Approaches for in silico finishing of microbial genome sequences
Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva
2017-01-01
Abstract The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as “drafts”, incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing. PMID:28898352
Approaches for in silico finishing of microbial genome sequences.
Kremer, Frederico Schmitt; McBride, Alan John Alexander; Pinto, Luciano da Silva
The introduction of next-generation sequencing (NGS) had a significant effect on the availability of genomic information, leading to an increase in the number of sequenced genomes from a large spectrum of organisms. Unfortunately, due to the limitations implied by the short-read sequencing platforms, most of these newly sequenced genomes remained as "drafts", incomplete representations of the whole genetic content. The previous genome sequencing studies indicated that finishing a genome sequenced by NGS, even bacteria, may require additional sequencing to fill the gaps, making the entire process very expensive. As such, several in silico approaches have been developed to optimize the genome assemblies and facilitate the finishing process. The present review aims to explore some free (open source, in many cases) tools that are available to facilitate genome finishing.
Eastman, Alexander W.; Yuan, Ze-Chun
2015-01-01
Advances in sequencing technology have drastically increased the depth and feasibility of bacterial genome sequencing. However, little information is available that details the specific techniques and procedures employed during genome sequencing despite the large numbers of published genomes. Shotgun approaches employed by second-generation sequencing platforms has necessitated the development of robust bioinformatics tools for in silico assembly, and complete assembly is limited by the presence of repetitive DNA sequences and multi-copy operons. Typically, re-sequencing with multiple platforms and laborious, targeted Sanger sequencing are employed to finish a draft bacterial genome. Here we describe a novel strategy based on the identification and targeted sequencing of repetitive rDNA operons to expedite bacterial genome assembly and finishing. Our strategy was validated by finishing the genome of Paenibacillus polymyxa strain CR1, a bacterium with potential in sustainable agriculture and bio-based processes. An analysis of the 38 contigs contained in the P. polymyxa strain CR1 draft genome revealed 12 repetitive rDNA operons with varied intragenic and flanking regions of variable length, unanimously located at contig boundaries and within contig gaps. These highly similar but not identical rDNA operons were experimentally verified and sequenced simultaneously with multiple, specially designed primer sets. This approach also identified and corrected significant sequence rearrangement generated during the initial in silico assembly of sequencing reads. Our approach reduces the required effort associated with blind primer walking for contig assembly, increasing both the speed and feasibility of genome finishing. Our study further reinforces the notion that repetitive DNA elements are major limiting factors for genome finishing. Moreover, we provided a step-by-step workflow for genome finishing, which may guide future bacterial genome finishing projects. PMID:25653642
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzsimmons, Michael
2012-06-01
Michael Fitzsimmons from Los Alamos National Laboratory gives a talk titled "Nearly Finished Genomes Produced Using Gel Microdroplet Culturing" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Fitzsimmons, Michael
2018-01-22
Michael Fitzsimmons from Los Alamos National Laboratory gives a talk titled "Nearly Finished Genomes Produced Using Gel Microdroplet Culturing" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies.
Utturkar, Sagar M; Klingeman, Dawn M; Hurt, Richard A; Brown, Steven D
2017-01-01
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yin, Shuangye
2012-06-01
Shuangye Yin on "Finished prokaryotic genome assemblies from a low-cost combination of short and long reads"; at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buhay, Christian
Christian Buhay from Baylor College of Medicine's Human Genome Sequencing Center discusses microbial genome finishing strategies on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Jr., Richard A.; ...
2017-07-18
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted.more » PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Furthermore, our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences.« less
A Case Study into Microbial Genome Assembly Gap Sequences and Finishing Strategies
Utturkar, Sagar M.; Klingeman, Dawn M.; Hurt, Richard A.; Brown, Steven D.
2017-01-01
This study characterized regions of DNA which remained unassembled by either PacBio and Illumina sequencing technologies for seven bacterial genomes. Two genomes were manually finished using bioinformatics and PCR/Sanger sequencing approaches and regions not assembled by automated software were analyzed. Gaps present within Illumina assemblies mostly correspond to repetitive DNA regions such as multiple rRNA operon sequences. PacBio gap sequences were evaluated for several properties such as GC content, read coverage, gap length, ability to form strong secondary structures, and corresponding annotations. Our hypothesis that strong secondary DNA structures blocked DNA polymerases and contributed to gap sequences was not accepted. PacBio assemblies had few limitations overall and gaps were explained as cumulative effect of lower than average sequence coverage and repetitive sequences at contig termini. An important aspect of the present study is the compilation of biological features that interfered with assembly and included active transposons, multiple plasmid sequences, phage DNA integration, and large sequence duplication. Our targeted genome finishing approach and systematic evaluation of the unassembled DNA will be useful for others looking to close, finish, and polish microbial genome sequences. PMID:28769883
Automated Finishing with Autofinish
Gordon, David; Desmarais, Cindy; Green, Phil
2001-01-01
Currently, the genome sequencing community is producing shotgun sequence data at a very high rate, but finishing (collecting additional directed sequence data to close gaps and improve the quality of the data) is not matching that rate. One reason for the difference is that shotgun sequencing is highly automated but finishing is not: Most finishing decisions, such as which directed reads to obtain and which specialized sequencing techniques to use, are made by people. If finishing rates are to increase to match shotgun sequencing rates, most finishing decisions also must be automated. The Autofinish computer program (which is part of the Consed computer software package) does this by automatically choosing finishing reads. Autofinish is able to suggest most finishing reads required for completion of each sequencing project, greatly reducing the amount of human attention needed. Autofinish sometimes completely finishes the project, with no human decisions required. It cannot solve the most complex problems, so we recommend that Autofinish be allowed to suggest reads for the first three rounds of finishing, and if the project still is not finished completely, a human finisher complete the work. We compared this Autofinish-Hybrid method of finishing against a human finisher in five different projects with a variety of shotgun depths by finishing each project twice—once with each method. This comparison shows that the Autofinish-Hybrid method saves many hours over a human finisher alone, while using roughly the same number and type of reads and closing gaps at roughly the same rate. Autofinish currently is in production use at several large sequencing centers. It is designed to be adaptable to the finishing strategy of the lab—it can finish using some or all of the following: resequencing reads, reverses, custom primer walks on either subclone templates or whole clone templates, PCR, or minilibraries. Autofinish has been used for finishing cDNA, genomic clones, and whole bacterial genomes (see http://www.phrap.org). PMID:11282977
New Technology Drafts: Production and Improvements
Lapidus, Alla
2018-01-22
Alla Lapidus, head of the DOE Joint Genome Institute's Finishing group, gives a talk on how the DOE JGI's microbial genome sequencing pipeline has been adapted to accommodate next generation sequencing platforms at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Sequencing intractable DNA to close microbial genomes.
Hurt, Richard A; Brown, Steven D; Podar, Mircea; Palumbo, Anthony V; Elias, Dwayne A
2012-01-01
Advancement in high throughput DNA sequencing technologies has supported a rapid proliferation of microbial genome sequencing projects, providing the genetic blueprint for in-depth studies. Oftentimes, difficult to sequence regions in microbial genomes are ruled "intractable" resulting in a growing number of genomes with sequence gaps deposited in databases. A procedure was developed to sequence such problematic regions in the "non-contiguous finished" Desulfovibrio desulfuricans ND132 genome (6 intractable gaps) and the Desulfovibrio africanus genome (1 intractable gap). The polynucleotides surrounding each gap formed GC rich secondary structures making the regions refractory to amplification and sequencing. Strand-displacing DNA polymerases used in concert with a novel ramped PCR extension cycle supported amplification and closure of all gap regions in both genomes. The developed procedures support accurate gene annotation, and provide a step-wise method that reduces the effort required for genome finishing.
Crow, John
2018-01-22
John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crow, John
2012-06-01
John Crow from the National Center for Genome Resources discusses his organization's informatics at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Use of Optical Mapping in Bacterial Genome Finishing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Dibyendu
2010-06-03
Dibyendu Kumar from the University of Florida discusses whole-genome optical mapping to help validate bacterial genome assemblies on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
[Complete genome sequencing and sequence analysis of BCG Tice].
Wang, Zhiming; Pan, Yuanlong; Wu, Jun; Zhu, Baoli
2012-10-04
The objective of this study is to obtain the complete genome sequence of Bacillus Calmette-Guerin Tice (BCG Tice), in order to provide more information about the molecular biology of BCG Tice and design more reasonable vaccines to prevent tuberculosis. We assembled the data from high-throughput sequencing with SOAPdenovo software, with many contigs and scaffolds obtained. There are many sequence gaps and physical gaps remained as a result of regional low coverage and low quality. We designed primers at the end of contigs and performed PCR amplification in order to link these contigs and scaffolds. With various enzymes to perform PCR amplification, adjustment of PCR reaction conditions, and combined with clone construction to sequence, all the gaps were finished. We obtained the complete genome sequence of BCG Tice and submitted it to GenBank of National Center for Biotechnology Information (NCBI). The genome of BCG Tice is 4334064 base pairs in length, with GC content 65.65%. The problems and strategies during the finishing step of BCG Tice sequencing are illuminated here, with the hope of affording some experience to those who are involved in the finishing step of genome sequencing. The microarray data were verified by our results.
Sequencing the Unrearranged Human Immunoglobin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Rene
2010-06-03
Rene Warren from Canada's Michael Smith Genome Sciences Centre discusses sequencing and finishing the IgH heavy chain locus on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Defining Genome Project Standards in a New Era of Sequencing
Chain, Patrick
2018-01-16
Patrick Chain of the DOE Joint Genome Institute gives a talk on behalf of the International Genome Sequencing Standards Consortium on the need for intermediate genome classifications between "draft" and "finished".
One Bacterial Cell, One Complete Genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos
2010-04-26
While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated frommore » the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.« less
GenePRIMP: Improving Microbial Gene Prediction Quality
Pati, Amrita
2018-01-24
Amrita Pati of the DOE Joint Genome Institute's Genome Biology group talks about a computational pipeline that evaluates the accuracy of gene models in genomes and metagenomes at different stages of finishing at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
FitzGerald, Michael
2012-06-01
Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
FitzGerald, Michael
2018-01-11
Michael FitzGerald on "A rapid whole genome sequencing and analysis system supporting genomic epidemiology" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse
Hillier, LaDeana W.; Zody, Michael C.; Goldstein, Steve; She, Xinwe; Bult, Carol J.; Agarwala, Richa; Cherry, Joshua L.; DiCuccio, Michael; Hlavina, Wratko; Kapustin, Yuri; Meric, Peter; Maglott, Donna; Birtle, Zoë; Marques, Ana C.; Graves, Tina; Zhou, Shiguo; Teague, Brian; Potamousis, Konstantinos; Churas, Christopher; Place, Michael; Herschleb, Jill; Runnheim, Ron; Forrest, Daniel; Amos-Landgraf, James; Schwartz, David C.; Cheng, Ze; Lindblad-Toh, Kerstin; Eichler, Evan E.; Ponting, Chris P.
2009-01-01
The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non–protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not. PMID:19468303
Johnson, Shannon L.; Minogue, Timothy D.; Teshima, Hazuki; ...
2015-01-15
Bacillus cereus strain 03BB87, a blood culture isolate, originated in a 56-year-old male muller operator with a fatal case of pneumonia in 2003. Here we present the finished genome sequence of that pathogen, including a 5.46-Mb chromosome and two plasmids (209 and 52 Kb, respectively).
One chromosome, one contig: complete microbial genomes from long-read sequencing and assembly.
Koren, Sergey; Phillippy, Adam M
2015-02-01
Like a jigsaw puzzle with large pieces, a genome sequenced with long reads is easier to assemble. However, recent sequencing technologies have favored lowering per-base cost at the expense of read length. This has dramatically reduced sequencing cost, but resulted in fragmented assemblies, which negatively affect downstream analyses and hinder the creation of finished (gapless, high-quality) genomes. In contrast, emerging long-read sequencing technologies can now produce reads tens of kilobases in length, enabling the automated finishing of microbial genomes for under $1000. This promises to improve the quality of reference databases and facilitate new studies of chromosomal structure and variation. We present an overview of these new technologies and the methods used to assemble long reads into complete genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Genome Improvement at JGI-HAGSC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grimwood, Jane; Schmutz, Jeremy J.; Myers, Richard M.
Since the completion of the sequencing of the human genome, the Joint Genome Institute (JGI) has rapidly expanded its scientific goals in several DOE mission-relevant areas. At the JGI-HAGSC, we have kept pace with this rapid expansion of projects with our focus on assessing, assembling, improving and finishing eukaryotic whole genome shotgun (WGS) projects for which the shotgun sequence is generated at the Production Genomic Facility (JGI-PGF). We follow this by combining the draft WGS with genomic resources generated at JGI-HAGSC or in collaborator laboratories (including BAC end sequences, genetic maps and FLcDNA sequences) to produce an improved draft sequence.more » For eukaryotic genomes important to the DOE mission, we then add further information from directed experiments to produce reference genomic sequences that are publicly available for any scientific researcher. Also, we have continued our program for producing BAC-based finished sequence, both for adding information to JGI genome projects and for small BAC-based sequencing projects proposed through any of the JGI sequencing programs. We have now built our computational expertise in WGS assembly and analysis and have moved eukaryotic genome assembly from the JGI-PGF to JGI-HAGSC. We have concentrated our assembly development work on large plant genomes and complex fungal and algal genomes.« less
Reducing assembly complexity of microbial genomes with single-molecule sequencing.
Koren, Sergey; Harhay, Gregory P; Smith, Timothy P L; Bono, James L; Harhay, Dayna M; Mcvey, Scott D; Radune, Diana; Bergman, Nicholas H; Phillippy, Adam M
2013-01-01
The short reads output by first- and second-generation DNA sequencing instruments cannot completely reconstruct microbial chromosomes. Therefore, most genomes have been left unfinished due to the significant resources required to manually close gaps in draft assemblies. Third-generation, single-molecule sequencing addresses this problem by greatly increasing sequencing read length, which simplifies the assembly problem. To measure the benefit of single-molecule sequencing on microbial genome assembly, we sequenced and assembled the genomes of six bacteria and analyzed the repeat complexity of 2,267 complete bacteria and archaea. Our results indicate that the majority of known bacterial and archaeal genomes can be assembled without gaps, at finished-grade quality, using a single PacBio RS sequencing library. These single-library assemblies are also more accurate than typical short-read assemblies and hybrid assemblies of short and long reads. Automated assembly of long, single-molecule sequencing data reduces the cost of microbial finishing to $1,000 for most genomes, and future advances in this technology are expected to drive the cost lower. This is expected to increase the number of completed genomes, improve the quality of microbial genome databases, and enable high-fidelity, population-scale studies of pan-genomes and chromosomal organization.
Towards the Perfect Genome Sequence (Opening Keynote) (7th Annual SFAF Meeting, 2012)
Weinstock, George
2018-04-30
George Weinstock, associate director at the Genome Institute at Washington University, delivered the opening keynote "Towards the Perfect Genome Sequence" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Towards the Perfect Genome Sequence (Opening Keynote) (7th Annual SFAF Meeting, 2012)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinstock, George
2012-06-01
George Weinstock, associate director at the Genome Institute at Washington University, delivered the opening keynote "Towards the Perfect Genome Sequence" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Finishing Using Next Generation Technologies
Van Tonder, Andries
2018-01-16
Andries van Tonder of Wellcome Trust Sanger Institute discusses a pipeline for finishing genomes to the gold standard on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Bartels, Daniela; Kespohl, Sebastian; Albaum, Stefan; Drüke, Tanja; Goesmann, Alexander; Herold, Julia; Kaiser, Olaf; Pühler, Alfred; Pfeiffer, Friedhelm; Raddatz, Günter; Stoye, Jens; Meyer, Folker; Schuster, Stephan C
2005-04-01
We provide the graphical tool BACCardI for the construction of virtual clone maps from standard assembler output files or BLAST based sequence comparisons. This new tool has been applied to numerous genome projects to solve various problems including (a) validation of whole genome shotgun assemblies, (b) support for contig ordering in the finishing phase of a genome project, and (c) intergenome comparison between related strains when only one of the strains has been sequenced and a large insert library is available for the other. The BACCardI software can seamlessly interact with various sequence assembly packages. Genomic assemblies generated from sequence information need to be validated by independent methods such as physical maps. The time-consuming task of building physical maps can be circumvented by virtual clone maps derived from read pair information of large insert libraries.
Lee, Chi-Ching; Chen, Yi-Ping Phoebe; Yao, Tzu-Jung; Ma, Cheng-Yu; Lo, Wei-Cheng; Lyu, Ping-Chiang; Tang, Chuan Yi
2013-04-10
Sequencing of microbial genomes is important because of microbial-carrying antibiotic and pathogenetic activities. However, even with the help of new assembling software, finishing a whole genome is a time-consuming task. In most bacteria, pathogenetic or antibiotic genes are carried in genomic islands. Therefore, a quick genomic island (GI) prediction method is useful for ongoing sequencing genomes. In this work, we built a Web server called GI-POP (http://gipop.life.nthu.edu.tw) which integrates a sequence assembling tool, a functional annotation pipeline, and a high-performance GI predicting module, in a support vector machine (SVM)-based method called genomic island genomic profile scanning (GI-GPS). The draft genomes of the ongoing genome projects in contigs or scaffolds can be submitted to our Web server, and it provides the functional annotation and highly probable GI-predicting results. GI-POP is a comprehensive annotation Web server designed for ongoing genome project analysis. Researchers can perform annotation and obtain pre-analytic information include possible GIs, coding/non-coding sequences and functional analysis from their draft genomes. This pre-analytic system can provide useful information for finishing a genome sequencing project. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs or raw, unassembled reads. The method is fast to compute, finding SNPs and building a SNP phylogeny in minutes to hours, depending on the size and diversity of the input sequences. The SNP-based trees that result are consistent with known taxonomy and treesmore » determined in other studies. The approach we describe can handle many gigabases of sequence in a single run. The algorithm is based on k-mer analysis.« less
Finished genome assembly of warm spring isolate Francisella novicida DPG 3A-IS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Shannon L.; Minogue, Timothy D.; Daligault, Hajnalka E.
2015-09-17
We sequenced the complete genome of Francisella novicida DPG 3A-IS to closed and finished status. This is a warm spring isolate recovered from Hobo Warm Spring (Utah, USA). The last assembly is available in NCBI under accession number CP012037.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davenport, Karen
Karen Davenport of Los Alamos National Laboratory discusses a high-throughput next generation genome finishing pipeline on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Li, Runsheng; Hsieh, Chia-Ling; Young, Amanda; Zhang, Zhihong; Ren, Xiaoliang; Zhao, Zhongying
2015-01-01
Most next-generation sequencing platforms permit acquisition of high-throughput DNA sequences, but the relatively short read length limits their use in genome assembly or finishing. Illumina has recently released a technology called Synthetic Long-Read Sequencing that can produce reads of unusual length, i.e., predominately around 10 Kb. However, a systematic assessment of their use in genome finishing and assembly is still lacking. We evaluate the promise and deficiency of the long reads in these aspects using isogenic C. elegans genome with no gap. First, the reads are highly accurate and capable of recovering most types of repetitive sequences. However, the presence of tandem repetitive sequences prevents pre-assembly of long reads in the relevant genomic region. Second, the reads are able to reliably detect missing but not extra sequences in the C. elegans genome. Third, the reads of smaller size are more capable of recovering repetitive sequences than those of bigger size. Fourth, at least 40 Kbp missing genomic sequences are recovered in the C. elegans genome using the long reads. Finally, an N50 contig size of at least 86 Kbp can be achieved with 24×reads but with substantial mis-assembly errors, highlighting a need for novel assembly algorithm for the long reads. PMID:26039588
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chain, P; Garcia, E
2003-02-06
The goal of this proposed effort was to assess the difficulty in identifying and characterizing virulence candidate genes in an organism for which very limited data exists. This was accomplished by first addressing the finishing phase of draft-sequenced F. tularensis genomes and conducting comparative analyses to determine the coding potential of each genome; to discover the differences in genome structure and content, and to identify potential genes whose products may be involved in the F. tularensis virulence process. The project was divided into three parts: (1) Genome finishing: This part involves determining the order and orientation of the consensus sequencesmore » of contigs obtained from Phrap assemblies of random draft genomic sequences. This tedious process consists of linking contig ends using information embedded in each sequence file that relates the sequence to the original cloned insert. Since inserts are sequenced from both ends, we can establish a link between these paired-ends in different contigs and thus order and orient contigs. Since these genomes carry numerous copies of insertion sequences, these repeated elements ''confuse'' the Phrap assembly program. It is thus necessary to break these contigs apart at the repeated sequences and individually join the proper flanking regions using paired-end information, or using results of comparisons against a similar genome. Larger repeated elements such as the small subunit ribosomal RNA operon require verification with PCR. Tandem repeats require manual intervention and typically rely on single nucleotide polymorphisms to be resolved. Remaining gaps require PCR reactions and sequencing. Once the genomes have been ''closed'', low quality regions are addressed by resequencing reactions. (2) Genome analysis: The final consensus sequences are processed by combining the results of three gene modelers: Glimmer, Critica and Generation. The final gene models are submitted to a battery of homology searches and domain prediction programs in order to annotate them (e.g. BLAST, Pfam, TIGRfam, COG, KEGG, InterPro, TMhmm, SignalP). The genome structure is also assessed in terms of G+C content, GC bias (GC skew), and locations of repeated regions (e.g. IS elements) and phage-like genes. (3) Comparative genomics: The results of the various genome analyses are compared between the finished (or almost finished) genomes. Here, we have compared the F. tularensis genomes from the extremely lethal strain Schu4 (subsp. tularensis), the vaccine strain LVS (subsp. holartica), and strain UT01-4992 of the less virulent, opportunistic subsp. novicida. Regions present in the highly virulent strain that are absent from the other less virulent strains may provide insight into what factors are required for the high level of virulence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardner, Shea; Slezak, Tom
With the flood of whole genome finished and draft microbial sequences, we need faster, more scalable bioinformatics tools for sequence comparison. An algorithm is described to find single nucleotide polymorphisms (SNPs) in whole genome data. It scales to hundreds of bacterial or viral genomes, and can be used for finished and/or draft genomes available as unassembled contigs. The method is fast to compute, finding SNPs and building a SNP phylogeny in seconds to hours. We use it to identify thousands of putative SNPs from all publicly available Filoviridae, Poxviridae, foot-and-mouth disease virus, Bacillus, and Escherichia coli genomes and plasmids. Themore » SNP-based trees that result are consistent with known taxonomy and trees determined in other studies. The approach we describe can handle as input hundreds of gigabases of sequence in a single run. The algorithm is based on k-mer analysis using a suffix array, so we call it saSNP.« less
Draft versus finished sequence data for DNA and protein diagnostic signature development
Gardner, Shea N.; Lam, Marisa W.; Smith, Jason R.; Torres, Clinton L.; Slezak, Tom R.
2005-01-01
Sequencing pathogen genomes is costly, demanding careful allocation of limited sequencing resources. We built a computational Sequencing Analysis Pipeline (SAP) to guide decisions regarding the amount of genomic sequencing necessary to develop high-quality diagnostic DNA and protein signatures. SAP uses simulations to estimate the number of target genomes and close phylogenetic relatives (near neighbors or NNs) to sequence. We use SAP to assess whether draft data are sufficient or finished sequencing is required using Marburg and variola virus sequences. Simulations indicate that intermediate to high-quality draft with error rates of 10−3–10−5 (∼8× coverage) of target organisms is suitable for DNA signature prediction. Low-quality draft with error rates of ∼1% (3× to 6× coverage) of target isolates is inadequate for DNA signature prediction, although low-quality draft of NNs is sufficient, as long as the target genomes are of high quality. For protein signature prediction, sequencing errors in target genomes substantially reduce the detection of amino acid sequence conservation, even if the draft is of high quality. In summary, high-quality draft of target and low-quality draft of NNs appears to be a cost-effective investment for DNA signature prediction, but may lead to underestimation of predicted protein signatures. PMID:16243783
Genome, Epigenome and RNA sequences of Monozygotic Twins Discordant for Multiple Sclerosis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Neil
2010-06-02
Neil Miller, Deputy Director of Software Engineering at the National Center for Genome Resources, discusses a monozygotic twin study on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Genome, Epigenome and RNA sequences of Monozygotic Twins Discordant for Multiple Sclerosis
Miller, Neil
2018-01-22
Neil Miller, Deputy Director of Software Engineering at the National Center for Genome Resources, discusses a monozygotic twin study on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Elkins, James G; Hamilton-Brehm, Scott D; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A; Pitluck, Sam; Peters, Lin; Mikhailova, Natalia; Davenport, Karen W; Detter, John C; Han, Cliff S; Tapia, Roxanne; Land, Miriam L; Hauser, Loren; Kyrpides, Nikos C; Ivanova, Natalia N; Pagani, Ioanna; Bruce, David; Woyke, Tanja; Cottingham, Robert W
2013-04-11
Thermodesulfobacterium geofontis OPF15(T) (ATCC BAA-2454, JCM 18567) was isolated from Obsidian Pool, Yellowstone National Park, and grows optimally at 83°C. The 1.6-Mb genome sequence was finished at the Joint Genome Institute and has been deposited for future genomic studies pertaining to microbial processes and nutrient cycles in high-temperature environments.
Fulfilling the Promise of a Sequenced Human Genome â Part II
Green, Eric
2018-02-02
Eric Green, scientific director of the National Human Genome Research Institute (NHGRI), gives the opening keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM on May 27, 2009. Part 2 of 2
Fulfilling the Promise of a Sequenced Human Genome â Part I
Green, Eric
2018-02-02
Eric Green, scientific director of the National Human Genome Research Institute (NHGRI), gives the opening keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM on May 27, 2009. Part 1 of 2
USDA-ARS?s Scientific Manuscript database
Repetitive sequence analysis has become an integral part of genome sequencing projects in addition to gene identification and annotation. Identification of repeats is important not only because it improves gene prediction, but also because of the role that repetitive sequences play in determining th...
Mavromatis, Konstantinos; Land, Miriam L; Brettin, Thomas S; Quest, Daniel J; Copeland, Alex; Clum, Alicia; Goodwin, Lynne; Woyke, Tanja; Lapidus, Alla; Klenk, Hans Peter; Cottingham, Robert W; Kyrpides, Nikos C
2012-01-01
The emergence of next generation sequencing (NGS) has provided the means for rapid and high throughput sequencing and data generation at low cost, while concomitantly creating a new set of challenges. The number of available assembled microbial genomes continues to grow rapidly and their quality reflects the quality of the sequencing technology used, but also of the analysis software employed for assembly and annotation. In this work, we have explored the quality of the microbial draft genomes across various sequencing technologies. We have compared the draft and finished assemblies of 133 microbial genomes sequenced at the Department of Energy-Joint Genome Institute and finished at the Los Alamos National Laboratory using a variety of combinations of sequencing technologies, reflecting the transition of the institute from Sanger-based sequencing platforms to NGS platforms. The quality of the public assemblies and of the associated gene annotations was evaluated using various metrics. Results obtained with the different sequencing technologies, as well as their effects on downstream processes, were analyzed. Our results demonstrate that the Illumina HiSeq 2000 sequencing system, the primary sequencing technology currently used for de novo genome sequencing and assembly at JGI, has various advantages in terms of total sequence throughput and cost, but it also introduces challenges for the downstream analyses. In all cases assembly results although on average are of high quality, need to be viewed critically and consider sources of errors in them prior to analysis. These data follow the evolution of microbial sequencing and downstream processing at the JGI from draft genome sequences with large gaps corresponding to missing genes of significant biological role to assemblies with multiple small gaps (Illumina) and finally to assemblies that generate almost complete genomes (Illumina+PacBio).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukjancenko, Oksana
2012-06-01
Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Lukjancenko, Oksana
2018-01-10
Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
The Release 6 reference sequence of the Drosophila melanogaster genome
Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.; ...
2015-01-14
Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less
The Release 6 reference sequence of the Drosophila melanogaster genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoskins, Roger A.; Carlson, Joseph W.; Wan, Kenneth H.
Drosophila melanogaster plays an important role in molecular, genetic, and genomic studies of heredity, development, metabolism, behavior, and human disease. The initial reference genome sequence reported more than a decade ago had a profound impact on progress in Drosophila research, and improving the accuracy and completeness of this sequence continues to be important to further progress. We previously described improvement of the 117-Mb sequence in the euchromatic portion of the genome and 21 Mb in the heterochromatic portion, using a whole-genome shotgun assembly, BAC physical mapping, and clone-based finishing. Here, we report an improved reference sequence of the single-copy andmore » middle-repetitive regions of the genome, produced using cytogenetic mapping to mitotic and polytene chromosomes, clone-based finishing and BAC fingerprint verification, ordering of scaffolds by alignment to cDNA sequences, incorporation of other map and sequence data, and validation by whole-genome optical restriction mapping. These data substantially improve the accuracy and completeness of the reference sequence and the order and orientation of sequence scaffolds into chromosome arm assemblies. Representation of the Y chromosome and other heterochromatic regions is particularly improved. The new 143.9-Mb reference sequence, designated Release 6, effectively exhausts clone-based technologies for mapping and sequencing. Highly repeat-rich regions, including large satellite blocks and functional elements such as the ribosomal RNA genes and the centromeres, are largely inaccessible to current sequencing and assembly methods and remain poorly represented. In conclusion, further significant improvements will require sequencing technologies that do not depend on molecular cloning and that produce very long reads.« less
A Hybrid Approach for the Automated Finishing of Bacterial Genomes
Robins, William P.; Chin, Chen-Shan; Webster, Dale; Paxinos, Ellen; Hsu, David; Ashby, Meredith; Wang, Susana; Peluso, Paul; Sebra, Robert; Sorenson, Jon; Bullard, James; Yen, Jackie; Valdovino, Marie; Mollova, Emilia; Luong, Khai; Lin, Steven; LaMay, Brianna; Joshi, Amruta; Rowe, Lori; Frace, Michael; Tarr, Cheryl L.; Turnsek, Maryann; Davis, Brigid M; Kasarskis, Andrew; Mekalanos, John J.; Waldor, Matthew K.; Schadt, Eric E.
2013-01-01
Dramatic improvements in DNA sequencing technology have revolutionized our ability to characterize most genomic diversity. However, accurate resolution of large structural events has remained challenging due to the comparatively shorter read lengths of second-generation technologies. Emerging third-generation sequencing technologies, which yield markedly increased read length on rapid time scales and for low cost, have the potential to address assembly limitations. Here we combine sequencing data from second- and third-generation DNA sequencing technologies to assemble the two-chromosome genome of a recent Haitian cholera outbreak strain into two nearly finished contigs at > 99.9% accuracy. Complex regions with clinically significant structure were completely resolved. In separate control assemblies on experimental and simulated data for the canonical N16961 reference we obtain 14 and 8 scaffolds greater than 1kb, respectively, correcting several errors in the underlying source data. This work provides a blueprint for the next generation of rapid microbial identification and full-genome assembly. PMID:22750883
Hamilton-Brehm, Scott D.; Lucas, Susan; Han, James; Lapidus, Alla; Cheng, Jan-Fang; Goodwin, Lynne A.; Pitluck, Sam; Peters, Lin; Mikhailova, Natalia; Davenport, Karen W.; Detter, John C.; Han, Cliff S.; Tapia, Roxanne; Land, Miriam L.; Hauser, Loren; Kyrpides, Nikos C.; Ivanova, Natalia N.; Pagani, Ioanna; Bruce, David; Woyke, Tanja; Cottingham, Robert W.
2013-01-01
Thermodesulfobacterium geofontis OPF15T (ATCC BAA-2454, JCM 18567) was isolated from Obsidian Pool, Yellowstone National Park, and grows optimally at 83°C. The 1.6-Mb genome sequence was finished at the Joint Genome Institute and has been deposited for future genomic studies pertaining to microbial processes and nutrient cycles in high-temperature environments. PMID:23580711
NexGen Production â Sequencing and Analysis
Muzny, Donna
2018-01-16
Donna Muzny of the Baylor College of Medicine Human Genome Sequencing Center discusses next generation sequencing platforms and evaluating pipeline performance on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapidus, Alla L.
From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly ofmore » whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.« less
Legume Genome Initiative at the University of Oklahoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bruce A. Roe
2004-02-27
Consolidated Appropriations Resolution, 2003 Conference Report for the Department of Energy's Biological and Environmental Research (BER) program provided $481,000 for the Legume Genome Initiative at the University of Oklahoma. These funds were used to support our research that is aimed at determining the entire sequence of the gene rich regions of the genome of the legume, Medicago truncatula, by allowing us to obtain a greater degree of finished BAC sequences from the draft sequences we have already obtained through research funded by the Noble Foundation. During the funding period we increased the number of Medicago truncatula BACs with finished (Bermudamore » standard) sequences from 109 to 359, and the total number of BACs for which we collected sequence data from 584 to 842, 359 of which reached phase 2 (ordered and oriented contigs). We also sequenced a series of pooled BAC clones that cover additional euchromatic (gene rich) genomic regions. This work resulted in 6 refereed publications, see below. Genes whose sequence was determined during this study included multiple members of the plant disease resistance (R-gene) family as well as several genes involved in flavinoid biosynthesis, nitrogen fixation and plant-microbial symbosis. This work also served as a prelude to obtaining NSF funding for the international collaborative effort to complete the entire sequence of the Medicago truncatula genomic euchromatic regions using a BAC based approach.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daum, Chris
Chris Daum of the DOE Joint Genome Institute discusses how the DOE JGI's Production Sequencing group optimizes the sequencer pipelines and assesses quality on the Production line on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM
Single haplotype assembly of the human genome from a hydatidiform mole.
Steinberg, Karyn Meltz; Schneider, Valerie A; Graves-Lindsay, Tina A; Fulton, Robert S; Agarwala, Richa; Huddleston, John; Shiryev, Sergey A; Morgulis, Aleksandr; Surti, Urvashi; Warren, Wesley C; Church, Deanna M; Eichler, Evan E; Wilson, Richard K
2014-12-01
A complete reference assembly is essential for accurately interpreting individual genomes and associating variation with phenotypes. While the current human reference genome sequence is of very high quality, gaps and misassemblies remain due to biological and technical complexities. Large repetitive sequences and complex allelic diversity are the two main drivers of assembly error. Although increasing the length of sequence reads and library fragments can improve assembly, even the longest available reads do not resolve all regions. In order to overcome the issue of allelic diversity, we used genomic DNA from an essentially haploid hydatidiform mole, CHM1. We utilized several resources from this DNA including a set of end-sequenced and indexed BAC clones and 100× Illumina whole-genome shotgun (WGS) sequence coverage. We used the WGS sequence and the GRCh37 reference assembly to create an assembly of the CHM1 genome. We subsequently incorporated 382 finished BAC clone sequences to generate a draft assembly, CHM1_1.1 (NCBI AssemblyDB GCA_000306695.2). Analysis of gene, repetitive element, and segmental duplication content show this assembly to be of excellent quality and contiguity. However, comparison to assembly-independent resources, such as BAC clone end sequences and PacBio long reads, indicate misassembled regions. Most of these regions are enriched for structural variation and segmental duplication, and can be resolved in the future. This publicly available assembly will be integrated into the Genome Reference Consortium curation framework for further improvement, with the ultimate goal being a completely finished gap-free assembly. © 2014 Steinberg et al.; Published by Cold Spring Harbor Laboratory Press.
Single haplotype assembly of the human genome from a hydatidiform mole
Steinberg, Karyn Meltz; Schneider, Valerie A.; Graves-Lindsay, Tina A.; Fulton, Robert S.; Agarwala, Richa; Huddleston, John; Shiryev, Sergey A.; Morgulis, Aleksandr; Surti, Urvashi; Warren, Wesley C.; Church, Deanna M.; Eichler, Evan E.; Wilson, Richard K.
2014-01-01
A complete reference assembly is essential for accurately interpreting individual genomes and associating variation with phenotypes. While the current human reference genome sequence is of very high quality, gaps and misassemblies remain due to biological and technical complexities. Large repetitive sequences and complex allelic diversity are the two main drivers of assembly error. Although increasing the length of sequence reads and library fragments can improve assembly, even the longest available reads do not resolve all regions. In order to overcome the issue of allelic diversity, we used genomic DNA from an essentially haploid hydatidiform mole, CHM1. We utilized several resources from this DNA including a set of end-sequenced and indexed BAC clones and 100× Illumina whole-genome shotgun (WGS) sequence coverage. We used the WGS sequence and the GRCh37 reference assembly to create an assembly of the CHM1 genome. We subsequently incorporated 382 finished BAC clone sequences to generate a draft assembly, CHM1_1.1 (NCBI AssemblyDB GCA_000306695.2). Analysis of gene, repetitive element, and segmental duplication content show this assembly to be of excellent quality and contiguity. However, comparison to assembly-independent resources, such as BAC clone end sequences and PacBio long reads, indicate misassembled regions. Most of these regions are enriched for structural variation and segmental duplication, and can be resolved in the future. This publicly available assembly will be integrated into the Genome Reference Consortium curation framework for further improvement, with the ultimate goal being a completely finished gap-free assembly. PMID:25373144
Implementing genomic medicine in pathology.
Williams, Eli S; Hegde, Madhuri
2013-07-01
The finished sequence of the Human Genome Project, published 50 years after Watson and Crick's seminal paper on the structure of DNA, pushed human genetics into the public eye and ushered in the genomic era. A significant, if overlooked, aspect of the race to complete the genome was the technology that propelled scientists to the finish line. DNA sequencing technologies have become more standardized, automated, and capable of higher throughput. This technology has continued to grow at an astounding rate in the decade since the Human Genome Project was completed. Today, massively parallel sequencing, or next-generation sequencing (NGS), allows the detection of genetic variants across the entire genome. This ability has led to the identification of new causes of disease and is changing the way we categorize, treat, and manage disease. NGS approaches such as whole-exome sequencing and whole-genome sequencing are rapidly becoming an affordable genetic testing strategy for the clinical laboratory. One test can now provide vast amounts of health information pertaining not only to the disease of interest, but information that may also predict adult-onset disease, reveal carrier status for a rare disease and predict drug responsiveness. The issue of what to do with these incidental findings, along with questions pertaining to NGS testing strategies, data interpretation and storage, and applying genetic testing results into patient care, remains without a clear answer. This review will explore these issues and others relevant to the implementation of NGS in the clinical laboratory.
Song, Ju Yeon; Jeong, Haeyoung; Yu, Dong Su; Fischbach, Michael A.; Park, Hong-Seog; Kim, Jae Jong; Seo, Jeong-Sun; Jensen, Susan E.; Oh, Tae Kwang; Lee, Kye Joon; Kim, Jihyun F.
2010-01-01
Streptomyces clavuligerus is an important industrial strain that produces a number of antibiotics, including clavulanic acid and cephamycin C. A high-quality draft genome sequence of the S. clavuligerus NRRL 3585 strain was produced by employing a hybrid approach that involved Sanger sequencing, Roche/454 pyrosequencing, optical mapping, and partial finishing. Its genome, comprising four linear replicons, one chromosome, and four plasmids, carries numerous sets of genes involved in the biosynthesis of secondary metabolites, including a variety of antibiotics. PMID:20889745
ALLPATHS: Assembling Large Genomes with Short Illumina Reads
Gnerre, Sante
2018-02-06
Sante Gnerre from the Broad Institute speaks on the challenge of developing high quality assemblies of large genomes using short reads at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Genomics at the Ontario Institute for Cancer Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ali, Johar
Johar Ali of the Ontario Institute for Cancer Research discusses genomics and next-gen applications at the OICR on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Sequencing Complex Genomic Regions
Eichler, Evan
2018-02-12
Evan Eichler, Howard Hughes Medical Investigator at the University of Washington, gives the May 28, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM. Part 1 of 2
Complete Genome Sequence of Aggregatibacter (Haemophilus) aphrophilus NJ8700▿
Di Bonaventura, Maria Pia; DeSalle, Rob; Pop, Mihai; Nagarajan, Niranjan; Figurski, David H.; Fine, Daniel H.; Kaplan, Jeffrey B.; Planet, Paul J.
2009-01-01
We report the finished and annotated genome sequence of Aggregatibacter aphrophilus strain NJ8700, a strain isolated from the oral flora of a healthy individual, and discuss characteristics that may affect its dual roles in human health and disease. This strain has a rough appearance, and its genome contains genes encoding a type VI secretion system and several factors that may participate in host colonization. PMID:19447908
USDA-ARS?s Scientific Manuscript database
Salmonella enterica subsp. enterica bacteria are important foodborne pathogens with major economic impact. Some isolates exhibit increased heat tolerance, a concern for food safety. Analysis of a finished-quality genome sequence of an isolate commonly used in heat resistance studies, S. enterica sub...
Tobes, Raquel; Manrique, Marina; Brozynska, Marta; Stephan, Roger; Pareja, Eduardo
2013-01-01
We present the first complete genome sequence of a Staphylococcus aureus strain assigned to clonal complex 12. The strain was isolated in a food poisoning outbreak due to contaminated potato salad in Switzerland in 2009, and it produces staphylococcal enterotoxin B. PMID:23704175
Hierarchical Scaffolding With Bambus
Pop, Mihai; Kosack, Daniel S.; Salzberg, Steven L.
2004-01-01
The output of a genome assembler generally comprises a collection of contiguous DNA sequences (contigs) whose relative placement along the genome is not defined. A procedure called scaffolding is commonly used to order and orient these contigs using paired read information. This ordering of contigs is an essential step when finishing and analyzing the data from a whole-genome shotgun project. Most recent assemblers include a scaffolding module; however, users have little control over the scaffolding algorithm or the information produced. We thus developed a general-purpose scaffolder, called Bambus, which affords users significant flexibility in controlling the scaffolding parameters. Bambus was used recently to scaffold the low-coverage draft dog genome data. Most significantly, Bambus enables the use of linking data other than that inferred from mate-pair information. For example, the sequence of a completed genome can be used to guide the scaffolding of a related organism. We present several applications of Bambus: support for finishing, comparative genomics, analysis of the haplotype structure of genomes, and scaffolding of a mammalian genome at low coverage. Bambus is available as an open-source package from our Web site. PMID:14707177
Hierarchical scaffolding with Bambus.
Pop, Mihai; Kosack, Daniel S; Salzberg, Steven L
2004-01-01
The output of a genome assembler generally comprises a collection of contiguous DNA sequences (contigs) whose relative placement along the genome is not defined. A procedure called scaffolding is commonly used to order and orient these contigs using paired read information. This ordering of contigs is an essential step when finishing and analyzing the data from a whole-genome shotgun project. Most recent assemblers include a scaffolding module; however, users have little control over the scaffolding algorithm or the information produced. We thus developed a general-purpose scaffolder, called Bambus, which affords users significant flexibility in controlling the scaffolding parameters. Bambus was used recently to scaffold the low-coverage draft dog genome data. Most significantly, Bambus enables the use of linking data other than that inferred from mate-pair information. For example, the sequence of a completed genome can be used to guide the scaffolding of a related organism. We present several applications of Bambus: support for finishing, comparative genomics, analysis of the haplotype structure of genomes, and scaffolding of a mammalian genome at low coverage. Bambus is available as an open-source package from our Web site.
Genome assemblies for 11 Yersinia pestis strains isolated in the Caucasus region
Zhgenti, Ekaterine; Johnson, Shannon L.; Davenport, Karen W.; ...
2015-09-17
Yersinia pestis, the causative agent of plague, is endemic to the Caucasus region but few reference strain genome sequences from that region are available. We present the improved draft or finished assembled genomes from 11 strains isolated in the nation of Georgia and surrounding countries.
Complete Genome Sequence of NEB 5-alpha, a Derivative of Escherichia coli K-12 DH5α.
Anton, Brian P; Raleigh, Elisabeth A
2016-11-10
Escherichia coli K-12 DH5α is one of the most popular and widely available laboratory strains, but, surprisingly, no complete genome sequence has been publicly available. Here, we report the complete, finished sequence of NEB 5-alpha (DH5α fhuA2). It should serve as a useful reference for researchers working with DH5α. Copyright © 2016 Anton and Raleigh.
Analysis of Metagenomic Sequences: From Megabases to Terabases
Krypides, Nikos
2018-05-04
Nikos Krypides of the DOE Joint Genome Institute discusses metagenomics and the challenge of dealing with terabases of data on June 4, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Steven D; Nagaraju, Shilpa; Utturkar, Sagar M
Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G +more » C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a phophoenolpyruvate synthase) and substrate utilization pathway (mannose and aromatics utilization) that might explain phenotypic differences between C. autoethanogenum and C. ljungdahlii. Conclusions Single molecule sequencing will be increasingly used to produce finished microbial genomes. The complete genome will facilitate comparative genomics and functional genomics and support future comparisons between Clostridia and studies that examine the evolution of plasmids, bacteriophage and CRISPR systems.« less
2014-01-01
Background Clostridium autoethanogenum strain JA1-1 (DSM 10061) is an acetogen capable of fermenting CO, CO2 and H2 (e.g. from syngas or waste gases) into biofuel ethanol and commodity chemicals such as 2,3-butanediol. A draft genome sequence consisting of 100 contigs has been published. Results A closed, high-quality genome sequence for C. autoethanogenum DSM10061 was generated using only the latest single-molecule DNA sequencing technology and without the need for manual finishing. It is assigned to the most complex genome classification based upon genome features such as repeats, prophage, nine copies of the rRNA gene operons. It has a low G + C content of 31.1%. Illumina, 454, Illumina/454 hybrid assemblies were generated and then compared to the draft and PacBio assemblies using summary statistics, CGAL, QUAST and REAPR bioinformatics tools and comparative genomic approaches. Assemblies based upon shorter read DNA technologies were confounded by the large number repeats and their size, which in the case of the rRNA gene operons were ~5 kb. CRISPR (Clustered Regularly Interspaced Short Paloindromic Repeats) systems among biotechnologically relevant Clostridia were classified and related to plasmid content and prophages. Potential associations between plasmid content and CRISPR systems may have implications for historical industrial scale Acetone-Butanol-Ethanol (ABE) fermentation failures and future large scale bacterial fermentations. While C. autoethanogenum contains an active CRISPR system, no such system is present in the closely related Clostridium ljungdahlii DSM 13528. A common prophage inserted into the Arg-tRNA shared between the strains suggests a common ancestor. However, C. ljungdahlii contains several additional putative prophages and it has more than double the amount of prophage DNA compared to C. autoethanogenum. Other differences include important metabolic genes for central metabolism (as an additional hydrogenase and the absence of a phophoenolpyruvate synthase) and substrate utilization pathway (mannose and aromatics utilization) that might explain phenotypic differences between C. autoethanogenum and C. ljungdahlii. Conclusions Single molecule sequencing will be increasingly used to produce finished microbial genomes. The complete genome will facilitate comparative genomics and functional genomics and support future comparisons between Clostridia and studies that examine the evolution of plasmids, bacteriophage and CRISPR systems. PMID:24655715
USDA-ARS?s Scientific Manuscript database
We present the complete, closed and finished chromosomal and extra-chromosomal genome sequences of Y. ruckeri strain CSF007-82, etiologic agent of enteric red mouth disease in salmonid fish. The chromosome is 3,799,036 bp with a G+C content of 47.5% and encodes 3,530 predicted CDS, 7 ribosomal opero...
Non-contiguous finished genome sequence and description of Oceanobacillus massiliensis sp. nov.
Roux, Véronique; Million, Matthieu; Robert, Catherine; Magne, Alix; Raoult, Didier
2013-01-01
Oceanobacillus massiliensis strain N’DiopT sp. nov. is the type strain of O. massiliensis sp. nov., a new species within the genus Oceanobacillus. This strain, whose genome is described here, was isolated from the fecal flora of a healthy patient. O. massiliensis is an aerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,532,675 bp long genome contains 3,519 protein-coding genes and 72 RNA genes, including between 6 and 8 rRNA operons. PMID:24976893
Human Genome Sequencing in Health and Disease
Gonzaga-Jauregui, Claudia; Lupski, James R.; Gibbs, Richard A.
2013-01-01
Following the “finished,” euchromatic, haploid human reference genome sequence, the rapid development of novel, faster, and cheaper sequencing technologies is making possible the era of personalized human genomics. Personal diploid human genome sequences have been generated, and each has contributed to our better understanding of variation in the human genome. We have consequently begun to appreciate the vastness of individual genetic variation from single nucleotide to structural variants. Translation of genome-scale variation into medically useful information is, however, in its infancy. This review summarizes the initial steps undertaken in clinical implementation of personal genome information, and describes the application of whole-genome and exome sequencing to identify the cause of genetic diseases and to suggest adjuvant therapies. Better analysis tools and a deeper understanding of the biology of our genome are necessary in order to decipher, interpret, and optimize clinical utility of what the variation in the human genome can teach us. Personal genome sequencing may eventually become an instrument of common medical practice, providing information that assists in the formulation of a differential diagnosis. We outline herein some of the remaining challenges. PMID:22248320
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pati, Amrita; Gronow, Sabine; Lu, Megan
2011-01-01
Prevotella multisaccharivorax Sakamoto et al. 2005 is a species of the large genus Prevotella, which belongs to the family Prevotellaceae. The species is of medical interest because its members are able to cause diseases in the human oral cavity such as periodontitis, root caries and others. Although 77 Prevotella genomes have already been sequenced or are targeted for sequencing, this is only the second completed genome sequence of a type strain of a species within the genus Prevotella to be published. The 3,388,644 bp long genome is assembled in three non-contiguous contigs, harbors 2,876 protein-coding and 75 RNA genes andmore » is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
Finished Genome Sequence of Escherichia coli K-12 Strain HMS174 (ATCC 47011).
Mairhofer, Juergen; Krempl, Peter M; Thallinger, Gerhard G; Striedner, Gerald
2014-11-20
Escherichia coli strain K-12 substrain HMS174 is an engineered descendant of the E. coli K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is used in fermentation processes for heterologous protein production. Here, we report the complete genome sequence of E. coli HMS174 (ATCC 47011). Copyright © 2014 Mairhofer et al.
Haemonchus contortus: Genome Structure, Organization and Comparative Genomics.
Laing, R; Martinelli, A; Tracey, A; Holroyd, N; Gilleard, J S; Cotton, J A
2016-01-01
One of the first genome sequencing projects for a parasitic nematode was that for Haemonchus contortus. The open access data from the Wellcome Trust Sanger Institute provided a valuable early resource for the research community, particularly for the identification of specific genes and genetic markers. Later, a second sequencing project was initiated by the University of Melbourne, and the two draft genome sequences for H. contortus were published back-to-back in 2013. There is a pressing need for long-range genomic information for genetic mapping, population genetics and functional genomic studies, so we are continuing to improve the Wellcome Trust Sanger Institute assembly to provide a finished reference genome for H. contortus. This review describes this process, compares the H. contortus genome assemblies with draft genomes from other members of the strongylid group and discusses future directions for parasite genomics using the H. contortus model. Copyright © 2016 Elsevier Ltd. All rights reserved.
ABACAS: algorithm-based automatic contiguation of assembled sequences
Assefa, Samuel; Keane, Thomas M.; Otto, Thomas D.; Newbold, Chris; Berriman, Matthew
2009-01-01
Summary: Due to the availability of new sequencing technologies, we are now increasingly interested in sequencing closely related strains of existing finished genomes. Recently a number of de novo and mapping-based assemblers have been developed to produce high quality draft genomes from new sequencing technology reads. New tools are necessary to take contigs from a draft assembly through to a fully contiguated genome sequence. ABACAS is intended as a tool to rapidly contiguate (align, order, orientate), visualize and design primers to close gaps on shotgun assembled contigs based on a reference sequence. The input to ABACAS is a set of contigs which will be aligned to the reference genome, ordered and orientated, visualized in the ACT comparative browser, and optimal primer sequences are automatically generated. Availability and Implementation: ABACAS is implemented in Perl and is freely available for download from http://abacas.sourceforge.net Contact: sa4@sanger.ac.uk PMID:19497936
Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data.
Chin, Chen-Shan; Alexander, David H; Marks, Patrick; Klammer, Aaron A; Drake, James; Heiner, Cheryl; Clum, Alicia; Copeland, Alex; Huddleston, John; Eichler, Evan E; Turner, Stephen W; Korlach, Jonas
2013-06-01
We present a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing. Our method uses the longest reads as seeds to recruit all other reads for construction of highly accurate preassembled reads through a directed acyclic graph-based consensus procedure, which we follow with assembly using off-the-shelf long-read assemblers. In contrast to hybrid approaches, HGAP does not require highly accurate raw reads for error correction. We demonstrate efficient genome assembly for several microorganisms using as few as three SMRT Cell zero-mode waveguide arrays of sequencing and for BACs using just one SMRT Cell. Long repeat regions can be successfully resolved with this workflow. We also describe a consensus algorithm that incorporates SMRT sequencing primary quality values to produce de novo genome sequence exceeding 99.999% accuracy.
Non-contiguous finished genome sequence and description of Alistipes timonensis sp. nov.
Lagier, Jean-Christophe; Armougom, Fabrice; Mishra, Ajay Kumar; Nguyen, Thi-Tien; Raoult, Didier; Fournier, Pierre-Edouard
2012-01-01
Alistipes timonensis strain JC136T sp. nov. is the type strain of A. timonensis sp. nov., a new species within the genus Alistipes. This strain, whose genome is described here, was isolated from the fecal flora of a healthy patient. A. timonensis is an obligate anaerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 3,497,779 bp long genome (one chromosome but no plasmid) contains 2,742 protein-coding and 50 RNA genes, including three rRNA genes. PMID:23408657
Lagier, Jean-Christophe; Elkarkouri, Khalid; Rivet, Romain; Couderc, Carine; Raoult, Didier; Fournier, Pierre-Edouard
2013-01-01
Senegalemassilia anaerobia strain JC110T sp.nov. is the type strain of Senegalemassilia anaerobia gen. nov., sp. nov., the type species of a new genus within the Coriobacteriaceae family, Senegalemassilia gen. nov. This strain, whose genome is described here, was isolated from the fecal flora of a healthy Senegalese patient. S. anaerobia is a Gram-positive anaerobic coccobacillus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,383,131 bp long genome contains 1,932 protein-coding and 58 RNA genes. PMID:24019984
Chang, Yun-Juan; Land, Miriam; Hauser, Loren; Chertkov, Olga; Del Rio, Tijana Glavina; Nolan, Matt; Copeland, Alex; Tice, Hope; Cheng, Jan-Fang; Lucas, Susan; Han, Cliff; Goodwin, Lynne; Pitluck, Sam; Ivanova, Natalia; Ovchinikova, Galina; Pati, Amrita; Chen, Amy; Palaniappan, Krishna; Mavromatis, Konstantinos; Liolios, Konstantinos; Brettin, Thomas; Fiebig, Anne; Rohde, Manfred; Abt, Birte; Göker, Markus; Detter, John C; Woyke, Tanja; Bristow, James; Eisen, Jonathan A; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C; Klenk, Hans-Peter; Lapidus, Alla
2011-10-15
Ktedonobacter racemifer corrig. Cavaletti et al. 2007 is the type species of the genus Ktedonobacter, which in turn is the type genus of the family Ktedonobacteraceae, the type family of the order Ktedonobacterales within the class Ktedonobacteria in the phylum 'Chloroflexi'. Although K. racemifer shares some morphological features with the actinobacteria, it is of special interest because it was the first cultivated representative of a deep branching unclassified lineage of otherwise uncultivated environmental phylotypes tentatively located within the phylum 'Chloroflexi'. The aerobic, filamentous, non-motile, spore-forming Gram-positive heterotroph was isolated from soil in Italy. The 13,661,586 bp long non-contiguous finished genome consists of ten contigs and is the first reported genome sequence from a member of the class Ktedonobacteria. With its 11,453 protein-coding and 87 RNA genes, it is the largest prokaryotic genome reported so far. It comprises a large number of over-represented COGs, particularly genes associated with transposons, causing the genetic redundancy within the genome being considerably larger than expected by chance. This work is a part of the Genomic Encyclopedia of Bacteria and Archaea project.
Finished Genome Sequence of the Laboratory Strain Escherichia coli K-12 RV308 (ATCC 31608).
Krempl, Peter M; Mairhofer, Juergen; Striedner, Gerald; Thallinger, Gerhard G
2014-11-20
Escherichia coli strain K-12 substrain RV308 is an engineered descendant of the K-12 wild-type strain. Like its ancestor, it is an important organism in biotechnological research and is heavily used for the expression of single-chain variable fragments. Here, we report the complete genome sequence of E. coli K-12 RV308 (ATCC 31608). Copyright © 2014 Krempl et al.
GFinisher: a new strategy to refine and finish bacterial genome assemblies
NASA Astrophysics Data System (ADS)
Guizelini, Dieval; Raittz, Roberto T.; Cruz, Leonardo M.; Souza, Emanuel M.; Steffens, Maria B. R.; Pedrosa, Fabio O.
2016-10-01
Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.
GFinisher: a new strategy to refine and finish bacterial genome assemblies.
Guizelini, Dieval; Raittz, Roberto T; Cruz, Leonardo M; Souza, Emanuel M; Steffens, Maria B R; Pedrosa, Fabio O
2016-10-10
Despite the development in DNA sequencing technology, improving the number and the length of reads, the process of reconstruction of complete genome sequences, the so called genome assembly, is still complex. Only 13% of the prokaryotic genome sequencing projects have been completed. Draft genome sequences deposited in public databases are fragmented in contigs and may lack the full gene complement. The aim of the present work is to identify assembly errors and improve the assembly process of bacterial genomes. The biological patterns observed in genomic sequences and the application of a priori information can allow the identification of misassembled regions, and the reorganization and improvement of the overall de novo genome assembly. GFinisher starts generating a Fuzzy GC skew graphs for each contig in an assembly and follows breaking down the contigs in critical points in order to reassemble and close them using jFGap. This has been successfully applied to dataset from 96 genome assemblies, decreasing the number of contigs by up to 86%. GFinisher can easily optimize assemblies of prokaryotic draft genomes and can be used to improve the assembly programs based on nucleotide sequence patterns in the genome. The software and source code are available at http://gfinisher.sourceforge.net/.
SIMBA: a web tool for managing bacterial genome assembly generated by Ion PGM sequencing technology.
Mariano, Diego C B; Pereira, Felipe L; Aguiar, Edgar L; Oliveira, Letícia C; Benevides, Leandro; Guimarães, Luís C; Folador, Edson L; Sousa, Thiago J; Ghosh, Preetam; Barh, Debmalya; Figueiredo, Henrique C P; Silva, Artur; Ramos, Rommel T J; Azevedo, Vasco A C
2016-12-15
The evolution of Next-Generation Sequencing (NGS) has considerably reduced the cost per sequenced-base, allowing a significant rise of sequencing projects, mainly in prokaryotes. However, the range of available NGS platforms requires different strategies and software to correctly assemble genomes. Different strategies are necessary to properly complete an assembly project, in addition to the installation or modification of various software. This requires users to have significant expertise in these software and command line scripting experience on Unix platforms, besides possessing the basic expertise on methodologies and techniques for genome assembly. These difficulties often delay the complete genome assembly projects. In order to overcome this, we developed SIMBA (SImple Manager for Bacterial Assemblies), a freely available web tool that integrates several component tools for assembling and finishing bacterial genomes. SIMBA provides a friendly and intuitive user interface so bioinformaticians, even with low computational expertise, can work under a centralized administrative control system of assemblies managed by the assembly center head. SIMBA guides the users to execute assembly process through simple and interactive pages. SIMBA workflow was divided in three modules: (i) projects: allows a general vision of genome sequencing projects, in addition to data quality analysis and data format conversions; (ii) assemblies: allows de novo assemblies with the software Mira, Minia, Newbler and SPAdes, also assembly quality validations using QUAST software; and (iii) curation: presents methods to finishing assemblies through tools for scaffolding contigs and close gaps. We also presented a case study that validated the efficacy of SIMBA to manage bacterial assemblies projects sequenced using Ion Torrent PGM. Besides to be a web tool for genome assembly, SIMBA is a complete genome assemblies project management system, which can be useful for managing of several projects in laboratories. SIMBA source code is available to download and install in local webservers at http://ufmg-simba.sourceforge.net .
GenColors: annotation and comparative genomics of prokaryotes made easy.
Romualdi, Alessandro; Felder, Marius; Rose, Dominic; Gausmann, Ulrike; Schilhabel, Markus; Glöckner, Gernot; Platzer, Matthias; Sühnel, Jürgen
2007-01-01
GenColors (gencolors.fli-leibniz.de) is a new web-based software/database system aimed at an improved and accelerated annotation of prokaryotic genomes considering information on related genomes and making extensive use of genome comparison. It offers a seamless integration of data from ongoing sequencing projects and annotated genomic sequences obtained from GenBank. A variety of export/import filters manages an effective data flow from sequence assembly and manipulation programs (e.g., GAP4) to GenColors and back as well as to standard GenBank file(s). The genome comparison tools include best bidirectional hits, gene conservation, syntenies, and gene core sets. Precomputed UniProt matches allow annotation and analysis in an effective manner. In addition to these analysis options, base-specific quality data (coverage and confidence) can also be handled if available. The GenColors system can be used both for annotation purposes in ongoing genome projects and as an analysis tool for finished genomes. GenColors comes in two types, as dedicated genome browsers and as the Jena Prokaryotic Genome Viewer (JPGV). Dedicated genome browsers contain genomic information on a set of related genomes and offer a large number of options for genome comparison. The system has been efficiently used in the genomic sequencing of Borrelia garinii and is currently applied to various ongoing genome projects on Borrelia, Legionella, Escherichia, and Pseudomonas genomes. One of these dedicated browsers, the Spirochetes Genome Browser (sgb.fli-leibniz.de) with Borrelia, Leptospira, and Treponema genomes, is freely accessible. The others will be released after finalization of the corresponding genome projects. JPGV (jpgv.fli-leibniz.de) offers information on almost all finished bacterial genomes, as compared to the dedicated browsers with reduced genome comparison functionality, however. As of January 2006, this viewer includes 632 genomic elements (e.g., chromosomes and plasmids) of 293 species. The system provides versatile quick and advanced search options for all currently known prokaryotic genomes and generates circular and linear genome plots. Gene information sheets contain basic gene information, database search options, and links to external databases. GenColors is also available on request for local installation.
