Implementation of a finite-amplitude method in a relativistic meson-exchange model
NASA Astrophysics Data System (ADS)
Sun, Xuwei; Lu, Dinghui
2017-08-01
The finite-amplitude method is a feasible numerical approach to large scale random phase approximation calculations. It avoids the storage and calculation of residual interaction elements as well as the diagonalization of the RPA matrix, which will be prohibitive when the configuration space is huge. In this work we finished the implementation of a finite-amplitude method in a relativistic meson exchange mean field model with axial symmetry. The direct variation approach makes our FAM scheme capable of being extended to the multipole excitation case.
Finite-amplitude pressure waves in the radial mode of a cylinder
NASA Technical Reports Server (NTRS)
Kubo, I.; Moore, F. K.
1972-01-01
A numerical study of finite-strength, isentropic pressure waves transverse to the axis of a circular cylinder was made for the radial resonant mode. The waves occur in a gas otherwise at rest, filling the cylinder. A method of characteristics was used for the numerical solution. For small but finite amplitudes, calculations indicate the existence of waves of permanent potential form. For larger amplitudes, a shock is indicated to occur. The critical value of the initial amplitude parameter in the power series is found to be 0.06 to 0.08, under various types of initial conditions.
A Kirchhoff approach to seismic modeling and prestack depth migration
NASA Astrophysics Data System (ADS)
Liu, Zhen-Yue
1993-05-01
The Kirchhoff integral provides a robust method for implementing seismic modeling and prestack depth migration, which can handle lateral velocity variation and turning waves. With a little extra computation cost, the Kirchoff-type migration can obtain multiple outputs that have the same phase but different amplitudes, compared with that of other migration methods. The ratio of these amplitudes is helpful in computing some quantities such as reflection angle. I develop a seismic modeling and prestack depth migration method based on the Kirchhoff integral, that handles both laterally variant velocity and a dip beyond 90 degrees. The method uses a finite-difference algorithm to calculate travel times and WKBJ amplitudes for the Kirchhoff integral. Compared to ray-tracing algorithms, the finite-difference algorithm gives an efficient implementation and single-valued quantities (first arrivals) on output. In my finite difference algorithm, the upwind scheme is used to calculate travel times, and the Crank-Nicolson scheme is used to calculate amplitudes. Moreover, interpolation is applied to save computation cost. The modeling and migration algorithms require a smooth velocity function. I develop a velocity-smoothing technique based on damped least-squares to aid in obtaining a successful migration.
A finite-element method for large-amplitude, two-dimensional panel flutter at hypersonic speeds
NASA Technical Reports Server (NTRS)
Mei, Chuh; Gray, Carl E.
1989-01-01
The nonlinear flutter behavior of a two-dimensional panel in hypersonic flow is investigated analytically. An FEM formulation based unsteady third-order piston theory (Ashley and Zartarian, 1956; McIntosh, 1970) and taking nonlinear structural and aerodynamic phenomena into account is derived; the solution procedure is outlined; and typical results are presented in extensive tables and graphs. A 12-element finite-element solution obtained using an alternative method for linearizing the assumed limit-cycle time function is shown to give predictions in good agreement with classical analytical results for large-amplitude vibration in a vacuum and large-amplitude panel flutter, using linear aerodynamics.
Finite amplitude instability of second-order fluids in plane Poiseuille flow.
NASA Technical Reports Server (NTRS)
Mcintire, L. V.; Lin, C. H.
1972-01-01
The hydrodynamic stability of plane Poiseuille flow of second-order fluids to finite amplitude disturbances is examined using the method of Stuart and Watson as extended by Reynolds and Potter. For slightly non-Newtonian fluids subcritical instabilities are predicted. No supercritical equilibrium states are expected if the entire spectrum of disturbance wavelengths is present. Possible implications with respect to the Toms phenomenon are discussed.
NASA Technical Reports Server (NTRS)
Chu, T.
1971-01-01
The focusing of acoustic pulses is studied analytically by considering the region of study in three parts: the converging, interaction and diverging regions. First, the linear problem of a pulse of infinitesimal amplitude is studied. For the spherical case, the expected phase change as a result of focusing is verified. The nonlinear case of finite-amplitude pulses leads to the development of M-waves, as determined by applying the method of matched-asymptotic expansions to Burges equation.
Three-body unitarity in the finite volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mai, M.; Döring, M.
We present the physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativisticmore » $$3\\to 3$$ amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. Lastly, the corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated.« less
Three-body unitarity in the finite volume
Mai, M.; Döring, M.
2017-12-18
We present the physical interpretation of lattice QCD simulations, performed in a small volume, requires an extrapolation to the infinite volume. A method is proposed to perform such an extrapolation for three interacting particles at energies above threshold. For this, a recently formulated relativisticmore » $$3\\to 3$$ amplitude based on the isobar formulation is adapted to the finite volume. The guiding principle is two- and three-body unitarity that imposes the imaginary parts of the amplitude in the infinite volume. In turn, these imaginary parts dictate the leading power-law finite-volume effects. It is demonstrated that finite-volume poles arising from the singular interaction, from the external two-body sub-amplitudes, and from the disconnected topology cancel exactly leaving only the genuine three-body eigenvalues. Lastly, the corresponding quantization condition is derived for the case of three identical scalar-isoscalar particles and its numerical implementation is demonstrated.« less
NASA Technical Reports Server (NTRS)
Ungar, Lyle H.; Bennett, Mark J.; Brown, Robert A.
1985-01-01
The shape and stability of two-dimensional finite-amplitude cellular interfaces arising during directional solidification are compared for several solidification models that account differently for latent heat released at the interface, unequal thermal conductivities of melt and solid, and solute diffusivity in the solid. Finite-element analysis and computer-implemented perturbation methods are used to analyze the families of steadily growing cellular forms that evolve from the planar state. In all models a secondary bifurcation between different families of finite-amplitude cells exists that halves the spatial wavelength of the stable interface. The quantitative location of this transition is very dependent on the details of the model. Large amounts of solute diffusion in the solid retard the growth of large-amplitude cells.
Finite amplitude effects on drop levitation for material properties measurement
NASA Astrophysics Data System (ADS)
Ansari Hosseinzadeh, Vahideh; Holt, R. Glynn
2017-05-01
The method of exciting shape oscillation of drops to extract material properties has a long history, which is most often coupled with the technique of acoustic levitation to achieve non-contact manipulation of the drop sample. We revisit this method with application to the inference of bulk shear viscosity and surface tension. The literature is replete with references to a "10% oscillation amplitude" as a sufficient condition for the application of Lamb's analytical expressions for the shape oscillations of viscous liquids. Our results show that even a 10% oscillation amplitude leads to dynamic effects which render Lamb's results inapplicable. By comparison with samples of known viscosity and surface tension, we illustrate the complicating finite-amplitude effects (mode-splitting and excess dissipation associated with vorticity) that can occur and then show that sufficiently small oscillations allow us to recover the correct material properties using Lamb's formula.
Calculation of the Full Scattering Amplitude without Partial Wave Decomposition II
NASA Technical Reports Server (NTRS)
Shertzer, J.; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE) can be reduced to a 2d partial differential equation (pde), and was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation. The resultant equation can be reduced to a pair of coupled pde's, to which the finite element method can still be applied. The resultant scattering amplitudes, both singlet and triplet, as a function of angle can be calculated for various energies. The results are in excellent agreement with converged partial wave results.
The shock formation distance in a bounded sound beam of finite amplitude.
Tao, Chao; Ma, Jian; Zhu, Zhemin; Du, Gonghuan; Ping, Zihong
2003-07-01
This paper investigates the shock formation distance in a bounded sound beam of finite amplitude by solving the Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation using frequency-domain numerical method. Simulation results reveal that, besides the nonlinearity and absorption, the diffraction is another important factor that affects the shock formation of a bounded sound beam. More detailed discussions of the shock formation in a bounded sound beam, such as the waveform of sound pressure and the spatial distribution of shock formation, are also presented and compared for different parameters.
The transmission of finite amplitude sound beam in multi-layered biological media
NASA Astrophysics Data System (ADS)
Liu, Xiaozhou; Li, Junlun; Yin, Chang; Gong, Xiufen; Zhang, Dong; Xue, Honghui
2007-02-01
Based on the Khokhlov Zabolotskaya Kuznetsov (KZK) equation, a model in the frequency domain is given to describe the transmission of finite amplitude sound beam in multi-layered biological media. Favorable agreement between the theoretical analyses and the measured results shows this approach could effectively describe the transmission of finite amplitude sound wave in multi-layered biological media.
NASA Astrophysics Data System (ADS)
Hsieh, M.; Zhao, L.; Ma, K.
2010-12-01
Finite-frequency approach enables seismic tomography to fully utilize the spatial and temporal distributions of the seismic wavefield to improve resolution. In achieving this goal, one of the most important tasks is to compute efficiently and accurately the (Fréchet) sensitivity kernels of finite-frequency seismic observables such as traveltime and amplitude to the perturbations of model parameters. In scattering-integral approach, the Fréchet kernels are expressed in terms of the strain Green tensors (SGTs), and a pre-established SGT database is necessary to achieve practical efficiency for a three-dimensional reference model in which the SGTs must be calculated numerically. Methods for computing Fréchet kernels for seismic velocities have long been established. In this study, we develop algorithms based on the finite-difference method for calculating Fréchet kernels for the quality factor Qμ and seismic boundary topography. Kernels for the quality factor can be obtained in a way similar to those for seismic velocities with the help of the Hilbert transform. The effects of seismic velocities and quality factor on either traveltime or amplitude are coupled. Kernels for boundary topography involve spatial gradient of the SGTs and they also exhibit interesting finite-frequency characteristics. Examples of quality factor and boundary topography kernels will be shown for a realistic model for the Taiwan region with three-dimensional velocity variation as well as surface and Moho discontinuity topography.
The pressure distribution for biharmonic transmitting array: theoretical study
NASA Astrophysics Data System (ADS)
Baranowska, A.
2005-03-01
The aim of the paper is theoretical analysis of the finite amplitude waves interaction problem for the biharmonic transmitting array. We assume that the array consists of 16 circular pistons of the same dimensions that regrouped in two sections. Two different arrangements of radiating elements were considered. In this situation the radiating surface is non-continuous without axial symmetry. The mathematical model was built on the basis of the Khokhlov - Zabolotskaya - Kuznetsov (KZK) equation. To solve the problem the finite-difference method was applied. On-axis pressure amplitude for different frequency waves as a function of distance from the source, transverse pressure distribution of these waves at fixed distances from the source and pressure amplitude distribution for them at fixed planes were examined. Especially changes of normalized pressure amplitude for difference frequency were studied. The paper presents mathematical model and some results of theoretical investigations obtained for different values of source parameters.
1991-09-01
Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance
New strings for old Veneziano amplitudes. II. Group-theoretic treatment
NASA Astrophysics Data System (ADS)
Kholodenko, A. L.
2006-09-01
In this part of our four parts work we use theory of polynomial invariants of finite pseudo-reflection groups in order to reconstruct both the Veneziano and Veneziano-like (tachyon-free) amplitudes and the generating function reproducing these amplitudes. We demonstrate that such generating function and amplitudes associated with it can be recovered with help of finite dimensional exactly solvableN=2 supersymmetric quantum mechanical model known earlier from works of Witten, Stone and others. Using the Lefschetz isomorphism theorem we replace traditional supersymmetric calculations by the group-theoretic thus solving the Veneziano model exactly using standard methods of representation theory. Mathematical correctness of our arguments relies on important theorems by Shepard and Todd, Serre and Solomon proven respectively in the early 50s and 60s and documented in the monograph by Bourbaki. Based on these theorems, we explain why the developed formalism leaves all known results of conformal field theories unchanged. We also explain why these theorems impose stringent requirements connecting analytical properties of scattering amplitudes with symmetries of space-time in which such amplitudes act.
NASA Astrophysics Data System (ADS)
Babaie Mahani, A.; Eaton, D. W.
2013-12-01
Ground Motion Prediction Equations (GMPEs) are widely used in Probabilistic Seismic Hazard Assessment (PSHA) to estimate ground-motion amplitudes at Earth's surface as a function of magnitude and distance. Certain applications, such as hazard assessment for caprock integrity in the case of underground storage of CO2, waste disposal sites, and underground pipelines, require subsurface estimates of ground motion; at present, such estimates depend upon theoretical modeling and simulations. The objective of this study is to derive correction factors for GMPEs to enable estimation of amplitudes in the subsurface. We use a semi-analytic approach along with finite-difference simulations of ground-motion amplitudes for surface and underground motions. Spectral ratios of underground to surface motions are used to calculate the correction factors. Two predictive methods are used. The first is a semi-analytic approach based on a quarter-wavelength method that is widely used for earthquake site-response investigations; the second is a numerical approach based on elastic finite-difference simulations of wave propagation. Both methods are evaluated using recordings of regional earthquakes by broadband seismometers installed at the surface and at depths of 1400 m and 2100 m in the Sudbury Neutrino Observatory, Canada. Overall, both methods provide a reasonable fit to the peaks and troughs observed in the ratios of real data. The finite-difference method, however, has the capability to simulate ground motion ratios more accurately than the semi-analytic approach.
Finite Difference modeling of VLF Propagation in the Earth-Ionosphere Waveguide
NASA Astrophysics Data System (ADS)
Marshall, R. A.; Wallace, T.; Turbe, M.
2016-12-01
Very-low-frequency (VLF, 3—30 kHz) waves can propagate efficiently in the waveguide formed by the Earth and the D-region ionosphere. vVariation in the signals monitored by a stationary receiver can be attributed to variations in the lower ionosphere. As such, these signals are used to monitor the D-region ionosphere in daytime and nighttime. However, the use of VLF transmitter signals to quantitatively diagnose the D-region ionosphere is complicated by i) the propagation of many modes in the waveguide, and their interference, and ii) the effect of the ionosphere along the entire path on the receiver signal at a single location. In this paper, we compare the modeled phase and amplitude of VLF signals using three methods: a Finite-Difference Time-Domain (FDTD) model, a Finite-Difference Frequency-Domain (FDFD) model, and the Long-Wave Prediction Capability (LWPC) model, which has been the method de rigueur since the 1970s. While LWPC solves mode propagation and coupling in the anisotropic waveguide, the FD methods directly solve for electric and magnetic fields from Maxwell's equations on a finite-difference grid. Thus, FD methods provide greater freedom to vary the physical inputs of the model, limited only by the spatial resolution, but at the expense of computation time. We compare the simulated amplitude and phase of these models by running them with identical physical inputs. In this work we compare both i) the absolute amplitude and phase trends as a function of distance, and ii) the magnitude of amplitude and phase variations for given ionosphere changes. Modeling results show that FDTD and FDFD simulations track the amplitude and phase as a function of distance very closely when compared to LWPC. Phase drift due to numerical dispersion is observed at large distances, of a few tens of degrees per 1000 km. These phase drifts increase quadratically with frequency, as expected from numerical dispersion in FD methods. In fact, the phase drift can be mostly removed by applying a simple Richardson extrapolation. After extrapolating, FDTD and LWPC differences can be mapped to a phase velocity difference of <0.07%. When we compare phase changes due to ionospheric variations (Figure 1), we find that all three models show similar magnitudes of phase changes, to within 20%, and similar trends with frequency.
Feng, Kai; Liu, Yuanyuan; Cheng, Miaomiao
2015-12-01
Owing to its distinct non-contact and oil-free characteristics, a self-running sliding stage based on near-field acoustic levitation can be used in an environment, which demands clean rooms and zero noise. This paper presents a numerical analysis on the lifting and transportation capacity of a non-contact transportation system. Two simplified structure models, namely, free vibration and force vibration models, are proposed for the study of the displacement amplitude distribution of two cases using the finite element method. After coupling the stage displacement into the film thickness, the Reynolds equation is solved by the finite difference method to obtain the lifting and thrusting forces. Parametric analyses of the effects of amplitude, frequency, and standing wave ratio (SWR) on the sliding stage dynamic performance are investigated. Numerical results show good agreement with published experimental values. The predictions also reveal that greater transportation capacity of the self-running sliding stage is generally achieved at less SWR and at higher amplitude.
Dispersion and viscous attenuation of capillary waves with finite amplitude
NASA Astrophysics Data System (ADS)
Denner, Fabian; Paré, Gounséti; Zaleski, Stéphane
2017-04-01
We present a comprehensive study of the dispersion of capillary waves with finite amplitude, based on direct numerical simulations. The presented results show an increase of viscous attenuation and, consequently, a smaller frequency of capillary waves with increasing initial wave amplitude. Interestingly, however, the critical wavenumber as well as the wavenumber at which the maximum frequency is observed remain the same for a given two-phase system, irrespective of the wave amplitude. By devising an empirical correlation that describes the effect of the wave amplitude on the viscous attenuation, the dispersion of capillary waves with finite initial amplitude is shown to be, in very good approximation, self-similar throughout the entire underdamped regime and independent of the fluid properties. The results also shown that analytical solutions for capillary waves with infinitesimal amplitude are applicable with reasonable accuracy for capillary waves with moderate amplitude.
Finite-Amplitude Local Wave Activity as a Diagnostic of Anomalous Weather Events
NASA Astrophysics Data System (ADS)
Huang, Shao Ying
Localized large-amplitude Rossby wave phenomena are often associated with adverse weather conditions in the midlatitudes. There has yet been a wave theory that can connect the evolution of extreme weather anomalies with the governing dynamical processes. This thesis provides a quasi-geostrophic framework for understanding the interaction between large-amplitude Rossby waves and the zonal flow on regional scales. Central to the theory is finite-amplitude local wave activity (LWA), a longitude-dependent measure of amplitude and pseudomomentum density of Rossby waves, as a generalization of the finite-amplitude Rossby wave activity (FAWA) developed by Nakamura and collaborators. The budget of LWA preserves the familiar structure of the Transformed Eulerian Mean (TEM) formalism, and it is more succinct and interpretable compared with other existing wave metrics. LWA also captures individual large-amplitude events more faithfully than most other detection methods. The bulk of the thesis concerns how the budget of wave activity may be closed with data when Rossby waves attain large amplitude and break, and how one interprets the budget. This includes the FAWA budget in a numerical simulation of barotropic decay on a sphere and the column budget of LWA in the storm track regions of the winter Northern Hemisphere with reanalysis data. The latter reveals subtle differences in the budget components between the Pacific and Atlantic storm tracks. Spectral analysis of the LWA budget also reveals the importance of the zonal LWA flux convergence and nonconservative LWA sources in synoptic- to intraseasonal timescales. The thesis concludes by introducing a promising recent development on the mechanistic understanding of the onset of atmospheric blocking using the LWA framework.
Kataoka; Tsutahara; Akuzawa
2000-02-14
We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.
ERIC Educational Resources Information Center
Pereyra, Pedro; Robledo-Martinez, Arturo
2009-01-01
We explicitly show that the well-known transmission and reflection amplitudes of planar slabs, obtained via an algebraic summation of Fresnel amplitudes, are completely equivalent to those obtained from transfer matrices in the scattering approach. This equivalence makes the finite periodic systems theory a powerful alternative to the cumbersome…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weinzierl, Stefan
2011-10-01
This article discusses the occurrence of one-loop amplitudes within a next-to-next-to-leading-order calculation. In a next-to-next-to-leading-order calculation, the one-loop amplitude enters squared and one would therefore naively expect that the O({epsilon})- and O({epsilon}{sup 2})-terms of the one-loop amplitudes are required. I show that the calculation of these terms can be avoided if a method is known, which computes the O({epsilon}{sup 0})-terms of the finite remainder function of the two-loop amplitude.
Asymptotic analysis of numerical wave propagation in finite difference equations
NASA Technical Reports Server (NTRS)
Giles, M.; Thompkins, W. T., Jr.
1983-01-01
An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.
Bolborici, V; Dawson, F P; Pugh, M C
2014-03-01
Piezoelectric traveling wave rotary ultrasonic motors are motors that generate torque by using the friction force between a piezoelectric composite ring (or disk-shaped stator) and a metallic ring (or disk-shaped rotor) when a traveling wave is excited in the stator. The motor speed is proportional to the amplitude of the traveling wave and, in order to obtain large amplitudes, the stator is excited at frequencies close to its resonance frequency. This paper presents a non-empirical partial differential equations model for the stator, which is discretized using the finite volume method. The fundamental frequency of the discretized model is computed and compared to the experimentally-measured operating frequency of the stator of Shinsei USR60 piezoelectric motor. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Xue-Hui; Tian, Bo; Xie, Xi-Yang; Wu, Xiao-Yu; Sun, Yan; Guo, Yong-Jiang
2018-04-01
Under investigation in this paper is a (2+1)-dimensional Davey-Stewartson system, which describes the transformation of a wave-packet on water of finite depth. By virtue of the bell polynomials, bilinear form, Bäcklund transformation and Lax pair are got. One- and two-soliton solutions are obtained via the symbolic computation and Hirota method. Velocity and amplitude of the one-soliton solutions are relevant with the wave number. Graphical analysis indicates that soliton shapes keep unchanged and maintain their original directions and amplitudes during the propagation. Elastic overtaking and head-on interactions between the two solitons are described.
1991-08-01
performed entirely in the time domain, solves the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wdve equation for pulsed, axisymmetric...finite amplitude sound beams. The KZK equation accounts for the combined effects of nonlinearity, diffraction and thermoviscous absorption on the...those used by Naze Tjotta, Tjotta, and Vefring to produce Fig. 7 of Ref. 4 with a frequency domain numerical solution of the KZK equation. However
NASA Astrophysics Data System (ADS)
Zeqiri, Bajram; Cook, Ashley; Rétat, Lise; Civale, John; ter Haar, Gail
2015-04-01
The acoustic nonlinearity parameter, B/A, is an important parameter which defines the way a propagating finite amplitude acoustic wave progressively distorts when travelling through any medium. One measurement technique used to determine its value is the finite amplitude insertion substitution (FAIS) method which has been applied to a range of liquid, tissue and tissue-like media. Importantly, in terms of the achievable measurement uncertainties, it is a relative technique. This paper presents a detailed study of the method, employing a number of novel features. The first of these is the use of a large area membrane hydrophone (30 mm aperture) which is used to record the plane-wave component of the acoustic field. This reduces the influence of diffraction on measurements, enabling studies to be carried out within the transducer near-field, with the interrogating transducer, test cell and detector positioned close to one another, an attribute which assists in controlling errors arising from nonlinear distortion in any intervening water path. The second feature is the development of a model which estimates the influence of finite-amplitude distortion as the acoustic wave travels from the rear surface of the test cell to the detector. It is demonstrated that this can lead to a significant systematic error in B/A measurement whose magnitude and direction depends on the acoustic property contrast between the test material and the water-filled equivalent cell. Good qualitative agreement between the model and experiment is reported. B/A measurements are reported undertaken at (20 ± 0.5) °C for two fluids commonly employed as reference materials within the technical literature: Corn Oil and Ethylene Glycol. Samples of an IEC standardised agar-based tissue-mimicking material were also measured. A systematic assessment of measurement uncertainties is presented giving expanded uncertainties in the range ±7% to ±14%, expressed at a confidence level close to 95%, dependent on specimen details.
PIC simulation of compressive and rarefactive dust ion-acoustic solitary waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhong-Zheng; Zhang, Heng; Hong, Xue-Ren
The nonlinear propagations of dust ion-acoustic solitary waves in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated by the particle-in-cell method. By comparing the simulation results with those obtained from the traditional reductive perturbation method, it is observed that the rarefactive KdV solitons propagate stably at a low amplitude, and when the amplitude is increased, the prime wave form evolves and then gradually breaks into several small amplitude solitary waves near the tail of soliton structure. The compressive KdV solitons propagate unstably andmore » oscillation arises near the tail of soliton structure. The finite amplitude rarefactive and compressive Gardner solitons seem to propagate stably.« less
Stability of the fluid interface in a Hele-Shaw cell subjected to horizontal vibrations
NASA Astrophysics Data System (ADS)
Lyubimova, T. P.; Lyubimov, D. V.; Sadilov, E. S.; Popov, D. M.
2017-07-01
The stability of the horizontal interface of two immiscible viscous fluids in a Hele-Shaw cell subject to gravity and horizontal vibrations is studied. The problem is reduced to the generalized Hill equation, which is solved analytically by the multiple scale method and numerically. The long-wave instability, the resonance (parametric resonance) excitation of waves at finite frequencies of vibrations (for the first three resonances), and the limit of high-frequency vibrations are studied analytically under the assumption of small amplitudes of vibrations and small viscosity. For finite amplitudes of vibrations, finite wave numbers, and finite viscosity, the study is performed numerically. The influence of the specific natural control parameters and physical parameters of the system on its instability threshold is discussed. The results provide extension to other results [J. Bouchgl, S. Aniss, and M. Souhar, Phys. Rev. E 88, 023027 (2013), 10.1103/PhysRevE.88.023027], where the authors considered a similar problem but took into account viscosity in the basic state and did not consider it in the equations for perturbations.
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1989-08-01
Four projects are discussed in this annual summary report, all of which involve basic research in nonlinear acoustics: Scattering of Sound by Sound, a theoretical study of two nonconlinear Gaussian beams which interact to produce sum and difference frequency sound; Parametric Receiving Arrays, a theoretical study of parametric reception in a reverberant environment; Nonlinear Effects in Asymmetric Sound Beams, a numerical study of two dimensional finite amplitude sound fields; and Pulsed Finite Amplitude Sound Beams, a numerical time domain solution of the KZK equation.
Finite amplitude transverse oscillations of a magnetic rope
NASA Astrophysics Data System (ADS)
Kolotkov, Dmitrii Y.; Nisticò, Giuseppe; Rowlands, George; Nakariakov, Valery M.
2018-07-01
The effects of finite amplitudes on the transverse oscillations of a quiescent prominence represented by a magnetic rope are investigated in terms of the model proposed by Kolotkov et al. (2016). We consider a weakly nonlinear case governed by a quadratic nonlinearity, and also analyse the fully nonlinear equations of motion. We treat the prominence as a massive line current located above the photosphere and interacting with the magnetised dipped environment via the Lorentz force. In this concept the magnetic dip is produced by two external current sources located at the photosphere. Finite amplitude horizontal and vertical oscillations are found to be strongly coupled between each other. The coupling is more efficient for larger amplitudes and smaller attack angles between the direction of the driver and the horizontal axis. Spatial structure of oscillations is represented by Lissajous-like curves with the limit cycle of a hourglass shape, appearing in the resonant case, when the frequency of the vertical mode is twice the horizontal mode frequency. A metastable equilibrium of the prominence is revealed, which is stable for small amplitude displacements, and becomes horizontally unstable, when the amplitude exceeds a threshold value. The maximum oscillation amplitudes are also analytically derived and analysed. Typical oscillation periods are determined by the oscillation amplitude, prominence current, its mass and position above the photosphere, and the parameters of the magnetic dip. The main new effects of the finite amplitude are the coupling of the horizontally and vertically polarised transverse oscillations (i.e. the lack of a simple, elliptically polarised regime) and the presence of metastable equilibria of prominences.
NASA Astrophysics Data System (ADS)
Šprlák, M.; Han, S.-C.; Featherstone, W. E.
2017-12-01
Rigorous modelling of the spherical gravitational potential spectra from the volumetric density and geometry of an attracting body is discussed. Firstly, we derive mathematical formulas for the spatial analysis of spherical harmonic coefficients. Secondly, we present a numerically efficient algorithm for rigorous forward modelling. We consider the finite-amplitude topographic modelling methods as special cases, with additional postulates on the volumetric density and geometry. Thirdly, we implement our algorithm in the form of computer programs and test their correctness with respect to the finite-amplitude topography routines. For this purpose, synthetic and realistic numerical experiments, applied to the gravitational field and geometry of the Moon, are performed. We also investigate the optimal choice of input parameters for the finite-amplitude modelling methods. Fourth, we exploit the rigorous forward modelling for the determination of the spherical gravitational potential spectra inferred by lunar crustal models with uniform, laterally variable, radially variable, and spatially (3D) variable bulk density. Also, we analyse these four different crustal models in terms of their spectral characteristics and band-limited radial gravitation. We demonstrate applicability of the rigorous forward modelling using currently available computational resources up to degree and order 2519 of the spherical harmonic expansion, which corresponds to a resolution of 2.2 km on the surface of the Moon. Computer codes, a user manual and scripts developed for the purposes of this study are publicly available to potential users.
[Biomechanical study of lumbar spine under different vibration conditions].
Xiang, Pin; Du, Chengfei; Mo, Zhongjun; Gong, He; Wang, Lizhen; Fan, Yubo
2015-02-01
We observed the effect of vibration parameters on lumbar spine under different vibration conditions using finite element analysis method in our laboratory. In this study, the CT-images of L1-L5 segments were obtained. All images were used to develop 3D geometrical model using the Mimics10. 01 (Materialise, Belgium). Then it was modified using Geomagic Studio12. 0 (Raindrop Geomagic Inc. USA). Finite element (FE) mesh model was generated by Hypermesh11. 0 (Altair Engineering, Inc. USA) and Abaqus. Abaqus was used to calculate the stress distribution of L1-L5 under different vibration conditions. It was found that in a vibration cycle, tensile stress was occurred on lumbar vertebra mainly. Stress distributed evenly and stress concentration occurred on the left rear side of the upper endplate. The stress had no obvious changes under different frequencies, but the stress was higher when amplitude was greater. In conclusion, frequency and amplitude parameters have little effect on the stress distribution in vertebra. The stress magnitude is positively correlated with the amplitude.
NASA Astrophysics Data System (ADS)
Hai Nguyen, Thanh; Thanh Quang, Quang; Luat Tran, Cong; Loc Nguyen, Huu
2017-10-01
Ultrasonic welding has been applied for joining thermoplastic components due to their advantages such as clean, fast and reliable. The basic principle is to use the mechanical energy of ultrasonic frequency vibration to produce the molten pool at the interface of the joined components under high pressure to create solid-state welding joints. Depending on the specific application, the ultrasonic horn is designed to generate suitable amplitudes on the surface of the welding zone. Uniformity of the amplitudes can be a challenge as the welding area increases. Therefore, design a welding horn in order to obtain the uniform amplitudes at the large area is significant difficult. This work presents a method for obtaining the uniform amplitudes at the working surface of the stepped wide-blade horn. Finite element method is used to analyze the amplitude distribution at the horn surface of 250 × 34 mm2 with working frequency of 15 kHz and aluminum alloy 7075. The uniformity of amplitude is obtained by changing the shape of the horn.
Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.
Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin
2015-01-01
The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen.
Application of the Finite Element Method in Atomic and Molecular Physics
NASA Technical Reports Server (NTRS)
Shertzer, Janine
2007-01-01
The finite element method (FEM) is a numerical algorithm for solving second order differential equations. It has been successfully used to solve many problems in atomic and molecular physics, including bound state and scattering calculations. To illustrate the diversity of the method, we present here details of two applications. First, we calculate the non-adiabatic dipole polarizability of Hi by directly solving the first and second order equations of perturbation theory with FEM. In the second application, we calculate the scattering amplitude for e-H scattering (without partial wave analysis) by reducing the Schrodinger equation to set of integro-differential equations, which are then solved with FEM.
NASA Technical Reports Server (NTRS)
McGovern, Patrick J.; Solomon, Sean C.; Smith, David E.; Zuber, Maria T.; Neumann, Gregory A.; Head, J. W., III; Phillips, Roger J.; Simons, Mark
2001-01-01
We calculate localized gravity/topography admittances for Mars, in order to estimate elastic lithosphere thickness. A finite-amplitude correction to modeled gravity is required to properly interpret admittances in high-relief regions of Mars. Additional information is contained in the original extended abstract.
Characteristics of finite amplitude stationary gravity waves in the atmosphere of Venus
NASA Technical Reports Server (NTRS)
Young, Richard E.; Walterscheid, Richard L.; Schubert, Gerald; Pfister, Leonhard; Houben, Howard; Bindschadler, Duane L.
1994-01-01
This paper extends the study of stationary gravity waves generated near the surface of Venus reported previously by Young et al. to include finite amplitude effects associated with large amplitude waves. Waves are forced near the surface of Venus by periodic forcing. The height-dependent profiles of static stability and mean wind in the Venus atmosphere play a very important role in the evolution of the nonlinear behavior of the waves, just as they do in the linear wave solutions. Certain wave properties are qualitatively consistent with linear wave theory, such as wave trapping, resonance, and wave evanescence for short horizontal wavelenghts. However, the finite amplitude solutions also exhibit many other interesting features. In particular, for forcing amplitudes representative of those that could be expected in mountainous regions such as Aphrodite Terra, waves generated near the surface can reach large amplitudes at and above cloud levels, with clear signatures in the circulation pattern. At still higher levels, the waves can reach large enough amplitude to break, unless damping rates above the clouds are sufficient to limit wave amplitude growth. Well below cloud levels the waves develop complex flow patterns as the result of finite amplitude wave-wave interactions, and waves are generated having considerably shorter horizontal wavelenghts than that associated with the forcing near the surface. Nonlinear interactions can excite waves that are resonant with the background wind and static stability fields even when the primary surface forcing does not, and these waves can dominate the wave spectrum near cloud levels. A global map of Venus topographic slopes derived from Magellan altimetry data shows that slopes of magnitude comparable to or exceeding that used to force the model are ubiquitous over the surface.
The stochastic energy-Casimir method
NASA Astrophysics Data System (ADS)
Arnaudon, Alexis; Ganaba, Nader; Holm, Darryl D.
2018-04-01
In this paper, we extend the energy-Casimir stability method for deterministic Lie-Poisson Hamiltonian systems to provide sufficient conditions for stability in probability of stochastic dynamical systems with symmetries. We illustrate this theory with classical examples of coadjoint motion, including the rigid body, the heavy top, and the compressible Euler equation in two dimensions. The main result is that stable deterministic equilibria remain stable in probability up to a certain stopping time that depends on the amplitude of the noise for finite-dimensional systems and on the amplitude of the spatial derivative of the noise for infinite-dimensional systems. xml:lang="fr"
Finding Limit Cycles in self-excited oscillators with infinite-series damping functions
NASA Astrophysics Data System (ADS)
Das, Debapriya; Banerjee, Dhruba; Bhattacharjee, Jayanta K.
2015-03-01
In this paper we present a simple method for finding the location of limit cycles of self excited oscillators whose damping functions can be represented by some infinite convergent series. We have used standard results of first-order perturbation theory to arrive at amplitude equations. The approach has been kept pedagogic by first working out the cases of finite polynomials using elementary algebra. Then the method has been extended to various infinite polynomials, where the fixed points of the corresponding amplitude equations cannot be found out. Hopf bifurcations for systems with nonlinear powers in velocities have also been discussed.
Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments
NASA Astrophysics Data System (ADS)
Reinhardt, Brian T.
Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65x10 20 n/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 x1020 n/cm2, Zinc Oxide is capable of transduction up to 6.27 x1020 n/cm 2, and Aluminum Nitride is capable of transduction up to 8.65x x10 20 n/cm2.
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, C. M.; Tanner, John A.
1989-01-01
A computational procedure is presented for reducing the size of the analysis models of tires having unsymmetric material, geometry and/or loading. The two key elements of the procedure when applied to anisotropic tires are: (1) decomposition of the stiffness matrix into the sum of an orthotropic and nonorthotropic parts; and (2) successive application of the finite-element method and the classical Rayleigh-Ritz technique. The finite-element method is first used to generate few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The proposed technique has high potential for handling practical tire problems with anisotropic materials, unsymmetric imperfections and asymmetric loading. It is also particularly useful for use with three-dimensional finite-element models of tires.
Maximal amplitudes of finite-gap solutions for the focusing Nonlinear Schrödinger Equation
NASA Astrophysics Data System (ADS)
Bertola, M.; Tovbis, A.
2017-09-01
Finite-gap (algebro-geometric) solutions to the focusing Nonlinear Schrödinger Equation (fNLS) i ψ_t + ψ_{xx} + 2|ψ|^2ψ=0, are quasi-periodic solutions that represent nonlinear multi-phase waves. In general, a finite-gap solution for (0-1) is defined by a collection of Schwarz symmetrical spectral bands and of real constants (initial phases), associated with the corresponding bands. In this paper we prove an interesting new formula for the maximal amplitude of a finite-gap solution to the focusing Nonlinear Schrödinger equation with given spectral bands: the amplitude does not exceed the sum of the imaginary parts of all the endpoints in the upper half plane. In the case of the straight vertical bands, that amounts to the half of the sum of the length of all the bands. The maximal amplitude will be attained for certain choices of the initial phases. This result is an important part of a criterion for the potential presence of the rogue waves in finite-gap solutions with a given set of spectral endpoints, obtained in Bertola et al. (Proc R Soc A, 2016. doi: 10.1098/rspa.2016.0340). A similar result was also obtained for the defocusing Nonlinear Schrödinger equation.
Effects of finite volume on the K L – K S mass difference
Christ, N. H.; Feng, X.; Martinelli, G.; ...
2015-06-24
Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the Kmore » L – K S mass difference ΔM K and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less
Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alinejad, H.; Sobhanian, S.; Mahmoodi, J.
2006-01-15
A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equationmore » has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.« less
NASA Astrophysics Data System (ADS)
Kraus, Hal G.
1993-02-01
Two finite element-based methods for calculating Fresnel region and near-field region intensities resulting from diffraction of light by two-dimensional apertures are presented. The first is derived using the Kirchhoff area diffraction integral and the second is derived using a displaced vector potential to achieve a line integral transformation. The specific form of each of these formulations is presented for incident spherical waves and for Gaussian laser beams. The geometry of the two-dimensional diffracting aperture(s) is based on biquadratic isoparametric elements, which are used to define apertures of complex geometry. These elements are also used to build complex amplitude and phase functions across the aperture(s), which may be of continuous or discontinuous form. The finite element transform integrals are accurately and efficiently integrated numerically using Gaussian quadrature. The power of these methods is illustrated in several examples which include secondary obstructions, secondary spider supports, multiple mirror arrays, synthetic aperture arrays, apertures covered by screens, apodization, phase plates, and off-axis apertures. Typically, the finite element line integral transform results in significant gains in computational efficiency over the finite element Kirchhoff transform method, but is also subject to some loss in generality.
NASA Technical Reports Server (NTRS)
Hall, P.; Malik, M. R.
1986-01-01
The instability of a three-dimensional attachment-line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite-amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time-dependent Navier-Stokes equations for the attachment-line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite-amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment-line boundary layer is also investigated.
NASA Technical Reports Server (NTRS)
Hall, P.; Malik, M. R.
1984-01-01
The instability of a three dimensional attachment line boundary layer is considered in the nonlinear regime. Using weakly nonlinear theory, it is found that, apart from a small interval near the (linear) critical Reynolds number, finite amplitude solutions bifurcate subcritically from the upper branch of the neutral curve. The time dependent Navier-Stokes equations for the attachment line flow have been solved using a Fourier-Chebyshev spectral method and the subcritical instability is found at wavenumbers that correspond to the upper branch. Both the theory and the numerical calculations show the existence of supercritical finite amplitude (equilibrium) states near the lower branch which explains why the observed flow exhibits a preference for the lower branch modes. The effect of blowing and suction on nonlinear stability of the attachment line boundary layer is also investigated.
Sinc or Sine? The Band Excitation Method and Energy Dissipation Measurements by SPM
NASA Astrophysics Data System (ADS)
Jesse, Stephen; Kalinin, Sergei
2007-03-01
Quantitative energy dissipation measurements in force-based SPM is the key to understanding fundamental mechanisms of energy transformations on the nanoscale, molecular, and atomic levels. To date, these measurements are invariably based on either phase and amplitude detection in constant frequency mode, or as amplitude detection in frequency-tracking mode. The analysis in both cases implicitly assumes that amplitude is inversely proportional to the Q-factor and is not applicable when the driving force is position dependent, as is the case for virtually all SPM measurements. All current SPM methods sample only a single frequency in the Fourier domain of the system. Thus, only two out of three parameters (amplitude, resonance, and Q) can be determined independently. Here, we developed and implemented a new approach for SPM detection based on the excitation and detection of a signal having a finite amplitude over a selected region in the Fourier domain and allows simultaneous determination of all three parameters. This band excitation method allows acquisition of the local spectral response at a 10ms/pixel rate, compatible with fast imaging, and is illustrated for electromechanical and mechanical imaging and force-distance spectroscopy. The BE method thus represents a new paradigm in SPM, beyond traditional single-frequency excitation.
Design and numerical simulation of novel giant magnetostrictive ultrasonic transducer
NASA Astrophysics Data System (ADS)
Li, Pengyang; Liu, Qiang; Li, Shujuan; Wang, Quandai; Zhang, Dongya; Li, Yan
This paper provides a design method of a novel giant magnetostrictive ultrasonic transducer utilized in incremental sheet metal forming. The frequency equations of the ultrasonic vibrator were deduced and the corresponding correctness verified by the modal and harmonic response characteristic through the finite element method (FEM) and ANSYS software. In addition, the magnetic field of the vibrator system was designed and verified by the ANSYS. Finally, the frequency tests based on the impedance response analysis and the amplitude measurements based on the laser displacement sensor were performed on the prototype. The results confirmed the appropriate design of this transducer, setting the foundation for a low mechanical quality factor and satisfying amplitude.
NASA Astrophysics Data System (ADS)
Jolly, A.; Jousset, P.; Neuberg, J.
