associated with different strains of foodborne Campylobacter spp.
NASA Astrophysics Data System (ADS)
Topping, David O.; Allan, James; Rami Alfarra, M.; Aumont, Bernard
2017-06-01
Our ability to model the chemical and thermodynamic processes that lead to secondary organic aerosol (SOA) formation is thought to be hampered by the complexity of the system. While there are fundamental models now available that can simulate the tens of thousands of reactions thought to take place, validation against experiments is highly challenging. Techniques capable of identifying individual molecules such as chromatography are generally only capable of quantifying a subset of the material present, making it unsuitable for a carbon budget analysis. Integrative analytical methods such as the Aerosol Mass Spectrometer (AMS) are capable of quantifying all mass, but because of their inability to isolate individual molecules, comparisons have been limited to simple data products such as total organic mass and the O : C ratio. More detailed comparisons could be made if more of the mass spectral information could be used, but because a discrete inversion of AMS data is not possible, this activity requires a system of predicting mass spectra based on molecular composition. In this proof-of-concept study, the ability to train supervised methods to predict electron impact ionisation (EI) mass spectra for the AMS is evaluated. Supervised Training Regression for the Arbitrary Prediction of Spectra (STRAPS) is not built from first principles. A methodology is constructed whereby the presence of specific mass-to-charge ratio (m/z) channels is fitted as a function of molecular structure before the relative peak height for each channel is similarly fitted using a range of regression methods. The widely used AMS mass spectral database is used as a basis for this, using unit mass resolution spectra of laboratory standards. Key to the fitting process is choice of structural information, or molecular fingerprint. Our approach relies on using supervised methods to automatically optimise the relationship between spectral characteristics and these molecular fingerprints. Therefore, any internal mechanisms or instrument features impacting on fragmentation are implicitly accounted for in the fitted model. Whilst one might expect a collection of keys specifically designed according to EI fragmentation principles to offer a robust basis, the suitability of a range of commonly available fingerprints is evaluated. Using available fingerprints in isolation, initial results suggest the generic public MACCS
fingerprints provide the most accurate trained model when combined with both decision trees and random forests, with median cosine angles of 0.94-0.97 between modelled and measured spectra. There is some sensitivity to choice of fingerprint, but most sensitivity is in choice of regression technique. Support vector machines perform the worst, with median values of 0.78-0.85 and lower ranges approaching 0.4, depending on the fingerprint used. More detailed analysis of modelled versus mass spectra demonstrates important composition-dependent sensitivities on a compound-by-compound basis. This is further demonstrated when we apply the trained methods to a model α-pinene SOA system, using output from the GECKO-A model. This shows that use of a generic fingerprint referred to as FP4
and one designed for vapour pressure predictions (Nanoolal
) gives plausible mass spectra, whilst the use of the MACCS keys in isolation performs poorly in this application, demonstrating the need for evaluating model performance against other SOA systems rather than existing laboratory databases on single compounds. Given the limited number of compounds used within the AMS training dataset, it is difficult to prescribe which combination of approach would lead to a robust generic model across all expected compositions. Nonetheless, the study demonstrates the use of a methodology that would be improved with more training data, fingerprints designed explicitly for fragmentation mechanisms occurring within the AMS, and data from additional mixed systems for further validation. To facilitate further development of the method, including application to other instruments, the model code for re-training is provided via a public Github and Zenodo software repository.
Antonio, May A. D.; Hillier, Sharon L.
2003-01-01
Lactobacillus crispatus is one of the predominant hydrogen peroxide (H2O2)-producing species found in the vagina and is under development as a probiotic for the treatment of bacterial vaginosis. In this study, we assessed whether DNA fingerprinting by repetitive element sequence-based PCR (rep-PCR) can be used to distinguish the capsule strain of L. crispatus (CTV-05) from other endogenous strains as well as other species of vaginal lactobacilli. Vaginal and rectal lactobacilli were identified to the species level by using whole-chromosome probe DNA hybridization. The DNAs from L. crispatus, L. jensenii, L. gasseri, and an as-yet-unnamed H2O2-negative Lactobacillus species designated 1086V were subjected to rep-PCR. The results of gel electrophoresis and ethidium bromide staining of the DNA fingerprints obtained were compared. L. crispatus CTV-05 had a unique DNA fingerprint compared to all other lactobacilli. DNA fingerprints for 27 production lots of L. crispatus sampled from 1994 through 2001 were identical to that of the original strain isolated in 1993, suggesting strain stability. In a pilot study of nine women, this DNA fingerprinting method distinguished CTV-05 from other endogenous vaginal lactobacilli prior to and after vaginal capsule use. rep-PCR DNA fingerprinting is useful for strain typing and for evaluating longitudinal loss or acquisition of vaginal lactobacilli used as probiotics. PMID:12734221
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-01-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue® mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents. PMID:22735701
Besaratinia, Ahmad; Li, Haiqing; Yoon, Jae-In; Zheng, Albert; Gao, Hanlin; Tommasi, Stella
2012-08-01
Many carcinogens leave a unique mutational fingerprint in the human genome. These mutational fingerprints manifest as specific types of mutations often clustering at certain genomic loci in tumor genomes from carcinogen-exposed individuals. To develop a high-throughput method for detecting the mutational fingerprint of carcinogens, we have devised a cost-, time- and labor-effective strategy, in which the widely used transgenic Big Blue mouse mutation detection assay is made compatible with the Roche/454 Genome Sequencer FLX Titanium next-generation sequencing technology. As proof of principle, we have used this novel method to establish the mutational fingerprints of three prominent carcinogens with varying mutagenic potencies, including sunlight ultraviolet radiation, 4-aminobiphenyl and secondhand smoke that are known to be strong, moderate and weak mutagens, respectively. For verification purposes, we have compared the mutational fingerprints of these carcinogens obtained by our newly developed method with those obtained by parallel analyses using the conventional low-throughput approach, that is, standard mutation detection assay followed by direct DNA sequencing using a capillary DNA sequencer. We demonstrate that this high-throughput next-generation sequencing-based method is highly specific and sensitive to detect the mutational fingerprints of the tested carcinogens. The method is reproducible, and its accuracy is comparable with that of the currently available low-throughput method. In conclusion, this novel method has the potential to move the field of carcinogenesis forward by allowing high-throughput analysis of mutations induced by endogenous and/or exogenous genotoxic agents.