The FlyBase database of the Drosophila genome projects and community literature
2003-01-01
FlyBase (http://flybase.bio.indiana.edu/) provides an integrated view of the fundamental genomic and genetic data on the major genetic model Drosophila melanogaster and related species. FlyBase has primary responsibility for the continual reannotation of the D. melanogaster genome. The ultimate goal of the reannotation effort is to decorate the euchromatic sequence of the genome with as much biological information as is available from the community and from the major genome project centers. A complete revision of the annotations of the now-finished euchromatic genomic sequence has been completed. There are many points of entry to the genome within FlyBase, most notably through maps, gene products and ontologies, structured phenotypic and gene expression data, and anatomy. PMID:12519974
Finishing Genomes with Limited Resources: Lessons from an Ensemble of Microbial Genomes
2010-01-01
proteobacteria from the Pasteurellaceae family that is strongly implicated as a causative agent of infective endo- carditis [6]. It can also be found as an...Sequence of Aggregatibacter (Haemophilus) aphrophilus NJB700. J Bacrerio/2009, 191(14):4693-4694. 6. Khairat 0: Endocarditis due to a new species of
Non contiguous-finished genome sequence and description of Enorma timonensis sp. nov.
Ramasamy, Dhamodaran; Dubourg, Gregory; Robert, Catherine; Caputo, Aurelia; Papazian, Laurent; Raoult, Didier; Fournier, Pierre-Edouard
2014-01-01
Enorma timonensis strain GD5T sp. nov., is the type strain of E. timonensis sp. nov., a new member of the genus Enorma within the family Coriobacteriaceae. This strain, whose genome is described here, was isolated from the fecal flora of a 53-year-old woman hospitalized for 3 months in an intensive care unit. E. timonensis is an obligate anaerobic rod. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,365,123 bp long genome (1 chromosome but no plasmid) contains 2,060 protein-coding and 52 RNA genes, including 4 rRNA genes. PMID:25197477
Non contiguous-finished genome sequence and description of Peptoniphilus obesi sp. nov.
Mishra, Ajay Kumar; Hugon, Perrine; Lagier, Jean-Christophe; Nguyen, Thi-Thien; Robert, Catherine; Couderc, Carine; Raoult, Didier
2013-01-01
Peptoniphilus obesi strain ph1T sp. nov., is the type strain of P. obesi sp. nov., a new species within the genus Peptoniphilus. This strain, whose genome is described here, was isolated from the fecal flora of a 26-year-old woman suffering from morbid obesity. P. obesi strain ph1T is a Gram-positive, obligate anaerobic coccus. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 1,774,150 bp long genome (1 chromosome but no plasmid) contains 1,689 protein-coding and 29 RNA genes, including 5 rRNA genes. PMID:24019985
Literature and patent analysis of the cloning and identification of human functional genes in China.
Xia, Yan; Tang, LiSha; Yao, Lei; Wan, Bo; Yang, XianMei; Yu, Long
2012-03-01
The Human Genome Project was launched at the end of the 1980s. Since then, the cloning and identification of functional genes has been a major focus of research across the world. In China too, the potentially profound impact of such studies on the life sciences and on human health was realized, and relevant studies were initiated in the 1990s. To advance China's involvement in the Human Genome Project, in the mid-1990s, Committee of Experts in Biology from National High Technology Research and Development Program of China (863 Program) proposed the "two 1%" goal. This goal envisaged China contributing 1% of the total sequencing work, and cloning and identifying 1% of the total human functional genes. Over the past 20 years, tremendous achievement has been accomplished by Chinese scientists. It is well known that scientists in China finished the 1% of sequencing work of the Human Genome Project, whereas, there is no comprehensive report about "whether China had finished cloning and identifying 1% of human functional genes". In the present study, the GenBank database at the National Center of Biotechnology Information, the PubMed search tool, and the patent database of the State Intellectual Property Office, China, were used to retrieve entries based on two screening standards: (i) Were the newly cloned and identified genes first reported by Chinese scientists? (ii) Were the Chinese scientists awarded the gene sequence patent? Entries were retrieved from the databases up to the cut-off date of 30 June 2011 and the obtained data were analyzed further. The results showed that 589 new human functional genes were first reported by Chinese scientists and 159 gene sequences were patented (http://gene.fudan.sh.cn/introduction/database/chinagene/chinagene.html). This study systematically summarizes China's contributions to human functional genomics research and answers the question "has China finished cloning and identifying 1% of human functional genes?" in the affirmative.
Data Management Requirements for the Rapid Identification and Character of Unknown Genomic Samples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenzweig, Nicole
2010-06-02
Nicole Rosenzweig of OptiMetrics discusses the development of informatics infrastructure for studying bacterial pathogens on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Mind the gap; seven reasons to close fragmented genome assemblies.
Thomma, Bart P H J; Seidl, Michael F; Shi-Kunne, Xiaoqian; Cook, David E; Bolton, Melvin D; van Kan, Jan A L; Faino, Luigi
2016-05-01
Like other domains of life, research into the biology of filamentous microbes has greatly benefited from the advent of whole-genome sequencing. Next-generation sequencing (NGS) technologies have revolutionized sequencing, making genomic sciences accessible to many academic laboratories including those that study non-model organisms. Thus, hundreds of fungal genomes have been sequenced and are publically available today, although these initiatives have typically yielded considerably fragmented genome assemblies that often lack large contiguous genomic regions. Many important genomic features are contained in intergenic DNA that is often missing in current genome assemblies, and recent studies underscore the significance of non-coding regions and repetitive elements for the life style, adaptability and evolution of many organisms. The study of particular types of genetic elements, such as telomeres, centromeres, repetitive elements, effectors, and clusters of co-regulated genes, but also of phenomena such as structural rearrangements, genome compartmentalization and epigenetics, greatly benefits from having a contiguous and high-quality, preferably even complete and gapless, genome assembly. Here we discuss a number of important reasons to produce gapless, finished, genome assemblies to help answer important biological questions. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nierman, William C.
At TIGR, the human Bacterial Artificial Chromosome (BAC) end sequencing and trimming were with an overall sequencing success rate of 65%. CalTech human BAC libraries A, B, C and D as well as Roswell Park Cancer Institute's library RPCI-11 were used. To date, we have generated >300,000 end sequences from >186,000 human BAC clones with an average read length {approx}460 bp for a total of 141 Mb covering {approx}4.7% of the genome. Over sixty percent of the clones have BAC end sequences (BESs) from both ends representing over five-fold coverage of the genome by the paired-end clones. The average phredmore » Q20 length is {approx}400 bp. This high accuracy makes our BESs match the human finished sequences with an average identity of 99% and a match length of 450 bp, and a frequency of one match per 12.8 kb contig sequence. Our sample tracking has ensured a clone tracking accuracy of >90%, which gives researchers a high confidence in (1) retrieving the right clone from the BA C libraries based on the sequence matches; and (2) building a minimum tiling path of sequence-ready clones across the genome and genome assembly scaffolds.« less
Gardiner, Laura-Jayne; Gawroński, Piotr; Olohan, Lisa; Schnurbusch, Thorsten; Hall, Neil; Hall, Anthony
2014-12-01
Mapping-by-sequencing analyses have largely required a complete reference sequence and employed whole genome re-sequencing. In species such as wheat, no finished genome reference sequence is available. Additionally, because of its large genome size (17 Gb), re-sequencing at sufficient depth of coverage is not practical. Here, we extend the utility of mapping by sequencing, developing a bespoke pipeline and algorithm to map an early-flowering locus in einkorn wheat (Triticum monococcum L.) that is closely related to the bread wheat genome A progenitor. We have developed a genomic enrichment approach using the gene-rich regions of hexaploid bread wheat to design a 110-Mbp NimbleGen SeqCap EZ in solution capture probe set, representing the majority of genes in wheat. Here, we use the capture probe set to enrich and sequence an F2 mapping population of the mutant. The mutant locus was identified in T. monococcum, which lacks a complete genome reference sequence, by mapping the enriched data set onto pseudo-chromosomes derived from the capture probe target sequence, with a long-range order of genes based on synteny of wheat with Brachypodium distachyon. Using this approach we are able to map the region and identify a set of deleted genes within the interval. © 2014 The Authors.The Plant Journal published by Society for Experimental Biology and John Wiley & Sons Ltd.
1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life
Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.; ...
2017-06-12
We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less
1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mukherjee, Supratim; Seshadri, Rekha; Varghese, Neha J.
We present 1,003 reference genomes that were sequenced as part of the Genomic Encyclopedia of Bacteria and Archaea (GEBA) initiative, selected to maximize sequence coverage of phylogenetic space. These genomes double the number of existing type strains and expand their overall phylogenetic diversity by 25%. Comparative analyses with previously available finished and draft genomes reveal a 10.5% increase in novel protein families as a function of phylogenetic diversity. The GEBA genomes recruit 25 million previously unassigned metagenomic proteins from 4,650 samples, improving their phylogenetic and functional interpretation. We identify numerous biosynthetic clusters and experimentally validate a divergent phenazine cluster withmore » potential new chemical structure and antimicrobial activity. This Resource is the largest single release of reference genomes to date. Bacterial and archaeal isolate sequence space is still far from saturated, and future endeavors in this direction will continue to be a valuable resource for scientific discovery.« less
Brito, Luciana Fernandes; Bach, Evelise; Kalinowski, Jörn; Rückert, Christian; Wibberg, Daniel; Passaglia, Luciane M; Wendisch, Volker F
2015-08-10
Paenibacillus riograndensis is a Gram-positive rhizobacterium which exhibits plant growth promoting activities. It was isolated from the rhizosphere of wheat grown in the state of Rio Grande do Sul, Brazil. Here we announce the complete genome sequence of P. riograndensis strain SBR5(T). The genome of P. riograndensis SBR5(T) consists of a circular chromosome of 7,893,056bps. The genome was finished and fully annotated, containing 6705 protein coding genes, 87 tRNAs and 27 rRNAs. The knowledge of the complete genome helped to explain why P. riograndensis SBR5(T) can grow with the carbon sources arabinose and mannitol, but not myo-inositol, and to explain physiological features such as biotin auxotrophy and antibiotic resistances. The genome sequence will be valuable for functional genomics and ecological studies as well as for application of P. riograndensis SBR5(T) as plant growth-promoting rhizobacterium. Copyright © 2015 Elsevier B.V. All rights reserved.
Kisand, Veljo; Lettieri, Teresa
2013-04-01
De novo genome sequencing of previously uncharacterized microorganisms has the potential to open up new frontiers in microbial genomics by providing insight into both functional capabilities and biodiversity. Until recently, Roche 454 pyrosequencing was the NGS method of choice for de novo assembly because it generates hundreds of thousands of long reads (<450 bps), which are presumed to aid in the analysis of uncharacterized genomes. The array of tools for processing NGS data are increasingly free and open source and are often adopted for both their high quality and role in promoting academic freedom. The error rate of pyrosequencing the Alcanivorax borkumensis genome was such that thousands of insertions and deletions were artificially introduced into the finished genome. Despite a high coverage (~30 fold), it did not allow the reference genome to be fully mapped. Reads from regions with errors had low quality, low coverage, or were missing. The main defect of the reference mapping was the introduction of artificial indels into contigs through lower than 100% consensus and distracting gene calling due to artificial stop codons. No assembler was able to perform de novo assembly comparable to reference mapping. Automated annotation tools performed similarly on reference mapped and de novo draft genomes, and annotated most CDSs in the de novo assembled draft genomes. Free and open source software (FOSS) tools for assembly and annotation of NGS data are being developed rapidly to provide accurate results with less computational effort. Usability is not high priority and these tools currently do not allow the data to be processed without manual intervention. Despite this, genome assemblers now readily assemble medium short reads into long contigs (>97-98% genome coverage). A notable gap in pyrosequencing technology is the quality of base pair calling and conflicting base pairs between single reads at the same nucleotide position. Regardless, using draft whole genomes that are not finished and remain fragmented into tens of contigs allows one to characterize unknown bacteria with modest effort.
Shotgun Optical Maps of the Whole Escherichia coli O157:H7 Genome
Lim, Alex; Dimalanta, Eileen T.; Potamousis, Konstantinos D.; Yen, Galex; Apodoca, Jennifer; Tao, Chunhong; Lin, Jieyi; Qi, Rong; Skiadas, John; Ramanathan, Arvind; Perna, Nicole T.; Plunkett, Guy; Burland, Valerie; Mau, Bob; Hackett, Jeremiah; Blattner, Frederick R.; Anantharaman, Thomas S.; Mishra, Bhubaneswar; Schwartz, David C.
2001-01-01
We have constructed NheI and XhoI optical maps of Escherichia coli O157:H7 solely from genomic DNA molecules to provide a uniquely valuable scaffold for contig closure and sequence validation. E. coli O157:H7 is a common pathogen found in contaminated food and water. Our approach obviated the need for the analysis of clones, PCR products, and hybridizations, because maps were constructed from ensembles of single DNA molecules. Shotgun sequencing of bacterial genomes remains labor-intensive, despite advances in sequencing technology. This is partly due to manual intervention required during the last stages of finishing. The applicability of optical mapping to this problem was enhanced by advances in machine vision techniques that improved mapping throughput and created a path to full automation of mapping. Comparisons were made between maps and sequence data that characterized sequence gaps and guided nascent assemblies. PMID:11544203
Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species
2013-01-01
Background The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly. Results In Assemblathon 2, we provided a variety of sequence data to be assembled for three vertebrate species (a bird, a fish, and snake). This resulted in a total of 43 submitted assemblies from 21 participating teams. We evaluated these assemblies using a combination of optical map data, Fosmid sequences, and several statistical methods. From over 100 different metrics, we chose ten key measures by which to assess the overall quality of the assemblies. Conclusions Many current genome assemblers produced useful assemblies, containing a significant representation of their genes and overall genome structure. However, the high degree of variability between the entries suggests that there is still much room for improvement in the field of genome assembly and that approaches which work well in assembling the genome of one species may not necessarily work well for another. PMID:23870653
A post-assembly genome-improvement toolkit (PAGIT) to obtain annotated genomes from contigs.
Swain, Martin T; Tsai, Isheng J; Assefa, Samual A; Newbold, Chris; Berriman, Matthew; Otto, Thomas D
2012-06-07
Genome projects now produce draft assemblies within weeks owing to advanced high-throughput sequencing technologies. For milestone projects such as Escherichia coli or Homo sapiens, teams of scientists were employed to manually curate and finish these genomes to a high standard. Nowadays, this is not feasible for most projects, and the quality of genomes is generally of a much lower standard. This protocol describes software (PAGIT) that is used to improve the quality of draft genomes. It offers flexible functionality to close gaps in scaffolds, correct base errors in the consensus sequence and exploit reference genomes (if available) in order to improve scaffolding and generating annotations. The protocol is most accessible for bacterial and small eukaryotic genomes (up to 300 Mb), such as pathogenic bacteria, malaria and parasitic worms. Applying PAGIT to an E. coli assembly takes ∼24 h: it doubles the average contig size and annotates over 4,300 gene models.
Genome Analysis of Staphylococcus agnetis, an Agent of Lameness in Broiler Chickens
Ojha, Sohita; Pummill, Jeff F.; Koon, Joseph A.; Wideman, Robert F.; Rhoads, Douglas D.
2015-01-01
Lameness in broiler chickens is a significant animal welfare and financial issue. Lameness can be enhanced by rearing young broilers on wire flooring. We have identified Staphylococcus agnetis as significantly involved in bacterial chondronecrosis with osteomyelitis (BCO) in proximal tibia and femorae, leading to lameness in broiler chickens in the wire floor system. Administration of S. agnetis in water induces lameness. Previously reported in some cases of cattle mastitis, this is the first report of this poorly described pathogen in chickens. We used long and short read next generation sequencing to assemble single finished contigs for the genome and a large plasmid from the chicken pathogen. Comparison of the S. agnetis genome to those of other pathogenic Staphylococci shows that S.agnetis contains a distinct repertoire of virulence determinants. Additionally, the S. agnetis genome has several regions that differ substantially from the genomes of other pathogenic Staphylococci. Comparison of our finished genome to a recent draft genome for a cattle mastitis isolate suggests that future investigations focus on the evolutionary epidemiology of this emerging pathogen of domestic animals. PMID:26606420
Non-contiguous finished genome sequence and description of Collinsella massiliensis sp. nov.
Padmanabhan, Roshan; Dubourg, Gregory; Nguyen, Thi-Thien; Couderc, Carine; Rossi-Tamisier, Morgane; Caputo, Aurelia; Raoult, Didier; Fournier, Pierre-Edouard
2014-01-01
Collinsella massiliensis strain GD3T is the type strain of Collinsella massiliensis sp. nov., a new species within the genus Collinsella. This strain, whose genome is described here, was isolated from the fecal flora of a 53-year-old French Caucasoid woman who had been admitted to intensive care unit for Guillain-Barré syndrome. Collinsella massiliensis is a Gram-positive, obligate anaerobic, non motile and non sporulating bacillus. Here, we describe the features of this organism, together with the complete genome sequence and annotation. The genome is 2,319,586 bp long (1 chromosome, no plasmid), exhibits a G+C content of 65.8% and contains 2,003 protein-coding and 54 RNA genes, including 1 rRNA operon. PMID:25197489
Non-contiguous finished genome sequence and description of Collinsella massiliensis sp. nov.
Padmanabhan, Roshan; Dubourg, Gregory; Nguyen, Thi-Thien; Couderc, Carine; Rossi-Tamisier, Morgane; Caputo, Aurelia; Raoult, Didier; Fournier, Pierre-Edouard
2014-06-15
Collinsella massiliensis strain GD3(T) is the type strain of Collinsella massiliensis sp. nov., a new species within the genus Collinsella. This strain, whose genome is described here, was isolated from the fecal flora of a 53-year-old French Caucasoid woman who had been admitted to intensive care unit for Guillain-Barré syndrome. Collinsella massiliensis is a Gram-positive, obligate anaerobic, non motile and non sporulating bacillus. Here, we describe the features of this organism, together with the complete genome sequence and annotation. The genome is 2,319,586 bp long (1 chromosome, no plasmid), exhibits a G+C content of 65.8% and contains 2,003 protein-coding and 54 RNA genes, including 1 rRNA operon.
Sequencing Centers Panel at SFAF
Schilkey, Faye; Ali, Johar; Grafham, Darren; Muzny, Donna; Fulton, Bob; Fitzgerald, Mike; Hostetler, Jessica; Daum, Chris
2018-02-13
From left to right: Faye Schilkey of NCGR, Johar Ali of OICR, Darren Grafham of Wellcome Trust Sanger Institute, Donna Muzny of the Baylor College of Medicine, Bob Fulton of Washington University, Mike Fitzgerald of the Broad Institute, Jessica Hostetler of the J. Craig Venter Institute and Chris Daum of the DOE Joint Genome Institute discuss sequencing technologies, applications and pipelines on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Sequencing Centers Panel at SFAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilkey, Faye; Ali, Johar; Grafham, Darren
From left to right: Faye Schilkey of NCGR, Johar Ali of OICR, Darren Grafham of Wellcome Trust Sanger Institute, Donna Muzny of the Baylor College of Medicine, Bob Fulton of Washington University, Mike Fitzgerald of the Broad Institute, Jessica Hostetler of the J. Craig Venter Institute and Chris Daum of the DOE Joint Genome Institute discuss sequencing technologies, applications and pipelines on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Complex Microbial Communities: Weâre not in Kansas Anymore
Fraser-Liggett, Claire M.
2018-05-08
Claire Fraser-Liggett, Director of the Institute for Genome Sciences and professor at the University of Maryland School of Medicine, gives the June 2, 2010 keynote at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Shannon L.; Minogue, Timothy D.; Teshima, Hazuki
Bacillus cereus strain 03BB87, a blood culture isolate, originated in a 56-year-old male muller operator with a fatal case of pneumonia in 2003. Here we present the finished genome sequence of that pathogen, including a 5.46-Mb chromosome and two plasmids (209 and 52 Kb, respectively).
Pagani, Ioanna; Liolios, Konstantinos; Jansson, Jakob; Chen, I-Min A.; Smirnova, Tatyana; Nosrat, Bahador; Markowitz, Victor M.; Kyrpides, Nikos C.
2012-01-01
The Genomes OnLine Database (GOLD, http://www.genomesonline.org/) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2011, GOLD, now on version 4.0, contains information for 11 472 sequencing projects, of which 2907 have been completed and their sequence data has been deposited in a public repository. Out of these complete projects, 1918 are finished and 989 are permanent drafts. Moreover, GOLD contains information for 340 metagenome studies associated with 1927 metagenome samples. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about any (x) Sequence specification and beyond. PMID:22135293
Pagani, Ioanna; Liolios, Konstantinos; Jansson, Jakob; Chen, I-Min A; Smirnova, Tatyana; Nosrat, Bahador; Markowitz, Victor M; Kyrpides, Nikos C
2012-01-01
The Genomes OnLine Database (GOLD, http://www.genomesonline.org/) is a comprehensive resource for centralized monitoring of genome and metagenome projects worldwide. Both complete and ongoing projects, along with their associated metadata, can be accessed in GOLD through precomputed tables and a search page. As of September 2011, GOLD, now on version 4.0, contains information for 11,472 sequencing projects, of which 2907 have been completed and their sequence data has been deposited in a public repository. Out of these complete projects, 1918 are finished and 989 are permanent drafts. Moreover, GOLD contains information for 340 metagenome studies associated with 1927 metagenome samples. GOLD continues to expand, moving toward the goal of providing the most comprehensive repository of metadata information related to the projects and their organisms/environments in accordance with the Minimum Information about any (x) Sequence specification and beyond.
Schmedes, Sarah E; King, Jonathan L; Budowle, Bruce
2015-01-01
Whole-genome data are invaluable for large-scale comparative genomic studies. Current sequencing technologies have made it feasible to sequence entire bacterial genomes with relative ease and time with a substantially reduced cost per nucleotide, hence cost per genome. More than 3,000 bacterial genomes have been sequenced and are available at the finished status. Publically available genomes can be readily downloaded; however, there are challenges to verify the specific supporting data contained within the download and to identify errors and inconsistencies that may be present within the organizational data content and metadata. AutoCurE, an automated tool for bacterial genome database curation in Excel, was developed to facilitate local database curation of supporting data that accompany downloaded genomes from the National Center for Biotechnology Information. AutoCurE provides an automated approach to curate local genomic databases by flagging inconsistencies or errors by comparing the downloaded supporting data to the genome reports to verify genome name, RefSeq accession numbers, the presence of archaea, BioProject/UIDs, and sequence file descriptions. Flags are generated for nine metadata fields if there are inconsistencies between the downloaded genomes and genomes reports and if erroneous or missing data are evident. AutoCurE is an easy-to-use tool for local database curation for large-scale genome data prior to downstream analyses.
Genomic sequence of the xylose fermenting, insect-inhabitingyeast, Pichia stipitis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffries, Thomas W.; Grigoriev, Igor; Grimwood, Jane
2007-06-25
Xylose is a major constituent of angiosperm lignocellulose,so its fermentation is important for bioconversion to fuels andchemicals. Pichia stipitis is the best-studied native xylose fermentingyeast. Genes from P. stipitis have been used to engineer xylosemetabolism in Saccharomycescerevisiae, and the regulation of the P.stipitis genome offers insights into the mechanisms of xylose metabolismin yeasts. We have sequenced, assembled and finished the genome ofP.stipitis. As such, it is one of only a handful of completely finishedeukaryotic organisms undergoing analysis and manual curation. Thesequence has revealed aspects of genome organization, numerous genes forbiocoversion, preliminary insights into regulation of central metabolicpathways, numerous examples ofmore » co-localized genes with related functions,and evidence of how P. stipitis manages to achieve redox balance whilegrowing on xylose under microaerobic conditions.« less
Genome sequence of the phylogenetically isolated spirochete Leptonema illini type strain (3055T)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huntemann, Marcel; Stackebrandt, Erko; Held, Brittany
2013-01-01
Leptonema illini Hovind-Hougen 1979 is the type species of the genus Leptonema, family Leptospiraceae, phylum Spirochaetes. Organisms of this family have a Gram-negative-like cell enve- lope consisting of a cytoplasmic membrane and an outer membrane. The peptidoglycan layer is as- sociated with the cytoplasmic rather than the outer membrane. The two flagella of members of Leptospiraceae extend from the cytoplasmic membrane at the ends of the bacteria into the periplasmic space and are necessary for their motility. Here we describe the features of the L. illini type strain, together with the complete genome sequence, and annotation. This is the firstmore » genome sequence (finished at the level of Improved High Quality Draft) to be reported from of a member of the genus Leptonema and a representative of the third genus of the family Leptospiraceae for which complete or draft genome sequences are now available. The three scaffolds of the 4,522,760 bp draft genome sequence reported here, and its 4,230 protein-coding and 47 RNA genes are part of the Ge- nomic Encyclopedia of Bacteria and Archaea project.« less
Finishing bacterial genome assemblies with Mix.
Soueidan, Hayssam; Maurier, Florence; Groppi, Alexis; Sirand-Pugnet, Pascal; Tardy, Florence; Citti, Christine; Dupuy, Virginie; Nikolski, Macha
2013-01-01
Among challenges that hamper reaping the benefits of genome assembly are both unfinished assemblies and the ensuing experimental costs. First, numerous software solutions for genome de novo assembly are available, each having its advantages and drawbacks, without clear guidelines as to how to choose among them. Second, these solutions produce draft assemblies that often require a resource intensive finishing phase. In this paper we address these two aspects by developing Mix , a tool that mixes two or more draft assemblies, without relying on a reference genome and having the goal to reduce contig fragmentation and thus speed-up genome finishing. The proposed algorithm builds an extension graph where vertices represent extremities of contigs and edges represent existing alignments between these extremities. These alignment edges are used for contig extension. The resulting output assembly corresponds to a set of paths in the extension graph that maximizes the cumulative contig length. We evaluate the performance of Mix on bacterial NGS data from the GAGE-B study and apply it to newly sequenced Mycoplasma genomes. Resulting final assemblies demonstrate a significant improvement in the overall assembly quality. In particular, Mix is consistent by providing better overall quality results even when the choice is guided solely by standard assembly statistics, as is the case for de novo projects. Mix is implemented in Python and is available at https://github.com/cbib/MIX, novel data for our Mycoplasma study is available at http://services.cbib.u-bordeaux2.fr/mix/.
A Common Framework for Multiple Sources of Bacterial Annotation
White, Owen
2018-05-03
Owen White, professor of epidemiology and preventive medicine at the University of Maryland School of Medicine and a researcher at the University of Maryland Institute for Genome Sciences, gives the May 29, 2009 keynote speech at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Non-contiguous finished genome sequence of Ornithobacterium rhinotracheale strain H06-030791
USDA-ARS?s Scientific Manuscript database
The Gram-negative pleomorphic rod-shaped bacterium Ornithobacterium rhinotracheale (O. rhinotracheale) is a cause of pneumonia and airsacculitis in poultry. It is a member of the family Flavobacteriaceae of the phylum Bacteroidetes. O. rhinotracheale strain H06-030791 was isolated from the lung of...
Insights from 20 years of bacterial genome sequencing
Land, Miriam L.; Hauser, Loren; Jun, Se-Ran; ...
2015-02-27
Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.« less
Insights from 20 years of bacterial genome sequencing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, Miriam L.; Hauser, Loren; Jun, Se-Ran
Since the first two complete bacterial genome sequences were published in 1995, the science of bacteria has dramatically changed. Using third-generation DNA sequencing, it is possible to completely sequence a bacterial genome in a few hours and identify some types of methylation sites along the genome as well. Sequencing of bacterial genome sequences is now a standard procedure, and the information from tens of thousands of bacterial genomes has had a major impact on our views of the bacterial world. In this review, we explore a series of questions to highlight some insights that comparative genomics has produced. To date,more » there are genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. However, the distribution is quite skewed towards a few phyla that contain model organisms. But the breadth is continuing to improve, with projects dedicated to filling in less characterized taxonomic groups. The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas system provides bacteria with immunity against viruses, which outnumber bacteria by tenfold. How fast can we go? Second-generation sequencing has produced a large number of draft genomes (close to 90 % of bacterial genomes in GenBank are currently not complete); third-generation sequencing can potentially produce a finished genome in a few hours, and at the same time provide methlylation sites along the entire chromosome. The diversity of bacterial communities is extensive as is evident from the genome sequences available from 50 different bacterial phyla and 11 different archaeal phyla. Genome sequencing can help in classifying an organism, and in the case where multiple genomes of the same species are available, it is possible to calculate the pan- and core genomes; comparison of more than 2000 Escherichia coli genomes finds an E. coli core genome of about 3100 gene families and a total of about 89,000 different gene families. Why do we care about bacterial genome sequencing? There are many practical applications, such as genome-scale metabolic modeling, biosurveillance, bioforensics, and infectious disease epidemiology. In the near future, high-throughput sequencing of patient metagenomic samples could revolutionize medicine in terms of speed and accuracy of finding pathogens and knowing how to treat them.« less
Unveiling the Hybrid Genome Structure of Escherichia coli RR1 (HB101 RecA+)
Jeong, Haeyoung; Sim, Young Mi; Kim, Hyun Ju; Lee, Sang Jun
2017-01-01
There have been extensive genome sequencing studies for Escherichia coli strains, particularly for pathogenic isolates, because fast determination of pathogenic potential and/or drug resistance and their propagation routes is crucial. For laboratory E. coli strains, however, genome sequence information is limited except for several well-known strains. We determined the complete genome sequence of laboratory E. coli strain RR1 (HB101 RecA+), which has long been used as a general cloning host. A hybrid genome sequence of K-12 MG1655 and B BL21(DE3) was constructed based on the initial mapping of Illumina HiSeq reads to each reference, and iterative rounds of read mapping, variant detection, and consensus extraction were carried out. Finally, PCR and Sanger sequencing-based finishing were applied to resolve non-single nucleotide variant regions with aberrant read depths and breakpoints, most of them resulting from prophages and insertion sequence transpositions that are not present in the reference genome sequence. We found that 96.9% of the RR1 genome is derived from K-12, and identified exact crossover junctions between K-12 and B genomic fragments. However, because RR1 has experienced a series of genetic manipulations since branching from the common ancestor, it has a set of mutations different from those found in K-12 MG1655. As well as identifying all known genotypes of RR1 on the basis of genomic context, we found novel mutations. Our results extend current knowledge of the genotype of RR1 and its relatives, and provide insights into the pedigree, genomic background, and physiology of common laboratory strains. PMID:28421066
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meier-Kolthoff, Jan P.; Lu, Megan; Huntemann, Marcel
Saccharomonospora cyanea Runmao et al. 1988 is a member of the genus Saccharomonospora in the family Pseudonocardiaceae that is moderately well characterized at the genome level thus far. Members of the genus Saccharomonospora are of interest because they originate from diverse habitats, such as soil, leaf litter, manure, compost, surface of peat, moist, over-heated grain, and ocean sediment, where they probably play a role in the primary degradation of plant material by attacking hemicellulose. Species of the genus Saccharomonospora are usually Gram-positive, non-acid fast, and are classified among the actinomycetes. S. cyanea is characterized by a dark blue (= cyanmore » blue) aerial mycelium. After S. viridis, S. azurea, and S. marina, S. cyanea is only the fourth member in the genus for which a completely sequenced (non-contiguous finished draft status) type strain genome will be published. Here we describe the features of this organism, together with the draft genome sequence, and annotation. The 5,408,301 bp long chromosome with its 5,139 protein-coding and 57 RNA genes was sequenced as part of the DOE funded Community Sequencing Program (CSP) 2010 at the Joint Genome Institute (JGI).« less
Schwach, Frank; Bushell, Ellen; Gomes, Ana Rita; Anar, Burcu; Girling, Gareth; Herd, Colin; Rayner, Julian C; Billker, Oliver
2015-01-01
The Plasmodium Genetic Modification (PlasmoGEM) database (http://plasmogem.sanger.ac.uk) provides access to a resource of modular, versatile and adaptable vectors for genome modification of Plasmodium spp. parasites. PlasmoGEM currently consists of >2000 plasmids designed to modify the genome of Plasmodium berghei, a malaria parasite of rodents, which can be requested by non-profit research organisations free of charge. PlasmoGEM vectors are designed with long homology arms for efficient genome integration and carry gene specific barcodes to identify individual mutants. They can be used for a wide array of applications, including protein localisation, gene interaction studies and high-throughput genetic screens. The vector production pipeline is supported by a custom software suite that automates both the vector design process and quality control by full-length sequencing of the finished vectors. The PlasmoGEM web interface allows users to search a database of finished knock-out and gene tagging vectors, view details of their designs, download vector sequence in different formats and view available quality control data as well as suggested genotyping strategies. We also make gDNA library clones and intermediate vectors available for researchers to produce vectors for themselves. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Whole-exome/genome sequencing and genomics.
Grody, Wayne W; Thompson, Barry H; Hudgins, Louanne
2013-12-01
As medical genetics has progressed from a descriptive entity to one focused on the functional relationship between genes and clinical disorders, emphasis has been placed on genomics. Genomics, a subelement of genetics, is the study of the genome, the sum total of all the genes of an organism. The human genome, which is contained in the 23 pairs of nuclear chromosomes and in the mitochondrial DNA of each cell, comprises >6 billion nucleotides of genetic code. There are some 23,000 protein-coding genes, a surprisingly small fraction of the total genetic material, with the remainder composed of noncoding DNA, regulatory sequences, and introns. The Human Genome Project, launched in 1990, produced a draft of the genome in 2001 and then a finished sequence in 2003, on the 50th anniversary of the initial publication of Watson and Crick's paper on the double-helical structure of DNA. Since then, this mass of genetic information has been translated at an ever-increasing pace into useable knowledge applicable to clinical medicine. The recent advent of massively parallel DNA sequencing (also known as shotgun, high-throughput, and next-generation sequencing) has brought whole-genome analysis into the clinic for the first time, and most of the current applications are directed at children with congenital conditions that are undiagnosable by using standard genetic tests for single-gene disorders. Thus, pediatricians must become familiar with this technology, what it can and cannot offer, and its technical and ethical challenges. Here, we address the concepts of human genomic analysis and its clinical applicability for primary care providers.
Zhang, Weiping; Li, Yudong; Chen, Yiwang; Xu, Sha; Du, Guocheng; Shi, Huidong; Zhou, Jingwen; Chen, Jian
2018-02-05
Chinese rice wine is a popular traditional alcoholic beverage in China, while its brewing processes have rarely been explored. We herein report the first gapless, near-finished genome sequence of the yeast strain Saccharomyces cerevisiae N85 for Chinese rice wine production. Several assembly methods were used to integrate Pacific Bioscience (PacBio) and Illumina sequencing data to achieve high-quality genome sequencing of the strain. The genome encodes more than 6,000 predicted proteins, and 238 long non-coding RNAs, which are validated by RNA-sequencing data. Moreover, our annotation predicts 171 novel genes that are not present in the reference S288c genome. We also identified 65,902 single nucleotide polymorphisms and small indels, many of which are located within genic regions. Dozens of larger copy-number variations and translocations were detected, mainly enriched in the subtelomeres, suggesting these regions may be related to genomic evolution. This study will serve as a milestone in studying of Chinese rice wine and related beverages in China and in other countries. It will help to develop more scientific and modern fermentation processes of Chinese rice wine, and explore metabolism pathways of desired and harmful components in Chinese rice wine to improve its taste and nutritional value. © The Author(s) 2018. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
van Baren, Marijke J; Bachy, Charles; Reistetter, Emily Nahas; Purvine, Samuel O; Grimwood, Jane; Sudek, Sebastian; Yu, Hang; Poirier, Camille; Deerinck, Thomas J; Kuo, Alan; Grigoriev, Igor V; Wong, Chee-Hong; Smith, Richard D; Callister, Stephen J; Wei, Chia-Lin; Schmutz, Jeremy; Worden, Alexandra Z
2016-03-31
Prasinophytes are widespread marine green algae that are related to plants. Cellular abundance of the prasinophyte Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these unicellular eukaryotes are important for marine ecology and for understanding Viridiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb genome of Micromonas commoda (RCC299; named herein) shows they share ≤8,141 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequenced eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26 %) GC splice donors. Micromonas has more genus-specific protein families (19 %) than other genome sequenced prasinophytes (11 %). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other classes retain the entire PG pathway, like moss and glaucophyte algae. Surprisingly, multiple vascular plants also have the PG pathway, except the Penicillin-Binding Protein, and share a unique bi-domain protein potentially associated with the pathway. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in PG-pathway retention and implicate a role in chloroplast structure or division in several extant Viridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in multiple plants and algae, implying a biological function. Our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution.
Finding the missing honey bee genes: lessons learned from a genome upgrade.
Elsik, Christine G; Worley, Kim C; Bennett, Anna K; Beye, Martin; Camara, Francisco; Childers, Christopher P; de Graaf, Dirk C; Debyser, Griet; Deng, Jixin; Devreese, Bart; Elhaik, Eran; Evans, Jay D; Foster, Leonard J; Graur, Dan; Guigo, Roderic; Hoff, Katharina Jasmin; Holder, Michael E; Hudson, Matthew E; Hunt, Greg J; Jiang, Huaiyang; Joshi, Vandita; Khetani, Radhika S; Kosarev, Peter; Kovar, Christie L; Ma, Jian; Maleszka, Ryszard; Moritz, Robin F A; Munoz-Torres, Monica C; Murphy, Terence D; Muzny, Donna M; Newsham, Irene F; Reese, Justin T; Robertson, Hugh M; Robinson, Gene E; Rueppell, Olav; Solovyev, Victor; Stanke, Mario; Stolle, Eckart; Tsuruda, Jennifer M; Vaerenbergh, Matthias Van; Waterhouse, Robert M; Weaver, Daniel B; Whitfield, Charles W; Wu, Yuanqing; Zdobnov, Evgeny M; Zhang, Lan; Zhu, Dianhui; Gibbs, Richard A
2014-01-30
The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination.
Finding the missing honey bee genes: lessons learned from a genome upgrade
2014-01-01
Background The first generation of genome sequence assemblies and annotations have had a significant impact upon our understanding of the biology of the sequenced species, the phylogenetic relationships among species, the study of populations within and across species, and have informed the biology of humans. As only a few Metazoan genomes are approaching finished quality (human, mouse, fly and worm), there is room for improvement of most genome assemblies. The honey bee (Apis mellifera) genome, published in 2006, was noted for its bimodal GC content distribution that affected the quality of the assembly in some regions and for fewer genes in the initial gene set (OGSv1.0) compared to what would be expected based on other sequenced insect genomes. Results Here, we report an improved honey bee genome assembly (Amel_4.5) with a new gene annotation set (OGSv3.2), and show that the honey bee genome contains a number of genes similar to that of other insect genomes, contrary to what was suggested in OGSv1.0. The new genome assembly is more contiguous and complete and the new gene set includes ~5000 more protein-coding genes, 50% more than previously reported. About 1/6 of the additional genes were due to improvements to the assembly, and the remaining were inferred based on new RNAseq and protein data. Conclusions Lessons learned from this genome upgrade have important implications for future genome sequencing projects. Furthermore, the improvements significantly enhance genomic resources for the honey bee, a key model for social behavior and essential to global ecology through pollination. PMID:24479613
Identification and genomic characterization of a novel porcine parvovirus (PPV6) in China.
Ni, Jianqiang; Qiao, Caixia; Han, Xue; Han, Tao; Kang, Wenhua; Zi, Zhanchao; Cao, Zhen; Zhai, Xinyan; Cai, Xuepeng
2014-12-02
Parvoviruses are classified into two subfamilies based on their host range: the Parvovirinae, which infect vertebrates, and the Densovirinae, which mainly infect insects and other arthropods. In recent years, a number of novel parvoviruses belonging to the subfamily Parvovirinae have been identified from various animal species and humans, including human parvovirus 4 (PARV4), porcine hokovirus, ovine partetravirus, porcine parvovirus 4 (PPV4), and porcine parvovirus 5 (PPV5). Using sequence-independent single primer amplification (SISPA), a novel parvovirus within the subfamily Parvovirinae that was distinct from any known parvoviruses was identified and five full-length genome sequences were determined and analyzed. A novel porcine parvovirus, provisionally named PPV6, was initially identified from aborted pig fetuses in China. Retrospective studies revealed the prevalence of PPV6 in aborted pig fetuses and piglets(50% and 75%, respectively) was apparently higher than that in finishing pigs and sows (15.6% and 3.8% respectively). Furthermore, the prevalence of PPV6 in finishing pig was similar in affected and unaffected farms (i.e. 16.7% vs. 13.6%-21.7%). This finding indicates that animal age, perhaps due to increased innate immune resistance, strongly influences the level of PPV6 viremia. Complete genome sequencing and multiple alignments have shown that the nearly full-length genome sequences were approximately 6,100 nucleotides in length and shared 20.5%-42.6% DNA sequence identity with other members of the Parvovirinae subfamily. Phylogenetic analysis showed that PPV6 was significantly distinct from other known parvoviruses and was most closely related to PPV4. Our findings and review of published parvovirus sequences suggested that a novel porcine parvovirus is currently circulating in China and might be classified into the novel genus Copiparvovirus within the subfamily Parvovirinae. However, the clinical manifestations of PPV6 are still unknown in that the prevalence of PPV6 was similar between healthy pigs and sick pigs in a retrospective epidemiological study. The identification of PPV6 within the subfamily Parvovirinae provides further insight into the viral and genetic diversity of parvoviruses.
A Single Molecule Scaffold for the Maize Genome
Zhou, Shiguo; Wei, Fusheng; Nguyen, John; Bechner, Mike; Potamousis, Konstantinos; Goldstein, Steve; Pape, Louise; Mehan, Michael R.; Churas, Chris; Pasternak, Shiran; Forrest, Dan K.; Wise, Roger; Ware, Doreen; Wing, Rod A.; Waterman, Michael S.; Livny, Miron; Schwartz, David C.
2009-01-01
About 85% of the maize genome consists of highly repetitive sequences that are interspersed by low-copy, gene-coding sequences. The maize community has dealt with this genomic complexity by the construction of an integrated genetic and physical map (iMap), but this resource alone was not sufficient for ensuring the quality of the current sequence build. For this purpose, we constructed a genome-wide, high-resolution optical map of the maize inbred line B73 genome containing >91,000 restriction sites (averaging 1 site/∼23 kb) accrued from mapping genomic DNA molecules. Our optical map comprises 66 contigs, averaging 31.88 Mb in size and spanning 91.5% (2,103.93 Mb/∼2,300 Mb) of the maize genome. A new algorithm was created that considered both optical map and unfinished BAC sequence data for placing 60/66 (2,032.42 Mb) optical map contigs onto the maize iMap. The alignment of optical maps against numerous data sources yielded comprehensive results that proved revealing and productive. For example, gaps were uncovered and characterized within the iMap, the FPC (fingerprinted contigs) map, and the chromosome-wide pseudomolecules. Such alignments also suggested amended placements of FPC contigs on the maize genetic map and proactively guided the assembly of chromosome-wide pseudomolecules, especially within complex genomic regions. Lastly, we think that the full integration of B73 optical maps with the maize iMap would greatly facilitate maize sequence finishing efforts that would make it a valuable reference for comparative studies among cereals, or other maize inbred lines and cultivars. PMID:19936062
Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki; ...
2013-10-16
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of itsmore » morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883 T, the type strain of T. acidaminovorans, stain Z-9701 T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of itsmore » morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883 T, the type strain of T. acidaminovorans, stain Z-9701 T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.« less
Palaniappan, Krishna; Meier-Kolthoff, Jan P.; Teshima, Hazuki; Nolan, Matt; Lapidus, Alla; Tice, Hope; Del Rio, Tijana Glavina; Cheng, Jan-Fang; Han, Cliff; Tapia, Roxanne; Goodwin, Lynne A.; Pitluck, Sam; Liolios, Konstantinos; Mavromatis, Konstantinos; Pagani, Ioanna; Ivanova, Natalia; Mikhailova, Natalia; Pati, Amrita; Chen, Amy; Rohde, Manfred; Mayilraj, Shanmugam; Spring, Stefan; Detter, John C.; Göker, Markus; Bristow, James; Eisen, Jonathan A.; Markowitz, Victor; Hugenholtz, Philip; Kyrpides, Nikos C.; Klenk, Hans-Peter; Woyke, Tanja
2013-01-01
Thermanaerovibrio velox Zavarzina et al. 2000 is a member of the Synergistaceae, a family in the phylum Synergistetes that is already well-characterized at the genome level. Members of this phylum were described as Gram-negative staining anaerobic bacteria with a rod/vibrioid cell shape and possessing an atypical outer cell envelope. They inhabit a large variety of anaerobic environments including soil, oil wells, wastewater treatment plants and animal gastrointestinal tracts. They are also found to be linked to sites of human diseases such as cysts, abscesses, and areas of periodontal disease. The moderately thermophilic and organotrophic T. velox shares most of its morphologic and physiologic features with the closely related species, T. acidaminovorans. In addition to Su883T, the type strain of T. acidaminovorans, stain Z-9701T is the second type strain in the genus Thermanaerovibrio to have its genome sequence published. Here we describe the features of this organism, together with the non-contiguous genome sequence and annotation. The 1,880,838 bp long chromosome (non-contiguous finished sequence) with its 1,751 protein-coding and 59 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project. PMID:24501645
Quality scores for 32,000 genomes
Land, Miriam L.; Hyatt, Doug; Jun, Se-Ran; ...
2014-12-08
More than 80% of the microbial genomes in GenBank are of ‘draft’ quality (12,553 draft vs. 2,679 finished, as of October, 2013). In this study, we have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences. Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes hadmore » quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes. The score can be used to set thresholds for screening data when analyzing “all published genomes” and reference data is either not available or not applicable. The scores highlighted organisms for which commonly used tools do not perform well. This information can be used to improve tools and to serve a broad group of users as more diverse organisms are sequenced. Finally and unexpectedly, the comparison of predicted tRNAs across 15,000 high quality genomes showed that anticodons beginning with an ‘A’ (codons ending with a ‘U’) are almost non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a few genomes, but not with the depth found here.« less
Quality scores for 32,000 genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Land, Miriam L.; Hyatt, Doug; Jun, Se-Ran
More than 80% of the microbial genomes in GenBank are of ‘draft’ quality (12,553 draft vs. 2,679 finished, as of October, 2013). In this study, we have examined all the microbial DNA sequences available for complete, draft, and Sequence Read Archive genomes in GenBank as well as three other major public databases, and assigned quality scores for more than 30,000 prokaryotic genome sequences. Scores were assigned using four categories: the completeness of the assembly, the presence of full-length rRNA genes, tRNA composition and the presence of a set of 102 conserved genes in prokaryotes. Most (~88%) of the genomes hadmore » quality scores of 0.8 or better and can be safely used for standard comparative genomics analysis. We compared genomes across factors that may influence the score. We found that although sequencing depth coverage of over 100x did not ensure a better score, sequencing read length was a better indicator of sequencing quality. With few exceptions, most of the 30,000 genomes have nearly all the 102 essential genes. The score can be used to set thresholds for screening data when analyzing “all published genomes” and reference data is either not available or not applicable. The scores highlighted organisms for which commonly used tools do not perform well. This information can be used to improve tools and to serve a broad group of users as more diverse organisms are sequenced. Finally and unexpectedly, the comparison of predicted tRNAs across 15,000 high quality genomes showed that anticodons beginning with an ‘A’ (codons ending with a ‘U’) are almost non-existent, with the exception of one arginine codon (CGU); this has been noted previously in the literature for a few genomes, but not with the depth found here.« less
Brown, Nathan M; Mueller, Ryan S; Shepardson, Jonathan W; Landry, Zachary C; Morré, Jeffrey T; Maier, Claudia S; Hardy, F Joan; Dreher, Theo W
2016-06-13
Very few closed genomes of the cyanobacteria that commonly produce toxic blooms in lakes and reservoirs are available, limiting our understanding of the properties of these organisms. A new anatoxin-a-producing member of the Nostocaceae, Anabaena sp. WA102, was isolated from a freshwater lake in Washington State, USA, in 2013 and maintained in non-axenic culture. The Anabaena sp. WA102 5.7 Mbp genome assembly has been closed with long-read, single-molecule sequencing and separately a draft genome assembly has been produced with short-read sequencing technology. The closed and draft genome assemblies are compared, showing a correlation between long repeats in the genome and the many gaps in the short-read assembly. Anabaena sp. WA102 encodes anatoxin-a biosynthetic genes, as does its close relative Anabaena sp. AL93 (also introduced in this study). These strains are distinguished by differences in the genes for light-harvesting phycobilins, with Anabaena sp. AL93 possessing a phycoerythrocyanin operon. Biologically relevant structural variants in the Anabaena sp. WA102 genome were detected only by long-read sequencing: a tandem triplication of the anaBCD promoter region in the anatoxin-a synthase gene cluster (not triplicated in Anabaena sp. AL93) and a 5-kbp deletion variant present in two-thirds of the population. The genome has a large number of mobile elements (160). Strikingly, there was no synteny with the genome of its nearest fully assembled relative, Anabaena sp. 90. Structural and functional genome analyses indicate that Anabaena sp. WA102 has a flexible genome. Genome closure, which can be readily achieved with long-read sequencing, reveals large scale (e.g., gene order) and local structural features that should be considered in understanding genome evolution and function.
Ben M'Barek, Sarrah; Dhillon, Braham; Wittenberg, Alexander H. J.; Crane, Charles F.; Hane, James K.; Foster, Andrew J.; Van der Lee, Theo A. J.; Grimwood, Jane; Aerts, Andrea; Antoniw, John; Bailey, Andy; Bluhm, Burt; Bowler, Judith; Bristow, Jim; van der Burgt, Ate; Canto-Canché, Blondy; Churchill, Alice C. L.; Conde-Ferràez, Laura; Cools, Hans J.; Coutinho, Pedro M.; Csukai, Michael; Dehal, Paramvir; De Wit, Pierre; Donzelli, Bruno; van de Geest, Henri C.; van Ham, Roeland C. H. J.; Hammond-Kosack, Kim E.; Henrissat, Bernard; Kilian, Andrzej; Kobayashi, Adilson K.; Koopmann, Edda; Kourmpetis, Yiannis; Kuzniar, Arnold; Lindquist, Erika; Lombard, Vincent; Maliepaard, Chris; Martins, Natalia; Mehrabi, Rahim; Nap, Jan P. H.; Ponomarenko, Alisa; Rudd, Jason J.; Salamov, Asaf; Schmutz, Jeremy; Schouten, Henk J.; Shapiro, Harris; Stergiopoulos, Ioannis; Torriani, Stefano F. F.; Tu, Hank; de Vries, Ronald P.; Waalwijk, Cees; Ware, Sarah B.; Wiebenga, Ad; Zwiers, Lute-Harm; Oliver, Richard P.
2011-01-01
The plant-pathogenic fungus Mycosphaerella graminicola (asexual stage: Septoria tritici) causes septoria tritici blotch, a disease that greatly reduces the yield and quality of wheat. This disease is economically important in most wheat-growing areas worldwide and threatens global food production. Control of the disease has been hampered by a limited understanding of the genetic and biochemical bases of pathogenicity, including mechanisms of infection and of resistance in the host. Unlike most other plant pathogens, M. graminicola has a long latent period during which it evades host defenses. Although this type of stealth pathogenicity occurs commonly in Mycosphaerella and other Dothideomycetes, the largest class of plant-pathogenic fungi, its genetic basis is not known. To address this problem, the genome of M. graminicola was sequenced completely. The finished genome contains 21 chromosomes, eight of which could be lost with no visible effect on the fungus and thus are dispensable. This eight-chromosome dispensome is dynamic in field and progeny isolates, is different from the core genome in gene and repeat content, and appears to have originated by ancient horizontal transfer from an unknown donor. Synteny plots of the M. graminicola chromosomes versus those of the only other sequenced Dothideomycete, Stagonospora nodorum, revealed conservation of gene content but not order or orientation, suggesting a high rate of intra-chromosomal rearrangement in one or both species. This observed “mesosynteny” is very different from synteny seen between other organisms. A surprising feature of the M. graminicola genome compared to other sequenced plant pathogens was that it contained very few genes for enzymes that break down plant cell walls, which was more similar to endophytes than to pathogens. The stealth pathogenesis of M. graminicola probably involves degradation of proteins rather than carbohydrates to evade host defenses during the biotrophic stage of infection and may have evolved from endophytic ancestors. PMID:21695235
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, Carol; Henry, Matthew; Bishop-Lilly, Kimberly A.
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, orderedmore » restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.« less
Chapman, Carol; Henry, Matthew; Bishop-Lilly, Kimberly A; Awosika, Joy; Briska, Adam; Ptashkin, Ryan N; Wagner, Trevor; Rajanna, Chythanya; Tsang, Hsinyi; Johnson, Shannon L; Mokashi, Vishwesh P; Chain, Patrick S G; Sozhamannan, Shanmuga
2015-01-01
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, ordered restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.
Chapman, Carol; Henry, Matthew; Bishop-Lilly, Kimberly A.; ...
2015-03-20
Historically, cholera outbreaks have been linked to V. cholerae O1 serogroup strains or its derivatives of the O37 and O139 serogroups. A genomic study on the 2010 Haiti cholera outbreak strains highlighted the putative role of non O1/non-O139 V. cholerae in causing cholera and the lack of genomic sequences of such strains from around the world. Here we address these gaps by scanning a global collection of V. cholerae strains as a first step towards understanding the population genetic diversity and epidemic potential of non O1/non-O139 strains. Whole Genome Mapping (Optical Mapping) based bar coding produces a high resolution, orderedmore » restriction map, depicting a complete view of the unique chromosomal architecture of an organism. To assess the genomic diversity of non-O1/non-O139 V. cholerae, we applied a Whole Genome Mapping strategy on a well-defined and geographically and temporally diverse strain collection, the Sakazaki serogroup type strains. Whole Genome Map data on 91 of the 206 serogroup type strains support the hypothesis that V. cholerae has an unprecedented genetic and genomic structural diversity. Interestingly, we discovered chromosomal fusions in two unusual strains that possess a single chromosome instead of the two chromosomes usually found in V. cholerae. We also found pervasive chromosomal rearrangements such as duplications and indels in many strains. The majority of Vibrio genome sequences currently in public databases are unfinished draft sequences. The Whole Genome Mapping approach presented here enables rapid screening of large strain collections to capture genomic complexities that would not have been otherwise revealed by unfinished draft genome sequencing and thus aids in assembling and finishing draft sequences of complex genomes. Furthermore, Whole Genome Mapping allows for prediction of novel V. cholerae non-O1/non-O139 strains that may have the potential to cause future cholera outbreaks.« less
BAIT: Organizing genomes and mapping rearrangements in single cells.
Hills, Mark; O'Neill, Kieran; Falconer, Ester; Brinkman, Ryan; Lansdorp, Peter M
2013-01-01
Strand-seq is a single-cell sequencing technique to finely map sister chromatid exchanges (SCEs) and other rearrangements. To analyze these data, we introduce BAIT, software which assigns templates and identifies and localizes SCEs. We demonstrate BAIT can refine completed reference assemblies, identifying approximately 21 Mb of incorrectly oriented fragments and placing over half (2.6 Mb) of the orphan fragments in mm10/GRCm38. BAIT also stratifies scaffold-stage assemblies, potentially accelerating the assembling and finishing of reference genomes. BAIT is available at http://sourceforge.net/projects/bait/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martinez, Antonio D.; Berka, Randy; Henrissat, Bernard
2008-05-01
A major thrust of the white biotechnology movement involves the development of enzyme systems which depolymerize biomass to simple sugars which are subsequently converted to sustainable biofuels (e.g., ethanol) and chemical intermediates. The fungus Trichoderma reesei (syn. Hypocrea jecorina) represents a paradigm for the industrial production of highly efficient cellulases and hemicellulases needed for hydrolysis of biomass polysaccharides. Herein we describe intriguing attributes of the T. reeseigenome in relation to the future of fuel biotechnology. The T. reesei genome sequence was derived using a whole genome shotgun approach combined with finishing work to generate an assembly comprising 89 scaffolds totalingmore » 34 Mbp with few gaps. In total, 9,130 gene models were predicted using a combination of ab initio and sequence similarity-based methods and EST data. Considering the industrial utility and effectiveness of its enzymes, the T. reesei genome surprisingly encodes the fewest cellulases and hemicellulases of any fungus having the ability to hydrolyze plant cell wall polysaccharides and whose genome has been sequenced. Many genes encoding carbohydrate active enzymes are distributed non-randomly in groups or clusters that interestingly lie between regions of synteny with other Sordariomycetes. Additionally, the T. reesei genome contains a multitude of genes encoding biosynthetic pathways for secondary metabolites (possible antibacterial and antifungal compounds) which may promote successful competition and survival in the crowded and competitive soil habitat occupied by T. reesei. Our analysis coupled with the availability of genome sequence data provides a roadmap for construction of enhanced T. reesei strains for industrial applications.« less
Floral gene resources from basal angiosperms for comparative genomics research
Albert, Victor A; Soltis, Douglas E; Carlson, John E; Farmerie, William G; Wall, P Kerr; Ilut, Daniel C; Solow, Teri M; Mueller, Lukas A; Landherr, Lena L; Hu, Yi; Buzgo, Matyas; Kim, Sangtae; Yoo, Mi-Jeong; Frohlich, Michael W; Perl-Treves, Rafael; Schlarbaum, Scott E; Bliss, Barbara J; Zhang, Xiaohong; Tanksley, Steven D; Oppenheimer, David G; Soltis, Pamela S; Ma, Hong; dePamphilis, Claude W; Leebens-Mack, James H
2005-01-01
Background The Floral Genome Project was initiated to bridge the genomic gap between the most broadly studied plant model systems. Arabidopsis and rice, although now completely sequenced and under intensive comparative genomic investigation, are separated by at least 125 million years of evolutionary time, and cannot in isolation provide a comprehensive perspective on structural and functional aspects of flowering plant genome dynamics. Here we discuss new genomic resources available to the scientific community, comprising cDNA libraries and Expressed Sequence Tag (EST) sequences for a suite of phylogenetically basal angiosperms specifically selected to bridge the evolutionary gaps between model plants and provide insights into gene content and genome structure in the earliest flowering plants. Results Random sequencing of cDNAs from representatives of phylogenetically important eudicot, non-grass monocot, and gymnosperm lineages has so far (as of 12/1/04) generated 70,514 ESTs and 48,170 assembled unigenes. Efficient sorting of EST sequences into putative gene families based on whole Arabidopsis/rice proteome comparison has permitted ready identification of cDNA clones for finished sequencing. Preliminarily, (i) proportions of functional categories among sequenced floral genes seem representative of the entire Arabidopsis transcriptome, (ii) many known floral gene homologues have been captured, and (iii) phylogenetic analyses of ESTs are providing new insights into the process of gene family evolution in relation to the origin and diversification of the angiosperms. Conclusion Initial comparisons illustrate the utility of the EST data sets toward discovery of the basic floral transcriptome. These first findings also afford the opportunity to address a number of conspicuous evolutionary genomic questions, including reproductive organ transcriptome overlap between angiosperms and gymnosperms, genome-wide duplication history, lineage-specific gene duplication and functional divergence, and analyses of adaptive molecular evolution. Since not all genes in the floral transcriptome will be associated with flowering, these EST resources will also be of interest to plant scientists working on other functions, such as photosynthesis, signal transduction, and metabolic pathways. PMID:15799777
A hybrid BAC physical map of potato: a framework for sequencing a heterozygous genome
2011-01-01
Background Potato is the world's third most important food crop, yet cultivar improvement and genomic research in general remain difficult because of the heterozygous and tetraploid nature of its genome. The development of physical map resources that can facilitate genomic analyses in potato has so far been very limited. Here we present the methods of construction and the general statistics of the first two genome-wide BAC physical maps of potato, which were made from the heterozygous diploid clone RH89-039-16 (RH). Results First, a gel electrophoresis-based physical map was made by AFLP fingerprinting of 64478 BAC clones, which were aligned into 4150 contigs with an estimated total length of 1361 Mb. Screening of BAC pools, followed by the KeyMaps in silico anchoring procedure, identified 1725 AFLP markers in the physical map, and 1252 BAC contigs were anchored the ultradense potato genetic map. A second, sequence-tag-based physical map was constructed from 65919 whole genome profiling (WGP) BAC fingerprints and these were aligned into 3601 BAC contigs spanning 1396 Mb. The 39733 BAC clones that overlap between both physical maps provided anchors to 1127 contigs in the WGP physical map, and reduced the number of contigs to around 2800 in each map separately. Both physical maps were 1.64 times longer than the 850 Mb potato genome. Genome heterozygosity and incomplete merging of BAC contigs are two factors that can explain this map inflation. The contig information of both physical maps was united in a single table that describes hybrid potato physical map. Conclusions The AFLP physical map has already been used by the Potato Genome Sequencing Consortium for sequencing 10% of the heterozygous genome of clone RH on a BAC-by-BAC basis. By layering a new WGP physical map on top of the AFLP physical map, a genetically anchored genome-wide framework of 322434 sequence tags has been created. This reference framework can be used for anchoring and ordering of genomic sequences of clone RH (and other potato genotypes), and opens the possibility to finish sequencing of the RH genome in a more efficient way via high throughput next generation approaches. PMID:22142254
Unemo, Magnus; Golparian, Daniel; Sánchez-Busó, Leonor; Grad, Yonatan; Jacobsson, Susanne; Ohnishi, Makoto; Lahra, Monica M; Limnios, Athena; Sikora, Aleksandra E; Wi, Teodora; Harris, Simon R
2016-11-01
Gonorrhoea and MDR Neisseria gonorrhoeae remain public health concerns globally. Enhanced, quality-assured, gonococcal antimicrobial resistance (AMR) surveillance is essential worldwide. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) was relaunched in 2009. We describe the phenotypic, genetic and reference genome characteristics of the 2016 WHO gonococcal reference strains intended for quality assurance in the WHO global GASP, other GASPs, diagnostics and research worldwide. The 2016 WHO reference strains (n = 14) constitute the eight 2008 WHO reference strains and six novel strains. The novel strains represent low-level to high-level cephalosporin resistance, high-level azithromycin resistance and a porA mutant. All strains were comprehensively characterized for antibiogram (n = 23), serovar, prolyliminopeptidase, plasmid types, molecular AMR determinants, N. gonorrhoeae multiantigen sequence typing STs and MLST STs. Complete reference genomes were produced using single-molecule PacBio sequencing. The reference strains represented all available phenotypes, susceptible and resistant, to antimicrobials previously and currently used or considered for future use in gonorrhoea treatment. All corresponding resistance genotypes and molecular epidemiological types were described. Fully characterized, annotated and finished references genomes (n = 14) were presented. The 2016 WHO gonococcal reference strains are intended for internal and external quality assurance and quality control in laboratory investigations, particularly in the WHO global GASP and other GASPs, but also in phenotypic (e.g. culture, species determination) and molecular diagnostics, molecular AMR detection, molecular epidemiology and as fully characterized, annotated and finished reference genomes in WGS analysis, transcriptomics, proteomics and other molecular technologies and data analysis. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Yoshida, Catherine E; Kruczkiewicz, Peter; Laing, Chad R; Lingohr, Erika J; Gannon, Victor P J; Nash, John H E; Taboada, Eduardo N
2016-01-01
For nearly 100 years serotyping has been the gold standard for the identification of Salmonella serovars. Despite the increasing adoption of DNA-based subtyping approaches, serotype information remains a cornerstone in food safety and public health activities aimed at reducing the burden of salmonellosis. At the same time, recent advances in whole-genome sequencing (WGS) promise to revolutionize our ability to perform advanced pathogen characterization in support of improved source attribution and outbreak analysis. We present the Salmonella In Silico Typing Resource (SISTR), a bioinformatics platform for rapidly performing simultaneous in silico analyses for several leading subtyping methods on draft Salmonella genome assemblies. In addition to performing serovar prediction by genoserotyping, this resource integrates sequence-based typing analyses for: Multi-Locus Sequence Typing (MLST), ribosomal MLST (rMLST), and core genome MLST (cgMLST). We show how phylogenetic context from cgMLST analysis can supplement the genoserotyping analysis and increase the accuracy of in silico serovar prediction to over 94.6% on a dataset comprised of 4,188 finished genomes and WGS draft assemblies. In addition to allowing analysis of user-uploaded whole-genome assemblies, the SISTR platform incorporates a database comprising over 4,000 publicly available genomes, allowing users to place their isolates in a broader phylogenetic and epidemiological context. The resource incorporates several metadata driven visualizations to examine the phylogenetic, geospatial and temporal distribution of genome-sequenced isolates. As sequencing of Salmonella isolates at public health laboratories around the world becomes increasingly common, rapid in silico analysis of minimally processed draft genome assemblies provides a powerful approach for molecular epidemiology in support of public health investigations. Moreover, this type of integrated analysis using multiple sequence-based methods of sub-typing allows for continuity with historical serotyping data as we transition towards the increasing adoption of genomic analyses in epidemiology. The SISTR platform is freely available on the web at https://lfz.corefacility.ca/sistr-app/.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rice, Marlen C.; Norton, Jeanette M.; Valois, Frederica
Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism withmore » implications for function in soil environments.« less
Rice, Marlen C.; Norton, Jeanette M.; Valois, Frederica; ...