2003-04-01
We determine locations for low-frequency earthquakes occurring prior to a collapse on June 25th, 1997 using signal amplitudes from a 7-station local seismograph network at the Soufriere Hills volcano on Montserrat, West Indies. Locations are determined by averaging the signal amplitude over the event waveform and inverting these data using an assumed amplitude decay model comprising geometrical spreading and attenuation. Resulting locations are centered beneath the active dome from 500 to 2000 m below sea level assuming body wave geometrical spreading and a quality factor of Q=22. Locations for the same events shifted systematically shallower by about 500 m assuming a surface wave geometrical spreading. Locations are consistent to results obtained using arrival time methods. The validity of the method is tested against synthetic low-frequency events constructed from a 2-D finite difference model including visco-elastic properties. Two example events are tested; one from a point source triggered in a low velocity conduit ranging between 100-1100 m below the surface, and the second triggered in a conduit located 1500-2500 m below the surface. Resulting seismograms have emergent onsets and extended codas and include the effect of conduit resonance. Employing geometrical spreading and attenuation from the finite-difference modelling, we obtain locations within the respective model conduits validating our approach.The location depths are sensitive to the assumed geometric spreading and Q model. We can distinguish between two sources separated by about 1000 meters only if we know the decay parameters.
NASA Astrophysics Data System (ADS)
Faustov, R. N.; Martynenko, A. P.; Martynenko, F. A.; Sorokin, V. V.
2017-12-01
On the basis of quasipotential method in quantum electrodynamics we calculate nuclear finite size radiative corrections of order α(Zα) 5 to the Lamb shift in muonic hydrogen and helium. To construct the interaction potential of particles, which gives the necessary contributions to the energy spectrum, we use the method of projection operators to states with a definite spin. Separate analytic expressions for the contributions of the muon self-energy, the muon vertex operator and the amplitude with spanning photon are obtained. We present also numerical results for these contributions using modern experimental data on the electromagnetic form factors of light nuclei.
Waveguide-type optical circuits for recognition of optical 8QAM-coded label
NASA Astrophysics Data System (ADS)
Surenkhorol, Tumendemberel; Kishikawa, Hiroki; Goto, Nobuo; Gonchigsumlaa, Khishigjargal
2017-10-01
Optical signal processing is expected to be applied in network nodes. In photonic routers, label recognition is one of the important functions. We have studied different kinds of label recognition methods so far for on-off keying, binary phase-shift keying, quadrature phase-shift keying, and 16 quadrature amplitude modulation-coded labels. We propose a method based on waveguide circuits to recognize an optical eight quadrature amplitude modulation (8QAM)-coded label by simple passive optical signal processing. The recognition of the proposed method is theoretically analyzed and numerically simulated by the finite difference beam propagation method. The noise tolerance is discussed, and bit-error rate against optical signal-to-noise ratio is evaluated. The scalability of the proposed method is also discussed theoretically for two-symbol length 8QAM-coded labels.
[Finite Element Modelling of the Eye for the Investigation of Accommodation].
Martin, H; Stachs, O; Guthoff, R; Grabow, N
2016-12-01
Background: Accommodation research increasingly uses engineering methods. This article presents the use of the finite element method in accommodation research. Material and Methods: Geometry, material data and boundary conditions are prerequisites for the application of the finite element method. Published data on geometry and materials are reviewed. It is shown how boundary conditions are important and how they influence the results. Results: Two dimensional and three dimensional models of the anterior chamber of the eye are presented. With simple two dimensional models, it is shown that realistic results for the accommodation amplitude can always be achieved. More complex three dimensional models of the accommodation mechanism - including the ciliary muscle - require further investigations of the material data and of the morphology of the ciliary muscle, if they are to achieve realistic results for accommodation. Discussion and Conclusion: The efficiency and the limitations of the finite element method are especially clear for accommodation. Application of the method requires extensive preparation, including acquisition of geometric and material data and experimental validation. However, a validated model can be used as a basis for parametric studies, by systematically varying material data and geometric dimensions. This allows systematic investigation of how essential input parameters influence the results. Georg Thieme Verlag KG Stuttgart · New York.
Propulsion of a fin whale (Balaenoptera physalus): why the fin whale is a fast swimmer.
Bose, N; Lien, J
1989-07-22
Measurements of an immature fin whale (Balaenoptera physalus), which died as a result of entrapment in fishing gear near Frenchmans Cove, Newfoundland (47 degrees 9' N, 55 degrees 25' W), were made to obtain estimates of volume and surface area of the animal. Detailed measurements of the flukes, both planform and sections, were also obtained. A strip theory was developed to calculate the hydrodynamic performance of the whale's flukes as an oscillating propeller. This method is based on linear, two-dimensional, small-amplitude, unsteady hydrofoil theory with correction factors used to account for the effects of finite span and finite amplitude motion. These correction factors were developed from theoretical results of large-amplitude heaving motion and unsteady lifting-surface theory. A model that makes an estimate of the effects of viscous flow on propeller performance was superimposed on the potential-flow results. This model estimates the drag of the hydrofoil sections by assuming that the drag is similar to that of a hydrofoil section in steady flow. The performance characteristics of the flukes of the fin whale were estimated by using this method. The effects of the different correction factors, and of the frictional drag of the fluke sections, are emphasized. Frictional effects in particular were found to reduce the hydrodynamic efficiency of the flukes significantly. The results are discussed and compared with the known characteristics of fin-whale swimming.
Online tracking of instantaneous frequency and amplitude of dynamical system response
NASA Astrophysics Data System (ADS)
Frank Pai, P.
2010-05-01
This paper presents a sliding-window tracking (SWT) method for accurate tracking of the instantaneous frequency and amplitude of arbitrary dynamic response by processing only three (or more) most recent data points. Teager-Kaiser algorithm (TKA) is a well-known four-point method for online tracking of frequency and amplitude. Because finite difference is used in TKA, its accuracy is easily destroyed by measurement and/or signal-processing noise. Moreover, because TKA assumes the processed signal to be a pure harmonic, any moving average in the signal can destroy the accuracy of TKA. On the other hand, because SWT uses a constant and a pair of windowed regular harmonics to fit the data and estimate the instantaneous frequency and amplitude, the influence of any moving average is eliminated. Moreover, noise filtering is an implicit capability of SWT when more than three data points are used, and this capability increases with the number of processed data points. To compare the accuracy of SWT and TKA, Hilbert-Huang transform is used to extract accurate time-varying frequencies and amplitudes by processing the whole data set without assuming the signal to be harmonic. Frequency and amplitude trackings of different amplitude- and frequency-modulated signals, vibrato in music, and nonlinear stationary and non-stationary dynamic signals are studied. Results show that SWT is more accurate, robust, and versatile than TKA for online tracking of frequency and amplitude.
A new method to study he effective shear modulus of shocked material
NASA Astrophysics Data System (ADS)
Xiaojuan, Ma; Fusheng, Liu
2013-06-01
Shear modulus is a crucial material parameter for description of mechanical behavior. However, at strong shock compression, it is generally deduced from the longitudinal and bulk sound velocity evaluated by unloading wave profile measurement. Here, a new method called the disturbed amplitude damping method of shock wave is presented, that can directly measure the shear modulus of material. This method relies on the correlation between the shear modulus of shock compressed state and amplitude damping and oscillation of an initial sinusoidal disturbance on shock front in concerned substance. Two important steps are required to determine the shear modulus of material. The first is to measure the damping and oscillation feature of disturbance by the flyer impacted method. The second is to find the quantitative relationship between the disturbed amplitude damping and shear modulus by the finite difference method which is applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in flyer impacted flow field. When aluminum shocked to 80 GPa is taken as an example, the shape of perturbed shock front and its disturbed amplitude development with propagation distance, are approximately mapped out. The figure shows an oscillatory damping characteristic. At the early stage the perturbation amplitude on the shock front experiences a decaying process until to zero point, then it rises to a maximum but in reverse phase, and then it decays again. Comparing these data with those simulated using the SCG constitutive model, the effective shear modulus for aluminum shocked to 80 GPa is determined to be about 90 GPa, which is higher than the result given by Yu.
NASA Technical Reports Server (NTRS)
Shertzer, Janine; Temkin, A.
2003-01-01
As is well known, the full scattering amplitude can be expressed as an integral involving the complete scattering wave function. We have shown that the integral can be simplified and used in a practical way. Initial application to electron-hydrogen scattering without exchange was highly successful. The Schrodinger equation (SE), which can be reduced to a 2d partial differential equation (pde), was solved using the finite element method. We have now included exchange by solving the resultant SE, in the static exchange approximation, which is reducible to a pair of coupled pde's. The resultant scattering amplitudes, both singlet and triplet, calculated as a function of energy are in excellent agreement with converged partial wave results.
Seismic wave propagation modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, E.M.; Olsen, K.B.
1998-12-31
This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A hybrid, finite-difference technique was developed for modeling nonlinear soil amplification from three-dimensional, finite-fault radiation patters for earthquakes in arbitrary earth models. The method was applied to the 17 January 1994 Northridge earthquake. Particle velocities were computed on a plane at 5-km depth, immediately above the causative fault. Time-series of the strike-perpendicular, lateral velocities then were propagated vertically in a soil column typical of the San Fernando Valley. Suitable material models were adapted from a suite used tomore » model ground motions at the US Nevada Test Site. The effects of nonlinearity reduced relative spectral amplitudes by about 40% at frequencies above 1.5 Hz but only by 10% at lower frequencies. Runs made with source-depth amplitudes increased by a factor of two showed relative amplitudes above 1.5 Hz reduced by a total of 70% above 1.5 Hz and 20% at lower frequencies. Runs made with elastic-plastic material models showed similar behavior to runs made with Masing-Rule models.« less
Integrand Reduction Reloaded: Algebraic Geometry and Finite Fields
NASA Astrophysics Data System (ADS)
Sameshima, Ray D.; Ferroglia, Andrea; Ossola, Giovanni
2017-01-01
The evaluation of scattering amplitudes in quantum field theory allows us to compare the phenomenological prediction of particle theory with the measurement at collider experiments. The study of scattering amplitudes, in terms of their symmetries and analytic properties, provides a theoretical framework to develop techniques and efficient algorithms for the evaluation of physical cross sections and differential distributions. Tree-level calculations have been known for a long time. Loop amplitudes, which are needed to reduce the theoretical uncertainty, are more challenging since they involve a large number of Feynman diagrams, expressed as integrals of rational functions. At one-loop, the problem has been solved thanks to the combined effect of integrand reduction, such as the OPP method, and unitarity. However, plenty of work is still needed at higher orders, starting with the two-loop case. Recently, integrand reduction has been revisited using algebraic geometry. In this presentation, we review the salient features of integrand reduction for dimensionally regulated Feynman integrals, and describe an interesting technique for their reduction based on multivariate polynomial division. We also show a novel approach to improve its efficiency by introducing finite fields. Supported in part by the National Science Foundation under Grant PHY-1417354.
A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data
He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei
2017-01-01
This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148
Behavior of a semi-infinite ice cover under periodic dynamic impact
NASA Astrophysics Data System (ADS)
Tkacheva, L. A.
2017-07-01
Oscillations of a semi-infinite ice cover in an ideal incompressible liquid of finite depth under local time-periodic axisymmetric load are considered. The ice cover is simulated by a thin elastic plate of constant thickness. An analytical solution of the problem is obtained using the Wiener-Hopf method. The asymptotic behavior of the amplitudes of oscillations of the plate and the liquid in the far field is studied. It is shown that the propagation of waves in the far field is uneven: in some directions, the waves propagate with a significantly greater amplitude.
Nonlinear vibration of viscoelastic beams described using fractional order derivatives
NASA Astrophysics Data System (ADS)
Lewandowski, Roman; Wielentejczyk, Przemysław
2017-07-01
The problem of non-linear, steady state vibration of beams, harmonically excited by harmonic forces is investigated in the paper. The viscoelastic material of the beams is described using the Zener rheological model with fractional derivatives. The constitutive equation, which contains derivatives of both stress and strain, significantly complicates the solution to the problem. The von Karman theory is applied to take into account geometric nonlinearities. Amplitude equations are obtained using the finite element method together with the harmonic balance method, and solved using the continuation method. The tangent matrix of the amplitude equations is determined in an explicit form. The stability of the steady-state solution is also examined. A parametric study is carried out to determine the influence of viscoelastic properties of the material on the beam's responses.
Finite temperature corrections to tachyon mass in intersecting D-branes
NASA Astrophysics Data System (ADS)
Sethi, Varun; Chowdhury, Sudipto Paul; Sarkar, Swarnendu
2017-04-01
We continue with the analysis of finite temperature corrections to the Tachyon mass in intersecting branes which was initiated in [1]. In this paper we extend the computation to the case of intersecting D3 branes by considering a setup of two intersecting branes in flat-space background. A holographic model dual to BCS superconductor consisting of intersecting D8 branes in D4 brane background was proposed in [2]. The background considered here is a simplified configuration of this dual model. We compute the one-loop Tachyon amplitude in the Yang-Mills approximation and show that the result is finite. Analyzing the amplitudes further we numerically compute the transition temperature at which the Tachyon becomes massless. The analytic expressions for the one-loop amplitudes obtained here reduce to those for intersecting D1 branes obtained in [1] as well as those for intersecting D2 branes.
NASA Technical Reports Server (NTRS)
Giles, M. B.; Thompkins, W. T., Jr.
1985-01-01
The propagation and dissipation of wavelike solutions to finite difference equations is analyzed on the basis of an asymptotic approach in which a wave solution is expressed as a product of a complex amplitude and an oscillatory phase function whose frequency and wavenumber may also be complex. An asymptotic expansion leads to a local dispersion relation for wavenumber and frequency; the first-order terms produce an equation for the amplitude in which the local group velocity appears as the convection velocity of the amplitude. Equations for the motion of wavepackets and their interaction at boundaries are derived, and a global stability analysis is carried out.
NASA Technical Reports Server (NTRS)
Hamabata, Hiromitsu
1993-01-01
A class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfven-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.
Schachar, Ronald A; Pierscionek, Barbara K; Abolmaali, Ali; Le, Tri
2007-01-01
Aim To determine the relationship between accommodative amplitude and central lens thickness/equatorial lens diameter (CLT/ELD) ratio in vertebrates. Methods Midsagittal sections of lenses from fixed, post mortem eyes from 125 different vertebrate species were photographed. Their CLT/ELD ratios were correlated with independently published measurements of their accommodative amplitudes. Using the non‐linear finite element method (FEM), the efficiency of zonular traction (the absolute change in central radius of curvature per unit force [|ΔCR|/F]) for model lenses with CLT/ELD ratios from 0.45 to 0.9 was determined. Results Vertebrates with CLT/ELD ratios ⩽0.6 have high accommodative amplitudes. Zonular traction was found to be most efficient for those model lenses having CLT/ELD ratios ⩽0.6. Conclusions Vertebrates with lenses that have CLT/ELD ratios ⩽0.6 – i.e. “long oval” shapes – have the greatest accommodative amplitudes; e.g. primates, diving birds and diurnal birds of prey. Vertebrates that have oval or spherical shaped lenses, like owls and most mammals, have low accommodative amplitudes. Zonular traction was found to be most efficient when applied to model lenses with CLT/ELD ratios ⩽0.6. The implications of these findings on the mechanism of accommodation are discussed. PMID:17050574
NASA Astrophysics Data System (ADS)
Cheng, Ming-Hung; Hsieh, Chih-Min; Hwang, Robert R.; Hsu, John R.-C.
2018-04-01
Numerical simulations are performed to investigate the effects of the initial amplitude and pycnocline thickness on the evolutions of convex mode-2 internal solitary waves propagating on the flat bottom. A finite volume method based on a Cartesian grid system is adopted to solve the Navier-Stokes equations using the improved delayed detached eddy simulation turbulent closure model. Mode-2 internal solitary waves (ISWs) are found to become stable at t = 15 s after lifting a vertical sluice gate by a gravity collapse mechanism. Numerical results from three cases of pycnocline thickness reveal the following: (1) the occurrence of a smooth mode-2 ISW when the wave amplitude is small; (2) the PacMan phenomenon for large amplitude waves; and (3) pseudo vortex shedding in the case of very large amplitudes. In general, basic wave properties (wave amplitude, wave speed, vorticity, and wave energy) increase as the wave amplitude increases for a specific value of the pycnocline thickness. Moreover, the pycnocline thickness chiefly determines the core size of a convex mode-2 ISW, while the step depth (that generates an initial wave amplitude) and offset in pycnocline govern the waveform type during its propagation on the flat bottom.
Mode Identification of High-Amplitude Pressure Waves in Liquid Rocket Engines
NASA Astrophysics Data System (ADS)
EBRAHIMI, R.; MAZAHERI, K.; GHAFOURIAN, A.
2000-01-01
Identification of existing instability modes from experimental pressure measurements of rocket engines is difficult, specially when steep waves are present. Actual pressure waves are often non-linear and include steep shocks followed by gradual expansions. It is generally believed that interaction of these non-linear waves is difficult to analyze. A method of mode identification is introduced. After presumption of constituent modes, they are superposed by using a standard finite difference scheme for solution of the classical wave equation. Waves are numerically produced at each end of the combustion tube with different wavelengths, amplitudes, and phases with respect to each other. Pressure amplitude histories and phase diagrams along the tube are computed. To determine the validity of the presented method for steep non-linear waves, the Euler equations are numerically solved for non-linear waves, and negligible interactions between these waves are observed. To show the applicability of this method, other's experimental results in which modes were identified are used. Results indicate that this simple method can be used in analyzing complicated pressure signal measurements.
Implementation of a novel efficient low cost method in structural health monitoring
NASA Astrophysics Data System (ADS)
Asadi, S.; Sepehry, N.; Shamshirsaz, M.; Vaghasloo, Y. A.
2017-05-01
In active structural health monitoring (SHM) methods, it is necessary to excite the structure with a preselected signal. More studies in the field of active SHM are focused on applying SHM on higher frequency ranges since it is possible to detect smaller damages, using higher excitation frequency. Also, to increase spatial domain of measurements and enhance signal to noise ratio (SNR), the amplitude of excitation signal is usually amplified. These issues become substantial where piezoelectric transducers with relatively high capacitance are used and consequently, need to utilize high power amplifiers becomes predominant. In this paper, a novel method named Step Excitation Method (SEM) is proposed and implemented for Lamb wave and transfer impedance-based SHM for damage detection in structures. Three different types of structure are studied: beam, plate and pipe. The related hardware is designed and fabricated which eliminates high power analog amplifiers and decreases complexity of driver significantly. Spectral Finite Element Method (SFEM) is applied to examine performance of proposed SEM. In proposed method, by determination of impulse response of the system, any input could be applied to the system by both finite element simulations and experiments without need for multiple measurements. The experimental results using SEM are compared with those obtained by conventional direct excitation method for healthy and damaged structures. The results show an improvement of amplitude resolution in damage detection comparing to conventional method which is due to achieving an SNR improvement up to 50%.
Long-range propagation of nonlinear infrasound waves through an absorbing atmosphere.
de Groot-Hedlin, C D
2016-04-01
The Navier-Stokes equations are solved using a finite-difference, time-domain (FDTD) approach for axi-symmetric environmental models, allowing three-dimensional acoustic propagation to be simulated using a two-dimensional Cylindrical coordinate system. A method to stabilize the FDTD algorithm in a viscous medium at atmospheric densities characteristic of the lower thermosphere is described. The stabilization scheme slightly alters the governing equations but results in quantifiable dispersion characteristics. It is shown that this method leaves sound speeds and attenuation unchanged at frequencies that are well resolved by the temporal sampling rate but strongly attenuates higher frequencies. Numerical experiments are performed to assess the effect of source strength on the amplitudes and spectral content of signals recorded at ground level at a range of distances from the source. It is shown that the source amplitudes have a stronger effect on a signal's dominant frequency than on its amplitude. Applying the stabilized code to infrasound propagation through realistic atmospheric profiles shows that nonlinear propagation alters the spectral content of low amplitude thermospheric signals, demonstrating that nonlinear effects are significant for all detectable thermospheric returns.
A double expansion method for the frequency response of finite-length beams with periodic parameters
NASA Astrophysics Data System (ADS)
Ying, Z. G.; Ni, Y. Q.
2017-03-01
A double expansion method for the frequency response of finite-length beams with periodic distribution parameters is proposed. The vibration response of the beam with spatial periodic parameters under harmonic excitations is studied. The frequency response of the periodic beam is the function of parametric period and then can be expressed by the series with the product of periodic and non-periodic functions. The procedure of the double expansion method includes the following two main steps: first, the frequency response function and periodic parameters are expanded by using identical periodic functions based on the extension of the Floquet-Bloch theorem, and the period-parametric differential equation for the frequency response is converted into a series of linear differential equations with constant coefficients; second, the solutions to the linear differential equations are expanded by using modal functions which satisfy the boundary conditions, and the linear differential equations are converted into algebraic equations according to the Galerkin method. The expansion coefficients are obtained by solving the algebraic equations and then the frequency response function is finally determined. The proposed double expansion method can uncouple the effects of the periodic expansion and modal expansion so that the expansion terms are determined respectively. The modal number considered in the second expansion can be reduced remarkably in comparison with the direct expansion method. The proposed double expansion method can be extended and applied to the other structures with periodic distribution parameters for dynamics analysis. Numerical results on the frequency response of the finite-length periodic beam with various parametric wave numbers and wave amplitude ratios are given to illustrate the effective application of the proposed method and the new frequency response characteristics, including the parameter-excited modal resonance, doubling-peak frequency response and remarkable reduction of the maximum frequency response for certain parametric wave number and wave amplitude. The results have the potential application to structural vibration control.
Time dependent wave envelope finite difference analysis of sound propagation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1984-01-01
A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.
Prediction of high-speed rotor noise with a Kirchhoff formula
NASA Technical Reports Server (NTRS)
Purcell, Timothy W.; Strawn, Roger C.; Yu, Yung H.
1987-01-01
A new methodology has been developed to predict the impulsive noise generated by a transonic rotor blade. The formulation uses a full-potential finite-difference method to obtain the pressure field close to the blade. A Kirchhoff integral formulation is then used to extend these finite-difference results into the far-field. This Kirchhoff formula is written in a blade-fixed coordinate system. It requires initial data across a plane at the sonic radius. This data is provided by the finite-difference solution. Acoustic pressure predictions show excellent agreement with hover experimental data for two hover cases of 0.88 and 0.90 tip Mach number, the latter of which has delocalized transonic flow. These results represent the first successful prediction technique for peak pressure amplitudes using a computational code.
NASA Astrophysics Data System (ADS)
Konca, A. O.; Ji, C.; Helmberger, D. V.
2004-12-01
We observed the effect of the fault finiteness in the Pnl waveforms from regional distances (4° to 12° ) for the Mw6.5 San Simeon Earthquake on 22 December 2003. We aimed to include more of the high frequencies (2 seconds and longer periods) than the studies that use regional data for focal solutions (5 to 8 seconds and longer periods). We calculated 1-D synthetic seismograms for the Pn_l portion for both a point source, and a finite fault solution. The comparison of the point source and finite fault waveforms with data show that the first several seconds of the point source synthetics have considerably higher amplitude than the data, while finite fault does not have a similar problem. This can be explained by reversely polarized depth phases overlapping with the P waves from the later portion of the fault, and causing smaller amplitudes for the beginning portion of the seismogram. This is clearly a finite fault phenomenon; therefore, can not be explained by point source calculations. Moreover, the point source synthetics, which are calculated with a focal solution from a long period regional inversion, are overestimating the amplitude by three to four times relative to the data amplitude, while finite fault waveforms have the similar amplitudes to the data. Hence, a moment estimation based only on the point source solution of the regional data could have been wrong by half of magnitude. We have also calculated the shifts of synthetics relative to data to fit the seismograms. Our results reveal that the paths from Central California to the south are faster than to the paths to the east and north. The P wave arrival to the TUC station in Arizona is 4 seconds earlier than the predicted Southern California model, while most stations to the east are delayed around 1 second. The observed higher uppermost mantle velocities to the south are consistent with some recent tomographic models. Synthetics generated with these models significantly improves the fits and the timing at most stations. This means that regional waveform data can be used to help locate and establish source complexities for future events.
Mixed models and reduction method for dynamic analysis of anisotropic shells
NASA Technical Reports Server (NTRS)
Noor, A. K.; Peters, J. M.
1985-01-01
A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.
Large-amplitude nonlinear normal modes of the discrete sine lattices.
Smirnov, Valeri V; Manevitch, Leonid I
2017-02-01
We present an analytical description of the large-amplitude stationary oscillations of the finite discrete system of harmonically coupled pendulums without any restrictions on their amplitudes (excluding a vicinity of π). Although this model has numerous applications in different fields of physics, it was studied earlier in the infinite limit only. The discrete chain with a finite length can be considered as a well analytical analog of the coarse-grain models of flexible polymers in the molecular dynamics simulations. The developed approach allows to find the dispersion relations for arbitrary amplitudes of the nonlinear normal modes. We emphasize that the long-wavelength approximation, which is described by well-known sine-Gordon equation, leads to an inadequate zone structure for the amplitudes of about π/2 even if the chain is long enough. An extremely complex zone structure at the large amplitudes corresponds to multiple resonances between nonlinear normal modes even with strongly different wave numbers. Due to the complexity of the dispersion relations the modes with shorter wavelengths may have smaller frequencies. The stability of the nonlinear normal modes under condition of the resonant interaction are discussed. It is shown that this interaction of the modes in the vicinity of the long wavelength edge of the spectrum leads to the localization of the oscillations. The thresholds of instability and localization are determined explicitly. The numerical simulation of the dynamics of a finite-length chain is in a good agreement with obtained analytical predictions.
Existence and amplitude bounds for irrotational water waves in finite depth
NASA Astrophysics Data System (ADS)
Kogelbauer, Florian
2017-12-01
We prove the existence of solutions to the irrotational water-wave problem in finite depth and derive an explicit upper bound on the amplitude of the nonlinear solutions in terms of the wavenumber, the total hydraulic head, the wave speed and the relative mass flux. Our approach relies upon a reformulation of the water-wave problem as a one-dimensional pseudo-differential equation and the Newton-Kantorovich iteration for Banach spaces. This article is part of the theme issue 'Nonlinear water waves'.
Finite-amplitude strain waves in laser-excited plates.
Mirzade, F Kh
2008-07-09
The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.
1981-01-08
95 Limits of Applicability of Weak-Finite- Amplitude Theory ... ............ 100 Near- Field Calibration of Parametric Sources...concerning the amount of energy that may be trans- mitted to the far field by various types of signals. CPOIi eslu er 06]i C) 3O d SIM aC NOI.LjZI’IS...ducers at finite amplitudes, conclusions are presented concerning the amount of energy that may be transmitted to the far field by various types of
A Kirchhoff Approach to Seismic Modeling and Prestack Depth Migration
1993-05-01
continuation of sources and geophones by finite difference (S-G finite - difference migration ), are relatively slow and dip-limited. Compared to S-G... finite - difference migration , the Kirchhoff integral implements prestack migration relatively efficiently and has no dip limitation. Liu .Mlodeling and...for modeling and migration . In this paper, a finite - difference algorithm is used to calculate traveltimes and amplitudes. With the help of
Finite Element Modeling of Scattering from Underwater Proud and Buried Military Munitions
2017-02-28
FINAL REPORT Finite Element Modeling of Scattering from Underwater Proud and Buried Military Munitions SERDP Project MR-2408 JULY 2017...solution and the red dash-dot line repre- sents the coupled finite -boundary element solution. . . . . . . . . . . . . . . . . . 11 3 The scattering...dot line represents the coupled finite -boundary element solution. . . . . . . . 11 i 4 The scattering amplitude as a function of the receiver angle for
Self-consistent collective coordinate for reaction path and inertial mass
NASA Astrophysics Data System (ADS)
Wen, Kai; Nakatsukasa, Takashi
2016-11-01
We propose a numerical method to determine the optimal collective reaction path for a nucleus-nucleus collision, based on the adiabatic self-consistent collective coordinate (ASCC) method. We use an iterative method, combining the imaginary-time evolution and the finite amplitude method, for the solution of the ASCC coupled equations. It is applied to the simplest case, α -α scattering. We determine the collective path, the potential, and the inertial mass. The results are compared with other methods, such as the constrained Hartree-Fock method, Inglis's cranking formula, and the adiabatic time-dependent Hartree-Fock (ATDHF) method.
Numerical Study of Plasmonic Efficiency of Gold Nanostripes for Molecule Detection
2015-01-01
In plasmonics, the accurate computation of the electromagnetic field enhancement is necessary in determining the amplitude and the spatial extension of the field around nanostructures. Here, the problem of the interaction between an electromagnetic excitation and gold nanostripes is solved. An optimization scheme, including an adaptive remeshing process with error estimator, is used to solve the problem through a finite element method. The variations of the electromagnetic field amplitude and the plasmonic active zones around nanostructures for molecule detection are studied in this paper taking into account the physical and geometrical parameters of the nanostripes. The evolution between the sizes and number of nanostripes is shown. PMID:25734184
NASA Astrophysics Data System (ADS)
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-04-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
NASA Technical Reports Server (NTRS)
Chiang, C. K.; Xue, David Y.; Mei, Chuh
1993-01-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.
Duality-mediated critical amplitude ratios for the (2 + 1)-dimensional S = 1XY model
NASA Astrophysics Data System (ADS)
Nishiyama, Yoshihiro
2017-09-01
The phase transition for the (2 + 1)-dimensional spin-S = 1XY model was investigated numerically. Because of the boson-vortex duality, the spin stiffness ρs in the ordered phase and the vortex-condensate stiffness ρv in the disordered phase should have a close relationship. We employed the exact diagonalization method, which yields the excitation gap directly. As a result, we estimate the amplitude ratios ρs,v/Δ (Δ: Mott insulator gap) by means of the scaling analyses for the finite-size cluster with N ≤ 22 spins. The ratio ρs/ρv admits a quantitative measure of deviation from selfduality.
Design considerations of electromagnetic force in a direct drive permanent magnet brushless motor
NASA Astrophysics Data System (ADS)
Chen, H. S.; Tsai, M. C.
2008-04-01
In this paper, a numerical study of electromagnetic force associated with the width of stator teeth, width of rotor back iron, and slot opening for a ten-pole nine-slot direct drive permanent magnet brushless motor is presented. The study calculates the amplitude of the electromagnetic force on the rotating rotor by using the finite-element method. The results show that the amplitude of electromagnetic force, which may cause the noise and vibration of motors, changes with the variation of these above mentioned three factors. The relationship between the considerations of output torque and the minimization of noise and vibration is also established in this paper.
Effects of viscosity on shock-induced damping of an initial sinusoidal disturbance
NASA Astrophysics Data System (ADS)
Ma, Xiaojuan; Liu, Fusheng; Jing, Fuqian
2010-05-01
A lack of reliable data treatment method has been for several decades the bottleneck of viscosity measurement by disturbance amplitude damping method of shock waves. In this work the finite difference method is firstly applied to obtain the numerical solutions for disturbance amplitude damping behavior of sinusoidal shock front in inviscid and viscous flow. When water shocked to 15 GPa is taken as an example, the main results are as follows: (1) For inviscid and lower viscous flows the numerical method gives results in good agreement with the analytic solutions under the condition of small disturbance ( a 0/ λ=0.02); (2) For the flow of viscosity beyond 200 Pa s ( η = κ) the analytic solution is found to overestimate obviously the effects of viscosity. It is attributed to the unreal pre-conditions of analytic solution by Miller and Ahrens; (3) The present numerical method provides an effective tool with more confidence to overcome the bottleneck of data treatment when the effects of higher viscosity in experiments of Sakharov and flyer impact are expected to be analyzed, because it can in principle simulate the development of shock waves in flows with larger disturbance amplitude, higher viscosity, and complicated initial flow.
Heikkilä, Janne; Hynynen, Kullervo
2006-04-01
Many noninvasive ultrasound techniques have been developed to explore mechanical properties of soft tissues. One of these methods, Localized Harmonic Motion Imaging (LHMI), has been proposed to be used for ultrasound surgery monitoring. In LHMI, dynamic ultrasound radiation-force stimulation induces displacements in a target that can be measured using pulse-echo imaging and used to estimate the elastic properties of the target. In this initial, simulation study, the use of a one-dimensional phased array is explored for the induction of the tissue motion. The study compares three different dual-frequency and amplitude-modulated single-frequency methods for the inducing tissue motion. Simulations were computed in a homogeneous soft-tissue volume. The Rayleigh integral was used in the simulations of the ultrasound fields and the tissue displacements were computed using a finite-element method (FEM). The simulations showed that amplitude-modulated sonication using a single frequency produced the largest vibration amplitude of the target tissue. These simulations demonstrate that the properties of the tissue motion are highly dependent on the sonication method and that it is important to consider the full three-dimensional distribution of the ultrasound field for controlling the induction of tissue motion.
Three-Dimensional Sensitivity Kernels of Z/H Amplitude Ratios of Surface and Body Waves
NASA Astrophysics Data System (ADS)
Bao, X.; Shen, Y.
2017-12-01
The ellipticity of Rayleigh wave particle motion, or Z/H amplitude ratio, has received increasing attention in inversion for shallow Earth structures. Previous studies of the Z/H ratio assumed one-dimensional (1D) velocity structures beneath the receiver, ignoring the effects of three-dimensional (3D) heterogeneities on wave amplitudes. This simplification may introduce bias in the resulting models. Here we present 3D sensitivity kernels of the Z/H ratio to Vs, Vp, and density perturbations, based on finite-difference modeling of wave propagation in 3D structures and the scattering-integral method. Our full-wave approach overcomes two main issues in previous studies of Rayleigh wave ellipticity: (1) the finite-frequency effects of wave propagation in 3D Earth structures, and (2) isolation of the fundamental mode Rayleigh waves from Rayleigh wave overtones and converted Love waves. In contrast to the 1D depth sensitivity kernels in previous studies, our 3D sensitivity kernels exhibit patterns that vary with azimuths and distances to the receiver. The laterally-summed 3D sensitivity kernels and 1D depth sensitivity kernels, based on the same homogeneous reference model, are nearly identical with small differences that are attributable to the single period of the 1D kernels and a finite period range of the 3D kernels. We further verify the 3D sensitivity kernels by comparing the predictions from the kernels with the measurements from numerical simulations of wave propagation for models with various small-scale perturbations. We also calculate and verify the amplitude kernels for P waves. This study shows that both Rayleigh and body wave Z/H ratios provide vertical and lateral constraints on the structure near the receiver. With seismic arrays, the 3D kernels afford a powerful tool to use the Z/H ratios to obtain accurate and high-resolution Earth models.
Finite amplitude method applied to the giant dipole resonance in heavy rare-earth nuclei
NASA Astrophysics Data System (ADS)
Oishi, Tomohiro; Kortelainen, Markus; Hinohara, Nobuo
2016-03-01
Background: The quasiparticle random phase approximation (QRPA), within the framework of nuclear density functional theory (DFT), has been a standard tool to access the collective excitations of atomic nuclei. Recently, the finite amplitude method (FAM) was developed in order to perform the QRPA calculations efficiently without any truncation on the two-quasiparticle model space. Purpose: We discuss the nuclear giant dipole resonance (GDR) in heavy rare-earth isotopes, for which the conventional matrix diagonalization of the QRPA is numerically demanding. A role of the Thomas-Reiche-Kuhn (TRK) sum rule enhancement factor, connected to the isovector effective mass, is also investigated. Methods: The electric dipole photoabsorption cross section was calculated within a parallelized FAM-QRPA scheme. We employed the Skyrme energy density functional self-consistently in the DFT calculation for the ground states and FAM-QRPA calculation for the excitations. Results: The mean GDR frequency and width are mostly reproduced with the FAM-QRPA, when compared to experimental data, although some deficiency is observed with isotopes heavier than erbium. A role of the TRK enhancement factor in actual GDR strength is clearly shown: its increment leads to a shift of the GDR strength to higher-energy region, without a significant change in the transition amplitudes. Conclusions: The newly developed FAM-QRPA scheme shows remarkable efficiency, which enables one to perform systematic analysis of GDR for heavy rare-earth nuclei. The theoretical deficiency of the photoabsorption cross section could not be improved by only adjusting the TRK enhancement factor, suggesting the necessity of an approach beyond self-consistent QRPA and/or a more systematic optimization of the energy density functional (EDF) parameters.
Finite-frequency sensitivity kernels for head waves
NASA Astrophysics Data System (ADS)
Zhang, Zhigang; Shen, Yang; Zhao, Li
2007-11-01
Head waves are extremely important in determining the structure of the predominantly layered Earth. While several recent studies have shown the diffractive nature and the 3-D Fréchet kernels of finite-frequency turning waves, analogues of head waves in a continuous velocity structure, the finite-frequency effects and sensitivity kernels of head waves are yet to be carefully examined. We present the results of a numerical study focusing on the finite-frequency effects of head waves. Our model has a low-velocity layer over a high-velocity half-space and a cylindrical-shaped velocity perturbation placed beneath the interface at different locations. A 3-D finite-difference method is used to calculate synthetic waveforms. Traveltime and amplitude anomalies are measured by the cross-correlation of synthetic seismograms from models with and without the velocity perturbation and are compared to the 3-D sensitivity kernels constructed from full waveform simulations. The results show that the head wave arrival-time and amplitude are influenced by the velocity structure surrounding the ray path in a pattern that is consistent with the Fresnel zones. Unlike the `banana-doughnut' traveltime sensitivity kernels of turning waves, the traveltime sensitivity of the head wave along the ray path below the interface is weak, but non-zero. Below the ray path, the traveltime sensitivity reaches the maximum (absolute value) at a depth that depends on the wavelength and propagation distance. The sensitivity kernels vary with the vertical velocity gradient in the lower layer, but the variation is relatively small at short propagation distances when the vertical velocity gradient is within the range of the commonly accepted values. Finally, the depression or shoaling of the interface results in increased or decreased sensitivities, respectively, beneath the interface topography.
BMS supertranslation symmetry implies Faddeev-Kulish amplitudes
NASA Astrophysics Data System (ADS)
Choi, Sangmin; Akhoury, Ratindranath
2018-02-01
We show explicitly that, among the scattering amplitudes constructed from eigenstates of the BMS supertranslation charge, the ones that conserve this charge, are equal to those constructed from Faddeev-Kulish states. Thus, Faddeev-Kulish states naturally arise as a consequence of the asymptotic symmetries of perturbative gravity and all charge conserving amplitudes are infrared finite. In the process we show an important feature of the Faddeev-Kulish clouds dressing the external hard particles: these clouds can be moved from the incoming states to the outgoing ones, and vice-versa, without changing the infrared finiteness properties of S matrix elements. We also apply our discussion to the problem of the decoherence of momentum configurations of hard particles due to soft boson effects.
Theory of cavitons in complex plasmas.
Shukla, P K; Eliasson, B; Sandberg, I
2003-08-15
Nonlinear coupling between Langmuir waves with finite amplitude dispersive dust acoustic perturbations is considered. It is shown that the interaction is governed by a pair of coupled nonlinear differential equations. Numerical results reveal the formation of Langmuir envelope solitons composed of the dust density depression created by the ponderomotive force of bell-shaped Langmuir wave envelops. The associated ambipolar potential is positive. The present nonlinear theory should be able to account for the trapping of large amplitude Langmuir waves in finite amplitude dust density holes. This scenario may appear in Saturn's dense rings, and the Cassini spacecraft should be able to observe fully nonlinear cavitons, as presented herein. Furthermore, we propose that new electron-beam plasma experiments should be conducted to verify our theoretical prediction.
A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lindesay, James V
2001-05-11
We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' ormore » ''dressing'' of these parameters to connect them to the boundary states.« less
Anderson metal-insulator transitions with classical magnetic impurities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Daniel; Kettemann, Stefan
We study the effects of classical magnetic impurities on the Anderson metal-insulator transition (AMIT) numerically. In particular we find that while a finite concentration of Ising impurities lowers the critical value of the site-diagonal disorder amplitude W{sub c}, in the presence of Heisenberg impurities, W{sub c} is first increased with increasing exchange coupling strength J due to time-reversal symmetry breaking. The resulting scaling with J is compared to analytical predictions by Wegner [1]. The results are obtained numerically, based on a finite-size scaling procedure for the typical density of states [2], which is the geometric average of the local densitymore » of states. The latter can efficiently be calculated using the kernel polynomial method [3]. Although still suffering from methodical shortcomings, our method proves to deliver results close to established results for the orthogonal symmetry class [4]. We extend previous approaches [5] by combining the KPM with a finite-size scaling analysis. We also discuss the relevance of our findings for systems like phosphor-doped silicon (Si:P), which are known to exhibit a quantum phase transition from metal to insulator driven by the interplay of both interaction and disorder, accompanied by the presence of a finite concentration of magnetic moments [6].« less
Numerical methods for axisymmetric and 3D nonlinear beams
NASA Astrophysics Data System (ADS)
Pinton, Gianmarco F.; Trahey, Gregg E.
2005-04-01
Time domain algorithms that solve the Khokhlov--Zabolotzskaya--Kuznetsov (KZK) equation are described and implemented. This equation represents the propagation of finite amplitude sound beams in a homogenous thermoviscous fluid for axisymmetric and fully three dimensional geometries. In the numerical solution each of the terms is considered separately and the numerical methods are compared with known solutions. First and second order operator splitting are used to combine the separate terms in the KZK equation and their convergence is examined.