Liang, Xianrui; Ma, Meiling; Su, Weike
2013-01-01
Background: A method for chemical fingerprint analysis of Hibiscus mutabilis L. leaves was developed based on ultra performance liquid chromatography with photodiode array detector (UPLC-PAD) combined with similarity analysis (SA) and hierarchical clustering analysis (HCA). Materials and Methods: 10 batches of Hibiscus mutabilis L. leaves samples were collected from different regions of China. UPLC-PAD was employed to collect chemical fingerprints of Hibiscus mutabilis L. leaves. Results: The relative standard deviations (RSDs) of the relative retention times (RRT) and relative peak areas (RPA) of 10 characteristic peaks (one of them was identified as rutin) in precision, repeatability and stability test were less than 3%, and the method of fingerprint analysis was validated to be suitable for the Hibiscus mutabilis L. leaves. Conclusions: The chromatographic fingerprints showed abundant diversity of chemical constituents qualitatively in the 10 batches of Hibiscus mutabilis L. leaves samples from different locations by similarity analysis on basis of calculating the correlation coefficients between each two fingerprints. Moreover, the HCA method clustered the samples into four classes, and the HCA dendrogram showed the close or distant relations among the 10 samples, which was consistent to the SA result to some extent. PMID:23930008
Practical aspects of chemometrics for oil spill fingerprinting.
Christensen, Jan H; Tomasi, Giorgio
2007-10-26
Tiered approaches for oil spill fingerprinting have evolved rapidly since the 1990s. Chemometrics provides a large number of tools for pattern recognition, calibration and classification that can increase the speed and the objectivity of the analysis and allow for more extensive use of the available data in this field. However, although the chemometric literature is extensive, it does not focus on practical issues that are relevant to oil spill fingerprinting. The aim of this review is to provide a framework for the use of chemometric approaches in tiered oil spill fingerprinting and to provide clear-cut practical details and experiences that can be used by the forensic chemist. The framework is based on methods for initial screening, which include classification of samples into oil type, detection of non matches and of weathering state, and detailed oil spill fingerprinting, in which a more rigorous matching of an oil spill sample to suspected source oils is obtained. This review is intended as a tutorial, and is based on two examples of initial screening using respectively gas chromatography with flame ionization detection and fluorescence spectroscopy; and two of detailed oil spill fingerprinting where gas chromatography-mass spectrometry data are analyzed according to two approaches: The first relying on sections of processed chromatograms and the second on diagnostic ratios.
Interpretation of fingerprint image quality features extracted by self-organizing maps
NASA Astrophysics Data System (ADS)
Danov, Ivan; Olsen, Martin A.; Busch, Christoph
2014-05-01
Accurate prediction of fingerprint quality is of significant importance to any fingerprint-based biometric system. Ensuring high quality samples for both probe and reference can substantially improve the system's performance by lowering false non-matches, thus allowing finer adjustment of the decision threshold of the biometric system. Furthermore, the increasing usage of biometrics in mobile contexts demands development of lightweight methods for operational environment. A novel two-tier computationally efficient approach was recently proposed based on modelling block-wise fingerprint image data using Self-Organizing Map (SOM) to extract specific ridge pattern features, which are then used as an input to a Random Forests (RF) classifier trained to predict the quality score of a propagated sample. This paper conducts an investigative comparative analysis on a publicly available dataset for the improvement of the two-tier approach by proposing additionally three feature interpretation methods, based respectively on SOM, Generative Topographic Mapping and RF. The analysis shows that two of the proposed methods produce promising results on the given dataset.
Integration of Directional Antennas in an RSS Fingerprinting-Based Indoor Localization System
Guzmán-Quirós, Raúl; Martínez-Sala, Alejandro; Gómez-Tornero, José Luis; García-Haro, Joan
2015-01-01
In this paper, the integration of directional antennas in a room-level received signal strength (RSS) fingerprinting-based indoor localization system (ILS) is studied. The sensor reader (SR), which is in charge of capturing the RSS to infer the tag position, can be attached to an omnidirectional or directional antenna. Unlike commonly-employed omnidirectional antennas, directional antennas can receive a stronger signal from the direction in which they are pointed, resulting in a different RSS distributions in space and, hence, more distinguishable fingerprints. A simulation tool and a system management software have been also developed to control the system and assist the initial antenna deployment, reducing time-consuming costs. A prototype was mounted in a real scenario, with a number of SRs with omnidirectional and directional antennas properly positioned. Different antenna configurations have been studied, evidencing a promising capability of directional antennas to enhance the performance of RSS fingerprinting-based ILS, reducing the number of required SRs and also increasing the localization success. PMID:26703620
Automatic Construction of Wi-Fi Radio Map Using Smartphones
NASA Astrophysics Data System (ADS)
Liu, Tao; Li, Qingquan; Zhang, Xing
2016-06-01
Indoor positioning could provide interesting services and applications. As one of the most popular indoor positioning methods, location fingerprinting determines the location of mobile users by matching the received signal strength (RSS) which is location dependent. However, fingerprinting-based indoor positioning requires calibration and updating of the fingerprints which is labor-intensive and time-consuming. In this paper, we propose a visual-based approach for the construction of radio map for anonymous indoor environments without any prior knowledge. This approach collects multi-sensors data, e.g. video, accelerometer, gyroscope, Wi-Fi signals, etc., when people (with smartphones) walks freely in indoor environments. Then, it uses the multi-sensor data to restore the trajectories of people based on an integrated structure from motion (SFM) and image matching method, and finally estimates location of sampling points on the trajectories and construct Wi-Fi radio map. Experiment results show that the average location error of the fingerprints is about 0.53 m.