2016-07-28
Nitrosospira briensis C-128 is an ammonia-oxidizing bacterium isolated from an acid agricultural soil. N. briensis C-128 was sequenced with PacBio RS technologies at the DOE-Joint Genome Institute through their Community Science Program (2010). The high-quality finished genome contains one chromosome of 3.21 Mb and no plasmids. We identified 3073 gene models, 3018 of which are protein coding. The two-way average nucleotide identity between the chromosomes of Nitrosospira multiformis ATCC 25196 and Nitrosospira briensis C-128 was found to be 77.2 %. Multiple copies of modules encoding chemolithotrophic metabolism were identified in their genomic context. The gene inventory supports chemolithotrophic metabolism withmore » implications for function in soil environments.« less
Is “Junk” DNA Mostly Intron DNA?
Wong, Gane Ka-Shu; Passey, Douglas A.; Huang, Ying-zong; Yang, Zhiyong; Yu, Jun
2000-01-01
Among higher eukaryotes, very little of the genome codes for protein. What is in the rest of the genome, or the “junk” DNA, that, in Homo sapiens, is estimated to be almost 97% of the genome? Is it possible that much of this “junk” is intron DNA? This is not a question that can be answered just by looking at the published data, even from the finished genomes. One cannot assume that there are no genes in a sequenced region, just because no genes were annotated. We introduce another approach to this problem, based on an analysis of the cDNA-to-genomic alignments, in all of the complete or nearly-complete genomes from the multicellular organisms. Our conclusion is that, in animals but not in plants, most of the “junk” is intron DNA. PMID:11076852
The evolution of vertebrate Toll-like receptors
Roach, J.C.; Glusman, G.; Rowen, L.; Kaur, A.; Purcell, M.K.; Smith, K.D.; Hood, L.E.; Aderem, A.
2005-01-01
The complete sequences of Takifugu Toll-like receptor (TLR) loci and gene predictions from many draft genomes enable comprehensive molecular phylogenetic analysis. Strong selective pressure for recognition of and response to pathogen-associated molecular patterns has maintained a largely unchanging TLR recognition in all vertebrates. There are six major families of vertebrate TLRs. This repertoire is distinct from that of invertebrates. TLRs within a family recognize a general class of pathogen-associated molecular patterns. Most vertebrates have exactly one gene ortholog for each TLR family. The family including TLR1 has more species-specific adaptations than other families. A major family including TLR11 is represented in humans only by a pseudogene. Coincidental evolution plays a minor role in TLR evolution. The sequencing phase of this study produced finished genomic sequences for the 12 Takifugu rubripes TLRs. In addition, we have produced > 70 gene models, including sequences from the opossum, chicken, frog, dog, sea urchin, and sea squirt. ?? 2005 by The National Academy of Sciences of the USA.
Alignment of 1000 Genomes Project reads to reference assembly GRCh38.
Zheng-Bradley, Xiangqun; Streeter, Ian; Fairley, Susan; Richardson, David; Clarke, Laura; Flicek, Paul
2017-07-01
The 1000 Genomes Project produced more than 100 trillion basepairs of short read sequence from more than 2600 samples in 26 populations over a period of five years. In its final phase, the project released over 85 million genotyped and phased variants on human reference genome assembly GRCh37. An updated reference assembly, GRCh38, was released in late 2013, but there was insufficient time for the final phase of the project analysis to change to the new assembly. Although it is possible to lift the coordinates of the 1000 Genomes Project variants to the new assembly, this is a potentially error-prone process as coordinate remapping is most appropriate only for non-repetitive regions of the genome and those that did not see significant change between the two assemblies. It will also miss variants in any region that was newly added to GRCh38. Thus, to produce the highest quality variants and genotypes on GRCh38, the best strategy is to realign the reads and recall the variants based on the new alignment. As the first step of variant calling for the 1000 Genomes Project data, we have finished remapping all of the 1000 Genomes sequence reads to GRCh38 with alternative scaffold-aware BWA-MEM. The resulting alignments are available as CRAM, a reference-based sequence compression format. The data have been released on our FTP site and are also available from European Nucleotide Archive to facilitate researchers discovering variants on the primary sequences and alternative contigs of GRCh38. © The Authors 2017. Published by Oxford University Press.
Ten steps to get started in Genome Assembly and Annotation
Dominguez Del Angel, Victoria; Hjerde, Erik; Sterck, Lieven; Capella-Gutierrez, Salvadors; Notredame, Cederic; Vinnere Pettersson, Olga; Amselem, Joelle; Bouri, Laurent; Bocs, Stephanie; Klopp, Christophe; Gibrat, Jean-Francois; Vlasova, Anna; Leskosek, Brane L.; Soler, Lucile; Binzer-Panchal, Mahesh; Lantz, Henrik
2018-01-01
As a part of the ELIXIR-EXCELERATE efforts in capacity building, we present here 10 steps to facilitate researchers getting started in genome assembly and genome annotation. The guidelines given are broadly applicable, intended to be stable over time, and cover all aspects from start to finish of a general assembly and annotation project. Intrinsic properties of genomes are discussed, as is the importance of using high quality DNA. Different sequencing technologies and generally applicable workflows for genome assembly are also detailed. We cover structural and functional annotation and encourage readers to also annotate transposable elements, something that is often omitted from annotation workflows. The importance of data management is stressed, and we give advice on where to submit data and how to make your results Findable, Accessible, Interoperable, and Reusable (FAIR). PMID:29568489
Coyne, Robert S; Thiagarajan, Mathangi; Jones, Kristie M; Wortman, Jennifer R; Tallon, Luke J; Haas, Brian J; Cassidy-Hanley, Donna M; Wiley, Emily A; Smith, Joshua J; Collins, Kathleen; Lee, Suzanne R; Couvillion, Mary T; Liu, Yifan; Garg, Jyoti; Pearlman, Ronald E; Hamilton, Eileen P; Orias, Eduardo; Eisen, Jonathan A; Methé, Barbara A
2008-01-01
Background Tetrahymena thermophila, a widely studied model for cellular and molecular biology, is a binucleated single-celled organism with a germline micronucleus (MIC) and somatic macronucleus (MAC). The recent draft MAC genome assembly revealed low sequence repetitiveness, a result of the epigenetic removal of invasive DNA elements found only in the MIC genome. Such low repetitiveness makes complete closure of the MAC genome a feasible goal, which to achieve would require standard closure methods as well as removal of minor MIC contamination of the MAC genome assembly. Highly accurate preliminary annotation of Tetrahymena's coding potential was hindered by the lack of both comparative genomic sequence information from close relatives and significant amounts of cDNA evidence, thus limiting the value of the genomic information and also leaving unanswered certain questions, such as the frequency of alternative splicing. Results We addressed the problem of MIC contamination using comparative genomic hybridization with purified MIC and MAC DNA probes against a whole genome oligonucleotide microarray, allowing the identification of 763 genome scaffolds likely to contain MIC-limited DNA sequences. We also employed standard genome closure methods to essentially finish over 60% of the MAC genome. For the improvement of annotation, we have sequenced and analyzed over 60,000 verified EST reads from a variety of cellular growth and development conditions. Using this EST evidence, a combination of automated and manual reannotation efforts led to updates that affect 16% of the current protein-coding gene models. By comparing EST abundance, many genes showing apparent differential expression between these conditions were identified. Rare instances of alternative splicing and uses of the non-standard amino acid selenocysteine were also identified. Conclusion We report here significant progress in genome closure and reannotation of Tetrahymena thermophila. Our experience to date suggests that complete closure of the MAC genome is attainable. Using the new EST evidence, automated and manual curation has resulted in substantial improvements to the over 24,000 gene models, which will be valuable to researchers studying this model organism as well as for comparative genomics purposes. PMID:19036158
Schein, Jacqueline E.; Tangen, Kristin L.; Chiu, Readman; Shin, Heesun; Lengeler, Klaus B.; MacDonald, William Kim; Bosdet, Ian; Heitman, Joseph; Jones, Steven J.M.; Marra, Marco A.; Kronstad, James W.
2002-01-01
The basidiomycete fungus Cryptococcus neoformans is an important opportunistic pathogen of humans that poses a significant threat to immunocompromised individuals. Isolates of C. neoformans are classified into serotypes (A, B, C, D, and AD) based on antigenic differences in the polysaccharide capsule that surrounds the fungal cells. Genomic and EST sequencing projects are underway for the serotype D strain JEC21 and the serotype A strain H99. As part of a genomics program for C. neoformans, we have constructed fingerprinted bacterial artificial chromosome (BAC) clone physical maps for strains H99 and JEC21 to support the genomic sequencing efforts and to provide an initial comparison of the two genomes. The BAC clones represented an estimated 10-fold redundant coverage of the genomes of each serotype and allowed the assembly of 20 contigs each for H99 and JEC21. We found that the genomes of the two strains are sufficiently distinct to prevent coassembly of the two maps when combined fingerprint data are used to construct contigs. Hybridization experiments placed 82 markers on the JEC21 map and 102 markers on the H99 map, enabling contigs to be linked with specific chromosomes identified by electrophoretic karyotyping. These markers revealed both extensive similarity in gene order (conservation of synteny) between JEC21 and H99 as well as examples of chromosomal rearrangements including inversions and translocations. Sequencing reads were generated from the ends of the BAC clones to allow correlation of genomic shotgun sequence data with physical map contigs. The BAC maps therefore represent a valuable resource for the generation, assembly, and finishing of the genomic sequence of both JEC21 and H99. The physical maps also serve as a link between map-based and sequence-based data, providing a powerful resource for continued genomic studies. [This paper is dedicated to the memory of Michael Smith, Founding Director of the Biotechnology Laboratory and the BC Cancer Agency Genome Sciences Centre. Supplemental material is available online at http://www.genome.org.] PMID:12213782
Negrisolo, Enrico; Kuhl, Heiner; Forcato, Claudio; Vitulo, Nicola; Reinhardt, Richard; Patarnello, Tomaso; Bargelloni, Luca
2010-12-01
Comparative genomics holds the promise to magnify the information obtained from individual genome sequencing projects, revealing common features conserved across genomes and identifying lineage-specific characteristics. To implement such a comparative approach, a robust phylogenetic framework is required to accurately reconstruct evolution at the genome level. Among vertebrate taxa, teleosts represent the second best characterized group, with high-quality draft genome sequences for five model species (Danio rerio, Gasterosteus aculeatus, Oryzias latipes, Takifugu rubripes, and Tetraodon nigroviridis), and several others are in the finishing lane. However, the relationships among the acanthomorph teleost model fishes remain an unresolved taxonomic issue. Here, a genomic region spanning over 1.2 million base pairs was sequenced in the teleost fish Dicentrarchus labrax. Together with genomic data available for the above fish models, the new sequence was used to identify unique orthologous genomic regions shared across all target taxa. Different strategies were applied to produce robust multiple gene and genomic alignments spanning from 11,802 to 186,474 amino acid/nucleotide positions. Ten data sets were analyzed according to Bayesian inference, maximum likelihood, maximum parsimony, and neighbor joining methods. Extensive analyses were performed to explore the influence of several factors (e.g., alignment methodology, substitution model, data set partitions, and long-branch attraction) on the tree topology. Although a general consensus was observed for a closer relationship between G. aculeatus (Gasterosteidae) and Di. labrax (Moronidae) with the atherinomorph O. latipes (Beloniformes) sister taxon of this clade, with the tetraodontiform group Ta. rubripes and Te. nigroviridis (Tetraodontiformes) representing a more distantly related taxon among acanthomorph model fish species, conflicting results were obtained between data sets and methods, especially with respect to the choice of alignment methodology applied to noncoding parts of the genomic region under study. This may limit the use of intergenic/noncoding sequences in phylogenomics until more robust alignment algorithms are developed.
Fast, accurate and easy-to-pipeline methods for amplicon sequence processing
NASA Astrophysics Data System (ADS)
Antonielli, Livio; Sessitsch, Angela
2016-04-01
Next generation sequencing (NGS) technologies established since years as an essential resource in microbiology. While on the one hand metagenomic studies can benefit from the continuously increasing throughput of the Illumina (Solexa) technology, on the other hand the spreading of third generation sequencing technologies (PacBio, Oxford Nanopore) are getting whole genome sequencing beyond the assembly of fragmented draft genomes, making it now possible to finish bacterial genomes even without short read correction. Besides (meta)genomic analysis next-gen amplicon sequencing is still fundamental for microbial studies. Amplicon sequencing of the 16S rRNA gene and ITS (Internal Transcribed Spacer) remains a well-established widespread method for a multitude of different purposes concerning the identification and comparison of archaeal/bacterial (16S rRNA gene) and fungal (ITS) communities occurring in diverse environments. Numerous different pipelines have been developed in order to process NGS-derived amplicon sequences, among which Mothur, QIIME and USEARCH are the most well-known and cited ones. The entire process from initial raw sequence data through read error correction, paired-end read assembly, primer stripping, quality filtering, clustering, OTU taxonomic classification and BIOM table rarefaction as well as alternative "normalization" methods will be addressed. An effective and accurate strategy will be presented using the state-of-the-art bioinformatic tools and the example of a straightforward one-script pipeline for 16S rRNA gene or ITS MiSeq amplicon sequencing will be provided. Finally, instructions on how to automatically retrieve nucleotide sequences from NCBI and therefore apply the pipeline to targets other than 16S rRNA gene (Greengenes, SILVA) and ITS (UNITE) will be discussed.
2012-01-01
Background Cotton is the world’s most important natural textile fiber and a significant oilseed crop. Decoding cotton genomes will provide the ultimate reference and resource for research and utilization of the species. Integration of high-density genetic maps with genomic sequence information will largely accelerate the process of whole-genome assembly in cotton. Results In this paper, we update a high-density interspecific genetic linkage map of allotetraploid cultivated cotton. An additional 1,167 marker loci have been added to our previously published map of 2,247 loci. Three new marker types, InDel (insertion-deletion) and SNP (single nucleotide polymorphism) developed from gene information, and REMAP (retrotransposon-microsatellite amplified polymorphism), were used to increase map density. The updated map consists of 3,414 loci in 26 linkage groups covering 3,667.62 cM with an average inter-locus distance of 1.08 cM. Furthermore, genome-wide sequence analysis was finished using 3,324 informative sequence-based markers and publicly-available Gossypium DNA sequence information. A total of 413,113 EST and 195 BAC sequences were physically anchored and clustered by 3,324 sequence-based markers. Of these, 14,243 ESTs and 188 BACs from different species of Gossypium were clustered and specifically anchored to the high-density genetic map. A total of 2,748 candidate unigenes from 2,111 ESTs clusters and 63 BACs were mined for functional annotation and classification. The 337 ESTs/genes related to fiber quality traits were integrated with 132 previously reported cotton fiber quality quantitative trait loci, which demonstrated the important roles in fiber quality of these genes. Higher-level sequence conservation between different cotton species and between the A- and D-subgenomes in tetraploid cotton was found, indicating a common evolutionary origin for orthologous and paralogous loci in Gossypium. Conclusion This study will serve as a valuable genomic resource for tetraploid cotton genome assembly, for cloning genes related to superior agronomic traits, and for further comparative genomic analyses in Gossypium. PMID:23046547
A New Chicken Genome Assembly Provides Insight into Avian Genome Structure.
Warren, Wesley C; Hillier, LaDeana W; Tomlinson, Chad; Minx, Patrick; Kremitzki, Milinn; Graves, Tina; Markovic, Chris; Bouk, Nathan; Pruitt, Kim D; Thibaud-Nissen, Francoise; Schneider, Valerie; Mansour, Tamer A; Brown, C Titus; Zimin, Aleksey; Hawken, Rachel; Abrahamsen, Mitch; Pyrkosz, Alexis B; Morisson, Mireille; Fillon, Valerie; Vignal, Alain; Chow, William; Howe, Kerstin; Fulton, Janet E; Miller, Marcia M; Lovell, Peter; Mello, Claudio V; Wirthlin, Morgan; Mason, Andrew S; Kuo, Richard; Burt, David W; Dodgson, Jerry B; Cheng, Hans H
2017-01-05
The importance of the Gallus gallus (chicken) as a model organism and agricultural animal merits a continuation of sequence assembly improvement efforts. We present a new version of the chicken genome assembly (Gallus_gallus-5.0; GCA_000002315.3), built from combined long single molecule sequencing technology, finished BACs, and improved physical maps. In overall assembled bases, we see a gain of 183 Mb, including 16.4 Mb in placed chromosomes with a corresponding gain in the percentage of intact repeat elements characterized. Of the 1.21 Gb genome, we include three previously missing autosomes, GGA30, 31, and 33, and improve sequence contig length 10-fold over the previous Gallus_gallus-4.0. Despite the significant base representation improvements made, 138 Mb of sequence is not yet located to chromosomes. When annotated for gene content, Gallus_gallus-5.0 shows an increase of 4679 annotated genes (2768 noncoding and 1911 protein-coding) over those in Gallus_gallus-4.0. We also revisited the question of what genes are missing in the avian lineage, as assessed by the highest quality avian genome assembly to date, and found that a large fraction of the original set of missing genes are still absent in sequenced bird species. Finally, our new data support a detailed map of MHC-B, encompassing two segments: one with a highly stable gene copy number and another in which the gene copy number is highly variable. The chicken model has been a critical resource for many other fields of study, and this new reference assembly will substantially further these efforts. Copyright © 2017 Warren et al.
Gardner, Shea N.; Hall, Barry G.
2013-01-01
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four “raw read” genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths. PMID:24349125
Gardner, Shea N; Hall, Barry G
2013-01-01
Effective use of rapid and inexpensive whole genome sequencing for microbes requires fast, memory efficient bioinformatics tools for sequence comparison. The kSNP v2 software finds single nucleotide polymorphisms (SNPs) in whole genome data. kSNP v2 has numerous improvements over kSNP v1 including SNP gene annotation; better scaling for draft genomes available as assembled contigs or raw, unassembled reads; a tool to identify the optimal value of k; distribution of packages of executables for Linux and Mac OS X for ease of installation and user-friendly use; and a detailed User Guide. SNP discovery is based on k-mer analysis, and requires no multiple sequence alignment or the selection of a single reference genome. Most target sets with hundreds of genomes complete in minutes to hours. SNP phylogenies are built by maximum likelihood, parsimony, and distance, based on all SNPs, only core SNPs, or SNPs present in some intermediate user-specified fraction of targets. The SNP-based trees that result are consistent with known taxonomy. kSNP v2 can handle many gigabases of sequence in a single run, and if one or more annotated genomes are included in the target set, SNPs are annotated with protein coding and other information (UTRs, etc.) from Genbank file(s). We demonstrate application of kSNP v2 on sets of viral and bacterial genomes, and discuss in detail analysis of a set of 68 finished E. coli and Shigella genomes and a set of the same genomes to which have been added 47 assemblies and four "raw read" genomes of H104:H4 strains from the recent European E. coli outbreak that resulted in both bloody diarrhea and hemolytic uremic syndrome (HUS), and caused at least 50 deaths.
Afouda, Pamela; Durand, Guillaume A; Lagier, Jean-Christophe; Labas, Noémie; Cadoret, Fréderic; Armstrong, Nicholas; Raoult, Didier; Dubourg, Grégory
2018-04-14
Intestinimonas massiliensis sp. nov strain GD2 T is a new species of the genus Intestinimonas (the second, following Intestinimonas butyriciproducens gen. nov., sp. nov). First isolated from the gut microbiota of a healthy subject of French origin using a culturomics approach combined with taxono-genomics, it is strictly anaerobic, nonspore-forming, rod-shaped, with catalase- and oxidase-negative reactions. Its growth was observed after preincubation in an anaerobic blood culture enriched with sheep blood (5%) and rumen fluid (5%), incubated at 37°C. Its phenotypic and genotypic descriptions are presented in this paper with a full annotation of its genome sequence. This genome consists of 3,104,261 bp in length and contains 3,074 predicted genes, including 3,012 protein-coding genes and 62 RNA-coding genes. Strain GD2 T significantly produces butyrate and is frequently found among available 16S rRNA gene amplicon datasets, which leads consideration of Intestinimonas massiliensis as an important human gut commensal. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Unusual Gene Order and Organization of the Sea Urchin Hox Cluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, R A; Rowen, L; Nesbitt, R
2005-10-11
The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3 gene is Hox5. (The gene order is :more » 5-Hox1, 2, 3, 11/13c, 11/13b, 11/13a, 9/10, 8, 7, 6, 5 - 3). The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.« less
Unusual Gene Order and Organization of the Sea Urchin HoxCluster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richardson, Paul M.; Lucas, Susan; Cameron, R. Andrew
2005-05-10
The highly consistent gene order and axial colinear expression patterns found in vertebrate hox gene clusters are less well conserved across the rest of bilaterians. We report the first deuterostome instance of an intact hox cluster with a unique gene order where the paralog groups are not expressed in a sequential manner. The finished sequence from BAC clones from the genome of the sea urchin, Strongylocentrotus purpuratus, reveals a gene order wherein the anterior genes (Hox1, Hox2 and Hox3) lie nearest the posterior genes in the cluster such that the most 3' gene is Hox5. (The gene order is :more » 5'-Hox1,2, 3, 11/13c, 11/13b, '11/13a, 9/10, 8, 7, 6, 5 - 3)'. The finished sequence result is corroborated by restriction mapping evidence and BAC-end scaffold analyses. Comparisons with a putative ancestral deuterostome Hox gene cluster suggest that the rearrangements leading to the sea urchin gene order were many and complex.« less
Andersson, Jan O; Sjögren, Åsa M; Horner, David S; Murphy, Colleen A; Dyal, Patricia L; Svärd, Staffan G; Logsdon, John M; Ragan, Mark A; Hirt, Robert P; Roger, Andrew J
2007-01-01
Background Comparative genomic studies of the mitochondrion-lacking protist group Diplomonadida (diplomonads) has been lacking, although Giardia lamblia has been intensively studied. We have performed a sequence survey project resulting in 2341 expressed sequence tags (EST) corresponding to 853 unique clones, 5275 genome survey sequences (GSS), and eleven finished contigs from the diplomonad fish parasite Spironucleus salmonicida (previously described as S. barkhanus). Results The analyses revealed a compact genome with few, if any, introns and very short 3' untranslated regions. Strikingly different patterns of codon usage were observed in genes corresponding to frequently sampled ESTs versus genes poorly sampled, indicating that translational selection is influencing the codon usage of highly expressed genes. Rigorous phylogenomic analyses identified 84 genes – mostly encoding metabolic proteins – that have been acquired by diplomonads or their relatively close ancestors via lateral gene transfer (LGT). Although most acquisitions were from prokaryotes, more than a dozen represent likely transfers of genes between eukaryotic lineages. Many genes that provide novel insights into the genetic basis of the biology and pathogenicity of this parasitic protist were identified including 149 that putatively encode variant-surface cysteine-rich proteins which are candidate virulence factors. A number of genomic properties that distinguish S. salmonicida from its human parasitic relative G. lamblia were identified such as nineteen putative lineage-specific gene acquisitions, distinct mutational biases and codon usage and distinct polyadenylation signals. Conclusion Our results highlight the power of comparative genomic studies to yield insights into the biology of parasitic protists and the evolution of their genomes, and suggest that genetic exchange between distantly-related protist lineages may be occurring at an appreciable rate in eukaryote genome evolution. PMID:17298675
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas
Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share ≤ 8,142 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequencedmore » eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in some plants and algae, implying a biological function. As a result, our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution.« less
van Baren, Marijke J.; Bachy, Charles; Reistetter, Emily Nahas; ...
2016-03-31
Prasinophytes are widespread marine green algae that are related to plants. Abundance of the genus Micromonas has reportedly increased in the Arctic due to climate-induced changes. Thus, studies of these organisms are important for marine ecology and understanding Virdiplantae evolution and diversification. We generated evidence-based Micromonas gene models using proteomics and RNA-Seq to improve prasinophyte genomic resources. First, sequences of four chromosomes in the 22 Mb Micromonas pusilla (CCMP1545) genome were finished. Comparison with the finished 21 Mb Micromonas commoda (RCC299) shows they share ≤ 8,142 of ~10,000 protein-encoding genes, depending on the analysis method. Unlike RCC299 and other sequencedmore » eukaryotes, CCMP1545 has two abundant repetitive intron types and a high percent (26%) GC splice donors. Micromonas has more genus-specific protein families (19%) than other genome sequenced prasinophytes (11%). Comparative analyses using predicted proteomes from other prasinophytes reveal proteins likely related to scale formation and ancestral photosynthesis. Our studies also indicate that peptidoglycan (PG) biosynthesis enzymes have been lost in multiple independent events in select prasinophytes and most plants. However, CCMP1545, polar Micromonas CCMP2099 and prasinophytes from other claasses retain the entire PG pathway, like moss and glaucophyte algae. Multiple vascular plants that share a unique bi-domain protein also have the pathway, except the Penicillin-Binding-Protein. Alongside Micromonas experiments using antibiotics that halt bacterial PG biosynthesis, the findings highlight unrecognized phylogenetic complexity in the PG-pathway retention and implicate a role in chloroplast structure of division in several extant Vridiplantae lineages. Extensive differences in gene loss and architecture between related prasinophytes underscore their extensive divergence. PG biosynthesis genes from the cyanobacterial endosymbiont that became the plastid, have been selectively retained in some plants and algae, implying a biological function. As a result, our studies provide robust genomic resources for emerging model algae, advancing knowledge of marine phytoplankton and plant evolution.« less
Assembling the Marine Metagenome, One Cell at a Time
Woyke, Tanja; Xie, Gary; Copeland, Alex; González, José M.; Han, Cliff; Kiss, Hajnalka; Saw, Jimmy H.; Senin, Pavel; Yang, Chi; Chatterji, Sourav; Cheng, Jan-Fang; Eisen, Jonathan A.; Sieracki, Michael E.; Stepanauskas, Ramunas
2009-01-01
The difficulty associated with the cultivation of most microorganisms and the complexity of natural microbial assemblages, such as marine plankton or human microbiome, hinder genome reconstruction of representative taxa using cultivation or metagenomic approaches. Here we used an alternative, single cell sequencing approach to obtain high-quality genome assemblies of two uncultured, numerically significant marine microorganisms. We employed fluorescence-activated cell sorting and multiple displacement amplification to obtain hundreds of micrograms of genomic DNA from individual, uncultured cells of two marine flavobacteria from the Gulf of Maine that were phylogenetically distant from existing cultured strains. Shotgun sequencing and genome finishing yielded 1.9 Mbp in 17 contigs and 1.5 Mbp in 21 contigs for the two flavobacteria, with estimated genome recoveries of about 91% and 78%, respectively. Only 0.24% of the assembling sequences were contaminants and were removed from further analysis using rigorous quality control. In contrast to all cultured strains of marine flavobacteria, the two single cell genomes were excellent Global Ocean Sampling (GOS) metagenome fragment recruiters, demonstrating their numerical significance in the ocean. The geographic distribution of GOS recruits along the Northwest Atlantic coast coincided with ocean surface currents. Metabolic reconstruction indicated diverse potential energy sources, including biopolymer degradation, proteorhodopsin photometabolism, and hydrogen oxidation. Compared to cultured relatives, the two uncultured flavobacteria have small genome sizes, few non-coding nucleotides, and few paralogous genes, suggesting adaptations to narrow ecological niches. These features may have contributed to the abundance of the two taxa in specific regions of the ocean, and may have hindered their cultivation. We demonstrate the power of single cell DNA sequencing to generate reference genomes of uncultured taxa from a complex microbial community of marine bacterioplankton. A combination of single cell genomics and metagenomics enabled us to analyze the genome content, metabolic adaptations, and biogeography of these taxa. PMID:19390573
QUAST: quality assessment tool for genome assemblies.
Gurevich, Alexey; Saveliev, Vladislav; Vyahhi, Nikolay; Tesler, Glenn
2013-04-15
Limitations of genome sequencing techniques have led to dozens of assembly algorithms, none of which is perfect. A number of methods for comparing assemblers have been developed, but none is yet a recognized benchmark. Further, most existing methods for comparing assemblies are only applicable to new assemblies of finished genomes; the problem of evaluating assemblies of previously unsequenced species has not been adequately considered. Here, we present QUAST-a quality assessment tool for evaluating and comparing genome assemblies. This tool improves on leading assembly comparison software with new ideas and quality metrics. QUAST can evaluate assemblies both with a reference genome, as well as without a reference. QUAST produces many reports, summary tables and plots to help scientists in their research and in their publications. In this study, we used QUAST to compare several genome assemblers on three datasets. QUAST tables and plots for all of them are available in the Supplementary Material, and interactive versions of these reports are on the QUAST website. http://bioinf.spbau.ru/quast . Supplementary data are available at Bioinformatics online.
Campbell, Catherine
2018-01-22
Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, Catherine
Catherine Campbell on "Finishing and Special Motifs: Lessons learned from CRISPR analysis using next-generation draft sequences" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
2008-01-01
Background The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) α, β and γ subunits. Further investigation of 14 α-like (Abpa) and 13 β- or γ-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Results Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. Conclusion We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification. PMID:18269759
Functional Role of Infective Viral Particles on Metal Reduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coates, John D.
2014-04-01
A proposed strategy for the remediation of uranium (U) contaminated sites was based on the immobilization of U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Previous studies identified Geobacter sp., including G. sulfurreducens and G. metallireducens, as predominant U(VI)-reducing bacteria under acetate-oxidizing and U(VI)-reducing conditions. Examination of the finished genome sequence annotation of the canonical metal reducing species Geobacter sulfurreducens strain PCA and G. metallireduceans strain GS-15 as well as the draft genome sequence of G. uraniumreducens strain Rf4 identified phage related proteins. In addition, the completed genome for Anaeromyxobacter dehalogenans andmore » the draft genome sequence of Desulfovibrio desulfuricans strain G20, two more model metal-reducing bacteria, also revealed phage related sequences. The presence of these gene sequences indicated that Geobacter spp., Anaeromyxobacter spp., and Desulfovibrio spp. are susceptible to viral infection. Furthermore, viral populations in soils and sedimentary environments in the order of 6.4×10{sup 6}–2.7×10{sup 10} VLP’s cm{sup -3} have been observed. In some cases, viral populations exceed bacterial populations in these environments suggesting that a relationship may exist between viruses and bacteria. Our preliminary screens of samples collected from the ESR FRC indicated that viral like particles were observed in significant numbers. The objective of this study was to investigate the potential functional role viruses play in metal reduction specifically Fe(III) and U(VI) reduction, the environmental parameters affecting viral infection of metal reducing bacteria, and the subsequent effects on U transport.« less
Laukaitis, Christina M; Heger, Andreas; Blakley, Tyler D; Munclinger, Pavel; Ponting, Chris P; Karn, Robert C
2008-02-12
The draft mouse (Mus musculus) genome sequence revealed an unexpected proliferation of gene duplicates encoding a family of secretoglobin proteins including the androgen-binding protein (ABP) alpha, beta and gamma subunits. Further investigation of 14 alpha-like (Abpa) and 13 beta- or gamma-like (Abpbg) undisrupted gene sequences revealed a rich diversity of developmental stage-, sex- and tissue-specific expression. Despite these studies, our understanding of the evolution of this gene family remains incomplete. Questions arise from imperfections in the initial mouse genome assembly and a dearth of information about the gene family structure in other rodents and mammals. Here, we interrogate the latest 'finished' mouse (Mus musculus) genome sequence assembly to show that the Abp gene repertoire is, in fact, twice as large as reported previously, with 30 Abpa and 34 Abpbg genes and pseudogenes. All of these have arisen since the last common ancestor with rat (Rattus norvegicus). We then demonstrate, by sequencing homologs from species within the Mus genus, that this burst of gene duplication occurred very recently, within the past seven million years. Finally, we survey Abp orthologs in genomes from across the mammalian clade and show that bursts of Abp gene duplications are not specific to the murid rodents; they also occurred recently in the lagomorph (rabbit, Oryctolagus cuniculus) and ruminant (cattle, Bos taurus) lineages, although not in other mammalian taxa. We conclude that Abp genes have undergone repeated bursts of gene duplication and adaptive sequence diversification driven by these genes' participation in chemosensation and/or sexual identification.
A comprehensive crop genome research project: the Superhybrid Rice Genome Project in China.
Yu, Jun; Wong, Gane Ka-Shu; Liu, Siqi; Wang, Jian; Yang, Huanming
2007-06-29
In May 2000, the Beijing Institute of Genomics formally announced the launch of a comprehensive crop genome research project on rice genomics, the Chinese Superhybrid Rice Genome Project. SRGP is not simply a sequencing project targeted to a single rice (Oryza sativa L.) genome, but a full-swing research effort with an ultimate goal of providing inclusive basic genomic information and molecular tools not only to understand biology of the rice, both as an important crop species and a model organism of cereals, but also to focus on a popular superhybrid rice landrace, LYP9. We have completed the first phase of SRGP and provide the rice research community with a finished genome sequence of an indica variety, 93-11 (the paternal cultivar of LYP9), together with ample data on subspecific (between subspecies) polymorphisms, transcriptomes and proteomes, useful for within-species comparative studies. In the second phase, we have acquired the genome sequence of the maternal cultivar, PA64S, together with the detailed catalogues of genes uniquely expressed in the parental cultivars and the hybrid as well as allele-specific markers that distinguish parental alleles. Although SRGP in China is not an open-ended research programme, it has been designed to pave a way for future plant genomics research and application, such as to interrogate fundamentals of plant biology, including genome duplication, polyploidy and hybrid vigour, as well as to provide genetic tools for crop breeding and to carry along a social burden-leading a fight against the world's hunger. It began with genomics, the newly developed and industry-scale research field, and from the world's most populous country. In this review, we summarize our scientific goals and noteworthy discoveries that exploit new territories of systematic investigations on basic and applied biology of rice and other major cereal crops.
Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs inmore » two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3’ end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl-CoA pathway), styrene, nicotinic acid (by the maleamate pathway) and the pesticides Dicamba and Fenitrothion. Lastly, determination of the complete genome sequence of D. acidovorans Cs1-4 has provided new insights the microbial mechanisms of PAH biodegradation that may shape the process in the environment.« less
Complete genome sequence of the phenanthrene-degrading soil bacterium Delftia acidovorans Cs1-4
Shetty, Ameesha R.; de Gannes, Vidya; Obi, Chioma C.; ...
2015-08-15
Polycyclic aromatic hydrocarbons (PAH) are ubiquitous environmental pollutants and microbial biodegradation is an important means of remediation of PAH-contaminated soil. Delftia acidovorans Cs1-4 (formerly Delftia sp. Cs1-4) was isolated by using phenanthrene as the sole carbon source from PAH contaminated soil in Wisconsin. Its full genome sequence was determined to gain insights into a mechanisms underlying biodegradation of PAH. Three genomic libraries were constructed and sequenced: an Illumina GAii shotgun library (916,416,493 reads), a 454 Titanium standard library (770,171 reads) and one paired-end 454 library (average insert size of 8 kb, 508,092 reads). The initial assembly contained 40 contigs inmore » two scaffolds. The 454 Titanium standard data and the 454 paired end data were assembled together and the consensus sequences were computationally shredded into 2 kb overlapping shreds. Illumina sequencing data was assembled, and the consensus sequence was computationally shredded into 1.5 kb overlapping shreds. Gaps between contigs were closed by editing in Consed, by PCR and by Bubble PCR primer walks. A total of 182 additional reactions were needed to close gaps and to raise the quality of the finished sequence. The final assembly is based on 253.3 Mb of 454 draft data (averaging 38.4 X coverage) and 590.2 Mb of Illumina draft data (averaging 89.4 X coverage). The genome of strain Cs1-4 consists of a single circular chromosome of 6,685,842 bp (66.7 %G+C) containing 6,028 predicted genes; 5,931 of these genes were protein-encoding and 4,425 gene products were assigned to a putative function. Genes encoding phenanthrene degradation were localized to a 232 kb genomic island (termed the phn island), which contained near its 3’ end a bacteriophage P4-like integrase, an enzyme often associated with chromosomal integration of mobile genetic elements. Other biodegradation pathways reconstructed from the genome sequence included: benzoate (by the acetyl-CoA pathway), styrene, nicotinic acid (by the maleamate pathway) and the pesticides Dicamba and Fenitrothion. Lastly, determination of the complete genome sequence of D. acidovorans Cs1-4 has provided new insights the microbial mechanisms of PAH biodegradation that may shape the process in the environment.« less
Wing, Rod A; Ammiraju, Jetty S S; Luo, Meizhong; Kim, Hyeran; Yu, Yeisoo; Kudrna, Dave; Goicoechea, Jose L; Wang, Wenming; Nelson, Will; Rao, Kiran; Brar, Darshan; Mackill, Dave J; Han, Bin; Soderlund, Cari; Stein, Lincoln; SanMiguel, Phillip; Jackson, Scott
2005-09-01
The wild species of the genus Oryza offer enormous potential to make a significant impact on agricultural productivity of the cultivated rice species Oryza sativa and Oryza glaberrima. To unlock the genetic potential of wild rice we have initiated a project entitled the 'Oryza Map Alignment Project' (OMAP) with the ultimate goal of constructing and aligning BAC/STC based physical maps of 11 wild and one cultivated rice species to the International Rice Genome Sequencing Project's finished reference genome--O. sativa ssp. japonica c. v. Nipponbare. The 11 wild rice species comprise nine different genome types and include six diploid genomes (AA, BB, CC, EE, FF and GG) and four tetrapliod genomes (BBCC, CCDD, HHKK and HHJJ) with broad geographical distribution and ecological adaptation. In this paper we describe our strategy to construct robust physical maps of all 12 rice species with an emphasis on the AA diploid O. nivara--thought to be the progenitor of modern cultivated rice.
USDA-ARS?s Scientific Manuscript database
A finished genome was obtained for Mycosphaerella graminicola, the fungal cause of septoria tritici blotch and a global threat to wheat production, containing thirteen core and eight dispensable chromosomes. The latter, called collectively the dispensome, were dynamic in field and progeny isolates. ...
EULER-PCR: finishing experiments for repeat resolution.
Mulyukov, Zufar; Pevzner, Pavel A
2002-01-01
Genomic sequencing typically generates a large collection of unordered contigs or scaffolds. Contig ordering (also known as gap closure) is a non-trivial algorithmic and experimental problem since even relatively simple-to-assemble bacterial genomes typically result in large set of contigs. Neighboring contigs maybe separated either by gaps in read coverage or by repeats. In the later case we say that the contigs are separated by pseudogaps, and we emphasize the important difference between gap closure and pseudogap closure. The existing gap closure approaches do not distinguish between gaps and pseudogaps and treat them in the same way. We describe a new fast strategy for closing pseudogaps (repeat resolution). Since in highly repetitive genomes, the number of pseudogaps may exceed the number of gaps by an order of magnitude, this approach provides a significant advantage over the existing gap closure methods.
NASA Astrophysics Data System (ADS)
Morin, Nicolas
The MELGEN activity (MELiSSA Genetic Stability Study) mainly covers the molecular aspects of the regenerative life-support system MELiSSA (Micro-Ecological Life Support System Alternative) of the European Space Agency (ESA). The general objective of MELGEN is to establish and validate methods and the related hardware in order to detect genetic instability and microbial contaminants in the MELISSA compartments. This includes (1) a genetic description of the MELISSA strains, (2) studies of microbial behavior and genetic stability in bioreactors and (3) the detection of chemical, genetical and biological contamination and their effect on microbial metabolism. Selected as oxygen producer and complementary food source, the cyanobacterium Arthrospira sp. PCC8005 plays a major role within the MELiSSA loop. As the genomic information on this organism was insufficient, sequencing of its genome was proposed at the French National Sequencing Center, Genoscope, as a joint effort between ESA and different laboratories. So far, a preliminary assembly of 16 contigs representing circa 6.3 million basepairs was obtained. Even though the finishing of the genome is on its way, automatic annotation of the contigs has already been performed on the MaGe annotation platform, and curation of the sequence is currently being carried out, with a special focus on biosynthesis pathways, photosynthesis, and maintenance processes of the cell. According to the index of repetitiveness described by Haubold and Wiehe (2006), we discovered that the genome of Arthrospira sp. is among the 50 most repeated bacterial genomes sequenced to date. Thanks to the sequencing project, we have identified and catalogued mobile genetics elements (MGEs) dispersed throughout the unique chromosome of this cyanobacterium. They represent a quite large proportion of the genome, as genes identified as putative transposases are indeed found in circa 5 Results : We currently have a first draft of the complete genome of Arthrospira sp. PCC 8005, fully annotated. This genomic information opens the gates to a better understanding of the biology of this cyanobacterium and will be a key to the development of appropriate derivatives that provide enhanced performances (e.g. radiation resistance, genetic stability, photosynthesis and nutritive properties).
Genomic anatomy of the Tyrp1 (brown) deletion complex
Smyth, Ian M.; Wilming, Laurens; Lee, Angela W.; Taylor, Martin S.; Gautier, Phillipe; Barlow, Karen; Wallis, Justine; Martin, Sancha; Glithero, Rebecca; Phillimore, Ben; Pelan, Sarah; Andrew, Rob; Holt, Karen; Taylor, Ruth; McLaren, Stuart; Burton, John; Bailey, Jonathon; Sims, Sarah; Squares, Jan; Plumb, Bob; Joy, Ann; Gibson, Richard; Gilbert, James; Hart, Elizabeth; Laird, Gavin; Loveland, Jane; Mudge, Jonathan; Steward, Charlie; Swarbreck, David; Harrow, Jennifer; North, Philip; Leaves, Nicholas; Greystrong, John; Coppola, Maria; Manjunath, Shilpa; Campbell, Mark; Smith, Mark; Strachan, Gregory; Tofts, Calli; Boal, Esther; Cobley, Victoria; Hunter, Giselle; Kimberley, Christopher; Thomas, Daniel; Cave-Berry, Lee; Weston, Paul; Botcherby, Marc R. M.; White, Sharon; Edgar, Ruth; Cross, Sally H.; Irvani, Marjan; Hummerich, Holger; Simpson, Eleanor H.; Johnson, Dabney; Hunsicker, Patricia R.; Little, Peter F. R.; Hubbard, Tim; Campbell, R. Duncan; Rogers, Jane; Jackson, Ian J.
2006-01-01
Chromosome deletions in the mouse have proven invaluable in the dissection of gene function. The brown deletion complex comprises >28 independent genome rearrangements, which have been used to identify several functional loci on chromosome 4 required for normal embryonic and postnatal development. We have constructed a 172-bacterial artificial chromosome contig that spans this 22-megabase (Mb) interval and have produced a contiguous, finished, and manually annotated sequence from these clones. The deletion complex is strikingly gene-poor, containing only 52 protein-coding genes (of which only 39 are supported by human homologues) and has several further notable genomic features, including several segments of >1 Mb, apparently devoid of a coding sequence. We have used sequence polymorphisms to finely map the deletion breakpoints and identify strong candidate genes for the known phenotypes that map to this region, including three lethal loci (l4Rn1, l4Rn2, and l4Rn3) and the fitness mutant brown-associated fitness (baf). We have also characterized misexpression of the basonuclin homologue, Bnc2, associated with the inversion-mediated coat color mutant white-based brown (Bw). This study provides a molecular insight into the basis of several characterized mouse mutants, which will allow further dissection of this region by targeted or chemical mutagenesis. PMID:16505357
Kulski, Jerzy K; Shiina, Takashi; Anzai, Tatsuya; Kohara, Sakae; Inoko, Hidetoshi
2002-12-01
The major histocompatibility complex (MHC) genomic region is composed of a group of linked genes involved functionally with the adaptive and innate immune systems. The class I and class II genes are intrinsic features of the MHC and have been found in all the jawed vertebrates studied so far. The MHC genomic regions of the human and the chicken (B locus) have been fully sequenced and mapped, and the mouse MHC sequence is almost finished. Information on the MHC genomic structures (size, complexity, genic and intergenic composition and organization, gene order and number) of other vertebrates is largely limited or nonexistent. Therefore, we are mapping, sequencing and analyzing the MHC genomic regions of different human haplotypes and at least eight nonhuman species. Here, we review our progress with these sequences and compare the human MHC structure with that of the nonhuman primates (chimpanzee and rhesus macaque), other mammals (pigs, mice and rats) and nonmammalian vertebrates such as birds (chicken and quail), bony fish (medaka, pufferfish and zebrafish) and cartilaginous fish (nurse shark). This comparison reveals a complex MHC structure for mammals and a relatively simpler design for nonmammalian animals with a hypothetical prototypic structure for the shark. In the mammalian MHC, there are two to five different class I duplication blocks embedded within a framework of conserved nonclass I and/or nonclass II genes. With a few exceptions, the class I framework genes are absent from the MHC of birds, bony fish and sharks. Comparative genomics of the MHC reveal a highly plastic region with major structural differences between the mammalian and nonmammalian vertebrates. Additional genomic data are needed on animals of the reptilia, crocodilia and marsupial classes to find the origins of the class I framework genes and examples of structures that may be intermediate between the simple and complex MHC organizations of birds and mammals, respectively.
Weber, Kristina L; Welly, Bryan T; Van Eenennaam, Alison L; Young, Amy E; Porto-Neto, Laercio R; Reverter, Antonio; Rincon, Gonzalo
2016-01-01
Improvement in feed conversion efficiency can improve the sustainability of beef cattle production, but genomic selection for feed efficiency affects many underlying molecular networks and physiological traits. This study describes the differences between steer progeny of two influential Angus bulls with divergent genomic predictions for residual feed intake (RFI). Eight steer progeny of each sire were phenotyped for growth and feed intake from 8 mo. of age (average BW 254 kg, with a mean difference between sire groups of 4.8 kg) until slaughter at 14-16 mo. of age (average BW 534 kg, sire group difference of 28.8 kg). Terminal samples from pituitary gland, skeletal muscle, liver, adipose, and duodenum were collected from each steer for transcriptome sequencing. Gene expression networks were derived using partial correlation and information theory (PCIT), including differentially expressed (DE) genes, tissue specific (TS) genes, transcription factors (TF), and genes associated with RFI from a genome-wide association study (GWAS). Relative to progeny of the high RFI sire, progeny of the low RFI sire had -0.56 kg/d finishing period RFI (P = 0.05), -1.08 finishing period feed conversion ratio (P = 0.01), +3.3 kg^0.75 finishing period metabolic mid-weight (MMW; P = 0.04), +28.8 kg final body weight (P = 0.01), -12.9 feed bunk visits per day (P = 0.02) with +0.60 min/visit duration (P = 0.01), and +0.0045 carcass specific gravity (weight in air/weight in air-weight in water, a predictor of carcass fat content; P = 0.03). RNA-seq identified 633 DE genes between sire groups among 17,016 expressed genes. PCIT analysis identified >115,000 significant co-expression correlations between genes and 25 TF hubs, i.e. controllers of clusters of DE, TS, and GWAS SNP genes. Pathway analysis suggests low RFI bull progeny possess heightened gut inflammation and reduced fat deposition. This multi-omics analysis shows how differences in RFI genomic breeding values can impact other traits and gene co-expression networks.
QUAST: quality assessment tool for genome assemblies
Gurevich, Alexey; Saveliev, Vladislav; Vyahhi, Nikolay; Tesler, Glenn
2013-01-01
Summary: Limitations of genome sequencing techniques have led to dozens of assembly algorithms, none of which is perfect. A number of methods for comparing assemblers have been developed, but none is yet a recognized benchmark. Further, most existing methods for comparing assemblies are only applicable to new assemblies of finished genomes; the problem of evaluating assemblies of previously unsequenced species has not been adequately considered. Here, we present QUAST—a quality assessment tool for evaluating and comparing genome assemblies. This tool improves on leading assembly comparison software with new ideas and quality metrics. QUAST can evaluate assemblies both with a reference genome, as well as without a reference. QUAST produces many reports, summary tables and plots to help scientists in their research and in their publications. In this study, we used QUAST to compare several genome assemblers on three datasets. QUAST tables and plots for all of them are available in the Supplementary Material, and interactive versions of these reports are on the QUAST website. Availability: http://bioinf.spbau.ru/quast Contact: gurevich@bioinf.spbau.ru Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23422339
Sequence Data for Clostridium autoethanogenum using Three Generations of Sequencing Technologies
Utturkar, Sagar M.; Klingeman, Dawn Marie; Bruno-Barcena, José M.; ...
2015-04-14
During the past decade, DNA sequencing output has been mostly dominated by the second generation sequencing platforms which are characterized by low cost, high throughput and shorter read lengths for example, Illumina. The emergence and development of so called third generation sequencing platforms such as PacBio has permitted exceptionally long reads (over 20 kb) to be generated. Due to read length increases, algorithm improvements and hybrid assembly approaches, the concept of one chromosome, one contig and automated finishing of microbial genomes is now a realistic and achievable task for many microbial laboratories. In this paper, we describe high quality sequencemore » datasets which span three generations of sequencing technologies, containing six types of data from four NGS platforms and originating from a single microorganism, Clostridium autoethanogenum. The dataset reported here will be useful for the scientific community to evaluate upcoming NGS platforms, enabling comparison of existing and novel bioinformatics approaches and will encourage interest in the development of innovative experimental and computational methods for NGS data.« less
GenePRIMP: A Gene Prediction Improvement Pipeline For Prokaryotic Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyrpides, Nikos C.; Ivanova, Natalia N.; Pati, Amrita
2010-07-08
GenePRIMP (Gene Prediction Improvement Pipeline, Http://geneprimp.jgi-psf.org), a computational process that performs evidence-based evaluation of gene models in prokaryotic genomes and reports anomalies including inconsistent start sites, missing genes, and split genes. We show that manual curation of gene models using the anomaly reports generated by GenePRIMP improves their quality and demonstrate the applicability of GenePRIMP in improving finishing quality and comparing different genome sequencing and annotation technologies. Keywords in context: Gene model, Quality Control, Translation start sites, Automatic correction. Hardware requirements; PC, MAC; Operating System: UNIX/LINUX; Compiler/Version: Perl 5.8.5 or higher; Special requirements: NCBI Blast and nr installation; File Types:more » Source Code, Executable module(s), Sample problem input data; installation instructions other; programmer documentation. Location/transmission: http://geneprimp.jgi-psf.org/gp.tar.gz« less
Athavale, Ajay
2018-01-04
Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Bardet, Lucie; Cimmino, Teresa; Buffet, Clémence; Michelle, Caroline; Rathored, Jaishriram; Tandina, Fatalmoudou; Lagier, Jean-Christophe; Khelaifia, Saber; Abrahão, Jônatas; Raoult, Didier; Rolain, Jean-Marc
2018-02-01
Culturomics is a new postgenomics field that explores the microbial diversity of the human gut coupled with taxono-genomic strategy. Culturomics, and the microbiome science more generally, are anticipated to transform global health diagnostics and inform the ways in which gut microbial diversity contributes to human health and disease, and by extension, to personalized medicine. Using culturomics, we report in this study the description of strain CB1 T ( = CSUR P1334 = DSM 29075), a new species isolated from a stool specimen from a 37-year-old Brazilian woman. This description includes phenotypic characteristics and complete genome sequence and annotation. Strain CB1 T is a gram-negative aerobic and motile bacillus, exhibits neither catalase nor oxidase activities, and presents a 98.3% 16S rRNA sequence similarity with Pseudomonas putida. The 4,723,534 bp long genome contains 4239 protein-coding genes and 74 RNA genes, including 15 rRNA genes (5 16S rRNA, 4 23S rRNA, and 6 5S rRNA) and 59 tRNA genes. Strain CB1 T was named Pseudomonas massiliensis sp. nov. and classified into the family Pseudomonadaceae. This study demonstrates the usefulness of microbial culturomics in exploration of human microbiota in diverse geographies and offers new promise for incorporating new omics technologies for innovation in diagnostic medicine and global health.
Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale).
Kalinka, Anna; Achrem, Magdalena
2018-04-01
The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.
Yan, Qiongqiong; Power, Karen A; Cooney, Shane; Fox, Edward; Gopinath, Gopal R; Grim, Christopher J; Tall, Ben D; McCusker, Matthew P; Fanning, Séamus
2013-01-01
Outbreaks of human infection linked to the powdered infant formula (PIF) food chain and associated with the bacterium Cronobacter, are of concern to public health. These bacteria are regarded as opportunistic pathogens linked to life-threatening infections predominantly in neonates, with an under developed immune system. Monitoring the microbiological ecology of PIF production sites is an important step in attempting to limit the risk of contamination in the finished food product. Cronobacter species, like other microorganisms can adapt to the production environment. These organisms are known for their desiccation tolerance, a phenotype that can aid their survival in the production site and PIF itself. In evaluating the genome data currently available for Cronobacter species, no sequence information has been published describing a Cronobacter sakazakii isolate found to persist in a PIF production facility. Here we report on the complete genome sequence of one such isolate, Cronobacter sakazakii SP291 along with its phenotypic characteristics. The genome of C. sakazakii SP291 consists of a 4.3-Mb chromosome (56.9% GC) and three plasmids, denoted as pSP291-1, [118.1-kb (57.2% GC)], pSP291-2, [52.1-kb (49.2% GC)], and pSP291-3, [4.4-kb (54.0% GC)]. When C. sakazakii SP291 was compared to the reference C. sakazakii ATCC BAA-894, which is also of PIF origin, the annotated genome data identified two interesting functional categories, comprising of genes related to the bacterial stress response and resistance to antimicrobial and toxic compounds. Using a phenotypic microarray (PM), we provided a full metabolic profile comparing C. sakazakii SP291 and the previously sequenced C. sakazakii ATCC BAA-894. These data extend our understanding of the genome of this important neonatal pathogen and provides further insights into the genotypes associated with features that can contribute to its persistence in the PIF environment.
Yan, Qiongqiong; Power, Karen A.; Cooney, Shane; Fox, Edward; Gopinath, Gopal R.; Grim, Christopher J.; Tall, Ben D.; McCusker, Matthew P.; Fanning, Séamus
2013-01-01
Outbreaks of human infection linked to the powdered infant formula (PIF) food chain and associated with the bacterium Cronobacter, are of concern to public health. These bacteria are regarded as opportunistic pathogens linked to life-threatening infections predominantly in neonates, with an under developed immune system. Monitoring the microbiological ecology of PIF production sites is an important step in attempting to limit the risk of contamination in the finished food product. Cronobacter species, like other microorganisms can adapt to the production environment. These organisms are known for their desiccation tolerance, a phenotype that can aid their survival in the production site and PIF itself. In evaluating the genome data currently available for Cronobacter species, no sequence information has been published describing a Cronobacter sakazakii isolate found to persist in a PIF production facility. Here we report on the complete genome sequence of one such isolate, Cronobacter sakazakii SP291 along with its phenotypic characteristics. The genome of C. sakazakii SP291 consists of a 4.3-Mb chromosome (56.9% GC) and three plasmids, denoted as pSP291-1, [118.1-kb (57.2% GC)], pSP291-2, [52.1-kb (49.2% GC)], and pSP291-3, [4.4-kb (54.0% GC)]. When C. sakazakii SP291 was compared to the reference C. sakazakii ATCC BAA-894, which is also of PIF origin, the annotated genome data identified two interesting functional categories, comprising of genes related to the bacterial stress response and resistance to antimicrobial and toxic compounds. Using a phenotypic microarray (PM), we provided a full metabolic profile comparing C. sakazakii SP291 and the previously sequenced C. sakazakii ATCC BAA-894. These data extend our understanding of the genome of this important neonatal pathogen and provides further insights into the genotypes associated with features that can contribute to its persistence in the PIF environment. PMID:24032028
Aozan: an automated post-sequencing data-processing pipeline.
Perrin, Sandrine; Firmo, Cyril; Lemoine, Sophie; Le Crom, Stéphane; Jourdren, Laurent
2017-07-15
Data management and quality control of output from Illumina sequencers is a disk space- and time-consuming task. Thus, we developed Aozan to automatically handle data transfer, demultiplexing, conversion and quality control once a run has finished. This software greatly improves run data management and the monitoring of run statistics via automatic emails and HTML web reports. Aozan is implemented in Java and Python, supported on Linux systems, and distributed under the GPLv3 License at: http://www.outils.genomique.biologie.ens.fr/aozan/ . Aozan source code is available on GitHub: https://github.com/GenomicParisCentre/aozan . aozan@biologie.ens.fr. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castelle, Cindy; Wrighton, Kelly C.; Thomas, Brian C.