Calculation of Scattering Amplitude Without Partial Analysis. II; Inclusion of Exchange
NASA Technical Reports Server (NTRS)
Temkin, Aaron; Shertzer, J.; Fisher, Richard R. (Technical Monitor)
2002-01-01
There was a method for calculating the whole scattering amplitude, f(Omega(sub k)), directly. The idea was to calculate the complete wave function Psi numerically, and use it in an integral expression for f, which can be reduced to a 2 dimensional quadrature. The original application was for e-H scattering without exchange. There the Schrodinger reduces a 2-d partial differential equation (pde), which was solved using the finite element method (FEM). Here we extend the method to the exchange approximation. The S.E. can be reduced to a pair of coupled pde's, which are again solved by the FEM. The formal expression for f(Omega(sub k)) consists two integrals, f+/- = f(sub d) +/- f(sub e); f(sub d) is formally the same integral as the no-exchange f. We have also succeeded in reducing f(sub e) to a 2-d integral. Results will be presented at the meeting.
Connecting physical resonant amplitudes and lattice QCD
Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.
2016-03-18
Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less
Finite-amplitude, pulsed, ultrasonic beams
NASA Astrophysics Data System (ADS)
Coulouvrat, François; Frøysa, Kjell-Eivind
An analytical, approximate solution of the inviscid KZK equation for a nonlinear pulsed sound beam radiated by an acoustic source with a Gaussian velocity distribution, is obtained by means of the renormalization method. This method involves two steps. First, the transient, weakly nonlinear field is computed. However, because of cumulative nonlinear effects, that expansion is non-uniform and breaks down at some distance away from the source. So, in order to extend its validity, it is re-written in a new frame of co-ordinates, better suited to following the nonlinear distorsion of the wave profile. Basically, the nonlinear coordinate transform introduces additional terms in the expansion, which are chosen so as to counterbalance the non-uniform ones. Special care is devoted to the treatment of shock waves. Finally, comparisons with the results of a finite-difference scheme turn out favorable, and show the efficiency of the method for a rather large range of parameters.
NASA Technical Reports Server (NTRS)
Ehlers, E. F.
1974-01-01
A finite difference method for the solution of the transonic flow about a harmonically oscillating wing is presented. The partial differential equation for the unsteady transonic flow was linearized by dividing the flow into separate steady and unsteady perturbation velocity potentials and by assuming small amplitudes of harmonic oscillation. The resulting linear differential equation is of mixed type, being elliptic or hyperbolic whereever the steady flow equation is elliptic or hyperbolic. Central differences were used for all derivatives except at supersonic points where backward differencing was used for the streamwise direction. Detailed formulas and procedures are described in sufficient detail for programming on high speed computers. To test the method, the problem of the oscillating flap on a NACA 64A006 airfoil was programmed. The numerical procedure was found to be stable and convergent even in regions of local supersonic flow with shocks.
Renteria Marquez, I A; Bolborici, V
2017-05-01
This manuscript presents a method to model in detail the piezoelectric traveling wave rotary ultrasonic motor (PTRUSM) stator response under the action of DC and AC voltages. The stator is modeled with a discrete two dimensional system of equations using the finite volume method (FVM). In order to obtain accurate results, a model of the stator bridge is included into the stator model. The model of the stator under the action of DC voltage is presented first, and the results of the model are compared versus a similar model using the commercial finite element software COMSOL Multiphysics. One can observe that there is a difference of less than 5% between the displacements of the stator using the proposed model and the one with COMSOL Multiphysics. After that, the model of the stator under the action of AC voltages is presented. The time domain analysis shows the generation of the traveling wave in the stator surface. One can use this model to accurately calculate the stator surface velocities, elliptical motion of the stator surface and the amplitude and shape of the stator traveling wave. A system of equations discretized with the finite volume method can easily be transformed into electrical circuits, because of that, FVM may be a better choice to develop a model-based control strategy for the PTRUSM. Copyright © 2017 Elsevier B.V. All rights reserved.
Experimental Investigation of Propagation and Reflection Phenomena in Finite Amplitude Sound Beams.
NASA Astrophysics Data System (ADS)
Averkiou, Michalakis Andrea
Measurements of finite amplitude sound beams are compared with theoretical predictions based on the KZK equation. Attention is devoted to harmonic generation and shock formation related to a variety of propagation and reflection phenomena. Both focused and unfocused piston sources were used in the experiments. The nominal source parameters are piston radii of 6-25 mm, frequencies of 1-5 MHz, and focal lengths of 10-20 cm. The research may be divided into two parts: propagation and reflection of continuous-wave focused sound beams, and propagation of pulsed sound beams. In the first part, measurements of propagation curves and beam patterns of focused pistons in water, both in the free field and following reflection from curved targets, are presented. The measurements are compared with predictions from a computer model that solves the KZK equation in the frequency domain. A novel method for using focused beams to measure target curvature is developed. In the second part, measurements of pulsed sound beams from plane pistons in both water and glycerin are presented. Very short pulses (less than 2 cycles), tone bursts (5-30 cycles), and frequency modulated (FM) pulses (10-30 cycles) were measured. Acoustic saturation of pulse propagation in water is investigated. Self-demodulation of tone bursts and FM pulses was measured in glycerin, both in the near and far fields, on and off axis. All pulse measurements are compared with numerical results from a computer code that solves the KZK equation in the time domain. A quasilinear analytical solution for the entire axial field of a self-demodulating pulse is derived in the limit of strong absorption. Taken as a whole, the measurements provide a broad data base for sound beams of finite amplitude. Overall, outstanding agreement is obtained between theory and experiment.
NASA Astrophysics Data System (ADS)
Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang
2017-03-01
Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.
Solving the three-body Coulomb breakup problem using exterior complex scaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.
2004-05-17
Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish themore » formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.« less
Three-dimensional finite amplitude electroconvection in dielectric liquids
NASA Astrophysics Data System (ADS)
Luo, Kang; Wu, Jian; Yi, Hong-Liang; Tan, He-Ping
2018-02-01
Charge injection induced electroconvection in a dielectric liquid lying between two parallel plates is numerically simulated in three dimensions (3D) using a unified lattice Boltzmann method (LBM). Cellular flow patterns and their subcritical bifurcation phenomena of 3D electroconvection are numerically investigated for the first time. A unit conversion is also derived to connect the LBM system to the real physical system. The 3D LBM codes are validated by three carefully chosen cases and all results are found to be highly consistent with the analytical solutions or other numerical studies. For strong injection, the steady state roll, polygon, and square flow patterns are observed under different initial disturbances. Numerical results show that the hexagonal cell with the central region being empty of charge and centrally downward flow is preferred in symmetric systems under random initial disturbance. For weak injection, the numerical results show that the flow directly passes from the motionless state to turbulence once the system loses its linear stability. In addition, the numerically predicted linear and finite amplitude stability criteria of different flow patterns are discussed.
Interquark potential with finite quark mass from lattice QCD.
Kawanai, Taichi; Sasaki, Shoichi
2011-08-26
We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1 GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society
Thouless-Valatin rotational moment of inertia from linear response theory
NASA Astrophysics Data System (ADS)
Petrík, Kristian; Kortelainen, Markus
2018-03-01
Spontaneous breaking of continuous symmetries of a nuclear many-body system results in the appearance of zero-energy restoration modes. These so-called spurious Nambu-Goldstone modes represent a special case of collective motion and are sources of important information about the Thouless-Valatin inertia. The main purpose of this work is to study the Thouless-Valatin rotational moment of inertia as extracted from the Nambu-Goldstone restoration mode that results from the zero-frequency response to the total-angular-momentum operator. We examine the role and effects of the pairing correlations on the rotational characteristics of heavy deformed nuclei in order to extend our understanding of superfluidity in general. We use the finite-amplitude method of the quasiparticle random-phase approximation on top of the Skyrme energy density functional framework with the Hartree-Fock-Bogoliubov theory. We have successfully extended this formalism and established a practical method for extracting the Thouless-Valatin rotational moment of inertia from the strength function calculated in the symmetry-restoration regime. Our results reveal the relation between the pairing correlations and the moment of inertia of axially deformed nuclei of rare-earth and actinide regions of the nuclear chart. We have also demonstrated the feasibility of the method for obtaining the moment of inertia for collective Hamiltonian models. We conclude that from the numerical and theoretical perspective, the finite-amplitude method can be widely used to effectively study rotational properties of deformed nuclei within modern density functional approaches.
Subleading soft graviton theorem for loop amplitudes
NASA Astrophysics Data System (ADS)
Sen, Ashoke
2017-11-01
Superstring field theory gives expressions for heterotic and type II string loop amplitudes that are free from ultraviolet and infrared divergences when the number of non-compact space-time dimensions is five or more. We prove the subleading soft graviton theorem in these theories to all orders in perturbation theory for S-matrix elements of arbitrary number of finite energy external states but only one external soft graviton. We also prove the leading soft graviton theorem for arbitrary number of finite energy external states and arbitrary number of soft gravitons. Since our analysis is based on general properties of one particle irreducible effective action, the results are valid in any theory of quantum gravity that gives finite result for the S-matrix order by order in perturbation theory without violating general coordinate invariance.
Evaluation of Acoustic Propagation Paths into the Human Head
2005-07-25
paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult male head. Finite-element analysis was used to model the...air-borne sound pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database ... database of an adult male head Coupled acoustic-mechanical finite-element analysis (FEA) was used to model the wave propagation through the fluid-solid
Amplitude effects on the dynamic performance of hydrostatic gas thrust bearings
NASA Technical Reports Server (NTRS)
Stiffler, A. K.; Tapia, R. R.
1979-01-01
A strip gas film bearing with inherently compensated inlets is analyzed to determine the effect of disturbance amplitude on its dynamic performance. The governing Reynolds' equation is solved using finite-difference techniques. The time dependent load capacity is represented by a Fourier series up to and including the third harmonics. For the range of amplitudes investigated the linear stiffness was independent of the amplitude, and the linear damping was inversely proportional to (1 - epsilon-squared) to the 1.5 power where epsilon is the amplitude relative to the film thickness.
NASA Technical Reports Server (NTRS)
Stoll, Frederick; Gurdal, Zafer; Starnes, James H., Jr.
1991-01-01
A method was developed for the geometrically nonlinear analysis of the static response of thin-walled stiffened composite structures loaded in uniaxial or biaxial compression. The method is applicable to arbitrary prismatic configurations composed of linked plate strips, such as stiffened panels and thin-walled columns. The longitudinal ends of the structure are assumed to be simply supported, and geometric shape imperfections can be modeled. The method can predict the nonlinear phenomena of postbuckling strength and imperfection sensitivity which are exhibited by some buckling-dominated structures. The method is computer-based and is semi-analytic in nature, making it computationally economical in comparison to finite element methods. The method uses a perturbation approach based on the use of a series of buckling mode shapes to represent displacement contributions associated with nonlinear response. Displacement contributions which are of second order in the model amplitudes are incorported in addition to the buckling mode shapes. The principle of virtual work is applied using a finite basis of buckling modes, and terms through the third order in the model amplitudes are retained. A set of cubic nonlinear algebraic equations are obtained, from which approximate equilibrium solutions are determined. Buckling mode shapes for the general class of structure are obtained using the VIPASA analysis code within the PASCO stiffened-panel design code. Thus, subject to some additional restrictions in loading and plate anisotropy, structures which can be modeled with respect to buckling behavior by VIPASA can be analyzed with respect to nonlinear response using the new method. Results obtained using the method are compared with both experimental and analytical results in the literature. The configurations investigated include several different unstiffened and blade-stiffening panel configurations, featuring both homogeneous, isotropic materials, and laminated composite material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, Daniel R.; Briceno, Raul A.; Wilson, David J.
Here, we present a determination of the isovector,more » $P$-wave $$\\pi\\pi$$ scattering phase shift obtained by extrapolating recent lattice QCD results from the Hadron Spectrum Collaboration using $$m_\\pi =236$$ MeV. The finite volume spectra are described using extensions of L\\"uscher's method to determine the infinite volume Unitarized Chiral Perturbation Theory scattering amplitude. We exploit the pion mass dependence of this effective theory to obtain the scattering amplitude at $$m_\\pi= 140$$ MeV. The scattering phase shift is found to be in good agreement with experiment up to center of mass energies of 1.2 GeV. The analytic continuation of the scattering amplitude to the complex plane yields a $$\\rho$$-resonance pole at $$E_\\rho= \\left[755(2)(1)(^{20}_{02})-\\frac{i}{2}\\,129(3)(1)(^{7}_{1})\\right]~{\\rm MeV}$$. The techniques presented illustrate a possible pathway towards connecting lattice QCD observables of few-body, strongly interacting systems to experimentally accessible quantities.« less
Multistate Lempel-Ziv (MLZ) index interpretation as a measure of amplitude and complexity changes.
Sarlabous, Leonardo; Torres, Abel; Fiz, Jose A; Gea, Joaquim; Galdiz, Juan B; Jane, Raimon
2009-01-01
The Lempel-Ziv complexity (LZ) has been widely used to evaluate the randomness of finite sequences. In general, the LZ complexity has been used to determine the complexity grade present in biomedical signals. The LZ complexity is not able to discern between signals with different amplitude variations and similar random components. On the other hand, amplitude parameters, as the root mean square (RMS), are not able to discern between signals with similar power distributions and different random components. In this work, we present a novel method to quantify amplitude and complexity variations in biomedical signals by means of the computation of the LZ coefficient using more than two quantification states, and with thresholds fixed and independent of the dynamic range or standard deviation of the analyzed signal: the Multistate Lempel-Ziv (MLZ) index. Our results indicate that MLZ index with few quantification levels only evaluate the complexity changes of the signal, with high number of levels, the amplitude variations, and with an intermediate number of levels informs about both amplitude and complexity variations. The study performed in diaphragmatic mechanomyographic signals shows that the amplitude variations of this signal are more correlated with the respiratory effort than the complexity variations. Furthermore, it has been observed that the MLZ index with high number of levels practically is not affected by the existence of impulsive, sinusoidal, constant and Gaussian noises compared with the RMS amplitude parameter.
Broadband impedance boundary conditions for the simulation of sound propagation in the time domain.
Bin, Jonghoon; Yousuff Hussaini, M; Lee, Soogab
2009-02-01
An accurate and practical surface impedance boundary condition in the time domain has been developed for application to broadband-frequency simulation in aeroacoustic problems. To show the capability of this method, two kinds of numerical simulations are performed and compared with the analytical/experimental results: one is acoustic wave reflection by a monopole source over an impedance surface and the other is acoustic wave propagation in a duct with a finite impedance wall. Both single-frequency and broadband-frequency simulations are performed within the framework of linearized Euler equations. A high-order dispersion-relation-preserving finite-difference method and a low-dissipation, low-dispersion Runge-Kutta method are used for spatial discretization and time integration, respectively. The results show excellent agreement with the analytical/experimental results at various frequencies. The method accurately predicts both the amplitude and the phase of acoustic pressure and ensures the well-posedness of the broadband time-domain impedance boundary condition.
Hartzell, S.; Liu, P.
1996-01-01
A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.
Briceno, Raul A.
2018-03-26
The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows formore » the determination of resonant electroweak amplitudes from finite-volume matrix elements. I use the recent calculation of the πγ* → ππ amplitude as an example illustrating the power of this formalism. From such amplitudes one can determine transition form factors of resonances. I close by reviewing on-going efforts to generalize these ideas to increasingly complex reactions and I then give a outlook of the field.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceno, Raul A.
The spectrum of hadron is mainly composed as shortly-lived states (resonance) that decay onto two or more hadrons. These resonances play an important role in a variety of phenomenologically significant processes. In this talk, I give an overview on the present status of a rigorous program for studying of resonances and their properties using lattice QCD. I explain the formalism needed for extracting resonant amplitudes from the finite-volume spectra. From these one can extract the masses and widths of resonances. I present some recent examples that illustrate the power of these ideas. I then explain similar formalism that allows formore » the determination of resonant electroweak amplitudes from finite-volume matrix elements. I use the recent calculation of the πγ* → ππ amplitude as an example illustrating the power of this formalism. From such amplitudes one can determine transition form factors of resonances. I close by reviewing on-going efforts to generalize these ideas to increasingly complex reactions and I then give a outlook of the field.« less
NASA Astrophysics Data System (ADS)
Kozlov, V. V.; Katasonov, M. M.; Pavlenko, A. M.
2017-10-01
Downstream development of artificial disturbances were investigated experimentally using hot-wire constant temperature anemometry. It is shown that vibrations with high-amplitude of a three-dimensional surface lead to formation of two types of perturbations in the straight wing boundary layer: streamwise oriented localized structures and wave packets. The amplitude of streamwise structure is decay downstream. The wave packets amplitude grows in adverse pressure gradient area. The flow separation is exponentially intensified of the wave packet amplitude.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Kreider, K. L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
NASA Astrophysics Data System (ADS)
Salvalaglio, Marco; Backofen, Rainer; Voigt, Axel; Elder, Ken R.
2017-08-01
One of the major difficulties in employing phase-field crystal (PFC) modeling and the associated amplitude (APFC) formulation is the ability to tune model parameters to match experimental quantities. In this work, we address the problem of tuning the defect core and interface energies in the APFC formulation. We show that the addition of a single term to the free-energy functional can be used to increase the solid-liquid interface and defect energies in a well-controlled fashion, without any major change to other features. The influence of the newly added term is explored in two-dimensional triangular and honeycomb structures as well as bcc and fcc lattices in three dimensions. In addition, a finite-element method (FEM) is developed for the model that incorporates a mesh refinement scheme. The combination of the FEM and mesh refinement to simulate amplitude expansion with a new energy term provides a method of controlling microscopic features such as defect and interface energies while simultaneously delivering a coarse-grained examination of the system.
Nadobny, Jacek; Fähling, Horst; Hagmann, Mark J; Turner, Paul F; Wlodarczyk, Waldemar; Gellermann, Johanna M; Deuflhard, Peter; Wust, Peter
2002-11-01
Experimental and numerical methods were used to determine the coupling of energy in a multichannel three-dimensional hyperthermia applicator (SIGMA-Eye), consisting of 12 short dipole antenna pairs with stubs for impedance matching. The relationship between the amplitudes and phases of the forward waves from the amplifiers, to the resulting amplitudes and phases at the antenna feed-points was determined in terms of interaction matrices. Three measuring methods were used: 1) a differential probe soldered directly at the antenna feed-points; 2) an E-field sensor placed near the feed-points; and 3) measurements were made at the outputs of the amplifier. The measured data were compared with finite-difference time-domain (FDTD) calculations made with three different models. The first model assumes that single antennas are fed independently. The second model simulates antenna pairs connected to the transmission lines. The measured data correlate best with the latter FDTD model, resulting in an improvement of more than 20% and 20 degrees (average difference in amplitudes and phases) when compared with the two simpler FDTD models.
CYLINDRICAL WAVES OF FINITE AMPLITUDE IN DISSIPATIVE MEDIUM (in Russian)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naugol'nykh, K.A.; Soluyan, S.I.; Khokhlov, R.V.
1962-07-01
Propagation of diverging and converging cylindrical waves in a nonlinear, viscous, heat conducting medium is analyzed using approximation methods. The KrylovBogolyubov method was used for small Raynold's numbers, and the method of S. I. Soluyan et al. (Vest. Mosk. Univ. ser. phys. and astronomy 3, 52-81, 1981), was used for large Raynold's numbers. The formation and dissipation of shock fronts and spatial dimensions of shock phenomena were analyzed. It is shown that the problem of finiteamplitude cylindrical wave propagation is identical to the problem of plane wave propagations in a medium with variable viscosity. (tr-auth)
Numerical simulation of the control of the three-dimensional transition process in boundary layers
NASA Technical Reports Server (NTRS)
Kral, L. D.; Fasel, H. F.
1990-01-01
Surface heating techniques to control the three-dimensional laminar-turbulent transition process are numerically investigated for a water boundary layer. The Navier-Stokes and energy equations are solved using a fully implicit finite difference/spectral method. The spatially evolving boundary layer is simulated. Results of both passive and active methods of control are shown for small amplitude two-dimensional and three-dimensional disturbance waves. Control is also applied to the early stages of the secondary instability process using passive or active control techniques.
Numerical Calculation of Gravity-Capillary Interfacial Waves of Finite Amplitude,
1980-02-26
corresponding to n=2. The erical scheme appears to be more efficient than the numerical work of Schwartz and Vanden-Broeck shows Padd table method since the...waves are studied. A generalization of Wilton’s ripples for interfacial waves is presented. I. INTRODUCTION that all variables become dimensionless. We...then recast these series irrotational. Thus, we define stream functions # and as Padd apDroxlmants. High accuracy solutions were 02 and potential
Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo
2014-11-01
Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction. Copyright © 2014 IPEM. Published by Elsevier Ltd. All rights reserved.
Finite Larmor radius effects on weak turbulence transport
NASA Astrophysics Data System (ADS)
Kryukov, N.; Martinell, J. J.
2018-06-01
Transport of test particles in two-dimensional weak turbulence with waves propagating along the poloidal direction is studied using a reduced model. Finite Larmor radius (FLR) effects are included by gyroaveraging over one particle orbit. For low wave amplitudes the motion is mostly regular with particles trapped in the potential wells. As the amplitude increases the trajectories become chaotic and the Larmor radius modifies the orbits. For a thermal distribution of Finite Larmor radii the particle distribution function (PDF) is Gaussian for small th$ (thermal gyroradius) but becomes non-Gaussian for large th$ . However, the time scaling of transport is diffusive, as characterized by a linear dependence of the variance of the PDF with time. An explanation for this behaviour is presented that provides an expression for an effective diffusion coefficient and reproduces the numerical results for large wave amplitudes which implies generalized chaos. When a shear flow is added in the direction of wave propagation, a modified model is obtained that produces free-streaming particle trajectories in addition to trapped ones; these contribute to ballistic transport for low wave amplitude but produce super-ballistic transport in the chaotic regime. As in the previous case, the PDF is Gaussian for low th$ becoming non-Gaussian as it increases. The perpendicular transport presents the same behaviour as in the case with no flow but the diffusion is faster in the presence of the flow.
Effect of Nozzle Nonlinearities upon Nonlinear Stability of Liquid Propellant Rocket Motors
NASA Technical Reports Server (NTRS)
Padmanabhan, M. S.; Powell, E. A.; Zinn, B. T.
1975-01-01
A three dimensional, nonlinear nozzle admittance relation is developed by solving the wave equation describing finite amplitude oscillatory flow inside the subsonic portion of a choked, slowly convergent axisymmetric nozzle. This nonlinear nozzle admittance relation is then used as a boundary condition in the analysis of nonlinear combustion instability in a cylindrical liquid rocket combustor. In both nozzle and chamber analyses solutions are obtained using the Galerkin method with a series expansion consisting of the first tangential, second tangential, and first radial modes. Using Crocco's time lag model to describe the distributed unsteady combustion process, combustion instability calculations are presented for different values of the following parameters: (1) time lag, (2) interaction index, (3) steady-state Mach number at the nozzle entrance, and (4) chamber length-to-diameter ratio. In each case, limit cycle pressure amplitudes and waveforms are shown for both linear and nonlinear nozzle admittance conditions. These results show that when the amplitudes of the second tangential and first radial modes are considerably smaller than the amplitude of the first tangential mode the inclusion of nozzle nonlinearities has no significant effect on the limiting amplitude and pressure waveforms.
Love-type seam-waves in washout models of coal seams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breitzke, M.; Dresen, L.
The propagation of Love seam-waves across washouts of coal seams was studied by calculating synthetic seismograms with a finite-difference method. Seam interruption, seam end and seam thinning models ere investigated. The horizontal offset, the dip of the discontinuities and the degree of erosion served as variable parameters. Maximum displacement amplitudes, relative spectral amplitudes and phase and group slowness curves were extracted from the synthetic seismograms. Both seam interruption and seam thinning reduce the maximum displacement amplitudes of the transmitted Love seam-waves. The degree of amplitude reduction depends on the horizontal offset and the degree of erosion. It is four timesmore » greater for a total seam interruption than for an equivalent seam thinning with a horizontal offset of four times the seam thickness. In a seam cut vertically, the impedance contrast between the coal and the washout filling determines the maximum displacement amplitudes of the reflected Love seam-waves. They diminish by a maximum factor of four in oblique interruption zone discontinuities with a dip of maximum 27/sup 0/, and by a maximum factor of ten in a seam thinning with a degree of erosion of at least 22%.« less
Amplitude Scintillation due to Atmospheric Turbulence for the Deep Space Network Ka-Band Downlink
NASA Technical Reports Server (NTRS)
Ho, C.; Wheelon, A.
2004-01-01
Fast amplitude variations due to atmospheric scintillation are the main concerns for the Deep Space Network (DSN) Ka-band downlink under clear weather conditions. A theoretical study of the amplitude scintillation variances for a finite aperture antenna is presented. Amplitude variances for weak scattering scenarios are examined using turbulence theory to describe atmospheric irregularities. We first apply the Kolmogorov turbulent spectrum to a point receiver for three different turbulent profile models, especially for an exponential model varying with altitude. These analytic solutions then are extended to a receiver with a finite aperture antenna for the three profile models. Smoothing effects of antenna aperture are expressed by gain factors. A group of scaling factor relations is derived to show the dependences of amplitude variances on signal wavelength, antenna size, and elevation angle. Finally, we use these analytic solutions to estimate the scintillation intensity for a DSN Goldstone 34-m receiving station. We find that the (rms) amplitude fluctuation is 0.13 dB at 20-deg elevation angle for an exponential model, while the fluctuation is 0.05 dB at 90 deg. These results will aid us in telecommunication system design and signal-fading prediction. They also provide a theoretical basis for further comparison with other measurements at Ka-band.
A Natural Language for AdS/CFT Correlators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, A.Liam; /Boston U.; Kaplan, Jared
2012-02-14
We provide dramatic evidence that 'Mellin space' is the natural home for correlation functions in CFTs with weakly coupled bulk duals. In Mellin space, CFT correlators have poles corresponding to an OPE decomposition into 'left' and 'right' sub-correlators, in direct analogy with the factorization channels of scattering amplitudes. In the regime where these correlators can be computed by tree level Witten diagrams in AdS, we derive an explicit formula for the residues of Mellin amplitudes at the corresponding factorization poles, and we use the conformal Casimir to show that these amplitudes obey algebraic finite difference equations. By analyzing the recursivemore » structure of our factorization formula we obtain simple diagrammatic rules for the construction of Mellin amplitudes corresponding to tree-level Witten diagrams in any bulk scalar theory. We prove the diagrammatic rules using our finite difference equations. Finally, we show that our factorization formula and our diagrammatic rules morph into the flat space S-Matrix of the bulk theory, reproducing the usual Feynman rules, when we take the flat space limit of AdS/CFT. Throughout we emphasize a deep analogy with the properties of flat space scattering amplitudes in momentum space, which suggests that the Mellin amplitude may provide a holographic definition of the flat space S-Matrix.« less
Drop Ejection From an Oscillating Rod
NASA Technical Reports Server (NTRS)
Wilkes, E. D.; Basaran, O. A.
1999-01-01
The dynamics of a drop of a Newtonian liquid that is pendant from or sessile on a solid rod that is forced to undergo time-periodic oscillations along its axis is studied theoretically. The free boundary problem governing the time evolution of the shape of the drop and the flow field inside it is solved by a method of lines using a finite element algorithm incorporating an adaptive mesh. When the forcing amplitude is small, the drop approaches a limit cycle at large times and undergoes steady oscillations thereafter. However, drop breakup is the consequence if the forcing amplitude exceeds a critical value. Over a wide range of amplitudes above this critical value, drop ejection from the rod occurs during the second oscillation period from the commencement of rod motion. Remarkably, the shape of the interface at breakup and the volume of the primary drop formed are insensitive to changes in forcing amplitude. The interface shape at times close to and at breakup is a multi-valued function of distance measured along the rod axis and hence cannot be described by recently popularized one-dimensional approximations. The computations show that drop ejection occurs without the formation of a long neck. Therefore, this method of drop formation holds promise of preventing formation of undesirable satellite droplets.
NASA Technical Reports Server (NTRS)
Meyers, Steven D.; Kelly, B. G.; O'Brien, J. J.
1993-01-01
Wavelet analysis is a relatively new technique that is an important addition to standard signal analysis methods. Unlike Fourier analysis that yields an average amplitude and phase for each harmonic in a dataset, the wavelet transform produces an instantaneous estimate or local value for the amplitude and phase of each harmonic. This allows detailed study of nonstationary spatial or time-dependent signal characteristics. The wavelet transform is discussed, examples are given, and some methods for preprocessing data for wavelet analysis are compared. By studying the dispersion of Yanai waves in a reduced gravity equatorial model, the usefulness of the transform is demonstrated. The group velocity is measured directly over a finite range of wavenumbers by examining the time evolution of the transform. The results agree well with linear theory at higher wavenumber but the measured group velocity is reduced at lower wavenumbers, possibly due to interaction with the basin boundaries.
Special class of nonlinear damping models in flexible space structures
NASA Technical Reports Server (NTRS)
Hu, Anren; Singh, Ramendra P.; Taylor, Lawrence W.
1991-01-01
A special class of nonlinear damping models is investigated in which the damping force is proportional to the product of positive integer or the fractional power of the absolute values of displacement and velocity. For a one-degree-of-freedom system, the classical Krylov-Bogoliubov 'averaging' method is used, whereas for a distributed system, both an ad hoc perturbation technique and the finite difference method are employed to study the effects of nonlinear damping. The results are compared with linear viscous damping models. The amplitude decrement of free vibration for a single mode system with nonlinear models depends not only on the damping ratio but also on the initial amplitude, the time to measure the response, the frequency of the system, and the powers of displacement and velocity. For the distributed system, the action of nonlinear damping is found to reduce the energy of the system and to pass energy to lower modes.
Estimation of coupling efficiency of optical fiber by far-field method
NASA Astrophysics Data System (ADS)
Kataoka, Keiji
2010-09-01
Coupling efficiency to a single-mode optical fiber can be estimated with the field amplitudes at far-field of an incident beam and optical fiber mode. We call it the calculation by far-field method (FFM) in this paper. The coupling efficiency by FFM is formulated including effects of optical aberrations, vignetting of the incident beam, and misalignments of the optical fiber such as defocus, lateral displacements, and angle deviation in arrangement of the fiber. As the results, it is shown the coupling efficiency is proportional to the central intensity of the focused spot, i.e., Strehl intensity of a virtual beam determined by the incident beam and mode of the optical fiber. Using the FFM, a typical optics in which a laser beam is coupled to an optical fiber with a lens of finite numerical aperture (NA) is analyzed for several cases of amplitude distributions of the incident light.
NASA Astrophysics Data System (ADS)
Beltran, Mario A.; Paganin, David M.; Pelliccia, Daniele
2018-05-01
A simple method of phase-and-amplitude extraction is derived that corrects for image blurring induced by partially spatially coherent incident illumination using only a single intensity image as input. The method is based on Fresnel diffraction theory for the case of high Fresnel number, merged with the space-frequency description formalism used to quantify partially coherent fields and assumes the object under study is composed of a single-material. A priori knowledge of the object’s complex refractive index and information obtained by characterizing the spatial coherence of the source is required. The algorithm was applied to propagation-based phase-contrast data measured with a laboratory-based micro-focus x-ray source. The blurring due to the finite spatial extent of the source is embedded within the algorithm as a simple correction term to the so-called Paganin algorithm and is also numerically stable in the presence of noise.
Toward complete pion nucleon amplitudes
Mathieu, Vincent; Danilkin, Igor V.; Fernández-Ramírez, Cesar; ...
2015-10-05
We compare the low-energy partial wave analyses πN scattering with a high-energy data via finite energy sum rules. We also construct a new set of amplitudes by matching the imaginary part from the low-energy analysis with the high-energy, Regge parametrization and then reconstruct the real parts using dispersion relations.
Experimental study of the oscillation of spheres in an acoustic levitator.
Andrade, Marco A B; Pérez, Nicolás; Adamowski, Julio C
2014-10-01
The spontaneous oscillation of solid spheres in a single-axis acoustic levitator is experimentally investigated by using a high speed camera to record the position of the levitated sphere as a function of time. The oscillations in the axial and radial directions are systematically studied by changing the sphere density and the acoustic pressure amplitude. In order to interpret the experimental results, a simple model based on a spring-mass system is applied in the analysis of the sphere oscillatory behavior. This model requires the knowledge of the acoustic pressure distribution, which was obtained numerically by using a linear finite element method (FEM). Additionally, the linear acoustic pressure distribution obtained by FEM was compared with that measured with a laser Doppler vibrometer. The comparison between numerical and experimental pressure distributions shows good agreement for low values of pressure amplitude. When the pressure amplitude is increased, the acoustic pressure distribution becomes nonlinear, producing harmonics of the fundamental frequency. The experimental results of the spheres oscillations for low pressure amplitudes are consistent with the results predicted by the simple model based on a spring-mass system.
NASA Astrophysics Data System (ADS)
Gidel, Floriane; Bokhove, Onno; Kalogirou, Anna
2017-01-01
In this work, we model extreme waves that occur due to Mach reflection through the intersection of two obliquely incident solitary waves. For a given range of incident angles and amplitudes, the Mach stem wave grows linearly in length and amplitude, reaching up to 4 times the amplitude of the incident waves. A variational approach is used to derive the bidirectional Benney-Luke equations, an asymptotic equivalent of the three-dimensional potential-flow equations modelling water waves. This nonlinear and weakly dispersive model has the advantage of allowing wave propagation in two horizontal directions, which is not the case with the unidirectional Kadomtsev-Petviashvili (KP) equation used in most previous studies. A variational Galerkin finite-element method is applied to solve the system numerically in Firedrake with a second-order Störmer-Verlet temporal integration scheme, in order to obtain stable simulations that conserve the overall mass and energy of the system. Using this approach, we are able to get close to the 4-fold amplitude amplification predicted by Miles.
Nonlinear Interaction of Detuned Instability Waves in Boundary-Layer Transition: Amplitude Equations
NASA Technical Reports Server (NTRS)
Lee, Sang Soo
1998-01-01
The non-equilibrium critical-layer analysis of a system of frequency-detuned resonant-triads is presented. In this part of the analysis, the system of partial differential critical-layer equations derived in Part I is solved analytically to yield the amplitude equations which are analyzed using a combination of asymptotic and numerical methods. Numerical solutions of the inviscid non-equilibrium oblique-mode amplitude equations show that the frequency-detuned self-interaction enhances the growth of the lower-frequency oblique modes more than the higher-frequency ones. All amplitudes become singular at the same finite downstream position. The frequency detuning delays the occurrence of the singularity. The spanwise-periodic mean-flow distortion and low-frequency nonlinear modes are generated by the critical-layer interaction between frequency-detuned oblique modes. The nonlinear mean flow and higher harmonics as well as the primary instabilities become as large as the base mean flow in the inviscid wall layer in the downstream region where the distance from the singularity is of the order of the wavelength scale.
Influence of polygonal wear of railway wheels on the wheel set axle stress
NASA Astrophysics Data System (ADS)
Wu, Xingwen; Chi, Maoru; Wu, Pingbo
2015-11-01
The coupled vehicle/track dynamic model with the flexible wheel set was developed to investigate the effects of polygonal wear on the dynamic stresses of the wheel set axle. In the model, the railway vehicle was modelled by the rigid multibody dynamics. The wheel set was established by the finite element method to analyse the high-frequency oscillation and dynamic stress of wheel set axle induced by the polygonal wear based on the modal stress recovery method. The slab track model was taken into account in which the rail was described by the Timoshenko beam and the three-dimensional solid finite element was employed to establish the concrete slab. Furthermore, the modal superposition method was adopted to calculate the dynamic response of the track. The wheel/rail normal forces and the tangent forces were, respectively, determined by the Hertz nonlinear contact theory and the Shen-Hedrick-Elkins model. Using the coupled vehicle/track dynamic model, the dynamic stresses of wheel set axle with consideration of the ideal polygonal wear and measured polygonal wear were investigated. The results show that the amplitude of wheel/rail normal forces and the dynamic stress of wheel set axle increase as the vehicle speeds rise. Moreover, the impact loads induced by the polygonal wear could excite the resonance of wheel set axle. In the resonance region, the amplitude of the dynamic stress for the wheel set axle would increase considerably comparing with the normal conditions.
Mechanoelectric feedback in a model of the passively inflated left ventricle.
Vetter, F J; McCulloch, A D
2001-05-01
Mechanoelectric feedback has been described in isolated cells and intact ventricular myocardium, but the mechanical stimulus that governs mechanosensitive channel activity in intact tissue is unknown. To study the interaction of myocardial mechanics and electrophysiology in multiple dimensions, we used a finite element model of the rabbit ventricles to simulate electrical propagation through passively loaded myocardium. Electrical propagation was simulated using the collocation-Galerkin finite element method. A stretch-dependent current was added in parallel to the ionic currents in the Beeler-Reuter ventricular action potential model. We investigated different mechanical coupling parameters to simulate stretch-dependent conductance modulated by either fiber strain, cross-fiber strain, or a combination of the two. In response to pressure loading, the conductance model governed by fiber strain alone reproduced the epicardial decrease in action potential amplitude as observed in experimental preparations of the passively loaded rabbit heart. The model governed by only cross-fiber strain reproduced the transmural gradient in action potential amplitude as observed in working canine heart experiments, but failed to predict a sufficient decrease in amplitude at the epicardium. Only the model governed by both fiber and cross-fiber strain reproduced the epicardial and transmural changes in action potential amplitude similar to experimental observations. In addition, dispersion of action potential duration nearly doubled with the same model. These results suggest that changes in action potential characteristics may be due not only to length changes along the long axis direction of the myofiber, but also due to deformation in the plane transverse to the fiber axis. The model provides a framework for investigating how cellular biophysics affect the function of the intact ventricles.
Stress estimation in reservoirs using an integrated inverse method
NASA Astrophysics Data System (ADS)
Mazuyer, Antoine; Cupillard, Paul; Giot, Richard; Conin, Marianne; Leroy, Yves; Thore, Pierre
2018-05-01
Estimating the stress in reservoirs and their surroundings prior to the production is a key issue for reservoir management planning. In this study, we propose an integrated inverse method to estimate such initial stress state. The 3D stress state is constructed with the displacement-based finite element method assuming linear isotropic elasticity and small perturbations in the current geometry of the geological structures. The Neumann boundary conditions are defined as piecewise linear functions of depth. The discontinuous functions are determined with the CMA-ES (Covariance Matrix Adaptation Evolution Strategy) optimization algorithm to fit wellbore stress data deduced from leak-off tests and breakouts. The disregard of the geological history and the simplified rheological assumptions mean that only the stress field, statically admissible and matching the wellbore data should be exploited. The spatial domain of validity of this statement is assessed by comparing the stress estimations for a synthetic folded structure of finite amplitude with a history constructed assuming a viscous response.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marxen, Olaf, E-mail: olaf.marxen@vki.ac.be; Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Chaussée de Waterloo, 72, 1640 Rhode-St-Genèse; Magin, Thierry E.
2013-12-15
A new numerical method is presented here that allows to consider chemically reacting gases during the direct numerical simulation of a hypersonic fluid flow. The method comprises the direct coupling of a solver for the fluid mechanical model and a library providing the physio-chemical model. The numerical method for the fluid mechanical model integrates the compressible Navier–Stokes equations using an explicit time advancement scheme and high-order finite differences. This Navier–Stokes code can be applied to the investigation of laminar-turbulent transition and boundary-layer instability. The numerical method for the physio-chemical model provides thermodynamic and transport properties for different gases as wellmore » as chemical production rates, while here we exclusively consider a five species air mixture. The new method is verified for a number of test cases at Mach 10, including the one-dimensional high-temperature flow downstream of a normal shock, a hypersonic chemical reacting boundary layer in local thermodynamic equilibrium and a hypersonic reacting boundary layer with finite-rate chemistry. We are able to confirm that the diffusion flux plays an important role for a high-temperature boundary layer in local thermodynamic equilibrium. Moreover, we demonstrate that the flow for a case previously considered as a benchmark for the investigation of non-equilibrium chemistry can be regarded as frozen. Finally, the new method is applied to investigate the effect of finite-rate chemistry on boundary layer instability by considering the downstream evolution of a small-amplitude wave and comparing results with those obtained for a frozen gas as well as a gas in local thermodynamic equilibrium.« less
Multi-hadron spectroscopy in a large physical volume
NASA Astrophysics Data System (ADS)
Bulava, John; Hörz, Ben; Morningstar, Colin
2018-03-01
We demonstrate the effcacy of the stochastic LapH method to treat all-toall quark propagation on a Nf = 2 + 1 CLS ensemble with large linear spatial extent L = 5:5 fm, allowing us to obtain the benchmark elastic isovector p-wave pion-pion scattering amplitude to good precision already on a relatively small number of gauge configurations. These results hold promise for multi-hadron spectroscopy at close-to-physical pion mass with exponential finite-volume effects under control.
Quantum field-theoretical description of neutrino and neutral kaon oscillations
NASA Astrophysics Data System (ADS)
Volobuev, Igor P.
2018-05-01
It is shown that the neutrino and neutral kaon oscillation processes can be consistently described in quantum field theory using only plane waves of the mass eigenstates of neutrinos and neutral kaons. To this end, the standard perturbative S-matrix formalism is modified so that it can be used for calculating the amplitudes of the processes passing at finite distances and finite time intervals. The distance-dependent and time-dependent parts of the amplitudes of the neutrino and neutral kaon oscillation processes are calculated and the results turn out to be in accordance with those of the standard quantum mechanical description of these processes based on the notion of neutrino flavor states and neutral kaon states with definite strangeness. However, the physical picture of the phenomena changes radically: now, there are no oscillations of flavor or definite strangeness states, but, instead of it, there is interference of amplitudes due to different virtual mass eigenstates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rufai, O. R., E-mail: rrufai@csir.co.za; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za; Singh, S. V., E-mail: satyavir@iigs.iigm.res.in
2015-10-15
The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulsemore » duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.« less
Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang; Lu, Jian; Burrows, Alex D.