Ai, Yuncan; Ai, Hannan; Meng, Fanmei; Zhao, Lei
2013-01-01
No attention has been paid on comparing a set of genome sequences crossing genetic components and biological categories with far divergence over large size range. We define it as the systematic comparative genomics and aim to develop the methodology. First, we create a method, GenomeFingerprinter, to unambiguously produce a set of three-dimensional coordinates from a sequence, followed by one three-dimensional plot and six two-dimensional trajectory projections, to illustrate the genome fingerprint of a given genome sequence. Second, we develop a set of concepts and tools, and thereby establish a method called the universal genome fingerprint analysis (UGFA). Particularly, we define the total genetic component configuration (TGCC) (including chromosome, plasmid, and phage) for describing a strain as a systematic unit, the universal genome fingerprint map (UGFM) of TGCC for differentiating strains as a universal system, and the systematic comparative genomics (SCG) for comparing a set of genomes crossing genetic components and biological categories. Third, we construct a method of quantitative analysis to compare two genomes by using the outcome dataset of genome fingerprint analysis. Specifically, we define the geometric center and its geometric mean for a given genome fingerprint map, followed by the Euclidean distance, the differentiate rate, and the weighted differentiate rate to quantitatively describe the difference between two genomes of comparison. Moreover, we demonstrate the applications through case studies on various genome sequences, giving tremendous insights into the critical issues in microbial genomics and taxonomy. We have created a method, GenomeFingerprinter, for rapidly computing, geometrically visualizing, intuitively comparing a set of genomes at genome fingerprint level, and hence established a method called the universal genome fingerprint analysis, as well as developed a method of quantitative analysis of the outcome dataset. These have set up the methodology of systematic comparative genomics based on the genome fingerprint analysis.
Yan, Binjun; Fang, Zhonghua; Shen, Lijuan; Qu, Haibin
2015-01-01
The batch-to-batch quality consistency of herbal drugs has always been an important issue. To propose a methodology for batch-to-batch quality control based on HPLC-MS fingerprints and process knowledgebase. The extraction process of Compound E-jiao Oral Liquid was taken as a case study. After establishing the HPLC-MS fingerprint analysis method, the fingerprints of the extract solutions produced under normal and abnormal operation conditions were obtained. Multivariate statistical models were built for fault detection and a discriminant analysis model was built using the probabilistic discriminant partial-least-squares method for fault diagnosis. Based on multivariate statistical analysis, process knowledge was acquired and the cause-effect relationship between process deviations and quality defects was revealed. The quality defects were detected successfully by multivariate statistical control charts and the type of process deviations were diagnosed correctly by discriminant analysis. This work has demonstrated the benefits of combining HPLC-MS fingerprints, process knowledge and multivariate analysis for the quality control of herbal drugs. Copyright © 2015 John Wiley & Sons, Ltd.
Optical cryptography with biometrics for multi-depth objects.
Yan, Aimin; Wei, Yang; Hu, Zhijuan; Zhang, Jingtao; Tsang, Peter Wai Ming; Poon, Ting-Chung
2017-10-11
We propose an optical cryptosystem for encrypting images of multi-depth objects based on the combination of optical heterodyne technique and fingerprint keys. Optical heterodyning requires two optical beams to be mixed. For encryption, each optical beam is modulated by an optical mask containing either the fingerprint of the person who is sending, or receiving the image. The pair of optical masks are taken as the encryption keys. Subsequently, the two beams are used to scan over a multi-depth 3-D object to obtain an encrypted hologram. During the decryption process, each sectional image of the 3-D object is recovered by convolving its encrypted hologram (through numerical computation) with the encrypted hologram of a pinhole image that is positioned at the same depth as the sectional image. Our proposed method has three major advantages. First, the lost-key situation can be avoided with the use of fingerprints as the encryption keys. Second, the method can be applied to encrypt 3-D images for subsequent decrypted sectional images. Third, since optical heterodyning scanning is employed to encrypt a 3-D object, the optical system is incoherent, resulting in negligible amount of speckle noise upon decryption. To the best of our knowledge, this is the first time optical cryptography of 3-D object images has been demonstrated in an incoherent optical system with biometric keys.
Validating a biometric authentication system: sample size requirements.
Dass, Sarat C; Zhu, Yongfang; Jain, Anil K
2006-12-01
Authentication systems based on biometric features (e.g., fingerprint impressions, iris scans, human face images, etc.) are increasingly gaining widespread use and popularity. Often, vendors and owners of these commercial biometric systems claim impressive performance that is estimated based on some proprietary data. In such situations, there is a need to independently validate the claimed performance levels. System performance is typically evaluated by collecting biometric templates from n different subjects, and for convenience, acquiring multiple instances of the biometric for each of the n subjects. Very little work has been done in 1) constructing confidence regions based on the ROC curve for validating the claimed performance levels and 2) determining the required number of biometric samples needed to establish confidence regions of prespecified width for the ROC curve. To simplify the analysis that address these two problems, several previous studies have assumed that multiple acquisitions of the biometric entity are statistically independent. This assumption is too restrictive and is generally not valid. We have developed a validation technique based on multivariate copula models for correlated biometric acquisitions. Based on the same model, we also determine the minimum number of samples required to achieve confidence bands of desired width for the ROC curve. We illustrate the estimation of the confidence bands as well as the required number of biometric samples using a fingerprint matching system that is applied on samples collected from a small population.