Domain Archaea is currently represented by one phylum (Euryarchaeota) and two superphyla (TACK and DPANN). However, gene surveys indicate the existence of a vast diversity of uncultivated archaea for which metabolic information is lacking. We sequenced DNA from complex sediment- and groundwater-associated microbial communities sampled prior to and during an acetate biostimulation field experiment to investigate the diversity and physiology of uncultivated subsurface archaea. We sampled 15 genomes that improve resolution of a new phylum within the TACK superphylum and 119 DPANN genomes that highlight a major subdivision within the archaeal domain that separates DPANN from TACK/Euryarchaeota lineages. Within themore » DPANN superphylum, which lacks any isolated representatives, we defined two new phyla using sequences from 100 newly sampled genomes. The first new phylum, for which we propose the name Woesearchaeota, was defined using 54 new sequences. We reconstructed a complete (finished) genome for an archaeon from this phylum that is only 0.8 Mb in length and lacks almost all core biosynthetic pathways, but has genes encoding enzymes predicted to interact with bacterial cell walls, consistent with a symbiotic lifestyle. The second new phylum, for which we propose the name Pacearchaeota, was defined based on 46 newly sampled archaeal genomes. This phylum includes the first non-methanogen with an intermediate Type II/III RuBisCO. We also reconstructed a complete (1.24 Mb) genome for another DPANN archaeon, a member of the Diapherotrites phylum. Metabolic prediction and transcriptomic data indicate that this organism has a fermentation-based lifestyle. In fact, genomic analyses consistently indicate lack of recognizable pathways for sulfur, nitrogen, methane, oxygen, and metal cycling, and suggest that symbiotic and fermentation-based lifestyles are widespread across the DPANN superphylum. Thus, as for a recently identified superphylum of bacteria with small genomes and no cultivated representatives, the biogeochemical impacts of this major radiation of archaea are primarily through anaerobic carbon and hydrogen cycling.« less
Lu, Wei; Wise, Michael J.; Tay, Chin Yen; Windsor, Helen M.; Marshall, Barry J.; Peacock, Christopher
2014-01-01
Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains. PMID:24375107
Lu, Wei; Wise, Michael J; Tay, Chin Yen; Windsor, Helen M; Marshall, Barry J; Peacock, Christopher; Perkins, Tim
2014-03-01
Isolates of Helicobacter pylori can be classified phylogeographically. High genetic diversity and rapid microevolution are a hallmark of H. pylori genomes, a phenomenon that is proposed to play a functional role in persistence and colonization of diverse human populations. To provide further genomic evidence in the lineage of H. pylori and to further characterize diverse strains of this pathogen in different human populations, we report the finished genome sequence of Sahul64, an H. pylori strain isolated from an indigenous Australian. Our analysis identified genes that were highly divergent compared to the 38 publically available genomes, which include genes involved in the biosynthesis and modification of lipopolysaccharide, putative prophage genes, restriction modification components, and hypothetical genes. Furthermore, the virulence-associated vacA locus is a pseudogene and the cag pathogenicity island (cagPAI) is not present. However, the genome does contain a gene cluster associated with pathogenicity, including dupA. Our analysis found that with the addition of Sahul64 to the 38 genomes, the core genome content of H. pylori is reduced by approximately 14% (∼170 genes) and the pan-genome has expanded from 2,070 to 2,238 genes. We have identified three putative horizontally acquired regions, including one that is likely to have been acquired from the closely related Helicobacter cetorum prior to speciation. Our results suggest that Sahul64, with the absence of cagPAI, highly divergent cell envelope proteins, and a predicted nontransportable VacA protein, could be more highly adapted to ancient indigenous Australian people but with lower virulence potential compared to other sequenced and cagPAI-positive H. pylori strains.
A new method to cluster genomes based on cumulative Fourier power spectrum.
Dong, Rui; Zhu, Ziyue; Yin, Changchuan; He, Rong L; Yau, Stephen S-T
2018-06-20
Analyzing phylogenetic relationships using mathematical methods has always been of importance in bioinformatics. Quantitative research may interpret the raw biological data in a precise way. Multiple Sequence Alignment (MSA) is used frequently to analyze biological evolutions, but is very time-consuming. When the scale of data is large, alignment methods cannot finish calculation in reasonable time. Therefore, we present a new method using moments of cumulative Fourier power spectrum in clustering the DNA sequences. Each sequence is translated into a vector in Euclidean space. Distances between the vectors can reflect the relationships between sequences. The mapping between the spectra and moment vector is one-to-one, which means that no information is lost in the power spectra during the calculation. We cluster and classify several datasets including Influenza A, primates, and human rhinovirus (HRV) datasets to build up the phylogenetic trees. Results show that the new proposed cumulative Fourier power spectrum is much faster and more accurately than MSA and another alignment-free method known as k-mer. The research provides us new insights in the study of phylogeny, evolution, and efficient DNA comparison algorithms for large genomes. The computer programs of the cumulative Fourier power spectrum are available at GitHub (https://github.com/YaulabTsinghua/cumulative-Fourier-power-spectrum). Copyright © 2018. Published by Elsevier B.V.
Structure and Evolution of Chlorate Reduction Composite Transposons
Clark, Iain C.; Melnyk, Ryan A.; Engelbrektson, Anna; Coates, John D.
2013-01-01
ABSTRACT The genes for chlorate reduction in six bacterial strains were analyzed in order to gain insight into the metabolism. A newly isolated chlorate-reducing bacterium (Shewanella algae ACDC) and three previously isolated strains (Ideonella dechloratans, Pseudomonas sp. strain PK, and Dechloromarinus chlorophilus NSS) were genome sequenced and compared to published sequences (Alicycliphilus denitrificans BC plasmid pALIDE01 and Pseudomonas chloritidismutans AW-1). De novo assembly of genomes failed to join regions adjacent to genes involved in chlorate reduction, suggesting the presence of repeat regions. Using a bioinformatics approach and finishing PCRs to connect fragmented contigs, we discovered that chlorate reduction genes are flanked by insertion sequences, forming composite transposons in all four newly sequenced strains. These insertion sequences delineate regions with the potential to move horizontally and define a set of genes that may be important for chlorate reduction. In addition to core metabolic components, we have highlighted several such genes through comparative analysis and visualization. Phylogenetic analysis places chlorate reductase within a functionally diverse clade of type II dimethyl sulfoxide (DMSO) reductases, part of a larger family of enzymes with reactivity toward chlorate. Nucleotide-level forensics of regions surrounding chlorite dismutase (cld), as well as its phylogenetic clustering in a betaproteobacterial Cld clade, indicate that cld has been mobilized at least once from a perchlorate reducer to build chlorate respiration. PMID:23919996
GT-WGS: an efficient and economic tool for large-scale WGS analyses based on the AWS cloud service.
Wang, Yiqi; Li, Gen; Ma, Mark; He, Fazhong; Song, Zhuo; Zhang, Wei; Wu, Chengkun
2018-01-19
Whole-genome sequencing (WGS) plays an increasingly important role in clinical practice and public health. Due to the big data size, WGS data analysis is usually compute-intensive and IO-intensive. Currently it usually takes 30 to 40 h to finish a 50× WGS analysis task, which is far from the ideal speed required by the industry. Furthermore, the high-end infrastructure required by WGS computing is costly in terms of time and money. In this paper, we aim to improve the time efficiency of WGS analysis and minimize the cost by elastic cloud computing. We developed a distributed system, GT-WGS, for large-scale WGS analyses utilizing the Amazon Web Services (AWS). Our system won the first prize on the Wind and Cloud challenge held by Genomics and Cloud Technology Alliance conference (GCTA) committee. The system makes full use of the dynamic pricing mechanism of AWS. We evaluate the performance of GT-WGS with a 55× WGS dataset (400GB fastq) provided by the GCTA 2017 competition. In the best case, it only took 18.4 min to finish the analysis and the AWS cost of the whole process is only 16.5 US dollars. The accuracy of GT-WGS is 99.9% consistent with that of the Genome Analysis Toolkit (GATK) best practice. We also evaluated the performance of GT-WGS performance on a real-world dataset provided by the XiangYa hospital, which consists of 5× whole-genome dataset with 500 samples, and on average GT-WGS managed to finish one 5× WGS analysis task in 2.4 min at a cost of $3.6. WGS is already playing an important role in guiding therapeutic intervention. However, its application is limited by the time cost and computing cost. GT-WGS excelled as an efficient and affordable WGS analyses tool to address this problem. The demo video and supplementary materials of GT-WGS can be accessed at https://github.com/Genetalks/wgs_analysis_demo .
Yohn, Chris T; Jiang, Zhaoshi; McGrath, Sean D; Hayden, Karen E; Khaitovich, Philipp; Johnson, Matthew E; Eichler, Marla Y; McPherson, John D; Zhao, Shaying; Pääbo, Svante; Eichler, Evan E
2005-04-01
Retroviral infections of the germline have the potential to episodically alter gene function and genome structure during the course of evolution. Horizontal transmissions between species have been proposed, but little evidence exists for such events in the human/great ape lineage of evolution. Based on analysis of finished BAC chimpanzee genome sequence, we characterize a retroviral element (Pan troglodytes endogenous retrovirus 1 [PTERV1]) that has become integrated in the germline of African great ape and Old World monkey species but is absent from humans and Asian ape genomes. We unambiguously map 287 retroviral integration sites and determine that approximately 95.8% of the insertions occur at non-orthologous regions between closely related species. Phylogenetic analysis of the endogenous retrovirus reveals that the gorilla and chimpanzee elements share a monophyletic origin with a subset of the Old World monkey retroviral elements, but that the average sequence divergence exceeds neutral expectation for a strictly nuclear inherited DNA molecule. Within the chimpanzee, there is a significant integration bias against genes, with only 14 of these insertions mapping within intronic regions. Six out of ten of these genes, for which there are expression data, show significant differences in transcript expression between human and chimpanzee. Our data are consistent with a retroviral infection that bombarded the genomes of chimpanzees and gorillas independently and concurrently, 3-4 million years ago. We speculate on the potential impact of such recent events on the evolution of humans and great apes.
Evidence for Widespread Reticulate Evolution within Human Duplicons
Jackson, Michael S. ; Oliver, Karen ; Loveland, Jane ; Humphray, Sean ; Dunham, Ian ; Rocchi, Mariano ; Viggiano, Luigi ; Park, Jonathan P. ; Hurles, Matthew E. ; Santibanez-Koref, Mauro
2005-01-01
Approximately 5% of the human genome consists of segmental duplications that can cause genomic mutations and may play a role in gene innovation. Reticulate evolutionary processes, such as unequal crossing-over and gene conversion, are known to occur within specific duplicon families, but the broader contribution of these processes to the evolution of human duplications remains poorly characterized. Here, we use phylogenetic profiling to analyze multiple alignments of 24 human duplicon families that span >8 Mb of DNA. Our results indicate that none of them are evolving independently, with all alignments showing sharp discontinuities in phylogenetic signal consistent with reticulation. To analyze these results in more detail, we have developed a quartet method that estimates the relative contribution of nucleotide substitution and reticulate processes to sequence evolution. Our data indicate that most of the duplications show a highly significant excess of sites consistent with reticulate evolution, compared with the number expected by nucleotide substitution alone, with 15 of 30 alignments showing a >20-fold excess over that expected. Using permutation tests, we also show that at least 5% of the total sequence shares 100% sequence identity because of reticulation, a figure that includes 74 independent tracts of perfect identity >2 kb in length. Furthermore, analysis of a subset of alignments indicates that the density of reticulation events is as high as 1 every 4 kb. These results indicate that phylogenetic relationships within recently duplicated human DNA can be rapidly disrupted by reticulate evolution. This finding has important implications for efforts to finish the human genome sequence, complicates comparative sequence analysis of duplicon families, and could profoundly influence the tempo of gene-family evolution. PMID:16252241
de la Fuente-Núñez, César; Lu, Timothy K
2017-02-20
The development of CRISPR-Cas9 technology has revolutionized our ability to edit DNA and to modulate expression levels of genes of interest, thus providing powerful tools to accelerate the precise engineering of a wide range of organisms. In addition, the CRISPR-Cas system can be harnessed to design "precision" antimicrobials that target bacterial pathogens in a DNA sequence-specific manner. This capability will enable killing of drug-resistant microbes by selectively targeting genes involved in antibiotic resistance, biofilm formation and virulence. Here, we review the origins and mechanistic basis of CRISPR-Cas systems, discuss how this technology can be leveraged to provide a range of applications in both eukaryotic and prokaryotic systems, and finish by outlining limitations and future prospects.
Patel, Kamlesh D.
2018-01-22
Kamlesh (Ken) Patel from Sandia National Laboratories (Livermore, California) presents "Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology " at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Kamlesh D.
2012-06-01
Kamlesh (Ken) Patel from Sandia National Laboratories (Livermore, California) presents "Preparation of Nucleic Acid Libraries for Personalized Sequencing Systems Using an Integrated Microfluidic Hub Technology " at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Iquebal, M A; Jaiswal, Sarika; Mahato, Ajay Kumar; Jayaswal, Pawan K; Angadi, U B; Kumar, Neeraj; Sharma, Nimisha; Singh, Anand K; Srivastav, Manish; Prakash, Jai; Singh, S K; Khan, Kasim; Mishra, Rupesh K; Rajan, Shailendra; Bajpai, Anju; Sandhya, B S; Nischita, Puttaraju; Ravishankar, K V; Dinesh, M R; Rai, Anil; Kumar, Dinesh; Sharma, Tilak R; Singh, Nagendra K
2017-11-02
Mango is one of the most important fruits of tropical ecological region of the world, well known for its nutritive value, aroma and taste. Its world production is >45MT worth >200 billion US dollars. Genomic resources are required for improvement in productivity and management of mango germplasm. There is no web-based genomic resources available for mango. Hence rapid and cost-effective high throughput putative marker discovery is required to develop such resources. RAD-based marker discovery can cater this urgent need till whole genome sequence of mango becomes available. Using a panel of 84 mango varieties, a total of 28.6 Gb data was generated by ddRAD-Seq approach on Illumina HiSeq 2000 platform. A total of 1.25 million SNPs were discovered. Phylogenetic tree using 749 common SNPs across these varieties revealed three major lineages which was compared with geographical locations. A web genomic resources MiSNPDb, available at http://webtom.cabgrid.res.in/mangosnps/ is based on 3-tier architecture, developed using PHP, MySQL and Javascript. This web genomic resources can be of immense use in the development of high density linkage map, QTL discovery, varietal differentiation, traceability, genome finishing and SNP chip development for future GWAS in genomic selection program. We report here world's first web-based genomic resources for genetic improvement and germplasm management of mango.
Brooks, John P; Adeli, Ardeshir; McLaughlin, Michael R
2014-06-15
The environmental influence of farm management in concentrated animal feeding operations (CAFO) can yield vast changes to the microbial biota and ecological structure of both the pig and waste manure lagoon wastewater. While some of these changes may not be negative, it is possible that CAFOs can enrich antibiotic resistant bacteria or pathogens based on farm type, thereby influencing the impact imparted by the land application of its respective wastewater. The purpose of this study was to measure the microbial constituents of swine-sow, -nursery, and -finisher farm manure lagoon wastewater and determine the changes induced by farm management. A total of 37 farms were visited in the Mid-South USA and analyzed for the genes 16S rRNA, spaQ (Salmonella spp.), Camp-16S (Campylobacter spp.), tetA, tetB, ermF, ermA, mecA, and intI using quantitative PCR. Additionally, 16S rRNA sequence libraries were created. Overall, it appeared that finisher farms were significantly different from nursery and sow farms in nearly all genes measured and in 16S rRNA clone libraries. Nearly all antibiotic resistance genes were detected in all farms. Interestingly, the mecA resistance gene (e.g. methicillin resistant Staphylococcus aureus) was below detection limits on most farms, and decreased as the pigs aged. Finisher farms generally had fewer antibiotic resistance genes, which corroborated previous phenotypic data; additionally, finisher farms produced a less diverse 16S rRNA sequence library. Comparisons of Camp-16S and spaQ GU (genomic unit) values to previous culture data demonstrated ratios from 10 to 10,000:1 depending on farm type, indicating viable but not cultivatable bacteria were dominant. The current study indicated that swine farm management schemes positively and negatively affect microbial and antibiotic resistant populations in CAFO wastewater which has future "downstream" implications from both an environmental and public health perspective. Published by Elsevier Ltd.
Parks, Donovan H.; Imelfort, Michael; Skennerton, Connor T.; Hugenholtz, Philip; Tyson, Gene W.
2015-01-01
Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of “marker” genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities. PMID:25977477
Parks, Donovan H; Imelfort, Michael; Skennerton, Connor T; Hugenholtz, Philip; Tyson, Gene W
2015-07-01
Large-scale recovery of genomes from isolates, single cells, and metagenomic data has been made possible by advances in computational methods and substantial reductions in sequencing costs. Although this increasing breadth of draft genomes is providing key information regarding the evolutionary and functional diversity of microbial life, it has become impractical to finish all available reference genomes. Making robust biological inferences from draft genomes requires accurate estimates of their completeness and contamination. Current methods for assessing genome quality are ad hoc and generally make use of a limited number of "marker" genes conserved across all bacterial or archaeal genomes. Here we introduce CheckM, an automated method for assessing the quality of a genome using a broader set of marker genes specific to the position of a genome within a reference genome tree and information about the collocation of these genes. We demonstrate the effectiveness of CheckM using synthetic data and a wide range of isolate-, single-cell-, and metagenome-derived genomes. CheckM is shown to provide accurate estimates of genome completeness and contamination and to outperform existing approaches. Using CheckM, we identify a diverse range of errors currently impacting publicly available isolate genomes and demonstrate that genomes obtained from single cells and metagenomic data vary substantially in quality. In order to facilitate the use of draft genomes, we propose an objective measure of genome quality that can be used to select genomes suitable for specific gene- and genome-centric analyses of microbial communities. © 2015 Parks et al.; Published by Cold Spring Harbor Laboratory Press.
McMahon, Ben
2018-01-11
Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMahon, Ben
2012-06-01
Ben McMahon of Los Alamos National Laboratory (LANL) presents "Signature Peptide-Enabled Metagenomics" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Sharma, Anupma; Presting, Gernot G
2008-02-01
Centromeric retrotransposons (CR) are located almost exclusively at the centromeres of plant chromosomes. Analysis of the emerging Zea mays inbred B73 genome sequence revealed two novel subfamilies of CR elements of maize (CRM), bringing the total number of known CRM subfamilies to four. Orthologous subfamilies of each of these CRM subfamilies were discovered in the rice lineage, and the orthologous relationships were demonstrated with extensive phylogenetic analyses. The much higher number of CRs in maize versus Oryza sativa is due primarily to the recent expansion of the CRM1 subfamily in maize. At least one incomplete copy of a CRM1 homolog was found in O. sativa ssp. indica and O. officinalis, but no member of this subfamily could be detected in the finished O. sativa ssp. japonica genome, implying loss of this prolific subfamily in that subspecies. CRM2 and CRM3, as well as the corresponding rice subfamilies, have been recently active but are present in low numbers. CRM3 is a full-length element related to the non-autonomous CentA, which is the first described CRM. The oldest subfamily (CRM4), as well as its rice counterpart, appears to contain only inactive members that are not located in currently active centromeres. The abundance of active CR elements is correlated with chromosome size in the three plant genomes for which high quality genomic sequence is available, and the emerging picture of CR elements is one in which different subfamilies are active at different evolutionary times. We propose a model by which CR elements might influence chromosome and genome size.
Thole, Sebastian; Kalhoefer, Daniela; Voget, Sonja; Berger, Martine; Engelhardt, Tim; Liesegang, Heiko; Wollherr, Antje; Kjelleberg, Staffan; Daniel, Rolf; Simon, Meinhard; Thomas, Torsten; Brinkhoff, Thorsten
2012-01-01
Phaeobacter gallaeciensis, a member of the abundant marine Roseobacter clade, is known to be an effective colonizer of biotic and abiotic marine surfaces. Production of the antibiotic tropodithietic acid (TDA) makes P. gallaeciensis a strong antagonist of many bacteria, including fish and mollusc pathogens. In addition to TDA, several other secondary metabolites are produced, allowing the mutualistic bacterium to also act as an opportunistic pathogen. Here we provide the manually annotated genome sequences of the P. gallaeciensis strains DSM 17395 and 2.10, isolated at the Atlantic coast of north western Spain and near Sydney, Australia, respectively. Despite their isolation sites from the two different hemispheres, the genome comparison demonstrated a surprisingly high level of synteny (only 3% nucleotide dissimilarity and 88% and 93% shared genes). Minor differences in the genomes result from horizontal gene transfer and phage infection. Comparison of the P. gallaeciensis genomes with those of other roseobacters revealed unique genomic traits, including the production of iron-scavenging siderophores. Experiments supported the predicted capacity of both strains to grow on various algal osmolytes. Transposon mutagenesis was used to expand the current knowledge on the TDA biosynthesis pathway in strain DSM 17395. This first comparative genomic analysis of finished genomes of two closely related strains belonging to one species of the Roseobacter clade revealed features that provide competitive advantages and facilitate surface attachment and interaction with eukaryotic hosts. PMID:22717884
Smith, Todd
2017-12-22
Todd Smith of the PerkinElmer Omics Laboratory gives a talk about his lab and its work at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Sexton, David
2018-01-22
David Sexton (Baylor) gives a talk titled "Mercury: Next-gen Data Analysis and Annotation Pipeline" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Todd
2012-06-01
Todd Smith of the PerkinElmer Omics Laboratory gives a talk about his lab and its work at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sexton, David
2012-06-01
David Sexton (Baylor) gives a talk titled "Mercury: Next-gen Data Analysis and Annotation Pipeline" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
DHS-STEM Internship at Lawrence Livermore National Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feldman, B
2008-08-18
This summer I had the fortunate opportunity through the DHS-STEM program to attend Lawrence Livermore National Laboratories (LLNL) to work with Tom Slezak on the bioinformatics team. The bioinformatics team, among other things, helps to develop TaqMan and microarray probes for the identification of pathogens. My main project at the laboratory was to test such probe identification capabilities against metagenomic (unsequenced) data from around the world. Using various sequence analysis tools (Vmatch and Blastall) and several we developed ourselves, about 120 metagenomic sequencing projects were compared against a collection of all completely sequenced genomes and Lawrence Livermore National Laboratory's (LLNL)more » current probe database. For the probes, the Blastall algorithms compared each individual metagenomic project using various parameters allowing for the natural ambiguities of in vitro hybridization (mismatches, deletions, insertions, hairpinning, etc.). A low level cutoff was used to eliminate poor sequence matches, and to leave a large variety of higher quality matches for future research into the hybridization of sequences with mutations and variations. Any hits with at least 80% base pair conservation over 80% of the length of the match. Because of the size of our whole genome database, we utilized the exact match algorithm of Vmatch to quickly search and compare genomes for exact matches with varying lower level limits on sequence length. I also provided preliminary feasibility analyses to support a potential industry-funded project to develop a multiplex assay on several genera and species. Each genus and species was evaluated based on the amount of sequenced genomes, amount of near neighbor sequenced genomes, presence of identifying genes--metabolistic or antibiotic resistant genes--and the availability of research on the identification of the specific genera or species. Utilizing the bioinformatic team's software, I was able to develop and/or update several TaqMan probes for these and develop a plan of identification for the more difficult ones. One suggestion for a genus with low conservation was to separate species into several groups and look for probes within these and then use a combination of probes to identify a genus. This has the added benefit of also providing subgenus identification in larger genera. During both projects I had developed a set of computer programs to simplify or consolidate several processes. These programs were constructed with the intent of being reused to either repeat these results, further this research, or to start a similar project. A big problem in the bioinformatic/sequencing field is the variability of data storage formats which make using data from various sources extremely difficult. Excluding for the moment the many errors present in online database genome sequences, there are still many difficulties in converting one data type into another successfully every time. Dealing with hundreds of files, each hundreds of megabytes, requires automation which in turn requires good data mining software. The programs I developed will help ease this issue and make more genomic sources available for use. With these programs it is extremely easy to gather the data, cleanse it, convert it and run it through some analysis software and even analyze the output of this software. When dealing with vast amounts of data it is vital for the researcher to optimize the process--which became clear to me with only ten weeks to work with. Due to the time constraint of the internship, I was unable to finish my metagenomic project; I did finish with success, my second project, discovering TaqMan identification for genera and species. Although I did not complete my first project I made significant findings along the way that suggest the need for further research on the subject. I found several instances of false positives in the metagenomic data from our microarrays which indicates the need to sequence more metagenomic samples. My initial research shows the importance of expanding our known metagenomic world; at this point there is always the likelihood of developing probes with unknown interactions because there is not enough sequencing. On the other hand my research did point out the sensitivity and quality of LLNL's microarrays when it identified a parvoviridae infection in a mosquito metagenomic sample from southern California. It also uniquely identified the presence of several species of the adenovirus which could mean that there was some archaic strain of the adenovirus present in the metagenomic sample or there was a contamination in the sample, requiring a further investigation to clarify.« less
2013-01-01
Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in VNTR numbers that occurred over the course of one year. Conclusions The comparative genomic analysis of the SAG clarifies the phylogenetics of these bacteria and supports the distinct species classification. Numerous potential virulence determinants were identified and provide a foundation for further studies into SAG pathogenesis. Furthermore, the data may be used to enable the development of rapid diagnostic assays and therapeutics for these pathogens. PMID:24341328
Sarika; Arora, Vasu; Iquebal, Mir Asif; Rai, Anil; Kumar, Dinesh
2013-01-19
Though India has sequenced water buffalo genome but its draft assembly is based on cattle genome BTau 4.0, thus de novo chromosome wise assembly is a major pending issue for global community. The existing radiation hybrid of buffalo and these reported STR can be used further in final gap plugging and "finishing" expected in de novo genome assembly. QTL and gene mapping needs mining of putative STR from buffalo genome at equal interval on each and every chromosome. Such markers have potential role in improvement of desirable characteristics, such as high milk yields, resistance to diseases, high growth rate. The STR mining from whole genome and development of user friendly database is yet to be done to reap the benefit of whole genome sequence. By in silico microsatellite mining of whole genome, we have developed first STR database of water buffalo, BuffSatDb (Buffalo MicroSatellite Database (http://cabindb.iasri.res.in/buffsatdb/) which is a web based relational database of 910529 microsatellite markers, developed using PHP and MySQL database. Microsatellite markers have been generated using MIcroSAtellite tool. It is simple and systematic web based search for customised retrieval of chromosome wise and genome-wide microsatellites. Search has been enabled based on chromosomes, motif type (mono-hexa), repeat motif and repeat kind (simple and composite). The search may be customised by limiting location of STR on chromosome as well as number of markers in that range. This is a novel approach and not been implemented in any of the existing marker database. This database has been further appended with Primer3 for primer designing of the selected markers enabling researcher to select markers of choice at desired interval over the chromosome. The unique add-on of degenerate bases further helps in resolving presence of degenerate bases in current buffalo assembly. Being first buffalo STR database in the world , this would not only pave the way in resolving current assembly problem but shall be of immense use for global community in QTL/gene mapping critically required to increase knowledge in the endeavour to increase buffalo productivity, especially for third world country where rural economy is significantly dependent on buffalo productivity.
Toledo, Rodrigo A; Sekiya, Tomoko; Longuini, Viviane C; Coutinho, Flavia L; Lourenço, Delmar M; Toledo, Sergio P A
2012-01-01
The finished version of the human genome sequence was completed in 2003, and this event initiated a revolution in medical practice, which is usually referred to as the age of genomic or personalized medicine. Genomic medicine aims to be predictive, personalized, preventive, and also participative (4Ps). It offers a new approach to several pathological conditions, although its impact so far has been more evident in mendelian diseases. This article briefly reviews the potential advantages of this approach, and also some issues that may arise in the attempt to apply the accumulated knowledge from genomic medicine to clinical practice in emerging countries. The advantages of applying genomic medicine into clinical practice are obvious, enabling prediction, prevention, and early diagnosis and treatment of several genetic disorders. However, there are also some issues, such as those related to: (a) the need for approval of a law equivalent to the Genetic Information Nondiscrimination Act, which was approved in 2008 in the USA; (b) the need for private and public funding for genetics and genomics; (c) the need for development of innovative healthcare systems that may substantially cut costs (e.g. costs of periodic medical followup); (d) the need for new graduate and postgraduate curricula in which genomic medicine is emphasized; and (e) the need to adequately inform the population and possible consumers of genetic testing, with reference to the basic aspects of genomic medicine.
Toledo, Rodrigo A.; Sekiya, Tomoko; Longuini, Viviane C.; L. Coutinho, Flavia; Lourenço, Delmar M.; Toledo, Sergio P. A.
2012-01-01
The finished version of the human genome sequence was completed in 2003, and this event initiated a revolution in medical practice, which is usually referred to as the age of genomic or personalized medicine. Genomic medicine aims to be predictive, personalized, preventive, and also participative (4Ps). It offers a new approach to several pathological conditions, although its impact so far has been more evident in mendelian diseases. This article briefly reviews the potential advantages of this approach, and also some issues that may arise in the attempt to apply the accumulated knowledge from genomic medicine to clinical practice in emerging countries. The advantages of applying genomic medicine into clinical practice are obvious, enabling prediction, prevention, and early diagnosis and treatment of several genetic disorders. However, there are also some issues, such as those related to: (a) the need for approval of a law equivalent to the Genetic Information Nondiscrimination Act, which was approved in 2008 in the USA; (b) the need for private and public funding for genetics and genomics; (c) the need for development of innovative healthcare systems that may substantially cut costs (e.g. costs of periodic medical follow-up); (d) the need for new graduate and postgraduate curricula in which genomic medicine is emphasized; and (e) the need to adequately inform the population and possible consumers of genetic testing, with reference to the basic aspects of genomic medicine. PMID:22584698
Zheng, Yang; Cai, Jing; Li, JianWen; Li, Bo; Lin, Runmao; Tian, Feng; Wang, XiaoLing; Wang, Jun
2010-01-01
A 10-fold BAC library for giant panda was constructed and nine BACs were selected to generate finish sequences. These BACs could be used as a validation resource for the de novo assembly accuracy of the whole genome shotgun sequencing reads of giant panda newly generated by the Illumina GA sequencing technology. Complete sanger sequencing, assembly, annotation and comparative analysis were carried out on the selected BACs of a joint length 878 kb. Homologue search and de novo prediction methods were used to annotate genes and repeats. Twelve protein coding genes were predicted, seven of which could be functionally annotated. The seven genes have an average gene size of about 41 kb, an average coding size of about 1.2 kb and an average exon number of 6 per gene. Besides, seven tRNA genes were found. About 27 percent of the BAC sequence is composed of repeats. A phylogenetic tree was constructed using neighbor-join algorithm across five species, including giant panda, human, dog, cat and mouse, which reconfirms dog as the most related species to giant panda. Our results provide detailed sequence and structure information for new genes and repeats of giant panda, which will be helpful for further studies on the giant panda.
Tremblay, Julien
2018-01-22
Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tremblay, Julien
2012-06-01
Julien Tremblay from DOE JGI presents "Evaluation of Multiplexed 16S rRNA Microbial Population Surveys Using Illumina MiSeq Platorm" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Xu, Yi-Hua; Manoharan, Herbert T; Pitot, Henry C
2007-09-01
The bisulfite genomic sequencing technique is one of the most widely used techniques to study sequence-specific DNA methylation because of its unambiguous ability to reveal DNA methylation status to the order of a single nucleotide. One characteristic feature of the bisulfite genomic sequencing technique is that a number of sample sequence files will be produced from a single DNA sample. The PCR products of bisulfite-treated DNA samples cannot be sequenced directly because they are heterogeneous in nature; therefore they should be cloned into suitable plasmids and then sequenced. This procedure generates an enormous number of sample DNA sequence files as well as adding extra bases belonging to the plasmids to the sequence, which will cause problems in the final sequence comparison. Finding the methylation status for each CpG in each sample sequence is not an easy job. As a result CpG PatternFinder was developed for this purpose. The main functions of the CpG PatternFinder are: (i) to analyze the reference sequence to obtain CpG and non-CpG-C residue position information. (ii) To tailor sample sequence files (delete insertions and mark deletions from the sample sequence files) based on a configuration of ClustalW multiple alignment. (iii) To align sample sequence files with a reference file to obtain bisulfite conversion efficiency and CpG methylation status. And, (iv) to produce graphics, highlighted aligned sequence text and a summary report which can be easily exported to Microsoft Office suite. CpG PatternFinder is designed to operate cooperatively with BioEdit, a freeware on the internet. It can handle up to 100 files of sample DNA sequences simultaneously, and the total CpG pattern analysis process can be finished in minutes. CpG PatternFinder is an ideal software tool for DNA methylation studies to determine the differential methylation pattern in a large number of individuals in a population. Previously we developed the CpG Analyzer program; CpG PatternFinder is our further effort to create software tools for DNA methylation studies.
2013-01-01
Background Rice blast caused by the fungus Magnaporthe oryzae is an important disease in virtually every rice growing region of the world, which leads to significant annual decreases of grain quality and yield. To prevent disease, resistance genes in rice have been cloned and introduced into susceptible cultivars. However, introduced resistance can often be broken within few years of release, often due to mutation of cognate avirulence genes in fungal field populations. Results To better understand the pattern of mutation of M. oryzae field isolates under natural selection forces, we used a next generation sequencing approach to analyze the genomes of two field isolates FJ81278 and HN19311, as well as the transcriptome of FJ81278. By comparing the de novo genome assemblies of the two isolates against the finished reference strain 70–15, we identified extensive polymorphisms including unique genes, SNPs (single nucleotide polymorphism) and indels, structural variations, copy number variations, and loci under strong positive selection. The 1.75 MB of isolate-specific genome content carrying 118 novel genes from FJ81278, and 0.83 MB from HN19311 were also identified. By analyzing secreted proteins carrying polymorphisms, in total 256 candidate virulence effectors were found and 6 were chosen for functional characterization. Conclusions We provide results from genome comparison analysis showing extensive genome variation, and generated a list of M. oryzae candidate virulence effectors for functional characterization. PMID:24341723
Formin homology 2 domains occur in multiple contexts in angiosperms
Cvrčková, Fatima; Novotný, Marian; Pícková, Denisa; Žárský, Viktor
2004-01-01
Background Involvement of conservative molecular modules and cellular mechanisms in the widely diversified processes of eukaryotic cell morphogenesis leads to the intriguing question: how do similar proteins contribute to dissimilar morphogenetic outputs. Formins (FH2 proteins) play a central part in the control of actin organization and dynamics, providing a good example of evolutionarily versatile use of a conserved protein domain in the context of a variety of lineage-specific structural and signalling interactions. Results In order to identify possible plant-specific sequence features within the FH2 protein family, we performed a detailed analysis of angiosperm formin-related sequences available in public databases, with particular focus on the complete Arabidopsis genome and the nearly finished rice genome sequence. This has led to revision of the current annotation of half of the 22 Arabidopsis formin-related genes. Comparative analysis of the two plant genomes revealed a good conservation of the previously described two subfamilies of plant formins (Class I and Class II), as well as several subfamilies within them that appear to predate the separation of monocot and dicot plants. Moreover, a number of plant Class II formins share an additional conserved domain, related to the protein phosphatase/tensin/auxilin fold. However, considerable inter-species variability sets limits to generalization of any functional conclusions reached on a single species such as Arabidopsis. Conclusions The plant-specific domain context of the conserved FH2 domain, as well as plant-specific features of the domain itself, may reflect distinct functional requirements in plant cells. The variability of formin structures found in plants far exceeds that known from both fungi and metazoans, suggesting a possible contribution of FH2 proteins in the evolution of the plant type of multicellularity. PMID:15256004
Gao, Shen; Yao, Bei; Lu, Zuhong
2015-01-01
Background The chimeric sequences produced by phi29 DNA polymerase, which are named as chimeras, influence the performance of the multiple displacement amplification (MDA) and also increase the difficulty of sequence data process. Despite several articles have reported the existence of chimeric sequence, there was only one research focusing on the structure and generation mechanism of chimeras, and it was merely based on hundreds of chimeras found in the sequence data of E. coli genome. Method We finished data mining towards a series of Next Generation Sequencing (NGS) reads which were used for whole genome haplotype assembling in a primary study. We established a bioinformatics pipeline based on subsection alignment strategy to discover all the chimeras inside and achieve their structural visualization. Then, we artificially defined two statistical indexes (the chimeric distance and the overlap length), and their regular abundance distribution helped illustrate of the structural characteristics of the chimeras. Finally we analyzed the relationship between the chimera type and the average insertion size, so that illustrate a method to decrease the proportion of wasted data in the procedure of DNA library construction. Results/Conclusion 131.4 Gb pair-end (PE) sequence data was reanalyzed for the chimeras. Totally, 40,259,438 read pairs (6.19%) with chimerism were discovered among 650,430,811 read pairs. The chimeric sequences are consisted of two or more parts which locate inconsecutively but adjacently on the chromosome. The chimeric distance between the locations of adjacent parts on the chromosome followed an approximate bimodal distribution ranging from 0 to over 5,000 nt, whose peak was at about 250 to 300 nt. The overlap length of adjacent parts followed an approximate Poisson distribution and revealed a peak at 6 nt. Moreover, unmapped chimeras, which were classified as the wasted data, could be reduced by properly increasing the length of the insertion segment size through a linear correlation analysis. Significance This study exhibited the profile of the phi29MDA chimeras by tens of millions of chimeric sequences, and helped understand the amplification mechanism of the phi29 DNA polymerase. Our work also illustrated the importance of NGS data reanalysis, not only for the improvement of data utilization efficiency, but also for more potential genomic information. PMID:26440104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peng, Ze
2012-06-01
Ze Peng from DOE JGI presents "Fosmid Cre-LoxP Inverse PCR Paired-End (Fosmid CLIP-PE), a Novel Method for Constructing Fosmid Pair-End Library" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Peng, Ze
2018-01-24
Ze Peng from DOE JGI presents "Fosmid Cre-LoxP Inverse PCR Paired-End (Fosmid CLIP-PE), a Novel Method for Constructing Fosmid Pair-End Library" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Wei, Li; Xin, Yi; Wang, Dongmei; Jing, Xiaoyan; Zhou, Qian; Su, Xiaoquan; Jia, Jing; Ning, Kang; Chen, Feng; Hu, Qiang; Xu, Jian
2013-08-05
Microalgae are promising feedstock for production of lipids, sugars, bioactive compounds and in particular biofuels, yet development of sensitive and reliable phylotyping strategies for microalgae has been hindered by the paucity of phylogenetically closely-related finished genomes. Using the oleaginous eustigmatophyte Nannochloropsis as a model, we assessed current intragenus phylotyping strategies by producing the complete plastid (pt) and mitochondrial (mt) genomes of seven strains from six Nannochloropsis species. Genes on the pt and mt genomes have been highly conserved in content, size and order, strongly negatively selected and evolving at a rate 33% and 66% of nuclear genomes respectively. Pt genome diversification was driven by asymmetric evolution of two inverted repeats (IRa and IRb): psbV and clpC in IRb are highly conserved whereas their counterparts in IRa exhibit three lineage-associated types of structural polymorphism via duplication or disruption of whole or partial genes. In the mt genomes, however, a single evolution hotspot varies in copy-number of a 3.5 Kb-long, cox1-harboring repeat. The organelle markers (e.g., cox1, cox2, psbA, rbcL and rrn16_mt) and nuclear markers (e.g., ITS2 and 18S) that are widely used for phylogenetic analysis obtained a divergent phylogeny for the seven strains, largely due to low SNP density. A new strategy for intragenus phylotyping of microalgae was thus proposed that includes (i) twelve sequence markers that are of higher sensitivity than ITS2 for interspecies phylogenetic analysis, (ii) multi-locus sequence typing based on rps11_mt-nad4, rps3_mt and cox2-rrn16_mt for intraspecies phylogenetic reconstruction and (iii) several SSR loci for identification of strains within a given species. This first comprehensive dataset of organelle genomes for a microalgal genus enabled exhaustive assessment and searches of all candidate phylogenetic markers on the organelle genomes. A new strategy for intragenus phylotyping of microalgae was proposed which might be generally applicable to other microalgal genera and should serve as a valuable tool in the expanding algal biotechnology industry.
Ferraris, Federico; Conti, Alessandro
2014-01-01
The following study asks three principle questions relative to composite finishing and composite polishing: 1) Will the superficial roughness of different restoration surfaces have different values, utilizing the same polishing system (multistep), after finishing with the tungsten carbide or diamond bur? 2) Under the same conditions of finishing and polishing sequences, will the composite surfaces (C), the composite-enamel (CE) and composite-dentin (CD) interfaces show different roughness values? 3) Will the surface roughness of composites of different translucency in the various phases of finishing and polishing, and on different interfaces, have different results? The null hypothesis is represented by the fact that there are no significant differences on roughness of composite restorations when polishing, after finishing with tungsten carbide or diamond burs. Furthermore, the null hypothesis is that there are no significant differences on roughness between polishing on composite surface, composite-enamel and composite-dentin interfaces, and finally there are no differences on roughness after finishing and polishing of two composite with different translucency. For the study, 56 class V cavities were prepared on extracted teeth. Restorations were done in nanofilled composite Filtek XTE (3M Espe) in a standard fashion, and then finished and polished. The 28 buccal cavities were restored on the surface with composite enamel and the 28 palatals with composite body. Finishing was done with fine toothing burs in tungsten carbide (16 blades) or fine grit diamond burs (46 μm), and made by the same manufacturer (Komet). The second phase of finishing was done with burs (with the same form as already mentioned) ultrafine toothing tungsten carbide (30 blades) or with extra and ultrafine grit diamond (25 and 8 μm). The polishing phase for both of the earlier sequences was done with the application of three rubber tips with decreasing abrasiveness and an application with a self-polishing brush. All measurements were taken from surfaces C, and interfaces CE and CD. Statistical analyses were carried out with c2 test (a = 0.05). 1) There were no relevant differences of surface roughness on the different surfaces if the polishing was done after finishing with tungsten carbide or diamond burs. 2) Keeping the same sequence of finishing and polishing, a difference was noticed between C, CE and CD, where the latter showed greater roughness. 3) Analyzing the data in all the phases of finishing and polishing on every interface, it can be concluded that the composite enamel and the composite body did not show different levels of superficial roughness. The clinical relevance could be resumed as follows: no difference after polishing, which is preceded by tungsten carbide or diamond finishing burs. The less favorable interface to be polished is CD, compared to CE and C. Considering two composites with different translucency, no difference on roughness after finishing and polishing were detected.
Meyer, K; Rosa, C; Hischenhuber, C; Meyer, R
2001-01-01
A polymerase chain reaction (PCR) was developed to differentiate the thickening agents locust bean gum (LBG) and the cheaper guar gum in finished food products. Universal primers for amplification of the intergenic spacer region between trnL 3' (UAA) exon and trnF (GAA) gene in the chloroplast (cp) genome and subsequent restriction analysis were applied to differentiate guar gum and LBG. The presence of <5% (w/w) guar gum powder added to LBG powder was detectable. Based on data obtained from sequencing this intergenic spacer region, a second PCR method for the specific detection of guar gum DNA was also developed. This assay detected guar gum powder in LBG in amounts as low as 1% (w/w). Both methods successfully detected guar gum and/or LBG in ice cream stabilizers and in foodstuffs, such as dairy products, ice cream, dry seasoning mixes, a finished roasting sauce, and a fruit jelly product, but not in products with highly degraded DNA, such as tomato ketchup and sterilized chocolate cream. Both methods detected guar gum and LBG in ice cream and fresh cheese at levels <0.1%.
Seal Technology in Gas Turbine Engines
1978-08-01
ambient temperatures and 427*C (800*F). 3. Application as a part of the normal manufacturing sequence without subsequent finishing operations...of demonstrable hardnless with sharp, cutting edges. 4. The coating must be applied to a finish dimmsion without subsequent processing. 5. Application...The JC1-Iii 3.4 coating had a surface finish of 11 V metre (425 mioroinches). Both materials appeared to be adequately rough for the proposed
Ludwig, A; Belfiore, N M; Pitra, C; Svirsky, V; Jenneckens, I
2001-07-01
Sturgeon (order Acipenserformes) provide an ideal taxonomic context for examination of genome duplication events. Multiple levels of ploidy exist among these fish. In a novel microsatellite approach, data from 962 fish from 20 sturgeon species were used for analysis of ploidy in sturgeon. Allele numbers in a sample of individuals were assessed at six microsatellite loci. Species with approximately 120 chromosomes are classified as functional diploid species, species with approximately 250 chromosomes as functional tetraploid species, and with approximately 500 chromosomes as functional octaploids. A molecular phylogeny of the sturgeon was determined on the basis of sequences of the entire mitochondrial cytochrome b gene. By mapping the estimated levels of ploidy on this proposed phylogeny we demonstrate that (I) polyploidization events independently occurred in the acipenseriform radiation; (II) the process of functional genome reduction is nearly finished in species with approximately 120 chromosomes and more active in species with approximately 250 chromosomes and approximately 500 chromosomes; and (III) species with approximately 250 and approximately 500 chromosomes arose more recently than those with approximately 120 chromosomes. These results suggest that gene silencing, chromosomal rearrangements, and transposition events played an important role in the acipenseriform genome formation. Furthermore, this phylogeny is broadly consistent with previous hypotheses but reveals a highly supported oceanic (Atlantic-Pacific) subdivision within the Acipenser/Huso complex.
Ludwig, A; Belfiore, N M; Pitra, C; Svirsky, V; Jenneckens, I
2001-01-01
Sturgeon (order Acipenserformes) provide an ideal taxonomic context for examination of genome duplication events. Multiple levels of ploidy exist among these fish. In a novel microsatellite approach, data from 962 fish from 20 sturgeon species were used for analysis of ploidy in sturgeon. Allele numbers in a sample of individuals were assessed at six microsatellite loci. Species with approximately 120 chromosomes are classified as functional diploid species, species with approximately 250 chromosomes as functional tetraploid species, and with approximately 500 chromosomes as functional octaploids. A molecular phylogeny of the sturgeon was determined on the basis of sequences of the entire mitochondrial cytochrome b gene. By mapping the estimated levels of ploidy on this proposed phylogeny we demonstrate that (I) polyploidization events independently occurred in the acipenseriform radiation; (II) the process of functional genome reduction is nearly finished in species with approximately 120 chromosomes and more active in species with approximately 250 chromosomes and approximately 500 chromosomes; and (III) species with approximately 250 and approximately 500 chromosomes arose more recently than those with approximately 120 chromosomes. These results suggest that gene silencing, chromosomal rearrangements, and transposition events played an important role in the acipenseriform genome formation. Furthermore, this phylogeny is broadly consistent with previous hypotheses but reveals a highly supported oceanic (Atlantic-Pacific) subdivision within the Acipenser/Huso complex. PMID:11454768
Jenkins, David
2018-01-10
David Jenkins on "Ion Torrent semiconductor sequencing allows rapid, low-cost sequencing of the human exome" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, David
David Jenkins on "Ion Torrent semiconductor sequencing allows rapid, low-cost sequencing of the human exome" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Cost-effective sequencing of full-length cDNA clones powered by a de novo-reference hybrid assembly.
Kuroshu, Reginaldo M; Watanabe, Junichi; Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka; Kasahara, Masahiro
2010-05-07
Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence approximately 800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only approximately US$3 per clone, demonstrating a significant advantage over previous approaches.
Unusual Genomic Traits Suggest Methylocystis bryophila S285 to Be Well Adapted for Life in Peatlands
Han, Dongfei; Dedysh, Svetlana N
2018-01-01
Abstract The genus Methylocystis belongs to the class Alphaproteobacteria, the family Methylocystaceae, and encompasses aerobic methanotrophic bacteria with the serine pathway of carbon assimilation. All Methylocystis species are able to fix dinitrogen and several members of this genus are also capable of using acetate or ethanol in the absence of methane, which explains their wide distribution in various habitats. One additional trait that enables their survival in the environment is possession of two methane-oxidizing isozymes, the conventional particulate methane monooxygenase (pMMO) with low-affinity to substrate (pMMO1) and the high-affinity enzyme (pMMO2). Here, we report the finished genome sequence of Methylocystis bryophila S285, a pMMO2-possessing methanotroph from a Sphagnum-dominated wetland, and compare it to the genome of Methylocystis sp. strain SC2, which is the first methanotroph with confirmed high-affinity methane oxidation potential. The complete genome of Methylocystis bryophila S285 consists of a 4.53 Mb chromosome and one plasmid, 175 kb in size. The genome encodes two types of particulate MMO (pMMO1 and pMMO2), soluble MMO and, in addition, contains a pxmABC-like gene cluster similar to that present in some gammaproteobacterial methanotrophs. The full set of genes related to the serine pathway, the tricarboxylic acid cycle as well as the ethylmalonyl-CoA pathway is present. In contrast to most described methanotrophs including Methylocystis sp. strain SC2, two different types of nitrogenases, that is, molybdenum–iron and vanadium–iron types, are encoded in the genome of strain S285. This unique combination of genome-based traits makes Methylocystis bryophila well adapted to the fluctuation of carbon and nitrogen sources in wetlands. PMID:29390143
DOE Office of Scientific and Technical Information (OSTI.GOV)
Athavale, Ajay
Ajay Athavale (Monsanto) presents "High Throughput Plasmid Sequencing with Illumina and CLC Bio" at the 7th Annual Sequencing, Finishing, Analysis in the Future (SFAF) Meeting held in June, 2012 in Santa Fe, NM.
Engineered Polymerases Enable Novel Sequencing Applications (7th Annual SFAF Meeting, 2012)
Appel, Maryke
2018-01-15
Maryke Appel on "Engineered polymerases provide improved NGS library amplification and enable novel sequencing applications" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
BAC sequencing using pooled methods.
Saski, Christopher A; Feltus, F Alex; Parida, Laxmi; Haiminen, Niina
2015-01-01
Shotgun sequencing and assembly of a large, complex genome can be both expensive and challenging to accurately reconstruct the true genome sequence. Repetitive DNA arrays, paralogous sequences, polyploidy, and heterozygosity are main factors that plague de novo genome sequencing projects that typically result in highly fragmented assemblies and are difficult to extract biological meaning. Targeted, sub-genomic sequencing offers complexity reduction by removing distal segments of the genome and a systematic mechanism for exploring prioritized genomic content through BAC sequencing. If one isolates and sequences the genome fraction that encodes the relevant biological information, then it is possible to reduce overall sequencing costs and efforts that target a genomic segment. This chapter describes the sub-genome assembly protocol for an organism based upon a BAC tiling path derived from a genome-scale physical map or from fine mapping using BACs to target sub-genomic regions. Methods that are described include BAC isolation and mapping, DNA sequencing, and sequence assembly.
Sequencing, Assembly and Analysis of Human Microbial Communities
Petrosino, Joe
2018-02-02
Joe Petrosino of Baylor College of Medicine discusses using next generation sequencing technologies to study human microbial communities associated with health and disease on June 4, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Zhang, Quan; Liu, Long; Zhu, Feng; Ning, ZhongHua; Hincke, Maxwell T; Yang, Ning; Hou, ZhuoCheng
2014-01-01
Efficiently obtaining full-length cDNA for a target gene is the key step for functional studies and probing genetic variations. However, almost all sequenced domestic animal genomes are not 'finished'. Many functionally important genes are located in these gapped regions. It can be difficult to obtain full-length cDNA for which only partial amino acid/EST sequences exist. In this study we report a general pipeline to obtain full-length cDNA, and illustrate this approach for one important gene (Ovocleidin-17, OC-17) that is associated with chicken eggshell biomineralization. Chicken OC-17 is one of the best candidates to control and regulate the deposition of calcium carbonate in the calcified eggshell layer. OC-17 protein has been purified, sequenced, and has had its three-dimensional structure solved. However, researchers still cannot conduct OC-17 mRNA related studies because the mRNA sequence is unknown and the gene is absent from the current chicken genome. We used RNA-Seq to obtain the entire transcriptome of the adult hen uterus, and then conducted de novo transcriptome assembling with bioinformatics analysis to obtain candidate OC-17 transcripts. Based on this sequence, we used RACE and PCR cloning methods to successfully obtain the full-length OC-17 cDNA. Temporal and spatial OC-17 mRNA expression analyses were also performed to demonstrate that OC-17 is predominantly expressed in the adult hen uterus during the laying cycle and barely at immature developmental stages. Differential uterine expression of OC-17 was observed in hens laying eggs with weak versus strong eggshell, confirming its important role in the regulation of eggshell mineralization and providing a new tool for genetic selection for eggshell quality parameters. This study is the first one to report the full-length OC-17 cDNA sequence, and builds a foundation for OC-17 mRNA related studies. We provide a general method for biologists experiencing difficulty in obtaining candidate gene full-length cDNA sequences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Dibyendu; Buhay, Christian; Van Tonder, Andries
From left to right: Dibyendu Kumar of the University of Florida, Christian Buhay of Baylor College of Medicine, Andries van Tonder of Wellcome Sanger Trust Institute, Anna Montmayeur of the Broad Institute and Karen Davenport of Los Alamos National Laboratory at the Finishing forum on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Whole-genome sequencing for comparative genomics and de novo genome assembly.
Benjak, Andrej; Sala, Claudia; Hartkoorn, Ruben C
2015-01-01
Next-generation sequencing technologies for whole-genome sequencing of mycobacteria are rapidly becoming an attractive alternative to more traditional sequencing methods. In particular this technology is proving useful for genome-wide identification of mutations in mycobacteria (comparative genomics) as well as for de novo assembly of whole genomes. Next-generation sequencing however generates a vast quantity of data that can only be transformed into a usable and comprehensible form using bioinformatics. Here we describe the methodology one would use to prepare libraries for whole-genome sequencing, and the basic bioinformatics to identify mutations in a genome following Illumina HiSeq or MiSeq sequencing, as well as de novo genome assembly following sequencing using Pacific Biosciences (PacBio).
LLNL Genomic Assessment: Viral and Bacterial Sequencing Needs for TMTI, Tier 1 Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slezak, T; Borucki, M; Lenhoff, R
2009-09-29
The Lawrence Livermore National Lab Bioinformatics group has recently taken on a role in DTRA's Transformation Medical Technologies Initiative (TMTI). The high-level goal of TMTI is to accelerate the development of broad-spectrum countermeasures. To achieve those goals, TMTI has a near term need to obtain more sequence information across a large range of pathogens, near neighbors, and across a broad geographical and host range. Our role in this project is to research available sequence data for the organisms of interest and identify critical microbial sequence and knowledge gaps that need to be filled to meet TMTI objectives. This effort includes:more » (1) assessing current genomic sequence for each agent including phylogenetic and geographical diversity, host range, date of isolation range, virulence, sequence availability of key near neighbors, and other characteristics; (2) identifying Subject Matter Experts (SME's) and potential holders of isolate collections, contacting appropriate SME's with known expertise and isolate collections to obtain information on isolate availability and specific recommendations; (3) identifying sequence as well as knowledge gaps (eg virulence, host range, and antibiotic resistance determinants); (4) providing specific recommendations as to the most valuable strains to be placed on the DTRA sequencing queue. We acknowledge that criteria for prioritization of isolates for sequencing falls into two categories aligning with priority queues 1 and 2 as described in the summary. (Priority queue 0 relates to DTRA operational isolates whose availability is not predictable in advance.) 1. Selection of isolates that appear to have likelihood to provide information on virulence and antibiotic resistance. This will include sequence of known virulent strains. Particularly valuable would be virulent strains that have genetically similar yet avirulent, or non human transmissible, counterparts that can be used for comparison to help identify key virulence or host range genes. This approach will provide information that can be used by structural biologists to help develop therapeutics and vaccines. We have pointed out such high priority strains of which we are aware, and note that if any such isolates should be discovered, they will rise to the top priority. We anticipate difficulty locating samples with unusual resistance phenotypes, in particular. Sequencing strategies for isolates in queue 1 should aim for as complete finishing status as possible, since high-quality initial annotation (gene-calling) will be necessary for the follow-on protein structure analyses contributing to countermeasure development. Queue 2 for sequencing determination will be more dynamic than queue 1, and samples will be added to it as they become available to the TMTI program. 2. Selection of isolates that will provide broader information about diversity and phylogenetics and aid in specific detection as well as forensics. This approach focuses on sequencing of isolates that will provide better resolution of variants that are (or were) circulating in nature. The finishing strategy for queue 2 does not require complete closing with annotation. This queue is more static, as there is considerable phylogenetic data, and in this report we have sought to reveal gaps and make suggestions to fill them given existing sequence data and strain information. In this report we identify current sequencing gaps in both priority queue categories. Note that this is most applicable to the bacterial pathogens, as most viruses are by default in queue 1. The Phase I focus of this project is on viral hemorrhagic fever viruses and Category A bacterial agents as defined to us by TMTI. We have carried out individual analyses on each species of interest, and these are included as chapters in this report. Viruses and bacteria are biologically very distinct from each other and require different methods of analysis and criteria for sequencing prioritization. Therefore, we will describe our methods, analyses and conclusions separately for each category.« less
Cost-Effective Sequencing of Full-Length cDNA Clones Powered by a De Novo-Reference Hybrid Assembly
Sugano, Sumio; Morishita, Shinichi; Suzuki, Yutaka
2010-01-01
Background Sequencing full-length cDNA clones is important to determine gene structures including alternative splice forms, and provides valuable resources for experimental analyses to reveal the biological functions of coded proteins. However, previous approaches for sequencing cDNA clones were expensive or time-consuming, and therefore, a fast and efficient sequencing approach was demanded. Methodology We developed a program, MuSICA 2, that assembles millions of short (36-nucleotide) reads collected from a single flow cell lane of Illumina Genome Analyzer to shotgun-sequence ∼800 human full-length cDNA clones. MuSICA 2 performs a hybrid assembly in which an external de novo assembler is run first and the result is then improved by reference alignment of shotgun reads. We compared the MuSICA 2 assembly with 200 pooled full-length cDNA clones finished independently by the conventional primer-walking using Sanger sequencers. The exon-intron structure of the coding sequence was correct for more than 95% of the clones with coding sequence annotation when we excluded cDNA clones insufficiently represented in the shotgun library due to PCR failure (42 out of 200 clones excluded), and the nucleotide-level accuracy of coding sequences of those correct clones was over 99.99%. We also applied MuSICA 2 to full-length cDNA clones from Toxoplasma gondii, to confirm that its ability was competent even for non-human species. Conclusions The entire sequencing and shotgun assembly takes less than 1 week and the consumables cost only ∼US$3 per clone, demonstrating a significant advantage over previous approaches. PMID:20479877
DOE Joint Genome Institute 2008 Progress Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilbert, David
2009-03-12
While initially a virtual institute, the driving force behind the creation of the DOE Joint Genome Institute in Walnut Creek, California in the Fall of 1999 was the Department of Energy's commitment to sequencing the human genome. With the publication in 2004 of a trio of manuscripts describing the finished 'DOE Human Chromosomes', the Institute successfully completed its human genome mission. In the time between the creation of the Department of Energy Joint Genome Institute (DOE JGI) and completion of the Human Genome Project, sequencing and its role in biology spread to fields extending far beyond what could be imaginedmore » when the Human Genome Project first began. Accordingly, the targets of the DOE JGI's sequencing activities changed, moving from a single human genome to the genomes of large numbers of microbes, plants, and other organisms, and the community of users of DOE JGI data similarly expanded and diversified. Transitioning into operating as a user facility, the DOE JGI modeled itself after other DOE user facilities, such as synchrotron light sources and supercomputer facilities, empowering the science of large numbers of investigators working in areas of relevance to energy and the environment. The JGI's approach to being a user facility is based on the concept that by focusing state-of-the-art sequencing and analysis capabilities on the best peer-reviewed ideas drawn from a broad community of scientists, the DOE JGI will effectively encourage creative approaches to DOE mission areas and produce important science. This clearly has occurred, only partially reflected in the fact that the DOE JGI has played a major role in more than 45 papers published in just the past three years alone in Nature and Science. The involvement of a large and engaged community of users working on important problems has helped maximize the impact of JGI science. A seismic technological change is presently underway at the JGI. The Sanger capillary-based sequencing process that dominated how sequencing was done in the last decade is being replaced by a variety of new processes and sequencing instruments. The JGI, with an increasing number of next-generation sequencers, whose throughput is 100- to 1,000-fold greater than the Sanger capillary-based sequencers, is increasingly focused in new directions on projects of scale and complexity not previously attempted. These new directions for the JGI come, in part, from the 2008 National Research Council report on the goals of the National Plant Genome Initiative as well as the 2007 National Research Council report on the New Science of Metagenomics. Both reports outline a crucial need for systematic large-scale surveys of the plant and microbial components of the biosphere as well as an increasing need for large-scale analysis capabilities to meet the challenge of converting sequence data into knowledge. The JGI is extensively discussed in both reports as vital to progress in these fields of major national interest. JGI's future plan for plants and microbes includes a systematic approach for investigation of these organisms at a scale requiring the special capabilities of the JGI to generate, manage, and analyze the datasets. JGI will generate and provide not only community access to these plant and microbial datasets, but also the tools for analyzing them. These activities will produce essential knowledge that will be needed if we are to be able to respond to the world's energy and environmental challenges. As the JGI Plant and Microbial programs advance, the JGI as a user facility is also evolving. The Institute has been highly successful in bending its technical and analytical skills to help users solve large complex problems of major importance, and that effort will continue unabated. The JGI will increasingly move from a central focus on 'one-off' user projects coming from small user communities to much larger scale projects driven by systematic and problem-focused approaches to selection of sequencing targets. Entire communities of scientists working in a particular field, such as feedstock improvement or biomass degradation, will be users of this information. Despite this new emphasis, an investigator-initiated user program will remain. This program in the future will replace small projects that increasingly can be accomplished without the involvement of JGI, with imaginative large-scale 'Grand Challenge' projects of foundational relevance to energy and the environment that require a new scale of sequencing and analysis capabilities. Close interactions with the DOE Bioenergy Research Centers, and with other DOE institutions that may follow, will also play a major role in shaping aspects of how the JGI operates as a user facility. Based on increased availability of high-throughput sequencing, the JGI will increasingly provide to users, in addition to DNA sequencing, an array of both pre- and post-sequencing value-added capabilities to accelerate their science.« less
Lane, Todd
2018-05-18
Todd Lane on "RapTOR: Automated sequencing library preparation and suppression for rapid pathogen characterization" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Muzny, Donna
2018-01-15
Donna Muzny on "En route to the clinic: Diagnostic sequencing applications using the Ion Torrent" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lane, Todd
2012-06-01
Todd Lane on "RapTOR: Automated sequencing library preparation and suppression for rapid pathogen characterization" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Sequencing Technologies Panel at SFAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turner, Steve; Fiske, Haley; Knight, Jim
2010-06-02
From left to right: Steve Turner of Pacific Biosciences, Haley Fiske of Illumina, Jim Knight of Roche, Michael Rhodes of Life Technologies and Peter Vander Horn of Life Technologies' Single Molecule Sequencing group discuss new sequencing technologies and applications on June 2, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM
An efficient approach to BAC based assembly of complex genomes.