Midlatitude extreme weather events are responsible for a large part of climate related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite-amplitude wave activity (LWA) of Huang and Nakamura [2015] is introduced as a diagnostic of the 500-hPa geopotential height (Z500) to characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation (AO) agree broadly with the previously reported blocking frequency in literature. There is a strong seasonal and spatial dependencemore » in the trend13 s of LWA in recent decades. While there is no observational evidence for a hemispheric-scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change.« less
NASA Technical Reports Server (NTRS)
Yamauchi, M.
1994-01-01
A two-dimensional numerical simulation of finite-amplitude magnetohydrodynamic (MHD) magnetosonic waves is performed under a finite-velocity background convection condition. Isothermal cases are considered for simplicity. External dissipation is introduced by assuming that the field-aligned currents are generated in proportion to the accumulated charges. The simulation results are as follows: Paired field-aligned currents are found from the simulated waves. The flow directions of these field-aligned currents depend on the angle between the background convection and the wave normal, and hence two pairs of field-aligned currents are found from a bowed wave if we look at the overall structure. The majority of these field-aligned currents are closed within each pair rather than between two wings. These features are not observed under slow background convection. The result could be applied to the cusp current system and the substorm current system.
Relativistic, model-independent, multichannel 2 → 2 transition amplitudes in a finite volume
Briceno, Raul A.; Hansen, Maxwell T.
2016-07-13
We derive formalism for determining 2 + J → 2 infinite-volume transition amplitudes from finite-volume matrix elements. Specifically, we present a relativistic, model-independent relation between finite-volume matrix elements of external currents and the physically observable infinite-volume matrix elements involving two-particle asymptotic states. The result presented holds for states composed of two scalar bosons. These can be identical or non-identical and, in the latter case, can be either degenerate or non-degenerate. We further accommodate any number of strongly-coupled two-scalar channels. This formalism will, for example, allow future lattice QCD calculations of themore » $$\\rho$$-meson form factor, in which the unstable nature of the $$\\rho$$ is rigorously accommodated. In conclusion, we also discuss how this work will impact future extractions of nuclear parity and hadronic long-range matrix elements from lattice QCD.« less
NASA Technical Reports Server (NTRS)
Seddougui, Sharon O.
1989-01-01
The effects of compressibility on a stationary mode of instability of the 3-D boundary layer due to a rotating disc are investigated. The aim is to determine whether this mode will be important in the finite amplitude destabilization of the boundary layer. This stationary mode is characterized by the effective velocity profile having zero shear stress at the wall. Triple-deck solutions are presented for an adiabatic wall and an isothermal wall. It is found that this stationary mode is only possible over a finite range of Mach numbers. Asymptotic solutions are obtained which describe the structure of the wavenumber and the orientation of these modes as functions of the local Mach number. The effects of nonlinearity are investigated allowing the finite amplitude growth of a disturbance close to the neutral location to be described.
Mode-coupling and wave-particle interactions for unstable ion-acoustic waves.
NASA Technical Reports Server (NTRS)
Martin, P.; Fried, B. D.
1972-01-01
A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasilinear and mode-coupling effects are treated in a self-consistent manner. Steady-state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through terms of second order in the wave amplitude, but without the usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion-acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasilinear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.
Mode coupling and wave particle interactions for unstable ion acoustic waves
NASA Technical Reports Server (NTRS)
Martin, P.; Fried, B. D.
1972-01-01
A theory for the spatial development of linearly unstable, coupled waves is presented in which both quasi-linear and mode coupling effects are treated in a self-consistent manner. Steady state excitation of two waves is assumed at the boundary x = 0, the plasma being homogeneous in the y and z directions. Coupled equations are derived for the x dependence of the amplitudes of the primary waves and the secondary waves, correct through second order terms in the wave amplitude, but without usual approximation of small growth rates. This general formalism is then applied to the case of coupled ion acoustic waves driven unstable by an ion beam streaming in the direction of the x axis. If the modifications of the ion beam by the waves (quasi-linear effects) are ignored, explosive instabilities (singularities in all of the amplitudes at finite x) are found, even when all of the waves have positive energy. If these wave-particle interactions are included, the solutions are no longer singular, and all of the amplitudes have finite maxima.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singh, S. V.; Devanandhan, S.; Lakhina, G. S.
2013-01-15
Obliquely propagating ion-acoustic soliatry waves are examined in a magnetized plasma composed of kappa distributed electrons and fluid ions with finite temperature. The Sagdeev potential approach is used to study the properties of finite amplitude solitary waves. Using a quasi-neutrality condition, it is possible to reduce the set of equations to a single equation (energy integral equation), which describes the evolution of ion-acoustic solitary waves in magnetized plasmas. The temperature of warm ions affects the speed, amplitude, width, and pulse duration of solitons. Both the critical and the upper Mach numbers are increased by an increase in the ion temperature.more » The ion-acoustic soliton amplitude increases with the increase in superthermality of electrons. For auroral plasma parameters, the model predicts the soliton speed, amplitude, width, and pulse duration, respectively, to be in the range of (28.7-31.8) km/s, (0.18-20.1) mV/m; (590-167) m, and (20.5-5.25) ms, which are in good agreement with Viking observations.« less
Finite Moment Tensors of Southern California Earthquakes
NASA Astrophysics Data System (ADS)
Jordan, T. H.; Chen, P.; Zhao, L.
2003-12-01
We have developed procedures for inverting broadband waveforms for the finite moment tensors (FMTs) of regional earthquakes. The FMT is defined in terms of second-order polynomial moments of the source space-time function and provides the lowest order representation of a finite fault rupture; it removes the fault-plane ambiguity of the centroid moment tensor (CMT) and yields several additional parameters of seismological interest: the characteristic length L{c}, width W{c}, and duration T{c} of the faulting, as well as the directivity vector {v}{d} of the fault slip. To formulate the inverse problem, we follow and extend the methods of McGuire et al. [2001, 2002], who have successfully recovered the second-order moments of large earthquakes using low-frequency teleseismic data. We express the Fourier spectra of a synthetic point-source waveform in its exponential (Rytov) form and represent the observed waveform relative to the synthetic in terms two frequency-dependent differential times, a phase delay δ τ {p}(ω ) and an amplitude-reduction time δ τ {q}(ω ), which we measure using Gee and Jordan's [1992] isolation-filter technique. We numerically calculate the FMT partial derivatives in terms of second-order spatiotemporal gradients, which allows us to use 3D finite-difference seismograms as our isolation filters. We have applied our methodology to a set of small to medium-sized earthquakes in Southern California. The errors in anelastic structure introduced perturbations larger than the signal level caused by finite source effect. We have therefore employed a joint inversion technique that recovers the CMT parameters of the aftershocks, as well as the CMT and FMT parameters of the mainshock, under the assumption that the source finiteness of the aftershocks can be ignored. The joint system of equations relating the δ τ {p} and δ τ {q} data to the source parameters of the mainshock-aftershock cluster is denuisanced for path anomalies in both observables; this projection operation effectively corrects the mainshock data for path-related amplitude anomalies in a way similar to, but more flexible than, empirical Green function (EGF) techniques.
NASA Technical Reports Server (NTRS)
Horai, K.-I.
1981-01-01
A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
Ranasinghesagara, Janaka C.; Hayakawa, Carole K.; Davis, Mitchell A.; Dunn, Andrew K.; Potma, Eric O.; Venugopalan, Vasan
2014-01-01
We develop an efficient method for accurately calculating the electric field of tightly focused laser beams in the presence of specific configurations of microscopic scatterers. This Huygens–Fresnel wave-based electric field superposition (HF-WEFS) method computes the amplitude and phase of the scattered electric field in excellent agreement with finite difference time-domain (FDTD) solutions of Maxwell’s equations. Our HF-WEFS implementation is 2–4 orders of magnitude faster than the FDTD method and enables systematic investigations of the effects of scatterer size and configuration on the focal field. We demonstrate the power of the new HF-WEFS approach by mapping several metrics of focal field distortion as a function of scatterer position. This analysis shows that the maximum focal field distortion occurs for single scatterers placed below the focal plane with an offset from the optical axis. The HF-WEFS method represents an important first step toward the development of a computational model of laser-scanning microscopy of thick cellular/tissue specimens. PMID:25121440
Three-dimensional computation of laser cavity eigenmodes by the use of finite element analysis (FEA)
NASA Astrophysics Data System (ADS)
Altmann, Konrad; Pflaum, Christoph; Seider, David
2004-06-01
A new method for computing eigenmodes of a laser resonator by the use of finite element analysis (FEA) is presented. For this purpose, the scalar wave equation [Δ + k2]E(x,y,z) = 0 is transformed into a solvable 3D eigenvalue problem by separating out the propagation factor exp(-ikz) from the phasor amplitude E(x,y,z) of the time-harmonic electrical field. For standing wave resonators, the beam inside the cavity is represented by a two-wave ansatz. For cavities with parabolic optical elements the new approach has successfully been verified by the use of the Gaussian mode algorithm. For a DPSSL with a thermally lensing crystal inside the cavity the expected deviation between Gaussian approximation and numerical solution could be demonstrated clearly.
Resonance Extraction from the Finite Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doring, Michael; Molina Peralta, Raquel
2016-06-01
The spectrum of excited hadrons becomes accessible in simulations of Quantum Chromodynamics on the lattice. Extensions of Lüscher's method allow to address multi-channel scattering problems using moving frames or modified boundary conditions to obtain more eigenvalues in finite volume. As these are at different energies, interpolations are needed to relate different eigenvalues and to help determine the amplitude. Expanding the T- or the K-matrix locally provides a controlled scheme by removing the known non-analyticities of thresholds. This can be stabilized by using Chiral Perturbation Theory. Different examples to determine resonance pole parameters and to disentangle resonances from thresholds are dis-more » cussed, like the scalar meson f0(980) and the excited baryons N(1535)1/2^- and Lambda(1405)1/2^-.« less
NASA Astrophysics Data System (ADS)
Pattnaik, S. P.; Routray, T. R.; Viñas, X.; Basu, D. N.; Centelles, M.; Madhuri, K.; Behera, B.
2018-05-01
The characteristic physical properties of rotating neutron stars under the r-mode oscillation are evaluated using the finite-range simple effective interaction. Emphasis is given on examining the influence of the stiffness of both the symmetric and asymmetric parts of the nuclear equation of state on these properties. The amplitude of the r-mode at saturation is calculated using the data of particular neutron stars from the considerations of ‘spin equilibrium’ and ‘thermal equilibrium’. The upper limit of the r-mode saturation amplitude is found to lie in the range 10‑8–10‑6, in agreement with the predictions of earlier work.
Extracting observables from lattice data in the three-particle sector
NASA Astrophysics Data System (ADS)
Rusetsky, Akaki; Hammer, Hans-Werner; Pang, Jin-Yi
2018-03-01
The three-particle quantization condition is derived, using the particle-dimer picture in the non-relativistic effective field theory. The procedure for the extraction of various observables in the three-particle sector (the particle-dimer scattering amplitudes, breakup amplitudes, etc.) from the finite-volume lattice spectrum is discussed in detail. As an illustration of the general formalism, the expression for the finite-volume energy shift of the three-body bound-state in the unitary limit is re-derived. The role of the threebody force, which is essential for the renormalization, is highlighted, and the extension of the result beyond the unitary limit is studied. Comparison with other approaches, known in the literature, is carried out.
Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions
NASA Technical Reports Server (NTRS)
Nakagaki, M.; Atluri, S. N.
1978-01-01
Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorranian, Davoud; Sabetkar, Akbar
The nonlinear dust acoustic solitary waves in a dusty plasma with two nonthermal ion species at different temperatures is studied analytically. Using reductive perturbation method, the Kadomtsev-Petviashivili (KP) equation is derived, and the effects of nonthermal coefficient, ions temperature, and ions number density on the amplitude and width of soliton in dusty plasma are investigated. It is shown that the amplitude of solitary wave of KP equation diverges at critical points of plasma parameters. The modified KP equation is also derived, and from there, the soliton like solutions of modified KP equation with finite amplitude is extracted. Results show thatmore » generation of rarefactive or compressive solitary waves strongly depends on the number and temperature of nonthermal ions. Results of KP equation confirm that for different magnitudes of ions temperature (mass) and number density, mostly compressive solitary waves are generated in a dusty plasma. In this case, the amplitude of solitary wave is decreased, while the width of solitary waves is increased. According to the results of modified KP equation for some certain magnitudes of parameters, there is a condition for generation of an evanescent solitary wave in a dusty plasma.« less
Modelling the Time Dependence of Frequency Content of Long-period Volcanic Earthquakes
NASA Astrophysics Data System (ADS)
Jousset, P.; Neuberg, J. W.
2001-12-01
Broad-band seismic networks provide a powerfull tool for the observation and analysis of volcanic earthquakes. The amplitude spectrogram allows us to follow the frequency content of these signals with time. Observed amplitude spectrograms of long-period volcanic earthquakes display distinct spectral lines sometimes varying by several Hertz over time spans of minutes to hours. We first present several examples associated with various phases of volcanic activity at Soufrière Hills volcano, Montserrat. Then, we present and discuss two mechanisms to explain such frequency changes in the spectrograms: (i) change of physical properties within the magma and, (ii) change in the triggering frequency of repeated sources within the conduit. We use 2D and 3D finite-difference modelling methods to compute the propagation of seismic waves in simplified volcanic structures: (i) we model the gliding spectral lines by introducing continuously changing magma properties during the wavefield computation; (ii) we explore the resulting pressure distribution within the conduit and its potential role in triggering further events. We obtain constraints on both amplitude and time-scales for changes of magma properties that are required to model gliding lines in amplitude spectrograms.
Some finite terms from ladder diagrams in three and four loop maximal supergravity
NASA Astrophysics Data System (ADS)
Basu, Anirban
2015-10-01
We consider the finite part of the leading local interactions in the low energy expansion of the four graviton amplitude from the ladder skeleton diagrams in maximal supergravity on T 2, at three and four loops. At three loops, we express the {D}8{{R}}4 and {D}10{{R}}4 amplitudes as integrals over the moduli space of an underlying auxiliary geometry. These amplitudes are evaluated exactly for special values of the the moduli of the auxiliary geometry, where the integrand simplifies. We also perform a similar analysis for the {D}8{{R}}4 amplitude at four loops that arise from the ladder skeleton diagrams for a special value of a parameter in the moduli space of the auxiliary geometry. While the dependence of the amplitudes on the volume of the T 2 is very simple, the dependence on the complex structure of the T 2 is quite intricate. In some of the cases, the amplitude consists of terms each of which factorizes into a product of two {SL}(2,{{Z}}) invariant modular forms. While one of the factors is a non-holomorphic Eisenstein series, the other factor splits into a sum of modular forms each of which satisfies a Poisson equation on moduli space with source terms that are bilinear in the Eisenstein series. This leads to several possible perturbative contributions unto genus 5 in type II string theory on S1. Unlike the one and two loop supergravity analysis, these amplitudes also receive non-perturbative contributions from bound states of three D-(anti)instantons in the IIB theory.
NASA Astrophysics Data System (ADS)
Yoshida, Yuki; Kitamoto, Shunji; Hoshino, Akio
2017-11-01
The X-ray line diagnostic method is a powerful tool for an investigation of plasma around accretion-powered X-ray pulsars. We point out an apparent intensity modulation of emission lines, with their rotation period of neutron stars, due to the finite speed of light (we call this effect the “finite light speed effect”) if the line emission mechanism is a kind of reprocessing, such as fluorescence or recombination after ionization by X-ray irradiation from pulsars. The modulation amplitude is determined by the size of the emission region, which is in competition with the smearing effect by the light crossing time in the emission region. This is efficient if the size of the emission region is roughly comparable to that of the rotation period multiplied by the speed of light. We apply this effect to a symbiotic X-ray pulsar, GX 1+4, where a spin modulation of the intense iron line of which has been reported. The finite light speed effect can explain the observed intensity modulation if its fluorescent region is the size of ˜ {10}12 cm.
Reflection and Transmission of a Focused Finite Amplitude Sound Beam Incident on a Curved Interface
NASA Astrophysics Data System (ADS)
Makin, Inder Raj Singh
Reflection and transmission of a finite amplitude focused sound beam at a weakly curved interface separating two fluid-like media are investigated. The KZK parabolic wave equation, which accounts for thermoviscous absorption, diffraction, and nonlinearity, is used to describe the high intensity focused beam. The first part of the work deals with the quasilinear analysis of a weakly nonlinear beam after its reflection and transmission from a curved interface. A Green's function approach is used to define the field integrals describing the primary and the nonlinearly generated second harmonic beam. Closed-form solutions are obtained for the primary and second harmonic beams when a Gaussian amplitude distribution at the source is assumed. The second part of the research uses a numerical frequency domain solution of the KZK equation for a fully nonlinear analysis of the reflected and transmitted fields. Both piston and Gaussian sources are considered. Harmonic components generated in the medium due to propagation of the focused beam are evaluated, and formation of shocks in the reflected and transmitted beams is investigated. A finite amplitude focused beam is observed to be modified due to reflection and transmission from a curved interface in a manner distinct from that in the case of a small signal beam. Propagation curves, beam patterns, phase plots and time waveforms for various parameters defining the source and media pairs are presented, highlighting the effect of the interface curvature on the reflected and transmitted beams. Relevance of the current work to biomedical applications of ultrasound is discussed.
Spectral transfers and zonal flow dynamics in the generalized Charney-Hasegawa-Mima model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashmore-Davies, C.N.; Thyagaraja, A.; McCarthy, D.R.
2005-12-15
The mechanism of four nonlinearly interacting drift or Rossby waves is used as the basic process underlying the turbulent evolution of both the Charney-Hasegawa-Mima-equation (CHME) and its generalized modification (GCHME). Hasegawa and Kodama's concept of equivalent action (or quanta) is applied to the four-wave system and shown to control the distribution of energy and enstrophy between the modes. A numerical study of the GCHME is described in which the initial state contains a single finite-amplitude drift wave (the pump wave), and all the modulationally unstable modes are present at the same low level (10{sup -6} times the pump amplitude). Themore » simulation shows that at first the fastest-growing modulationally unstable modes dominate but reveals that at a later time, before pump depletion occurs, long- and short-wavelength modes, driven by pairs of fast-growing modes, grow at 2{gamma}{sub max}. The numerical simulation illustrates the development of a spectrum of turbulent modes from a finite-amplitude pump wave.« less
Modulational instability of finite-amplitude, circularly polarized Alfven waves
NASA Technical Reports Server (NTRS)
Derby, N. F., Jr.
1978-01-01
The simple theory of the decay instability of Alfven waves is strictly applicable only to a small-amplitude parent wave in a low-beta plasma, but, if the parent wave is circularly polarized, it is possible to analyze the situation without either of these restrictions. Results show that a large-amplitude circularly polarized wave is unstable with respect to decay into three waves, one longitudinal and one transverse wave propagating parallel to the parent wave and one transverse wave propagating antiparallel. The transverse decay products appear at frequencies which are the sum and difference of the frequencies of the parent wave and the longitudinal wave. The decay products are not familiar MHD modes except in the limit of small beta and small amplitude of the parent wave, in which case the decay products are a forward-propagating sound wave and a backward-propagating circularly polarized wave. In this limit the other transverse wave disappears. The effect of finite beta is to reduce the linear growth rate of the instability from the value suggested by the simple theory. Possible applications of these results to the theory of the solar wind are briefly touched upon.
Photonic crystal fiber-based plasmonic biosensor with external sensing approach
NASA Astrophysics Data System (ADS)
Rifat, Ahmmed A.; Hasan, Md. Rabiul; Ahmed, Rajib; Butt, Haider
2018-01-01
We propose a simple photonic crystal fiber (PCF) biosensor based on the surface plasmon resonance effect. The sensing properties are characterized using the finite element method. Chemically stable gold material is deposited on the outer surface of the PCF to realize the practical sensing approach. The performance of the modeled biosensor is investigated in terms of wavelength sensitivity, amplitude sensitivity, sensor resolution, and linearity of the resonant wavelength with the variation of structural parameters. In the sensing range of 1.33 to 1.37, maximum sensitivities of 4000 nm/RIU and 478 are achieved with the high sensor resolutions of 2.5×10-5 and 2.1×10-5 RIU using wavelength and amplitude interrogation methods, respectively. The designed biosensor will reduce fabrication complexity due to its simple and realistic hexagonal lattice structure. It is anticipated that the proposed biosensor may find possible applications for unknown biological and biochemical analyte detections with a high degree of accuracy.
Boundary-Layer Receptivity and Integrated Transition Prediction
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan; Choudhari, Meelan
2005-01-01
The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.
On the nonlinear stability of viscous modes within the Rayleigh problem on an infinite flat plate
NASA Technical Reports Server (NTRS)
Webb, J. C.; Otto, S. R.; Lilley, G. M.
1994-01-01
The stability has been investigated of the unsteady flow past an infinite flat plate when it is moved impulsively from rest, in its own plane. For small times the instantaneous stability of the flow depends on the linearized equations of motion which reduce in this problem to the Orr-Sommerfeld equation. It is known that the flow for certain values of Reynolds number, frequency and wave number is unstable to Tollmien-Schlichting waves, as in the case of the Blasius boundary layer flow past a flat plate. With increase in time, the unstable waves only undergo growth for a finite time interval, and this growth rate is itself a function of time. The influence of finite amplitude effects is studied by solving the full Navier-Stokes equations. It is found that the stability characteristics are markedly changed both by the consideration of the time evolution of the flow, and by the introduction of finite amplitude effects.
Martin, Heiner; Guthoff, Rudolf; Schmitz, Klaus-Peter
2011-09-01
Polymer injection into the capsular bag after phakoemulsification is an interesting and promising approach to lens surgery. Safe clinical application of this technique will require an appropriate estimate of the effect of implantation variables on the lens power. This article details the results of finite element investigations into the effects of the injected polymer volume and capsular bag contraction on the resultant lens power and accommodation amplitude. An axisymmetric finite element model was created from literature sources. Polymer injection and the capsular contraction were simulated, and their effect on the lens power was calculated. The simulations show that overfilling during polymer injection leads to a refractive power increase of the lens. Capsular bag contraction also results in a power increase. The calculated accommodative amplitude of the lens is minimally affected by capsular bag contraction but decreases significantly with increased capsular bag stiffness as a result of fibrosis. © 2010 The Authors. Journal compilation © 2010 Acta Ophthalmol.
A Theorem and its Application to Finite Tampers
DOE R&D Accomplishments Database
Feynman, R. P.
1946-08-15
A theorem is derived which is useful in the analysis of neutron problems in which all neutrons have the same velocity. It is applied to determine extrapolated end-points, the asymptotic amplitude from a point source, and the neutron density at the surface of a medium. Formulas fro the effect of finite tampers are derived by its aid, and their accuracy discussed.
Computation of rapidly varied unsteady, free-surface flow
Basco, D.R.
1987-01-01
Many unsteady flows in hydraulics occur with relatively large gradients in free surface profiles. The assumption of hydrostatic pressure distribution with depth is no longer valid. These are rapidly-varied unsteady flows (RVF) of classical hydraulics and also encompass short wave propagation of coastal hydraulics. The purpose of this report is to present an introductory review of the Boussinnesq-type differential equations that describe these flows and to discuss methods for their numerical integration. On variable slopes and for large scale (finite-amplitude) disturbances, three independent derivational methods all gave differences in the motion equation for higher order terms. The importance of these higher-order terms for riverine applications must be determined by numerical experiments. Care must be taken in selection of the appropriate finite-difference scheme to minimize truncation error effects and the possibility of diverging (double mode) numerical solutions. It is recommended that practical hydraulics cases be established and tested numerically to demonstrate the order of differences in solution with those obtained from the long wave equations of St. Venant. (USGS)
Non-dimensional groups in the description of finite-amplitude sound propagation through aerosols
NASA Technical Reports Server (NTRS)
Scott, D. S.
1976-01-01
Several parameters, which have fairly transparent physical interpretations, appear in the analytic description of finite-amplitude sound propagation through aerosols. Typically, each of these parameters characterizes, in some sense, either the sound or the aerosol. It also turns out that fairly obvious combinations of these parameters yield non-dimensional groups which, in turn, characterize the nature of the acoustic-aerosol interaction. This theme is developed in order to illustrate how a quick examination of such parameters and groups can yield information about the nature of the processes involved, without the necessity of extensive mathematical analysis. This concept is developed primarily from the viewpoint of sound propagation through aerosols, although complimentary acoustic-aerosol interaction phenomena are briefly noted.
NASA Astrophysics Data System (ADS)
Zhao, Xingqian; Xu, Wei; Shuai, Changgeng; Hu, Zechao
2017-12-01
A mechanical impedance model of a coupled motor-shaft-bearing system has been developed to predict the dynamic characteristics and partially validated by comparing the computing results with finite element method (FEM), including the comparison of displacement amplitude in x and z directions at the two ends of the flexible coupling, the comparison of normalized vertical reaction force in z direction at bearing pedestals. The results demonstrate that the developed model can precisely predict the dynamic characteristics and the main advantage of such a method is that it can clearly illustrate the vibration property of the motor subsystem, which plays an important role in the isolation system design.
Wave propagation in a random medium
NASA Technical Reports Server (NTRS)
Lee, R. W.; Harp, J. C.
1969-01-01
A simple technique is used to derive statistical characterizations of the perturbations imposed upon a wave (plane, spherical or beamed) propagating through a random medium. The method is essentially physical rather than mathematical, and is probably equivalent to the Rytov method. The limitations of the method are discussed in some detail; in general they are restrictive only for optical paths longer than a few hundred meters, and for paths at the lower microwave frequencies. Situations treated include arbitrary path geometries, finite transmitting and receiving apertures, and anisotropic media. Results include, in addition to the usual statistical quantities, time-lagged functions, mixed functions involving amplitude and phase fluctuations, angle-of-arrival covariances, frequency covariances, and other higher-order quantities.
Numerical solution of the Hele-Shaw equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, N.
1987-04-01
An algorithm is presented for approximating the motion of the interface between two immiscible fluids in a Hele-Shaw cell. The interface is represented by a set of volume fractions. We use the Simple Line Interface Calculation method along with the method of fractional steps to transport the interface. The equation of continuity leads to a Poisson equation for the pressure. The Poisson equation is discretized. Near the interface where the velocity field is discontinuous, the discretization is based on a weak formulation of the continuity equation. Interpolation is used on each side of the interface to increase the accuracy ofmore » the algorithm. The weak formulation as well as the interpolation are based on the computed volume fractions. This treatment of the interface is new. The discretized equations are solved by a modified conjugate gradient method. Surface tension is included and the curvature is computed through the use of osculating circles. For perturbations of small amplitude, a surprisingly good agreement is found between the numerical results and linearized perturbation theory. Numerical results are presented for the finite amplitude growth of unstable fingers. 62 refs., 13 figs.« less
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-04-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modeling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modeling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a preconditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
Time-domain least-squares migration using the Gaussian beam summation method
NASA Astrophysics Data System (ADS)
Yang, Jidong; Zhu, Hejun; McMechan, George; Yue, Yubo
2018-07-01
With a finite recording aperture, a limited source spectrum and unbalanced illumination, traditional imaging methods are insufficient to generate satisfactory depth profiles with high resolution and high amplitude fidelity. This is because traditional migration uses the adjoint operator of the forward modelling rather than the inverse operator. We propose a least-squares migration approach based on the time-domain Gaussian beam summation, which helps to balance subsurface illumination and improve image resolution. Based on the Born approximation for the isotropic acoustic wave equation, we derive a linear time-domain Gaussian beam modelling operator, which significantly reduces computational costs in comparison with the spectral method. Then, we formulate the corresponding adjoint Gaussian beam migration, as the gradient of an L2-norm waveform misfit function. An L1-norm regularization is introduced to the inversion to enhance the robustness of least-squares migration, and an approximated diagonal Hessian is used as a pre-conditioner to speed convergence. Synthetic and field data examples demonstrate that the proposed approach improves imaging resolution and amplitude fidelity in comparison with traditional Gaussian beam migration.
A Unique Self-Sensing, Self-Actuating AFM Probe at Higher Eigenmodes
Wu, Zhichao; Guo, Tong; Tao, Ran; Liu, Leihua; Chen, Jinping; Fu, Xing; Hu, Xiaotang
2015-01-01
With its unique structure, the Akiyama probe is a type of tuning fork atomic force microscope probe. The long, soft cantilever makes it possible to measure soft samples in tapping mode. In this article, some characteristics of the probe at its second eigenmode are revealed by use of finite element analysis (FEA) and experiments in a standard atmosphere. Although the signal-to-noise ratio in this environment is not good enough, the 2 nm resolution and 0.09 Hz/nm sensitivity prove that the Akiyama probe can be used at its second eigenmode under FM non-contact mode or low amplitude FM tapping mode, which means that it is easy to change the measuring method from normal tapping to small amplitude tapping or non-contact mode with the same probe and equipment. PMID:26580619
A nonlinear propagation model-based phase calibration technique for membrane hydrophones.
Cooling, Martin P; Humphrey, Victor F
2008-01-01
A technique for the phase calibration of membrane hydrophones in the frequency range up to 80 MHz is described. This is achieved by comparing measurements and numerical simulation of a nonlinearly distorted test field. The field prediction is obtained using a finite-difference model that solves the nonlinear Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation in the frequency domain. The measurements are made in the far field of a 3.5 MHz focusing circular transducer in which it is demonstrated that, for the high drive level used, spatial averaging effects due to the hydrophone's finite-receive area are negligible. The method provides a phase calibration of the hydrophone under test without the need for a device serving as a phase response reference, but it requires prior knowledge of the amplitude sensitivity at the fundamental frequency. The technique is demonstrated using a 50-microm thick bilaminar membrane hydrophone, for which the results obtained show functional agreement with predictions of a hydrophone response model. Further validation of the results is obtained by application of the response to the measurement of the high amplitude waveforms generated by a modern biomedical ultrasonic imaging system. It is demonstrated that full deconvolution of the calculated complex frequency response of a nonideal hydrophone results in physically realistic measurements of the transmitted waveforms.
NASA Technical Reports Server (NTRS)
Cantrell, J. H., Jr.; Winfree, W. P.
1980-01-01
The solution of the nonlinear differential equation which describes an initially sinusoidal finite-amplitude elastic wave propagating in a solid contains a static-displacement term in addition to the harmonic terms. The static-displacement amplitude is theoretically predicted to be proportional to the product of the squares of the driving-wave amplitude and the driving-wave frequency. The first experimental verification of the elastic-wave static displacement in a solid (the 111 direction of single-crystal germanium) is reported, and agreement is found with the theoretical predictions.
NASA Astrophysics Data System (ADS)
Riviere, J.; Roux, P.
2017-12-01
The use of seismic noise in seismology enables one to detect small velocity changes induced by earthquakes, earth tides or volcanic activity. In particular, co-seismic drops in velocity followed by a slow relaxation back (or partially back) to the original velocity have been observed across various tectonic regions. The co-seismic drop is typically attributed to the creation of damage within the fault zone, while the slow recovery is attributed to post-seismic healing processes. At the laboratory scale, a dynamic perturbation of strain amplitude as low as 10-6 in rocks also results in a transient elastic softening, followed by a log(t)-type relaxation back to the initial state once the perturbation is turned off. This suggests that radiated waves produced during unstable slip are partially responsible for the co-seismic velocity drops. The main objective of this work is to help interpret the elastic changes observed in the field and in particular to disentangle velocity drops that originate from damage creation along the slip surface from the ones produced during radiation of finite-amplitude waves. To do so, we use a technique called Dynamic Acousto-Elastic Testing that provides comprehensive details on the nonlinear elastic response of consolidated granular media (e.g. rocks), including tension/compression asymmetry, hysteretic behaviors as well as conditioning and relaxation effects. Such technique uses a pump-probe scheme where a high frequency, low amplitude wave probes the state of a sample that is dynamically disturbed by a low frequency, large amplitude pump wave. While previous work typically involved a single pair of probing transducers, here we use two dense arrays of ultrasonic transducers to image a sample of Westerly granite with a complex fracture. We apply double beamforming to disentangle complex arrivals and conduct ray-based and finite-frequency tomography using both travel time and amplitude information. By comparing images obtained before, during and after the pump wave disturbance, we are able to locate and characterize elastic changes within the sample. We discuss their locations with regard to low velocity/high attenuation zones and relate our observations to large-scale data.
Cement bond evaluation method in horizontal wells using segmented bond tool
NASA Astrophysics Data System (ADS)
Song, Ruolong; He, Li
2018-06-01
Most of the existing cement evaluation technologies suffer from tool eccentralization due to gravity in highly deviated wells and horizontal wells. This paper proposes a correction method to lessen the effects of tool eccentralization on evaluation results of cement bond using segmented bond tool, which has an omnidirectional sonic transmitter and eight segmented receivers evenly arranged around the tool 2 ft from the transmitter. Using 3-D finite difference parallel numerical simulation method, we investigate the logging responses of centred and eccentred segmented bond tool in a variety of bond conditions. From the numerical results, we find that the tool eccentricity and channel azimuth can be estimated from measured sector amplitude. The average of the sector amplitude when the tool is eccentred can be corrected to the one when the tool is centred. Then the corrected amplitude will be used to calculate the channel size. The proposed method is applied to both synthetic and field data. For synthetic data, it turns out that this method can estimate the tool eccentricity with small error and the bond map is improved after correction. For field data, the tool eccentricity has a good agreement with the measured well deviation angle. Though this method still suffers from the low accuracy of calculating channel azimuth, the credibility of corrected bond map is improved especially in horizontal wells. It gives us a choice to evaluate the bond condition for horizontal wells using existing logging tool. The numerical results in this paper can provide aids for understanding measurements of segmented tool in both vertical and horizontal wells.
A finite element model for tides and resonance along the north coast of British Columbia
NASA Astrophysics Data System (ADS)
Foreman, M. G. G.; Henry, R. F.; Walters, R. A.; Ballantyne, V. A.
1993-02-01
A finite element, barotropic, tidal model is developed for the north coast of British Columbia. The model is run with eight tidal constituents and the results are compared with the Flather (1987) finite difference model, and with extensive tide gauge and current meter observations. Although the tidal potential, Earth tide, and loading tide are included in the forcing, their inclusion is shown to change the largest M2 amplitudes by only 2.5% and the largest K1 amplitudes by less than 1%. Root mean square differences between observed and calculated sea level amplitudes and phases are within 1.9 cm and 2.9° for all but one constituent, but the model currents do not in general, compare as favourably. The barotropic currents observed in Hecate Strait are reproduced well, but elsewhere evidence is shown that model inaccuracies are due to baroclinic effects. Tidal residual currents calculated by the model suggest the existence of eddies off the tip of Cape St. James, Cape Chacon, and around Goose Island and Learmonth Banks. The shallow water constituents in Hecate Strait are shown to have significant contributions from the constructive interference of signals propagating into Dixon Entrance and Queen Charlotte Sound. Using the model, the longest resonant period of the system is estimated to be 7.6 hours with an energy dissipation parameter, Q, of 9.5.
Kvit, Anton A.; Devine, Erin E.; Vamos, Andrew C.; Tao, Chao; Jiang, Jack J.
2015-01-01
OBJECTIVE Vocal fold tissue is biphasic and consists of a solid extracellular matric skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. METHODS A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct-load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency and material parameters were chosen based on those reported in the literature. Post-processing included liquid velocity, pore pressure and von Mises stress calculations, as well as the frequency-stress and amplitude-stress relationships. RESULTS Resulting time-averaged velocity vectors during vibration indicated liquid movement towards the midline of the fold, as upwards movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just following vibration. A linear relationship was found between the amplitude and pore pressure, while a nonlinear relationship was found between the frequency and pore pressure. CONCLUSIONS While this study had certain computational simplifications, it is the first biphasic finite element model to employ a realistic geometry and demonstrated the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline, however the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. PMID:25619469
Large signal-to-noise ratio quantification in MLE for ARARMAX models
NASA Astrophysics Data System (ADS)
Zou, Yiqun; Tang, Xiafei
2014-06-01
It has been shown that closed-loop linear system identification by indirect method can be generally transferred to open-loop ARARMAX (AutoRegressive AutoRegressive Moving Average with eXogenous input) estimation. For such models, the gradient-related optimisation with large enough signal-to-noise ratio (SNR) can avoid the potential local convergence in maximum likelihood estimation. To ease the application of this condition, the threshold SNR needs to be quantified. In this paper, we build the amplitude coefficient which is an equivalence to the SNR and prove the finiteness of the threshold amplitude coefficient within the stability region. The quantification of threshold is achieved by the minimisation of an elaborately designed multi-variable cost function which unifies all the restrictions on the amplitude coefficient. The corresponding algorithm based on two sets of physically realisable system input-output data details the minimisation and also points out how to use the gradient-related method to estimate ARARMAX parameters when local minimum is present as the SNR is small. Then, the algorithm is tested on a theoretical AutoRegressive Moving Average with eXogenous input model for the derivation of the threshold and a gas turbine engine real system for model identification, respectively. Finally, the graphical validation of threshold on a two-dimensional plot is discussed.
Siauve, N; Nicolas, L; Vollaire, C; Marchal, C
2004-12-01
This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.
Propagation of Finite Amplitude Sound in Multiple Waveguide Modes.
NASA Astrophysics Data System (ADS)
van Doren, Thomas Walter
1993-01-01
This dissertation describes a theoretical and experimental investigation of the propagation of finite amplitude sound in multiple waveguide modes. Quasilinear analytical solutions of the full second order nonlinear wave equation, the Westervelt equation, and the KZK parabolic wave equation are obtained for the fundamental and second harmonic sound fields in a rectangular rigid-wall waveguide. It is shown that the Westervelt equation is an acceptable approximation of the full nonlinear wave equation for describing guided sound waves of finite amplitude. A system of first order equations based on both a modal and harmonic expansion of the Westervelt equation is developed for waveguides with locally reactive wall impedances. Fully nonlinear numerical solutions of the system of coupled equations are presented for waveguides formed by two parallel planes which are either both rigid, or one rigid and one pressure release. These numerical solutions are compared to finite -difference solutions of the KZK equation, and it is shown that solutions of the KZK equation are valid only at frequencies which are high compared to the cutoff frequencies of the most important modes of propagation (i.e., for which sound propagates at small grazing angles). Numerical solutions of both the Westervelt and KZK equations are compared to experiments performed in an air-filled, rigid-wall, rectangular waveguide. Solutions of the Westervelt equation are in good agreement with experiment for low source frequencies, at which sound propagates at large grazing angles, whereas solutions of the KZK equation are not valid for these cases. At higher frequencies, at which sound propagates at small grazing angles, agreement between numerical solutions of the Westervelt and KZK equations and experiment is only fair, because of problems in specifying the experimental source condition with sufficient accuracy.
Numerical simulation of boundary layers. Part 2: Ribbon-induced transition in Blasius flow
NASA Technical Reports Server (NTRS)
Spalart, P.; Yang, K. S.
1986-01-01
The early three-dimensional stages of transition in Blasius boundary layers are studied by numerical solution of the Navier-Stokes equations. A finite-amplitude two-dimensional wave and random low-amplitude three-dimensional disturbances are introduced. Rapid amplification of the three-dimensional components is observed and leads to transition. For intermediate amplitudes of the two-dimensional wave the breakdown is of subharmonic type, and the dominant spanwise wave number increases with the amplitude. For high amplitudes the energy of the fundamental mode is comparable to the energy of the subharmonic mode, but never dominates it; the breakdown is of mixed type. Visualizations, energy histories, and spectra are presented. The sensitivity of the results to various physical and numerical parameters is studied. Agreement with experimental and theoretical results is discussed.
Criticality of the low-frequency conductivity for the bilayer quantum Heisenberg model
NASA Astrophysics Data System (ADS)
Nishiyama, Yoshihiro
2018-04-01
The criticality of the low-frequency conductivity for the bilayer quantum Heisenberg model was investigated numerically. The dynamical conductivity (associated with the O(3) symmetry) displays the inductor σ( ω) = ( iωL)-1 and capacitor iωC behaviors for the ordered and disordered phases, respectively. Both constants, C and L, have the same scaling dimension as that of the reciprocal paramagnetic gap Δ -1. Then, there arose a question to fix the set of critical amplitude ratios among them. So far, the O(2) case has been investigated in the context of the boson-vortex duality. In this paper, we employ the exact diagonalization method, which enables us to calculate the paramagnetic gap Δ directly. Thereby, the set of critical amplitude ratios as to C, L and Δ are estimated with the finite-size-scaling analysis for the cluster with N ≤ 34 spins.