NASA Astrophysics Data System (ADS)
Torres Astorga, Romina; Velasco, Hugo; Dercon, Gerd; Mabit, Lionel
2017-04-01
Soil erosion and associated sediment transportation and deposition processes are key environmental problems in Central Argentinian watersheds. Several land use practices - such as intensive grazing and crop cultivation - are considered likely to increase significantly land degradation and soil/sediment erosion processes. Characterized by highly erodible soils, the sub catchment Estancia Grande (12.3 km2) located 23 km north east of San Luis has been investigated by using sediment source fingerprinting techniques to identify critical hot spots of land degradation. The authors created 4 artificial mixtures using known quantities of the most representative sediment sources of the studied catchment. The first mixture was made using four rotation crop soil sources. The second and the third mixture were created using different proportions of 4 different soil sources including soils from a feedlot, a rotation crop, a walnut forest and a grazing soil. The last tested mixture contained the same sources as the third mixture but with the addition of a fifth soil source (i.e. a native bank soil). The Energy Dispersive X Ray Fluorescence (EDXRF) analytical technique has been used to reconstruct the source sediment proportion of the original mixtures. Besides using a traditional method of fingerprint selection such as Kruskal-Wallis H-test and Discriminant Function Analysis (DFA), the authors used the actual source proportions in the mixtures and selected from the subset of tracers that passed the statistical tests specific elemental tracers that were in agreement with the expected mixture contents. The selection process ended with testing in a mixing model all possible combinations of the reduced number of tracers obtained. Alkaline earth metals especially Strontium (Sr) and Barium (Ba) were identified as the most effective fingerprints and provided a reduced Mean Absolute Error (MAE) of approximately 2% when reconstructing the 4 artificial mixtures. This study demonstrates that the EDXRF fingerprinting approach performed very well in reconstructing our original mixtures especially in identifying and quantifying the contribution of the 4 rotation crop soil sources in the first mixture.
Dakal, Tikam Chand; Solieri, Lisa; Giudici, Paolo
2018-06-01
Molecular typing techniques are key tools in surveillance of food spoilage yeasts, in investigations on intra-species population diversity, and in tracing selected starters during fermentation. Unlike previous works on strain typing of Zygosaccharomyces spoilage species, here Zygosaccharomyces mellis and the Zygosaccharoymces rouxii complex yeasts, which include Z. rouxii, Zygosaccharomyces sapae, and a mosaic lineage (ML) of putatively hybrids, were evaluated by three typing methods for intra- and inter-species resolution. Overall these yeasts are relevant for food fermentation and spoilage, but are quite difficult to discriminate at strain and species level as they evolved by reticulation. A pool of 76 strains from different sources were typed by M13 and (GTG) 5 MSP-PCR fingerprinting and PCR-RFLP of ribosomal intergenic spacer region (IGS). We demonstrated that M13 overcame (GTG) 5 fingerprinting to group Z. sapae, Z. rouxii, Z. mellis and the ML isolates in congruent distinct clusters. Even if (GTG) 5 primer yielded a number of DNA fingerprints comparable with those obtained by M13 primer, it failed to discriminate Z. sapae, Z. mellis and Z. rouxii at species level. Clustering of IGS RFLP patterns obtained with three endonucleases produced groups congruent with species assignment and highlighted intra-species diversity similar to that observed by M13 fingerprinting. However, IGS PCR amplification failed for 14 ML and 6 Z. mellis strains under the experimental conditions tested here, indicating that this marker could be less easy to use in fast typing protocol. Finally, our results posit that the genetic diversity within Z. sapae and Z. mellis could be shaped by isolation source. The information generated in this study would facilitate the monitoring of these yeasts during food processing and storage, and provides preliminary evidences about Z. sapae and Z. mellis intra-species diversity. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Improved EKG-Based Key Agreement Scheme for Body Area Networks
NASA Astrophysics Data System (ADS)
Ali, Aftab; Khan, Farrukh Aslam
Body area networks (BANs) play an important role in mobile health monitoring such as, monitoring the health of patients in a hospital or physical status of soldiers in a battlefield. By securing the BAN, we actually secure the lives of soldiers or patients. This work presents an electrocardiogram (EKG) based key agreement scheme using discrete wavelet transform (DWT) for the sake of generating a common key in a body area network. The use of EKG brings plug-and-play capability in BANs; i.e., the sensors are just placed on the human body and a secure communication is started among these sensors. The process is made secure by using the iris or fingerprints to lock and then unlock the blocks during exchange between the communicating sensors. The locking and unlocking is done through watermarking. When a watermark is added at the sender side, the block is locked and when it is removed at the receiver side, the block is unlocked. By using iris or fingerprints, the security of the technique improves and its plug-and-play capability is not affected. The analysis is done by using real 2-lead EKG data sampled at a rate of 125 Hz taken from MIT PhysioBank database.