Visendi, Paul; Berkman, Paul J; Hayashi, Satomi; Golicz, Agnieszka A; Bayer, Philipp E; Ruperao, Pradeep; Hurgobin, Bhavna; Montenegro, Juan; Chan, Chon-Kit Kenneth; Staňková, Helena; Batley, Jacqueline; Šimková, Hana; Doležel, Jaroslav; Edwards, David
2016-01-01
There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.
Contributions to Cancer Research: Finding a Niche in Communication | Office of Cancer Genomics
This past July, I started a journey into the fields of communications and cancer research when I joined the Office of Cancer Genomics (OCG) as a fellow in the National Cancer Institute (NCI) Health Communications Internship Program (HCIP). Cancer genomics and working in an office were new and uncharted territory for me: before I came to OCG, I was finishing a Ph.D. in cell biology at Vanderbilt University in Dr. Matthew Tyska’s laboratory.
Abrasive wear of resin composites as related to finishing and polishing procedures.
Turssi, Cecilia P; Ferracane, Jack L; Serra, Mônica C
2005-07-01
Finishing and polishing procedures may cause topographical changes and introduce subsurface microcracks in dental composite restoratives. Since both of these effects may contribute toward the kinetics of wear, the purpose of this study was to assess and correlate the wear and surface roughness of minifilled and nanofilled composites finished and polished by different methods. Specimens (n=10) made of a minifilled and a nanofilled composite were finished and polished with one of the four sequences: (1) tungsten carbide burs plus Al(2)O(3)-impregnated brush (CbBr) or (2) tungsten carbide burs plus diamond-impregnated cup (CbCp), (3) diamond burs plus brush (DmBr) or (4) diamond burs plus cup (DmCp). As a control, abrasive papers were used. After surface roughness had been quantified, three-body abrasion was simulated using the OHSU wear machine. The wear facets were then scanned to measure wear depth and post-testing roughness. All sets of data were subjected to ANOVA and Tukey's tests (alpha=0.05). Pearson's correlation test was applied to check for the existence of a relationship between pre-testing roughness and wear. Significantly smoother surfaces were attained with the sequences CbBr and CbCp, whereas DmCp yielded the roughest surface. Regardless of the finishing/polishing technique, the nanofilled composite exhibited the lowest pre-testing roughness and wear. There was no correlation between the surface roughness achieved after finishing/polishing procedures and wear (p=0.3899). Nano-sized materials may have improved abrasive wear resistance over minifilled composites. The absence of correlation between wear and surface roughness produced by different finishing/polishing methods suggests that the latter negligibly influences material loss due to three-body abrasion.
Marquez-Ortiz, Ricaurte Alejandro; Haggerty, Leanne; Olarte, Narda; Duarte, Carolina; Garza-Ramos, Ulises; Silva-Sanchez, Jesus; Castro, Betsy E.; Sim, Eby M.; Beltran, Mauricio; Moncada, María V.; Valderrama, Alberto; Castellanos, Jaime E.; Charles, Ian G.; Vanegas, Natasha
2017-01-01
Abstract Bacteria that produce the broad-spectrum Carbapenem antibiotic New Delhi Metallo-β-lactamase (NDM) place a burden on health care systems worldwide, due to the limited treatment options for infections caused by them and the rapid global spread of this antibiotic resistance mechanism. Although it is believed that the associated resistance gene blaNDM-1 originated in Acinetobacter spp., the role of Enterobacteriaceae in its dissemination remains unclear. In this study, we used whole genome sequencing to investigate the dissemination dynamics of blaNDM-1-positive plasmids in a set of 21 clinical NDM-1-positive isolates from Colombia and Mexico (Providencia rettgeri, Klebsiella pneumoniae, and Acinetobacter baumannii) as well as six representative NDM-1-positive Escherichia coli transconjugants. Additionally, the plasmids from three representative P. rettgeri isolates were sequenced by PacBio sequencing and finished. Our results demonstrate the presence of previously reported plasmids from K. pneumoniae and A. baumannii in different genetic backgrounds and geographically distant locations in Colombia. Three new previously unclassified plasmids were also identified in P. rettgeri from Colombia and Mexico, plus an interesting genetic link between NDM-1-positive P. rettgeri from distant geographic locations (Canada, Mexico, Colombia, and Israel) without any reported epidemiological links was discovered. Finally, we detected a relationship between plasmids present in P. rettgeri and plasmids from A. baumannii and K. pneumoniae. Overall, our findings suggest a Russian doll model for the dissemination of blaNDM-1 in Latin America, with P. rettgeri playing a central role in this process, and reveal new insights into the evolution and dissemination of plasmids carrying such antibiotic resistance genes. PMID:28854628
Kfir, Anda; Moza-Levi, Rotem; Herteanu, Moran; Weissman, Amir; Wigler, Ronald
2018-03-01
The purpose of this study was to assess the amount of apically extruded debris during the preparation of oval canals with either a rotary file system supplemented by the XP-endo Finisher file or a full-sequence self-adjusting file (SAF) system. Sixty mandibular incisors were randomly assigned to two groups: group A: stage 1-glide path preparation with Pre-SAF instruments. Stage 2-cleaning and shaping with SAF. Group B: stage 1-glide path preparation with ProGlider file. Stage 2-cleaning and shaping with ProTaper Next system. Stage 3-Final cleaning with XP-endo Finisher file. The debris extruded during each of the stages was collected, and the debris weights were compared between the groups and between the stages within the groups using t tests with a significance level set at P < 0.05. The complete procedure for group B resulted in significantly more extruded debris compared to group A. There was no significant difference between the stages in group A, while there was a significant difference between stage 2 and stages 1 and 3 in group B, but no significant difference between stages 1 and 3. Both instrumentation protocols resulted in extruded debris. Rotary file followed by XP-endo Finisher file extruded significantly more debris than a full-sequence SAF system. Each stage, in either procedure, had its own contribution to the extrusion of debris. Final preparation with XP-endo Finisher file contributes to the total amount of extruded debris, but the clinical relevance of the relative difference in the amount of apically extruded debris remains unclear.
Human genetics and genomics a decade after the release of the draft sequence of the human genome.
Naidoo, Nasheen; Pawitan, Yudi; Soong, Richie; Cooper, David N; Ku, Chee-Seng
2011-10-01
Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade.
Human genetics and genomics a decade after the release of the draft sequence of the human genome
2011-01-01
Substantial progress has been made in human genetics and genomics research over the past ten years since the publication of the draft sequence of the human genome in 2001. Findings emanating directly from the Human Genome Project, together with those from follow-on studies, have had an enormous impact on our understanding of the architecture and function of the human genome. Major developments have been made in cataloguing genetic variation, the International HapMap Project, and with respect to advances in genotyping technologies. These developments are vital for the emergence of genome-wide association studies in the investigation of complex diseases and traits. In parallel, the advent of high-throughput sequencing technologies has ushered in the 'personal genome sequencing' era for both normal and cancer genomes, and made possible large-scale genome sequencing studies such as the 1000 Genomes Project and the International Cancer Genome Consortium. The high-throughput sequencing and sequence-capture technologies are also providing new opportunities to study Mendelian disorders through exome sequencing and whole-genome sequencing. This paper reviews these major developments in human genetics and genomics over the past decade. PMID:22155605
2010-01-01
Background Terpenoids are among the most important constituents of grape flavour and wine bouquet, and serve as useful metabolite markers in viticulture and enology. Based on the initial 8-fold sequencing of a nearly homozygous Pinot noir inbred line, 89 putative terpenoid synthase genes (VvTPS) were predicted by in silico analysis of the grapevine (Vitis vinifera) genome assembly [1]. The finding of this very large VvTPS family, combined with the importance of terpenoid metabolism for the organoleptic properties of grapevine berries and finished wines, prompted a detailed examination of this gene family at the genomic level as well as an investigation into VvTPS biochemical functions. Results We present findings from the analysis of the up-dated 12-fold sequencing and assembly of the grapevine genome that place the number of predicted VvTPS genes at 69 putatively functional VvTPS, 20 partial VvTPS, and 63 VvTPS probable pseudogenes. Gene discovery and annotation included information about gene architecture and chromosomal location. A dense cluster of 45 VvTPS is localized on chromosome 18. Extensive FLcDNA cloning, gene synthesis, and protein expression enabled functional characterization of 39 VvTPS; this is the largest number of functionally characterized TPS for any species reported to date. Of these enzymes, 23 have unique functions and/or phylogenetic locations within the plant TPS gene family. Phylogenetic analyses of the TPS gene family showed that while most VvTPS form species-specific gene clusters, there are several examples of gene orthology with TPS of other plant species, representing perhaps more ancient VvTPS, which have maintained functions independent of speciation. Conclusions The highly expanded VvTPS gene family underpins the prominence of terpenoid metabolism in grapevine. We provide a detailed experimental functional annotation of 39 members of this important gene family in grapevine and comprehensive information about gene structure and phylogeny for the entire currently known VvTPS gene family. PMID:20964856
Genome sequence of Phytophthora ramorum: implications for management
Brett Tyler; Sucheta Tripathy; Nik Grunwald; Kurt Lamour; Kelly Ivors; Matteo Garbelotto; Daniel Rokhsar; Nik Putnam; Igor Grigoriev; Jeffrey Boore
2006-01-01
A draft genome sequence has been determined for Phytophthora ramorum, together with a draft sequence of the soybean pathogen Phytophthora sojae. The P. ramorum genome was sequenced to a depth of 7-fold coverage, while the P. sojae genome was sequenced to a depth of 9-fold coverage. The genome...
ERIC Educational Resources Information Center
Flowers, Susan K.; Easter, Carla; Holmes, Andrea; Cohen, Brian; Bednarski, April E.; Mardis, Elaine R.; Wilson, Richard K.; Elgin, Sarah C. R.
2005-01-01
Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington…
Sun, Genlou; Komatsuda, Takao
2010-08-01
It is well known that Elymus arose through hybridization between representatives of different genera. Cytogenetic analyses show that all its members include the St genome in combination with one or more of four other genomes, the H, Y, P, and W genomes. The origins of the H, P, and W genomes are known, but not for the Y genome. We analyzed the single copy nuclear gene coding for elongation factor G (EF-G) from 28 accessions of polyploid Elymus species and 45 accessions of diploid Triticeae species in order to investigate origin of the Y genome and its relationship to other genomes in the tribe Triticeae. Sequence comparisons among the St, H, Y, P, W, and E genomes detected genome-specific polymorphisms at 66 nucleotide positions. The St and Y genomes are relatively dissimilar. The phylogeny of the Y genome sequences was investigated for the first time. They were most similar to the W genome sequences. The Y genome sequences were placed in two different groups. These two groups were included in an unresolved clade that included the W and E sequences as well as sequences from many annual species. The H genomes sequences were in a clade with the F, P, and Ns genome sequences as sister groups. These two clades were more closely related to each other and to the L and Xp genomes than they were to the St genome sequences. These data support the hypothesis that the Y genome evolved in a diploid species and has a different origin from the St genome. Copyright 2010 Elsevier Inc. All rights reserved.
Company profile: Complete Genomics Inc.
Reid, Clifford
2011-02-01
Complete Genomics Inc. is a life sciences company that focuses on complete human genome sequencing. It is taking a completely different approach to DNA sequencing than other companies in the industry. Rather than building a general-purpose platform for sequencing all organisms and all applications, it has focused on a single application - complete human genome sequencing. The company's Complete Genomics Analysis Platform (CGA™ Platform) comprises an integrated package of biochemistry, instrumentation and software that sequences human genomes at the highest quality, lowest cost and largest scale available. Complete Genomics offers a turnkey service that enables customers to outsource their human genome sequencing to the company's genome sequencing center in Mountain View, CA, USA. Customers send in their DNA samples, the company does all the library preparation, DNA sequencing, assembly and variant analysis, and customers receive research-ready data that they can use for biological discovery.
Curated eutherian third party data gene data sets.
Premzl, Marko
2016-03-01
The free available eutherian genomic sequence data sets advanced scientific field of genomics. Of note, future revisions of gene data sets were expected, due to incompleteness of public eutherian genomic sequence assemblies and potential genomic sequence errors. The eutherian comparative genomic analysis protocol was proposed as guidance in protection against potential genomic sequence errors in public eutherian genomic sequences. The protocol was applicable in updates of 7 major eutherian gene data sets, including 812 complete coding sequences deposited in European Nucleotide Archive as curated third party data gene data sets.
2011-01-01
Background Many plants have large and complex genomes with an abundance of repeated sequences. Many plants are also polyploid. Both of these attributes typify the genome architecture in the tribe Triticeae, whose members include economically important wheat, rye and barley. Large genome sizes, an abundance of repeated sequences, and polyploidy present challenges to genome-wide SNP discovery using next-generation sequencing (NGS) of total genomic DNA by making alignment and clustering of short reads generated by the NGS platforms difficult, particularly in the absence of a reference genome sequence. Results An annotation-based, genome-wide SNP discovery pipeline is reported using NGS data for large and complex genomes without a reference genome sequence. Roche 454 shotgun reads with low genome coverage of one genotype are annotated in order to distinguish single-copy sequences and repeat junctions from repetitive sequences and sequences shared by paralogous genes. Multiple genome equivalents of shotgun reads of another genotype generated with SOLiD or Solexa are then mapped to the annotated Roche 454 reads to identify putative SNPs. A pipeline program package, AGSNP, was developed and used for genome-wide SNP discovery in Aegilops tauschii-the diploid source of the wheat D genome, and with a genome size of 4.02 Gb, of which 90% is repetitive sequences. Genomic DNA of Ae. tauschii accession AL8/78 was sequenced with the Roche 454 NGS platform. Genomic DNA and cDNA of Ae. tauschii accession AS75 was sequenced primarily with SOLiD, although some Solexa and Roche 454 genomic sequences were also generated. A total of 195,631 putative SNPs were discovered in gene sequences, 155,580 putative SNPs were discovered in uncharacterized single-copy regions, and another 145,907 putative SNPs were discovered in repeat junctions. These SNPs were dispersed across the entire Ae. tauschii genome. To assess the false positive SNP discovery rate, DNA containing putative SNPs was amplified by PCR from AL8/78 and AS75 and resequenced with the ABI 3730 xl. In a sample of 302 randomly selected putative SNPs, 84.0% in gene regions, 88.0% in repeat junctions, and 81.3% in uncharacterized regions were validated. Conclusion An annotation-based genome-wide SNP discovery pipeline for NGS platforms was developed. The pipeline is suitable for SNP discovery in genomic libraries of complex genomes and does not require a reference genome sequence. The pipeline is applicable to all current NGS platforms, provided that at least one such platform generates relatively long reads. The pipeline package, AGSNP, and the discovered 497,118 Ae. tauschii SNPs can be accessed at (http://avena.pw.usda.gov/wheatD/agsnp.shtml). PMID:21266061
Aokic, Jun-ya; Kawase, Junya; Hamada, Kazuhisa; Fujimoto, Hiroshi; Yamamoto, Ikki; Usuki, Hironori
2018-01-01
Greater amberjack (Seriola dumerili) is distributed in tropical and temperate waters worldwide and is an important aquaculture fish. We carried out de novo sequencing of the greater amberjack genome to construct a reference genome sequence to identify single nucleotide polymorphisms (SNPs) for breeding amberjack by marker-assisted or gene-assisted selection as well as to identify functional genes for biological traits. We obtained 200 times coverage and constructed a high-quality genome assembly using next generation sequencing technology. The assembled sequences were aligned onto a yellowtail (Seriola quinqueradiata) radiation hybrid (RH) physical map by sequence homology. A total of 215 of the longest amberjack sequences, with a total length of 622.8 Mbp (92% of the total length of the genome scaffolds), were lined up on the yellowtail RH map. We resequenced the whole genomes of 20 greater amberjacks and mapped the resulting sequences onto the reference genome sequence. About 186,000 nonredundant SNPs were successfully ordered on the reference genome. Further, we found differences in the genome structural variations between two greater amberjack populations using BreakDancer. We also analyzed the greater amberjack transcriptome and mapped the annotated sequences onto the reference genome sequence. PMID:29785397
Rapid and accurate pyrosequencing of angiosperm plastid genomes
Moore, Michael J; Dhingra, Amit; Soltis, Pamela S; Shaw, Regina; Farmerie, William G; Folta, Kevin M; Soltis, Douglas E
2006-01-01
Background Plastid genome sequence information is vital to several disciplines in plant biology, including phylogenetics and molecular biology. The past five years have witnessed a dramatic increase in the number of completely sequenced plastid genomes, fuelled largely by advances in conventional Sanger sequencing technology. Here we report a further significant reduction in time and cost for plastid genome sequencing through the successful use of a newly available pyrosequencing platform, the Genome Sequencer 20 (GS 20) System (454 Life Sciences Corporation), to rapidly and accurately sequence the whole plastid genomes of the basal eudicot angiosperms Nandina domestica (Berberidaceae) and Platanus occidentalis (Platanaceae). Results More than 99.75% of each plastid genome was simultaneously obtained during two GS 20 sequence runs, to an average depth of coverage of 24.6× in Nandina and 17.3× in Platanus. The Nandina and Platanus plastid genomes shared essentially identical gene complements and possessed the typical angiosperm plastid structure and gene arrangement. To assess the accuracy of the GS 20 sequence, over 45 kilobases of sequence were generated for each genome using conventional sequencing. Overall error rates of 0.043% and 0.031% were observed in GS 20 sequence for Nandina and Platanus, respectively. More than 97% of all observed errors were associated with homopolymer runs, with ~60% of all errors associated with homopolymer runs of 5 or more nucleotides and ~50% of all errors associated with regions of extensive homopolymer runs. No substitution errors were present in either genome. Error rates were generally higher in the single-copy and noncoding regions of both plastid genomes relative to the inverted repeat and coding regions. Conclusion Highly accurate and essentially complete sequence information was obtained for the Nandina and Platanus plastid genomes using the GS 20 System. More importantly, the high accuracy observed in the GS 20 plastid genome sequence was generated for a significant reduction in time and cost over traditional shotgun-based genome sequencing techniques, although with approximately half the coverage of previously reported GS 20 de novo genome sequence. The GS 20 should be broadly applicable to angiosperm plastid genome sequencing, and therefore promises to expand the scale of plant genetic and phylogenetic research dramatically. PMID:16934154
Genome Sequencing of Steroid Producing Bacteria Using Ion Torrent Technology and a Reference Genome.
Sola-Landa, Alberto; Rodríguez-García, Antonio; Barreiro, Carlos; Pérez-Redondo, Rosario
2017-01-01
The Next-Generation Sequencing technology has enormously eased the bacterial genome sequencing and several tens of thousands of genomes have been sequenced during the last 10 years. Most of the genome projects are published as draft version, however, for certain applications the complete genome sequence is required.In this chapter, we describe the strategy that allowed the complete genome sequencing of Mycobacterium neoaurum NRRL B-3805, an industrial strain exploited for steroid production, using Ion Torrent sequencing reads and the genome of a close strain as the reference. This protocol can be applied to analyze the genetic variations between closely related strains; for example, to elucidate the point mutations between a parental strain and a random mutagenesis-derived mutant.
Staňková, Helena; Hastie, Alex R; Chan, Saki; Vrána, Jan; Tulpová, Zuzana; Kubaláková, Marie; Visendi, Paul; Hayashi, Satomi; Luo, Mingcheng; Batley, Jacqueline; Edwards, David; Doležel, Jaroslav; Šimková, Hana
2016-07-01
The assembly of a reference genome sequence of bread wheat is challenging due to its specific features such as the genome size of 17 Gbp, polyploid nature and prevalence of repetitive sequences. BAC-by-BAC sequencing based on chromosomal physical maps, adopted by the International Wheat Genome Sequencing Consortium as the key strategy, reduces problems caused by the genome complexity and polyploidy, but the repeat content still hampers the sequence assembly. Availability of a high-resolution genomic map to guide sequence scaffolding and validate physical map and sequence assemblies would be highly beneficial to obtaining an accurate and complete genome sequence. Here, we chose the short arm of chromosome 7D (7DS) as a model to demonstrate for the first time that it is possible to couple chromosome flow sorting with genome mapping in nanochannel arrays and create a de novo genome map of a wheat chromosome. We constructed a high-resolution chromosome map composed of 371 contigs with an N50 of 1.3 Mb. Long DNA molecules achieved by our approach facilitated chromosome-scale analysis of repetitive sequences and revealed a ~800-kb array of tandem repeats intractable to current DNA sequencing technologies. Anchoring 7DS sequence assemblies obtained by clone-by-clone sequencing to the 7DS genome map provided a valuable tool to improve the BAC-contig physical map and validate sequence assembly on a chromosome-arm scale. Our results indicate that creating genome maps for the whole wheat genome in a chromosome-by-chromosome manner is feasible and that they will be an affordable tool to support the production of improved pseudomolecules. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.
Whole-genome random sequencing and assembly of Haemophilus influenzae Rd
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fleischmann, R.D.; Adams, M.D.; White, O.
1995-07-28
An approach for genome analysis based on sequencing and assembly of unselected pieces of DNA from the whole chromosome has been applied to obtain the complete nucleotide sequence (1,830,137 base pairs) of the genome from the bacterium Haemophilus influenzae Rd. This approach eliminates the need for initial mapping efforts and is therefore applicable to the vast array of microbial species for which genome maps are unavailable. The H. influenzae Rd genome sequence (Genome Sequence DataBase accession number L42023) represents the only complete genome sequence from a free-living organism. 46 refs., 4 figs., 4 tabs.
Origins of the Xylella fastidiosa prophage-like regions and their impact in genome differentiation.
de Mello Varani, Alessandro; Souza, Rangel Celso; Nakaya, Helder I; de Lima, Wanessa Cristina; Paula de Almeida, Luiz Gonzaga; Kitajima, Elliot Watanabe; Chen, Jianchi; Civerolo, Edwin; Vasconcelos, Ana Tereza Ribeiro; Van Sluys, Marie-Anne
2008-01-01
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes.
Origins of the Xylella fastidiosa Prophage-Like Regions and Their Impact in Genome Differentiation
de Mello Varani, Alessandro; Souza, Rangel Celso; Nakaya, Helder I.; de Lima, Wanessa Cristina; Paula de Almeida, Luiz Gonzaga; Kitajima, Elliot Watanabe; Chen, Jianchi; Civerolo, Edwin; Vasconcelos, Ana Tereza Ribeiro; Van Sluys, Marie-Anne
2008-01-01
Xylella fastidiosa is a Gram negative plant pathogen causing many economically important diseases, and analyses of completely sequenced X. fastidiosa genome strains allowed the identification of many prophage-like elements and possibly phage remnants, accounting for up to 15% of the genome composition. To better evaluate the recent evolution of the X. fastidiosa chromosome backbone among distinct pathovars, the number and location of prophage-like regions on two finished genomes (9a5c and Temecula1), and in two candidate molecules (Ann1 and Dixon) were assessed. Based on comparative best bidirectional hit analyses, the majority (51%) of the predicted genes in the X. fastidiosa prophage-like regions are related to structural phage genes belonging to the Siphoviridae family. Electron micrograph reveals the existence of putative viral particles with similar morphology to lambda phages in the bacterial cell in planta. Moreover, analysis of microarray data indicates that 9a5c strain cultivated under stress conditions presents enhanced expression of phage anti-repressor genes, suggesting switches from lysogenic to lytic cycle of phages under stress-induced situations. Furthermore, virulence-associated proteins and toxins are found within these prophage-like elements, thus suggesting an important role in host adaptation. Finally, clustering analyses of phage integrase genes based on multiple alignment patterns reveal they group in five lineages, all possessing a tyrosine recombinase catalytic domain, and phylogenetically close to other integrases found in phages that are genetic mosaics and able to perform generalized and specialized transduction. Integration sites and tRNA association is also evidenced. In summary, we present comparative and experimental evidence supporting the association and contribution of phage activity on the differentiation of Xylella genomes. PMID:19116666
Fungal genome sequencing: basic biology to biotechnology.
Sharma, Krishna Kant
2016-08-01
The genome sequences provide a first glimpse into the genomic basis of the biological diversity of filamentous fungi and yeast. The genome sequence of the budding yeast, Saccharomyces cerevisiae, with a small genome size, unicellular growth, and rich history of genetic and molecular analyses was a milestone of early genomics in the 1990s. The subsequent completion of fission yeast, Schizosaccharomyces pombe and genetic model, Neurospora crassa initiated a revolution in the genomics of the fungal kingdom. In due course of time, a substantial number of fungal genomes have been sequenced and publicly released, representing the widest sampling of genomes from any eukaryotic kingdom. An ambitious genome-sequencing program provides a wealth of data on metabolic diversity within the fungal kingdom, thereby enhancing research into medical science, agriculture science, ecology, bioremediation, bioenergy, and the biotechnology industry. Fungal genomics have higher potential to positively affect human health, environmental health, and the planet's stored energy. With a significant increase in sequenced fungal genomes, the known diversity of genes encoding organic acids, antibiotics, enzymes, and their pathways has increased exponentially. Currently, over a hundred fungal genome sequences are publicly available; however, no inclusive review has been published. This review is an initiative to address the significance of the fungal genome-sequencing program and provides the road map for basic and applied research.
Using Partial Genomic Fosmid Libraries for Sequencing CompleteOrganellar Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNeal, Joel R.; Leebens-Mack, James H.; Arumuganathan, K.
2005-08-26
Organellar genome sequences provide numerous phylogenetic markers and yield insight into organellar function and molecular evolution. These genomes are much smaller in size than their nuclear counterparts; thus, their complete sequencing is much less expensive than total nuclear genome sequencing, making broader phylogenetic sampling feasible. However, for some organisms it is challenging to isolate plastid DNA for sequencing using standard methods. To overcome these difficulties, we constructed partial genomic libraries from total DNA preparations of two heterotrophic and two autotrophic angiosperm species using fosmid vectors. We then used macroarray screening to isolate clones containing large fragments of plastid DNA. Amore » minimum tiling path of clones comprising the entire genome sequence of each plastid was selected, and these clones were shotgun-sequenced and assembled into complete genomes. Although this method worked well for both heterotrophic and autotrophic plants, nuclear genome size had a dramatic effect on the proportion of screened clones containing plastid DNA and, consequently, the overall number of clones that must be screened to ensure full plastid genome coverage. This technique makes it possible to determine complete plastid genome sequences for organisms that defy other available organellar genome sequencing methods, especially those for which limited amounts of tissue are available.« less
USDA-ARS?s Scientific Manuscript database
Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat and an important genetic resource for wheat. A reference-quality sequence for the Ae. tauschii genome was produced with a combination of ordered-clone sequencing, whole-genome shotgun sequencing, and BioNano optical geno...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Onda, M.; Kudo, S.; Fukuda, M.
Human glycophorin A, B, and E (GPA, GPB, and GPE) genes belong to a gene family located at the long arm of chromosome 4. These three genes are homologous from the 5'-flanking sequence to the Alu sequence, which is 1 kb downstream from the exon encoding the transmembrane domain. Analysis of the Alu sequence and flanking direct repeat sequences suggested that the GPA gene most closely resembles the ancestral gene, whereas the GPB and GPE gene arose by homologous recombination within the Alu sequence, acquiring 3' sequences from an unrelated precursor genomic segment. Here the authors describe the identification ofmore » this putative precursor genomic segment. A human genomic library was screened by using the sequence of the 3' region of the GPB gene as a probe. The genomic clones isolated were found to contain an Alu sequence that appeared to be involved in the recombination. Downstream from the Alu sequence, the nucleotide sequence of the precursor genomic segment is almost identical to that of the GPB or GPE gene. In contrast, the upstream sequence of the genomic segment differs entirely from that of the GPA, GPB, and GPE genes. Conservation of the direct repeats flanking the Alu sequence of the genomic segment strongly suggests that the sequence of this genomic segment has been maintained during evolution. This identified genomic segment was found to reside downstream from the GPA gene by both gene mapping and in situ chromosomal localization. The precursor genomic segment was also identified in the orangutan genome, which is known to lack GPB and GPE genes. These results indicate that one of the duplicated ancestral glycophorin genes acquired a unique 3' sequence by unequal crossing-over through its Alu sequence and the further downstream Alu sequence present in the duplicated gene. Further duplication and divergence of this gene yielded the GPB and GPE genes. 37 refs., 5 figs.« less
flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection
Stanley, Craig E.; Kulathinal, Rob J.
2016-01-01
With arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster’s breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource. However, since its inception, these datasets for evolutionary inference and biological discovery have become increasingly outdated, outmoded, and inaccessible. Here, we provide an updated and upgradable comparative genomics resource of Drosophila divergence and selection, flyDIVaS, based on the latest genomic assemblies, curated FlyBase annotations, and recent OrthoDB orthology calls. flyDIVaS is an online database containing D. melanogaster-centric orthologous gene sets, CDS and protein alignments, divergence statistics (% gaps, dN, dS, dN/dS), and codon-based tests of positive Darwinian selection. Out of 13,920 protein-coding D. melanogaster genes, ∼80% have one aligned ortholog in the closely related species, D. simulans, and ∼50% have 1–1 12-way alignments in the original 12 sequenced species that span over 80 million yr of divergence. Genes and their orthologs can be chosen from four different taxonomic datasets differing in phylogenetic depth and coverage density, and visualized via interactive alignments and phylogenetic trees. Users can also batch download entire comparative datasets. A functional survey finds conserved mitotic and neural genes, highly diverged immune and reproduction-related genes, more conspicuous signals of divergence across tissue-specific genes, and an enrichment of positive selection among highly diverged genes. flyDIVaS will be regularly updated and can be freely accessed at www.flydivas.info. We encourage researchers to regularly use this resource as a tool for biological inference and discovery, and in their classrooms to help train the next generation of biologists to creatively use such genomic big data resources in an integrative manner. PMID:27226167
flyDIVaS: A Comparative Genomics Resource for Drosophila Divergence and Selection.
Stanley, Craig E; Kulathinal, Rob J
2016-08-09
With arguably the best finished and expertly annotated genome assembly, Drosophila melanogaster is a formidable genetics model to study all aspects of biology. Nearly a decade ago, the 12 Drosophila genomes project expanded D. melanogaster's breadth as a comparative model through the community-development of an unprecedented genus- and genome-wide comparative resource. However, since its inception, these datasets for evolutionary inference and biological discovery have become increasingly outdated, outmoded, and inaccessible. Here, we provide an updated and upgradable comparative genomics resource of Drosophila divergence and selection, flyDIVaS, based on the latest genomic assemblies, curated FlyBase annotations, and recent OrthoDB orthology calls. flyDIVaS is an online database containing D. melanogaster-centric orthologous gene sets, CDS and protein alignments, divergence statistics (% gaps, dN, dS, dN/dS), and codon-based tests of positive Darwinian selection. Out of 13,920 protein-coding D. melanogaster genes, ∼80% have one aligned ortholog in the closely related species, D. simulans, and ∼50% have 1-1 12-way alignments in the original 12 sequenced species that span over 80 million yr of divergence. Genes and their orthologs can be chosen from four different taxonomic datasets differing in phylogenetic depth and coverage density, and visualized via interactive alignments and phylogenetic trees. Users can also batch download entire comparative datasets. A functional survey finds conserved mitotic and neural genes, highly diverged immune and reproduction-related genes, more conspicuous signals of divergence across tissue-specific genes, and an enrichment of positive selection among highly diverged genes. flyDIVaS will be regularly updated and can be freely accessed at www.flydivas.info We encourage researchers to regularly use this resource as a tool for biological inference and discovery, and in their classrooms to help train the next generation of biologists to creatively use such genomic big data resources in an integrative manner. Copyright © 2016 Stanley and Kulathinal.
Reid, Noah M; Whitehead, Andrew
2016-09-01
Marine pollution is ubiquitous, and is one of the key factors influencing contemporary marine biodiversity worldwide. To protect marine biodiversity, how do we surveil, document and predict the short- and long-term impacts of pollutants on at-risk species? Modern genomics tools offer high-throughput, information-rich and increasingly cost-effective approaches for characterizing biological responses to environmental stress, and are important tools within an increasing sophisticated kit for surveiling and assessing impacts of pollutants on marine species. Through the lens of recent research in marine killifish, we illustrate how genomics tools may be useful for screening chemicals and pollutants for biological activity and to reveal specific mechanisms of action. The high dimensionality of transcriptomic responses enables their usage as highly specific fingerprints of exposure, and these fingerprints can be used to diagnose environmental problems. We also emphasize that molecular pathways recruited to respond at physiological timescales are the same pathways that may be targets for natural selection during chronic exposure to pollutants. Gene complement and sequence variation in those pathways can be related to variation in sensitivity to environmental pollutants within and among species. Furthermore, allelic variation associated with evolved tolerance in those pathways could be tracked to estimate the pace of environmental health decline and recovery. We finish by integrating these paradigms into a vision of how genomics approaches could anchor a modernized framework for advancing the predictive capacity of environmental and ecotoxicological science. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xiaofan; Peris, David; Kominek, Jacek
The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimentalmore » design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.« less
Zhou, Xiaofan; Peris, David; Kominek, Jacek; ...
2016-09-16
The availability of genomes across the tree of life is highly biased toward vertebrates, pathogens, human disease models, and organisms with relatively small and simple genomes. Recent progress in genomics has enabled the de novo decoding of the genome of virtually any organism, greatly expanding its potential for understanding the biology and evolution of the full spectrum of biodiversity. The increasing diversity of sequencing technologies, assays, and de novo assembly algorithms have augmented the complexity of de novo genome sequencing projects in nonmodel organisms. To reduce the costs and challenges in de novo genome sequencing projects and streamline their experimentalmore » design and analysis, we developed iWGS (in silico Whole Genome Sequencer and Analyzer), an automated pipeline for guiding the choice of appropriate sequencing strategy and assembly protocols. iWGS seamlessly integrates the four key steps of a de novo genome sequencing project: data generation (through simulation), data quality control, de novo assembly, and assembly evaluation and validation. The last three steps can also be applied to the analysis of real data. iWGS is designed to enable the user to have great flexibility in testing the range of experimental designs available for genome sequencing projects, and supports all major sequencing technologies and popular assembly tools. Three case studies illustrate how iWGS can guide the design of de novo genome sequencing projects, and evaluate the performance of a wide variety of user-specified sequencing strategies and assembly protocols on genomes of differing architectures. iWGS, along with a detailed documentation, is freely available at https://github.com/zhouxiaofan1983/iWGS.« less
Abe, Takashi; Hamano, Yuta; Ikemura, Toshimichi
2014-01-01
A strategy of evolutionary studies that can compare vast numbers of genome sequences is becoming increasingly important with the remarkable progress of high-throughput DNA sequencing methods. We previously established a sequence alignment-free clustering method "BLSOM" for di-, tri-, and tetranucleotide compositions in genome sequences, which can characterize sequence characteristics (genome signatures) of a wide range of species. In the present study, we generated BLSOMs for tetra- and pentanucleotide compositions in approximately one million sequence fragments derived from 101 eukaryotes, for which almost complete genome sequences were available. BLSOM recognized phylotype-specific characteristics (e.g., key combinations of oligonucleotide frequencies) in the genome sequences, permitting phylotype-specific clustering of the sequences without any information regarding the species. In our detailed examination of 12 Drosophila species, the correlation between their phylogenetic classification and the classification on the BLSOMs was observed to visualize oligonucleotides diagnostic for species-specific clustering.
The diploid genome sequence of an Asian individual
Wang, Jun; Wang, Wei; Li, Ruiqiang; Li, Yingrui; Tian, Geng; Goodman, Laurie; Fan, Wei; Zhang, Junqing; Li, Jun; Zhang, Juanbin; Guo, Yiran; Feng, Binxiao; Li, Heng; Lu, Yao; Fang, Xiaodong; Liang, Huiqing; Du, Zhenglin; Li, Dong; Zhao, Yiqing; Hu, Yujie; Yang, Zhenzhen; Zheng, Hancheng; Hellmann, Ines; Inouye, Michael; Pool, John; Yi, Xin; Zhao, Jing; Duan, Jinjie; Zhou, Yan; Qin, Junjie; Ma, Lijia; Li, Guoqing; Yang, Zhentao; Zhang, Guojie; Yang, Bin; Yu, Chang; Liang, Fang; Li, Wenjie; Li, Shaochuan; Li, Dawei; Ni, Peixiang; Ruan, Jue; Li, Qibin; Zhu, Hongmei; Liu, Dongyuan; Lu, Zhike; Li, Ning; Guo, Guangwu; Zhang, Jianguo; Ye, Jia; Fang, Lin; Hao, Qin; Chen, Quan; Liang, Yu; Su, Yeyang; san, A.; Ping, Cuo; Yang, Shuang; Chen, Fang; Li, Li; Zhou, Ke; Zheng, Hongkun; Ren, Yuanyuan; Yang, Ling; Gao, Yang; Yang, Guohua; Li, Zhuo; Feng, Xiaoli; Kristiansen, Karsten; Wong, Gane Ka-Shu; Nielsen, Rasmus; Durbin, Richard; Bolund, Lars; Zhang, Xiuqing; Li, Songgang; Yang, Huanming; Wang, Jian
2009-01-01
Here we present the first diploid genome sequence of an Asian individual. The genome was sequenced to 36-fold average coverage using massively parallel sequencing technology. We aligned the short reads onto the NCBI human reference genome to 99.97% coverage, and guided by the reference genome, we used uniquely mapped reads to assemble a high-quality consensus sequence for 92% of the Asian individual's genome. We identified approximately 3 million single-nucleotide polymorphisms (SNPs) inside this region, of which 13.6% were not in the dbSNP database. Genotyping analysis showed that SNP identification had high accuracy and consistency, indicating the high sequence quality of this assembly. We also carried out heterozygote phasing and haplotype prediction against HapMap CHB and JPT haplotypes (Chinese and Japanese, respectively), sequence comparison with the two available individual genomes (J. D. Watson and J. C. Venter), and structural variation identification. These variations were considered for their potential biological impact. Our sequence data and analyses demonstrate the potential usefulness of next-generation sequencing technologies for personal genomics. PMID:18987735
Snake Genome Sequencing: Results and Future Prospects
Kerkkamp, Harald M. I.; Kini, R. Manjunatha; Pospelov, Alexey S.; Vonk, Freek J.; Henkel, Christiaan V.; Richardson, Michael K.
2016-01-01
Snake genome sequencing is in its infancy—very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression. PMID:27916957
Snake Genome Sequencing: Results and Future Prospects.
Kerkkamp, Harald M I; Kini, R Manjunatha; Pospelov, Alexey S; Vonk, Freek J; Henkel, Christiaan V; Richardson, Michael K
2016-12-01
Snake genome sequencing is in its infancy-very much behind the progress made in sequencing the genomes of humans, model organisms and pathogens relevant to biomedical research, and agricultural species. We provide here an overview of some of the snake genome projects in progress, and discuss the biological findings, with special emphasis on toxinology, from the small number of draft snake genomes already published. We discuss the future of snake genomics, pointing out that new sequencing technologies will help overcome the problem of repetitive sequences in assembling snake genomes. Genome sequences are also likely to be valuable in examining the clustering of toxin genes on the chromosomes, in designing recombinant antivenoms and in studying the epigenetic regulation of toxin gene expression.
2012-01-01
Background The feline genome is valuable to the veterinary and model organism genomics communities because the cat is an obligate carnivore and a model for endangered felids. The initial public release of the Felis catus genome assembly provided a framework for investigating the genomic basis of feline biology. However, the entire set of protein coding genes has not been elucidated. Results We identified and characterized 1227 protein coding feline sequences, of which 913 map to public sequences and 314 are novel. These sequences have been deposited into NCBI's genbank database and complement public genomic resources by providing additional protein coding sequences that fill in some of the gaps in the feline genome assembly. Through functional and comparative genomic analyses, we gained an understanding of the role of these sequences in feline development, nutrition and health. Specifically, we identified 104 orthologs of human genes associated with Mendelian disorders. We detected negative selection within sequences with gene ontology annotations associated with intracellular trafficking, cytoskeleton and muscle functions. We detected relatively less negative selection on protein sequences encoding extracellular networks, apoptotic pathways and mitochondrial gene ontology annotations. Additionally, we characterized feline cDNA sequences that have mouse orthologs associated with clinical, nutritional and developmental phenotypes. Together, this analysis provides an overview of the value of our cDNA sequences and enhances our understanding of how the feline genome is similar to, and different from other mammalian genomes. Conclusions The cDNA sequences reported here expand existing feline genomic resources by providing high-quality sequences annotated with comparative genomic information providing functional, clinical, nutritional and orthologous gene information. PMID:22257742
Kamada, Mayumi; Hase, Sumitaka; Sato, Kengo; Toyoda, Atsushi; Fujiyama, Asao; Sakakibara, Yasubumi
2014-01-01
De novo microbial genome sequencing reached a turning point with third-generation sequencing (TGS) platforms, and several microbial genomes have been improved by TGS long reads. Bacillus subtilis natto is closely related to the laboratory standard strain B. subtilis Marburg 168, and it has a function in the production of the traditional Japanese fermented food “natto.” The B. subtilis natto BEST195 genome was previously sequenced with short reads, but it included some incomplete regions. We resequenced the BEST195 genome using a PacBio RS sequencer, and we successfully obtained a complete genome sequence from one scaffold without any gaps, and we also applied Illumina MiSeq short reads to enhance quality. Compared with the previous BEST195 draft genome and Marburg 168 genome, we found that incomplete regions in the previous genome sequence were attributed to GC-bias and repetitive sequences, and we also identified some novel genes that are found only in the new genome. PMID:25329997
First complete genome sequence of infectious laryngotracheitis virus
2011-01-01
Background Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes acute respiratory disease in chickens worldwide. To date, only one complete genomic sequence of ILTV has been reported. This sequence was generated by concatenating partial sequences from six different ILTV strains. Thus, the full genomic sequence of a single (individual) strain of ILTV has not been determined previously. This study aimed to use high throughput sequencing technology to determine the complete genomic sequence of a live attenuated vaccine strain of ILTV. Results The complete genomic sequence of the Serva vaccine strain of ILTV was determined, annotated and compared to the concatenated ILTV reference sequence. The genome size of the Serva strain was 152,628 bp, with a G + C content of 48%. A total of 80 predicted open reading frames were identified. The Serva strain had 96.5% DNA sequence identity with the concatenated ILTV sequence. Notably, the concatenated ILTV sequence was found to lack four large regions of sequence, including 528 bp and 594 bp of sequence in the UL29 and UL36 genes, respectively, and two copies of a 1,563 bp sequence in the repeat regions. Considerable differences in the size of the predicted translation products of 4 other genes (UL54, UL30, UL37 and UL38) were also identified. More than 530 single-nucleotide polymorphisms (SNPs) were identified. Most SNPs were located within three genomic regions, corresponding to sequence from the SA-2 ILTV vaccine strain in the concatenated ILTV sequence. Conclusions This is the first complete genomic sequence of an individual ILTV strain. This sequence will facilitate future comparative genomic studies of ILTV by providing an appropriate reference sequence for the sequence analysis of other ILTV strains. PMID:21501528
RefSeq microbial genomes database: new representation and annotation strategy.
Tatusova, Tatiana; Ciufo, Stacy; Fedorov, Boris; O'Neill, Kathleen; Tolstoy, Igor
2014-01-01
The source of the microbial genomic sequences in the RefSeq collection is the set of primary sequence records submitted to the International Nucleotide Sequence Database public archives. These can be accessed through the Entrez search and retrieval system at http://www.ncbi.nlm.nih.gov/genome. Next-generation sequencing has enabled researchers to perform genomic sequencing at rates that were unimaginable in the past. Microbial genomes can now be sequenced in a matter of hours, which has led to a significant increase in the number of assembled genomes deposited in the public archives. This huge increase in DNA sequence data presents new challenges for the annotation, analysis and visualization bioinformatics tools. New strategies have been developed for the annotation and representation of reference genomes and sequence variations derived from population studies and clinical outbreaks.
Gene calling and bacterial genome annotation with BG7.
Tobes, Raquel; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Kovach, Evdokim; Alekhin, Alexey; Pareja, Eduardo
2015-01-01
New massive sequencing technologies are providing many bacterial genome sequences from diverse taxa but a refined annotation of these genomes is crucial for obtaining scientific findings and new knowledge. Thus, bacterial genome annotation has emerged as a key point to investigate in bacteria. Any efficient tool designed specifically to annotate bacterial genomes sequenced with massively parallel technologies has to consider the specific features of bacterial genomes (absence of introns and scarcity of nonprotein-coding sequence) and of next-generation sequencing (NGS) technologies (presence of errors and not perfectly assembled genomes). These features make it convenient to focus on coding regions and, hence, on protein sequences that are the elements directly related with biological functions. In this chapter we describe how to annotate bacterial genomes with BG7, an open-source tool based on a protein-centered gene calling/annotation paradigm. BG7 is specifically designed for the annotation of bacterial genomes sequenced with NGS. This tool is sequence error tolerant maintaining their capabilities for the annotation of highly fragmented genomes or for annotating mixed sequences coming from several genomes (as those obtained through metagenomics samples). BG7 has been designed with scalability as a requirement, with a computing infrastructure completely based on cloud computing (Amazon Web Services).
PCR Amplification Strategies towards full-length HIV-1 Genome sequencing.
Liu, Chao Chun; Ji, Hezhao
2018-06-26
The advent of next generation sequencing has enabled greater resolution of viral diversity and improved feasibility of full viral genome sequencing allowing routine HIV-1 full genome sequencing in both research and diagnostic settings. Regardless of the sequencing platform selected, successful PCR amplification of the HIV-1 genome is essential for sequencing template preparation. As such, full HIV-1 genome amplification is a crucial step in dictating the successful and reliable sequencing downstream. Here we reviewed existing PCR protocols leading to HIV-1 full genome sequencing. In addition to the discussion on basic considerations on relevant PCR design, the advantages as well as the pitfalls of published protocols were reviewed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Ciotlos, Serban; Mao, Qing; Zhang, Rebecca Yu; Li, Zhenyu; Chin, Robert; Gulbahce, Natali; Liu, Sophie Jia; Drmanac, Radoje; Peters, Brock A
2016-01-01
The cell line BT-474 is a popular cell line for studying the biology of cancer and developing novel drugs. However, there is no complete, published genome sequence for this highly utilized scientific resource. In this study we sought to provide a comprehensive and useful data set for the scientific community by generating a whole genome sequence for BT-474. Five μg of genomic DNA, isolated from an early passage of the BT-474 cell line, was used to generate a whole genome sequence (114X coverage) using Complete Genomics' standard sequencing process. To provide additional variant phasing and structural variation data we also processed and analyzed two separate libraries of 5 and 6 individual cells to depths of 99X and 87X, respectively, using Complete Genomics' Long Fragment Read (LFR) technology. BT-474 is a highly aneuploid cell line with an extremely complex genome sequence. This ~300X total coverage genome sequence provides a more complete understanding of this highly utilized cell line at the genomic level.
Yang, Jun-Bo; Li, De-Zhu; Li, Hong-Tao
2014-09-01
Chloroplast genomes supply indispensable information that helps improve the phylogenetic resolution and even as organelle-scale barcodes. Next-generation sequencing technologies have helped promote sequencing of complete chloroplast genomes, but compared with the number of angiosperms, relatively few chloroplast genomes have been sequenced. There are two major reasons for the paucity of completely sequenced chloroplast genomes: (i) massive amounts of fresh leaves are needed for chloroplast sequencing and (ii) there are considerable gaps in the sequenced chloroplast genomes of many plants because of the difficulty of isolating high-quality chloroplast DNA, preventing complete chloroplast genomes from being assembled. To overcome these obstacles, all known angiosperm chloroplast genomes available to date were analysed, and then we designed nine universal primer pairs corresponding to the highly conserved regions. Using these primers, angiosperm whole chloroplast genomes can be amplified using long-range PCR and sequenced using next-generation sequencing methods. The primers showed high universality, which was tested using 24 species representing major clades of angiosperms. To validate the functionality of the primers, eight species representing major groups of angiosperms, that is, early-diverging angiosperms, magnoliids, monocots, Saxifragales, fabids, malvids and asterids, were sequenced and assembled their complete chloroplast genomes. In our trials, only 100 mg of fresh leaves was used. The results show that the universal primer set provided an easy, effective and feasible approach for sequencing whole chloroplast genomes in angiosperms. The designed universal primer pairs provide a possibility to accelerate genome-scale data acquisition and will therefore magnify the phylogenetic resolution and species identification in angiosperms. © 2014 John Wiley & Sons Ltd.
Sequencing and assembly of the 22-gb loblolly pine genome.
Zimin, Aleksey; Stevens, Kristian A; Crepeau, Marc W; Holtz-Morris, Ann; Koriabine, Maxim; Marçais, Guillaume; Puiu, Daniela; Roberts, Michael; Wegrzyn, Jill L; de Jong, Pieter J; Neale, David B; Salzberg, Steven L; Yorke, James A; Langley, Charles H
2014-03-01
Conifers are the predominant gymnosperm. The size and complexity of their genomes has presented formidable technical challenges for whole-genome shotgun sequencing and assembly. We employed novel strategies that allowed us to determine the loblolly pine (Pinus taeda) reference genome sequence, the largest genome assembled to date. Most of the sequence data were derived from whole-genome shotgun sequencing of a single megagametophyte, the haploid tissue of a single pine seed. Although that constrained the quantity of available DNA, the resulting haploid sequence data were well-suited for assembly. The haploid sequence was augmented with multiple linking long-fragment mate pair libraries from the parental diploid DNA. For the longest fragments, we used novel fosmid DiTag libraries. Sequences from the linking libraries that did not match the megagametophyte were identified and removed. Assembly of the sequence data were aided by condensing the enormous number of paired-end reads into a much smaller set of longer "super-reads," rendering subsequent assembly with an overlap-based assembly algorithm computationally feasible. To further improve the contiguity and biological utility of the genome sequence, additional scaffolding methods utilizing independent genome and transcriptome assemblies were implemented. The combination of these strategies resulted in a draft genome sequence of 20.15 billion bases, with an N50 scaffold size of 66.9 kbp.
Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, Rebecca-Ayme; Zhang, Yunlong; Zhang, Ran
ABSTRACT The cyanobacterial culture HT-58-2 was originally described as a strain ofTolypothrix nodosawith the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align withBrasilonemastrains and not withTolypothrixisolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversitymore » of bacteria dominated byErythrobacteraceae, 97% of which arePorphyrobacterspecies. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophylla, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis. IMPORTANCEA worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that produces tolyporphins. Tolyporphins are tetrapyrroles, like chlorophylls, but have several profound structural differences that reside outside the bounds of known biosynthetic pathways. To begin probing the biosynthetic origin and biological function of tolyporphins, our research has focused on studying the cyanobacterial strain, about which almost nothing has been previously reported. We find that the HT-58-2 culture is composed of the cyanobacterium and a community of associated bacteria, complicating the question of which organisms make tolyporphins. Elucidation of the cyanobacterial genome revealed an intriguing gene cluster that contains tetrapyrrole biosynthesis genes and a collection of unknown genes, suggesting that the cluster may be responsible for tolyporphin production. Knowledge of the genome and the gene cluster sharply focuses research to identify related cyanobacterial producers of tolyporphins and delineate the tolyporphin biosynthetic pathway.« less
Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community.
Hughes, Rebecca-Ayme; Zhang, Yunlong; Zhang, Ran; Williams, Philip G; Lindsey, Jonathan S; Miller, Eric S
2017-10-01
The cyanobacterial culture HT-58-2 was originally described as a strain of Tolypothrix nodosa with the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align with Brasilonema strains and not with Tolypothrix isolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated by Erythrobacteraceae , 97% of which are Porphyrobacter species. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophyll a , and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis. IMPORTANCE A worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that produces tolyporphins. Tolyporphins are tetrapyrroles, like chlorophylls, but have several profound structural differences that reside outside the bounds of known biosynthetic pathways. To begin probing the biosynthetic origin and biological function of tolyporphins, our research has focused on studying the cyanobacterial strain, about which almost nothing has been previously reported. We find that the HT-58-2 culture is composed of the cyanobacterium and a community of associated bacteria, complicating the question of which organisms make tolyporphins. Elucidation of the cyanobacterial genome revealed an intriguing gene cluster that contains tetrapyrrole biosynthesis genes and a collection of unknown genes, suggesting that the cluster may be responsible for tolyporphin production. Knowledge of the genome and the gene cluster sharply focuses research to identify related cyanobacterial producers of tolyporphins and delineate the tolyporphin biosynthetic pathway. Copyright © 2017 American Society for Microbiology.
Genome Sequence and Composition of a Tolyporphin-Producing Cyanobacterium-Microbial Community
Hughes, Rebecca-Ayme; Zhang, Yunlong; Zhang, Ran; Williams, Philip G.
2017-01-01
ABSTRACT The cyanobacterial culture HT-58-2 was originally described as a strain of Tolypothrix nodosa with the ability to produce tolyporphins, which comprise a family of distinct tetrapyrrole macrocycles with reported efflux pump inhibition properties. Upon reviving the culture from what was thought to be a nonextant collection, studies of culture conditions, strain characterization, phylogeny, and genomics have been undertaken. Here, HT-58-2 was shown by 16S rRNA analysis to closely align with Brasilonema strains and not with Tolypothrix isolates. Light, fluorescence, and scanning electron microscopy revealed cyanobacterium filaments that are decorated with attached bacteria and associated with free bacteria. Metagenomic surveys of HT-58-2 cultures revealed a diversity of bacteria dominated by Erythrobacteraceae, 97% of which are Porphyrobacter species. A dimethyl sulfoxide washing procedure was found to yield enriched cyanobacterial DNA (presumably by removing community bacteria) and sequence data sufficient for genome assembly. The finished, closed HT-58-2Cyano genome consists of 7.85 Mbp (42.6% G+C) and contains 6,581 genes. All genes for biosynthesis of tetrapyrroles (e.g., heme, chlorophyll a, and phycocyanobilin) and almost all for cobalamin were identified dispersed throughout the chromosome. Among the 6,177 protein-encoding genes, coding sequences (CDSs) for all but two of the eight enzymes for conversion of glutamic acid to protoporphyrinogen IX also were found within one major gene cluster. The cluster also includes 10 putative genes (and one hypothetical gene) encoding proteins with domains for a glycosyltransferase, two cytochrome P450 enzymes, and a flavin adenine dinucleotide (FAD)-binding protein. The composition of the gene cluster suggests a possible role in tolyporphin biosynthesis. IMPORTANCE A worldwide search more than 25 years ago for cyanobacterial natural products with anticancer activity identified a culture (HT-58-2) from Micronesia that produces tolyporphins. Tolyporphins are tetrapyrroles, like chlorophylls, but have several profound structural differences that reside outside the bounds of known biosynthetic pathways. To begin probing the biosynthetic origin and biological function of tolyporphins, our research has focused on studying the cyanobacterial strain, about which almost nothing has been previously reported. We find that the HT-58-2 culture is composed of the cyanobacterium and a community of associated bacteria, complicating the question of which organisms make tolyporphins. Elucidation of the cyanobacterial genome revealed an intriguing gene cluster that contains tetrapyrrole biosynthesis genes and a collection of unknown genes, suggesting that the cluster may be responsible for tolyporphin production. Knowledge of the genome and the gene cluster sharply focuses research to identify related cyanobacterial producers of tolyporphins and delineate the tolyporphin biosynthetic pathway. PMID:28754701
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.
VanBuren, Robert; Bryant, Doug; Edger, Patrick P; Tang, Haibao; Burgess, Diane; Challabathula, Dinakar; Spittle, Kristi; Hall, Richard; Gu, Jenny; Lyons, Eric; Freeling, Michael; Bartels, Dorothea; Ten Hallers, Boudewijn; Hastie, Alex; Michael, Todd P; Mockler, Todd C
2015-11-26
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.
The first genome sequences of human bocaviruses from Vietnam
Thanh, Tran Tan; Van, Hoang Minh Tu; Hong, Nguyen Thi Thu; Nhu, Le Nguyen Truc; Anh, Nguyen To; Tuan, Ha Manh; Hien, Ho Van; Tuong, Nguyen Manh; Kien, Trinh Trung; Khanh, Truong Huu; Nhan, Le Nguyen Thanh; Hung, Nguyen Thanh; Chau, Nguyen Van Vinh; Thwaites, Guy; van Doorn, H. Rogier; Tan, Le Van
2017-01-01
As part of an ongoing effort to generate complete genome sequences of hand, foot and mouth disease-causing enteroviruses directly from clinical specimens, two complete coding sequences and two partial genomic sequences of human bocavirus 1 (n=3) and 2 (n=1) were co-amplified and sequenced, representing the first genome sequences of human bocaviruses from Vietnam. The sequences may aid future study aiming at understanding the evolution of the virus. PMID:28090592
Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.
Nakano, Kazuma; Shiroma, Akino; Shimoji, Makiko; Tamotsu, Hinako; Ashimine, Noriko; Ohki, Shun; Shinzato, Misuzu; Minami, Maiko; Nakanishi, Tetsuhiro; Teruya, Kuniko; Satou, Kazuhito; Hirano, Takashi
2017-07-01
PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II's sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.
Su, Aiguo; Geng, Jianing; Grover, Corrinne E.; Hu, Songnian; Hua, Jinping
2013-01-01
Background Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. Methodology/Principal Findings We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. Conclusion The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species. PMID:23940520
Liu, Guozheng; Cao, Dandan; Li, Shuangshuang; Su, Aiguo; Geng, Jianing; Grover, Corrinne E; Hu, Songnian; Hua, Jinping
2013-01-01
Mitochondria are the main manufacturers of cellular ATP in eukaryotes. The plant mitochondrial genome contains large number of foreign DNA and repeated sequences undergone frequently intramolecular recombination. Upland Cotton (Gossypium hirsutum L.) is one of the main natural fiber crops and also an important oil-producing plant in the world. Sequencing of the cotton mitochondrial (mt) genome could be helpful for the evolution research of plant mt genomes. We utilized 454 technology for sequencing and combined with Fosmid library of the Gossypium hirsutum mt genome screening and positive clones sequencing and conducted a series of evolutionary analysis on Cycas taitungensis and 24 angiosperms mt genomes. After data assembling and contigs joining, the complete mitochondrial genome sequence of G. hirsutum was obtained. The completed G.hirsutum mt genome is 621,884 bp in length, and contained 68 genes, including 35 protein genes, four rRNA genes and 29 tRNA genes. Five gene clusters are found conserved in all plant mt genomes; one and four clusters are specifically conserved in monocots and dicots, respectively. Homologous sequences are distributed along the plant mt genomes and species closely related share the most homologous sequences. For species that have both mt and chloroplast genome sequences available, we checked the location of cp-like migration and found several fragments closely linked with mitochondrial genes. The G. hirsutum mt genome possesses most of the common characters of higher plant mt genomes. The existence of syntenic gene clusters, as well as the conservation of some intergenic sequences and genic content among the plant mt genomes suggest that evolution of mt genomes is consistent with plant taxonomy but independent among different species.