Cylindrical ion-acoustic solitary waves in electronegative plasmas with superthermal electrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eslami, Parvin; Mottaghizadeh, Marzieh
2012-06-15
By using the standard reductive perturbation technique, a three-dimensional cylindrical Kadomtsev-Petviashvili equation (CKPE), which governs the dynamics of ion acoustic solitary waves (IASWs), is derived for small but finite amplitude ion-acoustic waves in cylindrical geometry in a collisionless unmagnetized plasma with kappa distributed electrons, thermal positrons, and cold ions. The generalized expansion method is used to solve analytically the CKPE. The existence regions of localized pulses are investigated. It is found that the solution of the CKPE supports only compressive solitary waves. Furthermore, the effects of superthermal electrons, the ratio of the electron temperature to positron temperature, the ratio ofmore » the positron density to electron density and direction cosine of the wave propagation on the profiles of the amplitudes, and widths of the solitary structures are examined numerically. It is shown these parameters play a vital role in the formation of ion acoustic solitary waves.« less
NASA Astrophysics Data System (ADS)
Yu, Ming-Xiao; Tian, Bo; Chai, Jun; Yin, Hui-Min; Du, Zhong
2017-10-01
In this paper, we investigate a nonlinear fiber described by a (2+1)-dimensional complex Ginzburg-Landau equation with the chromatic dispersion, optical filtering, nonlinear and linear gain. Bäcklund transformation in the bilinear form is constructed. With the modified bilinear method, analytic soliton solutions are obtained. For the soliton, the amplitude can decrease or increase when the absolute value of the nonlinear or linear gain is enlarged, and the width can be compressed or amplified when the absolute value of the chromatic dispersion or optical filtering is enhanced. We study the stability of the numerical solutions numerically by applying the increasing amplitude, embedding the white noise and adding the Gaussian pulse to the initial values based on the analytic solutions, which shows that the numerical solutions are stable, not influenced by the finite initial perturbations.
Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qingbang, Han; Ling, Chen; Changping, Zhu
2014-02-18
The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain,more » the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.« less
NASA Astrophysics Data System (ADS)
Xu, Xueping; Han, Qinkai; Chu, Fulei
2018-03-01
The electromagnetic vibration of electrical machines with an eccentric rotor has been extensively investigated. However, magnetic saturation was often neglected. Moreover, the rub impact between the rotor and stator is inevitable when the amplitude of the rotor vibration exceeds the air-gap. This paper aims to propose a general electromagnetic excitation model for electrical machines. First, a general model which takes the magnetic saturation and rub impact into consideration is proposed and validated by the finite element method and reference. The dynamic equations of a Jeffcott rotor system with electromagnetic excitation and mass imbalance are presented. Then, the effects of pole-pair number and rubbing parameters on vibration amplitude are studied and approaches restraining the amplitude are put forward. Finally, the influences of mass eccentricity, resultant magnetomotive force (MMF), stiffness coefficient, damping coefficient, contact stiffness and friction coefficient on the stability of the rotor system are investigated through the Floquet theory, respectively. The amplitude jumping phenomenon is observed in a synchronous generator for different pole-pair numbers. The changes of design parameters can alter the stability states of the rotor system and the range of parameter values forms the zone of stability, which lays helpful suggestions for the design and application of the electrical machines.
Simulation of miniature endplate potentials in neuromuscular junctions by using a cellular automaton
NASA Astrophysics Data System (ADS)
Avella, Oscar Javier; Muñoz, José Daniel; Fayad, Ramón
2008-01-01
Miniature endplate potentials are recorded in the neuromuscular junction when the acetylcholine contents of one or a few synaptic vesicles are spontaneously released into the synaptic cleft. Since their discovery by Fatt and Katz in 1952, they have been among the paradigms in neuroscience. Those potentials are usually simulated by means of numerical approaches, such as Brownian dynamics, finite differences and finite element methods. Hereby we propose that diffusion cellular automata can be a useful alternative for investigating them. To illustrate this point, we simulate a miniature endplate potential by using experimental parameters. Our model reproduces the potential shape, amplitude and time course. Since our automaton is able to track the history and interactions of each single particle, it is very easy to introduce non-linear effects with little computational effort. This makes cellular automata excellent candidates for simulating biological reaction-diffusion processes, where no other external forces are involved.
NASA Astrophysics Data System (ADS)
Wang, Tao; Huang, Peng; Zhou, Yingming; Liu, Weiqi; Zeng, Guihua
2018-01-01
In a practical continuous-variable quantum key distribution (CVQKD) system, real-time shot-noise measurement (RTSNM) is an essential procedure for preventing the eavesdropper exploiting the practical security loopholes. However, the performance of this procedure itself is not analyzed under the real-world condition. Therefore, we indicate the RTSNM practical performance and investigate its effects on the CVQKD system. In particular, due to the finite-size effect, the shot-noise measurement at the receiver's side may decrease the precision of parameter estimation and consequently result in a tight security bound. To mitigate that, we optimize the block size for RTSNM under the ensemble size limitation to maximize the secure key rate. Moreover, the effect of finite dynamics of amplitude modulator in this scheme is studied and its mitigation method is also proposed. Our work indicates the practical performance of RTSNM and provides the real secret key rate under it.
NASA Astrophysics Data System (ADS)
Li, Zhong-sheng; Bai, Chao-ying; Sun, Yao-chong
2013-08-01
In this paper, we use the staggered grid, the auxiliary grid, the rotated staggered grid and the non-staggered grid finite-difference methods to simulate the wavefield propagation in 2D elastic tilted transversely isotropic (TTI) and viscoelastic TTI media, respectively. Under the stability conditions, we choose different spatial and temporal intervals to get wavefront snapshots and synthetic seismograms to compare the four algorithms in terms of computational accuracy, CPU time, phase shift, frequency dispersion and amplitude preservation. The numerical results show that: (1) the rotated staggered grid scheme has the least memory cost and the fastest running speed; (2) the non-staggered grid scheme has the highest computational accuracy and least phase shift; (3) the staggered grid has less frequency dispersion even when the spatial interval becomes larger.
NASA Astrophysics Data System (ADS)
Lyubimova, T. P.; Zubova, N. A.
2017-06-01
This paper presents the results of numerical simulation of the Soret-induced convection of ternary mixture in the rectangular cavity elongated in horizontal direction in gravity field. The cavity has rigid impermeable boundaries. It is heated from the bellow and undergoes translational linearly polarized vibrations of finite amplitude and frequency in the horizontal direction. The problem is solved by finite difference method in the framework of full unsteady non-linear approach. The procedure of diagonalization of the molecular diffusion coefficient matrix is applied, allowing to eliminate cross-diffusion components in the equations and to reduce the number of the governing parameters. The calculations are performed for model ternary mixture with positive separation ratios of the components. The data on the vibration effect on temporal evolution of instantaneous and average fields and integral characteristics of the flow and heat and mass transfer at different levels of gravity are obtained.
NASA Astrophysics Data System (ADS)
Regnier, D.; Dubray, N.; Verrière, M.; Schunck, N.
2018-04-01
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this paper, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different types of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank-Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. We emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).
Design of PCB search coils for AC magnetic flux density measurement
NASA Astrophysics Data System (ADS)
Ulvr, Michal
2018-04-01
This paper presents single-layer, double-layer and ten-layer planar square search coils designed for AC magnetic flux density amplitude measurement up to 1 T in the low frequency range in a 10 mm air gap. The printed-circuit-board (PCB) method was used for producing the search coils. Special attention is given to a full characterization of the PCB search coils including a comparison between the detailed analytical design method and the finite integration technique method (FIT) on the one hand, and experimental results on the other. The results show very good agreement in the resistance, inductance and search coil constant values (the area turns) and also in the frequency dependence of the search coil constant.
Zhu, Meiling; Worthington, Emma; Njuguna, James
2009-07-01
This paper presents, for the first time, a coupled piezoelectric-circuit finite element model (CPC-FEM) to analyze the power output of a vibration-based piezoelectric energy-harvesting device (EHD) when it is connected to a load resistor. Special focus is given to the effect of the load resistor value on the vibrational amplitude of the piezoelectric EHD, and thus on the current, voltage, and power generated by the device, which are normally assumed to be independent of the load resistor value to reduce the complexity of modeling and simulation. The presented CPC-FEM uses a cantilever with a sandwich structure and a seismic mass attached to the tip to study the following characteristics of the EHD as a result of changing the load resistor value: 1) the electric outputs: the current through and voltage across the load resistor; 2) the power dissipated by the load resistor; 3) the displacement amplitude of the tip of the cantilever; and 4) the shift in the resonant frequency of the device. It is found that these characteristics of the EHD have a significant dependence on the load resistor value, rather than being independent of it as is assumed in most literature. The CPC-FEM is capable of predicting the generated output power of the EHD with different load resistor values while simultaneously calculating the effect of the load resistor value on the displacement amplitude of the tip of the cantilever. This makes the CPC-FEM invaluable for validating the performance of a designed EHD before it is fabricated and tested, thereby reducing the recurring costs associated with repeat fabrication and trials. In addition, the proposed CPC-FEM can also be used for producing an optimized design for maximum power output.
Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions
NASA Astrophysics Data System (ADS)
Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin
2017-06-01
We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.
A FEM-based method to determine the complex material properties of piezoelectric disks.
Pérez, N; Carbonari, R C; Andrade, M A B; Buiochi, F; Adamowski, J C
2014-08-01
Numerical simulations allow modeling piezoelectric devices and ultrasonic transducers. However, the accuracy in the results is limited by the precise knowledge of the elastic, dielectric and piezoelectric properties of the piezoelectric material. To introduce the energy losses, these properties can be represented by complex numbers, where the real part of the model essentially determines the resonance frequencies and the imaginary part determines the amplitude of each resonant mode. In this work, a method based on the Finite Element Method (FEM) is modified to obtain the imaginary material properties of piezoelectric disks. The material properties are determined from the electrical impedance curve of the disk, which is measured by an impedance analyzer. The method consists in obtaining the material properties that minimize the error between experimental and numerical impedance curves over a wide range of frequencies. The proposed methodology starts with a sensitivity analysis of each parameter, determining the influence of each parameter over a set of resonant modes. Sensitivity results are used to implement a preliminary algorithm approaching the solution in order to avoid the search to be trapped into a local minimum. The method is applied to determine the material properties of a Pz27 disk sample from Ferroperm. The obtained properties are used to calculate the electrical impedance curve of the disk with a Finite Element algorithm, which is compared with the experimental electrical impedance curve. Additionally, the results were validated by comparing the numerical displacement profile with the displacements measured by a laser Doppler vibrometer. The comparison between the numerical and experimental results shows excellent agreement for both electrical impedance curve and for the displacement profile over the disk surface. The agreement between numerical and experimental displacement profiles shows that, although only the electrical impedance curve is considered in the adjustment procedure, the obtained material properties allow simulating the displacement amplitude accurately. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hui, W. H.
1985-01-01
Bifurcation theory is used to analyze the nonlinear dynamic stability characteristics of an aircraft subject to single-degree-of-freedom. The requisite moment of the aerodynamic forces in the equations of motion is shown to be representable in a form equivalent to the response to finite amplitude oscillations. It is shown how this information can be deduced from the case of infinitesimal-amplitude oscillations. The bifurcation theory analysis reveals that when the bifurcation parameter is increased beyond a critical value at which the aerodynamic damping vanishes, new solutions representing finite amplitude periodic motions bifurcate from the previously stable steady motion. The sign of a simple criterion, cast in terms of aerodynamic properties, determines whether the bifurcating solutions are stable or unstable. For the pitching motion of flat-plate airfoils flying at supersonic/hypersonic speed and for oscillation of flaps at transonic speed, the bifurcation is subcritical, implying either the exchanges of stability between steady and periodic motion are accompanied by hysteresis phenomena, or that potentially large aperiodic departures from steady motion may develop.
Multichannel 0 → 2 and 1 → 2 transition amplitudes for arbitrary spin particles in a finite volume
Hansen, Maxwell; Briceno, Raul
2015-10-01
We present a model-independent, non-perturbative relation between finite-volume matrix elements and infinite-volumemore » $$\\textbf{0}\\rightarrow\\textbf{2}$$ and $$\\textbf{1}\\rightarrow\\textbf{2}$$ transition amplitudes. Our result accommodates theories in which the final two-particle state is coupled to any number of other two-body channels, with all angular momentum states included. The derivation uses generic, fully relativistic field theory, and is exact up to exponentially suppressed corrections in the lightest particle mass times the box size. This work distinguishes itself from previous studies by accommodating particles with any intrinsic spin. To illustrate the utility of our general result, we discuss how it can be implemented for studies of $$N+\\mathcal{J}~\\rightarrow~(N\\pi,N\\eta,N\\eta',\\Sigma K,\\Lambda K)$$ transitions, where $$\\mathcal{J}$$ is a generic external current. The reduction of rotational symmetry, due to the cubic finite volume, manifests in this example through the mixing of S- and P-waves when the system has nonzero total momentum.« less
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Streett, Craig L.; Chang, Chau-Lyan
1992-01-01
Spatially evolving instabilities in a boundary layer on a flat plate are computed by direct numerical simulation (DNS) of the incompressible Navier-Stokes equations. In a truncated physical domain, a nonstaggered mesh is used for the grid. A Chebyshev-collocation method is used normal to the wall; finite difference and compact difference methods are used in the streamwise direction; and a Fourier series is used in the spanwise direction. For time stepping, implicit Crank-Nicolson and explicit Runge-Kutta schemes are used to the time-splitting method. The influence-matrix technique is used to solve the pressure equation. At the outflow boundary, the buffer-domain technique is used to prevent convective wave reflection or upstream propagation of information from the boundary. Results of the DNS are compared with those from both linear stability theory (LST) and parabolized stability equation (PSE) theory. Computed disturbance amplitudes and phases are in very good agreement with those of LST (for small inflow disturbance amplitudes). A measure of the sensitivity of the inflow condition is demonstrated with both LST and PSE theory used to approximate inflows. Although the DNS numerics are very different than those of PSE theory, the results are in good agreement. A small discrepancy in the results that does occur is likely a result of the variation in PSE boundary condition treatment in the far field. Finally, a small-amplitude wave triad is forced at the inflow, and simulation results are compared with those of LST. Again, very good agreement is found between DNS and LST results for the 3-D simulations, the implication being that the disturbance amplitudes are sufficiently small that nonlinear interactions are negligible.
Wang, L; Rokhlin, S I
2002-09-01
An inversion method based on Floquet wave velocity in a periodic medium has been introduced to determine the single ply elastic moduli of a multi-ply composite. The stability of this algorithm is demonstrated by numerical simulation. The applicability of the plane wave approximation to the velocity measurement in the double-through-transmission self-reference method has been analyzed using a time-domain beam model. It shows that the finite width of the transmitter affects only the amplitudes of the signals and has almost no effect on the time delay. Using this method, the ply moduli for a multiply composite have been experimentally determined. While the paper focuses on elastic constant reconstruction from phase velocity measurements by the self-reference double-through-transmission method, the reconstruction methodology is also applicable to assessment of data collected by other methods.
Inverse axial mounting stiffness design for lithographic projection lenses.
Wen-quan, Yuan; Hong-bo, Shang; Wei, Zhang
2014-09-01
In order to balance axial mounting stiffness of lithographic projection lenses and the image quality under dynamic working conditions, an easy inverse axial mounting stiffness design method is developed in this article. Imaging quality deterioration at the wafer under different axial vibration levels is analyzed. The desired image quality can be determined according to practical requirements, and axial vibrational tolerance of each lens is solved with the damped least-squares method. Based on adaptive interval adjustment, a binary search algorithm, and the finite element method, the axial mounting stiffness of each lens can be traveled in a large interval, and converges to a moderate numerical solution which makes the axial vibrational amplitude of the lens converge to its axial vibrational tolerance. Model simulation is carried out to validate the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Fernandez, L.; Toffoli, A.; Monbaliu, J.
2012-04-01
In deep water, the dynamics of surface gravity waves is dominated by the instability of wave packets to side band perturbations. This mechanism, which is a nonlinear third order in wave steepness effect, can lead to a particularly strong focusing of wave energy, which in turn results in the formation of waves of very large amplitude also known as freak or rogue waves [1]. In finite water depth, however, the interaction between waves and the ocean floor induces a mean current. This subtracts energy from wave instability and causes it to cease for relative water depth , where k is the wavenumber and h the water depth [2]. Yet, this contradicts field observations of extreme waves such as the infamous 26-m "New Year" wave that have mainly been recorded in regions of relatively shallow water . In this respect, recent studies [3] seem to suggest that higher order nonlinearity in water of finite depth may sustain instability. In order to assess the role of higher order nonlinearity in water of finite and shallow depth, here we use a Higher Order Spectral Method [4] to simulate the evolution of surface gravity waves according to the Euler equations of motion. This method is based on an expansion of the vertical velocity about the surface elevation under the assumption of weak nonlinearity and has a great advantage of allowing the activation or deactivation of different orders of nonlinearity. The model is constructed to deal with an arbitrary order of nonlinearity and water depths so that finite and shallow water regimes can be analyzed. Several wave configurations are considered with oblique and collinear with the primary waves disturbances and different water depths. The analysis confirms that nonlinearity higher than third order play a substantial role in the destabilization of a primary wave train and subsequent growth of side band perturbations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akhil Datta-Gupta
2006-12-31
We explore the use of efficient streamline-based simulation approaches for modeling partitioning interwell tracer tests in hydrocarbon reservoirs. Specifically, we utilize the unique features of streamline models to develop an efficient approach for interpretation and history matching of field tracer response. A critical aspect here is the underdetermined and highly ill-posed nature of the associated inverse problems. We have investigated the relative merits of the traditional history matching ('amplitude inversion') and a novel travel time inversion in terms of robustness of the method and convergence behavior of the solution. We show that the traditional amplitude inversion is orders of magnitudemore » more non-linear and the solution here is likely to get trapped in local minimum, leading to inadequate history match. The proposed travel time inversion is shown to be extremely efficient and robust for practical field applications. The streamline approach is generalized to model water injection in naturally fractured reservoirs through the use of a dual media approach. The fractures and matrix are treated as separate continua that are connected through a transfer function, as in conventional finite difference simulators for modeling fractured systems. A detailed comparison with a commercial finite difference simulator shows very good agreement. Furthermore, an examination of the scaling behavior of the computation time indicates that the streamline approach is likely to result in significant savings for large-scale field applications. We also propose a novel approach to history matching finite-difference models that combines the advantage of the streamline models with the versatility of finite-difference simulation. In our approach, we utilize the streamline-derived sensitivities to facilitate history matching during finite-difference simulation. The use of finite-difference model allows us to account for detailed process physics and compressibility effects. The approach is very fast and avoids much of the subjective judgments and time-consuming trial-and-errors associated with manual history matching. We demonstrate the power and utility of our approach using a synthetic example and two field examples. We have also explored the use of a finite difference reservoir simulator, UTCHEM, for field-scale design and optimization of partitioning interwell tracer tests. The finite-difference model allows us to include detailed physics associated with reactive tracer transport, particularly those related with transverse and cross-streamline mechanisms. We have investigated the potential use of downhole tracer samplers and also the use of natural tracers for the design of partitioning tracer tests. Finally, we discuss several alternative ways of using partitioning interwell tracer tests (PITTs) in oil fields for the calculation of oil saturation, swept pore volume and sweep efficiency, and assess the accuracy of such tests under a variety of reservoir conditions.« less
Formation of Large-Amplitude Wave Groups in an Experimental Model Basin
2008-08-01
varying parameters, including amplitude, frequency, and signal duration. Superposition of thes finite regular waves produced repeatable wave groups at a...19 Regular Waves 20 Irregular Waves 21 Senix Wave Gages 21 GLRP 23 Instrumentation Calibration and Uncertainty 26 Senix Ultrasonic Wave Gages... signal output from sine wave superposition, two sine waves combined: x] + x2 (top) and x3 + x4 (middle), all four waves (x, + x2 + x, + xA
FINITE ELEMENT MODEL FOR TIDES AND CURRENTS WITH FIELD APPLICATIONS.
Walters, Roy A.
1988-01-01
A finite element model, based upon the shallow water equations, is used to calculate tidal amplitudes and currents for two field-scale test problems. Because tides are characterized by line spectra, the governing equations are subjected to harmonic decomposition. Thus the solution variables are the real and imaginary parts of the amplitude of sea level and velocity rather than a time series of these variables. The time series is recovered through synthesis. This scheme, coupled with a modified form of the governing equations, leads to high computational efficiency and freedom from excessive numerical noise. Two test-cases are presented. The first is a solution for eleven tidal constituents in the English Channel and southern North Sea, and three constituents are discussed. The second is an analysis of the frequency response and tidal harmonics for south San Francisco Bay.
Statistical mechanics of self-driven Carnot cycles.
Smith, E
1999-10-01
The spontaneous generation and finite-amplitude saturation of sound, in a traveling-wave thermoacoustic engine, are derived as properties of a second-order phase transition. It has previously been argued that this dynamical phase transition, called "onset," has an equivalent equilibrium representation, but the saturation mechanism and scaling were not computed. In this work, the sound modes implementing the engine cycle are coarse-grained and statistically averaged, in a partition function derived from microscopic dynamics on criteria of scale invariance. Self-amplification performed by the engine cycle is introduced through higher-order modal interactions. Stationary points and fluctuations of the resulting phenomenological Lagrangian are analyzed and related to background dynamical currents. The scaling of the stable sound amplitude near the critical point is derived and shown to arise universally from the interaction of finite-temperature disorder, with the order induced by self-amplification.
Amplitude effects on the dynamic performance of a hydrostatic gas thrust bearing
NASA Technical Reports Server (NTRS)
Stiffler, A. K.; Tapia, R. R.
1975-01-01
The Reynolds' equation is applied to a strip gas thrust bearing to analyze amplitude disturbance effects on its dynamic performance. The Reynolds' equation is numerically approximated using finite difference techniques. The time dependent load carrying capacity is represented by a Fourier series up to and including the third harmonics. Design curves for the load capacity and the linear stiffness and damping are presented as a function of inlet location, restrictor coefficient, supply pressure, amplitude of oscillation, and squeeze number. For the range of amplitudes investigated the dimensionless load capacity, stiffness and damping does not exhibit an appreciable change in magnitude; thus, only one design curve is needed to represent each relationship. A design methodology is presented.
A New Method for Calculating Counts in Cells
NASA Astrophysics Data System (ADS)
Szapudi, István
1998-04-01
In the near future, a new generation of CCD-based galaxy surveys will enable high-precision determination of the N-point correlation functions. The resulting information will help to resolve the ambiguities associated with two-point correlation functions, thus constraining theories of structure formation, biasing, and Gaussianity of initial conditions independently of the value of Ω. As one of the most successful methods of extracting the amplitude of higher order correlations is based on measuring the distribution of counts in cells, this work presents an advanced way of measuring it with unprecedented accuracy. Szapudi & Colombi identified the main sources of theoretical errors in extracting counts in cells from galaxy catalogs. One of these sources, termed as measurement error, stems from the fact that conventional methods use a finite number of sampling cells to estimate counts in cells. This effect can be circumvented by using an infinite number of cells. This paper presents an algorithm, which in practice achieves this goal; that is, it is equivalent to throwing an infinite number of sampling cells in finite time. The errors associated with sampling cells are completely eliminated by this procedure, which will be essential for the accurate analysis of future surveys.
Vibration analysis of angle-ply laminated composite plates with an embedded piezoceramic layer.
Lin, Hsien-Yang; Huang, Jin-Hung; Ma, Chien-Ching
2003-09-01
An optical full-field technique, called amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI), is used in this study to investigate the force-induced transverse vibration of an angle-ply laminated composite embedded with a piezoceramic layer (piezolaminated plates). The piezolaminated plates are excited by applying time-harmonic voltages to the embedded piezoceramic layer. Because clear fringe patterns will appear only at resonant frequencies, both the resonant frequencies and mode shapes of the vibrating piezolaminated plates with five different fiber orientation angles are obtained by the proposed AF-ESPI method. A laser Doppler vibrometer (LDV) system that has the advantage of high resolution and broad dynamic range also is applied to measure the frequency response of piezolaminated plates. In addition to the two proposed optical techniques, numerical computations based on a commercial finite element package are presented for comparison with the experimental results. Three different numerical formulations are used to evaluate the vibration characteristics of piezolaminated plates. Good agreements of the measured data by the optical method and the numerical results predicted by the finite element method (FEM) demonstrate that the proposed methodology in this study is a powerful tool for the vibration analysis of piezolaminated plates.
Finite-time fault tolerant attitude stabilization control for rigid spacecraft.
Huo, Xing; Hu, Qinglei; Xiao, Bing
2014-03-01
A sliding mode based finite-time control scheme is presented to address the problem of attitude stabilization for rigid spacecraft in the presence of actuator fault and external disturbances. More specifically, a nonlinear observer is first proposed to reconstruct the amplitude of actuator faults and external disturbances. It is proved that precise reconstruction with zero observer error is achieved in finite time. Then, together with the system states, the reconstructed information is used to synthesize a nonsingular terminal sliding mode attitude controller. The attitude and the angular velocity are asymptotically governed to zero with finite-time convergence. A numerical example is presented to demonstrate the effectiveness of the proposed scheme. © 2013 Published by ISA on behalf of ISA.
NASA Astrophysics Data System (ADS)
Parvasi, Seyed Mohammad; Ho, Siu Chun Michael; Kong, Qingzhao; Mousavi, Reza; Song, Gangbing
2016-08-01
Bolted joints are ubiquitous structural elements, and form critical connections in mechanical and civil structures. As such, loosened bolted joints may lead to catastrophic failures of these structures, thus inspiring a growing interest in monitoring of bolted joints. A novel energy based wave method is proposed in this study to monitor the axial load of bolted joint connections. In this method, the time reversal technique was used to focus the energy of a piezoelectric (PZT)-generated ultrasound wave from one side of the interface to be measured as a signal peak by another PZT transducer on the other side of the interface. A tightness index (TI) was defined and used to correlate the peak amplitude to the bolt axial load. The TI bypasses the need for more complex signal processing required in other energy-based methods. A coupled, electro-mechanical analysis with elasto-plastic finite element method was used to simulate and analyze the PZT based ultrasonic wave propagation through the interface of two steel plates connected by a single nut and bolt connection. Numerical results, backed by experimental results from testing on a bolted connection between two steel plates, revealed that the peak amplitude of the focused signal increases as the bolt preload (torque level) increases due to the enlarging true contact area of the steel plates. The amplitude of the focused peak saturates and the TI reaches unity as the bolt axial load reaches a threshold value. These conditions are associated with the maximum possible true contact area between the surfaces of the bolted connection.
Radiation pattern of a borehole radar antenna
Ellefsen, K.J.; Wright, D.L.
2002-01-01
To understand better how a borehole antenna radiates radar waves into a formation, this phenomenon is simulated numerically using the finite-difference, time-domain method. The simulations are of two different antenna models that include features like a driving point fed by a coaxial cable, resistive loading of the antenna, and a water-filled borehole. For each model, traces are calculated in the far-field region, and then, from these traces, radiation patterns are calculated. The radiation patterns show that the amplitude of the radar wave is strongly affected by its frequency, its propagation direction, and the resistive loading of the antenna.
An RF phased array applicator designed for hyperthermia breast cancer treatments
Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V
2007-01-01
An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427
Lee, Won Hee; Lisanby, Sarah H; Laine, Andrew F; Peterchev, Angel V
2013-01-01
This study examines the characteristics of the electric field induced in the brain by electroconvulsive therapy (ECT) with individualized current amplitude. The electric field induced by bilateral (BL), bifrontal (BF), right unilateral (RUL), and frontomedial (FM) ECT electrode configurations was computed in anatomically realistic finite element models of four nonhuman primates (NHPs). We generated maps of the electric field strength relative to an empirical neural activation threshold, and determined the stimulation strength and focality at fixed current amplitude and at individualized current amplitudes corresponding to seizure threshold (ST) measured in the anesthetized NHPs. The results show less variation in brain volume stimulated above threshold with individualized current amplitudes (16-36%) compared to fixed current amplitude (30-62%). Further, the stimulated brain volume at amplitude-titrated ST is substantially lower than that for ECT with conventional fixed current amplitudes. Thus individualizing the ECT stimulus current could compensate for individual anatomical variability and result in more focal and uniform electric field exposure across different subjects compared to the standard clinical practice of using high, fixed current for all patients.
Passive Super-Low Frequency electromagnetic prospecting technique
NASA Astrophysics Data System (ADS)
Wang, Nan; Zhao, Shanshan; Hui, Jian; Qin, Qiming
2017-03-01
The Super-Low Frequency (SLF) electromagnetic prospecting technique, adopted as a non-imaging remote sensing tool for depth sounding, is systematically proposed for subsurface geological survey. In this paper, we propose and theoretically illustrate natural source magnetic amplitudes as SLF responses for the first step. In order to directly calculate multi-dimensional theoretical SLF responses, modeling algorithms were developed and evaluated using the finite difference method. The theoretical results of three-dimensional (3-D) models show that the average normalized SLF magnetic amplitude responses were numerically stable and appropriate for practical interpretation. To explore the depth resolution, three-layer models were configured. The modeling results prove that the SLF technique is more sensitive to conductive objective layers than high resistive ones, with the SLF responses of conductive objective layers obviously showing uprising amplitudes in the low frequency range. Afterwards, we proposed an improved Frequency-Depth transformation based on Bostick inversion to realize the depth sounding by empirically adjusting two parameters. The SLF technique has already been successfully applied in geothermal exploration and coalbed methane (CBM) reservoir interpretation, which demonstrates that the proposed methodology is effective in revealing low resistive distributions. Furthermore, it siginificantly contributes to reservoir identification with electromagnetic radiation anomaly extraction. Meanwhile, the SLF interpretation results are in accordance with dynamic production status of CBM reservoirs, which means it could provide an economical, convenient and promising method for exploring and monitoring subsurface geo-objects.
Resonances in Coupled π K - η K Scattering from Quantum Chromodynamics
Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.; ...
2014-10-01
Using first-principles calculation within Quantum Chromodynamics, we are able to reproduce the pattern of experimental strange resonances which appear as complex singularities within coupled πK, ηK scattering amplitudes. We make use of numerical computation within the lattice discretized approach to QCD, extracting the energy dependence of scattering amplitudes through their relation- ship to the discrete spectrum of the theory in a finite-volume, which we map out in unprecedented detail.
Elastic-plastic analysis of a propagating crack under cyclic loading
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Armen, H., Jr.
1974-01-01
Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.
NASA Astrophysics Data System (ADS)
Godinez, H. C.; Rougier, E.; Osthus, D.; Srinivasan, G.
2017-12-01
Fracture propagation play a key role for a number of application of interest to the scientific community. From dynamic fracture processes like spall and fragmentation in metals and detection of gas flow in static fractures in rock and the subsurface, the dynamics of fracture propagation is important to various engineering and scientific disciplines. In this work we implement a global sensitivity analysis test to the Hybrid Optimization Software Suite (HOSS), a multi-physics software tool based on the combined finite-discrete element method, that is used to describe material deformation and failure (i.e., fracture and fragmentation) under a number of user-prescribed boundary conditions. We explore the sensitivity of HOSS for various model parameters that influence how fracture are propagated through a material of interest. The parameters control the softening curve that the model relies to determine fractures within each element in the mesh, as well a other internal parameters which influence fracture behavior. The sensitivity method we apply is the Fourier Amplitude Sensitivity Test (FAST), which is a global sensitivity method to explore how each parameter influence the model fracture and to determine the key model parameters that have the most impact on the model. We present several sensitivity experiments for different combination of model parameters and compare against experimental data for verification.
Nonlinear synthesis of infrasound propagation through an inhomogeneous, absorbing atmosphere.
de Groot-Hedlin, C D
2012-08-01
An accurate and efficient method to predict infrasound amplitudes from large explosions in the atmosphere is required for diverse source types, including bolides, volcanic eruptions, and nuclear and chemical explosions. A finite-difference, time-domain approach is developed to solve a set of nonlinear fluid dynamic equations for total pressure, temperature, and density fields rather than acoustic perturbations. Three key features for the purpose of synthesizing nonlinear infrasound propagation in realistic media are that it includes gravitational terms, it allows for acoustic absorption, including molecular vibration losses at frequencies well below the molecular vibration frequencies, and the environmental models are constrained to have axial symmetry, allowing a three-dimensional simulation to be reduced to two dimensions. Numerical experiments are performed to assess the algorithm's accuracy and the effect of source amplitudes and atmospheric variability on infrasound waveforms and shock formation. Results show that infrasound waveforms steepen and their associated spectra are shifted to higher frequencies for nonlinear sources, leading to enhanced infrasound attenuation. Results also indicate that nonlinear infrasound amplitudes depend strongly on atmospheric temperature and pressure variations. The solution for total field variables and insertion of gravitational terms also allows for the computation of other disturbances generated by explosions, including gravity waves.
NASA Astrophysics Data System (ADS)
Kharin, Nikolay A.
2000-04-01
In nonlinear ultrasound imaging the images are formed using the second harmonic energy generated due to the nonlinear nature of finite amplitude propagation. This propagation can be modeled using the KZK wave equation. This paper presents further development of nonlinear diffractive field theory based on the KZK equation and its solution by means of the slowly changing profile method for moderate nonlinearity. The analytical expression for amplitudes and phases of sum frequency wave are obtained in addition to the second harmonic wave. Also, the analytical expression for the relative curvature of the wave fronts of fundamental and second harmonic signals are derived. The media with different nonlinear properties and absorption coefficients were investigated to characterize the diffractive field of the transducer at medical frequencies. All expressions demonstrate good agreement with experimental results. The expressions are novel and provide an easy way for prediction of amplitude and phase structure of nonlinearly distorted field of a transducer. The sum frequency signal technique could be implemented as well as second harmonic technique to improve the quality of biomedical images. The results obtained are of importance for medical diagnostic ultrasound equipment design.
NASA Astrophysics Data System (ADS)
Volpe, F. A.; Frassinetti, L.; Brunsell, P. R.; Drake, J. R.; Olofsson, K. E. J.
2012-10-01
A new ITER-relevant non-disruptive error field (EF) assessment technique not restricted to low density and thus low beta was demonstrated at the Extrap-T2R reversed field pinch. Resistive Wall Modes (RWMs) were generated and their rotation sustained by rotating magnetic perturbations. In particular, stable modes of toroidal mode number n=8 and 10 and unstable modes of n=1 were used in this experiment. Due to finite EFs, and in spite of the applied perturbations rotating uniformly and having constant amplitude, the RWMs were observed to rotate non-uniformly and be modulated in amplitude (in the case of unstable modes, the observed oscillation was superimposed to the mode growth). This behavior was used to infer the amplitude and toroidal phase of n=1, 8 and 10 EFs. The method was first tested against known, deliberately applied EFs, and then against actual intrinsic EFs. Applying equal and opposite corrections resulted in longer discharges and more uniform mode rotation, indicating good EF compensation. The results agree with a simple theoretical model. Extensions to tearing modes, to the non-uniform plasma response to rotating perturbations, and to tokamaks, including ITER, will be discussed.
NASA Astrophysics Data System (ADS)
Kumar, P.; Singh, A.
2018-04-01
The present study deals with evaluation of low cycle fatigue (LCF) behavior of aluminum alloy 5754 (AA 5754) at different strain rates. This alloy has magnesium (Mg) as main alloying element (Al-Mg alloy) which makes this alloy suitable for Marines and Cryogenics applications. The testing procedure and specimen preparation are guided by ASTM E606 standard. The tests are performed at 0.5% strain amplitude with three different strain rates i.e. 0.5×10-3 sec-1, 1×10-3 sec-1 and 2×10-3 sec-1 thus the frequency of tests vary accordingly. The experimental results show that there is significant decrease in the fatigue life with the increase in strain rate. LCF behavior of AA 5754 is also simulated at different strain rates by finite element method. Chaboche kinematic hardening cyclic plasticity model is used for simulating the hardening behavior of the material. Axisymmetric finite element model is created to reduce the computational cost of the simulation. The material coefficients used for “Chaboche Model” are determined by experimentally obtained stabilized hysteresis loop. The results obtained from finite element simulation are compared with those obtained through LCF experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regnier, D.; Dubray, N.; Verriere, M.
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less
Regnier, D.; Dubray, N.; Verriere, M.; ...
2017-12-20
The time-dependent generator coordinate method (TDGCM) is a powerful method to study the large amplitude collective motion of quantum many-body systems such as atomic nuclei. Under the Gaussian Overlap Approximation (GOA), the TDGCM leads to a local, time-dependent Schrödinger equation in a multi-dimensional collective space. In this study, we present the version 2.0 of the code FELIX that solves the collective Schrödinger equation in a finite element basis. This new version features: (i) the ability to solve a generalized TDGCM+GOA equation with a metric term in the collective Hamiltonian, (ii) support for new kinds of finite elements and different typesmore » of quadrature to compute the discretized Hamiltonian and overlap matrices, (iii) the possibility to leverage the spectral element scheme, (iv) an explicit Krylov approximation of the time propagator for time integration instead of the implicit Crank–Nicolson method implemented in the first version, (v) an entirely redesigned workflow. We benchmark this release on an analytic problem as well as on realistic two-dimensional calculations of the low-energy fission of 240Pu and 256Fm. Low to moderate numerical precision calculations are most efficiently performed with simplex elements with a degree 2 polynomial basis. Higher precision calculations should instead use the spectral element method with a degree 4 polynomial basis. Finally, we emphasize that in a realistic calculation of fission mass distributions of 240Pu, FELIX-2.0 is about 20 times faster than its previous release (within a numerical precision of a few percents).« less
A New Finite Difference Q-compensated RTM Algorithm in Tilted Transverse Isotropic (TTI) Media
NASA Astrophysics Data System (ADS)
Zhou, T.; Hu, W.; Ning, J.
2017-12-01
Attenuating anisotropic geological body is difficult to image with conventional migration methods. In such kind of scenarios, recorded seismic data suffer greatly from both amplitude decay and phase distortion, resulting in degraded resolution, poor illumination and incorrect migration depth in imaging results. To efficiently obtain high quality images, we propose a novel TTI QRTM algorithm based on Generalized Standard Linear Solid model combined with a unique multi-stage optimization technique to simultaneously correct the decayed amplitude and the distorted phase velocity. Numerical tests (shown in the figure) demonstrate that our TTI QRTM algorithm effectively corrects migration depth, significantly improves illumination, and enhances resolution within and below the low Q regions. The result of our new method is very close to the reference RTM image, while QRTM without TTI cannot get a correct image. Compared to the conventional QRTM method based on a pseudo-spectral operator for fractional Laplacian evaluation, our method is more computationally efficient for large scale applications and more suitable for GPU acceleration. With the current multi-stage dispersion optimization scheme, this TTI QRTM method best performs in the frequency range 10-70 Hz, and could be used in a wider frequency range. Furthermore, as this method can also handle frequency dependent Q, it has potential to be applied in imaging deep structures where low Q exists, such as subduction zones, volcanic zones or fault zones with passive source observations.
Time-dependent density functional theory with twist-averaged boundary conditions
NASA Astrophysics Data System (ADS)
Schuetrumpf, B.; Nazarewicz, W.; Reinhard, P.-G.
2016-05-01
Background: Time-dependent density functional theory is widely used to describe excitations of many-fermion systems. In its many applications, three-dimensional (3D) coordinate-space representation is used, and infinite-domain calculations are limited to a finite volume represented by a spatial box. For finite quantum systems (atoms, molecules, nuclei, hadrons), the commonly used periodic or reflecting boundary conditions introduce spurious quantization of the continuum states and artificial reflections from boundary; hence, an incorrect treatment of evaporated particles. Purpose: The finite-volume artifacts for finite systems can be practically cured by invoking an absorbing potential in a certain boundary region sufficiently far from the described system. However, such absorption cannot be applied in the calculations of infinite matter (crystal electrons, quantum fluids, neutron star crust), which suffer from unphysical effects stemming from a finite computational box used. Here, twist-averaged boundary conditions (TABC) have been used successfully to diminish the finite-volume effects. In this work, we extend TABC to time-dependent modes. Method: We use the 3D time-dependent density functional framework with the Skyrme energy density functional. The practical calculations are carried out for small- and large-amplitude electric dipole and quadrupole oscillations of 16O. We apply and compare three kinds of boundary conditions: periodic, absorbing, and twist-averaged. Results: Calculations employing absorbing boundary conditions (ABC) and TABC are superior to those based on periodic boundary conditions. For low-energy excitations, TABC and ABC variants yield very similar results. With only four twist phases per spatial direction in TABC, one obtains an excellent reduction of spurious fluctuations. In the nonlinear regime, one has to deal with evaporated particles. In TABC, the floating nucleon gas remains in the box; the amount of nucleons in the gas is found to be roughly the same as the number of absorbed particles in ABC. Conclusion: We demonstrate that by using TABC, one can reduce finite-volume effects drastically without adding any additional parameters associated with absorption at large distances. Moreover, TABC are an obvious choice for time-dependent calculations for infinite systems. Since TABC calculations for different twists can be performed independently, the method is trivially adapted to parallel computing.
NASA Astrophysics Data System (ADS)
Lee, Yang-Sub
A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.
Non-linear effects in finite amplitude wave propagation through ducts and nozzles
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Brown, W. H.
1986-01-01
In this paper an extensive study of non-linear effects in finite amplitude wave propagation through ducts and nozzles is summarized. Some results from earlier studies are included to illustrate the non-linear effects on the transmission characteristics of duct and nozzle terminations. Investigaiations, both experimental and analytical, were carried out to determine the magnitudes of the effects for high intensity pulse propagation. The results derived from these investigations are presented in this paper. They include the effect of the sound intensity on the acoustic characteristics of duct and nozzle terminations, the extent of the non-linearities in the propagation of high intensity impulsive sound inside the duct and out into free field, the acoustic energy dissipation mechanism at a termination as shown by flow visualizations, and quantitative evaluations by experimental and analytical means of the influence of the intensity of a sound pulse on the dissipation of its acoustic power.