Hinners, Paige; O'Neill, Kelly C; Lee, Young Jin
2018-03-26
Fingerprints, specifically the ridge details within the print, have long been used in forensic investigations for individual identification. Beyond the ridge detail, fingerprints contain useful chemical information. The study of fingerprint chemical information has become of interest, especially with mass spectrometry imaging technologies. Mass spectrometry imaging visualizes the spatial relationship of each compound detected, allowing ridge detail and chemical information in a single analysis. In this work, a range of exogenous fingerprint compounds that may reveal a personal lifestyle were studied using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). Studied chemical compounds include various brands of bug sprays and sunscreens, as well as food oils, alcohols, and citrus fruits. Brand differentiation and source determination were possible based on the active ingredients or exclusive compounds left in fingerprints. Tandem mass spectrometry was performed for the key compounds, so that these compounds could be confidently identified in a single multiplex mass spectrometry imaging data acquisition.
Secure Fingerprint Identification of High Accuracy
2014-01-01
secure ) solution of complexity O(n3) based on Gaussian elimination. When it is applied to biometrics X and Y with mX and mY minutiae, respectively...collections of biometric data in use today include, for example, fingerprint, face, and iris images collected by the US Department of Homeland Security ...work we focus on fingerprint data due to popularity and good accuracy of this type of biometry. We formulate the problem of private, or secure , finger
NASA Astrophysics Data System (ADS)
Roman, Bart I.; Guedes, Rita C.; Stevens, Christian V.; García-Sosa, Alfonso T.
2018-05-01
In multitarget drug design, it is critical to identify active and inactive compounds against a variety of targets and antitargets. Multitarget strategies thus test the limits of available technology, be that in screening large databases of compounds versus a large number of targets, or in using in silico methods for understanding and reliably predicting these pharmacological outcomes. In this paper, we have evaluated the potential of several in silico approaches to predict the target, antitarget and physicochemical profile of (S)-blebbistatin, the best-known myosin II ATPase inhibitor, and a series of analogs thereof. Standard and augmented structure-based design techniques could not recover the observed activity profiles. A ligand-based method using molecular fingerprints was, however, able to select actives for myosin II inhibition. Using further ligand- and structure-based methods, we also evaluated toxicity through androgen receptor binding, affinity for an array of antitargets and the ADME profile (including assay-interfering compounds) of the series. In conclusion, in the search for (S)-blebbistatin analogs, the dissimilarity distance of molecular fingerprints to known actives and the computed antitarget and physicochemical profile of the molecules can be used for compound design for molecules with potential as tools for modulating myosin II and motility-related diseases.
Interrogation of an autofluorescence-based method for protein fingerprinting.
Siddaramaiah, Manjunath; Rao, Bola Sadashiva S; Joshi, Manjunath B; Datta, Anirbit; Sandya, S; Vishnumurthy, Vasudha; Chandra, Subhash; Nayak, Subramanya G; Satyamoorthy, Kapaettu; Mahato, Krishna K
2018-03-14
In the present study, we have designed a laser-induced fluorescence (LIF) based instrumentation and developed a sensitive methodology for the effective separation, visualization, identification and analysis of proteins on a single platform. In this method, intrinsic fluorescence spectra of proteins were detected after separation on 1 or 2 dimensional Sodium Dodecyl Sulfate-Tris(2-carboxyethyl)phosphine (SDS-TCEP) polyacrylamide gel electrophoresis (PAGE) and the data were analyzed. The MATLAB assisted software was designed for the development of PAGE fingerprint for the visualization of protein after 1- and 2-dimensional protein separation. These provided objective parameters of intrinsic fluorescence intensity, emission peak, molecular weight and isoelectric point using a single platform. Further, the current architecture could differentiate the overlapping proteins in the PAGE gels which otherwise were not identifiable by conventional staining, imaging and tagging methods. Categorization of the proteins based on the presence or absence of tyrosine or tryptophan residues and assigning the corresponding emission peaks (309-356 nm) with pseudo colors allowed the detection of proportion of proteins within the given spectrum. The present methodology doesn't use stains or tags, hence amenable to couple with mass spectroscopic measurements. This technique may have relevance in the field of proteomics that is used for innumerable applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Using information from historical high-throughput screens to predict active compounds.
Riniker, Sereina; Wang, Yuan; Jenkins, Jeremy L; Landrum, Gregory A
2014-07-28
Modern high-throughput screening (HTS) is a well-established approach for hit finding in drug discovery that is routinely employed in the pharmaceutical industry to screen more than a million compounds within a few weeks. However, as the industry shifts to more disease-relevant but more complex phenotypic screens, the focus has moved to piloting smaller but smarter chemically/biologically diverse subsets followed by an expansion around hit compounds. One standard method for doing this is to train a machine-learning (ML) model with the chemical fingerprints of the tested subset of molecules and then select the next compounds based on the predictions of this model. An alternative approach would be to take advantage of the wealth of bioactivity information contained in older (full-deck) screens using so-called HTS fingerprints, where each element of the fingerprint corresponds to the outcome of a particular assay, as input to machine-learning algorithms. We constructed HTS fingerprints using two collections of data: 93 in-house assays and 95 publicly available assays from PubChem. For each source, an additional set of 51 and 46 assays, respectively, was collected for testing. Three different ML methods, random forest (RF), logistic regression (LR), and naïve Bayes (NB), were investigated for both the HTS fingerprint and a chemical fingerprint, Morgan2. RF was found to be best suited for learning from HTS fingerprints yielding area under the receiver operating characteristic curve (AUC) values >0.8 for 78% of the internal assays and enrichment factors at 5% (EF(5%)) >10 for 55% of the assays. The RF(HTS-fp) generally outperformed the LR trained with Morgan2, which was the best ML method for the chemical fingerprint, for the majority of assays. In addition, HTS fingerprints were found to retrieve more diverse chemotypes. Combining the two models through heterogeneous classifier fusion led to a similar or better performance than the best individual model for all assays. Further validation using a pair of in-house assays and data from a confirmatory screen--including a prospective set of around 2000 compounds selected based on our approach--confirmed the good performance. Thus, the combination of machine-learning with HTS fingerprints and chemical fingerprints utilizes information from both domains and presents a very promising approach for hit expansion, leading to more hits. The source code used with the public data is provided.