The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences
2010-01-01
Background In today's age of genomic discovery, no attempt has been made to comprehensively sequence a gymnosperm genome. The largest genus in the coniferous family Pinaceae is Pinus, whose 110-120 species have extremely large genomes (c. 20-40 Gb, 2N = 24). The size and complexity of these genomes have prompted much speculation as to the feasibility of completing a conifer genome sequence. Conifer genomes are reputed to be highly repetitive, but there is little information available on the nature and identity of repetitive units in gymnosperms. The pines have extensive genetic resources, with approximately 329000 ESTs from eleven species and genetic maps in eight species, including a dense genetic map of the twelve linkage groups in Pinus taeda. Results We present here the Sanger sequence and annotation of ten P. taeda BAC clones and Genome Analyzer II whole genome shotgun (WGS) sequences representing 7.5% of the genome. Computational annotation of ten BACs predicts three putative protein-coding genes and at least fifteen likely pseudogenes in nearly one megabase of sequence. We found three conifer-specific LTR retroelements in the BACs, and tentatively identified at least 15 others based on evidence from the distantly related angiosperms. Alignment of WGS sequences to the BACs indicates that 80% of BAC sequences have similar copies (≥ 75% nucleotide identity) elsewhere in the genome, but only 23% have identical copies (99% identity). The three most common repetitive elements in the genome were identified and, when combined, represent less than 5% of the genome. Conclusions This study indicates that the majority of repeats in the P. taeda genome are 'novel' and will therefore require additional BAC or genomic sequencing for accurate characterization. The pine genome contains a very large number of diverged and probably defunct repetitive elements. This study also provides new evidence that sequencing a pine genome using a WGS approach is a feasible goal. PMID:20609256
O'Brien, Heath E; Gong, Yunchen; Fung, Pauline; Wang, Pauline W; Guttman, David S
2011-01-01
Next-generation genomic technology has both greatly accelerated the pace of genome research as well as increased our reliance on draft genome sequences. While groups such as the Genomics Standards Consortium have made strong efforts to promote genome standards there is a still a general lack of uniformity among published draft genomes, leading to challenges for downstream comparative analyses. This lack of uniformity is a particular problem when using standard draft genomes that frequently have large numbers of low-quality sequencing tracts. Here we present a proposal for an "enhanced-quality draft" genome that identifies at least 95% of the coding sequences, thereby effectively providing a full accounting of the genic component of the genome. Enhanced-quality draft genomes are easily attainable through a combination of small- and large-insert next-generation, paired-end sequencing. We illustrate the generation of an enhanced-quality draft genome by re-sequencing the plant pathogenic bacterium Pseudomonas syringae pv. phaseolicola 1448A (Pph 1448A), which has a published, closed genome sequence of 5.93 Mbp. We use a combination of Illumina paired-end and mate-pair sequencing, and surprisingly find that de novo assemblies with 100x paired-end coverage and mate-pair sequencing with as low as low as 2-5x coverage are substantially better than assemblies based on higher coverage. The rapid and low-cost generation of large numbers of enhanced-quality draft genome sequences will be of particular value for microbial diagnostics and biosecurity, which rely on precise discrimination of potentially dangerous clones from closely related benign strains.
ERIC Educational Resources Information Center
Taylor, D. Leland; Campbell, A. Malcolm; Heyer, Laurie J.
2013-01-01
Next-generation sequencing technologies have greatly reduced the cost of sequencing genomes. With the current sequencing technology, a genome is broken into fragments and sequenced, producing millions of "reads." A computer algorithm pieces these reads together in the genome assembly process. PHAST is a set of online modules…
Exome-wide DNA capture and next generation sequencing in domestic and wild species.
Cosart, Ted; Beja-Pereira, Albano; Chen, Shanyuan; Ng, Sarah B; Shendure, Jay; Luikart, Gordon
2011-07-05
Gene-targeted and genome-wide markers are crucial to advance evolutionary biology, agriculture, and biodiversity conservation by improving our understanding of genetic processes underlying adaptation and speciation. Unfortunately, for eukaryotic species with large genomes it remains costly to obtain genome sequences and to develop genome resources such as genome-wide SNPs. A method is needed to allow gene-targeted, next-generation sequencing that is flexible enough to include any gene or number of genes, unlike transcriptome sequencing. Such a method would allow sequencing of many individuals, avoiding ascertainment bias in subsequent population genetic analyses.We demonstrate the usefulness of a recent technology, exon capture, for genome-wide, gene-targeted marker discovery in species with no genome resources. We use coding gene sequences from the domestic cow genome sequence (Bos taurus) to capture (enrich for), and subsequently sequence, thousands of exons of B. taurus, B. indicus, and Bison bison (wild bison). Our capture array has probes for 16,131 exons in 2,570 genes, including 203 candidate genes with known function and of interest for their association with disease and other fitness traits. We successfully sequenced and mapped exon sequences from across the 29 autosomes and X chromosome in the B. taurus genome sequence. Exon capture and high-throughput sequencing identified thousands of putative SNPs spread evenly across all reference chromosomes, in all three individuals, including hundreds of SNPs in our targeted candidate genes. This study shows exon capture can be customized for SNP discovery in many individuals and for non-model species without genomic resources. Our captured exome subset was small enough for affordable next-generation sequencing, and successfully captured exons from a divergent wild species using the domestic cow genome as reference.
Mosaic Graphs and Comparative Genomics in Phage Communities
Belcaid, Mahdi; Bergeron, Anne
2010-01-01
Abstract Comparing the genomes of two closely related viruses often produces mosaics where nearly identical sequences alternate with sequences that are unique to each genome. When several closely related genomes are compared, the unique sequences are likely to be shared with third genomes, leading to virus mosaic communities. Here we present comparative analysis of sets of Staphylococcus aureus phages that share large identical sequences with up to three other genomes, and with different partners along their genomes. We introduce mosaic graphs to represent these complex recombination events, and use them to illustrate the breath and depth of sequence sharing: some genomes are almost completely made up of shared sequences, while genomes that share very large identical sequences can adopt alternate functional modules. Mosaic graphs also allow us to identify breakpoints that could eventually be used for the construction of recombination networks. These findings have several implications on phage metagenomics assembly, on the horizontal gene transfer paradigm, and more generally on the understanding of the composition and evolutionary dynamics of virus communities. PMID:20874413
Single-cell genome sequencing at ultra-high-throughput with microfluidic droplet barcoding.
Lan, Freeman; Demaree, Benjamin; Ahmed, Noorsher; Abate, Adam R
2017-07-01
The application of single-cell genome sequencing to large cell populations has been hindered by technical challenges in isolating single cells during genome preparation. Here we present single-cell genomic sequencing (SiC-seq), which uses droplet microfluidics to isolate, fragment, and barcode the genomes of single cells, followed by Illumina sequencing of pooled DNA. We demonstrate ultra-high-throughput sequencing of >50,000 cells per run in a synthetic community of Gram-negative and Gram-positive bacteria and fungi. The sequenced genomes can be sorted in silico based on characteristic sequences. We use this approach to analyze the distributions of antibiotic-resistance genes, virulence factors, and phage sequences in microbial communities from an environmental sample. The ability to routinely sequence large populations of single cells will enable the de-convolution of genetic heterogeneity in diverse cell populations.
Nowrousian, Minou; Stajich, Jason E.; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D.; Pöggeler, Stefanie; Read, Nick D.; Seiler, Stephan; Smith, Kristina M.; Zickler, Denise; Kück, Ulrich; Freitag, Michael
2010-01-01
Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30–90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in ∼4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology. PMID:20386741
Nowrousian, Minou; Stajich, Jason E; Chu, Meiling; Engh, Ines; Espagne, Eric; Halliday, Karen; Kamerewerd, Jens; Kempken, Frank; Knab, Birgit; Kuo, Hsiao-Che; Osiewacz, Heinz D; Pöggeler, Stefanie; Read, Nick D; Seiler, Stephan; Smith, Kristina M; Zickler, Denise; Kück, Ulrich; Freitag, Michael
2010-04-08
Filamentous fungi are of great importance in ecology, agriculture, medicine, and biotechnology. Thus, it is not surprising that genomes for more than 100 filamentous fungi have been sequenced, most of them by Sanger sequencing. While next-generation sequencing techniques have revolutionized genome resequencing, e.g. for strain comparisons, genetic mapping, or transcriptome and ChIP analyses, de novo assembly of eukaryotic genomes still presents significant hurdles, because of their large size and stretches of repetitive sequences. Filamentous fungi contain few repetitive regions in their 30-90 Mb genomes and thus are suitable candidates to test de novo genome assembly from short sequence reads. Here, we present a high-quality draft sequence of the Sordaria macrospora genome that was obtained by a combination of Illumina/Solexa and Roche/454 sequencing. Paired-end Solexa sequencing of genomic DNA to 85-fold coverage and an additional 10-fold coverage by single-end 454 sequencing resulted in approximately 4 Gb of DNA sequence. Reads were assembled to a 40 Mb draft version (N50 of 117 kb) with the Velvet assembler. Comparative analysis with Neurospora genomes increased the N50 to 498 kb. The S. macrospora genome contains even fewer repeat regions than its closest sequenced relative, Neurospora crassa. Comparison with genomes of other fungi showed that S. macrospora, a model organism for morphogenesis and meiosis, harbors duplications of several genes involved in self/nonself-recognition. Furthermore, S. macrospora contains more polyketide biosynthesis genes than N. crassa. Phylogenetic analyses suggest that some of these genes may have been acquired by horizontal gene transfer from a distantly related ascomycete group. Our study shows that, for typical filamentous fungi, de novo assembly of genomes from short sequence reads alone is feasible, that a mixture of Solexa and 454 sequencing substantially improves the assembly, and that the resulting data can be used for comparative studies to address basic questions of fungal biology.
Newborn Sequencing in Genomic Medicine and Public Health
Agrawal, Pankaj B.; Bailey, Donald B.; Beggs, Alan H.; Brenner, Steven E.; Brower, Amy M.; Cakici, Julie A.; Ceyhan-Birsoy, Ozge; Chan, Kee; Chen, Flavia; Currier, Robert J.; Dukhovny, Dmitry; Green, Robert C.; Harris-Wai, Julie; Holm, Ingrid A.; Iglesias, Brenda; Joseph, Galen; Kingsmore, Stephen F.; Koenig, Barbara A.; Kwok, Pui-Yan; Lantos, John; Leeder, Steven J.; Lewis, Megan A.; McGuire, Amy L.; Milko, Laura V.; Mooney, Sean D.; Parad, Richard B.; Pereira, Stacey; Petrikin, Joshua; Powell, Bradford C.; Powell, Cynthia M.; Puck, Jennifer M.; Rehm, Heidi L.; Risch, Neil; Roche, Myra; Shieh, Joseph T.; Veeraraghavan, Narayanan; Watson, Michael S.; Willig, Laurel; Yu, Timothy W.; Urv, Tiina; Wise, Anastasia L.
2017-01-01
The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening. PMID:28096516
Bai, Yu; Iwasaki, Yuki; Kanaya, Shigehiko; Zhao, Yue; Ikemura, Toshimichi
2014-01-01
With remarkable increase of genomic sequence data of a wide range of species, novel tools are needed for comprehensive analyses of the big sequence data. Self-Organizing Map (SOM) is an effective tool for clustering and visualizing high-dimensional data such as oligonucleotide composition on one map. By modifying the conventional SOM, we have previously developed Batch-Learning SOM (BLSOM), which allows classification of sequence fragments according to species, solely depending on the oligonucleotide composition. In the present study, we introduce the oligonucleotide BLSOM used for characterization of vertebrate genome sequences. We first analyzed pentanucleotide compositions in 100 kb sequences derived from a wide range of vertebrate genomes and then the compositions in the human and mouse genomes in order to investigate an efficient method for detecting differences between the closely related genomes. BLSOM can recognize the species-specific key combination of oligonucleotide frequencies in each genome, which is called a "genome signature," and the specific regions specifically enriched in transcription-factor-binding sequences. Because the classification and visualization power is very high, BLSOM is an efficient powerful tool for extracting a wide range of information from massive amounts of genomic sequences (i.e., big sequence data).
2005-01-01
Sequencing of the human genome has ushered in a new era of biology. The technologies developed to facilitate the sequencing of the human genome are now being applied to the sequencing of other genomes. In 2004, a partnership was formed between Washington University School of Medicine Genome Sequencing Center's Outreach Program and Washington University Department of Biology Science Outreach to create a video tour depicting the processes involved in large-scale sequencing. “Sequencing a Genome: Inside the Washington University Genome Sequencing Center” is a tour of the laboratory that follows the steps in the sequencing pipeline, interspersed with animated explanations of the scientific procedures used at the facility. Accompanying interviews with the staff illustrate different entry levels for a career in genome science. This video project serves as an example of how research and academic institutions can provide teachers and students with access and exposure to innovative technologies at the forefront of biomedical research. Initial feedback on the video from undergraduate students, high school teachers, and high school students provides suggestions for use of this video in a classroom setting to supplement present curricula. PMID:16341256
From Conventional to Next Generation Sequencing of Epstein-Barr Virus Genomes.
Kwok, Hin; Chiang, Alan Kwok Shing
2016-02-24
Genomic sequences of Epstein-Barr virus (EBV) have been of interest because the virus is associated with cancers, such as nasopharyngeal carcinoma, and conditions such as infectious mononucleosis. The progress of whole-genome EBV sequencing has been limited by the inefficiency and cost of the first-generation sequencing technology. With the advancement of next-generation sequencing (NGS) and target enrichment strategies, increasing number of EBV genomes has been published. These genomes were sequenced using different approaches, either with or without EBV DNA enrichment. This review provides an overview of the EBV genomes published to date, and a description of the sequencing technology and bioinformatic analyses employed in generating these sequences. We further explored ways through which the quality of sequencing data can be improved, such as using DNA oligos for capture hybridization, and longer insert size and read length in the sequencing runs. These advances will enable large-scale genomic sequencing of EBV which will facilitate a better understanding of the genetic variations of EBV in different geographic regions and discovery of potentially pathogenic variants in specific diseases.
Initial sequencing and comparative analysis of the mouse genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waterston, Robert H.; Lindblad-Toh, Kerstin; Birney, Ewan
2002-12-15
The sequence of the mouse genome is a key informational tool for understanding the contents of the human genome and a key experimental tool for biomedical research. Here, we report the results of an international collaboration to produce a high-quality draft sequence of the mouse genome. We also present an initial comparative analysis of the mouse and human genomes, describing some of the insights that can be gleaned from the two sequences. We discuss topics including the analysis of the evolutionary forces shaping the size, structure and sequence of the genomes; the conservation of large-scale synteny across most of themore » genomes; the much lower extent of sequence orthology covering less than half of the genomes; the proportions of the genomes under selection; the number of protein-coding genes; the expansion of gene families related to reproduction and immunity; the evolution of proteins; and the identification of intraspecies polymorphism.« less
Tapping the promise of genomics in species with complex, nonmodel genomes.
Hirsch, Candice N; Buell, C Robin
2013-01-01
Genomics is enabling a renaissance in all disciplines of plant biology. However, many plant genomes are complex and remain recalcitrant to current genomic technologies. The complexities of these nonmodel plant genomes are attributable to gene and genome duplication, heterozygosity, ploidy, and/or repetitive sequences. Methods are available to simplify the genome and reduce these barriers, including inbreeding and genome reduction, making these species amenable to current sequencing and assembly methods. Some, but not all, of the complexities in nonmodel genomes can be bypassed by sequencing the transcriptome rather than the genome. Additionally, comparative genomics approaches, which leverage phylogenetic relatedness, can aid in the interpretation of complex genomes. Although there are limitations in accessing complex nonmodel plant genomes using current sequencing technologies, genome manipulation and resourceful analyses can allow access to even the most recalcitrant plant genomes.
Genome-wide characterization of centromeric satellites from multiple mammalian genomes.
Alkan, Can; Cardone, Maria Francesca; Catacchio, Claudia Rita; Antonacci, Francesca; O'Brien, Stephen J; Ryder, Oliver A; Purgato, Stefania; Zoli, Monica; Della Valle, Giuliano; Eichler, Evan E; Ventura, Mario
2011-01-01
Despite its importance in cell biology and evolution, the centromere has remained the final frontier in genome assembly and annotation due to its complex repeat structure. However, isolation and characterization of the centromeric repeats from newly sequenced species are necessary for a complete understanding of genome evolution and function. In recent years, various genomes have been sequenced, but the characterization of the corresponding centromeric DNA has lagged behind. Here, we present a computational method (RepeatNet) to systematically identify higher-order repeat structures from unassembled whole-genome shotgun sequence and test whether these sequence elements correspond to functional centromeric sequences. We analyzed genome datasets from six species of mammals representing the diversity of the mammalian lineage, namely, horse, dog, elephant, armadillo, opossum, and platypus. We define candidate monomer satellite repeats and demonstrate centromeric localization for five of the six genomes. Our analysis revealed the greatest diversity of centromeric sequences in horse and dog in contrast to elephant and armadillo, which showed high-centromeric sequence homogeneity. We could not isolate centromeric sequences within the platypus genome, suggesting that centromeres in platypus are not enriched in satellite DNA. Our method can be applied to the characterization of thousands of other vertebrate genomes anticipated for sequencing in the near future, providing an important tool for annotation of centromeres.
Parents' interest in whole-genome sequencing of newborns.
Goldenberg, Aaron J; Dodson, Daniel S; Davis, Matthew M; Tarini, Beth A
2014-01-01
The aim of this study was to assess parents' interest in whole-genome sequencing for newborns. We conducted a survey of a nationally representative sample of 1,539 parents about their interest in whole-genome sequencing of newborns. Participants were randomly presented with one of two scenarios that differed in the venue of testing: one offered whole-genome sequencing through a state newborn screening program, whereas the other offered whole-genome sequencing in a pediatrician's office. Overall interest in having future newborns undergo whole-genome sequencing was generally high among parents. If whole-genome sequencing were offered through a state's newborn-screening program, 74% of parents were either definitely or somewhat interested in utilizing this technology. If offered in a pediatrician's office, 70% of parents were either definitely or somewhat interested. Parents in both groups most frequently identified test accuracy and the ability to prevent a child from developing a disease as "very important" in making a decision to have a newborn's whole genome sequenced. These data may help health departments and children's health-care providers anticipate parents' level of interest in genomic screening for newborns. As whole-genome sequencing is integrated into clinical and public health services, these findings may inform the development of educational strategies and outreach messages for parents.
Coding Complete Genome for the Mogiana Tick Virus, a Jingmenvirus Isolated from Ticks in Brazil
2017-05-04
sequences for all four genome segments. We downloaded the raw Illumina sequence reads from the NCBI Short Read Archive (GenBank...MGTV genome segments through sequence similarity (BLASTN) to the published genome of Jingmen tick virus (JMTV) isolate SY84 (GenBank: KJ001579-KJ001582...2014. Standards for sequencing viral genomes in the era of high-throughput sequencing . MBio 5:e01360–14. 8. Bankevich A, Nurk S, Antipov
A one-page summary report of genome sequencing for the healthy adult.
Vassy, Jason L; McLaughlin, Heather M; McLaughlin, Heather L; MacRae, Calum A; Seidman, Christine E; Lautenbach, Denise; Krier, Joel B; Lane, William J; Kohane, Isaac S; Murray, Michael F; McGuire, Amy L; Rehm, Heidi L; Green, Robert C
2015-01-01
As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to nongeneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from 10 healthy participants in a study of genome sequencing in primary care. © 2015 S. Karger AG, Basel.
A One-Page Summary Report of Genome Sequencing for the Healthy Adult
Vassy, Jason L.; McLaughlin, Heather M.; MacRae, Calum A.; Seidman, Christine E.; Lautenbach, Denise; Krier, Joel B.; Lane, William J.; Kohane, Isaac S.; Murray, Michael F.; McGuire, Amy L.; Rehm, Heidi L.; Green, Robert C.
2015-01-01
As genome sequencing technologies increasingly enter medical practice, genetics laboratories must communicate sequencing results effectively to non-geneticist physicians. We describe the design and delivery of a clinical genome sequencing report, including a one-page summary suitable for interpretation by primary care physicians. To illustrate our preliminary experience with this report, we summarize the genomic findings from ten healthy patient participants in a study of genome sequencing in primary care. PMID:25612602
Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard
2013-01-01
Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce. PMID:23409088
Matvienko, Marta; Kozik, Alexander; Froenicke, Lutz; Lavelle, Dean; Martineau, Belinda; Perroud, Bertrand; Michelmore, Richard
2013-01-01
Several applications of high throughput genome and transcriptome sequencing would benefit from a reduction of the high-copy-number sequences in the libraries being sequenced and analyzed, particularly when applied to species with large genomes. We adapted and analyzed the consequences of a method that utilizes a thermostable duplex-specific nuclease for reducing the high-copy components in transcriptomic and genomic libraries prior to sequencing. This reduces the time, cost, and computational effort of obtaining informative transcriptomic and genomic sequence data for both fully sequenced and non-sequenced genomes. It also reduces contamination from organellar DNA in preparations of nuclear DNA. Hybridization in the presence of 3 M tetramethylammonium chloride (TMAC), which equalizes the rates of hybridization of GC and AT nucleotide pairs, reduced the bias against sequences with high GC content. Consequences of this method on the reduction of high-copy and enrichment of low-copy sequences are reported for Arabidopsis and lettuce.
Personal Genome Sequencing in Ostensibly Healthy Individuals and the PeopleSeq Consortium
Linderman, Michael D.; Nielsen, Daiva E.; Green, Robert C.
2016-01-01
Thousands of ostensibly healthy individuals have had their exome or genome sequenced, but a much smaller number of these individuals have received any personal genomic results from that sequencing. We term those projects in which ostensibly healthy participants can receive sequencing-derived genetic findings and may also have access to their genomic data as participatory predispositional personal genome sequencing (PPGS). Here we are focused on genome sequencing applied in a pre-symptomatic context and so define PPGS to exclude diagnostic genome sequencing intended to identify the molecular cause of suspected or diagnosed genetic disease. In this report we describe the design of completed and underway PPGS projects, briefly summarize the results reported to date and introduce the PeopleSeq Consortium, a newly formed collaboration of PPGS projects designed to collect much-needed longitudinal outcome data. PMID:27023617
Research progress of plant population genomics based on high-throughput sequencing.
Wang, Yun-sheng
2016-08-01
Population genomics, a new paradigm for population genetics, combine the concepts and techniques of genomics with the theoretical system of population genetics and improve our understanding of microevolution through identification of site-specific effect and genome-wide effects using genome-wide polymorphic sites genotypeing. With the appearance and improvement of the next generation high-throughput sequencing technology, the numbers of plant species with complete genome sequences increased rapidly and large scale resequencing has also been carried out in recent years. Parallel sequencing has also been done in some plant species without complete genome sequences. These studies have greatly promoted the development of population genomics and deepened our understanding of the genetic diversity, level of linking disequilibium, selection effect, demographical history and molecular mechanism of complex traits of relevant plant population at a genomic level. In this review, I briely introduced the concept and research methods of population genomics and summarized the research progress of plant population genomics based on high-throughput sequencing. I also discussed the prospect as well as existing problems of plant population genomics in order to provide references for related studies.
Genomic Diversity and Evolution of the Lyssaviruses
Delmas, Olivier; Holmes, Edward C.; Talbi, Chiraz; Larrous, Florence; Dacheux, Laurent; Bouchier, Christiane; Bourhy, Hervé
2008-01-01
Lyssaviruses are RNA viruses with single-strand, negative-sense genomes responsible for rabies-like diseases in mammals. To date, genomic and evolutionary studies have most often utilized partial genome sequences, particularly of the nucleoprotein and glycoprotein genes, with little consideration of genome-scale evolution. Herein, we report the first genomic and evolutionary analysis using complete genome sequences of all recognised lyssavirus genotypes, including 14 new complete genomes of field isolates from 6 genotypes and one genotype that is completely sequenced for the first time. In doing so we significantly increase the extent of genome sequence data available for these important viruses. Our analysis of these genome sequence data reveals that all lyssaviruses have the same genomic organization. A phylogenetic analysis reveals strong geographical structuring, with the greatest genetic diversity in Africa, and an independent origin for the two known genotypes that infect European bats. We also suggest that multiple genotypes may exist within the diversity of viruses currently classified as ‘Lagos Bat’. In sum, we show that rigorous phylogenetic techniques based on full length genome sequence provide the best discriminatory power for genotype classification within the lyssaviruses. PMID:18446239
Fungal Genomics for Energy and Environment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.
2013-03-11
Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Sequencing Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for usersmore » to nominate new species for sequencing. Over 200 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less
Serendipitous discovery of Wolbachia genomes in multiple Drosophila species.
Salzberg, Steven L; Dunning Hotopp, Julie C; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C
2005-01-01
The Trace Archive is a repository for the raw, unanalyzed data generated by large-scale genome sequencing projects. The existence of this data offers scientists the possibility of discovering additional genomic sequences beyond those originally sequenced. In particular, if the source DNA for a sequencing project came from a species that was colonized by another organism, then the project may yield substantial amounts of genomic DNA, including near-complete genomes, from the symbiotic or parasitic organism. By searching the publicly available repository of DNA sequencing trace data, we discovered three new species of the bacterial endosymbiont Wolbachia pipientis in three different species of fruit fly: Drosophila ananassae, D. simulans, and D. mojavensis. We extracted all sequences with partial matches to a previously sequenced Wolbachia strain and assembled those sequences using customized software. For one of the three new species, the data recovered were sufficient to produce an assembly that covers more than 95% of the genome; for a second species the data produce the equivalent of a 'light shotgun' sampling of the genome, covering an estimated 75-80% of the genome; and for the third species the data cover approximately 6-7% of the genome. The results of this study reveal an unexpected benefit of depositing raw data in a central genome sequence repository: new species can be discovered within this data. The differences between these three new Wolbachia genomes and the previously sequenced strain revealed numerous rearrangements and insertions within each lineage and hundreds of novel genes. The three new genomes, with annotation, have been deposited in GenBank.
Why Assembling Plant Genome Sequences Is So Challenging
Claros, Manuel Gonzalo; Bautista, Rocío; Guerrero-Fernández, Darío; Benzerki, Hicham; Seoane, Pedro; Fernández-Pozo, Noé
2012-01-01
In spite of the biological and economic importance of plants, relatively few plant species have been sequenced. Only the genome sequence of plants with relatively small genomes, most of them angiosperms, in particular eudicots, has been determined. The arrival of next-generation sequencing technologies has allowed the rapid and efficient development of new genomic resources for non-model or orphan plant species. But the sequencing pace of plants is far from that of animals and microorganisms. This review focuses on the typical challenges of plant genomes that can explain why plant genomics is less developed than animal genomics. Explanations about the impact of some confounding factors emerging from the nature of plant genomes are given. As a result of these challenges and confounding factors, the correct assembly and annotation of plant genomes is hindered, genome drafts are produced, and advances in plant genomics are delayed. PMID:24832233
Insights from Human/Mouse genome comparisons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pennacchio, Len A.
2003-03-30
Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestrymore » of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.« less
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.; ...
2015-11-11
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
It’s More Than Stamp Collecting: How Genome Sequencing Can Unify Biological Research
Richards, Stephen
2015-01-01
The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, whilst the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to “Big Science” survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. PMID:26003218
It's more than stamp collecting: how genome sequencing can unify biological research.
Richards, Stephen
2015-07-01
The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods that would allow for wide-ranging application of whole-genome analysis. Finally, I suggest that in addition to 'big science' survey initiatives to sequence the tree of life, a modified infrastructure-funding paradigm would better support reference genome sequence generation for research communities most in need. Copyright © 2015 Elsevier Ltd. All rights reserved.
2016-10-27
Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, USA 9 10 11 Running head: Complete Genome Sequence of Y. pestis strain Cadman...1 Complete Genome Sequence of Pigmentation Negative Yersinia pestis strain Cadman 1 2 3 Sean Lovetta, Kitty Chaseb, Galina Korolevaa, Gustavo...we report the genome sequence of Yersinia pestis strain Cadman, an attenuated strain 25 lacking the pgm locus. Y. pestis is the causative agent of
MIPS: a database for genomes and protein sequences.
Mewes, H W; Heumann, K; Kaps, A; Mayer, K; Pfeiffer, F; Stocker, S; Frishman, D
1999-01-01
The Munich Information Center for Protein Sequences (MIPS-GSF), Martinsried near Munich, Germany, develops and maintains genome oriented databases. It is commonplace that the amount of sequence data available increases rapidly, but not the capacity of qualified manual annotation at the sequence databases. Therefore, our strategy aims to cope with the data stream by the comprehensive application of analysis tools to sequences of complete genomes, the systematic classification of protein sequences and the active support of sequence analysis and functional genomics projects. This report describes the systematic and up-to-date analysis of genomes (PEDANT), a comprehensive database of the yeast genome (MYGD), a database reflecting the progress in sequencing the Arabidopsis thaliana genome (MATD), the database of assembled, annotated human EST clusters (MEST), and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). MIPS provides access through its WWW server (http://www.mips.biochem.mpg.de) to a spectrum of generic databases, including the above mentioned as well as a database of protein families (PROTFAM), the MITOP database, and the all-against-all FASTA database. PMID:9847138
Droege, Marcus; Hill, Brendon
2008-08-31
The Genome Sequencer FLX System (GS FLX), powered by 454 Sequencing, is a next-generation DNA sequencing technology featuring a unique mix of long reads, exceptional accuracy, and ultra-high throughput. It has been proven to be the most versatile of all currently available next-generation sequencing technologies, supporting many high-profile studies in over seven applications categories. GS FLX users have pursued innovative research in de novo sequencing, re-sequencing of whole genomes and target DNA regions, metagenomics, and RNA analysis. 454 Sequencing is a powerful tool for human genetics research, having recently re-sequenced the genome of an individual human, currently re-sequencing the complete human exome and targeted genomic regions using the NimbleGen sequence capture process, and detected low-frequency somatic mutations linked to cancer.
Newborn Sequencing in Genomic Medicine and Public Health.
Berg, Jonathan S; Agrawal, Pankaj B; Bailey, Donald B; Beggs, Alan H; Brenner, Steven E; Brower, Amy M; Cakici, Julie A; Ceyhan-Birsoy, Ozge; Chan, Kee; Chen, Flavia; Currier, Robert J; Dukhovny, Dmitry; Green, Robert C; Harris-Wai, Julie; Holm, Ingrid A; Iglesias, Brenda; Joseph, Galen; Kingsmore, Stephen F; Koenig, Barbara A; Kwok, Pui-Yan; Lantos, John; Leeder, Steven J; Lewis, Megan A; McGuire, Amy L; Milko, Laura V; Mooney, Sean D; Parad, Richard B; Pereira, Stacey; Petrikin, Joshua; Powell, Bradford C; Powell, Cynthia M; Puck, Jennifer M; Rehm, Heidi L; Risch, Neil; Roche, Myra; Shieh, Joseph T; Veeraraghavan, Narayanan; Watson, Michael S; Willig, Laurel; Yu, Timothy W; Urv, Tiina; Wise, Anastasia L
2017-02-01
The rapid development of genomic sequencing technologies has decreased the cost of genetic analysis to the extent that it seems plausible that genome-scale sequencing could have widespread availability in pediatric care. Genomic sequencing provides a powerful diagnostic modality for patients who manifest symptoms of monogenic disease and an opportunity to detect health conditions before their development. However, many technical, clinical, ethical, and societal challenges should be addressed before such technology is widely deployed in pediatric practice. This article provides an overview of the Newborn Sequencing in Genomic Medicine and Public Health Consortium, which is investigating the application of genome-scale sequencing in newborns for both diagnosis and screening. Copyright © 2017 by the American Academy of Pediatrics.
Mourembou, Gaël; Yasir, Muhammad; Azhar, Esam Ibraheem; Lagier, Jean Christophe; Bibi, Fehmida; Jiman-Fatani, Asif Ahmad; Helmy, Nayel; Robert, Catherine; Rathored, Jaishriram; Fournier, Pierre-Edouard; Raoult, Didier
2015-01-01
Abstract Microbial culturomics is a new field of omics sciences that examines the bacterial diversity of human gut coupled with a taxono-genomic strategy. Using microbial culturomics, we report here for the first time a novel Gram negative, catalase- and oxidase-negative, strict anaerobic bacilli named Beduini massiliensis gen. nov., sp nov. strain GM1 (= CSUR P1440 = DSM 100188), isolated from the stools of a female nomadic Bedouin from Saudi Arabia. With a length of 2,850,586 bp, the Beduini massiliensis genome exhibits a G + C content of 35.9%, and contains 2819 genes (2744 protein-coding and 75 RNA genes including 57 tRNA and 18 rRNA genes). It is composed of 6 scaffolds (composed of 6 contigs). A total of 1859 genes (67.75%) were assigned a putative function (by COGs or by NR blast). At least 1457 (53%) orthologous proteins were not shared with the closest phylogenetic species. 274 genes (10.0%) were identified as ORFans. These results show that microbial culturomics can dramatically improve the characterization of the human microbiota repertoire, deciphering new bacterial species and new genes. Further studies will clarify the geographic specificity and the putative role of these new microbes and their related functional genetic content in health and disease. Microbial culturomics is an emerging frontier of omics systems sciences and integrative biology and thus, warrants further consideration as part of the postgenomics methodology toolbox. PMID:26669711
Mourembou, Gaël; Yasir, Muhammad; Azhar, Esam Ibraheem; Lagier, Jean Christophe; Bibi, Fehmida; Jiman-Fatani, Asif Ahmad; Helmy, Nayel; Robert, Catherine; Rathored, Jaishriram; Fournier, Pierre-Edouard; Raoult, Didier; Million, Matthieu
2015-12-01
Microbial culturomics is a new field of omics sciences that examines the bacterial diversity of human gut coupled with a taxono-genomic strategy. Using microbial culturomics, we report here for the first time a novel Gram negative, catalase- and oxidase-negative, strict anaerobic bacilli named Beduini massiliensis gen. nov., sp nov. strain GM1 (= CSUR P1440 = DSM 100188), isolated from the stools of a female nomadic Bedouin from Saudi Arabia. With a length of 2,850,586 bp, the Beduini massiliensis genome exhibits a G + C content of 35.9%, and contains 2819 genes (2744 protein-coding and 75 RNA genes including 57 tRNA and 18 rRNA genes). It is composed of 6 scaffolds (composed of 6 contigs). A total of 1859 genes (67.75%) were assigned a putative function (by COGs or by NR blast). At least 1457 (53%) orthologous proteins were not shared with the closest phylogenetic species. 274 genes (10.0%) were identified as ORFans. These results show that microbial culturomics can dramatically improve the characterization of the human microbiota repertoire, deciphering new bacterial species and new genes. Further studies will clarify the geographic specificity and the putative role of these new microbes and their related functional genetic content in health and disease. Microbial culturomics is an emerging frontier of omics systems sciences and integrative biology and thus, warrants further consideration as part of the postgenomics methodology toolbox.
Nowrousian, Minou; Würtz, Christian; Pöggeler, Stefanie; Kück, Ulrich
2004-03-01
One of the most challenging parts of large scale sequencing projects is the identification of functional elements encoded in a genome. Recently, studies of genomes of up to six different Saccharomyces species have demonstrated that a comparative analysis of genome sequences from closely related species is a powerful approach to identify open reading frames and other functional regions within genomes [Science 301 (2003) 71, Nature 423 (2003) 241]. Here, we present a comparison of selected sequences from Sordaria macrospora to their corresponding Neurospora crassa orthologous regions. Our analysis indicates that due to the high degree of sequence similarity and conservation of overall genomic organization, S. macrospora sequence information can be used to simplify the annotation of the N. crassa genome.
Learn more about the special construction scheduling/sequencing requirements and procedures necessary to assure achievement of designed Indoor Air Quality (IAQ) levels for the completed project required by the EPA IAQ Program.
Multiplexed fragaria chloroplast genome sequencing
W. Njuguna; A. Liston; R. Cronn; N.V. Bassil
2010-01-01
A method to sequence multiple chloroplast genomes using ultra high throughput sequencing technologies was recently described. Complete chloroplast genome sequences can resolve phylogenetic relationships at low taxonomic levels and identify informative point mutations and indels. The objective of this research was to sequence multiple Fragaria...
2009-01-01
Background Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. Results We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. Conclusion We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes. PMID:19656416
Hamberger, Björn; Hall, Dawn; Yuen, Mack; Oddy, Claire; Hamberger, Britta; Keeling, Christopher I; Ritland, Carol; Ritland, Kermit; Bohlmann, Jörg
2009-08-06
Conifers are a large group of gymnosperm trees which are separated from the angiosperms by more than 300 million years of independent evolution. Conifer genomes are extremely large and contain considerable amounts of repetitive DNA. Currently, conifer sequence resources exist predominantly as expressed sequence tags (ESTs) and full-length (FL)cDNAs. There is no genome sequence available for a conifer or any other gymnosperm. Conifer defence-related genes often group into large families with closely related members. The goals of this study are to assess the feasibility of targeted isolation and sequence assembly of conifer BAC clones containing specific genes from two large gene families, and to characterize large segments of genomic DNA sequence for the first time from a conifer. We used a PCR-based approach to identify BAC clones for two target genes, a terpene synthase (3-carene synthase; 3CAR) and a cytochrome P450 (CYP720B4) from a non-arrayed genomic BAC library of white spruce (Picea glauca). Shotgun genomic fragments isolated from the BAC clones were sequenced to a depth of 15.6- and 16.0-fold coverage, respectively. Assembly and manual curation yielded sequence scaffolds of 172 kbp (3CAR) and 94 kbp (CYP720B4) long. Inspection of the genomic sequences revealed the intron-exon structures, the putative promoter regions and putative cis-regulatory elements of these genes. Sequences related to transposable elements (TEs), high complexity repeats and simple repeats were prevalent and comprised approximately 40% of the sequenced genomic DNA. An in silico simulation of the effect of sequencing depth on the quality of the sequence assembly provides direction for future efforts of conifer genome sequencing. We report the first targeted cloning, sequencing, assembly, and annotation of large segments of genomic DNA from a conifer. We demonstrate that genomic BAC clones for individual members of multi-member gene families can be isolated in a gene-specific fashion. The results of the present work provide important new information about the structure and content of conifer genomic DNA that will guide future efforts to sequence and assemble conifer genomes.
Whole-genome sequencing in bacteriology: state of the art
Dark, Michael J
2013-01-01
Over the last ten years, genome sequencing capabilities have expanded exponentially. There have been tremendous advances in sequencing technology, DNA sample preparation, genome assembly, and data analysis. This has led to advances in a number of facets of bacterial genomics, including metagenomics, clinical medicine, bacterial archaeology, and bacterial evolution. This review examines the strengths and weaknesses of techniques in bacterial genome sequencing, upcoming technologies, and assembly techniques, as well as highlighting recent studies that highlight new applications for bacterial genomics. PMID:24143115
USDA-ARS?s Scientific Manuscript database
The ARS Microbial Genome Sequence Database (http://199.133.98.43), a web-based database server, was established utilizing the BIGSdb (Bacterial Isolate Genomics Sequence Database) software package, developed at Oxford University, as a tool to manage multi-locus sequence data for the family Streptomy...
USDA-ARS?s Scientific Manuscript database
We report the complete genome sequence of Clavibacter michiganensis subsp. insidiosus R1-1 isolated in Minnesota, USA. The R1-1 genome, generated by de novo assembly of PacBio sequencing data, is the first complete genome sequence available for this subspecies....
Draft Genome Sequence of a Rare Smut Relative, Tilletiaria anomala UBC 951
Toome, Merje; Kuo, Alan; Henrissat, Bernard; ...
2014-06-12
We present the draft genome sequence of the smut fungus Tilletiaria anomala UBC 951 (Basidiomycota, Ustilaginomycotina). The sequenced genome size is 18.7 Mb, consisting of 289 scaffolds and a total of 6,810 predicted genes. This is the first genome sequence published for a fungus in the order Georgefisheriales (Exobasidiomycetes).
Insights into Conifer Giga-Genomes1
De La Torre, Amanda R.; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K.; Jansson, Stefan; Jones, Steven J.M.; Keeling, Christopher I.; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg
2014-01-01
Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world’s forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20–30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. PMID:25349325
Insights into conifer giga-genomes.
De La Torre, Amanda R; Birol, Inanc; Bousquet, Jean; Ingvarsson, Pär K; Jansson, Stefan; Jones, Steven J M; Keeling, Christopher I; MacKay, John; Nilsson, Ove; Ritland, Kermit; Street, Nathaniel; Yanchuk, Alvin; Zerbe, Philipp; Bohlmann, Jörg
2014-12-01
Insights from sequenced genomes of major land plant lineages have advanced research in almost every aspect of plant biology. Until recently, however, assembled genome sequences of gymnosperms have been missing from this picture. Conifers of the pine family (Pinaceae) are a group of gymnosperms that dominate large parts of the world's forests. Despite their ecological and economic importance, conifers seemed long out of reach for complete genome sequencing, due in part to their enormous genome size (20-30 Gb) and the highly repetitive nature of their genomes. Technological advances in genome sequencing and assembly enabled the recent publication of three conifer genomes: white spruce (Picea glauca), Norway spruce (Picea abies), and loblolly pine (Pinus taeda). These genome sequences revealed distinctive features compared with other plant genomes and may represent a window into the past of seed plant genomes. This Update highlights recent advances, remaining challenges, and opportunities in light of the publication of the first conifer and gymnosperm genomes. © 2014 American Society of Plant Biologists. All Rights Reserved.
Draft genome sequence of an aflatoxigenic Aspergillus species, A. bombycis
USDA-ARS?s Scientific Manuscript database
The genome of the A. bombycis Type strain was sequenced using a Personal Genome Machine, followed by annotation of its predicted genes. The genome size for A. bombycis was found to be approximately 37 Mb and contained 12,266 genes. This announcement introduces a sequenced genome for an aflatoxigenic...
Sato, Kengo; Kuroki, Yoko; Kumita, Wakako; Fujiyama, Asao; Toyoda, Atsushi; Kawai, Jun; Iriki, Atsushi; Sasaki, Erika; Okano, Hideyuki; Sakakibara, Yasubumi
2015-11-20
The first draft of the common marmoset (Callithrix jacchus) genome was published by the Marmoset Genome Sequencing and Analysis Consortium. The draft was based on whole-genome shotgun sequencing, and the current assembly version is Callithrix_jacches-3.2.1, but there still exist 187,214 undetermined gap regions and supercontigs and relatively short contigs that are unmapped to chromosomes in the draft genome. We performed resequencing and assembly of the genome of common marmoset by deep sequencing with high-throughput sequencing technology. Several different sequence runs using Illumina sequencing platforms were executed, and 181 Gbp of high-quality bases including mate-pairs with long insert lengths of 3, 8, 20, and 40 Kbp were obtained, that is, approximately 60× coverage. The resequencing significantly improved the MGSAC draft genome sequence. The N50 of the contigs, which is a statistical measure used to evaluate assembly quality, doubled. As a result, 51% of the contigs (total length: 299 Mbp) that were unmapped to chromosomes in the MGSAC draft were merged with chromosomal contigs, and the improved genome sequence helped to detect 5,288 new genes that are homologous to human cDNAs and the gaps in 5,187 transcripts of the Ensembl gene annotations were completely filled.
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas; ...
2017-08-08
Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas
Here, we present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a MetagenomeAssembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Genemore » Sequence (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
Windsor, Aaron J.; Schranz, M. Eric; Formanová, Nataša; Gebauer-Jung, Steffi; Bishop, John G.; Schnabelrauch, Domenica; Kroymann, Juergen; Mitchell-Olds, Thomas
2006-01-01
Comparative genomics provides insight into the evolutionary dynamics that shape discrete sequences as well as whole genomes. To advance comparative genomics within the Brassicaceae, we have end sequenced 23,136 medium-sized insert clones from Boechera stricta, a wild relative of Arabidopsis (Arabidopsis thaliana). A significant proportion of these sequences, 18,797, are nonredundant and display highly significant similarity (BLASTn e-value ≤ 10−30) to low copy number Arabidopsis genomic regions, including more than 9,000 annotated coding sequences. We have used this dataset to identify orthologous gene pairs in the two species and to perform a global comparison of DNA regions 5′ to annotated coding regions. On average, the 500 nucleotides upstream to coding sequences display 71.4% identity between the two species. In a similar analysis, 61.4% identity was observed between 5′ noncoding sequences of Brassica oleracea and Arabidopsis, indicating that regulatory regions are not as diverged among these lineages as previously anticipated. By mapping the B. stricta end sequences onto the Arabidopsis genome, we have identified nearly 2,000 conserved blocks of microsynteny (bracketing 26% of the Arabidopsis genome). A comparison of fully sequenced B. stricta inserts to their homologous Arabidopsis genomic regions indicates that indel polymorphisms >5 kb contribute substantially to the genome size difference observed between the two species. Further, we demonstrate that microsynteny inferred from end-sequence data can be applied to the rapid identification and cloning of genomic regions of interest from nonmodel species. These results suggest that among diploid relatives of Arabidopsis, small- to medium-scale shotgun sequencing approaches can provide rapid and cost-effective benefits to evolutionary and/or functional comparative genomic frameworks. PMID:16607030
2012-01-01
Background The complete sequences of chloroplast genomes provide wealthy information regarding the evolutionary history of species. With the advance of next-generation sequencing technology, the number of completely sequenced chloroplast genomes is expected to increase exponentially, powerful computational tools annotating the genome sequences are in urgent need. Results We have developed a web server CPGAVAS. The server accepts a complete chloroplast genome sequence as input. First, it predicts protein-coding and rRNA genes based on the identification and mapping of the most similar, full-length protein, cDNA and rRNA sequences by integrating results from Blastx, Blastn, protein2genome and est2genome programs. Second, tRNA genes and inverted repeats (IR) are identified using tRNAscan, ARAGORN and vmatch respectively. Third, it calculates the summary statistics for the annotated genome. Fourth, it generates a circular map ready for publication. Fifth, it can create a Sequin file for GenBank submission. Last, it allows the extractions of protein and mRNA sequences for given list of genes and species. The annotation results in GFF3 format can be edited using any compatible annotation editing tools. The edited annotations can then be uploaded to CPGAVAS for update and re-analyses repeatedly. Using known chloroplast genome sequences as test set, we show that CPGAVAS performs comparably to another application DOGMA, while having several superior functionalities. Conclusions CPGAVAS allows the semi-automatic and complete annotation of a chloroplast genome sequence, and the visualization, editing and analysis of the annotation results. It will become an indispensible tool for researchers studying chloroplast genomes. The software is freely accessible from http://www.herbalgenomics.org/cpgavas. PMID:23256920
Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay
2013-01-01
Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.
Large-scale contamination of microbial isolate genomes by Illumina PhiX control.
Mukherjee, Supratim; Huntemann, Marcel; Ivanova, Natalia; Kyrpides, Nikos C; Pati, Amrita
2015-01-01
With the rapid growth and development of sequencing technologies, genomes have become the new go-to for exploring solutions to some of the world's biggest challenges such as searching for alternative energy sources and exploration of genomic dark matter. However, progress in sequencing has been accompanied by its share of errors that can occur during template or library preparation, sequencing, imaging or data analysis. In this study we screened over 18,000 publicly available microbial isolate genome sequences in the Integrated Microbial Genomes database and identified more than 1000 genomes that are contaminated with PhiX, a control frequently used during Illumina sequencing runs. Approximately 10% of these genomes have been published in literature and 129 contaminated genomes were sequenced under the Human Microbiome Project. Raw sequence reads are prone to contamination from various sources and are usually eliminated during downstream quality control steps. Detection of PhiX contaminated genomes indicates a lapse in either the application or effectiveness of proper quality control measures. The presence of PhiX contamination in several publicly available isolate genomes can result in additional errors when such data are used in comparative genomics analyses. Such contamination of public databases have far-reaching consequences in the form of erroneous data interpretation and analyses, and necessitates better measures to proofread raw sequences before releasing them to the broader scientific community.
Wang, Xumin; Deng, Xin; Zhang, Xiaowei; Hu, Songnian; Yu, Jun
2012-01-01
The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage. PMID:22291979
Dessimoz, Christophe; Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro
2011-09-01
Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references.
Zoller, Stefan; Manousaki, Tereza; Qiu, Huan; Meyer, Axel; Kuraku, Shigehiro
2011-01-01
Recent development of deep sequencing technologies has facilitated de novo genome sequencing projects, now conducted even by individual laboratories. However, this will yield more and more genome sequences that are not well assembled, and will hinder thorough annotation when no closely related reference genome is available. One of the challenging issues is the identification of protein-coding sequences split into multiple unassembled genomic segments, which can confound orthology assignment and various laboratory experiments requiring the identification of individual genes. In this study, using the genome of a cartilaginous fish, Callorhinchus milii, as test case, we performed gene prediction using a model specifically trained for this genome. We implemented an algorithm, designated ESPRIT, to identify possible linkages between multiple protein-coding portions derived from a single genomic locus split into multiple unassembled genomic segments. We developed a validation framework based on an artificially fragmented human genome, improvements between early and recent mouse genome assemblies, comparison with experimentally validated sequences from GenBank, and phylogenetic analyses. Our strategy provided insights into practical solutions for efficient annotation of only partially sequenced (low-coverage) genomes. To our knowledge, our study is the first formulation of a method to link unassembled genomic segments based on proteomes of relatively distantly related species as references. PMID:21712341
Rius, Nuria; Guillén, Yolanda; Delprat, Alejandra; Kapusta, Aurélie; Feschotte, Cédric; Ruiz, Alfredo
2016-05-10
Many new Drosophila genomes have been sequenced in recent years using new-generation sequencing platforms and assembly methods. Transposable elements (TEs), being repetitive sequences, are often misassembled, especially in the genomes sequenced with short reads. Consequently, the mobile fraction of many of the new genomes has not been analyzed in detail or compared with that of other genomes sequenced with different methods, which could shed light into the understanding of genome and TE evolution. Here we compare the TE content of three genomes: D. buzzatii st-1, j-19, and D. mojavensis. We have sequenced a new D. buzzatii genome (j-19) that complements the D. buzzatii reference genome (st-1) already published, and compared their TE contents with that of D. mojavensis. We found an underestimation of TE sequences in Drosophila genus NGS-genomes when compared to Sanger-genomes. To be able to compare genomes sequenced with different technologies, we developed a coverage-based method and applied it to the D. buzzatii st-1 and j-19 genome. Between 10.85 and 11.16 % of the D. buzzatii st-1 genome is made up of TEs, between 7 and 7,5 % of D. buzzatii j-19 genome, while TEs represent 15.35 % of the D. mojavensis genome. Helitrons are the most abundant order in the three genomes. TEs in D. buzzatii are less abundant than in D. mojavensis, as expected according to the genome size and TE content positive correlation. However, TEs alone do not explain the genome size difference. TEs accumulate in the dot chromosomes and proximal regions of D. buzzatii and D. mojavensis chromosomes. We also report a significantly higher TE density in D. buzzatii and D. mojavensis X chromosomes, which is not expected under the current models. Our easy-to-use correction method allowed us to identify recently active families in D. buzzatii st-1 belonging to the LTR-retrotransposon superfamily Gypsy.
Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens.
Staats, Martijn; Erkens, Roy H J; van de Vossenberg, Bart; Wieringa, Jan J; Kraaijeveld, Ken; Stielow, Benjamin; Geml, József; Richardson, James E; Bakker, Freek T
2013-01-01
Unlocking the vast genomic diversity stored in natural history collections would create unprecedented opportunities for genome-scale evolutionary, phylogenetic, domestication and population genomic studies. Many researchers have been discouraged from using historical specimens in molecular studies because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today's next-generation sequencing (NGS) world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates. Here we show that using a standard multiplex and paired-end Illumina sequencing approach, genome-scale sequence data can be generated reliably from dry-preserved plant, fungal and insect specimens collected up to 115 years ago, and with minimal destructive sampling. Using a reference-based assembly approach, we were able to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana (Brassicaceae) herbarium specimen with high and uniform sequence coverage. Nuclear genome sequences of three fungal specimens of 22-82 years of age (Agaricus bisporus, Laccaria bicolor, Pleurotus ostreatus) were generated with 81.4-97.9% exome coverage. Complete organellar genome sequences were assembled for all specimens. Using de novo assembly we retrieved between 16.2-71.0% of coding sequence regions, and hence remain somewhat cautious about prospects for de novo genome assembly from historical specimens. Non-target sequence contaminations were observed in 2 of our insect museum specimens. We anticipate that future museum genomics projects will perhaps not generate entire genome sequences in all cases (our specimens contained relatively small and low-complexity genomes), but at least generating vital comparative genomic data for testing (phylo)genetic, demographic and genetic hypotheses, that become increasingly more horizontal. Furthermore, NGS of historical DNA enables recovering crucial genetic information from old type specimens that to date have remained mostly unutilized and, thus, opens up a new frontier for taxonomic research as well.
Draft Sequences of the Radish (Raphanus sativus L.) Genome
Kitashiba, Hiroyasu; Li, Feng; Hirakawa, Hideki; Kawanabe, Takahiro; Zou, Zhongwei; Hasegawa, Yoichi; Tonosaki, Kaoru; Shirasawa, Sachiko; Fukushima, Aki; Yokoi, Shuji; Takahata, Yoshihito; Kakizaki, Tomohiro; Ishida, Masahiko; Okamoto, Shunsuke; Sakamoto, Koji; Shirasawa, Kenta; Tabata, Satoshi; Nishio, Takeshi
2014-01-01
Radish (Raphanus sativus L., n = 9) is one of the major vegetables in Asia. Since the genomes of Brassica and related species including radish underwent genome rearrangement, it is quite difficult to perform functional analysis based on the reported genomic sequence of Brassica rapa. Therefore, we performed genome sequencing of radish. Short reads of genomic sequences of 191.1 Gb were obtained by next-generation sequencing (NGS) for a radish inbred line, and 76,592 scaffolds of ≥300 bp were constructed along with the bacterial artificial chromosome-end sequences. Finally, the whole draft genomic sequence of 402 Mb spanning 75.9% of the estimated genomic size and containing 61,572 predicted genes was obtained. Subsequently, 221 single nucleotide polymorphism markers and 768 PCR-RFLP markers were used together with the 746 markers produced in our previous study for the construction of a linkage map. The map was combined further with another radish linkage map constructed mainly with expressed sequence tag-simple sequence repeat markers into a high-density integrated map of 1,166 cM with 2,553 DNA markers. A total of 1,345 scaffolds were assigned to the linkage map, spanning 116.0 Mb. Bulked PCR products amplified by 2,880 primer pairs were sequenced by NGS, and SNPs in eight inbred lines were identified. PMID:24848699
Detection of a divergent variant of grapevine virus F by next-generation sequencing.
Molenaar, Nicholas; Burger, Johan T; Maree, Hans J
2015-08-01
The complete genome sequence of a South African isolate of grapevine virus F (GVF) is presented. It was first detected by metagenomic next-generation sequencing of field samples and validated through direct Sanger sequencing. The genome sequence of GVF isolate V5 consists of 7539 nucleotides and contains a poly(A) tail. It has a typical vitivirus genome arrangement that comprises five open reading frames (ORFs), which share only 88.96 % nucleotide sequence identity with the existing complete GVF genome sequence (JX105428).
Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species
Hirakawa, Hideki; Shirasawa, Kenta; Kosugi, Shunichi; Tashiro, Kosuke; Nakayama, Shinobu; Yamada, Manabu; Kohara, Mistuyo; Watanabe, Akiko; Kishida, Yoshie; Fujishiro, Tsunakazu; Tsuruoka, Hisano; Minami, Chiharu; Sasamoto, Shigemi; Kato, Midori; Nanri, Keiko; Komaki, Akiko; Yanagi, Tomohiro; Guoxin, Qin; Maeda, Fumi; Ishikawa, Masami; Kuhara, Satoru; Sato, Shusei; Tabata, Satoshi; Isobe, Sachiko N.
2014-01-01
Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species. PMID:24282021
The first genome sequence of a metatherian herpesvirus: Macropodid herpesvirus 1.
Vaz, Paola K; Mahony, Timothy J; Hartley, Carol A; Fowler, Elizabeth V; Ficorilli, Nino; Lee, Sang W; Gilkerson, James R; Browning, Glenn F; Devlin, Joanne M
2016-01-22
While many placental herpesvirus genomes have been fully sequenced, the complete genome of a marsupial herpesvirus has not been described. Here we present the first genome sequence of a metatherian herpesvirus, Macropodid herpesvirus 1 (MaHV-1). The MaHV-1 viral genome was sequenced using an Illumina MiSeq sequencer, de novo assembly was performed and the genome was annotated. The MaHV-1 genome was 140 kbp in length and clustered phylogenetically with the primate simplexviruses, sharing 67% nucleotide sequence identity with Human herpesviruses 1 and 2. The MaHV-1 genome contained 66 predicted open reading frames (ORFs) homologous to those in other herpesvirus genomes, but lacked homologues of UL3, UL4, UL56 and glycoprotein J. This is the first alphaherpesvirus genome that has been found to lack the UL3 and UL4 homologues. We identified six novel ORFs and confirmed their transcription by RT-PCR. This is the first genome sequence of a herpesvirus that infects metatherians, a taxonomically unique mammalian clade. Members of the Simplexvirus genus are remarkably conserved, so the absence of ORFs otherwise retained in eutherian and avian alphaherpesviruses contributes to our understanding of the Alphaherpesvirinae. Further study of metatherian herpesvirus genetics and pathogenesis provides a unique approach to understanding herpesvirus-mammalian interactions.
Listening to Students and Faculty: The Value to Developmental Education Leaders
ERIC Educational Resources Information Center
Clifton, Connie J.
2013-01-01
Helping students complete developmental course sequences and graduate from college is one of the biggest challenges facing community college leaders and educators. The majority of entering students need one or more developmental courses yet most of these students never finish the developmental sequence. Colleges are continuously developing new…
Lu, You; Samac, Deborah A.; Glazebrook, Jane
2015-01-01
We report here the complete genome sequence of Clavibacter michiganensis subsp. insidiosus R1-1, isolated in Minnesota, USA. The R1-1 genome, generated by a de novo assembly of PacBio sequencing data, is the first complete genome sequence available for this subspecies. PMID:25953184
Complete Genome Sequences of Two Vesicular Stomatitis Virus Isolates Collected in Mexico.
Velazquez-Salinas, Lauro; Isa, Pavel; Pauszek, Steven J; Rodriguez, Luis L
2017-09-14
We report two full-genome sequences of vesicular stomatitis New Jersey virus (VSNJV) obtained by Illumina next-generation sequencing of RNA isolated from epithelial suspensions of cattle naturally infected in Mexico. These genomes represent the first full-genome sequences of vesicular stomatitis New Jersey viruses circulating in Mexico deposited in the GenBank database.
Genome Sequences of Pseudomonas spp. Isolated from Cereal Crops
Stiller, Jiri; Covarelli, Lorenzo; Lindeberg, Magdalen; Shivas, Roger G.; Manners, John M.
2013-01-01
Compared to those of dicot-infecting bacteria, the available genome sequences of bacteria that infect wheat and barley are limited. Herein, we report the draft genome sequences of four pseudomonads originally isolated from these cereals. These genome sequences provide a useful resource for comparative analyses within the genus and for cross-kingdom analyses of plant pathogenesis. PMID:23661484
USDA-ARS?s Scientific Manuscript database
A reassociation kinetics-based approach was used to reduce the complexity of genomic DNA from the Deutsch laboratory strain of the cattle tick, Rhipicephalus microplus, to facilitate genome sequencing. Selected genomic DNA (Cot value = 660) was sequenced using 454 GS FLX technology, resulting in 356...
Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34
Anderson, Iain J.; DasSarma, Priya; Lucas, Susan; ...
2016-09-10
Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. In conclusion, this genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.
Complete genome sequence of the Antarctic Halorubrum lacusprofundi type strain ACAM 34
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, Iain J.; DasSarma, Priya; Lucas, Susan
Halorubrum lacusprofundi is an extreme halophile within the archaeal phylum Euryarchaeota. The type strain ACAM 34 was isolated from Deep Lake, Antarctica. H. lacusprofundi is of phylogenetic interest because it is distantly related to the haloarchaea that have previously been sequenced. It is also of interest because of its psychrotolerance. We report here the complete genome sequence of H. lacusprofundi type strain ACAM 34 and its annotation. In conclusion, this genome is part of a 2006 Joint Genome Institute Community Sequencing Program project to sequence genomes of diverse Archaea.
USDA-ARS?s Scientific Manuscript database
The size and repetitive nature of the Rhipicephalus microplus genome makes obtaining a full genome sequence difficult. Cot filtration/selection techniques were used to reduce the repetitive fraction of the tick genome and enrich for the fraction of DNA with gene-containing regions. The Cot-selected ...
USDA-ARS?s Scientific Manuscript database
Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, are known to be associated with both diseases and phenotypic traits. Deeply sequenced genomes are often u...
A new strategy for genome assembly using short sequence reads and reduced representation libraries.
Young, Andrew L; Abaan, Hatice Ozel; Zerbino, Daniel; Mullikin, James C; Birney, Ewan; Margulies, Elliott H
2010-02-01
We have developed a novel approach for using massively parallel short-read sequencing to generate fast and inexpensive de novo genomic assemblies comparable to those generated by capillary-based methods. The ultrashort (<100 base) sequences generated by this technology pose specific biological and computational challenges for de novo assembly of large genomes. To account for this, we devised a method for experimentally partitioning the genome using reduced representation (RR) libraries prior to assembly. We use two restriction enzymes independently to create a series of overlapping fragment libraries, each containing a tractable subset of the genome. Together, these libraries allow us to reassemble the entire genome without the need of a reference sequence. As proof of concept, we applied this approach to sequence and assembled the majority of the 125-Mb Drosophila melanogaster genome. We subsequently demonstrate the accuracy of our assembly method with meaningful comparisons against the current available D. melanogaster reference genome (dm3). The ease of assembly and accuracy for comparative genomics suggest that our approach will scale to future mammalian genome-sequencing efforts, saving both time and money without sacrificing quality.
USDA-ARS?s Scientific Manuscript database
Next-generation sequencing technologies were used to rapidly and efficiently sequence the genome of the domestic turkey (Meleagris gallopavo). The current genome assembly (~1.1 Gb) includes 917 Mb of sequence assigned to chromosomes. Innate heterozygosity of the sequenced bird allowed discovery of...