Instability, finite amplitude pulsation and mass-loss in models of massive OB-type stars
NASA Astrophysics Data System (ADS)
Yadav, Abhay Pratap; Glatzel, Wolfgang
2017-11-01
Variability and mass-loss are common phenomena in massive OB-type stars. It is argued that they are caused by violent strange mode instabilities identified in corresponding stellar models. We present a systematic linear stability analysis with respect to radial perturbations of massive OB-type stars with solar chemical composition and masses between 23 and 100 M⊙. For selected unstable stellar models, we perform non-linear simulations of the evolution of the instabilities into the non-linear regime. Finite amplitude pulsations with periods in the range between hours and 100 d are found to be the final result of the instabilities. The pulsations are associated with a mean acoustic luminosity which can be the origin of a pulsationally driven wind. Corresponding mass-loss rates lie in the range between 10-9 and 10-4 M⊙ yr-1 and may thus affect the evolution of massive stars.
Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.
He, Ping; Ma, Shu-Hua; Fan, Tao
2012-12-01
This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.
Computational evaluation of amplitude modulation for enhanced magnetic nanoparticle hyperthermia.
Soetaert, Frederik; Dupré, Luc; Ivkov, Robert; Crevecoeur, Guillaume
2015-10-01
Magnetic nanoparticles (MNPs) can interact with alternating magnetic fields (AMFs) to deposit localized energy for hyperthermia treatment of cancer. Hyperthermia is useful in the context of multimodality treatments with radiation or chemotherapy to enhance disease control without increased toxicity. The unique attributes of heat deposition and transfer with MNPs have generated considerable attention and have been the focus of extensive investigations to elucidate mechanisms and optimize performance. Three-dimensional (3D) simulations are often conducted with the finite element method (FEM) using the Pennes' bioheat equation. In the current study, the Pennes' equation was modified to include a thermal damage-dependent perfusion profile to improve model predictions with respect to known physiological responses to tissue heating. A normal distribution of MNPs in a model liver tumor was combined with empirical nanoparticle heating data to calculate tumor temperature distributions and resulting survival fraction of cancer cells. In addition, calculated spatiotemporal temperature changes were compared among magnetic field amplitude modulations of a base 150-kHz sinusoidal waveform, specifically, no modulation, sinusoidal, rectangular, and triangular modulation. Complex relationships were observed between nanoparticle heating and cancer tissue damage when amplitude modulation and damage-related perfusion profiles were varied. These results are tantalizing and motivate further exploration of amplitude modulation as a means to enhance efficiency of and overcome technical challenges associated with magnetic nanoparticle hyperthermia (MNH).
NASA Technical Reports Server (NTRS)
Wu, Xuesong; Lee, Sang Soo; Cowley, Stephen J.
1992-01-01
The nonlinear evolution of a pair of initially oblique waves in a high Reynolds Number Stokes layer is studied. Attention is focused on times when disturbances of amplitude epsilon have O(epsilon(exp 1/3)R) growth rates, where R is the Reynolds number. The development of a pair of oblique waves is then controlled by nonlinear critical-layer effects. Viscous effects are included by studying the distinguished scaling epsilon = O(R(exp -1)). This leads to a complicated modification of the kernel function in the integro-differential amplitude equation. When viscosity is not too large, solutions to the amplitude equation develop a finite-time singularity, indicating that an explosive growth can be introduced by nonlinear effects; we suggest that such explosive growth can lead to the bursts observed in experiments. Increasing the importance of viscosity generally delays the occurrence of the finite-time singularity, and sufficiently large viscosity may lead to the disturbance decaying exponentially. For the special case when the streamwise and spanwise wavenumbers are equal, the solution can evolve into a periodic oscillation. A link between the unsteady critical-layer approach to high-Reynolds-number flow instability, and the wave vortex approach is identified.
Zombie Turbulence and More in Stratified Couette Flow
NASA Astrophysics Data System (ADS)
Marcus, Philip; Barranco, Joe; Pei, Suyang; Jiang, Chung-Hsiang
2016-11-01
Zombie turbulence occurs in rotating, shearing vertically-stratified flows such as stratified Couette flows. The turbulence is triggered by a neutrally-stable eigenmode with a critical layer receptive to finite-amplitude perturbations. Once excited, the critical layer becomes a vortex layer pair that rolls up into discrete vortices. Those vortices excite new critical layers, and the process repeats ad infinitum. When the vortex amplitudes become sufficiently large, the flow becomes turbulent. Although possessing a mid-range energy spectrum with E (k) k - 5 / 3 , the turbulence is non-Kolmogorov, highly anisotropic, and with large turbulent, but coherent, structures that retain the length scales of the spacing between the critical layers. The motivation for this study is protoplanetary disks (PPDs) where new stars form. In the PPD the Brunt-Vaisala frequency N increases as a function of distance from the midplane where it is zero. We cannot trigger the initial finite amplitude instability where N is small (close to the midplane). However, computations in PPDs and Couette flows show that zombie turbulence forms where N is large, and then a new type of turbulence, that is neither zombie nor Kolmogorov turbulence, fills in the remainder of the domain even where N = 0 .
Measurement of the Acoustic Nonlinearity Parameter for Biological Media.
NASA Astrophysics Data System (ADS)
Cobb, Wesley Nelson
In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.
NASA Technical Reports Server (NTRS)
Baum, J. D.; Levine, J. N.
1980-01-01
The selection of a satisfactory numerical method for calculating the propagation of steep fronted shock life waveforms in a solid rocket motor combustion chamber is discussed. A number of different numerical schemes were evaluated by comparing the results obtained for three problems: the shock tube problems; the linear wave equation, and nonlinear wave propagation in a closed tube. The most promising method--a combination of the Lax-Wendroff, Hybrid and Artificial Compression techniques, was incorporated into an existing nonlinear instability program. The capability of the modified program to treat steep fronted wave instabilities in low smoke tactical motors was verified by solving a number of motor test cases with disturbance amplitudes as high as 80% of the mean pressure.
NASA Technical Reports Server (NTRS)
Theobald, M. A.
1977-01-01
The outdoor propagation of spherically spreading sound waves of finite amplitude was investigated. The main purpose of the experiments was to determine the extent to which the outdoor environment, mainly random inhomogeneity of the medium, affects finite amplitude propagation. Periodic sources with fundamental frequencies in the range 6 to 8 kHz and source levels SPLlm from 140 to 149 dB were used. The sources were an array of 7 to 10 horn drivers and a siren. The propagation path was vertical and parallel to an 85 m tower, whose elevator carried the traveling microphone. The general conclusions drawn from the experimental results were as follows. The inhomogeneities caused significant fluctuations in the instantaneous acoustic signal, but with sufficient time averaging of the measured harmonic levels, the results were comparable to results expected for propagation in a quiet medium. Propagation data for the fundamental of the siren approached within 1 dB of the weak shock saturation levels. Extra attenuation on the order of 8 dB was observed. The measurements generally confirmed the predictions of several theoretical models. The maximum propagation distance was 36 m. The narrowbeam arrays were much weaker sources. Nonlinear propagation distortion was produced, but the maximum value of extra attenuation measured was 1.5 dB. The maximum propagation distance was 76 m. The behavior of the asymetric waveforms received in one experiment qualitatively suggested that beam type diffraction effects were present. The role of diffraction of high intensity sound waves in radiation from a single horn was briefly investigated.
The Evolution of Finite Amplitude Wavetrains in Plane Channel Flow
NASA Technical Reports Server (NTRS)
Hewitt, R. E.; Hall, P.
1996-01-01
We consider a viscous incompressible fluid flow driven between two parallel plates by a constant pressure gradient. The flow is at a finite Reynolds number, with an 0(l) disturbance in the form of a traveling wave. A phase equation approach is used to discuss the evolution of slowly varying fully nonlinear two dimensional wavetrains. We consider uniform wavetrains in detail, showing that the development of a wavenumber perturbation is governed by Burgers equation in most cases. The wavenumber perturbation theory, constructed using the phase equation approach for a uniform wavetrain, is shown to be distinct from an amplitude perturbation expansion about the periodic flow. In fact we show that the amplitude equation contains only linear terms and is simply the heat equation. We review, briefly, the well known dynamics of Burgers equation, which imply that both shock structures and finite time singularities of the wavenumber perturbation can occur with respect to the slow scales. Numerical computations have been performed to identify areas of the (wavenumber, Reynolds number, energy) neutral surface for which each of these possibilities can occur. We note that the evolution equations will breakdown under certain circumstances, in particular for a weakly nonlinear secondary flow. Finally we extend the theory to three dimensions and discuss the limit of a weak spanwise dependence for uniform wavetrains, showing that two functions are required to describe the evolution. These unknowns are a phase and a pressure function which satisfy a pair of linearly coupled partial differential equations. The results obtained from applying the same analysis to the fully three dimensional problem are included as an appendix.
Subleading soft theorem for multiple soft gravitons
NASA Astrophysics Data System (ADS)
Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay
2017-12-01
We derive the subleading soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. Our results are valid to all orders in perturbation theory when the number of non-compact space-time dimensions is six or more, but only for tree amplitudes for five or less non-compact space-time dimensions due to enhanced contribution to loop amplitudes from the infrared region.
Studies in Thermocapillary Convection of the Marangoni-Benard Type
NASA Technical Reports Server (NTRS)
Kelly, Robert E.; Or, Arthur C.
1996-01-01
The effects of imposed nonlinear oscillatory shear upon the onset of Marangoni-Bernard convection, as predicted by linear theory, in a layer of liquid with a deformable free surface were reported upon by Or and Kelly for small amplitude oscillations. Depending on the operating conditions, either stabilization or destabilization might occur. The aim of the current paper is to report the results for finite amplitude imposed oscillations so that the actual amount of stabilization or destabilization can be determined for prescribed operating conditions.
An Analytical Finite-Strain Parameterization for Texture Evolution in Deformed Olivine Polycrystals
NASA Astrophysics Data System (ADS)
Ribe, N. M.; Castelnau, O.
2017-12-01
Current methods for calculating the evolution of flow-induced seismic anisotropy in the upper mantle describe crystal preferred orientation (CPO) using ensembles of 103-104 individual grains, and are too computationally expensive to be used in three-dimensional time-dependent convection models. We propose a much faster method based on the hypothesis that CPO of olivine polycrystals is a unique function of the finite strain. Our goal is then to determine how the CPO depends on the ratios r12 and r23 of the axes of the finite strain ellipsoid and on the two independent ratios p12 and p23 of the strengths (critical resolved shear stresses) of the three independent slip systems of olivine. To do this, we introduce a new analytical representation of olivine CPO in terms of three `structured basis functions' (SBFs) Fs(g, r12, r23) (s = 1, 2, 3), where g is the set of three Eulerian angles that describe the orientation of a crystal lattice relative to an external reference frame. Each SBF represents the virtual CPO that would be produced by the action of only one of the slip systems of olivine, and can be determined analytically to within an unknown time-dependent amplitude. The amplitudes are then determined by fitting the SBFs to the predictions of the second-order self-consistent (SOSC) model of Ponte-Castaneda (2002). To implement the SBF representation, we express the orientation distribution function (ODF) f(g) of the polycrystal approximately as a linear superposition of SBFs with weighting coefficients Cs. Substituting the superposition into the general evolution equation for the ODF and minimizing the residual error, we find that the weighting coefficients Cs(t) satisfy coupled evolution equations of the form αisCs + βisCs + γs = 0 where the coefficients αis, βis and γs can be calculated in advance from the expressions for the SBFs. These equations are solved numerically for different values of p12 and p23, yielding numerical values of Cs(r12, r23, p12, p23) that can be fit using simple analytical functions. Our new parameterization allows CPO to be calculated some 107 times faster than full self-consistent methods such as SOSC.
Transition to turbulence in plane channel flows
NASA Technical Reports Server (NTRS)
Biringen, S.
1984-01-01
Results obtained from a numerical simulation of the final stages of transition to turbulence in plane channel flow are described. Three dimensional, incompressible Navier-Stokes equations are numerically integrated to obtain the time evolution of two and three dimensional finite amplitude disturbances. Computations are performed on CYBER-203 vector processor for a 32x51x32 grid. Results are presented for no-slip boundary conditions at the solid walls as well as for periodic suction blowing to simulate active control of transition by mass transfer. Solutions indicate that the method is capable of simulating the complex character of vorticity dynamics during the various stages of transition and final breakdown. In particular, evidence points to the formation of a lambda-shape vortex and the subsequent system of horseshoe vortices inclined to the main flow direction as the main elements of transition. Calculations involving periodic suction-blowing indicate that interference with a wave of suitable phase and amplitude reduces the disturbance growth rates.
Evolution of finite-amplitude localized vortices in planar homogeneous shear flows
NASA Astrophysics Data System (ADS)
Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob
2017-02-01
An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.
NASA Astrophysics Data System (ADS)
Inoshita, Kensuke; Hama, Yoshimitsu; Kishikawa, Hiroki; Goto, Nobuo
2016-12-01
In photonic label routers, various optical signal processing functions are required; these include optical label extraction, recognition of the label, optical switching and buffering controlled by signals based on the label information and network routing tables, and label rewriting. Among these functions, we focus on photonic label recognition. We have proposed two kinds of optical waveguide circuits to recognize 16 quadrature amplitude modulation codes, i.e., recognition from the minimum output port and from the maximum output port. The recognition function was theoretically analyzed and numerically simulated by finite-difference beam-propagation method. We discuss noise tolerance in the circuit and show numerically simulated results to evaluate bit-error-rate (BER) characteristics against optical signal-to-noise ratio (OSNR). The OSNR required to obtain a BER less than 1.0×10-3 for the symbol rate of 2.5 GBaud was 14.5 and 27.0 dB for recognition from the minimum and maximum output, respectively.
Finite element modelling of radial shock wave therapy for chronic plantar fasciitis.
Alkhamaali, Zaied K; Crocombe, Andrew D; Solan, Matthew C; Cirovic, Srdjan
2016-01-01
Therapeutic use of high-amplitude pressure waves, or shock wave therapy (SWT), is emerging as a popular method for treating musculoskeletal disorders. However, the mechanism(s) through which this technique promotes healing are unclear. Finite element models of a shock wave source and the foot were constructed to gain a better understanding of the mechanical stimuli that SWT produces in the context of plantar fasciitis treatment. The model of the shock wave source was based on the geometry of an actual radial shock wave device, in which pressure waves are generated through the collision of two metallic objects: a projectile and an applicator. The foot model was based on the geometry reconstructed from magnetic resonance images of a volunteer and it comprised bones, cartilage, soft tissue, plantar fascia, and Achilles tendon. Dynamic simulations were conducted of a single and of two successive shock wave pulses administered to the foot. The collision between the projectile and the applicator resulted in a stress wave in the applicator. This wave was transmitted into the soft tissue in the form of compression-rarefaction pressure waves with an amplitude of the order of several MPa. The negative pressure at the plantar fascia reached values of over 1.5 MPa, which could be sufficient to generate cavitation in the tissue. The results also show that multiple shock wave pulses may have a cumulative effect in terms of strain energy accumulation in the foot.
Transient finite element modeling of functional electrical stimulation.
Filipovic, Nenad D; Peulic, Aleksandar S; Zdravkovic, Nebojsa D; Grbovic-Markovic, Vesna M; Jurisic-Skevin, Aleksandra J
2011-03-01
Transcutaneous functional electrical stimulation is commonly used for strengthening muscle. However, transient effects during stimulation are not yet well explored. The effect of an amplitude change of the stimulation can be described by static model, but there is no differency for different pulse duration. The aim of this study is to present the finite element (FE) model of a transient electrical stimulation on the forearm. Discrete FE equations were derived by using a standard Galerkin procedure. Different tissue conductive and dielectric properties are fitted using least square method and trial and error analysis from experimental measurement. This study showed that FE modeling of electrical stimulation can give the spatial-temporal distribution of applied current in the forearm. Three different cases were modeled with the same geometry but with different input of the current pulse, in order to fit the tissue properties by using transient FE analysis. All three cases were compared with experimental measurements of intramuscular voltage on one volunteer.
Radiation pattern of a borehole radar antenna
Ellefsen, K.J.; Wright, D.L.
2005-01-01
The finite-difference time-domain method was used to simulate radar waves that were generated by a transmitting antenna inside a borehole. The simulations were of four different models that included features such as a water-filled borehole and an antenna with resistive loading. For each model, radiation patterns for the far-field region were calculated. The radiation patterns show that the amplitude of the radar wave was strongly affected by its frequency, the water-filled borehole, the resistive loading of the antenna, and the external metal parts of the antenna (e.g., the cable head and the battery pack). For the models with a water-filled borehole, their normalized radiation patterns were practically identical to the normalized radiation pattern of a finite-length electric dipole when the wavelength in the formation was significantly greater than the total length of the radiating elements of the model antenna. The minimum wavelength at which this criterion was satisfied depended upon the features of the antenna, especially its external metal parts. ?? 2005 Society of Exploration Geophysicists. All rights reserved.
Akan, Ozgur B.
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics. PMID:29415019
Kuscu, Murat; Akan, Ozgur B
2018-01-01
We consider a microfluidic molecular communication (MC) system, where the concentration-encoded molecular messages are transported via fluid flow-induced convection and diffusion, and detected by a surface-based MC receiver with ligand receptors placed at the bottom of the microfluidic channel. The overall system is a convection-diffusion-reaction system that can only be solved by numerical methods, e.g., finite element analysis (FEA). However, analytical models are key for the information and communication technology (ICT), as they enable an optimisation framework to develop advanced communication techniques, such as optimum detection methods and reliable transmission schemes. In this direction, we develop an analytical model to approximate the expected time course of bound receptor concentration, i.e., the received signal used to decode the transmitted messages. The model obviates the need for computationally expensive numerical methods by capturing the nonlinearities caused by laminar flow resulting in parabolic velocity profile, and finite number of ligand receptors leading to receiver saturation. The model also captures the effects of reactive surface depletion layer resulting from the mass transport limitations and moving reaction boundary originated from the passage of finite-duration molecular concentration pulse over the receiver surface. Based on the proposed model, we derive closed form analytical expressions that approximate the received pulse width, pulse delay and pulse amplitude, which can be used to optimize the system from an ICT perspective. We evaluate the accuracy of the proposed model by comparing model-based analytical results to the numerical results obtained by solving the exact system model with COMSOL Multiphysics.
NASA Technical Reports Server (NTRS)
Ng, Lian Lai
1990-01-01
When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.
Yan, Shengjie; Wu, Xiaomei; Wang, Weiqi
2017-09-01
Radiofrequency (RF) energy is often used to create a linear lesion or discrete lesions for blocking the accessory conduction pathways for treating atrial fibrillation. By using finite element analysis, we study the ablation effect of amplitude control ablation mode (AcM) and bipolar ablation mode (BiM) in creating a linear lesion and discrete lesions in a 5-mm-thick atrial wall; particularly, the characteristic of lesion shape has been investigated in amplitude control ablation. Computer models of multipolar catheter were developed to study the lesion dimensions in atrial walls created through AcM, BiM and special electrodes activated ablation methods in AcM and BiM. To validate the theoretical results in this study, an in vitro experiment with porcine cardiac tissue was performed. At 40 V/20 V root mean squared (RMS) of the RF voltage for AcM, the continuous and transmural lesion was created by AcM-15s, AcM-5s and AcM-ad-20V ablation in 5-mm-thick atrial wall. At 20 V RMS for BiM, the continuous but not transmural lesion was created. AcM ablation yielded asymmetrical and discrete lesions shape, whereas the lesion shape turned to more symmetrical and continuous as the electrodes alternative activated period decreased from 15 s to 5 s. Two discrete lesions were created when using AcM, AcM-ad-40V, BiM-ad-20V and BiM-ad-40V. The experimental and computational thermal lesion shapes created in cardiac tissue were in agreement. Amplitude control ablation technology and bipolar ablation technology are feasible methods to create continuous lesion or discrete for pulmonary veins isolation.
NASA Astrophysics Data System (ADS)
Zamanov, A. D.
2001-09-01
A problem on the forced vibrations of a rectangular composite plate with locally curved structures is formulated using the exact three-dimensional equations of continuum mechanics and continuum theory. A technique for numerical solution of the problem is developed based on the semianalytic finite-element method. Numerical results are given for the stress distribution in the plate under forced vibrations. The results obtained are analyzed to study the effect of the curvature in the structure of the plate on the distribution of stress amplitudes. It is shown that the curvatures change significantly the stress pattern under either static or dynamic loading
Amplitude equation for under water sand-ripples in one dimension.
NASA Astrophysics Data System (ADS)
Schnipper, Teis; Mertens, Keith; Ellegaard, Clive; Bohr, Tomas
2007-11-01
Sand-ripples under oscillatory water flow form periodic patterns with wave lengths primarily controlled by the amplitude d of the water motion. We present an amplitude equation for sand-ripples in one spatial dimension which captures the formation of the ripples as well as secondary bifurcations observed when the amplitude d is suddenly varied. The equation has the form [ ht=- ɛ(h-h)+((hx)^2-1)hxx- hxxxx+ δ((hx)^2)xx] which, due to the first term, is neither completely local (it has long-range coupling through the average height h) nor has local sand conservation. We discuss why this is reasonable and how this term (with ɛ˜d-2) stops the coarsening process at a finite wavelength proportional to d. We compare our numerical results with experimental observations in a narrow channel.
Factorization of chiral string amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less
Factorization of chiral string amplitudes
Huang, Yu-tin; Siegel, Warren; Yuan, Ellis Ye
2016-09-16
We re-examine a closed-string model defined by altering the boundary conditions for one handedness of two-dimensional propagators in otherwise-standard string theory. We evaluate the amplitudes using Kawai-Lewellen-Tye factorization into open-string amplitudes. The only modification to standard string theory is effectively that the spacetime Minkowski metric changes overall sign in one open-string factor. This cancels all but a finite number of states: as found in earlier approaches, with enough supersymmetry (e.g., type II) the tree amplitudes reproduce those of the massless truncation of ordinary string theory. However, we now find for the other cases that additional fields, formerly thought to bemore » auxiliary, describe new spin-2 states at the two adjacent mass levels (tachyonic and tardyonic). The tachyon is always a ghost, but can be avoided in the heterotic case.« less
Polynomial reduction and evaluation of tree- and loop-level CHY amplitudes
Zlotnikov, Michael
2016-08-24
We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less
Nonlinear behavior of solar gravity modes driven by He-3 in the core. I - Bifurcation analysis
NASA Technical Reports Server (NTRS)
Merryfield, William J.; Gough, Douglas; Toomre, Juri
1990-01-01
The nonlinear development of solar gravity modes driven by He-3 burning in the solar core is investigated by means of an idealized dynamical model. Possible outcomes that have been suggested in the literature include the triggering of subcritical direct convection, leading to core mixing, and the saturation of the excitation processes, leading to sustained finite-amplitude oscillations. The present simple model suggests that the latter is the more likely. The limiting amplitude of the oscillations is estimated, ignoring possible resonances with other gravity modes, to be of order 10 km/s at the solar surface. Such oscillations would be easily observable. That large-amplitude gravity modes have not been observed suggests either that these modes are not unstable in the present era or that they are limited to much smaller amplitudes by resonant coupling.
The effect of buildings on acoustic pulse propagation in an urban environment.
Albert, Donald G; Liu, Lanbo
2010-03-01
Experimental measurements were conducted using acoustic pulse sources in a full-scale artificial village to investigate the reverberation, scattering, and diffraction produced as acoustic waves interact with buildings. These measurements show that a simple acoustic source pulse is transformed into a complex signature when propagating through this environment, and that diffraction acts as a low-pass filter on the acoustic pulse. Sensors located in non-line-of-sight (NLOS) positions usually recorded lower positive pressure maxima than sensors in line-of-sight positions. Often, the first arrival on a NLOS sensor located around a corner was not the largest arrival, as later reflection arrivals that traveled longer distances without diffraction had higher amplitudes. The waveforms are of such complexity that human listeners have difficulty identifying replays of the signatures generated by a single pulse, and the usual methods of source location based on the direction of arrivals may fail in many cases. Theoretical calculations were performed using a two-dimensional finite difference time domain (FDTD) method and compared to the measurements. The predicted peak positive pressure agreed well with the measured amplitudes for all but two sensor locations directly behind buildings, where the omission of rooftop ray paths caused the discrepancy. The FDTD method also produced good agreement with many of the measured waveform characteristics.
Thermal mirror spectrometry: An experimental investigation of optical glasses
NASA Astrophysics Data System (ADS)
Zanuto, V. S.; Herculano, L. S.; Baesso, M. L.; Lukasievicz, G. V. B.; Jacinto, C.; Malacarne, L. C.; Astrath, N. G. C.
2013-03-01
The Thermal mirror technique relies on measuring laser-induced nanoscale surface deformation of a solid sample. The amplitude of the effect is directly dependent on the optical absorption and linear thermal expansion coefficients, and the time evolution depends on the heat diffusion properties of the sample. Measurement of transient signals provide direct access to thermal, optical and mechanical properties of the material. The theoretical models describing this effect can be formulated for very low optical absorbing and for absorbing materials. In addition, the theories describing the effect apply for semi-infinite and finite samples. In this work, we apply the Thermal mirror technique to measure physical properties of optical glasses. The semi-infinite and finite models are used to investigate very low optical absorbing glasses. The thickness limit for which the semi-infinite model retrieves the correct values of the thermal diffusivity and amplitude of the transient is obtained using the finite description. This procedure is also employed on absorbing glasses, and the semi-infinite Beer-Lambert law model is used to analyze the experimental data. The experimental data show the need to use the finite model for samples with very low bulk absorption coefficients and thicknesses L < 1.5 mm. This analysis helped to establish limit values of thickness for which the semi-infinite model for absorbing materials could be used, L > 1.0 mm in this case. In addition, the physical properties of the samples were calculated and absolute values derived.
Khalek, Md Abdul; Chakma, Sujan; Paul, Bikash Kumar; Ahmed, Kawsar
2018-08-01
In this research work a perfectly circular lattice Photonic Crystal Fiber (PCF) based surface Plasmon resonance (SPR) based sensor has been proposed. The investigation process has been successfully carried out using finite element method (FEM) based commercial available software package COMSOL Multiphysics version 4.2. The whole investigation module covers the wider optical spectrum ranging from 0.48 µm to 1.10 µm. Using the wavelength interrogation method the proposed model exposed maximum sensitivity of 9000 nm/RIU(Refractive Index Unit) and using the amplitude interrogation method it obtained maximum sensitivity of 318 RIU -1 . Moreover the maximum sensor resolution of 1.11×10 -5 in the sensing ranges between 1.34 and 1.37. Based on the suggested sensor model may provide great impact in biological area such as bio-imaging.
Qiao, Shan; Jackson, Edward; Coussios, Constantin C.; Cleveland, Robin O.
2016-01-01
Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools. PMID:27914432
Qiao, Shan; Jackson, Edward; Coussios, Constantin C; Cleveland, Robin O
2016-09-01
Nonlinear acoustics plays an important role in both diagnostic and therapeutic applications of biomedical ultrasound and a number of research and commercial software packages are available. In this manuscript, predictions of two solvers available in a commercial software package, pzflex, one using the finite-element-method (FEM) and the other a pseudo-spectral method, spectralflex, are compared with measurements and the Khokhlov-Zabolotskaya-Kuznetsov (KZK) Texas code (a finite-difference time-domain algorithm). The pzflex methods solve the continuity equation, momentum equation and equation of state where they account for nonlinearity to second order whereas the KZK code solves a nonlinear wave equation with a paraxial approximation for diffraction. Measurements of the field from a single element 3.3 MHz focused transducer were compared with the simulations and there was good agreement for the fundamental frequency and the harmonics; however the FEM pzflex solver incurred a high computational cost to achieve equivalent accuracy. In addition, pzflex results exhibited non-physical oscillations in the spatial distribution of harmonics when the amplitudes were relatively low. It was found that spectralflex was able to accurately capture the nonlinear fields at reasonable computational cost. These results emphasize the need to benchmark nonlinear simulations before using codes as predictive tools.
Non-Linear Steady State Vibrations of Beams Excited by Vortex Shedding
NASA Astrophysics Data System (ADS)
LEWANDOWSKI, R.
2002-05-01
In this paper the non-linear vibrations of beams excited by vortex-shedding are considered. In particular, the steady state responses of beams near the synchronization region are taken into account. The main aerodynamic properties of wind are described by using the semi-empirical model proposed by Hartlen and Currie. The finite element method and the strip method are used to formulate the equation of motion of the system treated. The harmonic balance method is adopted to derive the amplitude equations. These equations are solved with the help of the continuation method which is very convenient to perform the parametric studies of the problem and to determine the response curve in the synchronization region. Moreover, the equations of motion are also integrated using the Newmark method. The results of calculations of several example problems are also shown to confirm the efficiency and accuracy of the presented method. The results obtained by the harmonic balance method and by the Newmark methods are in good agreement with each other.
Numerical solution of the generalized, dissipative KdV-RLW-Rosenau equation with a compact method
NASA Astrophysics Data System (ADS)
Apolinar-Fernández, Alejandro; Ramos, J. I.
2018-07-01
The nonlinear dynamics of the one-dimensional, generalized Korteweg-de Vries-regularized-long wave-Rosenau (KdV-RLW-Rosenau) equation with second- and fourth-order dissipative terms subject to initial Gaussian conditions is analyzed numerically by means of three-point, fourth-order accurate, compact finite differences for the discretization of the spatial derivatives and a trapezoidal method for time integration. By means of a Fourier analysis and global integration techniques, it is shown that the signs of both the fourth-order dissipative and the mixed fifth-order derivative terms must be negative. It is also shown that an increase of either the linear drift or the nonlinear convection coefficients results in an increase of the steepness, amplitude and speed of the right-propagating wave, whereas the speed and amplitude of the wave decrease as the power of the nonlinearity is increased, if the amplitude of the initial Gaussian condition is equal to or less than one. It is also shown that the wave amplitude and speed decrease and the curvature of the wave's trajectory increases as the coefficients of the second- and fourth-order dissipative terms are increased, while an increase of the RLW coefficient was found to decrease both the damping and the phase velocity, and generate oscillations behind the wave. For some values of the coefficients of both the fourth-order dissipative and the Rosenau terms, it has been found that localized dispersion shock waves may form in the leading part of the right-propagating wave, and that the formation of a train of solitary waves that result from the breakup of the initial Gaussian conditions only occurs in the absence of both Rosenau's, Kortweg-de Vries's and second- and fourth-order dissipative terms, and for some values of the amplitude and width of the initial condition and the RLW coefficient. It is also shown that negative values of the KdV term result in steeper, larger amplitude and faster waves and a train of oscillations behind the wave, whereas positive values of that coefficient may result in negative phase and group velocities, no wave breakup and oscillations ahead of the right-propagating wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourabh K.
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
Backscattering of sound from targets in an Airy caustic formed by a curved reflecting surface
NASA Astrophysics Data System (ADS)
Dzikowicz, Benjamin Robert
The focusing of a caustic associated with the reflection of a locally curved sea floor or surface affects the scattering of sound by underwater targets. The most elementary caustic formed when sound reflects off a naturally curved surface is an Airy caustic. The case of a spherical target is examined here. With a point source acting also as a receiver, a point target lying in a shadow region returns only one echo directly from the target. When the target is on the Airy caustic, there are two echoes: one path is directly to the target and the other focuses off the curved surface. Echoes may be focused in both directions, the doubly focused case being the largest and the latest echo. With the target in the lit region, these different paths produce multiple echoes. For a finite sized sphere near an Airy caustic, all these echoes are manifest, but they occur at shifted target positions. Echoes of tone bursts reflecting only once overlap and interfere with each other, as do those reflecting twice. Catastrophe theory is used to analyze the echo amplitudes arising from these overlaps. The echo pressure for single reflections is shown to have a dependence on target position described by an Airy function for both a point and a finite target. With double focusing, this dependence is the square of an Airy function for a point target. With a finite sized target, (as in the experiment) this becomes a hyperbolic umbilic catastrophe integral with symmetric arguments. The arguments of each of these functions are derived from only the relative echo times of a transient pulse. Transient echo times are calculated using a numerical ray finding technique. Experiment confirms the predicted merging of transient echoes in the time domain, as well as the Airy and hyperbolic umbilic diffraction integral amplitudes for a tone burst. This method allows targets to be observed at greater distances in the presence of a focusing surface.
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1994-01-01
In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The effectiveness of the correction factor in providing improvements to the computed solution is demonstrated in this paper.
π π → π γ * amplitude and the resonant ρ → π γ * transition from lattice QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Briceño, Raúl A.; Dudek, Jozef J.; Edwards, Robert G.
2016-06-01
We present a determination of themore » $P$-wave $$\\pi\\pi\\to\\pi\\gamma^\\star$$ transition amplitude from lattice quantum chromodynamics. Matrix elements of the vector current in a finite-volume are extracted from three-point correlation functions, and from these we determine the infinite-volume amplitude using a generalization of the Lellouch-L\\"uscher formalism. We determine the amplitude for a range of discrete values of the $$\\pi\\pi$$ energy and virtuality of the photon, and observe the expected dynamical enhancement due to the $$\\rho$$ resonance. Describing the energy dependence of the amplitude, we are able to analytically continue into the complex energy plane and from the residue at the $$\\rho$$ pole extract the $$\\rho\\to\\gamma^\\star\\pi$$ transition form factor. This calculation, at $$m_\\pi\\approx 400$$~MeV, is the first time a form factor of a hadron resonance has been calculated within a first-principles approach to QCD.« less
Role of Möbius constants and scattering functions in Cachazo-He-Yuan scalar amplitudes
NASA Astrophysics Data System (ADS)
Lam, C. S.; Yao, York-Peng
2016-05-01
The integration over the Möbius variables leading to the Cachazo-He-Yuan double-color n -point massless scalar amplitude are carried out one integral at a time. Möbius invariance dictates the final amplitude to be independent of the three Möbius constants σr,σs,σt, but their choice affects integrations and the intermediate results. The effect of the Möbius constants, which will be held finite but otherwise arbitrary, the two sets of colors, and the scattering functions on each integration is investigated. A general systematic way to carry out the n -3 integrations is explained, each exposing one of the n -3 propagators of a single Feynman diagram. Two detailed examples are shown to illustrate the procedure, one a five-point amplitude, and the other a nine-point amplitude. Our procedure does not generate intermediate spurious poles, in contrast to what is common by choosing Möbius constants at 0, 1, and ∞ .
Universal dual amplitudes and asymptotic expansions for gg→ H and H→ γ γ in four dimensions
NASA Astrophysics Data System (ADS)
Driencourt-Mangin, Félix; Rodrigo, Germán; Sborlini, Germán F. R.
2018-03-01
Though the one-loop amplitudes of the Higgs boson to massless gauge bosons are finite because there is no direct interaction at tree level in the Standard Model, a well-defined regularization scheme is still required for their correct evaluation. We reanalyze these amplitudes in the framework of the four-dimensional unsubtraction and the loop-tree duality (FDU/LTD), and show how a local renormalization solves potential regularization ambiguities. The Higgs boson interactions are also used to illustrate new additional advantages of this formalism. We show that LTD naturally leads to very compact integrand expressions in four space-time dimensions of the one-loop amplitude with virtual electroweak gauge bosons. They exhibit the same functional form as the amplitudes with top quarks and charged scalars, thus opening further possibilities for simplifications in higher-order computations. Another outstanding application is the straightforward implementation of asymptotic expansions by using dual amplitudes. One of the main benefits of the LTD representation is that it is supported in a Euclidean space. This characteristic feature naturally leads to simpler asymptotic expansions.
Interactions between finite amplitude small and medium-scale waves in the MLT region.
NASA Astrophysics Data System (ADS)
Heale, C. J.; Snively, J. B.
2016-12-01
Small-scale gravity waves can propagate high into the thermosphere and deposit significant momentum and energy into the background flow [e.g., Yamada et al., 2001, Fritts et al., 2014]. However, their propagation, dissipation, and spectral evolution can be significantly altered by other waves and dynamics and the nature of these complex interactions are not yet well understood. While many ray-tracing and time-dependent modeling studies have been performed to investigate interactions between waves of varying scales [e.g., Eckermann and Marks .1996, Sartelet. 2003, Liu et al. 2008, Vanderhoff et al., 2008, Senf and Achatz., 2011, Heale et al., 2015], the majority of these have considered waves of larger (tidal) scales, or have simplified one of the waves to be an imposed "background" and discount (or limit) the nonlinear feedback mechanisms between the two waves. In reality, both waves will influence each other, especially at finite amplitudes when nonlinear effects become important or dominant. We present a study of fully nonlinear interactions between small-scale 10s km, 10 min period) and medium-scale wave packets at finite amplitudes, which include feedback between the two waves and the ambient atmosphere. Time-dependence of the larger-scale wave has been identified as an important factor in reducing reflection [Heale et al., 2015] and critical level effects [Sartelet, 2003, Senf and Achatz, 2011], we choose medium-scale waves of different periods, and thus vertical scales, to investigate how this influences the propagation, filtering, and momentum and energy deposition of the small-scale waves, and in turn how these impacts affect the medium-scale waves. We also consider the observable features of these interactions in the mesosphere and lower thermosphere.
NASA Astrophysics Data System (ADS)
Kikuchi, T.
2004-12-01
The near instantaneous onset of a geomagnetic impulse such as the preliminary reverse impulse (PRI) of the geomagnetic sudden commencement at high latitude and at the dayside geomagnetic equator has been explained by means of the TM0 mode waves in the Earth-ionosphere waveguide (Kikuchi and Araki, J. Atmosph. Terrest. Phys., 41, 927-936, 1979). There is, on the other hand, a time lag of the order of 10 sec in the peak amplitude of the magnetic impulse at the dayside equator. To explain these two temporal aspects, we examine transmission of the TM0 mode in a finite-length Earth-ionosphere transmission line composed of a finitely conducting ionosphere and the perfectly conducting Earth, with a fixed electric potential at one end and null potential at the other end of the transmission line, corresponding to the foot of a field-aligned current on the dawn- or dusk-side in the polar cap and middle point on the noon-midnight meridian at low latitude, respectively. Successive transmission and reflection in the bounded transmission line lead to that the ionospheric currents start to grow instantaneously, but reach a steady state with a relaxation time proportional to the length of the transmission line and the ionospheric conductivity. The relaxation time is of the order of 10 sec when we give high conductivity applicable to the equatorial ionosphere, which matches the observed time lag in the peak amplitude of the equatorial geomagnetic impulse. Consequently, the TM0 mode in the finite-length Earth-ionosphere transmission line explains both the instantaneous onset and time lag in the peak amplitude of the geomagnetic impulse at the dayside geomagnetic equator.
Nonlinear interaction between a pair of oblique modes in a supersonic mixing layer: Long-wave limit
NASA Technical Reports Server (NTRS)
Balsa, Thomas F.; Gartside, James
1995-01-01
The nonlinear interaction between a pair of symmetric, oblique, and spatial instability modes is studied in the long-wave limit using asymptotic methods. The base flow is taken to be a supersonic mixing layer whose Mach number is such that the corresponding vortex sheet is marginally stable according to Miles' criterion. It is shown that the amplitude of the mode obeys a nonlinear integro-differential equation. Numerical solutions of this equation show that, when the obliqueness angle is less than pi/4, the effect of the nonlinearity is to enhance the growth rate of the instability. The solution terminates in a singularity at a finite streamwise location. This result is reminiscent of that obtained in the vicinity of the neutral point by other authors in several different types of flows. On the other hand, when the obliqueness angle is more than pi/4, the streamwise development of the amplitude is characterized by a series of modulations. This arises from the fact that the nonlinear term in the amplitude equation may be either stabilizing or destabilizing, depending on the value of the streamwise coordinate. However, even in this case the amplitude of the disturbance increases, though not as rapidly as in the case for which the angle is less than pi/4. Quite generally then, the nonlinear interaction between two oblique modes in a supersonic mixing layer enhances the growth of the disturbance.
The mechanism of propulsion of a model microswimmer in a viscoelastic fluid next to a solid boundary
NASA Astrophysics Data System (ADS)
Ives, Thomas R.; Morozov, Alexander
2017-12-01
In this paper, we study the swimming of a model organism, the so-called Taylor's swimming sheet, in a viscoelastic fluid close to a solid boundary. This situation comprises natural habitats of many swimming microorganisms, and while previous investigations have considered the effects of both swimming next to a boundary and swimming in a viscoelastic fluid, seldom have both effects been considered simultaneously. We re-visit the small wave amplitude result obtained by Elfring and Lauga ["Theory of locomotion through complex fluids," in Complex Fluids in Biological Systems, Biological and Medical Physics, Biomedical Engineering, edited by S. E. Spagnolie (Springer New York, New York, NY, 2015), pp. 283-317] and give a mechanistic explanation to the decoupling of the effects of viscoelasticity, which tend to slow the sheet, and the presence of the boundary, which tends to speed up the sheet. We also develop a numerical spectral method capable of finding the swimming speed of a waving sheet with an arbitrary amplitude and waveform. We use it to show that the decoupling mentioned earlier does not hold at finite wave amplitudes and that for some parameters the presence of a boundary can cause the viscoelastic effects to increase the swimming speed of microorganisms.
NASA Astrophysics Data System (ADS)
Malaeke, Hasan; Moeenfard, Hamid
2016-03-01
The objective of this paper is to study large amplitude flexural-extensional free vibration of non-uniform cantilever beams carrying a both transversely and axially eccentric tip mass. The effects of variable axial force is also taken into account. Hamilton's principle is utilized to obtain the partial differential equations governing the nonlinear vibration of the system as well as the corresponding boundary conditions. A numerical finite difference scheme is proposed to find the natural frequencies and mode shapes of the system which is validated specifically for a beam with linearly varying cross section. Using a single mode approximation in conjunction with the Lagrange method, the governing equations are reduced to a set of two nonlinear ordinary differential equations in terms of end displacement components of the beam which are coupled due to the presence of the transverse eccentricity. These temporal coupled equations are then solved analytically using the multiple time scales perturbation technique. The obtained analytical results are compared with the numerical ones and excellent agreement is observed. The qualitative and quantitative knowledge resulting from this research is expected to enable the study of the effects of eccentric tip mass and non-uniformity on the large amplitude flexural-extensional vibration of beams for improved dynamic performance.