Piotrowski, Paulina K; Weggler, Benedikt A; Yoxtheimer, David A; Kelly, Christina N; Barth-Naftilan, Erica; Saiers, James E; Dorman, Frank L
2018-04-17
Hydraulic fracturing is an increasingly common technique for the extraction of natural gas entrapped in shale formations. This technique has been highly criticized due to the possibility of environmental contamination, underscoring the need for method development to identify chemical factors that could be utilized in point-source identification of environmental contamination events. Here, we utilize comprehensive two-dimensional gas chromatography (GC × GC) coupled to high-resolution time-of-flight (HRT) mass spectrometry, which offers a unique instrumental combination allowing for petroleomics hydrocarbon fingerprinting. Four flowback fluids from Marcellus shale gas wells in geographic proximity were analyzed for differentiating factors that could be exploited in environmental forensics investigations of shale gas impacts. Kendrick mass defect (KMD) plots of these flowback fluids illustrated well-to-well differences in heteroatomic substituted hydrocarbons, while GC × GC separations showed variance in cyclic hydrocarbons and polyaromatic hydrocarbons among the four wells. Additionally, generating plots that combine GC × GC separation with KMD established a novel data-rich visualization technique that further differentiated the samples.
Fruetel, Julie A [Livermore, CA; Fiechtner, Gregory J [Bethesda, MD; Kliner, Dahv A. V. [San Ramon, CA; McIlroy, Andrew [Livermore, CA
2009-05-05
The present embodiment describes a miniature, microfluidic, absorption-based sensor to detect proteins at sensitivities comparable to LIF but without the need for tagging. This instrument utilizes fiber-based evanescent-field cavity-ringdown spectroscopy, in combination with faceted prism microchannels. The combination of these techniques will increase the effective absorption path length by a factor of 10.sup.3 to 10.sup.4 (to .about.1-m), thereby providing unprecedented sensitivity using direct absorption. The coupling of high-sensitivity absorption with high-performance microfluidic separation will enable real-time sensing of biological agents in aqueous samples (including aerosol collector fluids) and will provide a general method with spectral fingerprint capability for detecting specific bio-agents.
Universal fingerprinting chip server.
Casique-Almazán, Janet; Larios-Serrato, Violeta; Olguín-Ruíz, Gabriela Edith; Sánchez-Vallejo, Carlos Javier; Maldonado-Rodríguez, Rogelio; Méndez-Tenorio, Alfonso
2012-01-01
The Virtual Hybridization approach predicts the most probable hybridization sites across a target nucleic acid of known sequence, including both perfect and mismatched pairings. Potential hybridization sites, having a user-defined minimum number of bases that are paired with the oligonucleotide probe, are first identified. Then free energy values are evaluated for each potential hybridization site, and if it has a calculated free energy of equal or higher negative value than a user-defined free energy cut-off value, it is considered as a site of high probability of hybridization. The Universal Fingerprinting Chip Applications Server contains the software for visualizing predicted hybridization patterns, which yields a simulated hybridization fingerprint that can be compared with experimentally derived fingerprints or with a virtual fingerprint arising from a different sample. The database is available for free at http://bioinformatica.homelinux.org/UFCVH/
Molecular graph convolutions: moving beyond fingerprints
Kearnes, Steven; McCloskey, Kevin; Berndl, Marc; Pande, Vijay; Riley, Patrick
2016-01-01
Molecular “fingerprints” encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph—atoms, bonds, distances, etc.—which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement. PMID:27558503
Fingerprint Liveness Detection in the Presence of Capable Intruders.
Sequeira, Ana F; Cardoso, Jaime S
2015-06-19
Fingerprint liveness detection methods have been developed as an attempt to overcome the vulnerability of fingerprint biometric systems to spoofing attacks. Traditional approaches have been quite optimistic about the behavior of the intruder assuming the use of a previously known material. This assumption has led to the use of supervised techniques to estimate the performance of the methods, using both live and spoof samples to train the predictive models and evaluate each type of fake samples individually. Additionally, the background was often included in the sample representation, completely distorting the decision process. Therefore, we propose that an automatic segmentation step should be performed to isolate the fingerprint from the background and truly decide on the liveness of the fingerprint and not on the characteristics of the background. Also, we argue that one cannot aim to model the fake samples completely since the material used by the intruder is unknown beforehand. We approach the design by modeling the distribution of the live samples and predicting as fake the samples very unlikely according to that model. Our experiments compare the performance of the supervised approaches with the semi-supervised ones that rely solely on the live samples. The results obtained differ from the ones obtained by the more standard approaches which reinforces our conviction that the results in the literature are misleadingly estimating the true vulnerability of the biometric system.