Jakupciak, John P; Wells, Jeffrey M; Karalus, Richard J; Pawlowski, David R; Lin, Jeffrey S; Feldman, Andrew B
2013-01-01
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations.
Jakupciak, John P.; Wells, Jeffrey M.; Karalus, Richard J.; Pawlowski, David R.; Lin, Jeffrey S.; Feldman, Andrew B.
2013-01-01
Large-scale genomics projects are identifying biomarkers to detect human disease. B. pseudomallei and B. mallei are two closely related select agents that cause melioidosis and glanders. Accurate characterization of metagenomic samples is dependent on accurate measurements of genetic variation between isolates with resolution down to strain level. Often single biomarker sensitivity is augmented by use of multiple or panels of biomarkers. In parallel with single biomarker validation, advances in DNA sequencing enable analysis of entire genomes in a single run: population-sequencing. Potentially, direct sequencing could be used to analyze an entire genome to serve as the biomarker for genome identification. However, genome variation and population diversity complicate use of direct sequencing, as well as differences caused by sample preparation protocols including sequencing artifacts and mistakes. As part of a Department of Homeland Security program in bacterial forensics, we examined how to implement whole genome sequencing (WGS) analysis as a judicially defensible forensic method for attributing microbial sample relatedness; and also to determine the strengths and limitations of whole genome sequence analysis in a forensics context. Herein, we demonstrate use of sequencing to provide genetic characterization of populations: direct sequencing of populations. PMID:24455204
Genomic sequencing of Pleistocene cave bears
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noonan, James P.; Hofreiter, Michael; Smith, Doug
2005-04-01
Despite the information content of genomic DNA, ancient DNA studies to date have largely been limited to amplification of mitochondrial DNA due to technical hurdles such as contamination and degradation of ancient DNAs. In this study, we describe two metagenomic libraries constructed using unamplified DNA extracted from the bones of two 40,000-year-old extinct cave bears. Analysis of {approx}1 Mb of sequence from each library showed that, despite significant microbial contamination, 5.8 percent and 1.1 percent of clones in the libraries contain cave bear inserts, yielding 26,861 bp of cave bear genome sequence. Alignment of this sequence to the dog genome,more » the closest sequenced genome to cave bear in terms of evolutionary distance, revealed roughly the expected ratio of cave bear exons, repeats and conserved noncoding sequences. Only 0.04 percent of all clones sequenced were derived from contamination with modern human DNA. Comparison of cave bear with orthologous sequences from several modern bear species revealed the evolutionary relationship of these lineages. Using the metagenomic approach described here, we have recovered substantial quantities of mammalian genomic sequence more than twice as old as any previously reported, establishing the feasibility of ancient DNA genomic sequencing programs.« less
Genome-wide comparative analysis of four Indian Drosophila species.
Mohanty, Sujata; Khanna, Radhika
2017-12-01
Comparative analysis of multiple genomes of closely or distantly related Drosophila species undoubtedly creates excitement among evolutionary biologists in exploring the genomic changes with an ecology and evolutionary perspective. We present herewith the de novo assembled whole genome sequences of four Drosophila species, D. bipectinata, D. takahashii, D. biarmipes and D. nasuta of Indian origin using Next Generation Sequencing technology on an Illumina platform along with their detailed assembly statistics. The comparative genomics analysis, e.g. gene predictions and annotations, functional and orthogroup analysis of coding sequences and genome wide SNP distribution were performed. The whole genome of Zaprionus indianus of Indian origin published earlier by us and the genome sequences of previously sequenced 12 Drosophila species available in the NCBI database were included in the analysis. The present work is a part of our ongoing genomics project of Indian Drosophila species.
Qin, Yanhong; Wang, Li; Zhang, Zhenchen; Qiao, Qi; Zhang, Desheng; Tian, Yuting; Wang, Shuang; Wang, Yongjiang; Yan, Zhaoling
2014-01-01
Background Sweet potato chlorotic stunt virus (family Closteroviridae, genus Crinivirus) features a large bipartite, single-stranded, positive-sense RNA genome. To date, only three complete genomic sequences of SPCSV can be accessed through GenBank. SPCSV was first detected from China in 2011, only partial genomic sequences have been determined in the country. No report on the complete genomic sequence and genome structure of Chinese SPCSV isolates or the genetic relation between isolates from China and other countries is available. Methodology/Principal Findings The complete genomic sequences of five isolates from different areas in China were characterized. This study is the first to report the complete genome sequences of SPCSV from whitefly vectors. Genome structure analysis showed that isolates of WA and EA strains from China have the same coding protein as isolates Can181-9 and m2-47, respectively. Twenty cp genes and four RNA1 partial segments were sequenced and analyzed, and the nucleotide identities of complete genomic, cp, and RNA1 partial sequences were determined. Results indicated high conservation among strains and significant differences between WA and EA strains. Genetic analysis demonstrated that, except for isolates from Guangdong Province, SPCSVs from other areas belong to the WA strain. Genome organization analysis showed that the isolates in this study lack the p22 gene. Conclusions/Significance We presented the complete genome sequences of SPCSV in China. Comparison of nucleotide identities and genome structures between these isolates and previously reported isolates showed slight differences. The nucleotide identities of different SPCSV isolates showed high conservation among strains and significant differences between strains. All nine isolates in this study lacked p22 gene. WA strains were more extensively distributed than EA strains in China. These data provide important insights into the molecular variation and genomic structure of SPCSV in China as well as genetic relationships among isolates from China and other countries. PMID:25170926
Hamilton, John P; Neeno-Eckwall, Eric C; Adhikari, Bishwo N; Perna, Nicole T; Tisserat, Ned; Leach, Jan E; Lévesque, C André; Buell, C Robin
2011-01-01
The Comprehensive Phytopathogen Genomics Resource (CPGR) provides a web-based portal for plant pathologists and diagnosticians to view the genome and trancriptome sequence status of 806 bacterial, fungal, oomycete, nematode, viral and viroid plant pathogens. Tools are available to search and analyze annotated genome sequences of 74 bacterial, fungal and oomycete pathogens. Oomycete and fungal genomes are obtained directly from GenBank, whereas bacterial genome sequences are downloaded from the A Systematic Annotation Package (ASAP) database that provides curation of genomes using comparative approaches. Curated lists of bacterial genes relevant to pathogenicity and avirulence are also provided. The Plant Pathogen Transcript Assemblies Database provides annotated assemblies of the transcribed regions of 82 eukaryotic genomes from publicly available single pass Expressed Sequence Tags. Data-mining tools are provided along with tools to create candidate diagnostic markers, an emerging use for genomic sequence data in plant pathology. The Plant Pathogen Ribosomal DNA (rDNA) database is a resource for pathogens that lack genome or transcriptome data sets and contains 131 755 rDNA sequences from GenBank for 17 613 species identified as plant pathogens and related genera. Database URL: http://cpgr.plantbiology.msu.edu.
Genome Analysis of the Domestic Dog (Korean Jindo) by Massively Parallel Sequencing
Kim, Ryong Nam; Kim, Dae-Soo; Choi, Sang-Haeng; Yoon, Byoung-Ha; Kang, Aram; Nam, Seong-Hyeuk; Kim, Dong-Wook; Kim, Jong-Joo; Ha, Ji-Hong; Toyoda, Atsushi; Fujiyama, Asao; Kim, Aeri; Kim, Min-Young; Park, Kun-Hyang; Lee, Kang Seon; Park, Hong-Seog
2012-01-01
Although pioneering sequencing projects have shed light on the boxer and poodle genomes, a number of challenges need to be met before the sequencing and annotation of the dog genome can be considered complete. Here, we present the DNA sequence of the Jindo dog genome, sequenced to 45-fold average coverage using Illumina massively parallel sequencing technology. A comparison of the sequence to the reference boxer genome led to the identification of 4 675 437 single nucleotide polymorphisms (SNPs, including 3 346 058 novel SNPs), 71 642 indels and 8131 structural variations. Of these, 339 non-synonymous SNPs and 3 indels are located within coding sequences (CDS). In particular, 3 non-synonymous SNPs and a 26-bp deletion occur in the TCOF1 locus, implying that the difference observed in cranial facial morphology between Jindo and boxer dogs might be influenced by those variations. Through the annotation of the Jindo olfactory receptor gene family, we found 2 unique olfactory receptor genes and 236 olfactory receptor genes harbouring non-synonymous homozygous SNPs that are likely to affect smelling capability. In addition, we determined the DNA sequence of the Jindo dog mitochondrial genome and identified Jindo dog-specific mtDNA genotypes. This Jindo genome data upgrade our understanding of dog genomic architecture and will be a very valuable resource for investigating not only dog genetics and genomics but also human and dog disease genetics and comparative genomics. PMID:22474061
Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko
2016-08-15
Identification of transgenic sequences in an unknown genetically modified (GM) papaya (Carica papaya L.) by whole genome sequence analysis was demonstrated. Whole genome sequence data were generated for a GM-positive fresh papaya fruit commodity detected in monitoring using real-time polymerase chain reaction (PCR). The sequences obtained were mapped against an open database for papaya genome sequence. Transgenic construct- and event-specific sequences were identified as a GM papaya developed to resist infection from a Papaya ringspot virus. Based on the transgenic sequences, a specific real-time PCR detection method for GM papaya applicable to various food commodities was developed. Whole genome sequence analysis enabled identifying unknown transgenic construct- and event-specific sequences in GM papaya and development of a reliable method for detecting them in papaya food commodities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coverage Bias and Sensitivity of Variant Calling for Four Whole-genome Sequencing Technologies
Lasitschka, Bärbel; Jones, David; Northcott, Paul; Hutter, Barbara; Jäger, Natalie; Kool, Marcel; Taylor, Michael; Lichter, Peter; Pfister, Stefan; Wolf, Stephan; Brors, Benedikt; Eils, Roland
2013-01-01
The emergence of high-throughput, next-generation sequencing technologies has dramatically altered the way we assess genomes in population genetics and in cancer genomics. Currently, there are four commonly used whole-genome sequencing platforms on the market: Illumina’s HiSeq2000, Life Technologies’ SOLiD 4 and its completely redesigned 5500xl SOLiD, and Complete Genomics’ technology. A number of earlier studies have compared a subset of those sequencing platforms or compared those platforms with Sanger sequencing, which is prohibitively expensive for whole genome studies. Here we present a detailed comparison of the performance of all currently available whole genome sequencing platforms, especially regarding their ability to call SNVs and to evenly cover the genome and specific genomic regions. Unlike earlier studies, we base our comparison on four different samples, allowing us to assess the between-sample variation of the platforms. We find a pronounced GC bias in GC-rich regions for Life Technologies’ platforms, with Complete Genomics performing best here, while we see the least bias in GC-poor regions for HiSeq2000 and 5500xl. HiSeq2000 gives the most uniform coverage and displays the least sample-to-sample variation. In contrast, Complete Genomics exhibits by far the smallest fraction of bases not covered, while the SOLiD platforms reveal remarkable shortcomings, especially in covering CpG islands. When comparing the performance of the four platforms for calling SNPs, HiSeq2000 and Complete Genomics achieve the highest sensitivity, while the SOLiD platforms show the lowest false positive rate. Finally, we find that integrating sequencing data from different platforms offers the potential to combine the strengths of different technologies. In summary, our results detail the strengths and weaknesses of all four whole-genome sequencing platforms. It indicates application areas that call for a specific sequencing platform and disallow other platforms. This helps to identify the proper sequencing platform for whole genome studies with different application scopes. PMID:23776689
Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca
2015-01-01
Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources. PMID:26151450
Bertolini, Francesca; Scimone, Concetta; Geraci, Claudia; Schiavo, Giuseppina; Utzeri, Valerio Joe; Chiofalo, Vincenzo; Fontanesi, Luca
2015-01-01
Few studies investigated the donkey (Equus asinus) at the whole genome level so far. Here, we sequenced the genome of two male donkeys using a next generation semiconductor based sequencing platform (the Ion Proton sequencer) and compared obtained sequence information with the available donkey draft genome (and its Illumina reads from which it was originated) and with the EquCab2.0 assembly of the horse genome. Moreover, the Ion Torrent Personal Genome Analyzer was used to sequence reduced representation libraries (RRL) obtained from a DNA pool including donkeys of different breeds (Grigio Siciliano, Ragusano and Martina Franca). The number of next generation sequencing reads aligned with the EquCab2.0 horse genome was larger than those aligned with the draft donkey genome. This was due to the larger N50 for contigs and scaffolds of the horse genome. Nucleotide divergence between E. caballus and E. asinus was estimated to be ~ 0.52-0.57%. Regions with low nucleotide divergence were identified in several autosomal chromosomes and in the whole chromosome X. These regions might be evolutionally important in equids. Comparing Y-chromosome regions we identified variants that could be useful to track donkey paternal lineages. Moreover, about 4.8 million of single nucleotide polymorphisms (SNPs) in the donkey genome were identified and annotated combining sequencing data from Ion Proton (whole genome sequencing) and Ion Torrent (RRL) runs with Illumina reads. A higher density of SNPs was present in regions homologous to horse chromosome 12, in which several studies reported a high frequency of copy number variants. The SNPs we identified constitute a first resource useful to describe variability at the population genomic level in E. asinus and to establish monitoring systems for the conservation of donkey genetic resources.
2011-01-01
Background One of the key goals of oak genomics research is to identify genes of adaptive significance. This information may help to improve the conservation of adaptive genetic variation and the management of forests to increase their health and productivity. Deep-coverage large-insert genomic libraries are a crucial tool for attaining this objective. We report herein the construction of a BAC library for Quercus robur, its characterization and an analysis of BAC end sequences. Results The EcoRI library generated consisted of 92,160 clones, 7% of which had no insert. Levels of chloroplast and mitochondrial contamination were below 3% and 1%, respectively. Mean clone insert size was estimated at 135 kb. The library represents 12 haploid genome equivalents and, the likelihood of finding a particular oak sequence of interest is greater than 99%. Genome coverage was confirmed by PCR screening of the library with 60 unique genetic loci sampled from the genetic linkage map. In total, about 20,000 high-quality BAC end sequences (BESs) were generated by sequencing 15,000 clones. Roughly 5.88% of the combined BAC end sequence length corresponded to known retroelements while ab initio repeat detection methods identified 41 additional repeats. Collectively, characterized and novel repeats account for roughly 8.94% of the genome. Further analysis of the BESs revealed 1,823 putative genes suggesting at least 29,340 genes in the oak genome. BESs were aligned with the genome sequences of Arabidopsis thaliana, Vitis vinifera and Populus trichocarpa. One putative collinear microsyntenic region encoding an alcohol acyl transferase protein was observed between oak and chromosome 2 of V. vinifera. Conclusions This BAC library provides a new resource for genomic studies, including SSR marker development, physical mapping, comparative genomics and genome sequencing. BES analysis provided insight into the structure of the oak genome. These sequences will be used in the assembly of a future genome sequence for oak. PMID:21645357
The Reference Genome Sequence of Saccharomyces cerevisiae: Then and Now
Engel, Stacia R.; Dietrich, Fred S.; Fisk, Dianna G.; Binkley, Gail; Balakrishnan, Rama; Costanzo, Maria C.; Dwight, Selina S.; Hitz, Benjamin C.; Karra, Kalpana; Nash, Robert S.; Weng, Shuai; Wong, Edith D.; Lloyd, Paul; Skrzypek, Marek S.; Miyasato, Stuart R.; Simison, Matt; Cherry, J. Michael
2014-01-01
The genome of the budding yeast Saccharomyces cerevisiae was the first completely sequenced from a eukaryote. It was released in 1996 as the work of a worldwide effort of hundreds of researchers. In the time since, the yeast genome has been intensively studied by geneticists, molecular biologists, and computational scientists all over the world. Maintenance and annotation of the genome sequence have long been provided by the Saccharomyces Genome Database, one of the original model organism databases. To deepen our understanding of the eukaryotic genome, the S. cerevisiae strain S288C reference genome sequence was updated recently in its first major update since 1996. The new version, called “S288C 2010,” was determined from a single yeast colony using modern sequencing technologies and serves as the anchor for further innovations in yeast genomic science. PMID:24374639
Oduru, Sreedhar; Campbell, Janee L; Karri, SriTulasi; Hendry, William J; Khan, Shafiq A; Williams, Simon C
2003-01-01
Background Complete genome annotation will likely be achieved through a combination of computer-based analysis of available genome sequences combined with direct experimental characterization of expressed regions of individual genomes. We have utilized a comparative genomics approach involving the sequencing of randomly selected hamster testis cDNAs to begin to identify genes not previously annotated on the human, mouse, rat and Fugu (pufferfish) genomes. Results 735 distinct sequences were analyzed for their relatedness to known sequences in public databases. Eight of these sequences were derived from previously unidentified genes and expression of these genes in testis was confirmed by Northern blotting. The genomic locations of each sequence were mapped in human, mouse, rat and pufferfish, where applicable, and the structure of their cognate genes was derived using computer-based predictions, genomic comparisons and analysis of uncharacterized cDNA sequences from human and macaque. Conclusion The use of a comparative genomics approach resulted in the identification of eight cDNAs that correspond to previously uncharacterized genes in the human genome. The proteins encoded by these genes included a new member of the kinesin superfamily, a SET/MYND-domain protein, and six proteins for which no specific function could be predicted. Each gene was expressed primarily in testis, suggesting that they may play roles in the development and/or function of testicular cells. PMID:12783626
Real-time, portable genome sequencing for Ebola surveillance.
Quick, Joshua; Loman, Nicholas J; Duraffour, Sophie; Simpson, Jared T; Severi, Ettore; Cowley, Lauren; Bore, Joseph Akoi; Koundouno, Raymond; Dudas, Gytis; Mikhail, Amy; Ouédraogo, Nobila; Afrough, Babak; Bah, Amadou; Baum, Jonathan Hj; Becker-Ziaja, Beate; Boettcher, Jan-Peter; Cabeza-Cabrerizo, Mar; Camino-Sanchez, Alvaro; Carter, Lisa L; Doerrbecker, Juiliane; Enkirch, Theresa; Dorival, Isabel Graciela García; Hetzelt, Nicole; Hinzmann, Julia; Holm, Tobias; Kafetzopoulou, Liana Eleni; Koropogui, Michel; Kosgey, Abigail; Kuisma, Eeva; Logue, Christopher H; Mazzarelli, Antonio; Meisel, Sarah; Mertens, Marc; Michel, Janine; Ngabo, Didier; Nitzsche, Katja; Pallash, Elisa; Patrono, Livia Victoria; Portmann, Jasmine; Repits, Johanna Gabriella; Rickett, Natasha Yasmin; Sachse, Andrea; Singethan, Katrin; Vitoriano, Inês; Yemanaberhan, Rahel L; Zekeng, Elsa G; Trina, Racine; Bello, Alexander; Sall, Amadou Alpha; Faye, Ousmane; Faye, Oumar; Magassouba, N'Faly; Williams, Cecelia V; Amburgey, Victoria; Winona, Linda; Davis, Emily; Gerlach, Jon; Washington, Franck; Monteil, Vanessa; Jourdain, Marine; Bererd, Marion; Camara, Alimou; Somlare, Hermann; Camara, Abdoulaye; Gerard, Marianne; Bado, Guillaume; Baillet, Bernard; Delaune, Déborah; Nebie, Koumpingnin Yacouba; Diarra, Abdoulaye; Savane, Yacouba; Pallawo, Raymond Bernard; Gutierrez, Giovanna Jaramillo; Milhano, Natacha; Roger, Isabelle; Williams, Christopher J; Yattara, Facinet; Lewandowski, Kuiama; Taylor, Jamie; Rachwal, Philip; Turner, Daniel; Pollakis, Georgios; Hiscox, Julian A; Matthews, David A; O'Shea, Matthew K; Johnston, Andrew McD; Wilson, Duncan; Hutley, Emma; Smit, Erasmus; Di Caro, Antonino; Woelfel, Roman; Stoecker, Kilian; Fleischmann, Erna; Gabriel, Martin; Weller, Simon A; Koivogui, Lamine; Diallo, Boubacar; Keita, Sakoba; Rambaut, Andrew; Formenty, Pierre; Gunther, Stephan; Carroll, Miles W
2016-02-11
The Ebola virus disease epidemic in West Africa is the largest on record, responsible for over 28,599 cases and more than 11,299 deaths. Genome sequencing in viral outbreaks is desirable to characterize the infectious agent and determine its evolutionary rate. Genome sequencing also allows the identification of signatures of host adaptation, identification and monitoring of diagnostic targets, and characterization of responses to vaccines and treatments. The Ebola virus (EBOV) genome substitution rate in the Makona strain has been estimated at between 0.87 × 10(-3) and 1.42 × 10(-3) mutations per site per year. This is equivalent to 16-27 mutations in each genome, meaning that sequences diverge rapidly enough to identify distinct sub-lineages during a prolonged epidemic. Genome sequencing provides a high-resolution view of pathogen evolution and is increasingly sought after for outbreak surveillance. Sequence data may be used to guide control measures, but only if the results are generated quickly enough to inform interventions. Genomic surveillance during the epidemic has been sporadic owing to a lack of local sequencing capacity coupled with practical difficulties transporting samples to remote sequencing facilities. To address this problem, here we devise a genomic surveillance system that utilizes a novel nanopore DNA sequencing instrument. In April 2015 this system was transported in standard airline luggage to Guinea and used for real-time genomic surveillance of the ongoing epidemic. We present sequence data and analysis of 142 EBOV samples collected during the period March to October 2015. We were able to generate results less than 24 h after receiving an Ebola-positive sample, with the sequencing process taking as little as 15-60 min. We show that real-time genomic surveillance is possible in resource-limited settings and can be established rapidly to monitor outbreaks.
Whole-genome sequencing and genetic variant analysis of a Quarter Horse mare.
Doan, Ryan; Cohen, Noah D; Sawyer, Jason; Ghaffari, Noushin; Johnson, Charlie D; Dindot, Scott V
2012-02-17
The catalog of genetic variants in the horse genome originates from a few select animals, the majority originating from the Thoroughbred mare used for the equine genome sequencing project. The purpose of this study was to identify genetic variants, including single nucleotide polymorphisms (SNPs), insertion/deletion polymorphisms (INDELs), and copy number variants (CNVs) in the genome of an individual Quarter Horse mare sequenced by next-generation sequencing. Using massively parallel paired-end sequencing, we generated 59.6 Gb of DNA sequence from a Quarter Horse mare resulting in an average of 24.7X sequence coverage. Reads were mapped to approximately 97% of the reference Thoroughbred genome. Unmapped reads were de novo assembled resulting in 19.1 Mb of new genomic sequence in the horse. Using a stringent filtering method, we identified 3.1 million SNPs, 193 thousand INDELs, and 282 CNVs. Genetic variants were annotated to determine their impact on gene structure and function. Additionally, we genotyped this Quarter Horse for mutations of known diseases and for variants associated with particular traits. Functional clustering analysis of genetic variants revealed that most of the genetic variation in the horse's genome was enriched in sensory perception, signal transduction, and immunity and defense pathways. This is the first sequencing of a horse genome by next-generation sequencing and the first genomic sequence of an individual Quarter Horse mare. We have increased the catalog of genetic variants for use in equine genomics by the addition of novel SNPs, INDELs, and CNVs. The genetic variants described here will be a useful resource for future studies of genetic variation regulating performance traits and diseases in equids.
The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza.
Qian, Jun; Song, Jingyuan; Gao, Huanhuan; Zhu, Yingjie; Xu, Jiang; Pang, Xiaohui; Yao, Hui; Sun, Chao; Li, Xian'en; Li, Chuyuan; Liu, Juyan; Xu, Haibin; Chen, Shilin
2013-01-01
Salvia miltiorrhiza is an important medicinal plant with great economic and medicinal value. The complete chloroplast (cp) genome sequence of Salvia miltiorrhiza, the first sequenced member of the Lamiaceae family, is reported here. The genome is 151,328 bp in length and exhibits a typical quadripartite structure of the large (LSC, 82,695 bp) and small (SSC, 17,555 bp) single-copy regions, separated by a pair of inverted repeats (IRs, 25,539 bp). It contains 114 unique genes, including 80 protein-coding genes, 30 tRNAs and four rRNAs. The genome structure, gene order, GC content and codon usage are similar to the typical angiosperm cp genomes. Four forward, three inverted and seven tandem repeats were detected in the Salvia miltiorrhiza cp genome. Simple sequence repeat (SSR) analysis among the 30 asterid cp genomes revealed that most SSRs are AT-rich, which contribute to the overall AT richness of these cp genomes. Additionally, fewer SSRs are distributed in the protein-coding sequences compared to the non-coding regions, indicating an uneven distribution of SSRs within the cp genomes. Entire cp genome comparison of Salvia miltiorrhiza and three other Lamiales cp genomes showed a high degree of sequence similarity and a relatively high divergence of intergenic spacers. Sequence divergence analysis discovered the ten most divergent and ten most conserved genes as well as their length variation, which will be helpful for phylogenetic studies in asterids. Our analysis also supports that both regional and functional constraints affect gene sequence evolution. Further, phylogenetic analysis demonstrated a sister relationship between Salvia miltiorrhiza and Sesamum indicum. The complete cp genome sequence of Salvia miltiorrhiza reported in this paper will facilitate population, phylogenetic and cp genetic engineering studies of this medicinal plant.
Jaeckisch, Nina; Yang, Ines; Wohlrab, Sylke; Glöckner, Gernot; Kroymann, Juergen; Vogel, Heiko; Cembella, Allan; John, Uwe
2011-01-01
Many dinoflagellate species are notorious for the toxins they produce and ecological and human health consequences associated with harmful algal blooms (HABs). Dinoflagellates are particularly refractory to genomic analysis due to the enormous genome size, lack of knowledge about their DNA composition and structure, and peculiarities of gene regulation, such as spliced leader (SL) trans-splicing and mRNA transposition mechanisms. Alexandrium ostenfeldii is known to produce macrocyclic imine toxins, described as spirolides. We characterized the genome of A. ostenfeldii using a combination of transcriptomic data and random genomic clones for comparison with other dinoflagellates, particularly Alexandrium species. Examination of SL sequences revealed similar features as in other dinoflagellates, including Alexandrium species. SL sequences in decay indicate frequent retro-transposition of mRNA species. This probably contributes to overall genome complexity by generating additional gene copies. Sequencing of several thousand fosmid and bacterial artificial chromosome (BAC) ends yielded a wealth of simple repeats and tandemly repeated longer sequence stretches which we estimated to comprise more than half of the whole genome. Surprisingly, the repeats comprise a very limited set of 79–97 bp sequences; in part the genome is thus a relatively uniform sequence space interrupted by coding sequences. Our genomic sequence survey (GSS) represents the largest genomic data set of a dinoflagellate to date. Alexandrium ostenfeldii is a typical dinoflagellate with respect to its transcriptome and mRNA transposition but demonstrates Alexandrium-like stop codon usage. The large portion of repetitive sequences and the organization within the genome is in agreement with several other studies on dinoflagellates using different approaches. It remains to be determined whether this unusual composition is directly correlated to the exceptionally genome organization of dinoflagellates with a low amount of histones and histone-like proteins. PMID:22164224
Detection of somatic, subclonal and mosaic CNVs from sequencing | Division of Cancer Prevention
Progress in technology has made individual genome sequencing a clinical reality, with partial genome sequencing already in use in clinical care. In fact, it is expected that within a few years whole genome sequencing will be a standard procedure that will allow discovering personal genomic variants of all types and thus greatly facilitate individualized medicine. However, fast
The Douglas-fir genome sequence reveals specialization of the photosynthetic apparatus in Pinaceae
David B. Neale; Patrick E. McGuire; Nicholas C. Wheeler; Kristian A. Stevens; Marc W. Crepeau; Charis Cardeno; Aleksey V. Zimin; Daniela Puiu; Geo M. Pertea; U. Uzay Sezen; Claudio Casola; Tomasz E. Koralewski; Robin Paul; Daniel Gonzalez-Ibeas; Sumaira Zaman; Richard Cronn; Mark Yandell; Carson Holt; Charles H. Langley; James A. Yorke; Steven L. Salzberg; Jill L. Wegrzyn
2017-01-01
A reference genome sequence for Pseudotsuga menziesii var. menziesii (Mirb.) Franco (Coastal Douglas-fir) is reported, thus providing a reference sequence for a third genus of the family Pinaceae. The contiguity and quality of the genome assembly far exceeds that of other conifer reference genome sequences (contig N50 = 44,136 bp and scaffold N50...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghodhbane-Gtari, Faten; Beauchemin, Nicholas; Bruce, David
2013-01-01
We report here the genome sequence of Frankia sp. strain CN3, which was isolated from Coriaria nepalensis. This genome sequence is the first from the fourth lineage of Frankia, that are unable to re-infect actinorhizal plants. At 10 Mb, it represents the largest Frankia genome sequenced to date.
Lu, You; Samac, Deborah A; Glazebrook, Jane; Ishimaru, Carol A
2015-05-07
We report here the complete genome sequence of Clavibacter michiganensis subsp. insidiosus R1-1, isolated in Minnesota, USA. The R1-1 genome, generated by a de novo assembly of PacBio sequencing data, is the first complete genome sequence available for this subspecies. Copyright © 2015 Lu et al.
Complete Genome Sequences of Two Vesicular Stomatitis Virus Isolates Collected in Mexico
Isa, Pavel; Pauszek, Steven J.; Rodriguez, Luis L.
2017-01-01
ABSTRACT We report two full-genome sequences of vesicular stomatitis New Jersey virus (VSNJV) obtained by Illumina next-generation sequencing of RNA isolated from epithelial suspensions of cattle naturally infected in Mexico. These genomes represent the first full-genome sequences of vesicular stomatitis New Jersey viruses circulating in Mexico deposited in the GenBank database. PMID:28912331
Microsatellite analysis in the genome of Acanthaceae: An in silico approach.
Kaliswamy, Priyadharsini; Vellingiri, Srividhya; Nathan, Bharathi; Selvaraj, Saravanakumar
2015-01-01
Acanthaceae is one of the advanced and specialized families with conventionally used medicinal plants. Simple sequence repeats (SSRs) play a major role as molecular markers for genome analysis and plant breeding. The microsatellites existing in the complete genome sequences would help to attain a direct role in the genome organization, recombination, gene regulation, quantitative genetic variation, and evolution of genes. The current study reports the frequency of microsatellites and appropriate markers for the Acanthaceae family genome sequences. The whole nucleotide sequences of Acanthaceae species were obtained from National Center for Biotechnology Information database and screened for the presence of SSRs. SSR Locator tool was used to predict the microsatellites and inbuilt Primer3 module was used for primer designing. Totally 110 repeats from 108 sequences of Acanthaceae family plant genomes were identified, and the occurrence of dinucleotide repeats was found to be abundant in the genome sequences. The essential amino acid isoleucine was found rich in all the sequences. We also designed the SSR-based primers/markers for 59 sequences of this family that contains microsatellite repeats in their genome. The identified microsatellites and primers might be useful for breeding and genetic studies of plants that belong to Acanthaceae family in the future.
FA-SAT Is an Old Satellite DNA Frozen in Several Bilateria Genomes
Chaves, Raquel; Ferreira, Daniela; Mendes-da-Silva, Ana; Meles, Susana; Adega, Filomena
2017-01-01
Abstract In recent years, a growing body of evidence has recognized the tandem repeat sequences, and specifically satellite DNA, as a functional class of sequences in the genomic “dark matter.” Using an original, complementary, and thus an eclectic experimental design, we show that the cat archetypal satellite DNA sequence, FA-SAT, is “frozen” conservatively in several Bilateria genomes. We found different genomic FA-SAT architectures, and the interspersion pattern was conserved. In Carnivora genomes, the FA-SAT-related sequences are also amplified, with the predominance of a specific FA-SAT variant, at the heterochromatic regions. We inspected the cat genome project to locate FA-SAT array flanking regions and revealed an intensive intermingling with transposable elements. Our results also show that FA-SAT-related sequences are transcribed and that the most abundant FA-SAT variant is not always the most transcribed. We thus conclude that the DNA sequences of FA-SAT and their transcripts are “frozen” in these genomes. Future work is needed to disclose any putative function that these sequences may play in these genomes. PMID:29608678
Si, Zengzhi; Du, Bing; Huo, Jinxi; He, Shaozhen; Liu, Qingchang; Zhai, Hong
2016-11-21
Sweetpotato, Ipomoea batatas (L.) Lam., is an important food crop widely grown in the world. However, little is known about the genome of this species because it is a highly heterozygous hexaploid. Gaining a more in-depth knowledge of sweetpotato genome is therefore necessary and imperative. In this study, the first bacterial artificial chromosome (BAC) library of sweetpotato was constructed. Clones from the BAC library were end-sequenced and analyzed to provide genome-wide information about this species. The BAC library contained 240,384 clones with an average insert size of 101 kb and had a 7.93-10.82 × coverage of the genome, and the probability of isolating any single-copy DNA sequence from the library was more than 99%. Both ends of 8310 BAC clones randomly selected from the library were sequenced to generate 11,542 high-quality BAC-end sequences (BESs), with an accumulative length of 7,595,261 bp and an average length of 658 bp. Analysis of the BESs revealed that 12.17% of the sweetpotato genome were known repetitive DNA, including 7.37% long terminal repeat (LTR) retrotransposons, 1.15% Non-LTR retrotransposons and 1.42% Class II DNA transposons etc., 18.31% of the genome were identified as sweetpotato-unique repetitive DNA and 10.00% of the genome were predicted to be coding regions. In total, 3,846 simple sequences repeats (SSRs) were identified, with a density of one SSR per 1.93 kb, from which 288 SSRs primers were designed and tested for length polymorphism using 20 sweetpotato accessions, 173 (60.07%) of them produced polymorphic bands. Sweetpotato BESs had significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum than those of Vitis vinifera, Theobroma cacao and Arabidopsis thaliana. The first BAC library for sweetpotato has been successfully constructed. The high quality BESs provide first insights into sweetpotato genome composition, and have significant hits to the genome sequences of I. trifida and more matches to the whole-genome sequences of Solanum lycopersicum. These resources as a robust platform will be used in high-resolution mapping, gene cloning, assembly of genome sequences, comparative genomics and evolution for sweetpotato.
Brassica ASTRA: an integrated database for Brassica genomic research.
Love, Christopher G; Robinson, Andrew J; Lim, Geraldine A C; Hopkins, Clare J; Batley, Jacqueline; Barker, Gary; Spangenberg, German C; Edwards, David
2005-01-01
Brassica ASTRA is a public database for genomic information on Brassica species. The database incorporates expressed sequences with Swiss-Prot and GenBank comparative sequence annotation as well as secondary Gene Ontology (GO) annotation derived from the comparison with Arabidopsis TAIR GO annotations. Simple sequence repeat molecular markers are identified within resident sequences and mapped onto the closely related Arabidopsis genome sequence. Bacterial artificial chromosome (BAC) end sequences derived from the Multinational Brassica Genome Project are also mapped onto the Arabidopsis genome sequence enabling users to identify candidate Brassica BACs corresponding to syntenic regions of Arabidopsis. This information is maintained in a MySQL database with a web interface providing the primary means of interrogation. The database is accessible at http://hornbill.cspp.latrobe.edu.au.
Molecular characterization of faba bean necrotic yellows viruses in Tunisia.
Kraberger, Simona; Kumari, Safaa G; Najar, Asma; Stainton, Daisy; Martin, Darren P; Varsani, Arvind
2018-03-01
Faba bean necrotic yellows virus (FBNYV) (genus Nanovirus; family Nanoviridae) has a genome comprising eight individually encapsidated circular single-stranded DNA components. It has frequently been found infecting faba bean (Vicia faba L.) and chickpea (Cicer arietinum L.) in association with satellite molecules (alphasatellites). Genome sequences of FBNYV from Azerbaijan, Egypt, Iran, Morocco, Spain and Syria have been determined previously and we now report the first five genome sequences of FBNYV and associated alphasatellites from faba bean sampled in Tunisia. In addition, we have determined the genome sequences of two additional FBNYV isolates from chickpea plants sampled in Syria and Iran. All individual FBNYV genome component sequences that were determined here share > 84% nucleotide sequence identity with FBNYV sequences available in public databases, with the DNA-M component displaying the highest degree of diversity. As with other studied nanoviruses, recombination and genome component reassortment occurs frequently both between FBNYV genomes and between genomes of nanoviruses belonging to other species.
High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome
2013-01-01
Background Comparative genomics is a formidable tool to identify functional elements throughout a genome. In the past ten years, studies in the budding yeast Saccharomyces cerevisiae and a set of closely related species have been instrumental in showing the benefit of analyzing patterns of sequence conservation. Increasing the number of closely related genome sequences makes the comparative genomics approach more powerful and accurate. Results Here, we report the genome sequence and analysis of Saccharomyces arboricolus, a yeast species recently isolated in China, that is closely related to S. cerevisiae. We obtained high quality de novo sequence and assemblies using a combination of next generation sequencing technologies, established the phylogenetic position of this species and considered its phenotypic profile under multiple environmental conditions in the light of its gene content and phylogeny. Conclusions We suggest that the genome of S. arboricolus will be useful in future comparative genomics analysis of the Saccharomyces sensu stricto yeasts. PMID:23368932
Detection of DNA Methylation by Whole-Genome Bisulfite Sequencing.
Li, Qing; Hermanson, Peter J; Springer, Nathan M
2018-01-01
DNA methylation plays an important role in the regulation of the expression of transposons and genes. Various methods have been developed to assay DNA methylation levels. Bisulfite sequencing is considered to be the "gold standard" for single-base resolution measurement of DNA methylation levels. Coupled with next-generation sequencing, whole-genome bisulfite sequencing (WGBS) allows DNA methylation to be evaluated at a genome-wide scale. Here, we described a protocol for WGBS in plant species with large genomes. This protocol has been successfully applied to assay genome-wide DNA methylation levels in maize and barley. This protocol has also been successfully coupled with sequence capture technology to assay DNA methylation levels in a targeted set of genomic regions.
USDA-ARS?s Scientific Manuscript database
The current pig reference genome sequence (Sscrofa10.2) was established using Sanger sequencing and following the clone-by-clone hierarchical shotgun sequencing approach used in the public human genome project. However, as sequence coverage was low (4-6x) the resulting assembly was only of draft qua...
Next-Generation Genomics Facility at C-CAMP: Accelerating Genomic Research in India
S, Chandana; Russiachand, Heikham; H, Pradeep; S, Shilpa; M, Ashwini; S, Sahana; B, Jayanth; Atla, Goutham; Jain, Smita; Arunkumar, Nandini; Gowda, Malali
2014-01-01
Next-Generation Sequencing (NGS; http://www.genome.gov/12513162) is a recent life-sciences technological revolution that allows scientists to decode genomes or transcriptomes at a much faster rate with a lower cost. Genomic-based studies are in a relatively slow pace in India due to the non-availability of genomics experts, trained personnel and dedicated service providers. Using NGS there is a lot of potential to study India's national diversity (of all kinds). We at the Centre for Cellular and Molecular Platforms (C-CAMP) have launched the Next Generation Genomics Facility (NGGF) to provide genomics service to scientists, to train researchers and also work on national and international genomic projects. We have HiSeq1000 from Illumina and GS-FLX Plus from Roche454. The long reads from GS FLX Plus, and high sequence depth from HiSeq1000, are the best and ideal hybrid approaches for de novo and re-sequencing of genomes and transcriptomes. At our facility, we have sequenced around 70 different organisms comprising of more than 388 genomes and 615 transcriptomes – prokaryotes and eukaryotes (fungi, plants and animals). In addition we have optimized other unique applications such as small RNA (miRNA, siRNA etc), long Mate-pair sequencing (2 to 20 Kb), Coding sequences (Exome), Methylome (ChIP-Seq), Restriction Mapping (RAD-Seq), Human Leukocyte Antigen (HLA) typing, mixed genomes (metagenomes) and target amplicons, etc. Translating DNA sequence data from NGS sequencer into meaningful information is an important exercise. Under NGGF, we have bioinformatics experts and high-end computing resources to dissect NGS data such as genome assembly and annotation, gene expression, target enrichment, variant calling (SSR or SNP), comparative analysis etc. Our services (sequencing and bioinformatics) have been utilized by more than 45 organizations (academia and industry) both within India and outside, resulting several publications in peer-reviewed journals and several genomic/transcriptomic data is available at NCBI.
Keinath, Melissa C.; Timoshevskiy, Vladimir A.; Timoshevskaya, Nataliya Y.; Tsonis, Panagiotis A.; Voss, S. Randal; Smith, Jeramiah J.
2015-01-01
Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes. PMID:26553646
Keinath, Melissa C; Timoshevskiy, Vladimir A; Timoshevskaya, Nataliya Y; Tsonis, Panagiotis A; Voss, S Randal; Smith, Jeramiah J
2015-11-10
Vertebrates exhibit substantial diversity in genome size, and some of the largest genomes exist in species that uniquely inform diverse areas of basic and biomedical research. For example, the salamander Ambystoma mexicanum (the Mexican axolotl) is a model organism for studies of regeneration, development and genome evolution, yet its genome is ~10× larger than the human genome. As part of a hierarchical approach toward improving genome resources for the species, we generated 600 Gb of shotgun sequence data and developed methods for sequencing individual laser-captured chromosomes. Based on these data, we estimate that the A. mexicanum genome is ~32 Gb. Notably, as much as 19 Gb of the A. mexicanum genome can potentially be considered single copy, which presumably reflects the evolutionary diversification of mobile elements that accumulated during an ancient episode of genome expansion. Chromosome-targeted sequencing permitted the development of assemblies within the constraints of modern computational platforms, allowed us to place 2062 genes on the two smallest A. mexicanum chromosomes and resolves key events in the history of vertebrate genome evolution. Our analyses show that the capture and sequencing of individual chromosomes is likely to provide valuable information for the systematic sequencing, assembly and scaffolding of large genomes.
Quasispecies Analyses of the HIV-1 Near-full-length Genome With Illumina MiSeq
Ode, Hirotaka; Matsuda, Masakazu; Matsuoka, Kazuhiro; Hachiya, Atsuko; Hattori, Junko; Kito, Yumiko; Yokomaku, Yoshiyuki; Iwatani, Yasumasa; Sugiura, Wataru
2015-01-01
Human immunodeficiency virus type-1 (HIV-1) exhibits high between-host genetic diversity and within-host heterogeneity, recognized as quasispecies. Because HIV-1 quasispecies fluctuate in terms of multiple factors, such as antiretroviral exposure and host immunity, analyzing the HIV-1 genome is critical for selecting effective antiretroviral therapy and understanding within-host viral coevolution mechanisms. Here, to obtain HIV-1 genome sequence information that includes minority variants, we sought to develop a method for evaluating quasispecies throughout the HIV-1 near-full-length genome using the Illumina MiSeq benchtop deep sequencer. To ensure the reliability of minority mutation detection, we applied an analysis method of sequence read mapping onto a consensus sequence derived from de novo assembly followed by iterative mapping and subsequent unique error correction. Deep sequencing analyses of aHIV-1 clone showed that the analysis method reduced erroneous base prevalence below 1% in each sequence position and discarded only < 1% of all collected nucleotides, maximizing the usage of the collected genome sequences. Further, we designed primer sets to amplify the HIV-1 near-full-length genome from clinical plasma samples. Deep sequencing of 92 samples in combination with the primer sets and our analysis method provided sufficient coverage to identify >1%-frequency sequences throughout the genome. When we evaluated sequences of pol genes from 18 treatment-naïve patients' samples, the deep sequencing results were in agreement with Sanger sequencing and identified numerous additional minority mutations. The results suggest that our deep sequencing method would be suitable for identifying within-host viral population dynamics throughout the genome. PMID:26617593
The genome sequence of sweet cherry (Prunus avium) for use in genomics-assisted breeding.
Shirasawa, Kenta; Isuzugawa, Kanji; Ikenaga, Mitsunobu; Saito, Yutaro; Yamamoto, Toshiya; Hirakawa, Hideki; Isobe, Sachiko
2017-10-01
We determined the genome sequence of sweet cherry (Prunus avium) using next-generation sequencing technology. The total length of the assembled sequences was 272.4 Mb, consisting of 10,148 scaffold sequences with an N50 length of 219.6 kb. The sequences covered 77.8% of the 352.9 Mb sweet cherry genome, as estimated by k-mer analysis, and included >96.0% of the core eukaryotic genes. We predicted 43,349 complete and partial protein-encoding genes. A high-density consensus map with 2,382 loci was constructed using double-digest restriction site-associated DNA sequencing. Comparing the genetic maps of sweet cherry and peach revealed high synteny between the two genomes; thus the scaffolds were integrated into pseudomolecules using map- and synteny-based strategies. Whole-genome resequencing of six modern cultivars found 1,016,866 SNPs and 162,402 insertions/deletions, out of which 0.7% were deleterious. The sequence variants, as well as simple sequence repeats, can be used as DNA markers. The genomic information helps us to identify agronomically important genes and will accelerate genetic studies and breeding programs for sweet cherries. Further information on the genomic sequences and DNA markers is available in DBcherry (http://cherry.kazusa.or.jp (8 May 2017, date last accessed)). © The Author 2017. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Genome Sequencing and Assembly by Long Reads in Plants
Li, Changsheng; Lin, Feng; An, Dong; Huang, Ruidong
2017-01-01
Plant genomes generated by Sanger and Next Generation Sequencing (NGS) have provided insight into species diversity and evolution. However, Sanger sequencing is limited in its applications due to high cost, labor intensity, and low throughput, while NGS reads are too short to resolve abundant repeats and polyploidy, leading to incomplete or ambiguous assemblies. The advent and improvement of long-read sequencing by Third Generation Sequencing (TGS) methods such as PacBio and Nanopore have shown promise in producing high-quality assemblies for complex genomes. Here, we review the development of sequencing, introducing the application as well as considerations of experimental design in TGS of plant genomes. We also introduce recent revolutionary scaffolding technologies including BioNano, Hi-C, and 10× Genomics. We expect that the informative guidance for genome sequencing and assembly by long reads will benefit the initiation of scientists’ projects. PMID:29283420
MIPS: a database for protein sequences and complete genomes.
Mewes, H W; Hani, J; Pfeiffer, F; Frishman, D
1998-01-01
The MIPS group [Munich Information Center for Protein Sequences of the German National Center for Environment and Health (GSF)] at the Max-Planck-Institute for Biochemistry, Martinsried near Munich, Germany, is involved in a number of data collection activities, including a comprehensive database of the yeast genome, a database reflecting the progress in sequencing the Arabidopsis thaliana genome, the systematic analysis of other small genomes and the collection of protein sequence data within the framework of the PIR-International Protein Sequence Database (described elsewhere in this volume). Through its WWW server (http://www.mips.biochem.mpg.de ) MIPS provides access to a variety of generic databases, including a database of protein families as well as automatically generated data by the systematic application of sequence analysis algorithms. The yeast genome sequence and its related information was also compiled on CD-ROM to provide dynamic interactive access to the 16 chromosomes of the first eukaryotic genome unraveled. PMID:9399795
Lenis, Vasileios Panagiotis E; Swain, Martin; Larkin, Denis M
2018-05-01
Cross-species whole-genome sequence alignment is a critical first step for genome comparative analyses, ranging from the detection of sequence variants to studies of chromosome evolution. Animal genomes are large and complex, and whole-genome alignment is a computationally intense process, requiring expensive high-performance computing systems due to the need to explore extensive local alignments. With hundreds of sequenced animal genomes available from multiple projects, there is an increasing demand for genome comparative analyses. Here, we introduce G-Anchor, a new, fast, and efficient pipeline that uses a strictly limited but highly effective set of local sequence alignments to anchor (or map) an animal genome to another species' reference genome. G-Anchor makes novel use of a databank of highly conserved DNA sequence elements. We demonstrate how these elements may be aligned to a pair of genomes, creating anchors. These anchors enable the rapid mapping of scaffolds from a de novo assembled genome to chromosome assemblies of a reference species. Our results demonstrate that G-Anchor can successfully anchor a vertebrate genome onto a phylogenetically related reference species genome using a desktop or laptop computer within a few hours and with comparable accuracy to that achieved by a highly accurate whole-genome alignment tool such as LASTZ. G-Anchor thus makes whole-genome comparisons accessible to researchers with limited computational resources. G-Anchor is a ready-to-use tool for anchoring a pair of vertebrate genomes. It may be used with large genomes that contain a significant fraction of evolutionally conserved DNA sequences and that are not highly repetitive, polypoid, or excessively fragmented. G-Anchor is not a substitute for whole-genome aligning software but can be used for fast and accurate initial genome comparisons. G-Anchor is freely available and a ready-to-use tool for the pairwise comparison of two genomes.
Repetitive sequences in plant nuclear DNA: types, distribution, evolution and function.
Mehrotra, Shweta; Goyal, Vinod
2014-08-01
Repetitive DNA sequences are a major component of eukaryotic genomes and may account for up to 90% of the genome size. They can be divided into minisatellite, microsatellite and satellite sequences. Satellite DNA sequences are considered to be a fast-evolving component of eukaryotic genomes, comprising tandemly-arrayed, highly-repetitive and highly-conserved monomer sequences. The monomer unit of satellite DNA is 150-400 base pairs (bp) in length. Repetitive sequences may be species- or genus-specific, and may be centromeric or subtelomeric in nature. They exhibit cohesive and concerted evolution caused by molecular drive, leading to high sequence homogeneity. Repetitive sequences accumulate variations in sequence and copy number during evolution, hence they are important tools for taxonomic and phylogenetic studies, and are known as "tuning knobs" in the evolution. Therefore, knowledge of repetitive sequences assists our understanding of the organization, evolution and behavior of eukaryotic genomes. Repetitive sequences have cytoplasmic, cellular and developmental effects and play a role in chromosomal recombination. In the post-genomics era, with the introduction of next-generation sequencing technology, it is possible to evaluate complex genomes for analyzing repetitive sequences and deciphering the yet unknown functional potential of repetitive sequences. Copyright © 2014 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.
Scanning the human genome at kilobase resolution.
Chen, Jun; Kim, Yeong C; Jung, Yong-Chul; Xuan, Zhenyu; Dworkin, Geoff; Zhang, Yanming; Zhang, Michael Q; Wang, San Ming
2008-05-01
Normal genome variation and pathogenic genome alteration frequently affect small regions in the genome. Identifying those genomic changes remains a technical challenge. We report here the development of the DGS (Ditag Genome Scanning) technique for high-resolution analysis of genome structure. The basic features of DGS include (1) use of high-frequent restriction enzymes to fractionate the genome into small fragments; (2) collection of two tags from two ends of a given DNA fragment to form a ditag to represent the fragment; (3) application of the 454 sequencing system to reach a comprehensive ditag sequence collection; (4) determination of the genome origin of ditags by mapping to reference ditags from known genome sequences; (5) use of ditag sequences directly as the sense and antisense PCR primers to amplify the original DNA fragment. To study the relationship between ditags and genome structure, we performed a computational study by using the human genome reference sequences as a model, and analyzed the ditags experimentally collected from the well-characterized normal human DNA GM15510 and the leukemic human DNA of Kasumi-1 cells. Our studies show that DGS provides a kilobase resolution for studying genome structure with high specificity and high genome coverage. DGS can be applied to validate genome assembly, to compare genome similarity and variation in normal populations, and to identify genomic abnormality including insertion, inversion, deletion, translocation, and amplification in pathological genomes such as cancer genomes.
Whole-Genome Sequence Variation among Multiple Isolates of Pseudomonas aeruginosa
Spencer, David H.; Kas, Arnold; Smith, Eric E.; Raymond, Christopher K.; Sims, Elizabeth H.; Hastings, Michele; Burns, Jane L.; Kaul, Rajinder; Olson, Maynard V.
2003-01-01
Whole-genome shotgun sequencing was used to study the sequence variation of three Pseudomonas aeruginosa isolates, two from clonal infections of cystic fibrosis patients and one from an aquatic environment, relative to the genomic sequence of reference strain PAO1. The majority of the PAO1 genome is represented in these strains; however, at least three prominent islands of PAO1-specific sequence are apparent. Conversely, ∼10% of the sequencing reads derived from each isolate fail to align with the PAO1 backbone. While average sequence variation among all strains is roughly 0.5%, regions of pronounced differences were evident in whole-genome scans of nucleotide diversity. We analyzed two such divergent loci, the pyoverdine and O-antigen biosynthesis regions, by complete resequencing. A thorough analysis of isolates collected over time from one of the cystic fibrosis patients revealed independent mutations resulting in the loss of O-antigen synthesis alternating with a mucoid phenotype. Overall, we conclude that most of the PAO1 genome represents a core P. aeruginosa backbone sequence while the strains addressed in this study possess additional genetic material that accounts for at least 10% of their genomes. Approximately half of these additional sequences are novel. PMID:12562802
Complete Coding Genome Sequence for Mogiana Tick Virus, a Jingmenvirus Isolated from Ticks in Brazil
2017-05-04
and capable of infecting a wide range of animal hosts (1–5). Here, we report the complete coding genome sequence (i.e., only missing portions of...segmented nature of the genome was not under- stood. Therefore, only the two genome segments with detectable sequence homolo- gies to flaviviruses were...originally reported (2). We revisited the data set of Maruyama et al. (2) and assembled the complete coding sequences for all four genome segments. We
Effects of informed consent for individual genome sequencing on relevant knowledge.
Kaphingst, K A; Facio, F M; Cheng, M-R; Brooks, S; Eidem, H; Linn, A; Biesecker, B B; Biesecker, L G
2012-11-01
Increasing availability of individual genomic information suggests that patients will need knowledge about genome sequencing to make informed decisions, but prior research is limited. In this study, we examined genome sequencing knowledge before and after informed consent among 311 participants enrolled in the ClinSeq™ sequencing study. An exploratory factor analysis of knowledge items yielded two factors (sequencing limitations knowledge; sequencing benefits knowledge). In multivariable analysis, high pre-consent sequencing limitations knowledge scores were significantly related to education [odds ratio (OR): 8.7, 95% confidence interval (CI): 2.45-31.10 for post-graduate education, and OR: 3.9; 95% CI: 1.05, 14.61 for college degree compared with less than college degree] and race/ethnicity (OR: 2.4, 95% CI: 1.09, 5.38 for non-Hispanic Whites compared with other racial/ethnic groups). Mean values increased significantly between pre- and post-consent for the sequencing limitations knowledge subscale (6.9-7.7, p < 0.0001) and sequencing benefits knowledge subscale (7.0-7.5, p < 0.0001); increase in knowledge did not differ by sociodemographic characteristics. This study highlights gaps in genome sequencing knowledge and underscores the need to target educational efforts toward participants with less education or from minority racial/ethnic groups. The informed consent process improved genome sequencing knowledge. Future studies could examine how genome sequencing knowledge influences informed decision making. © 2012 John Wiley & Sons A/S.
Knierim, Dennis; Maiss, Edgar; Kenyon, Lawrence; Winter, Stephan; Menzel, Wulf
2015-10-01
Luffa aphid-borne yellows virus (LABYV) was proposed as the name for a previously undescribed polerovirus based on partial genome sequences obtained from samples of cucurbit plants collected in Thailand between 2008 and 2013. In this study, we determined the first full-length genome sequence of LABYV. Based on phylogenetic analysis and genome properties, it is clear that this virus represents a distinct species in the genus Polerovirus. Analysis of sequences from sample TH24, which was collected in 2010 from a luffa plant in Thailand, reveals the presence of two different full-length genome consensus sequences.
Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A
2012-11-01
To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.
Kavousi, Niloofar; Eng, Wilhelm Wei Han; Lee, Yin Peng; Tan, Lian Huat; Thuraisingham, Ravindran; Yule, Catherine M; Gan, Han Ming
2016-03-03
We report here the first high-quality draft genome sequence of Pasteurella multocida sequence type 128, which was isolated from the infected finger bone of an adult female who was bitten by a domestic dog. The draft genome will be a valuable addition to the scarce genomic resources available for P. multocida. Copyright © 2016 Kavousi et al.
Bendezu Eguis, Jorge; Montesinos, Ricardo; Fernández-Díaz, Manolo
2018-01-01
ABSTRACT We report here the first genome sequence of infectious laryngotracheitis virus isolated in Peru from tracheal tissues of layer chickens. The genome showed 99.98% identity to the J2 strain genome sequence. Single nucleotide polymorphisms were detected in five gene-coding sequences related to vaccine development, virus attachment, and viral immune evasion. PMID:29519822
All about the Human Genome Project (HGP)
... CSER), and Genome Sequencing Informatics Tools (GS-IT) Comparative Genomics Background information prepared for the media on ... other species to the human sequence. Background on Comparative Genomic Analysis New Process to Prioritize Animal Genomes ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.
2011-03-14
Genomes of energy and environment fungi are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 50 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functionalmore » genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such 'parts' suggested by comparative genomics and functional analysis in these areas are presented here« less
USDA-ARS?s Scientific Manuscript database
The large and complex genome of bread wheat (Triticum aestivum L., ~17 Gb) requires high-resolution genome maps saturated with ordered markers to assist in anchoring and orienting BAC contigs/ sequence scaffolds for whole genome sequence assembly. Radiation hybrid (RH) mapping has proven to be an e...
Organizational heterogeneity of vertebrate genomes.
Frenkel, Svetlana; Kirzhner, Valery; Korol, Abraham
2012-01-01
Genomes of higher eukaryotes are mosaics of segments with various structural, functional, and evolutionary properties. The availability of whole-genome sequences allows the investigation of their structure as "texts" using different statistical and computational methods. One such method, referred to as Compositional Spectra (CS) analysis, is based on scoring the occurrences of fixed-length oligonucleotides (k-mers) in the target DNA sequence. CS analysis allows generating species- or region-specific characteristics of the genome, regardless of their length and the presence of coding DNA. In this study, we consider the heterogeneity of vertebrate genomes as a joint effect of regional variation in sequence organization superimposed on the differences in nucleotide composition. We estimated compositional and organizational heterogeneity of genome and chromosome sequences separately and found that both heterogeneity types vary widely among genomes as well as among chromosomes in all investigated taxonomic groups. The high correspondence of heterogeneity scores obtained on three genome fractions, coding, repetitive, and the remaining part of the noncoding DNA (the genome dark matter--GDM) allows the assumption that CS-heterogeneity may have functional relevance to genome regulation. Of special interest for such interpretation is the fact that natural GDM sequences display the highest deviation from the corresponding reshuffled sequences.
Miura, Naoki; Kucho, Ken-Ichi; Noguchi, Michiko; Miyoshi, Noriaki; Uchiumi, Toshiki; Kawaguchi, Hiroaki; Tanimoto, Akihide
2014-01-01
The microminipig, which weighs less than 10 kg at an early stage of maturity, has been reported as a potential experimental model animal. Its extremely small size and other distinct characteristics suggest the possibility of a number of differences between the genome of the microminipig and that of conventional pigs. In this study, we analyzed the genomes of two healthy microminipigs using a next-generation sequencer SOLiD™ system. We then compared the obtained genomic sequences with a genomic database for the domestic pig (Sus scrofa). The mapping coverage of sequenced tag from the microminipig to conventional pig genomic sequences was greater than 96% and we detected no clear, substantial genomic variance from these data. The results may indicate that the distinct characteristics of the microminipig derive from small-scale alterations in the genome, such as Single Nucleotide Polymorphisms or translational modifications, rather than large-scale deletion or insertion polymorphisms. Further investigation of the entire genomic sequence of the microminipig with methods enabling deeper coverage is required to elucidate the genetic basis of its distinct phenotypic traits. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Genome survey sequencing of red swamp crayfish Procambarus clarkii.
Shi, Linlin; Yi, Shaokui; Li, Yanhe
2018-06-21
Red swamp crayfish, Procambarus clarkii, presently is an important aquatic commercial species in China. The crayfish is a hot area of research focus, and its genetic improvement is quite urgent for the crayfish aquaculture in China. However, the knowledge of its genomic landscape is limited. In this study, a survey of P. clarkii genome was investigated based on Illumina's Solexa sequencing platform. Meanwhile, its genome size was estimated using flow cytometry. Interestingly, the genome size estimated is about 8.50 Gb by flow cytometry and 1.86 Gb with genome survey sequencing. Based on the assembled genome sequences, total of 136,962 genes and 152,268 exons were predicted, and the predicted genes ranged from 150 to 12,807 bp in length. The survey sequences could help accelerate the progress of gene discovery involved in genetic diversity and evolutionary analysis, even though it could not successfully applied for estimation of P. clarkii genome size.
Fueling the Future with Fungal Genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor V.
2014-10-27
Genomes of fungi relevant to energy and environment are in focus of the JGI Fungal Genomic Program. One of its projects, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts and pathogens) and biorefinery processes (cellulose degradation and sugar fermentation) by means of genome sequencing and analysis. New chapters of the Encyclopedia can be opened with user proposals to the JGI Community Science Program (CSP). Another JGI project, the 1000 fungal genomes, explores fungal diversity on genome level at scale and is open for users to nominate new species for sequencing. Over 400 fungal genomes have beenmore » sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supported by functional genomics will lead to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such ‘parts’ suggested by comparative genomics and functional analysis in these areas are presented here.« less
The whole genome sequences and experimentally phased haplotypes of over 100 personal genomes.