Optimal placement of tuning masses for vibration reduction in helicopter rotor blades
NASA Technical Reports Server (NTRS)
Pritchard, Jocelyn I.; Adelman, Howard M.
1988-01-01
Described are methods for reducing vibration in helicopter rotor blades by determining optimum sizes and locations of tuning masses through formal mathematical optimization techniques. An optimization procedure is developed which employs the tuning masses and corresponding locations as design variables which are systematically changed to achieve low values of shear without a large mass penalty. The finite-element structural analysis of the blade and the optimization formulation require development of discretized expressions for two performance parameters: modal shaping parameter and modal shear amplitude. Matrix expressions for both quantities and their sensitivity derivatives are developed. Three optimization strategies are developed and tested. The first is based on minimizing the modal shaping parameter which indirectly reduces the modal shear amplitudes corresponding to each harmonic of airload. The second strategy reduces these amplitudes directly, and the third strategy reduces the shear as a function of time during a revolution of the blade. The first strategy works well for reducing the shear for one mode responding to a single harmonic of the airload, but has been found in some cases to be ineffective for more than one mode. The second and third strategies give similar results and show excellent reduction of the shear with a low mass penalty.
Structural analysis of compression helical spring used in suspension system
NASA Astrophysics Data System (ADS)
Jain, Akshat; Misra, Sheelam; Jindal, Arun; Lakhian, Prateek
2017-07-01
The main aim of this work has to develop a helical spring for shock absorber used in suspension system which is designed to reduce shock impulse and liberate kinetic energy. In a vehicle, it increases comfort by decreasing amplitude of disturbances and it improves ride quality by absorbing and dissipating energy. When a vehicle is in motion on a road and strikes a bump, spring comes into action quickly. After compression, spring will attempt to come to its equilibrium state which is on level road. Helical springs can be made lighter with more strength by reducing number of coils and increasing the area. In this research work, a helical spring is modeled and analyzed to substitute the existing steel spring which is used in suspension. By using different materials, stress and deflection of helical spring can be varied. Comparability between existing spring and newly replaced spring is used to verify the results. For finding detailed stress distribution, finite element analysis is used to find stresses and deflection in both the helical springs. Finite element analysis is a method which is used to find proximate solutions of a physical problem defined in a finite domain. In this research work, modeling of spring is accomplished using Solid Works and analysis on Ansys.
Purdy, J. D.; Leonard, Laurence B.; Weber-Fox, Christine; Kaganovich, Natalya
2015-01-01
Purpose One possible source of tense and agreement limitations in children with SLI is a weakness in appreciating structural dependencies that occur in many sentences in the input. We tested this possibility in the present study. Method Children with a history of SLI (H-SLI; N = 12; M age 9;7) and typically developing same-age peers (TD; N = 12; M age 9;7) listened to and made grammaticality judgments about grammatical and ungrammatical sentences involving either a local agreement error (e.g., Every night they talks on the phone) or a long-distance finiteness error (e.g., He makes the quiet boy talks a little louder). Electrophysiological (ERP) and behavioral (accuracy) measures were obtained. Results Local agreement errors elicited the expected anterior negativity and P600 components in both groups of children. However, relative to the TD group, the P600 effect for the long-distance finiteness errors was delayed, reduced in amplitude, and shorter in duration for the H-SLI group. The children's grammaticality judgments were consistent with the ERP findings. Conclusions Children with H-SLI seem to be relatively insensitive to the finiteness constraints that matrix verbs place on subject-verb clauses that appear later in the sentence. PMID:24686983
Unjamming a granular hopper by vibration
NASA Astrophysics Data System (ADS)
Janda, A.; Maza, D.; Garcimartín, A.; Kolb, E.; Lanuza, J.; Clément, E.
2009-07-01
We present an experimental study of the outflow of a hopper continuously vibrated by a piezoelectric device. Outpouring of grains can be achieved for apertures much below the usual jamming limit observed for non-vibrated hoppers. Granular flow persists down to the physical limit of one grain diameter, a limit reached for a finite vibration amplitude. For the smaller orifices, we observe an intermittent regime characterized by alternated periods of flow and blockage. Vibrations do not significantly modify the flow rates both in the continuous and the intermittent regime. The analysis of the statistical features of the flowing regime shows that the flow time significantly increases with the vibration amplitude. However, at low vibration amplitude and small orifice sizes, the jamming time distribution displays an anomalous statistics.
Ren, S L; Heremans, J J; Gaspe, C K; Vijeyaragunathan, S; Mishima, T D; Santos, M B
2013-10-30
Low-temperature Aharonov-Bohm oscillations in the magnetoresistance of mesoscopic interferometric rings patterned on an InGaAs/InAlAs heterostructure are investigated for their dependence on excitation current and temperature. The rings have an average radius of 650 nm, and a lithographic arm width of 300 nm, yielding pronounced interference oscillations over a wide range of magnetic fields. Apart from a current and temperature dependence, the oscillation amplitude also shows a quasi-periodic modulation with applied magnetic field. The phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by direct analysis of the amplitude and its dependence on parameters. It is concluded that the Thouless energy forms the measure of excitation energies for quantum decoherence. The amplitude modulation finds an explanation in the effect of the magnetic flux threading the finite width of the interferometer arms.
Explosive magnetorotational instability in Keplerian disks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shtemler, Yu., E-mail: shtemler@bgu.ac.il; Liverts, E., E-mail: eliverts@bgu.ac.il; Mond, M., E-mail: mond@bgu.ac.il
Differentially rotating disks under the effect of axial magnetic field are prone to a nonlinear explosive magnetorotational instability (EMRI). The dynamic equations that govern the temporal evolution of the amplitudes of three weakly detuned resonantly interacting modes are derived. As distinct from exponential growth in the strict resonance triads, EMRI occurs due to the resonant interactions of an MRI mode with stable Alfvén–Coriolis and magnetosonic modes. Numerical solutions of the dynamic equations for amplitudes of a triad indicate that two types of perturbations behavior can be excited for resonance conditions: (i) EMRI which leads to infinite values of the threemore » amplitudes within a finite time, and (ii) bounded irregular oscillations of all three amplitudes. Asymptotic explicit solutions of the dynamic equations are obtained for EMRI regimes and are shown to match the numerical solutions near the explosion time.« less
Development of a computational testbed for numerical simulation of combustion instability
NASA Technical Reports Server (NTRS)
Grenda, Jeffrey; Venkateswaran, Sankaran; Merkle, Charles L.
1993-01-01
A synergistic hierarchy of analytical and computational fluid dynamic techniques is used to analyze three-dimensional combustion instabilities in liquid rocket engines. A mixed finite difference/spectral procedure is employed to study the effects of a distributed vaporization zone on standing and spinning instability modes within the chamber. Droplet atomization and vaporization are treated by a variety of classical models found in the literature. A multi-zone, linearized analytical solution is used to validate the accuracy of the numerical simulations at small amplitudes for a distributed vaporization region. This comparison indicates excellent amplitude and phase agreement under both stable and unstable operating conditions when amplitudes are small and proper grid resolution is used. As amplitudes get larger, expected nonlinearities are observed. The effect of liquid droplet temperature fluctuations was found to be of critical importance in driving the instabilities of the combustion chamber.
Scattering amplitudes from multivariate polynomial division
NASA Astrophysics Data System (ADS)
Mastrolia, Pierpaolo; Mirabella, Edoardo; Ossola, Giovanni; Peraro, Tiziano
2012-11-01
We show that the evaluation of scattering amplitudes can be formulated as a problem of multivariate polynomial division, with the components of the integration-momenta as indeterminates. We present a recurrence relation which, independently of the number of loops, leads to the multi-particle pole decomposition of the integrands of the scattering amplitudes. The recursive algorithm is based on the weak Nullstellensatz theorem and on the division modulo the Gröbner basis associated to all possible multi-particle cuts. We apply it to dimensionally regulated one-loop amplitudes, recovering the well-known integrand-decomposition formula. Finally, we focus on the maximum-cut, defined as a system of on-shell conditions constraining the components of all the integration-momenta. By means of the Finiteness Theorem and of the Shape Lemma, we prove that the residue at the maximum-cut is parametrized by a number of coefficients equal to the number of solutions of the cut itself.
Determination of s- and p-wave I = 1/2 Kπ scattering amplitudes in Nf = 2 + 1 lattice QCD
NASA Astrophysics Data System (ADS)
Brett, Ruairí; Bulava, John; Fallica, Jacob; Hanlon, Andrew; Hörz, Ben; Morningstar, Colin
2018-07-01
The elastic I = 1 / 2, s- and p-wave kaon-pion scattering amplitudes are calculated using a single ensemble of anisotropic lattice QCD gauge field configurations with Nf = 2 + 1 flavors of dynamical Wilson-clover fermions at mπ = 230 MeV. A large spatial extent of L = 3.7 fm enables a good energy resolution while partial wave mixing due to the reduced symmetries of the finite volume is treated explicitly. The p-wave amplitude is well described by a Breit-Wigner shape with parameters mK* /mπ = 3.808 (18) and gK*Kπ BW = 5.33 (20) which are insensitive to the inclusion of d-wave mixing and variation of the s-wave parametrization. An effective range description of the near-threshold s-wave amplitude yields mπa0 = - 0.353 (25).
Model-independent partial wave analysis using a massively-parallel fitting framework
NASA Astrophysics Data System (ADS)
Sun, L.; Aoude, R.; dos Reis, A. C.; Sokoloff, M.
2017-10-01
The functionality of GooFit, a GPU-friendly framework for doing maximum-likelihood fits, has been extended to extract model-independent {\\mathscr{S}}-wave amplitudes in three-body decays such as D + → h + h + h -. A full amplitude analysis is done where the magnitudes and phases of the {\\mathscr{S}}-wave amplitudes are anchored at a finite number of m 2(h + h -) control points, and a cubic spline is used to interpolate between these points. The amplitudes for {\\mathscr{P}}-wave and {\\mathscr{D}}-wave intermediate states are modeled as spin-dependent Breit-Wigner resonances. GooFit uses the Thrust library, with a CUDA backend for NVIDIA GPUs and an OpenMP backend for threads with conventional CPUs. Performance on a variety of platforms is compared. Executing on systems with GPUs is typically a few hundred times faster than executing the same algorithm on a single CPU.
Refracted arrival waves in a zone of silence from a finite thickness mixing layer.
Suzuki, Takao; Lele, Sanjiva K
2002-02-01
Refracted arrival waves which propagate in the zone of silence of a finite thickness mixing layer are analyzed using geometrical acoustics in two dimensions. Here, two simplifying assumptions are made: (i) the mean flow field is transversely sheared, and (ii) the mean velocity and temperature profiles approach the free-stream conditions exponentially. Under these assumptions, ray trajectories are analytically solved, and a formula for acoustic pressure amplitude in the far field is derived in the high-frequency limit. This formula is compared with the existing theory based on a vortex sheet corresponding to the low-frequency limit. The analysis covers the dependence on the Mach number as well as on the temperature ratio. The results show that both limits have some qualitative similarities, but the amplitude in the zone of silence at high frequencies is proportional to omega(-1/2), while that at low frequencies is proportional to omega(-3/2), omega being the angular frequency of the source.
Marsden, O; Bogey, C; Bailly, C
2014-03-01
The feasibility of using numerical simulation of fluid dynamics equations for the detailed description of long-range infrasound propagation in the atmosphere is investigated. The two dimensional (2D) Navier Stokes equations are solved via high fidelity spatial finite differences and Runge-Kutta time integration, coupled with a shock-capturing filter procedure allowing large amplitudes to be studied. The accuracy of acoustic prediction over long distances with this approach is first assessed in the linear regime thanks to two test cases featuring an acoustic source placed above a reflective ground in a homogeneous and weakly inhomogeneous medium, solved for a range of grid resolutions. An atmospheric model which can account for realistic features affecting acoustic propagation is then described. A 2D study of the effect of source amplitude on signals recorded at ground level at varying distances from the source is carried out. Modifications both in terms of waveforms and arrival times are described.
NASA Astrophysics Data System (ADS)
Hamilton, Mark F.
1990-12-01
This report discusses five projects all of which involve basic theoretical research in nonlinear acoustics: (1) pulsed finite amplitude sound beams are studied with a recently developed time domain computer algorithm that solves the KZK nonlinear parabolic wave equation; (2) nonlinear acoustic wave propagation in a liquid layer is a study of harmonic generation and acoustic soliton information in a liquid between a rigid and a free surface; (3) nonlinear effects in asymmetric cylindrical sound beams is a study of source asymmetries and scattering of sound by sound at high intensity; (4) effects of absorption on the interaction of sound beams is a completed study of the role of absorption in second harmonic generation and scattering of sound by sound; and (5) parametric receiving arrays is a completed study of parametric reception in a reverberant environment.
Finite-width Laplacian sum rules for 2++ tensor glueball in the instanton vacuum model
NASA Astrophysics Data System (ADS)
Chen, Junlong; Liu, Jueping
2017-01-01
The more carefully defined and more appropriate 2++ tensor glueball current is a S Uc(3 ) gauge-invariant, symmetric, traceless, and conserved Lorentz-irreducible tensor. After Lorentz decomposition, the invariant amplitude of the correlation function is abstracted and calculated based on the semiclassical expansion for quantum chromodynamics (QCD) in the instanton liquid background. In addition to taking the perturbative contribution into account, we calculate the contribution arising from the interaction (or the interference) between instantons and the quantum gluon fields, which is infrared free. Instead of the usual zero-width approximation for the resonances, the Breit-Wigner form with a correct threshold behavior for the spectral function of the finite-width three resonances is adopted. The properties of the 2++ tensor glueball are investigated via a family of the QCD Laplacian sum rules for the invariant amplitude. The values of the mass, decay width, and coupling constants for the 2++ resonance in which the glueball fraction is dominant are obtained.
Distributed support modelling for vertical track dynamic analysis
NASA Astrophysics Data System (ADS)
Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.
2018-04-01
The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.
Rogue waves in multiphase solutions of the focusing nonlinear Schrödinger equation
NASA Astrophysics Data System (ADS)
Bertola, Marco; El, Gennady A.; Tovbis, Alexander
2016-10-01
Rogue waves appearing on deep water or in optical fibres are often modelled by certain breather solutions of the focusing nonlinear Schrödinger (fNLS) equation which are referred to as solitons on finite background (SFBs). A more general modelling of rogue waves can be achieved via the consideration of multiphase, or finite-band, fNLS solutions of whom the standard SFBs and the structures forming due to their collisions represent particular, degenerate, cases. A generalized rogue wave notion then naturally enters as a large-amplitude localized coherent structure occurring within a finite-band fNLS solution. In this paper, we use the winding of real tori to show the mechanism of the appearance of such generalized rogue waves and derive an analytical criterion distinguishing finite-band potentials of the fNLS equation that exhibit generalized rogue waves.
Gaussian impurity moving through a Bose-Einstein superfluid
NASA Astrophysics Data System (ADS)
Pinsker, Florian
2017-09-01
In this paper a finite Gaussian impurity moving through an equilibrium Bose-Einstein condensate at T = 0 is studied. The problem can be described by a Gross-Pitaevskii equation, which is solved perturbatively. The analysis is done for systems of 2 and 3 spatial dimensions. The Bogoliubov equation solutions for the condensate perturbed by a finite impurity are calculated in the co-moving frame. From these solutions the total energy of the perturbed system is determined as a function of the width and the amplitude of the moving Gaussian impurity and its velocity. In addition we derive the drag force the finite sized impurity approximately experiences as it moves through the superfluid, which proves the existence of a superfluid phase for finite extensions of the impurities below the speed of sound. Finally we find that the force increases with velocity until an inflection point from which it decreases again in 2 and 3d.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.
Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less
Chen, Shou-I; Lee, Ming-Hsiao; Yao, Chih-Min; Chen, Peir-Rong; Chou, Yuan-Fang; Liu, Tien-Chen; Song, Yu-Lin; Lee, Chia-Fone
2013-03-01
We have developed a new finite element (FE) model of human right ear, including the accurate geometry of middle ear ossicles, external ear canal, tympanic cavity, and mastoid cavity. The FE model would be suitable to study the dynamic behaviors of pathological middle ear conditions, including changes of stapedial ligament stiffness, tensor tympani ligament (TTL), and tympanic membrane (TM) stiffness and thickness. Increasing stiffness of stapedial ligament has substantial effect on stapes footplate movement, especially at low frequencies, but less effect on umbo movement. Softer TTL will result in increasing umbo and stapes footplate displacement, especially at low frequencies (f<1000Hz). When the TTL was detached, the vibration amplitude of umbo increased by 6dB at 600Hz and two peaks (300 and 600Hz) were found in the vibration amplitude of stapes footplate. Increasing the stiffness of tensor tympani resulted in a slightly decreased umbo amplitude at very low frequencies (f<500Hz) and significantly decreased displacement up to 12dB at middle frequencies (1000Hz
Remillieux, Marcel C.; Ulrich, T. J.; Goodman, Harvey E.; ...
2017-10-18
Here, we study the propagation of a finite-amplitude elastic pulse in a long thin bar of Berea sandstone. In previous work, this type of experiment has been conducted to quantify classical nonlinearity, based on the amplitude growth of the second harmonic as a function of propagation distance. To greatly expand on that early work, a non-contact scanning 3D laser Doppler vibrometer was used to track the evolution of the axial component of the particle velocity over the entire surface of the bar as functions of the propagation distance and source amplitude. With these new measurements, the combined effects of classicalmore » nonlinearity, hysteresis, and nonequilibrium dynamics have all been measured simultaneously. We then show that the numerical resolution of the 1D wave equation with terms for classical nonlinearity and attenuation accurately captures the spectral features of the waves up to the second harmonic. But, for higher harmonics the spectral content is shown to be strongly influenced by hysteresis. This work also shows data which not only quantifies classical nonlinearity but also the nonequilibrium dynamics based on the relative change in the arrival time of the elastic pulse as a function of strain and distance from the source. Finally, a comparison is made to a resonant bar measurement, a reference experiment used to quantify nonequilibrium dynamics, based on the relative shift of the resonance frequencies as a function of the maximum dynamic strain in the sample.« less
Genetic particle swarm parallel algorithm analysis of optimization arrangement on mistuned blades
NASA Astrophysics Data System (ADS)
Zhao, Tianyu; Yuan, Huiqun; Yang, Wenjun; Sun, Huagang
2017-12-01
This article introduces a method of mistuned parameter identification which consists of static frequency testing of blades, dichotomy and finite element analysis. A lumped parameter model of an engine bladed-disc system is then set up. A bladed arrangement optimization method, namely the genetic particle swarm optimization algorithm, is presented. It consists of a discrete particle swarm optimization and a genetic algorithm. From this, the local and global search ability is introduced. CUDA-based co-evolution particle swarm optimization, using a graphics processing unit, is presented and its performance is analysed. The results show that using optimization results can reduce the amplitude and localization of the forced vibration response of a bladed-disc system, while optimization based on the CUDA framework can improve the computing speed. This method could provide support for engineering applications in terms of effectiveness and efficiency.
NASA Astrophysics Data System (ADS)
Teter, Andrzej; Kolakowski, Zbigniew
2018-01-01
The numerical modelling of a plate structure was performed with the finite element method and a one-mode approach based on Koiter's method. The first order approximation of Koiter's method enables one to solve the eigenvalue problem. The second order approximation describes post-buckling equilibrium paths. In the finite element analysis, the Lanczos method was used to solve the linear problem of buckling. Simulations of the non-linear problem were performed with the Newton-Raphson method. Detailed calculations were carried out for a short Z-column made of general laminates. Configurations of laminated layers were non-symmetric. Due to possibilities of its application, the general laminate is very interesting. The length of the samples was chosen to obtain the lowest value of local buckling load. The amplitude of initial imperfections was 10% of the wall thickness. Thin-walled structures were simply supported on both ends. The numerical results were verified in experimental tests. A strain-gauge technique was applied. A static compression test was performed on a universal testing machine and a special grip, which consisted of two rigid steel plates and clamping sleeves, was used. Specimens were obtained with an autoclave technique. Tests were performed at a constant velocity of the cross-bar equal to 2 mm/min. The compressive load was less than 150% of the bifurcation load. Additionally, soft and thin pads were used to reduce inaccuracy of the sample ends.
NASA Astrophysics Data System (ADS)
Roten, D.; Fäh, D.; Bonilla, L. F.
2013-05-01
Ground motions of the 2011 Tohoku earthquake recorded at Onahama port (Iwaki, Fukushima prefecture) rank among the highest accelerations ever observed, with the peak amplitude of the 3-D acceleration vector approaching 2g. The response of the site was distinctively non-linear, as indicated by the presence of horizontal acceleration spikes which have been linked to cyclic mobility during similar observations. Compared to records of weak ground motions, the response of the site during the Mw 9.1 earthquake was characterized by increased amplification at frequencies above 10 Hz and in peak ground acceleration. This behaviour contrasts with the more common non-linear response encountered at non-liquefiable sites, which results in deamplification at higher frequencies. We simulate propagation of SH waves through the dense sand deposit using a non-linear finite difference code that is capable of modelling the development of excess pore water pressure. Dynamic soil parameters are calibrated using a direct search method that minimizes the difference between observed and simulated acceleration envelopes and response spectra. The finite difference simulations yield surface acceleration time-series that are consistent with the observations in shape and amplitude, pointing towards soil dilatancy as a likely explanation for the high-frequency pulses recorded at Onahama port. The simulations also suggest that the occurrence of high-frequency spikes coincided with a rapid increase in pore water pressure in the upper part of the sand deposit between 145 and 170 s. This sudden increase is possibly linked to a burst of high-frequency energy from a large slip patch below the Iwaki region.
Parameters estimation of sandwich beam model with rigid polyurethane foam core
NASA Astrophysics Data System (ADS)
Barbieri, Nilson; Barbieri, Renato; Winikes, Luiz Carlos
2010-02-01
In this work, the physical parameters of sandwich beams made with the association of hot-rolled steel, Polyurethane rigid foam and High Impact Polystyrene, used for the assembly of household refrigerators and food freezers are estimated using measured and numeric frequency response functions (FRFs). The mathematical models are obtained using the finite element method (FEM) and the Timoshenko beam theory. The physical parameters are estimated using the amplitude correlation coefficient and genetic algorithm (GA). The experimental data are obtained using the impact hammer and four accelerometers displaced along the sample (cantilevered beam). The parameters estimated are Young's modulus and the loss factor of the Polyurethane rigid foam and the High Impact Polystyrene.
Advanced stability analysis for laminar flow control
NASA Technical Reports Server (NTRS)
Orszag, S. A.
1981-01-01
Five classes of problems are addressed: (1) the extension of the SALLY stability analysis code to the full eighth order compressible stability equations for three dimensional boundary layer; (2) a comparison of methods for prediction of transition using SALLY for incompressible flows; (3) a study of instability and transition in rotating disk flows in which the effects of Coriolis forces and streamline curvature are included; (4) a new linear three dimensional instability mechanism that predicts Reynolds numbers for transition to turbulence in planar shear flows in good agreement with experiment; and (5) a study of the stability of finite amplitude disturbances in axisymmetric pipe flow showing the stability of this flow to all nonlinear axisymmetric disturbances.
Loop Variables in String Theory
NASA Astrophysics Data System (ADS)
Sathiapalan, B.
The loop variable approach is a proposal for a gauge-invariant generalization of the sigma-model renormalization group method of obtaining equations of motion in string theory. The basic guiding principle is space-time gauge invariance rather than world sheet properties. In essence it is a version of Wilson's exact renormalization group equation for the world sheet theory. It involves all the massive modes and is defined with a finite world sheet cutoff, which allows one to go off the mass-shell. On shell the tree amplitudes of string theory are reproduced. The equations are gauge-invariant off shell also. This paper is a self-contained discussion of the loop variable approach as well as its connection with the Wilsonian RG.
Vibration analysis and sound field characteristics of a tubular ultrasonic radiator.
Liang, Zhaofeng; Zhou, Guangping; Zhang, Yihui; Li, Zhengzhong; Lin, Shuyu
2006-12-01
A sort of tubular ultrasonic radiator used in ultrasonic liquid processing is studied. The frequency equation of the tubular radiator is derived, and its radiated sound field in cylindrical reactor is calculated using finite element method and recorded by means of aluminum foil erosion. The results indicate that sound field of tubular ultrasonic radiator in cylindrical reactor appears standing waves along both its radial direction and axial direction, and amplitudes of standing waves decrease gradually along its radial direction, and the numbers of standing waves along its axial direction are equal to the axial wave numbers of tubular radiator. The experimental results are in good agreement with calculated results.
Electronic and optical properties of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems
NASA Astrophysics Data System (ADS)
Amini, M.; Soleimani, M.; Ehsani, M. H.
2017-12-01
We numerically investigated the optical rectification coefficients (ORCs), transmission coefficient, energy levels and corresponding eigen-functions of GaAs/AlGaAs Fibonacci ordered multiple quantum well systems (FO-MQWs) in the presence of an external electric field. In our calculations, two different methods, including transfer matrix and finite-difference have been used. It has been illustrated that with three types of the FO-MQWs, presented here, localization of the wave-function in any position of the structure is possible. Therefore, managing the electron distribution within the system is easier now. Finally, using the presented structures we could tune the position and amplitude of the ORCs.
Oya, Masayuki; Kishikawa, Hiroki; Goto, Nobuo; Yanagiya, Shin-ichiro
2012-11-19
At routing nodes in future photonic networks, pico-second switching will be a key function. We propose an all-optical switch consisting of two-stage Mach-Zehnder interferometers, whose arms contain graphene saturable absorption films. Optical amplitudes along the interferometers are controlled to perform switching between two output ports instead of phase control used in conventional switches. Since only absorption is used for realizing complete switching, insertion loss of 10.2 dB is accompanied in switching. Picosecond response can be expected because of the fast response of saturable absorption of graphene. The switching characteristics are theoretically analyzed and numerically simulated by the finite-difference beam propagation method (FD-BPM).
NASA Astrophysics Data System (ADS)
Nayak, Avinash; Taira, Taka'aki; Dreger, Douglas S.; Gritto, Roland
2018-04-01
We retrieve empirical Green's functions in the frequency range (˜0.2-0.9 Hz) for interstation distances ranging from ˜1 to ˜30 km (˜0.22 to ˜6.5 times the wavelength) at The Geysers geothermal field, Northern California, from coherency of ambient seismic noise being recorded by a variety of sensors (broad-band, short-period surface and borehole sensors, and one accelerometer). The applied methodology preserves the intercomponent relative amplitudes of the nine-component Green's tensor that allows us to directly compare noise-derived Green's functions (NGFs) with normalized displacement waveforms of complete single-force synthetic Green's functions (SGFs) computed with various 1-D and 3-D velocity models using the frequency-wavenumber integration method and a 3-D finite-difference wave propagation method, respectively. These comparisons provide an effective means of evaluating the suitability of different velocity models to different regions of The Geysers, and assessing the quality of the sensors and the NGFs. In the T-Tangential, R-Radial, Z-Vertical reference frame, the TT, RR, RZ, ZR and ZZ components (first component: force direction, second component: response direction) of NGFs show clear surface waves and even body-wave phases for many station pairs. They are also broadly consistent in phase and intercomponent relative amplitudes with SGFs for the known local seismic velocity structure that was derived primarily from body-wave traveltime tomography, even at interstation distances less than one wavelength. We also find anomalous large amplitudes in TR, TZ, RT and ZT components of NGFs at small interstation distances (≲4 km) that can be attributed to ˜10°-30° sensor misalignments at many stations inferred from analysis of longer period teleseismic waveforms. After correcting for sensor misalignments, significant residual amplitudes in these components for some longer interstation distance (≳8 km) paths are better reproduced by the 3-D velocity model than by the 1-D models incorporating known values and fast axis directions of crack-induced VS anisotropy in the geothermal field. We also analyse the decay of Fourier spectral amplitudes of the TT component of NGFs at 0.72 Hz with distance in terms of geometrical spreading and attenuation. While there is considerable scatter in the NGF amplitudes, we find the average decay to be consistent with the decay expected from SGF amplitudes and with the decay of tangential component local-earthquake ground-motion amplitudes with distance at the same frequency.
Nonlinear Instability of Hypersonic Flow Past a Wedge
1991-07-01
development of a finite amplitude TS wave whose leading order wavenumbers in the streamwise and spanwise directions are a and Pl respectively and whose...was supported by SERC under Contract No. XG-10176. 23 APPENDIX In this appendix we summarise the results of manipulating (4.28) and using the first
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zlotnikov, Michael
We develop a polynomial reduction procedure that transforms any gauge fixed CHY amplitude integrand for n scattering particles into a σ-moduli multivariate polynomial of what we call the standard form. We show that a standard form polynomial must have a specific ladder type monomial structure, which has finite size at any n, with highest multivariate degree given by (n – 3)(n – 4)/2. This set of monomials spans a complete basis for polynomials with rational coefficients in kinematic data on the support of scattering equations. Subsequently, at tree and one-loop level, we employ the global residue theorem to derive amore » prescription that evaluates any CHY amplitude by means of collecting simple residues at infinity only. Furthermore, the prescription is then applied explicitly to some tree and one-loop amplitude examples.« less
Stability Study on Steel Structural Columns with Initial Blast Damage under High Temperatures
NASA Astrophysics Data System (ADS)
Baoxin, Qi; Yan, Shi; Li, Peng
2018-03-01
Blast may bring light-weight steel columns with initial damages, resulting in lowering its critical fire-resistance temperature whose reduced amplitude is relevant to the form and degree of the damages. Finite element analysis software ANSYS was used in the paper to analyze the issue of the fire-resistance temperature of the column with the blast damages, and the coupling method for heat and structure was applied during the simulation. The emphasis was laid on parametric factors of axial compression ratio, the form and the degree of the initial damages, as well as the confined condition at the ends of the columns. The numerical results showed that the fire-resistance temperature will lower as increasing of the axial compression ratio, the form and the degree of the initial damages and it will be also affected by the restraint conditions at the ends of the columns. The critical stress formula with initial bending damage under elevated temperature was set up under flexural small deformation condition, then the stability coefficient was determined and the method for evaluating the limit temperature of the column was put forward. The theoretical result was also compared with that of the finite element method (FEM). The results both showed that the stability capacity for the damaged columns was dramatically reduced as increasing the temperature and the initial damage level.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He Guangjun; Duan Wenshan; Tian Duoxiang
2008-04-15
For unmagnetized dusty plasma with many different dust grain species containing both hot isothermal electrons and ions, both the linear dispersion relation and the Kadomtsev-Petviashvili equation for small, but finite amplitude dust acoustic waves are obtained. The linear dispersion relation is investigated numerically. Furthermore, the variations of amplitude, width, and propagation velocity of the nonlinear solitary wave with an arbitrary dust size distribution function are studied as well. Moreover, both the power law distribution and the Gaussian distribution are approximately simulated by using appropriate arbitrary dust size distribution functions.
Testing subleading multiple soft graviton theorem for CHY prescription
NASA Astrophysics Data System (ADS)
Chakrabarti, Subhroneel; Kashyap, Sitender Pratap; Sahoo, Biswajit; Sen, Ashoke; Verma, Mritunjay
2018-01-01
In arXiv:1707.06803 we derived the subleading multiple soft graviton theorem in a generic quantum theory of gravity for arbitrary number of soft external gravitons and arbitrary number of finite energy external states carrying arbitrary mass and spin. In this paper we verify this explicitly using the CHY formula for tree level scattering amplitudes of arbitrary number of gravitons in Einstein gravity. We pay special care to fix the signs of the amplitudes and resolve an apparent discrepancy between our general results in arXiv:1707.06803 and previous results on soft graviton theorem from CHY formula.
NASA Astrophysics Data System (ADS)
Heremans, J. J.; Ren, S. L.; Zhang, Yao; Gaspe, C. K.; Vijeyaragunathan, S.; Mishima, T. D.; Santos, M. B.
2014-03-01
Aharonov-Bohm oscillations in the low-temperature magnetoresistance of mesoscopic interferometric rings are investigated for their dependence on bias current and temperature, and to explore origins of the observed amplitude modulation in magnetic field. Single-ring interferometers of radius 650 nm and lithographic arm width 300 nm were fabricated on a high-mobility high-density InGaAs/InAlAs heterostructure. The rings show interference oscillations over a wide range of magnetic fields, with amplitudes subject to modulation with applied magnetic field. The quantum phase coherence length is extracted by analysis of the fundamental and higher Fourier components of the oscillations, and by comparative study of the amplitude. The variation of the amplitude with bias current and temperature shows the existence of a critical excitation energy consistent with the Thouless energy for quantum phase smearing. Autocorrelation and Fourier analysis are used to determine the quasi-period of the amplitude modulation, which is found to be consistent with an origin in the magnetic flux threading the finite width of the interferometer arms, changing the mesoscopic realization of the system. Supported by DOE DE-FG02-08ER46532 (VT) and NSF DMR-0520550 (UoO).
NASA Astrophysics Data System (ADS)
Ahmed, S. Jbara; Zulkafli, Othaman; M, A. Saeed
2016-05-01
Based on the Schrödinger equation for envelope function in the effective mass approximation, linear and nonlinear optical absorption coefficients in a multi-subband lens quantum dot are investigated. The effects of quantum dot size on the interband and intraband transitions energy are also analyzed. The finite element method is used to calculate the eigenvalues and eigenfunctions. Strain and In-mole-fraction effects are also studied, and the results reveal that with the decrease of the In-mole fraction, the amplitudes of linear and nonlinear absorption coefficients increase. The present computed results show that the absorption coefficients of transitions between the first excited states are stronger than those of the ground states. In addition, it has been found that the quantum dot size affects the amplitudes and peak positions of linear and nonlinear absorption coefficients while the incident optical intensity strongly affects the nonlinear absorption coefficients. Project supported by the Ministry of Higher Education and Scientific Research in Iraq, Ibnu Sina Institute and Physics Department of Universiti Teknologi Malaysia (UTM RUG Vote No. 06-H14).
Radar wideband digital beamforming based on time delay and phase compensation
NASA Astrophysics Data System (ADS)
Fu, Wei; Jiang, Defu
2018-07-01
In conventional phased array radars, analogue time delay devices and phase shifters have been used for wideband beamforming. These methods suffer from insertion losses, gain mismatches and delay variations, and they occupy a large chip area. To solve these problems, a compact architecture of digital array antennas based on subarrays was considered. In this study, the receiving beam patterns of wideband linear frequency modulation (LFM) signals were constructed by applying analogue stretch processing via mixing with delayed reference signals at the subarray level. Subsequently, narrowband digital time delaying and phase compensation of the tone signals were implemented with reduced arithmetic complexity. Due to the differences in amplitudes, phases and time delays between channels, severe performance degradation of the beam patterns occurred without corrections. To achieve good beamforming performance, array calibration was performed in each channel to adjust the amplitude, frequency and phase of the tone signal. Using a field-programmable gate array, wideband LFM signals and finite impulse response filters with continuously adjustable time delays were implemented in a polyphase structure. Simulations and experiments verified the feasibility and effectiveness of the proposed digital beamformer.
NASA Astrophysics Data System (ADS)
Xu, Lei; Zhai, Wanming; Gao, Jianmin
2017-11-01
Track irregularities are inevitably in a process of stochastic evolution due to the uncertainty and continuity of wheel-rail interactions. For depicting the dynamic behaviours of vehicle-track coupling system caused by track random irregularities thoroughly, it is a necessity to develop a track irregularity probabilistic model to simulate rail surface irregularities with ergodic properties on amplitudes, wavelengths and probabilities, and to build a three-dimensional vehicle-track coupled model by properly considering the wheel-rail nonlinear contact mechanisms. In the present study, the vehicle-track coupled model is programmed by combining finite element method with wheel-rail coupling model firstly. Then, in light of the capability of power spectral density (PSD) in characterising amplitudes and wavelengths of stationary random signals, a track irregularity probabilistic model is presented to reveal and simulate the whole characteristics of track irregularity PSD. Finally, extended applications from three aspects, that is, extreme analysis, reliability analysis and response relationships between dynamic indices, are conducted to the evaluation and application of the proposed models.
NASA Technical Reports Server (NTRS)
Geissler, W.
1983-01-01
A finite difference method has been developed to calculate the unsteady boundary layer over an oscillating flat plate. Low- and high frequency approximations were used for comparison with numerical results. Special emphasis was placed on the behavior of the flow and on the numerical calculation procedure as soon as reversed flow has occurred over part of the oscillation cycle. The numerical method displayed neither problems nor singular behavior at the beginning of or within the reversed flow region. Calculations, however, came to a limit where the back-flow region reached the plate's leading edge in the case of high oscillation amplitudes. It is assumed that this limit is caused by the special behavior of the flow at the plate's leading edge where the boundary layer equations are not valid.
Magnetotelluric inversion via reverse time migration algorithm of seismic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Taeyoung; Shin, Changsoo
2007-07-01
We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversionmore » algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.« less
NASA Astrophysics Data System (ADS)
Zheng, Yibo; Zhang, Lei; Wang, Yuan
2017-10-01
In this letter, surface plasmon resonance sensors based on grapefruit-type photonic crystal fiber (PCF)with different silver nano-filling structure have been analyzed and compared though the finite element method (FEM). The regularity of the resonant wavelength changing with refractive index of the sample has been numerically simulated. The surface plasmon resonance (SPR) sensing properties have been numerically simulated in both areas of resonant wavelength and intensity detection. Numerical results show that excellent sensor resolution of 4.17×10-5RIU can be achieved as the radius of the filling silver nanowires is 150 nm by spectrum detection method. Comprehensive comparison indicates that the 150 nm silver wire filling structure is suitable for spectrum detection and 30 nm silver film coating structure is suitable for the amplitude detection.
Linear and nonlinear pattern selection in Rayleigh-Benard stability problems
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
1993-01-01
A new algorithm is introduced to compute finite-amplitude states using primitive variables for Rayleigh-Benard convection on relatively coarse meshes. The algorithm is based on a finite-difference matrix-splitting approach that separates all physical and dimensional effects into one-dimensional subsets. The nonlinear pattern selection process for steady convection in an air-filled square cavity with insulated side walls is investigated for Rayleigh numbers up to 20,000. The internalization of disturbances that evolve into coherent patterns is investigated and transient solutions from linear perturbation theory are compared with and contrasted to the full numerical simulations.
Rapid magnetic reconnection caused by finite amplitude fluctuations
NASA Technical Reports Server (NTRS)
Matthaeus, W. H.; Lamkin, S. L.
1985-01-01
The nonlinear dynamics of the magnetohydrodynamic sheet pinch have been investigated as an unforced initial value problem for large scale Reynolds numbers up to 1000. Reconnection is triggered by adding to the sheet pinch a small but finite level of broadband random perturbations. Effects of turbulence in the solutions include the production of reconnected magnetic islands at rates that are insensitive to resistivity at early times. This is explained by noting that electric field fluctuations near the X point produce irregularities in the vector potential, sometimes taking the form of 'magnetic bubbles', which allow rapid change of field topology.
NASA Astrophysics Data System (ADS)
Datta, Abhishek; Zhou, Xiang; Su, Yuzhou; Parra, Lucas C.; Bikson, Marom
2013-06-01
Objective. During transcranial electrical stimulation, current passage across the scalp generates voltage across the scalp surface. The goal was to characterize these scalp voltages for the purpose of validating subject-specific finite element method (FEM) models of current flow. Approach. Using a recording electrode array, we mapped skin voltages resulting from low-intensity transcranial electrical stimulation. These voltage recordings were used to compare the predictions obtained from the high-resolution model based on the subject undergoing transcranial stimulation. Main results. Each of the four stimulation electrode configurations tested resulted in a distinct distribution of scalp voltages; these spatial maps were linear with applied current amplitude (0.1 to 1 mA) over low frequencies (1 to 10 Hz). The FEM model accurately predicted the distinct voltage distributions and correlated the induced scalp voltages with current flow through cortex. Significance. Our results provide the first direct model validation for these subject-specific modeling approaches. In addition, the monitoring of scalp voltages may be used to verify electrode placement to increase transcranial electrical stimulation safety and reproducibility.
Investigation of a Parabolic Iterative Solver for Three-dimensional Configurations
NASA Technical Reports Server (NTRS)
Nark, Douglas M.; Watson, Willie R.; Mani, Ramani
2007-01-01
A parabolic iterative solution procedure is investigated that seeks to extend the parabolic approximation used within the internal propagation module of the duct noise propagation and radiation code CDUCT-LaRC. The governing convected Helmholtz equation is split into a set of coupled equations governing propagation in the positive and negative directions. The proposed method utilizes an iterative procedure to solve the coupled equations in an attempt to account for possible reflections from internal bifurcations, impedance discontinuities, and duct terminations. A geometry consistent with the NASA Langley Curved Duct Test Rig is considered and the effects of acoustic treatment and non-anechoic termination are included. Two numerical implementations are studied and preliminary results indicate that improved accuracy in predicted amplitude and phase can be obtained for modes at a cut-off ratio of 1.7. Further predictions for modes at a cut-off ratio of 1.1 show improvement in predicted phase at the expense of increased amplitude error. Possible methods of improvement are suggested based on analytic and numerical analysis. It is hoped that coupling the parabolic iterative approach with less efficient, high fidelity finite element approaches will ultimately provide the capability to perform efficient, higher fidelity acoustic calculations within complex 3-D geometries for impedance eduction and noise propagation and radiation predictions.