Mink, Tineke; Voorhaar, Annelies; Stoel, Reinoud; de Puit, Marcel
2013-09-01
The analysis of the constituents of fingerprints has been described numerous times, mainly with the purpose of determining the aging effect on fingerprints or showing the differences between donors or groups of donors. In this paper we describe the use of derivatized amino acids to determine the efficacy of the visualization reagents 1,8-diazafluoren-9-one (DFO) and ninhydrin. At present certain conditions are used for the application of these reagents, as determined by trial-and-error investigations, to the effect on fingerprints. The recovery of amino acids from a porous surface can be used as a measure for the efficacy of a visualization agent. In this paper we describe a method for the determination of the amount of amino acid left after reaction with well known fingerprint visualization reagents. This will allow a more scientific approach to method development for fingermark enhancement techniques. Furthermore, investigations on the influence of the concentration of fingermark amino acids, the order of application of and exposure time to reagents and the influence of age of the amino acids were carried out. These studies have resulted in a broader understanding of the mechanism involved in visualization of fingermarks using DFO and ninhydrin. Copyright © 2013 Forensic Science Society. Published by Elsevier Ireland Ltd. All rights reserved.
Fingerprint Liveness Detection in the Presence of Capable Intruders
Sequeira, Ana F.; Cardoso, Jaime S.
2015-01-01
Fingerprint liveness detection methods have been developed as an attempt to overcome the vulnerability of fingerprint biometric systems to spoofing attacks. Traditional approaches have been quite optimistic about the behavior of the intruder assuming the use of a previously known material. This assumption has led to the use of supervised techniques to estimate the performance of the methods, using both live and spoof samples to train the predictive models and evaluate each type of fake samples individually. Additionally, the background was often included in the sample representation, completely distorting the decision process. Therefore, we propose that an automatic segmentation step should be performed to isolate the fingerprint from the background and truly decide on the liveness of the fingerprint and not on the characteristics of the background. Also, we argue that one cannot aim to model the fake samples completely since the material used by the intruder is unknown beforehand. We approach the design by modeling the distribution of the live samples and predicting as fake the samples very unlikely according to that model. Our experiments compare the performance of the supervised approaches with the semi-supervised ones that rely solely on the live samples. The results obtained differ from the ones obtained by the more standard approaches which reinforces our conviction that the results in the literature are misleadingly estimating the true vulnerability of the biometric system. PMID:26102491
Geographical provenance of palm oil by fatty acid and volatile compound fingerprinting techniques.
Tres, A; Ruiz-Samblas, C; van der Veer, G; van Ruth, S M
2013-04-15
Analytical methods are required in addition to administrative controls to verify the geographical origin of vegetable oils such as palm oil in an objective manner. In this study the application of fatty acid and volatile organic compound fingerprinting in combination with chemometrics have been applied to verify the geographical origin of crude palm oil (continental scale). For this purpose 94 crude palm oil samples were collected from South East Asia (55), South America (11) and Africa (28). Partial least squares discriminant analysis (PLS-DA) was used to develop a hierarchical classification model by combining two consecutive binary PLS-DA models. First, a PLS-DA model was built to distinguish South East Asian from non-South East Asian palm oil samples. Then a second model was developed, only for the non-Asian samples, to discriminate African from South American crude palm oil. Models were externally validated by using them to predict the identity of new authentic samples. The fatty acid fingerprinting model revealed three misclassified samples. The volatile compound fingerprinting models showed an 88%, 100% and 100% accuracy for the South East Asian, African and American class, respectively. The verification of the geographical origin of crude palm oil is feasible by fatty acid and volatile compound fingerprinting. Further research is required to further validate the approach and to increase its spatial specificity to country/province scale. Copyright © 2012 Elsevier Ltd. All rights reserved.
A synthesis of fluorescent starch based on carbon nanoparticles for fingerprints detection
NASA Astrophysics Data System (ADS)
Li, Hongren; Guo, Xingjia; Liu, Jun; Li, Feng
2016-10-01
A pyrolysis method for synthesizing carbon nanoparticles (CNPs) were developed by using malic acid and ammonium oxalate as raw materials. The incorporation of a minor amount of carbon nanoparticles into starch powder imparts remarkable color-tunability. Based on this phenomenon, an environment friendly fluorescent starch powder for detecting latent fingerprints in non-porous surfaces was prepared. The fingerprints on different non-porous surfaces developed with this powder showed very good fluorescent images under ultraviolet excitation. The method using fluorescent starch powder as fluorescent marks is simple, rapid and green. Experimental results illustrated the effectiveness of proposed methods, enabling its practical applications in forensic sciences.
AllergenFP: allergenicity prediction by descriptor fingerprints.
Dimitrov, Ivan; Naneva, Lyudmila; Doytchinova, Irini; Bangov, Ivan
2014-03-15
Allergenicity, like antigenicity and immunogenicity, is a property encoded linearly and non-linearly, and therefore the alignment-based approaches are not able to identify this property unambiguously. A novel alignment-free descriptor-based fingerprint approach is presented here and applied to identify allergens and non-allergens. The approach was implemented into a four step algorithm. Initially, the protein sequences are described by amino acid principal properties as hydrophobicity, size, relative abundance, helix and β-strand forming propensities. Then, the generated strings of different length are converted into vectors with equal length by auto- and cross-covariance (ACC). The vectors were transformed into binary fingerprints and compared in terms of Tanimoto coefficient. The approach was applied to a set of 2427 known allergens and 2427 non-allergens and identified correctly 88% of them with Matthews correlation coefficient of 0.759. The descriptor fingerprint approach presented here is universal. It could be applied for any classification problem in computational biology. The set of E-descriptors is able to capture the main structural and physicochemical properties of amino acids building the proteins. The ACC transformation overcomes the main problem in the alignment-based comparative studies arising from the different length of the aligned protein sequences. The conversion of protein ACC values into binary descriptor fingerprints allows similarity search and classification. The algorithm described in the present study was implemented in a specially designed Web site, named AllergenFP (FP stands for FingerPrint). AllergenFP is written in Python, with GIU in HTML. It is freely accessible at http://ddg-pharmfac.net/Allergen FP. idoytchinova@pharmfac.net or ivanbangov@shu-bg.net.