Mao, Qing; Ciotlos, Serban; Zhang, Rebecca Yu; Ball, Madeleine P; Chin, Robert; Carnevali, Paolo; Barua, Nina; Nguyen, Staci; Agarwal, Misha R; Clegg, Tom; Connelly, Abram; Vandewege, Ward; Zaranek, Alexander Wait; Estep, Preston W; Church, George M; Drmanac, Radoje; Peters, Brock A
2016-10-11
Since the completion of the Human Genome Project in 2003, it is estimated that more than 200,000 individual whole human genomes have been sequenced. A stunning accomplishment in such a short period of time. However, most of these were sequenced without experimental haplotype data and are therefore missing an important aspect of genome biology. In addition, much of the genomic data is not available to the public and lacks phenotypic information. As part of the Personal Genome Project, blood samples from 184 participants were collected and processed using Complete Genomics' Long Fragment Read technology. Here, we present the experimental whole genome haplotyping and sequencing of these samples to an average read coverage depth of 100X. This is approximately three-fold higher than the read coverage applied to most whole human genome assemblies and ensures the highest quality results. Currently, 114 genomes from this dataset are freely available in the GigaDB repository and are associated with rich phenotypic data; the remaining 70 should be added in the near future as they are approved through the PGP data release process. For reproducibility analyses, 20 genomes were sequenced at least twice using independent LFR barcoded libraries. Seven genomes were also sequenced using Complete Genomics' standard non-barcoded library process. In addition, we report 2.6 million high-quality, rare variants not previously identified in the Single Nucleotide Polymorphisms database or the 1000 Genomes Project Phase 3 data. These genomes represent a unique source of haplotype and phenotype data for the scientific community and should help to expand our understanding of human genome evolution and function.
Genomic prediction using imputed whole-genome sequence data in Holstein Friesian cattle.
van Binsbergen, Rianne; Calus, Mario P L; Bink, Marco C A M; van Eeuwijk, Fred A; Schrooten, Chris; Veerkamp, Roel F
2015-09-17
In contrast to currently used single nucleotide polymorphism (SNP) panels, the use of whole-genome sequence data is expected to enable the direct estimation of the effects of causal mutations on a given trait. This could lead to higher reliabilities of genomic predictions compared to those based on SNP genotypes. Also, at each generation of selection, recombination events between a SNP and a mutation can cause decay in reliability of genomic predictions based on markers rather than on the causal variants. Our objective was to investigate the use of imputed whole-genome sequence genotypes versus high-density SNP genotypes on (the persistency of) the reliability of genomic predictions using real cattle data. Highly accurate phenotypes based on daughter performance and Illumina BovineHD Beadchip genotypes were available for 5503 Holstein Friesian bulls. The BovineHD genotypes (631,428 SNPs) of each bull were used to impute whole-genome sequence genotypes (12,590,056 SNPs) using the Beagle software. Imputation was done using a multi-breed reference panel of 429 sequenced individuals. Genomic estimated breeding values for three traits were predicted using a Bayesian stochastic search variable selection (BSSVS) model and a genome-enabled best linear unbiased prediction model (GBLUP). Reliabilities of predictions were based on 2087 validation bulls, while the other 3416 bulls were used for training. Prediction reliabilities ranged from 0.37 to 0.52. BSSVS performed better than GBLUP in all cases. Reliabilities of genomic predictions were slightly lower with imputed sequence data than with BovineHD chip data. Also, the reliabilities tended to be lower for both sequence data and BovineHD chip data when relationships between training animals were low. No increase in persistency of prediction reliability using imputed sequence data was observed. Compared to BovineHD genotype data, using imputed sequence data for genomic prediction produced no advantage. To investigate the putative advantage of genomic prediction using (imputed) sequence data, a training set with a larger number of individuals that are distantly related to each other and genomic prediction models that incorporate biological information on the SNPs or that apply stricter SNP pre-selection should be considered.
First genome report on novel sequence types of Neisseria meningitidis: ST12777 and ST12778.
Veeraraghavan, Balaji; Lal, Binesh; Devanga Ragupathi, Naveen Kumar; Neeravi, Iyyan Raj; Jeyaraman, Ranjith; Varghese, Rosemol; Paul, Miracle Magdalene; Baskaran, Ashtawarthani; Ranjan, Ranjini
2018-03-01
Neisseria meningitidis is an important causative agent of meningitis and/or sepsis with high morbidity and mortality. Baseline genome data on N. meningitidis, especially from developing countries such as India, are lacking. This study aimed to investigate the whole genome sequences of N. meningitidis isolates from a tertiary care centre in India. Whole-genome sequencing was performed using an Ion Torrent™ Personal Genome Machine™ (PGM) with 400-bp chemistry. Data were assembled de novo using SPAdes Genome Assembler v.5.0.0.0. Sequence annotation was performed through PATRIC, RAST and the NCBI PGAAP server. Downstream analysis of the isolates was performed using the Center for Genomic Epidemiology databases for antimicrobial resistance genes and sequence types. Virulence factors and CRISPR were analysed using the PubMLST database and CRISPRFinder, respectively. This study reports the whole genome shotgun sequences of eight N. meningitidis isolates from bloodstream infections. The genome data revealed two novel sequence types (ST12777 and ST12778), along with ST11, ST437 and ST6928. The virulence profile of the isolates matched their sequence types. All isolates were negative for plasmid-mediated resistance genes. To the best of our knowledge, this is the first report of ST11 and ST437 N. meningitidis isolates in India along with two novel sequence types (ST12777 and ST12778). These results indicate that the sequence types circulating in India are diverse and require continuous monitoring. Further studies strengthening the genome data on N. meningitidis are required to understand the prevalence, spread, exact resistance and virulence mechanisms along with serotypes. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph; Aury, Jean-Marc
2017-02-01
Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. © The Author 2017. Published by Oxford University Press.
Istace, Benjamin; Friedrich, Anne; d'Agata, Léo; Faye, Sébastien; Payen, Emilie; Beluche, Odette; Caradec, Claudia; Davidas, Sabrina; Cruaud, Corinne; Liti, Gianni; Lemainque, Arnaud; Engelen, Stefan; Wincker, Patrick; Schacherer, Joseph
2017-01-01
Abstract Background: Oxford Nanopore Technologies Ltd (Oxford, UK) have recently commercialized MinION, a small single-molecule nanopore sequencer, that offers the possibility of sequencing long DNA fragments from small genomes in a matter of seconds. The Oxford Nanopore technology is truly disruptive; it has the potential to revolutionize genomic applications due to its portability, low cost, and ease of use compared with existing long reads sequencing technologies. The MinION sequencer enables the rapid sequencing of small eukaryotic genomes, such as the yeast genome. Combined with existing assembler algorithms, near complete genome assemblies can be generated and comprehensive population genomic analyses can be performed. Results: Here, we resequenced the genome of the Saccharomyces cerevisiae S288C strain to evaluate the performance of nanopore-only assemblers. Then we de novo sequenced and assembled the genomes of 21 isolates representative of the S. cerevisiae genetic diversity using the MinION platform. The contiguity of our assemblies was 14 times higher than the Illumina-only assemblies and we obtained one or two long contigs for 65 % of the chromosomes. This high contiguity allowed us to accurately detect large structural variations across the 21 studied genomes. Conclusion: Because of the high completeness of the nanopore assemblies, we were able to produce a complete cartography of transposable elements insertions and inspect structural variants that are generally missed using a short-read sequencing strategy. Our analyses show that the Oxford Nanopore technology is already usable for de novo sequencing and assembly; however, non-random errors in homopolymers require polishing the consensus using an alternate sequencing technology. PMID:28369459
2011-01-01
Background BAC-based physical maps provide for sequencing across an entire genome or a selected sub-genomic region of biological interest. Such a region can be approached with next-generation whole-genome sequencing and assembly as if it were an independent small genome. Using the minimum tiling path as a guide, specific BAC clones representing the prioritized genomic interval are selected, pooled, and used to prepare a sequencing library. Results This pooled BAC approach was taken to sequence and assemble a QTL-rich region, of ~3 Mbp and represented by twenty-seven BACs, on linkage group 5 of the Theobroma cacao cv. Matina 1-6 genome. Using various mixtures of read coverages from paired-end and linear 454 libraries, multiple assemblies of varied quality were generated. Quality was assessed by comparing the assembly of 454 reads with a subset of ten BACs individually sequenced and assembled using Sanger reads. A mixture of reads optimal for assembly was identified. We found, furthermore, that a quality assembly suitable for serving as a reference genome template could be obtained even with a reduced depth of sequencing coverage. Annotation of the resulting assembly revealed several genes potentially responsible for three T. cacao traits: black pod disease resistance, bean shape index, and pod weight. Conclusions Our results, as with other pooled BAC sequencing reports, suggest that pooling portions of a minimum tiling path derived from a BAC-based physical map is an effective method to target sub-genomic regions for sequencing. While we focused on a single QTL region, other QTL regions of importance could be similarly sequenced allowing for biological discovery to take place before a high quality whole-genome assembly is completed. PMID:21794110
Feltus, Frank A; Saski, Christopher A; Mockaitis, Keithanne; Haiminen, Niina; Parida, Laxmi; Smith, Zachary; Ford, James; Staton, Margaret E; Ficklin, Stephen P; Blackmon, Barbara P; Cheng, Chun-Huai; Schnell, Raymond J; Kuhn, David N; Motamayor, Juan-Carlos
2011-07-27
BAC-based physical maps provide for sequencing across an entire genome or a selected sub-genomic region of biological interest. Such a region can be approached with next-generation whole-genome sequencing and assembly as if it were an independent small genome. Using the minimum tiling path as a guide, specific BAC clones representing the prioritized genomic interval are selected, pooled, and used to prepare a sequencing library. This pooled BAC approach was taken to sequence and assemble a QTL-rich region, of ~3 Mbp and represented by twenty-seven BACs, on linkage group 5 of the Theobroma cacao cv. Matina 1-6 genome. Using various mixtures of read coverages from paired-end and linear 454 libraries, multiple assemblies of varied quality were generated. Quality was assessed by comparing the assembly of 454 reads with a subset of ten BACs individually sequenced and assembled using Sanger reads. A mixture of reads optimal for assembly was identified. We found, furthermore, that a quality assembly suitable for serving as a reference genome template could be obtained even with a reduced depth of sequencing coverage. Annotation of the resulting assembly revealed several genes potentially responsible for three T. cacao traits: black pod disease resistance, bean shape index, and pod weight. Our results, as with other pooled BAC sequencing reports, suggest that pooling portions of a minimum tiling path derived from a BAC-based physical map is an effective method to target sub-genomic regions for sequencing. While we focused on a single QTL region, other QTL regions of importance could be similarly sequenced allowing for biological discovery to take place before a high quality whole-genome assembly is completed.
New Generation Sequencing Technology Panel at SFAF-Part II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiske, Haley; Turner, Steve; Rhodes, Michael
2009-05-27
From left to right: Haley Fiske of Illumina Inc., Steve Turner of Pacific Biosciences, Michael Rhodes of Applied Biosystems, Patrice Milos of Helicos Biosciences and Tim Harkins of Roche Diagnostics answer questions in a forum moderated by Bob Fulton at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
New Generation Sequencing Technology Panel at SFAF-Part I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiske, Haley; Turner, Steve; Rhodes, Michael
2009-05-27
From left to right: Haley Fiske of Illumina Inc., Steve Turner of Pacific Biosciences, Michael Rhodes of Applied Biosystems, Patrice Milos of Helicos Biosciences and Tim Harkins of Roche Diagnostics answer questions in a forum moderated by Bob Fulton at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM.
Development of Mycoplasma synoviae (MS) core genome multilocus sequence typing (cgMLST) scheme.
Ghanem, Mostafa; El-Gazzar, Mohamed
2018-05-01
Mycoplasma synoviae (MS) is a poultry pathogen with reported increased prevalence and virulence in recent years. MS strain identification is essential for prevention, control efforts and epidemiological outbreak investigations. Multiple multilocus based sequence typing schemes have been developed for MS, yet the resolution of these schemes could be limited for outbreak investigation. The cost of whole genome sequencing became close to that of sequencing the seven MLST targets; however, there is no standardized method for typing MS strains based on whole genome sequences. In this paper, we propose a core genome multilocus sequence typing (cgMLST) scheme as a standardized and reproducible method for typing MS based whole genome sequences. A diverse set of 25 MS whole genome sequences were used to identify 302 core genome genes as cgMLST targets (35.5% of MS genome) and 44 whole genome sequences of MS isolates from six countries in four continents were used for typing applying this scheme. cgMLST based phylogenetic trees displayed a high degree of agreement with core genome SNP based analysis and available epidemiological information. cgMLST allowed evaluation of two conventional MLST schemes of MS. The high discriminatory power of cgMLST allowed differentiation between samples of the same conventional MLST type. cgMLST represents a standardized, accurate, highly discriminatory, and reproducible method for differentiation between MS isolates. Like conventional MLST, it provides stable and expandable nomenclature, allowing for comparing and sharing the typing results between different laboratories worldwide. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
High-Throughput resequencing of maize landraces at genomic regions associated with flowering time
USDA-ARS?s Scientific Manuscript database
Despite the reduction in the price of sequencing, it remains expensive to sequence and assemble whole, complex genomes of multiple samples for population studies, particularly for large genomes like those of many crop species. Enrichment of target genome regions coupled with next generation sequenci...
GSP: A web-based platform for designing genome-specific primers in polyploids
USDA-ARS?s Scientific Manuscript database
The sequences among subgenomes in a polyploid species have high similarity. This makes difficult to design genome-specific primers for sequence analysis. We present a web-based platform named GSP for designing genome-specific primers to distinguish subgenome sequences in the polyploid genome backgr...
USDA-ARS?s Scientific Manuscript database
Modern biological analyses are often assisted by recent technologies making the sequencing of complex genomes both technically possible and feasible. We recently sequenced the tomato genome that, like many eukaryotic genomes, is large and complex. Current sequencing technologies allow the developmen...
The Contribution of Short Repeats of Low Sequence Complexity to Large Conifer Genomes
A. Schmidt; R.L. Doudrick; J.S. Heslop-Harrison; T. Schmidt
2000-01-01
Abstract: The abundance and genomic organization of six simple sequence repeats, consisting of di-, tri-, and tetranucleotide sequence motifs, and a minisatellite repeat have been analyzed in different gymnosperms by Southern hybridization. Within the gymnosperm genomes investigated, the abundance and genomic organization of micro- and...
Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine
Craig S Echt; Surya Saha; Dennis L Deemer; C Dana Nelson
2011-01-01
Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant...
A computational genomics pipeline for prokaryotic sequencing projects.
Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King
2010-08-01
New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.
Frahry, Matthew Blake; Sun, Cheng; Chong, Rebecca A; Mueller, Rachel Lockridge
2015-02-01
Across the tree of life, species vary dramatically in nuclear genome size. Mutations that add or remove sequences from genomes-insertions or deletions, or indels-are the ultimate source of this variation. Differences in the tempo and mode of insertion and deletion across taxa have been proposed to contribute to evolutionary diversity in genome size. Among vertebrates, most of the largest genomes are found within the salamanders, an amphibian clade with genome sizes ranging from ~14 to ~120 Gb. Salamander genomes have been shown to experience slower rates of DNA loss through small (i.e., <30 bp) deletions than do other vertebrate genomes. However, no studies have addressed DNA loss from salamander genomes resulting from larger deletions. Here, we focus on one type of large deletion-ectopic-recombination-mediated removal of LTR retrotransposon sequences. In ectopic recombination, double-strand breaks are repaired using a "wrong" (i.e., ectopic, or non-allelic) template sequence-typically another locus of similar sequence. When breaks occur within the LTR portions of LTR retrotransposons, ectopic-recombination-mediated repair can produce deletions that remove the internal transposon sequence and the equivalent of one of the two LTR sequences. These deletions leave a signature in the genome-a solo LTR sequence. We compared levels of solo LTRs in the genomes of four salamander species with levels present in five vertebrates with smaller genomes. Our results demonstrate that salamanders have low levels of solo LTRs, suggesting that ectopic-recombination-mediated deletion of LTR retrotransposons occurs more slowly than in other vertebrates with smaller genomes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robert DeSalle
2004-09-10
This project seeks to use the genomes of two close relatives, A. actinomycetemcomitans and H. aphrophilus, to understand the evolutionary changes that take place in a genome to make it more or less virulent. Our primary specific aim of this project was to sequence, annotate, and analyze the genomes of Actinobacillus actinomycetemcomitans (CU1000, serotype f) and Haemophilus aphrophilus. With these genome sequences we have then compared the whole genome sequences to each other and to the current Aa (HK1651 www.genome.ou.edu) genome project sequence along with other fully sequenced Pasteurellaceae to determine inter and intra species differences that may account formore » the differences and similarities in disease. We also propose to create and curate a comprehensive database where sequence information and analysis for the Pasteurellaceae (family that includes the genera Actinobacillus and Haemophilus) are readily accessible. And finally we have proposed to develop phylogenetic techniques that can be used to efficiently and accurately examine the evolution of genomes. Below we report on progress we have made on these major specific aims. Progress on the specific aims is reported below under two major headings--experimental approaches and bioinformatics and systematic biology approaches.« less
Progress in Understanding and Sequencing the Genome of Brassica rapa
Hong, Chang Pyo; Kwon, Soo-Jin; Kim, Jung Sun; Yang, Tae-Jin; Park, Beom-Seok; Lim, Yong Pyo
2008-01-01
Brassica rapa, which is closely related to Arabidopsis thaliana, is an important crop and a model plant for studying genome evolution via polyploidization. We report the current understanding of the genome structure of B. rapa and efforts for the whole-genome sequencing of the species. The tribe Brassicaceae, which comprises ca. 240 species, descended from a common hexaploid ancestor with a basic genome similar to that of Arabidopsis. Chromosome rearrangements, including fusions and/or fissions, resulted in the present-day “diploid” Brassica species with variation in chromosome number and phenotype. Triplicated genomic segments of B. rapa are collinear to those of A. thaliana with InDels. The genome triplication has led to an approximately 1.7-fold increase in the B. rapa gene number compared to that of A. thaliana. Repetitive DNA of B. rapa has also been extensively amplified and has diverged from that of A. thaliana. For its whole-genome sequencing, the Brassica rapa Genome Sequencing Project (BrGSP) consortium has developed suitable genomic resources and constructed genetic and physical maps. Ten chromosomes of B. rapa are being allocated to BrGSP consortium participants, and each chromosome will be sequenced by a BAC-by-BAC approach. Genome sequencing of B. rapa will offer a new perspective for plant biology and evolution in the context of polyploidization. PMID:18288250
Genome-Wide Search Identifies 1.9 Mb from the Polar Bear Y Chromosome for Evolutionary Analyses
Bidon, Tobias; Schreck, Nancy; Hailer, Frank; Nilsson, Maria A.; Janke, Axel
2015-01-01
The male-inherited Y chromosome is the major haploid fraction of the mammalian genome, rendering Y-linked sequences an indispensable resource for evolutionary research. However, despite recent large-scale genome sequencing approaches, only a handful of Y chromosome sequences have been characterized to date, mainly in model organisms. Using polar bear (Ursus maritimus) genomes, we compare two different in silico approaches to identify Y-linked sequences: 1) Similarity to known Y-linked genes and 2) difference in the average read depth of autosomal versus sex chromosomal scaffolds. Specifically, we mapped available genomic sequencing short reads from a male and a female polar bear against the reference genome and identify 112 Y-chromosomal scaffolds with a combined length of 1.9 Mb. We verified the in silico findings for the longer polar bear scaffolds by male-specific in vitro amplification, demonstrating the reliability of the average read depth approach. The obtained Y chromosome sequences contain protein-coding sequences, single nucleotide polymorphisms, microsatellites, and transposable elements that are useful for evolutionary studies. A high-resolution phylogeny of the polar bear patriline shows two highly divergent Y chromosome lineages, obtained from analysis of the identified Y scaffolds in 12 previously published male polar bear genomes. Moreover, we find evidence of gene conversion among ZFX and ZFY sequences in the giant panda lineage and in the ancestor of ursine and tremarctine bears. Thus, the identification of Y-linked scaffold sequences from unordered genome sequences yields valuable data to infer phylogenomic and population-genomic patterns in bears. PMID:26019166
Novel Insights into Tree Biology and Genome Evolution as Revealed Through Genomics.
Neale, David B; Martínez-García, Pedro J; De La Torre, Amanda R; Montanari, Sara; Wei, Xiao-Xin
2017-04-28
Reference genome sequences are the key to the discovery of genes and gene families that determine traits of interest. Recent progress in sequencing technologies has enabled a rapid increase in genome sequencing of tree species, allowing the dissection of complex characters of economic importance, such as fruit and wood quality and resistance to biotic and abiotic stresses. Although the number of reference genome sequences for trees lags behind those for other plant species, it is not too early to gain insight into the unique features that distinguish trees from nontree plants. Our review of the published data suggests that, although many gene families are conserved among herbaceous and tree species, some gene families, such as those involved in resistance to biotic and abiotic stresses and in the synthesis and transport of sugars, are often expanded in tree genomes. As the genomes of more tree species are sequenced, comparative genomics will further elucidate the complexity of tree genomes and how this relates to traits unique to trees.
Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu
2012-01-01
Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects.
Ma, Peng-Fei; Guo, Zhen-Hua; Li, De-Zhu
2012-01-01
Background Compared to their counterparts in animals, the mitochondrial (mt) genomes of angiosperms exhibit a number of unique features. However, unravelling their evolution is hindered by the few completed genomes, of which are essentially Sanger sequenced. While next-generation sequencing technologies have revolutionized chloroplast genome sequencing, they are just beginning to be applied to angiosperm mt genomes. Chloroplast genomes of grasses (Poaceae) have undergone episodic evolution and the evolutionary rate was suggested to be correlated between chloroplast and mt genomes in Poaceae. It is interesting to investigate whether correlated rate change also occurred in grass mt genomes as expected under lineage effects. A time-calibrated phylogenetic tree is needed to examine rate change. Methodology/Principal Findings We determined a largely completed mt genome from a bamboo, Ferrocalamus rimosivaginus (Poaceae), through Illumina sequencing of total DNA. With combination of de novo and reference-guided assembly, 39.5-fold coverage Illumina reads were finally assembled into scaffolds totalling 432,839 bp. The assembled genome contains nearly the same genes as the completed mt genomes in Poaceae. For examining evolutionary rate in grass mt genomes, we reconstructed a phylogenetic tree including 22 taxa based on 31 mt genes. The topology of the well-resolved tree was almost identical to that inferred from chloroplast genome with only minor difference. The inconsistency possibly derived from long branch attraction in mtDNA tree. By calculating absolute substitution rates, we found significant rate change (∼4-fold) in mt genome before and after the diversification of Poaceae both in synonymous and nonsynonymous terms. Furthermore, the rate change was correlated with that of chloroplast genomes in grasses. Conclusions/Significance Our result demonstrates that it is a rapid and efficient approach to obtain angiosperm mt genome sequences using Illumina sequencing technology. The parallel episodic evolution of mt and chloroplast genomes in grasses is consistent with lineage effects. PMID:22272330
Utturkar, Sagar M.; Klingeman, Dawn M.; Johnson, Courtney M.; Martin, Stanton L.; Land, Miriam L.; Lu, Tse-Yuan S.; Schadt, Christopher W.; Doktycz, Mitchel J.
2012-01-01
To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated. PMID:23045501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn Marie
To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.
Zheng, Zequn; Zhang, Qisen; Zhou, Gaofeng; Sweetingham, Mark W.; Howieson, John G.; Li, Chengdao
2013-01-01
Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species. PMID:23734219
Yang, Huaan; Tao, Ye; Zheng, Zequn; Zhang, Qisen; Zhou, Gaofeng; Sweetingham, Mark W; Howieson, John G; Li, Chengdao
2013-01-01
Lupin (Lupinus angustifolius L.) is the most recently domesticated crop in major agricultural cultivation. Its seeds are high in protein and dietary fibre, but low in oil and starch. Medical and dietetic studies have shown that consuming lupin-enriched food has significant health benefits. We report the draft assembly from a whole genome shotgun sequencing dataset for this legume species with 26.9x coverage of the genome, which is predicted to contain 57,807 genes. Analysis of the annotated genes with metabolic pathways provided a partial understanding of some key features of lupin, such as the amino acid profile of storage proteins in seeds. Furthermore, we applied the NGS-based RAD-sequencing technology to obtain 8,244 sequence-defined markers for anchoring the genomic sequences. A total of 4,214 scaffolds from the genome sequence assembly were aligned into the genetic map. The combination of the draft assembly and a sequence-defined genetic map made it possible to locate and study functional genes of agronomic interest. The identification of co-segregating SNP markers, scaffold sequences and gene annotation facilitated the identification of a candidate R gene associated with resistance to the major lupin disease anthracnose. We demonstrated that the combination of medium-depth genome sequencing and a high-density genetic linkage map by application of NGS technology is a cost-effective approach to generating genome sequence data and a large number of molecular markers to study the genomics, genetics and functional genes of lupin, and to apply them to molecular plant breeding. This strategy does not require prior genome knowledge, which potentiates its application to a wide range of non-model species.
Meyer, E; Butler, A; Dubrana, K; Duharcourt, S; Caron, F
1997-01-01
In ciliates, the germ line genome is extensively rearranged during the development of the somatic macronucleus from a mitotic product of the zygotic nucleus. Germ line chromosomes are fragmented in specific regions, and a large number of internal sequence elements are eliminated. It was previously shown that transformation of the vegetative macronucleus of Paramecium primaurelia with a plasmid containing a subtelomeric surface antigen gene can affect the processing of the homologous germ line genomic region during development of a new macronucleus in sexual progeny of transformed clones. The gene and telomere-proximal flanking sequences are deleted from the new macronuclear genome, although the germ line genome remains wild type. Here we show that plasmids containing nonoverlapping segments of the same genomic region are able to induce similar terminal deletions; the locations of deletion end points depend on the particular sequence used. Transformation of the maternal macronucleus with a sequence internal to a macronuclear chromosome also causes the occurrence of internal deletions between short direct repeats composed of alternating thymines and adenines. The epigenetic influence of maternal macronuclear sequences on developmental rearrangements of the zygotic genome thus appears to be both sequence specific and general, suggesting that this trans-nucleus effect is mediated by pairing of homologous sequences. PMID:9199294
Microsatellite analysis in the genome of Acanthaceae: An in silico approach
Kaliswamy, Priyadharsini; Vellingiri, Srividhya; Nathan, Bharathi; Selvaraj, Saravanakumar
2015-01-01
Background: Acanthaceae is one of the advanced and specialized families with conventionally used medicinal plants. Simple sequence repeats (SSRs) play a major role as molecular markers for genome analysis and plant breeding. The microsatellites existing in the complete genome sequences would help to attain a direct role in the genome organization, recombination, gene regulation, quantitative genetic variation, and evolution of genes. Objective: The current study reports the frequency of microsatellites and appropriate markers for the Acanthaceae family genome sequences. Materials and Methods: The whole nucleotide sequences of Acanthaceae species were obtained from National Center for Biotechnology Information database and screened for the presence of SSRs. SSR Locator tool was used to predict the microsatellites and inbuilt Primer3 module was used for primer designing. Results: Totally 110 repeats from 108 sequences of Acanthaceae family plant genomes were identified, and the occurrence of dinucleotide repeats was found to be abundant in the genome sequences. The essential amino acid isoleucine was found rich in all the sequences. We also designed the SSR-based primers/markers for 59 sequences of this family that contains microsatellite repeats in their genome. Conclusion: The identified microsatellites and primers might be useful for breeding and genetic studies of plants that belong to Acanthaceae family in the future. PMID:25709226
Bioinformatics and genomic analysis of transposable elements in eukaryotic genomes.
Janicki, Mateusz; Rooke, Rebecca; Yang, Guojun
2011-08-01
A major portion of most eukaryotic genomes are transposable elements (TEs). During evolution, TEs have introduced profound changes to genome size, structure, and function. As integral parts of genomes, the dynamic presence of TEs will continue to be a major force in reshaping genomes. Early computational analyses of TEs in genome sequences focused on filtering out "junk" sequences to facilitate gene annotation. When the high abundance and diversity of TEs in eukaryotic genomes were recognized, these early efforts transformed into the systematic genome-wide categorization and classification of TEs. The availability of genomic sequence data reversed the classical genetic approaches to discovering new TE families and superfamilies. Curated TE databases and their accurate annotation of genome sequences in turn facilitated the studies on TEs in a number of frontiers including: (1) TE-mediated changes of genome size and structure, (2) the influence of TEs on genome and gene functions, (3) TE regulation by host, (4) the evolution of TEs and their population dynamics, and (5) genomic scale studies of TE activity. Bioinformatics and genomic approaches have become an integral part of large-scale studies on TEs to extract information with pure in silico analyses or to assist wet lab experimental studies. The current revolution in genome sequencing technology facilitates further progress in the existing frontiers of research and emergence of new initiatives. The rapid generation of large-sequence datasets at record low costs on a routine basis is challenging the computing industry on storage capacity and manipulation speed and the bioinformatics community for improvement in algorithms and their implementations.
Lu, Fu-Hao; McKenzie, Neil; Kettleborough, George; Heavens, Darren; Clark, Matthew D; Bevan, Michael W
2018-05-01
The accurate sequencing and assembly of very large, often polyploid, genomes remains a challenging task, limiting long-range sequence information and phased sequence variation for applications such as plant breeding. The 15-Gb hexaploid bread wheat (Triticum aestivum) genome has been particularly challenging to sequence, and several different approaches have recently generated long-range assemblies. Mapping and understanding the types of assembly errors are important for optimising future sequencing and assembly approaches and for comparative genomics. Here we use a Fosill 38-kb jumping library to assess medium and longer-range order of different publicly available wheat genome assemblies. Modifications to the Fosill protocol generated longer Illumina sequences and enabled comprehensive genome coverage. Analyses of two independent Bacterial Artificial Chromosome (BAC)-based chromosome-scale assemblies, two independent Illumina whole genome shotgun assemblies, and a hybrid Single Molecule Real Time (SMRT-PacBio) and short read (Illumina) assembly were carried out. We revealed a surprising scale and variety of discrepancies using Fosill mate-pair mapping and validated several of each class. In addition, Fosill mate-pairs were used to scaffold a whole genome Illumina assembly, leading to a 3-fold increase in N50 values. Our analyses, using an independent means to validate different wheat genome assemblies, show that whole genome shotgun assemblies based solely on Illumina sequences are significantly more accurate by all measures compared to BAC-based chromosome-scale assemblies and hybrid SMRT-Illumina approaches. Although current whole genome assemblies are reasonably accurate and useful, additional improvements will be needed to generate complete assemblies of wheat genomes using open-source, computationally efficient, and cost-effective methods.
Zhang, Liwen; Zhou, Zhengfu; Guo, Qiannan; Fokkens, Like; Miskei, Márton; Pócsi, István; Zhang, Wei; Chen, Ming; Wang, Lei; Sun, Yamin; Donzelli, Bruno G. G.; Gibson, Donna M.; Nelson, David R.; Luo, Jian-Guang; Rep, Martijn; Liu, Hang; Yang, Shengnan; Wang, Jing; Krasnoff, Stuart B.; Xu, Yuquan; Molnár, István; Lin, Min
2016-01-01
Nematophagous fungi employ three distinct predatory strategies: nematode trapping, parasitism of females and eggs, and endoparasitism. While endoparasites play key roles in controlling nematode populations in nature, their application for integrated pest management is hindered by the limited understanding of their biology. We present a comparative analysis of a high quality finished genome assembly of Drechmeria coniospora, a model endoparasitic nematophagous fungus, integrated with a transcriptomic study. Adaptation of D. coniospora to its almost completely obligate endoparasitic lifestyle led to the simplification of many orthologous gene families involved in the saprophytic trophic mode, while maintaining orthologs of most known fungal pathogen-host interaction proteins, stress response circuits and putative effectors of the small secreted protein type. The need to adhere to and penetrate the host cuticle led to a selective radiation of surface proteins and hydrolytic enzymes. Although the endoparasite has a simplified secondary metabolome, it produces a novel peptaibiotic family that shows antibacterial, antifungal and nematicidal activities. Our analyses emphasize the basic malleability of the D. coniospora genome: loss of genes advantageous for the saprophytic lifestyle; modulation of elements that its cohort species utilize for entomopathogenesis; and expansion of protein families necessary for the nematode endoparasitic lifestyle. PMID:26975455
Nanopore DNA Sequencing and Genome Assembly on the International Space Station.
Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K; Stahl, Sarah E; Rubins, Kathleen H; McIntyre, Alexa B R; Dworkin, Jason P; Lupisella, Mark L; Smith, David J; Botkin, Douglas J; Stephenson, Timothy A; Juul, Sissel; Turner, Daniel J; Izquierdo, Fernando; Federman, Scot; Stryke, Doug; Somasekar, Sneha; Alexander, Noah; Yu, Guixia; Mason, Christopher E; Burton, Aaron S
2017-12-21
We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.
Ultraaccurate genome sequencing and haplotyping of single human cells.
Chu, Wai Keung; Edge, Peter; Lee, Ho Suk; Bansal, Vikas; Bafna, Vineet; Huang, Xiaohua; Zhang, Kun
2017-11-21
Accurate detection of variants and long-range haplotypes in genomes of single human cells remains very challenging. Common approaches require extensive in vitro amplification of genomes of individual cells using DNA polymerases and high-throughput short-read DNA sequencing. These approaches have two notable drawbacks. First, polymerase replication errors could generate tens of thousands of false-positive calls per genome. Second, relatively short sequence reads contain little to no haplotype information. Here we report a method, which is dubbed SISSOR (single-stranded sequencing using microfluidic reactors), for accurate single-cell genome sequencing and haplotyping. A microfluidic processor is used to separate the Watson and Crick strands of the double-stranded chromosomal DNA in a single cell and to randomly partition megabase-size DNA strands into multiple nanoliter compartments for amplification and construction of barcoded libraries for sequencing. The separation and partitioning of large single-stranded DNA fragments of the homologous chromosome pairs allows for the independent sequencing of each of the complementary and homologous strands. This enables the assembly of long haplotypes and reduction of sequence errors by using the redundant sequence information and haplotype-based error removal. We demonstrated the ability to sequence single-cell genomes with error rates as low as 10 -8 and average 500-kb-long DNA fragments that can be assembled into haplotype contigs with N50 greater than 7 Mb. The performance could be further improved with more uniform amplification and more accurate sequence alignment. The ability to obtain accurate genome sequences and haplotype information from single cells will enable applications of genome sequencing for diverse clinical needs. Copyright © 2017 the Author(s). Published by PNAS.
Full Genome Sequence of Egg Drop Syndrome Virus Strain FJ12025 Isolated from Muscovy Duckling.
Fu, Guanghua; Chen, Hongmei; Huang, Yu; Cheng, Longfei; Fu, Qiuling; Shi, Shaohua; Wan, Chunhe; Chen, Cuiteng; Lin, Jiansheng
2013-08-22
Egg drop syndrome virus (EDSV) strain FJ12025 was isolated from a 9-day-old Muscovy duckling. The results of the sequence showed that the genome of strain FJ12025 is 33,213 bp in length, with a G+C content of 43.03%. When comparing the genome sequence of strain FJ12025 to that of laying duck original strain AV-127, we found 50 single-nucleotide polymorphisms (SNPs) between the two viral genome sequences. A genomic sequence comparison of FJ12025 and AV-127 will help to understand the phenotypic differences between the two viruses.
An Exploration into Fern Genome Space.
Wolf, Paul G; Sessa, Emily B; Marchant, Daniel Blaine; Li, Fay-Wei; Rothfels, Carl J; Sigel, Erin M; Gitzendanner, Matthew A; Visger, Clayton J; Banks, Jo Ann; Soltis, Douglas E; Soltis, Pamela S; Pryer, Kathleen M; Der, Joshua P
2015-08-26
Ferns are one of the few remaining major clades of land plants for which a complete genome sequence is lacking. Knowledge of genome space in ferns will enable broad-scale comparative analyses of land plant genes and genomes, provide insights into genome evolution across green plants, and shed light on genetic and genomic features that characterize ferns, such as their high chromosome numbers and large genome sizes. As part of an initial exploration into fern genome space, we used a whole genome shotgun sequencing approach to obtain low-density coverage (∼0.4X to 2X) for six fern species from the Polypodiales (Ceratopteris, Pteridium, Polypodium, Cystopteris), Cyatheales (Plagiogyria), and Gleicheniales (Dipteris). We explore these data to characterize the proportion of the nuclear genome represented by repetitive sequences (including DNA transposons, retrotransposons, ribosomal DNA, and simple repeats) and protein-coding genes, and to extract chloroplast and mitochondrial genome sequences. Such initial sweeps of fern genomes can provide information useful for selecting a promising candidate fern species for whole genome sequencing. We also describe variation of genomic traits across our sample and highlight some differences and similarities in repeat structure between ferns and seed plants. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Alonso, Ana; Larraga, Vicente; Alcolea, Pedro J
2018-05-07
The first genome project of any living organism excluding viruses, the gammaproteobacteria Haemophilus influenzae, was completed in 1995. Until the last decade, genome sequencing was very tedious because genome survey sequences (GSS) and/or expressed sequence tags (ESTs) belonging to plasmid, cosmid and artificial chromosome genome libraries had to be sequenced and assembled in silico. Nowadays, no genome is completely assembled actually, because gaps and unassembled contigs are always remaining. However, most represent the whole genome of the organism of origin from a practical point of view. The first genome sequencing projects of trypanosomatid parasites were completed in 2005 following those strategies, and belong to Leishmania major, Trypanosoma cruzi and T. brucei. The functional genomics era rapidly developed on the basis of the microarray technology and has been evolving. In the case of the genus Leishmania, substantial biological information about differentiation in the digenetic life cycle of the parasite has been obtained. Later on, next generation sequencing has revolutionized genome sequencing and functional genomics, leading to more sensitive, accurate results by using much less resources. This new technology is more advantageous, but does not invalidate microarray results. In fact, promising vaccine candidates and drug targets have been found on the basis of microarray-based screening and preliminary proof-of-concept tests. Copyright © 2018. Published by Elsevier B.V.
Complete genome sequence of the plant pathogen Erwinia amylovora strain ATCC 49946
USDA-ARS?s Scientific Manuscript database
Erwinia amylovora causes the economically important disease fire blight that affects rosaceous plants, especially pear and apple. Here we report the complete genome sequence and annotation of strain ATCC 49946. The analysis of the sequence and its comparison with sequenced genomes of closely related...
Liu, Yu; Koyutürk, Mehmet; Maxwell, Sean; Xiang, Min; Veigl, Martina; Cooper, Richard S; Tayo, Bamidele O; Li, Li; LaFramboise, Thomas; Wang, Zhenghe; Zhu, Xiaofeng; Chance, Mark R
2014-08-16
Sequences up to several megabases in length have been found to be present in individual genomes but absent in the human reference genome. These sequences may be common in populations, and their absence in the reference genome may indicate rare variants in the genomes of individuals who served as donors for the human genome project. As the reference genome is used in probe design for microarray technology and mapping short reads in next generation sequencing (NGS), this missing sequence could be a source of bias in functional genomic studies and variant analysis. One End Anchor (OEA) and/or orphan reads from paired-end sequencing have been used to identify novel sequences that are absent in reference genome. However, there is no study to investigate the distribution, evolution and functionality of those sequences in human populations. To systematically identify and study the missing common sequences (micSeqs), we extended the previous method by pooling OEA reads from large number of individuals and applying strict filtering methods to remove false sequences. The pipeline was applied to data from phase 1 of the 1000 Genomes Project. We identified 309 micSeqs that are present in at least 1% of the human population, but absent in the reference genome. We confirmed 76% of these 309 micSeqs by comparison to other primate genomes, individual human genomes, and gene expression data. Furthermore, we randomly selected fifteen micSeqs and confirmed their presence using PCR validation in 38 additional individuals. Functional analysis using published RNA-seq and ChIP-seq data showed that eleven micSeqs are highly expressed in human brain and three micSeqs contain transcription factor (TF) binding regions, suggesting they are functional elements. In addition, the identified micSeqs are absent in non-primates and show dynamic acquisition during primate evolution culminating with most micSeqs being present in Africans, suggesting some micSeqs may be important sources of human diversity. 76% of micSeqs were confirmed by a comparative genomics approach. Fourteen micSeqs are expressed in human brain or contain TF binding regions. Some micSeqs are primate-specific, conserved and may play a role in the evolution of primates.
Genome wide association of changes in feeding behavior due to heat stress in pigs
USDA-ARS?s Scientific Manuscript database
Heat stress negatively impacts pork production, losses include decreased growth, reduced feed intake, and mortality. Therefore, the objective of this study was to identify genetic markers associated with changes in feeding behavior due to heat stress in grow-finish pigs. Data were collected on grow-...
Genome-wide association of changes in swine feeding behaviour due to heat stress
USDA-ARS?s Scientific Manuscript database
Background: Heat stress has a negative impact on pork production, particularly during the grow-finish phase. As temperature increases, feeding behaviour changes in order for pigs to decrease heat production. The objective of this study was to identify genetic markers associated with changes in feedi...
Wen, Chiu-Ming
2017-08-01
An aquabirnavirus was isolated from diseased marbled eels (Anguilla marmorata; MEIPNV1310) with gill haemorrhages and associated mortality. Its genome segment sequences were obtained through next-generation sequencing and compared with published aquabirnavirus sequences. The results indicated that the genome sequence of MEIPNV1310 contains segment A (3099 nucleotides) and segment B (2789 nucleotides). Phylogenetic analysis showed that MEIPNV1310 is closely related to the infectious pancreatic necrosis Ab strain within genogroup II. This genome sequence is beneficial for studying the geographic distribution and evolution of aquabirnaviruses.
Lee, Wonhoon; Park, Jongsun; Choi, Jaeyoung; Jung, Kyongyong; Park, Bongsoo; Kim, Donghan; Lee, Jaeyoung; Ahn, Kyohun; Song, Wonho; Kang, Seogchan; Lee, Yong-Hwan; Lee, Seunghwan
2009-01-01
Background Sequences and organization of the mitochondrial genome have been used as markers to investigate evolutionary history and relationships in many taxonomic groups. The rapidly increasing mitochondrial genome sequences from diverse insects provide ample opportunities to explore various global evolutionary questions in the superclass Hexapoda. To adequately support such questions, it is imperative to establish an informatics platform that facilitates the retrieval and utilization of available mitochondrial genome sequence data. Results The Insect Mitochondrial Genome Database (IMGD) is a new integrated platform that archives the mitochondrial genome sequences from 25,747 hexapod species, including 112 completely sequenced and 20 nearly completed genomes and 113,985 partially sequenced mitochondrial genomes. The Species-driven User Interface (SUI) of IMGD supports data retrieval and diverse analyses at multi-taxon levels. The Phyloviewer implemented in IMGD provides three methods for drawing phylogenetic trees and displays the resulting trees on the web. The SNP database incorporated to IMGD presents the distribution of SNPs and INDELs in the mitochondrial genomes of multiple isolates within eight species. A newly developed comparative SNU Genome Browser supports the graphical presentation and interactive interface for the identified SNPs/INDELs. Conclusion The IMGD provides a solid foundation for the comparative mitochondrial genomics and phylogenetics of insects. All data and functions described here are available at the web site . PMID:19351385
TARGETED CAPTURE IN EVOLUTIONARY AND ECOLOGICAL GENOMICS
Jones, Matthew R.; Good, Jeffrey M.
2016-01-01
The rapid expansion of next-generation sequencing has yielded a powerful array of tools to address fundamental biological questions at a scale that was inconceivable just a few years ago. Various genome partitioning strategies to sequence select subsets of the genome have emerged as powerful alternatives to whole genome sequencing in ecological and evolutionary genomic studies. High throughput targeted capture is one such strategy that involves the parallel enrichment of pre-selected genomic regions of interest. The growing use of targeted capture demonstrates its potential power to address a range of research questions, yet these approaches have yet to expand broadly across labs focused on evolutionary and ecological genomics. In part, the use of targeted capture has been hindered by the logistics of capture design and implementation in species without established reference genomes. Here we aim to 1) increase the accessibility of targeted capture to researchers working in non-model taxa by discussing capture methods that circumvent the need of a reference genome, 2) highlight the evolutionary and ecological applications where this approach is emerging as a powerful sequencing strategy, and 3) discuss the future of targeted capture and other genome partitioning approaches in light of the increasing accessibility of whole genome sequencing. Given the practical advantages and increasing feasibility of high-throughput targeted capture, we anticipate an ongoing expansion of capture-based approaches in evolutionary and ecological research, synergistic with an expansion of whole genome sequencing. PMID:26137993
2009-01-01
Background ESTs or variable sequence reads can be available in prokaryotic studies well before a complete genome is known. Use cases include (i) transcriptome studies or (ii) single cell sequencing of bacteria. Without suitable software their further analysis and mapping would have to await finalization of the corresponding genome. Results The tool JANE rapidly maps ESTs or variable sequence reads in prokaryotic sequencing and transcriptome efforts to related template genomes. It provides an easy-to-use graphics interface for information retrieval and a toolkit for EST or nucleotide sequence function prediction. Furthermore, we developed for rapid mapping an enhanced sequence alignment algorithm which reassembles and evaluates high scoring pairs provided from the BLAST algorithm. Rapid assembly on and replacement of the template genome by sequence reads or mapped ESTs is achieved. This is illustrated (i) by data from Staphylococci as well as from a Blattabacteria sequencing effort, (ii) mapping single cell sequencing reads is shown for poribacteria to sister phylum representative Rhodopirellula Baltica SH1. The algorithm has been implemented in a web-server accessible at http://jane.bioapps.biozentrum.uni-wuerzburg.de. Conclusion Rapid prokaryotic EST mapping or mapping of sequence reads is achieved applying JANE even without knowing the cognate genome sequence. PMID:19943962
Enriching public descriptions of marine phages using the Genomic Standards Consortium MIGS standard
Duhaime, Melissa Beth; Kottmann, Renzo; Field, Dawn; Glöckner, Frank Oliver
2011-01-01
In any sequencing project, the possible depth of comparative analysis is determined largely by the amount and quality of the accompanying contextual data. The structure, content, and storage of this contextual data should be standardized to ensure consistent coverage of all sequenced entities and facilitate comparisons. The Genomic Standards Consortium (GSC) has developed the “Minimum Information about Genome/Metagenome Sequences (MIGS/MIMS)” checklist for the description of genomes and here we annotate all 30 publicly available marine bacteriophage sequences to the MIGS standard. These annotations build on existing International Nucleotide Sequence Database Collaboration (INSDC) records, and confirm, as expected that current submissions lack most MIGS fields. MIGS fields were manually curated from the literature and placed in XML format as specified by the Genomic Contextual Data Markup Language (GCDML). These “machine-readable” reports were then analyzed to highlight patterns describing this collection of genomes. Completed reports are provided in GCDML. This work represents one step towards the annotation of our complete collection of genome sequences and shows the utility of capturing richer metadata along with raw sequences. PMID:21677864
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor
Genomes of fungi relevant to energy and environment are in focus of the Fungal Genomic Program at the US Department of Energy Joint Genome Institute (JGI). Its key project, the Genomics Encyclopedia of Fungi, targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts), and explores fungal diversity by means of genome sequencing and analysis. Over 150 fungal genomes have been sequenced by JGI to date and released through MycoCosm (www.jgi.doe.gov/fungi), a fungal web-portal, which integrates sequence and functional data with genome analysis tools for user community. Sequence analysis supportedmore » by functional genomics leads to developing parts list for complex systems ranging from ecosystems of biofuel crops to biorefineries. Recent examples of such parts suggested by comparative genomics and functional analysis in these areas are presented here.« less
Analysis of Illumina Microbial Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clum, Alicia; Foster, Brian; Froula, Jeff
2010-05-28
Since the emerging of second generation sequencing technologies, the evaluation of different sequencing approaches and their assembly strategies for different types of genomes has become an important undertaken. Next generation sequencing technologies dramatically increase sequence throughput while decreasing cost, making them an attractive tool for whole genome shotgun sequencing. To compare different approaches for de-novo whole genome assembly, appropriate tools and a solid understanding of both quantity and quality of the underlying sequence data are crucial. Here, we performed an in-depth analysis of short-read Illumina sequence assembly strategies for bacterial and archaeal genomes. Different types of Illumina libraries as wellmore » as different trim parameters and assemblers were evaluated. Results of the comparative analysis and sequencing platforms will be presented. The goal of this analysis is to develop a cost-effective approach for the increased throughput of the generation of high quality microbial genomes.« less
Construction of a map-based reference genome sequence for barley, Hordeum vulgare L.
Beier, Sebastian; Himmelbach, Axel; Colmsee, Christian; Zhang, Xiao-Qi; Barrero, Roberto A.; Zhang, Qisen; Li, Lin; Bayer, Micha; Bolser, Daniel; Taudien, Stefan; Groth, Marco; Felder, Marius; Hastie, Alex; Šimková, Hana; Staňková, Helena; Vrána, Jan; Chan, Saki; Muñoz-Amatriaín, María; Ounit, Rachid; Wanamaker, Steve; Schmutzer, Thomas; Aliyeva-Schnorr, Lala; Grasso, Stefano; Tanskanen, Jaakko; Sampath, Dharanya; Heavens, Darren; Cao, Sujie; Chapman, Brett; Dai, Fei; Han, Yong; Li, Hua; Li, Xuan; Lin, Chongyun; McCooke, John K.; Tan, Cong; Wang, Songbo; Yin, Shuya; Zhou, Gaofeng; Poland, Jesse A.; Bellgard, Matthew I.; Houben, Andreas; Doležel, Jaroslav; Ayling, Sarah; Lonardi, Stefano; Langridge, Peter; Muehlbauer, Gary J.; Kersey, Paul; Clark, Matthew D.; Caccamo, Mario; Schulman, Alan H.; Platzer, Matthias; Close, Timothy J.; Hansson, Mats; Zhang, Guoping; Braumann, Ilka; Li, Chengdao; Waugh, Robbie; Scholz, Uwe; Stein, Nils; Mascher, Martin
2017-01-01
Barley (Hordeum vulgare L.) is a cereal grass mainly used as animal fodder and raw material for the malting industry. The map-based reference genome sequence of barley cv. ‘Morex’ was constructed by the International Barley Genome Sequencing Consortium (IBSC) using hierarchical shotgun sequencing. Here, we report the experimental and computational procedures to (i) sequence and assemble more than 80,000 bacterial artificial chromosome (BAC) clones along the minimum tiling path of a genome-wide physical map, (ii) find and validate overlaps between adjacent BACs, (iii) construct 4,265 non-redundant sequence scaffolds representing clusters of overlapping BACs, and (iv) order and orient these BAC clusters along the seven barley chromosomes using positional information provided by dense genetic maps, an optical map and chromosome conformation capture sequencing (Hi-C). Integrative access to these sequence and mapping resources is provided by the barley genome explorer (BARLEX). PMID:28448065
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowers, Robert M.; Kyrpides, Nikos C.; Stepanauskas, Ramunas
We present two standards developed by the Genomic Standards Consortium (GSC) for reporting bacterial and archaeal genome sequences. Both are extensions of the Minimum Information about Any (x) Sequence (MIxS). The standards are the Minimum Information about a Single Amplified Genome (MISAG) and the Minimum Information about a Metagenome-Assembled Genome (MIMAG), including, but not limited to, assembly quality, and estimates of genome completeness and contamination. These standards can be used in combination with other GSC checklists, including the Minimum Information about a Genome Sequence (MIGS), Minimum Information about a Metagenomic Sequence (MIMS), and Minimum Information about a Marker Gene Sequencemore » (MIMARKS). Community-wide adoption of MISAG and MIMAG will facilitate more robust comparative genomic analyses of bacterial and archaeal diversity.« less
Jeong, Young-Min; Kim, Namshin; Ahn, Byung Ohg; Oh, Mijin; Chung, Won-Hyong; Chung, Hee; Jeong, Seongmun; Lim, Ki-Byung; Hwang, Yoon-Jung; Kim, Goon-Bo; Baek, Seunghoon; Choi, Sang-Bong; Hyung, Dae-Jin; Lee, Seung-Won; Sohn, Seong-Han; Kwon, Soo-Jin; Jin, Mina; Seol, Young-Joo; Chae, Won Byoung; Choi, Keun Jin; Park, Beom-Seok; Yu, Hee-Ju; Mun, Jeong-Hwan
2016-07-01
This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.
Reduced representation approaches to interrogate genome diversity in large repetitive plant genomes.
Hirsch, Cory D; Evans, Joseph; Buell, C Robin; Hirsch, Candice N
2014-07-01
Technology and software improvements in the last decade now provide methodologies to access the genome sequence of not only a single accession, but also multiple accessions of plant species. This provides a means to interrogate species diversity at the genome level. Ample diversity among accessions in a collection of species can be found, including single-nucleotide polymorphisms, insertions and deletions, copy number variation and presence/absence variation. For species with small, non-repetitive rich genomes, re-sequencing of query accessions is robust, highly informative, and economically feasible. However, for species with moderate to large sized repetitive-rich genomes, technical and economic barriers prevent en masse genome re-sequencing of accessions. Multiple approaches to access a focused subset of loci in species with larger genomes have been developed, including reduced representation sequencing, exome capture and transcriptome sequencing. Collectively, these approaches have enabled interrogation of diversity on a genome scale for large plant genomes, including crop species important to worldwide food security. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grigoriev, Igor
The JGI Fungal Genomics Program aims to scale up sequencing and analysis of fungal genomes to explore the diversity of fungi important for energy and the environment, and to promote functional studies on a system level. Combining new sequencing technologies and comparative genomics tools, JGI is now leading the world in fungal genome sequencing and analysis. Over 120 sequenced fungal genomes with analytical tools are available via MycoCosm (www.jgi.doe.gov/fungi), a web-portal for fungal biologists. Our model of interacting with user communities, unique among other sequencing centers, helps organize these communities, improves genome annotation and analysis work, and facilitates new larger-scalemore » genomic projects. This resulted in 20 high-profile papers published in 2011 alone and contributing to the Genomics Encyclopedia of Fungi, which targets fungi related to plant health (symbionts, pathogens, and biocontrol agents) and biorefinery processes (cellulose degradation, sugar fermentation, industrial hosts). Our next grand challenges include larger scale exploration of fungal diversity (1000 fungal genomes), developing molecular tools for DOE-relevant model organisms, and analysis of complex systems and metagenomes.« less
2013-01-01
A need for a genomic species definition is emerging from several independent studies worldwide. In this commentary paper, we discuss recent studies on the genomic taxonomy of diverse microbial groups and a unified species definition based on genomics. Accordingly, strains from the same microbial species share >95% Average Amino Acid Identity (AAI) and Average Nucleotide Identity (ANI), >95% identity based on multiple alignment genes, <10 in Karlin genomic signature, and > 70% in silico Genome-to-Genome Hybridization similarity (GGDH). Species of the same genus will form monophyletic groups on the basis of 16S rRNA gene sequences, Multilocus Sequence Analysis (MLSA) and supertree analysis. In addition to the established requirements for species descriptions, we propose that new taxa descriptions should also include at least a draft genome sequence of the type strain in order to obtain a clear outlook on the genomic landscape of the novel microbe. The application of the new genomic species definition put forward here will allow researchers to use genome sequences to define simultaneously coherent phenotypic and genomic groups. PMID:24365132
Hosokawa, Masahito; Nishikawa, Yohei; Kogawa, Masato; Takeyama, Haruko
2017-07-12
Massively parallel single-cell genome sequencing is required to further understand genetic diversities in complex biological systems. Whole genome amplification (WGA) is the first step for single-cell sequencing, but its throughput and accuracy are insufficient in conventional reaction platforms. Here, we introduce single droplet multiple displacement amplification (sd-MDA), a method that enables massively parallel amplification of single cell genomes while maintaining sequence accuracy and specificity. Tens of thousands of single cells are compartmentalized in millions of picoliter droplets and then subjected to lysis and WGA by passive droplet fusion in microfluidic channels. Because single cells are isolated in compartments, their genomes are amplified to saturation without contamination. This enables the high-throughput acquisition of contamination-free and cell specific sequence reads from single cells (21,000 single-cells/h), resulting in enhancement of the sequence data quality compared to conventional methods. This method allowed WGA of both single bacterial cells and human cancer cells. The obtained sequencing coverage rivals those of conventional techniques with superior sequence quality. In addition, we also demonstrate de novo assembly of uncultured soil bacteria and obtain draft genomes from single cell sequencing. This sd-MDA is promising for flexible and scalable use in single-cell sequencing.
Complete Genome Sequence of Porcine Parvovirus 2 Recovered from Swine Sera
Kluge, M.; Franco, A. C.; Giongo, A.; Valdez, F. P.; Saddi, T. M.; Brito, W. M. E. D.; Roehe, P. M.
2016-01-01
A complete genomic sequence of porcine parvovirus 2 (PPV-2) was detected by viral metagenome analysis on swine sera. A phylogenetic analysis of this genome reveals that it is highly similar to previously reported North American PPV-2 genomes. The complete PPV-2 sequence is 5,426 nucleotides long. PMID:26823583
Deep whole-genome sequencing of 90 Han Chinese genomes.
Lan, Tianming; Lin, Haoxiang; Zhu, Wenjuan; Laurent, Tellier Christian Asker Melchior; Yang, Mengcheng; Liu, Xin; Wang, Jun; Wang, Jian; Yang, Huanming; Xu, Xun; Guo, Xiaosen
2017-09-01
Next-generation sequencing provides a high-resolution insight into human genetic information. However, the focus of previous studies has primarily been on low-coverage data due to the high cost of sequencing. Although the 1000 Genomes Project and the Haplotype Reference Consortium have both provided powerful reference panels for imputation, low-frequency and novel variants remain difficult to discover and call with accuracy on the basis of low-coverage data. Deep sequencing provides an optimal solution for the problem of these low-frequency and novel variants. Although whole-exome sequencing is also a viable choice for exome regions, it cannot account for noncoding regions, sometimes resulting in the absence of important, causal variants. For Han Chinese populations, the majority of variants have been discovered based upon low-coverage data from the 1000 Genomes Project. However, high-coverage, whole-genome sequencing data are limited for any population, and a large amount of low-frequency, population-specific variants remain uncharacterized. We have performed whole-genome sequencing at a high depth (∼×80) of 90 unrelated individuals of Chinese ancestry, collected from the 1000 Genomes Project samples, including 45 Northern Han Chinese and 45 Southern Han Chinese samples. Eighty-three of these 90 have been sequenced by the 1000 Genomes Project. We have identified 12 568 804 single nucleotide polymorphisms, 2 074 210 short InDels, and 26 142 structural variations from these 90 samples. Compared to the Han Chinese data from the 1000 Genomes Project, we have found 7 000 629 novel variants with low frequency (defined as minor allele frequency < 5%), including 5 813 503 single nucleotide polymorphisms, 1 169 199 InDels, and 17 927 structural variants. Using deep sequencing data, we have built a greatly expanded spectrum of genetic variation for the Han Chinese genome. Compared to the 1000 Genomes Project, these Han Chinese deep sequencing data enhance the characterization of a large number of low-frequency, novel variants. This will be a valuable resource for promoting Chinese genetics research and medical development. Additionally, it will provide a valuable supplement to the 1000 Genomes Project, as well as to other human genome projects. © The Authors 2017. Published by Oxford University Press.
ProDeGe: A computational protocol for fully automated decontamination of genomes
Tennessen, Kristin; Andersen, Evan; Clingenpeel, Scott; ...
2015-06-09
Single amplified genomes and genomes assembled from metagenomes have enabled the exploration of uncultured microorganisms at an unprecedented scale. However, both these types of products are plagued by contamination. Since these genomes are now being generated in a high-throughput manner and sequences from them are propagating into public databases to drive novel scientific discoveries, rigorous quality controls and decontamination protocols are urgently needed. Here, we present ProDeGe (Protocol for fully automated Decontamination of Genomes), the first computational protocol for fully automated decontamination of draft genomes. ProDeGe classifies sequences into two classes—clean and contaminant—using a combination of homology and feature-based methodologies.more » On average, 84% of sequence from the non-target organism is removed from the data set (specificity) and 84% of the sequence from the target organism is retained (sensitivity). Lastly, the procedure operates successfully at a rate of ~0.30 CPU core hours per megabase of sequence and can be applied to any type of genome sequence.« less
ProDeGe: A computational protocol for fully automated decontamination of genomes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tennessen, Kristin; Andersen, Evan; Clingenpeel, Scott
Single amplified genomes and genomes assembled from metagenomes have enabled the exploration of uncultured microorganisms at an unprecedented scale. However, both these types of products are plagued by contamination. Since these genomes are now being generated in a high-throughput manner and sequences from them are propagating into public databases to drive novel scientific discoveries, rigorous quality controls and decontamination protocols are urgently needed. Here, we present ProDeGe (Protocol for fully automated Decontamination of Genomes), the first computational protocol for fully automated decontamination of draft genomes. ProDeGe classifies sequences into two classes—clean and contaminant—using a combination of homology and feature-based methodologies.more » On average, 84% of sequence from the non-target organism is removed from the data set (specificity) and 84% of the sequence from the target organism is retained (sensitivity). Lastly, the procedure operates successfully at a rate of ~0.30 CPU core hours per megabase of sequence and can be applied to any type of genome sequence.« less
Harnessing Whole Genome Sequencing in Medical Mycology.
Cuomo, Christina A
2017-01-01
Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens. Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host. Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.