Girelli, Carlos Magno Alves
2016-05-01
Fingerprints present in false identity documents were found on the web. In some cases, laterally reversed (mirrored) images of a same fingerprint were observed in different documents. In the present work, 100 fingerprints images downloaded from the web, as well as their reversals obtained by image editing, were compared between themselves and against the database of the Brazilian Federal Police AFIS, in order to better understand trends about this kind of forgery in Brazil. Some image editing effects were observed in the analyzed fingerprints: addition of artifacts (such as watermarks), image rotation, image stylization, lateral reversal and tonal reversal. Discussion about lateral reversals' detection is presented in this article, as well as suggestion to reduce errors due to missed HIT decisions between reversed fingerprints. The present work aims to highlight the importance of the fingerprints' analysis when performing document examination, especially when only copies of documents are available, something very common in Brazil. Besides the intrinsic features of the fingermarks considered in three levels of details by ACE-V methodology, some visual features of the fingerprints images can be helpful to identify sources of forgeries and modus operandi, such as: limits and image contours, fails in the friction ridges caused by excess or lack of inking and presence of watermarks and artifacts arising from the background. Based on the agreement of such features in fingerprints present in different identity documents and also on the analysis of the time and location where the documents were seized, it is possible to highlight potential links between apparently unconnected crimes. Therefore, fingerprints have potential to reduce linkage blindness and the present work suggests the analysis of fingerprints when profiling false identity documents, as well as the inclusion of fingerprints features in the profile of the documents. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Cabral, E C; Sevart, L; Spindola, H M; Coelho, M B; Sousa, I M O; Queiroz, N C A; Foglio, M A; Eberlin, M N; Riveros, J M
2013-02-01
The oil obtained from Pterodon pubescens (Leguminosae) seeds are known to display anti-cancer, anti-dermatogenic and anti-nociceptive activitiy. Phytochemical studies have demonstrated that its main constituents are diterpenoids with voucapan skeletons. Considering the potential biological activities of the oil, rapid and efficient methods for assessing its quality would facilitate certification and quality control. To develop a direct mass spectrometric fingerprinting method for the P. pubescens seed oil that would focus on the major diterpenoids constituents, enabling quality control, origin certification and recognition of marker species in commercially available products. Two techniques were used: (i) direct infusion electrospray ionisation (ESI) mass spectrometry after solvent extraction and dilution and (ii) ambient desorption/ionisation via easy ambient sonic-spray ionisation, EASI(+)-MS, performed directly on the seed surface or at a paper surface imprinted with the oil. From a combination of ESI-MS, HRESI-MS and ESI-MS/MS data, 12 diterpenes were characterised, and typical profiles were obtained for the oil extract or the crude oil via both ESI-MS and EASI-MS. These techniques require no or very simple sample preparation protocols and the whole analytical processes with spectra acquisition take just a few minutes. Both techniques, but particularly EASI-MS, provide simple, fast and efficient MS fingerprinting methodologies to characterise the P. pubescens oil with typical (di)terpene profiles being applicable to quality control and certification of authenticity and origin. Copyright © 2012 John Wiley & Sons, Ltd.
An atomistic fingerprint algorithm for learning ab initio molecular force fields
NASA Astrophysics Data System (ADS)
Tang, Yu-Hang; Zhang, Dongkun; Karniadakis, George Em
2018-01-01
Molecular fingerprints, i.e., feature vectors describing atomistic neighborhood configurations, is an important abstraction and a key ingredient for data-driven modeling of potential energy surface and interatomic force. In this paper, we present the density-encoded canonically aligned fingerprint algorithm, which is robust and efficient, for fitting per-atom scalar and vector quantities. The fingerprint is essentially a continuous density field formed through the superimposition of smoothing kernels centered on the atoms. Rotational invariance of the fingerprint is achieved by aligning, for each fingerprint instance, the neighboring atoms onto a local canonical coordinate frame computed from a kernel minisum optimization procedure. We show that this approach is superior over principal components analysis-based methods especially when the atomistic neighborhood is sparse and/or contains symmetry. We propose that the "distance" between the density fields be measured using a volume integral of their pointwise difference. This can be efficiently computed using optimal quadrature rules, which only require discrete sampling at a small number of grid points. We also experiment on the choice of weight functions for constructing the density fields and characterize their performance for fitting interatomic potentials. The applicability of the fingerprint is demonstrated through a set of benchmark problems.
Fingerprinting microbiomes towards screening for microbial antibiotic resistance.
Jin, Naifu; Zhang, Dayi; Martin, Francis L
2017-05-22
There is an increasing need to investigate microbiomes in their entirety in a variety of contexts ranging from environmental to human health scenarios. This requirement is becoming increasingly important with the emergence of antibiotic resistance. In general, more conventional approaches are too expensive and/or time-consuming and often predicated on prior knowledge of the microorganisms one wishes to study. Herein, we propose the use of biospectroscopy tools as relatively high-throughput, non-destructive approaches to profile microbiomes under study. Fourier-transform infrared (FTIR) or Raman spectroscopy both generate fingerprint spectra of biological material and such spectra can readily be subsequently classed according to biochemical changes in the microbiota, such as emergence of antibiotic resistance. FTIR spectroscopy techniques generally can only be applied to desiccated material whereas Raman approaches can be applied to more hydrated samples. The ability to readily fingerprint microbiomes could lend itself to new approaches in determining microbial behaviours and emergence of antibiotic resistance.