Resolving the fine-scale structure in turbulent Rayleigh-Bénard convection
NASA Astrophysics Data System (ADS)
Scheel, Janet D.; Emran, Mohammad S.; Schumacher, Jörg
2013-11-01
We present high-resolution direct numerical simulation studies of turbulent Rayleigh-Bénard convection in a closed cylindrical cell with an aspect ratio of one. The focus of our analysis is on the finest scales of convective turbulence, in particular the statistics of the kinetic energy and thermal dissipation rates in the bulk and the whole cell. The fluctuations of the energy dissipation field can directly be translated into a fluctuating local dissipation scale which is found to develop ever finer fluctuations with increasing Rayleigh number. The range of these scales as well as the probability of high-amplitude dissipation events decreases with increasing Prandtl number. In addition, we examine the joint statistics of the two dissipation fields and the consequences of high-amplitude events. We have also investigated the convergence properties of our spectral element method and have found that both dissipation fields are very sensitive to insufficient resolution. We demonstrate that global transport properties, such as the Nusselt number, and the energy balances are partly insensitive to insufficient resolution and yield correct results even when the dissipation fields are under-resolved. Our present numerical framework is also compared with high-resolution simulations which use a finite difference method. For most of the compared quantities the agreement is found to be satisfactory.
NASA Astrophysics Data System (ADS)
Farrell, Brian F.; Ioannou, Petros J.; Nikolaidis, Marios-Andreas
2017-03-01
Although the roll-streak structure is ubiquitous in both observations and simulations of pretransitional wall-bounded shear flow, this structure is linearly stable if the idealization of laminar flow is made. Lacking an instability, the large transient growth of the roll-streak structure has been invoked to explain its appearance as resulting from chance occurrence in the background turbulence of perturbations configured to optimally excite it. However, there is an alternative interpretation for the role of free-stream turbulence in the genesis of the roll-streak structure, which is that the background turbulence interacts with the roll-streak structure to destabilize it. Statistical state dynamics (SSD) provides analysis methods for studying instabilities of this type that arise from interaction between the coherent and incoherent components of turbulence. SSD in the form of a closure at second order is used in this work to analyze the cooperative eigenmodes arising from interaction between the coherent streamwise invariant component and the incoherent background component of turbulence. In pretransitional Couette flow a manifold of stable modes with roll-streak form is found to exist in the presence of low-intensity background turbulence. The least stable mode of this manifold is destabilized at a critical value of a parameter controlling the background turbulence intensity and a finite-amplitude roll-streak structure arises from this instability through a bifurcation in this parameter. Although this bifurcation has analytical expression only in the infinite ensemble formulation of second order SSD, referred in this work as the S3T system, it is closely reflected in numerical simulations of both the dynamically similar quasilinear system, referred to as the restricted nonlinear (RNL) system, as well as in the full Navier-Stokes equations. This correspondence is verified using ensemble implementations of the RNL system and the Navier-Stokes equations. The S3T system also predicts a second bifurcation at a higher value of the turbulent excitation parameter that results in destabilization of the finite-amplitude roll-streak equilibria. This second bifurcation is shown to lead first to time dependence of the roll-streak structure in the S3T system and then to chaotic fluctuation corresponding to minimal channel turbulence. This transition scenario is also verified in simulations of the RNL system and of the Navier-Stokes equations. This bifurcation from a finite-amplitude roll-streak equilibrium provides a direct route to the turbulent state through the S3T roll-streak instability.
NASA Astrophysics Data System (ADS)
Furlong, Cosme; Pryputniewicz, Ryszard J.
1995-06-01
The basic relationships between stress and strain under cyclic conditions of loading are not at present well understood. It would seem that information of this type is vital for a fundamental approach to understand the fatigue behavior of dynamically loaded structures. In this paper, experimental and computational methods are utilized to study the fatigue behavior of a thin aluminum cantilever plate subjected to dynamic loading. The studies are performed by combining optomechanical and finite element methods. The cantilever plate is loaded periodically by excitation set at a fixed amplitude and at a specific resonance frequency of the plate. By continuously applying this type of loading and using holographic interferometry, the behavior of the plate during a specific period of time is investigated. Quantitative information is obtained from laser vibrometry data which are utilized by a finite element program to calculate strains and stresses assuming a homogeneous and isotropic material and constant strain elements. It is shown that the use of experimental and computational hybrid methodologies allows identification of different zones of the plate that are fatigue critical. This optomechanical approach proves to be a viable tool for understanding of fatigue behavior of mechanical components and for performing optimization of structures subjected to fatigue conditions.
Simulations of viscous and compressible gas-gas flows using high-order finite difference schemes
NASA Astrophysics Data System (ADS)
Capuano, M.; Bogey, C.; Spelt, P. D. M.
2018-05-01
A computational method for the simulation of viscous and compressible gas-gas flows is presented. It consists in solving the Navier-Stokes equations associated with a convection equation governing the motion of the interface between two gases using high-order finite-difference schemes. A discontinuity-capturing methodology based on sensors and a spatial filter enables capturing shock waves and deformable interfaces. One-dimensional test cases are performed as validation and to justify choices in the numerical method. The results compare well with analytical solutions. Shock waves and interfaces are accurately propagated, and remain sharp. Subsequently, two-dimensional flows are considered including viscosity and thermal conductivity. In Richtmyer-Meshkov instability, generated on an air-SF6 interface, the influence of the mesh refinement on the instability shape is studied, and the temporal variations of the instability amplitude is compared with experimental data. Finally, for a plane shock wave propagating in air and impacting a cylindrical bubble filled with helium or R22, numerical Schlieren pictures obtained using different grid refinements are found to compare well with experimental shadow-photographs. The mass conservation is verified from the temporal variations of the mass of the bubble. The mean velocities of pressure waves and bubble interface are similar to those obtained experimentally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heller, René; Albrecht, Simon, E-mail: rheller@physics.mcmaster.ca, E-mail: albrecht@phys.au.dk
We present two methods to determine an exomoon's sense of orbital motion (SOM), one with respect to the planet's circumstellar orbit and one with respect to the planetary rotation. Our simulations show that the required measurements will be possible with the European Extremely Large Telescope (E-ELT). The first method relies on mutual planet-moon events during stellar transits. Eclipses with the moon passing behind (in front of) the planet will be late (early) with regard to the moon's mean orbital period due to the finite speed of light. This ''transit timing dichotomy'' (TTD) determines an exomoon's SOM with respect to themore » circumstellar motion. For the 10 largest moons in the solar system, TTDs range between 2 and 12 s. The E-ELT will enable such measurements for Earth-sized moons around nearby Sun-like stars. The second method measures distortions in the IR spectrum of the rotating giant planet when it is transited by its moon. This Rossiter-McLaughlin effect (RME) in the planetary spectrum reveals the angle between the planetary equator and the moon's circumplanetary orbital plane, and therefore unveils the moon's SOM with respect to the planet's rotation. A reasonably large moon transiting a directly imaged planet like β Pic b causes an RME amplitude of almost 100 m s{sup –1}, about twice the stellar RME amplitude of the transiting exoplanet HD209458 b. Both new methods can be used to probe the origin of exomoons, that is, whether they are regular or irregular in nature.« less
NASA Astrophysics Data System (ADS)
Nayfeh, A. H.
1983-09-01
An analysis is presented of the response of multidegree-of-freedom systems with quadratic non-linearities to a harmonic parametric excitation in the presence of an internal resonance of the combination type ω3 ≈ ω2 + ω1, where the ωn are the linear natural frequencies of the systems. In the case of a fundamental resonance of the third mode (i.e., Ω ≈ω 3, where Ω is the frequency of the excitation), one can identify two critical values ζ 1 and ζ 2, where ζ 2 ⩾ ζ 1, of the amplitude F of the excitation. The value F = ζ2 corresponds to the transition from stable to unstable solutions. When F < ζ1, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but the non-linearity limits the motion to a finite amplitude steady state. The amplitude of the third mode, which is directly excited, is independent of F, whereas the amplitudes of the first and second modes, which are indirectly excited through the internal resonance, are functions of F. When ζ1 ⩽ F ⩽ ζ2, the motion decays or achieves a finite amplitude steady state depending on the initial conditions according to the non-linear theory, whereas it decays to zero according to the linear theory. This is an example of subcritical instability. In the case of a fundamental resonance of either the first or second mode, the trivial response is the only possible steady state. When F ⩽ ζ2, the motion decays to zero according to both linear and non-linear theories. When F > ζ2, the motion grows exponentially with time according to the linear theory but it is aperiodic according to the non-linear theory. Experiments are being planned to check these theoretical results.
On the stability of lumps and wave collapse in water waves.
Akylas, T R; Cho, Yeunwoo
2008-08-13
In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg-de Vries solitary waves, the present study is concerned with a distinct class of gravity-capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney-Roskes-Davey-Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev-Petviashvili equation, a model for weakly nonlinear gravity-capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.
Moon, Hyungwon; Kumar, Dinesh; Kim, Haemin; Sim, Changbeom; Chang, Jin-Ho; Kim, Jung-Mu; Kim, Hyuncheol; Lim, Dong-Kwon
2015-03-24
We report a strongly amplified photoacoustic (PA) performance of the new functional hybrid material composed of reduced graphene oxide and gold nanorods. Due to the excellent NIR light absorption properties of the reduced graphene oxide coated gold nanorods (r-GO-AuNRs) and highly efficient heat transfer process through the reduced graphene oxide layer, r-GO-AuNRs exhibit excellent photothermal stability and significantly higher photoacoustic amplitudes than those of bare-AuNRs, nonreduced graphene oxide coated AuNRs (GO-AuNRs), or silica-coated AuNR, as demonstrated in both in vitro and in vivo systems. The linear response of PA amplitude from reduced state controlled GO on AuNR indicates the critical role of GO for a strong photothermal effect of r-GO-AuNRs. Theoretical studies with finite-element-method lab-based simulation reveal that a 4 times higher magnitude of the enhanced electromagnetic field around r-GO-AuNRs can be generated compared with bare AuNRs or GO-AuNRs. Furthermore, the r-GO-AuNRs are expected to be a promising deep-tissue imaging probe because of extraordinarily high PA amplitudes in the 4-11 MHz operating frequency of an ultrasound transducer. Therefore, the r-GO-AuNRs can be a useful imaging probe for highly sensitive photoacoustic images and NIR sensitive therapeutics based on a strong photothermal effect.
NASA Astrophysics Data System (ADS)
Gao, Donghong
Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves can be established only on near inlet region and they decay to nearly zero amplitude ripple on the far downstream region. At both film conditions, the wave traveling velocity is reduced by the MHD drag from field gradient. The code is also used to explore the exit-pipe and first wall conceptual designs for fusion reactor being proposed in the APEX program. It is seen that the field gradient restrains and lifts up the flow to the whole channel in the exit-pipe high field gradient condition, but an applied streamwise current can propel the flow through the gradient region. The Sn jet flow with high inertia is able to overcome the inverted gravity and MHD induction to form the desired protection liquid layer on top of the first wall.
Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models
NASA Astrophysics Data System (ADS)
Ruan, Y.; Zhou, Y.
2010-12-01
It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement techniques. We calculate 3-D finite-frequency sensitivity of surface-wave amplitude to perturbations in wave speed and anelasticity (Q) which fully account for the effects of elastic focusing, attenuation, anelastic focusing as well as measurement techniques. We show that amplitude perturbations calculated using wave speed and Q sensitivity kernels agree reasonably well with SEM measurements and therefore the sensitivity kernels can be used in a joint inversion of seismic phase delays and amplitudes to simultaneously image high resolution 3-D wave speed and 3-D Q structures in the upper mantle.
Application of laser ultrasonic method for on-line monitoring of friction stir spot welding process.
Zhang, Kuanshuang; Zhou, Zhenggan; Zhou, Jianghua
2015-09-01
Application of a laser ultrasonic method is developed for on-line monitoring of the friction stir spot welding (FSSW) process. Based on the technology of FSSW, laser-generated ultrasonic waves in a good weld and nonweld area are simulated by a finite element method. The reflected and transmitted waves are analyzed to disclose the properties of the welded interface. The noncontact-laser ultrasonic-inspection system was established to verify the numerical results. The reflected waves in the good-weld and nonweld area can be distinguished by time-of-flight. The transmitted waves evidently attenuate in the nonweld area in contrast to signal amplitude in the good weld area because of interfacial impedance difference. Laser ultrasonic C-scan images can sufficiently evaluate the intrinsic character of the weld area in comparison with traditional water-immersion ultrasonic testing results. The research results confirm that laser ultrasonics would be an effective method to realize the characterization of FSSW defects.
Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy
NASA Astrophysics Data System (ADS)
Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei
2015-06-01
We studied the lattice vibrations of two interpenetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. As the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a nonzero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a "devil's staircase" behavior at a finite temperature.
Magnitude of parallel pseudo potential in a magnetosonic shock wave
NASA Astrophysics Data System (ADS)
Ohsawa, Yukiharu
2018-05-01
The parallel pseudo potential F, which is the integral of the parallel electric field along the magnetic field, in a large-amplitude magnetosonic pulse (shock wave) is theoretically studied. Particle simulations revealed in the late 1990's that the product of the elementary charge and F can be much larger than the electron temperature in shock waves, i.e., the parallel electric field can be quite strong. However, no theory was presented for this unexpected result. This paper first revisits the small-amplitude theory for F and then investigates the parallel pseudo potential F in large-amplitude pulses based on the two-fluid model with finite thermal pressures. It is found that the magnitude of F in a shock wave is determined by the wave amplitude, the electron temperature, and the kinetic energy of an ion moving with the Alfvén speed. This theoretically obtained expression for F is nearly identical to the empirical relation for F discovered in the previous simulation work.
Hoang, Thai M.; Bharath, Hebbe M.; Boguslawski, Matthew J.; Anquez, Martin; Robbins, Bryce A.; Chapman, Michael S.
2016-01-01
Spontaneous symmetry breaking occurs in a physical system whenever the ground state does not share the symmetry of the underlying theory, e.g., the Hamiltonian. This mechanism gives rise to massless Nambu–Goldstone modes and massive Anderson–Higgs modes. These modes provide a fundamental understanding of matter in the Universe and appear as collective phase or amplitude excitations of an order parameter in a many-body system. The amplitude excitation plays a crucial role in determining the critical exponents governing universal nonequilibrium dynamics in the Kibble–Zurek mechanism (KZM). Here, we characterize the amplitude excitations in a spin-1 condensate and measure the energy gap for different phases of the quantum phase transition. At the quantum critical point of the transition, finite-size effects lead to a nonzero gap. Our measurements are consistent with this prediction, and furthermore, we demonstrate an adiabatic quench through the phase transition, which is forbidden at the mean field level. This work paves the way toward generating entanglement through an adiabatic phase transition. PMID:27503886
NASA Technical Reports Server (NTRS)
Hall, P.; Smith, F. T.
1988-01-01
The development of Tollmien-Schlichting waves (TSWs) and Taylor-Goertler vortices (TGVs) in fully developed viscous curved-channel flows is investigated analytically, with a focus on their nonlinear interactions. Two types of interactions are identified, depending on the amplitude of the initial disturbances. In the low-amplitude type, two TSWs and one TGV interact, and the scaled amplitudes go to infinity on a finite time scale; in the higher-amplitude type, which can also occur in a straight channel, the same singularity occurs if the angle between the TSW wavefront and the TGV is greater than 41.6 deg, but the breakdown is exponential and takes an infinite time if the angle is smaller. The implications of these findings for external flow problems such as the design of laminar-flow wings are indicated. It is concluded that longitudinal vortices like those observed in the initial stages of the transition to turbulence can be produced unless the present interaction mechanism is destroyed by boundary-layer growth.
Characterizing the ``Higgs'' amplitude mode in a Spin-1 Bose Einstein Condensate
NASA Astrophysics Data System (ADS)
Hebbe Madhusudhana, Bharath; Boguslawski, Matthew; Anquez, Martin; Robbins, Bryce; Barrios, Maryrose; Hoang, Thai; Chapman, Michael
2016-05-01
Spontaneous symmetry breaking in a physical system is often characterized by massless Nambu-Goldstone modes and massive Anderson-Higgs modes. It occurs when a system crosses a quantum critical point (QCP) reaching a state does not share the symmetry of the underlying Hamiltonian. In a spin-1 Bose Einstein condensate, the transverse spin component can be considered as an order parameter. A quantum phase transition (QPT) of this system results in breaking of the symmetry group U(1) × SO(2) shared by the Hamiltonian. As a result, two massless coupled phonon-magnon modes are produced along with a single massive mode or a Higgs-like mode, in the form of amplitude excitations of the order parameter. Here we characterize the amplitude excitations experimentally by inducing coherent oscillation in the spin population. We further use the amplitude oscillations to measure the energy gap for different phases of the QPT. At the QCP, finite size effects lead to a non-zero gap, and our measurements are consistent with this prediction.
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.; ...
2017-04-03
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewar, R. L.; Hudson, S. R.; Bhattacharjee, A.
The adiabatic limit of a recently proposed dynamical extension of Taylor relaxation, multi-region relaxed magnetohydrodynamics (MRxMHD), is summarized, with special attention to the appropriate definition of a relative magnetic helicity. The formalism is illustrated using a simple two-region, sheared-magnetic-field model similar to the Hahm-Kulsrud-Taylor (HKT) rippled-boundary slab model. In MRxMHD, a linear Grad-Shafranov equation applies, even at finite ripple amplitude. The adiabatic switching on of boundary ripple excites a shielding current sheet opposing reconnection at a resonant surface. The perturbed magnetic field as a function of ripple amplitude is calculated by invoking the conservation of magnetic helicity in the twomore » regions separated by the current sheet. Here, at low ripple amplitude, "half islands" appear on each side of the current sheet, locking the rotational transform at the resonant value. Beyond a critical amplitude, these islands disappear and the rotational transform develops a discontinuity across the current sheet. Published by AIP Publishing.« less
NASA Astrophysics Data System (ADS)
He, Xiao; Hu, Hengshan; Wang, Xiuming
2013-01-01
Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.
NASA Astrophysics Data System (ADS)
Minkel, Donald Howe
Effects of gravity on buckle folding are studied using a Newtonian fluid finite element model of a single layer embedded between two thicker less viscous layers. The methods allow arbitrary density jumps, surface tension coefficients, resistance to slip at the interfaces, and tracking of fold growth to a large amplitudes. When density increases downward in two equal jumps, a layer buckles less and thickens more than with uniform density. When density increases upward in two equal jumps, it buckles more and thickens less. A low density layer with periodic thickness variations buckles more, sometimes explosively. Thickness variations form, even if not present initially. These effects are greater with; smaller viscosities, larger density jump, larger length scale, and slower shortening rate. They also depend on wavelength and amplitude, and these dependencies are described in detail. The model is applied to the explosive growth of the salt anticlines of the Paradox Basin, Colorado and Utah. There, shale (higher density) overlies salt (lower density). Methods for simulating realistic earth surface erosion and deposition conditions are introduced. Growth rates increase both with ease of slip at the salt-shale interface, and when earth surface relief stays low due to erosion and deposition. Model anticlines grow explosively, attaining growth rates and amplitudes close to those of the field examples. Fastest growing wavelengths are the same as seen in the field. It is concluded that a combination of partial-slip at the salt-shale interface, with reasonable earth surface conditions, promotes sufficiently fast buckling of the salt-shale interface due to density inversion alone. Neither basement faulting, nor tectonic shortening is required to account for the observed structures. Of fundamental importance is the strong tendency of gravity to promote buckling in low density layers with thickness variations. These develop, even if not present initially.
Evaluation of Acoustic Propagation Paths into the Human Head
2005-04-01
pressure amplitude) via the alternate propagation paths. A 3D finite-element solid mesh was constructed using a digital image database of an adult...optics, rays are used to depict the path or paths taken as a light wave travels through a lens. However, in optics, the eikonal equation can be solved
Hartzell, S.
1989-01-01
The July 8, 1986, North Palm Strings earthquake is used as a basis for comparison of several different approaches to the solution for the rupture history of a finite fault. The inversion of different waveform data is considered; both teleseismic P waveforms and local strong ground motion records. Linear parametrizations for slip amplitude are compared with nonlinear parametrizations for both slip amplitude and rupture time. Inversions using both synthetic and empirical Green's functions are considered. In general, accurate Green's functions are more readily calculable for the teleseismic problem where simple ray theory and flat-layered velocity structures are usually sufficient. However, uncertainties in the variation in t* with frequency most limit the resolution of teleseismic inversions. A set of empirical Green's functions that are well recorded at teleseismic distances could avoid the uncertainties in attenuation. In the inversion of strong motion data, the accurate calculation of propagation path effects other than attenuation effects is the limiting factor in the resolution of source parameters. -from Author
NASA Astrophysics Data System (ADS)
Li, Hsiang-Nan; Mishima, Satoshi
2005-03-01
We demonstrate that the polarization fractions of most tree-dominated B→VV decays can be simply understood by means of kinematics in the heavy-quark or large-energy limit. For example, the longitudinal polarization fractions RL of the B0→(D*+s,D*+,ρ+)D*- and B+→(D*+s,D*+,ρ+)ρ0 modes increase as the masses of the mesons D*+s,D*+,ρ+ emitted from the weak vertex decrease. The subleading finite-mass or finite-energy corrections modify these simple estimates only slightly. Our predictions for the B→D*(s)D* polarization fractions derived in the perturbative QCD framework, especially RL˜1 for B0→D¯*0D*0 governed by nonfactorizable W-exchange amplitudes, can be confronted with future data. For penguin-dominated modes, such as B→ρ(ω)K*, the polarization fractions can be understood by the annihilation effect from the (S-P)(S+P) operators, plus the interference with a small tree amplitude. At last, we comment on the various mechanisms proposed in the literature to explain the abnormal B→ϕK* polarization data, none of which are satisfactory.
The Zombie Instability: Using Numerical Simulation to Design a Laboratory Experiment
NASA Astrophysics Data System (ADS)
Wang, Meng; Pei, Suyang; Jiang, Chung-Hsiang; Hassanzadeh, Pedram; Marcus, Philip
2014-11-01
A new type of finite amplitude-instability has been found in numerical simulations of stratified, rotating, shear flows. The instability occurs via baroclinic critical layers that create linearly unstable vortex layers, which roll-up into vortices. Under the right conditions, those vortices can form a new generation of vortices, resulting in ``vortex self-replication'' that fills the fluid with vortices. Creating this instability in a laboratory would provide further evidence for the existence of the instability, which we first found in numerical simulations of protoplanetary disks. To design a laboratory experiment we need to know how the flow parameters-- shear, rotation and stratification, etc. affect the instability. To build an experiment economically, we also need to know how the finite-amplitude trigger of the instability scales with viscosity and the size of the domain. In this talk, we summarize our findings. We present a map, in terms of the experimentally controllable parameters, that shows where the instability occurs and whether the instability creates a few isolated transient vortices, a few long-lived vortices, or long-lived, self-replicating vortices that fill the entire flow.
NASA Astrophysics Data System (ADS)
Yu, Y.; Shen, Y.; Chen, Y. J.
2015-12-01
By using ray theory in conjunction with the Born approximation, Dahlen et al. [2000] computed 3-D sensitivity kernels for finite-frequency seismic traveltimes. A series of studies have been conducted based on this theory to model the mantle velocity structure [e.g., Hung et al., 2004; Montelli et al., 2004; Ren and Shen, 2008; Yang et al., 2009; Liang et al., 2011; Tang et al., 2014]. One of the simplifications in the calculation of the kernels is the paraxial assumption, which may not be strictly valid near the receiver, the region of interest in regional teleseismic tomography. In this study, we improve the accuracy of traveltime sensitivity kernels of the first P arrival by eliminating the paraxial approximation. For calculation efficiency, the traveltime table built by the Fast Marching Method (FMM) is used to calculate both the wave vector and the geometrical spreading at every grid in the whole volume. The improved kernels maintain the sign, but with different amplitudes at different locations. We also find that when the directivity of the scattered wave is being taken into consideration, the differential sensitivity kernel of traveltimes measured at the vertical and radial component of the same receiver concentrates beneath the receiver, which can be used to invert for the structure inside the Earth. Compared with conventional teleseismic tomography, which uses the differential traveltimes between two stations in an array, this method is not affected by instrument response and timing errors, and reduces the uncertainty caused by the finite dimension of the model in regional tomography. In addition, the cross-dependence of P traveltimes to S-wave velocity anomaly is significant and sensitive to the structure beneath the receiver. So with the component-differential finite-frequency sensitivity kernel, the anomaly of both P-wave and S-wave velocity and Vp/Vs ratio can be achieved at the same time.
The wavefield of acoustic logging in a cased-hole with a single casing - Part I: a monopole tool
NASA Astrophysics Data System (ADS)
Wang, Hua; Fehler, Michael
2018-01-01
The bonding quality of the seal formed by the cement or collapse material between casing and formation rock is critical for the hydraulic isolation of reservoir layers with shallow aquifers, production and environmental safety, and plug and abandonment issues. Acoustic logging is a very good tool for evaluating the condition of the bond between different interfaces. The understanding of the acoustic logging wavefields in wells with single casing is still incomplete. We use a 3-D finite difference method to simulate wireline monopole wavefields in a single cased borehole with different bonding conditions at two locations: (1) between the cement and casing and (2) between the cement and formation. Pressure snapshots and waveforms for different models are shown, which allow us to better understand the wave propagation. Modal dispersion curves and data processing methods such as velocity-time semblance and dispersion analysis facilitate the identification of propagation modes in the different models. We find that the P wave is submerged in the casing modes and the S wave has poor coherency when the cement is replaced with fluid. The casing modes are strong when cement next to the casing is partially or fully replaced with fluid. The amplitude of these casing modes can be used to determine the bonding condition of the interface between casing and cement. However, the limited variation of the amplitude with fluid thickness means that amplitude measurements may lead to an ambiguous interpretation. When the cement next to the formation is partially replaced with fluid, the modes propagate in the combination of steel casing and cement and the velocities are highly dependent on the cement thickness. However, if the cement thickness is large (more than 2/3 of the annulus between casing and rock), the arrival time of the first arrival approximates that of the formation compressional wave when cement is good. It would highly likely that an analyst could misjudge cement quality because the amplitudes of these modes are very small and their arrival times are very near to the formation P arrival time. It is possible to use the amplitude to estimate the thickness of the cement sheath because the variation of amplitude with thickness is strong. While the Stoneley mode (ST1) propagates in the borehole fluid, a slow Stoneley mode (ST2) appears when there is a fluid column in the annulus between the casing and formation rock. The velocity of ST2 is sensitive to the total thickness of the fluid column in the annulus independent of the location of the fluid in the casing annulus. We propose a full waveform method, which includes the utilization of the amplitude of the first arrival and also the velocity of the ST2 wave, to estimate the bonding condition of multiple interfaces. These two measurements provide more information than the current method that uses only the first arrival to evaluate the bonding interfa next to the casing.
Bouvier, Adeline; Deleaval, Flavien; Doyley, Marvin M; Yazdani, Saami K; Finet, Gérard; Le Floc'h, Simon; Cloutier, Guy; Pettigrew, Roderic I; Ohayon, Jacques
2016-01-01
The peak cap stress (PCS) amplitude is recognized as a biomechanical predictor of vulnerable plaque (VP) rupture. However, quantifying PCS in vivo remains a challenge since the stress depends on the plaque mechanical properties. In response, an iterative material finite element (FE) elasticity reconstruction method using strain measurements has been implemented for the solution of these inverse problems. Although this approach could resolve the mechanical characterization of VPs, it suffers from major limitations since (i) it is not adapted to characterize VPs exhibiting high material discontinuities between inclusions, and (ii) does not permit real time elasticity reconstruction for clinical use. The present theoretical study was therefore designed to develop a direct material-FE algorithm for elasticity reconstruction problems which accounts for material heterogeneities. We originally modified and adapted the extended FE method (Xfem), used mainly in crack analysis, to model material heterogeneities. This new algorithm was successfully applied to six coronary lesions of patients imaged in vivo with intravascular ultrasound. The results demonstrated that the mean relative absolute errors of the reconstructed Young's moduli obtained for the arterial wall, fibrosis, necrotic core, and calcified regions of the VPs decreased from 95.3±15.56%, 98.85±72.42%, 103.29±111.86% and 95.3±10.49%, respectively, to values smaller than 2.6 × 10−8±5.7 × 10−8% (i.e. close to the exact solutions) when including modified-Xfem method into our direct elasticity reconstruction method. PMID:24240392
Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates
NASA Astrophysics Data System (ADS)
Reichhardt, C.; Ray, D.; Olson Reichhardt, C. J.
2015-07-01
We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized. Skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.
The effects of vortex like distributed electron in magnetized multi-ion dusty plasmas
NASA Astrophysics Data System (ADS)
Haider, Md. Masum; Ferdous, Tahmina; Duha, Syed S.
2014-09-01
The nonlinear propagation of small but finite amplitude dust-ion-acoustic solitary waves in a magnetized, collisionless dusty plasma is investigated theoretically. It has been assumed that the electrons are trapped following the vortex-like distribution and that the negatively and positively charged ions are mobile with the presence of charge fluctuating stationary dusts, where ions mass provide the inertia and restoring forces are provided by the thermal pressure of hot electrons. A reductive perturbation method was employed to obtain a modified Korteweg-de Vries (mK-dV) equation for the first-order potential and a stationary solution is obtained. The effect of the presence of trapped electrons, negatively and positively charged ions and arbitrary charged dust grains are discussed.
Joint polarization tracking and channel equalization based on radius-directed linear Kalman filter
NASA Astrophysics Data System (ADS)
Zhang, Qun; Yang, Yanfu; Zhong, Kangping; Liu, Jie; Wu, Xiong; Yao, Yong
2018-01-01
We propose a joint polarization tracking and channel equalization scheme based on radius-directed linear Kalman filter (RD-LKF) by introducing the butterfly finite-impulse-response (FIR) filter in our previously proposed RD-LKF method. Along with the fast polarization tracking, it can also simultaneously compensate the inter-symbol interference (ISI) effects including residual chromatic dispersion and polarization mode dispersion. Compared with the conventional radius-directed equalizer (RDE) algorithm, it is demonstrated experimentally that three times faster convergence speed, one order of magnitude better tracking capability, and better BER performance is obtained in polarization division multiplexing 16 quadrature amplitude modulation system. Besides, the influences of the algorithm parameters on the convergence and the tracking performance are investigated by numerical simulation.
Reliability analysis of different structure parameters of PCBA under drop impact
NASA Astrophysics Data System (ADS)
Liu, P. S.; Fan, G. M.; Liu, Y. H.
2018-03-01
The establishing process of PCBA is modelled by finite element analysis software ABAQUS. Firstly, introduce the Input-G method and the fatigue life under drop impact are introduced and the mechanism of the solder joint failure in the process of drop is analysed. The main reason of solder joint failure is that the PCB component is suffering repeated tension and compression stress during the drop impact. Finally, the equivalent stress and peel stress of different solder joint and plate-level components under different impact acceleration are also analysed. The results show that the reliability of tin-silver copper joint is better than that of tin- lead solder joint, and the fatigue life of solder joint expectancy decrease as the impact pulse amplitude increases.
A smooth exit from eternal inflation?
NASA Astrophysics Data System (ADS)
Hawking, S. W.; Hertog, Thomas
2018-04-01
The usual theory of inflation breaks down in eternal inflation. We derive a dual description of eternal inflation in terms of a deformed Euclidean CFT located at the threshold of eternal inflation. The partition function gives the amplitude of different geometries of the threshold surface in the no-boundary state. Its local and global behavior in dual toy models shows that the amplitude is low for surfaces which are not nearly conformal to the round three-sphere and essentially zero for surfaces with negative curvature. Based on this we conjecture that the exit from eternal inflation does not produce an infinite fractal-like multiverse, but is finite and reasonably smooth.
A numerical study of transition control by periodic suction-blowing
NASA Technical Reports Server (NTRS)
Biringen, Sedat
1987-01-01
The applicability of active control of transition by periodic suction-blowing is investigated via direct numerical simulations of the Navier-Stokes equations. The time-evolution of finite-amplitude disturbances in plane channel flow is compared in detail with and without control. The analysis indicates that, for relatively small three dimensional amplitudes, a two dimensional control effectively reduces disturbance growth rates even for linearly unstable Reynolds numbers. After the flow goes through secondary instability, three dimensional control seems necessary to stabilize the flow. An investigation of the temperature field suggests that passive temperature contamination is operative to reflect the flow dynamics during transition.
Air pressure waves from Mount St. Helens eruptions
NASA Astrophysics Data System (ADS)
Reed, Jack W.
1987-10-01
Infrasonic recordings of the pressure wave from the Mount St. Helens (MSH) eruption on May 18, 1980, together with the weather station barograph records were used to estimate an equivalent explosion airblast yield for this eruption. Pressure wave amplitudes versus distance patterns were found to be comparable with patterns found for a small-scale nuclear explosion, the Krakatoa eruption, and the Tunguska comet impact, indicating that the MSH wave came from an explosion equivalent of about 5 megatons of TNT. The peculiar audibility pattern reported, with the blast being heard only at ranges beyond about 100 km, is explained by consideration of finite-amplitude shock propagation developments.
Small-amplitude acoustics in bulk granular media
NASA Astrophysics Data System (ADS)
Henann, David L.; Valenza, John J., II; Johnson, David L.; Kamrin, Ken
2013-10-01
We propose and validate a three-dimensional continuum modeling approach that predicts small-amplitude acoustic behavior of dense-packed granular media. The model is obtained through a joint experimental and finite-element study focused on the benchmark example of a vibrated container of grains. Using a three-parameter linear viscoelastic constitutive relation, our continuum model is shown to quantitatively predict the effective mass spectra in this geometry, even as geometric parameters for the environment are varied. Further, the model's predictions for the surface displacement field are validated mode-by-mode against experiment. A primary observation is the importance of the boundary condition between grains and the quasirigid walls.
Nonlinear travelling waves in rotating Hagen–Poiseuille flow
NASA Astrophysics Data System (ADS)
Pier, Benoît; Govindarajan, Rama
2018-03-01
The dynamics of viscous flow through a rotating pipe is considered. Small-amplitude stability characteristics are obtained by linearizing the Navier–Stokes equations around the base flow and solving the resulting eigenvalue problems. For linearly unstable configurations, the dynamics leads to fully developed finite-amplitude perturbations that are computed by direct numerical simulations of the complete Navier–Stokes equations. By systematically investigating all linearly unstable combinations of streamwise wave number k and azimuthal mode number m, for streamwise Reynolds numbers {{Re}}z ≤slant 500 and rotational Reynolds numbers {{Re}}{{Ω }} ≤slant 500, the complete range of nonlinear travelling waves is obtained and the associated flow fields are characterized.
Saha, Sourabh K.
2017-01-11
Although geometric imperfections have a detrimental effect on buckling, imperfection sensitivity has not been well studied in the past during design of sinusoidal micro and nano-scale structures via wrinkling of supported thin films. This is likely because one is more interested in predicting the shape/size of the resultant patterns than the buckling bifurcation onset strain during fabrication of such wrinkled structures. Herein, I have demonstrated that even modest geometric imperfections alter the final wrinkled mode shapes via the mode locking phenomenon wherein the imperfection mode grows in exclusion to the natural mode of the system. To study the effect ofmore » imperfections on mode locking, I have (i) developed a finite element mesh perturbation scheme to generate arbitrary geometric imperfections in the system and (ii) performed a parametric study via finite element methods to link the amplitude and period of the sinusoidal imperfections to the observed wrinkle mode shape and size. Based on this, a non-dimensional geometric parameter has been identified that characterizes the effect of imperfection on the mode locking phenomenon – the equivalent imperfection size. An upper limit for this equivalent imperfection size has been identified via a combination of analytical and finite element modeling. During compression of supported thin films, the system gets “locked” into the imperfection mode if its equivalent imperfection size is above this critical limit. For the polydimethylsiloxane/glass bilayer with a wrinkle period of 2 µm, this mode lock-in limit corresponds to an imperfection amplitude of 32 nm for an imperfection period of 5 µm and 8 nm for an imperfection period of 0.8 µm. Interestingly, when the non-dimensional critical imperfection size is scaled by the bifurcation onset strain, the scaled critical size depends solely on the ratio of the imperfection to natural periods. Furthermore, the computational data generated here can be generalized beyond the specific natural periods and bilayer systems studied to enable deterministic design of a variety of wrinkled micro and nano-scale structures.« less
NASA Astrophysics Data System (ADS)
Nordtvedt, Ken
1993-04-01
We have corrected our calculation of the finite general relativistic contribution to the synodic month period Earth-Moon range oscillation by including previously overlooked terms in the Moon's post-Newtonian equation of motion: the corrected result x(t)~=(3gSr2/c2) cos(ω-Ω)t agrees with the Shahid-Saless calculation which was performed in the geocentric frame. It is also pointed out that at the level of a few millimeters synodic month period amplitude, the Moon's orbit is polarized by the solar radiation pressure force on the Moon.
On high-order perturbative calculations at finite density
Ghisoiu, Ioan; Gorda, Tyler; Kurkela, Aleksi; ...
2016-12-01
We discuss the prospects of performing high-order perturbative calculations in systems characterized by a vanishing temperature but finite density. In particular, we show that the determination of generic Feynman integrals containing fermionic chemical potentials can be reduced to the evaluation of three-dimensional phase space integrals over vacuum on-shell amplitudes — aresult reminiscent of a previously proposed “naive real-time formalism” for vacuum diagrams. Applications of these rules are discussed in the context of the thermodynamics of cold and dense QCD, where it is argued that they facilitate an extension of the Equation of State of cold quark matter to higher perturbativemore » orders.« less
Multi-Baker Map as a Model of Digital PD Control
NASA Astrophysics Data System (ADS)
Csernák, Gábor; Gyebrószki, Gergely; Stépán, Gábor
Digital stabilization of unstable equilibria of linear systems may lead to small amplitude stochastic-like oscillations. We show that these vibrations can be related to a deterministic chaotic dynamics induced by sampling and quantization. A detailed analytical proof of chaos is presented for the case of a PD controlled oscillator: it is shown that there exists a finite attracting domain in the phase-space, the largest Lyapunov exponent is positive and the existence of a Smale horseshoe is also pointed out. The corresponding two-dimensional micro-chaos map is a multi-baker map, i.e. it consists of a finite series of baker’s maps.
NASA Technical Reports Server (NTRS)
Mitchell, C. E.; Eckert, K.
1979-01-01
A program for predicting the linear stability of liquid propellant rocket engines is presented. The underlying model assumptions and analytical steps necessary for understanding the program and its input and output are also given. The rocket engine is modeled as a right circular cylinder with an injector with a concentrated combustion zone, a nozzle, finite mean flow, and an acoustic admittance, or the sensitive time lag theory. The resulting partial differential equations are combined into two governing integral equations by the use of the Green's function method. These equations are solved using a successive approximation technique for the small amplitude (linear) case. The computational method used as well as the various user options available are discussed. Finally, a flow diagram, sample input and output for a typical application and a complete program listing for program MODULE are presented.
Dynamic stability of spinning pretwisted beams subjected to axial random forces
NASA Astrophysics Data System (ADS)
Young, T. H.; Gau, C. Y.
2003-11-01
This paper studies the dynamic stability of a pretwisted cantilever beam spinning along its longitudinal axis and subjected to an axial random force at the free end. The axial force is assumed as the sum of a constant force and a random process with a zero mean. Due to this axial force, the beam may experience parametric random instability. In this work, the finite element method is first applied to yield discretized system equations. The stochastic averaging method is then adopted to obtain Ito's equations for the response amplitudes of the system. Finally the mean-square stability criterion is utilized to determine the stability condition of the system. Numerical results show that the stability boundary of the system converges as the first three modes are taken into calculation. Before the convergence is reached, the stability condition predicted is not conservative enough.
NASA Astrophysics Data System (ADS)
Demasi, L.; Livne, E.
2009-07-01
Two different time domain formulations of integrating commonly used frequency-domain unsteady aerodynamic models based on a modal approach with full order finite element models for structures with geometric nonlinearities are presented. Both approaches are tailored to flight vehicle configurations where geometric stiffness effects are important but where deformations are moderate, flow is attached, and linear unsteady aerodynamic modeling is adequate, such as low aspect ratio wings or joined-wing and strut-braced wings at small to moderate angles of attack. Results obtained using the two approaches are compared using both planar and non-planar wing configurations. Sub-critical and post-flutter speeds are considered. It is demonstrated that the two methods lead to the same steady solution for the sub-critical case after the transients subside. It is also shown that the two methods predict the amplitude and frequency of limit cycle oscillation (when present) with the same accuracy.
Charmonium resonances on the lattice
NASA Astrophysics Data System (ADS)
Bali, Gunnar; Collins, Sara; Mohler, Daniel; Padmanath, M.; Piemonte, Stefano; Prelovsek, Sasa; Weishäupl, Simon
2018-03-01
The nature of resonances and excited states near decay thresholds is encoded in scattering amplitudes, which can be extracted from single-particle and multiparticle correlators in finite volumes. Lattice calculations have only recently reached the precision required for a reliable study of such correlators. The distillation method represents a significant improvement insofar as it simplifies quark contractions and allows one to easily extend the operator basis used to construct interpolators. We present preliminary results on charmonium bound states and resonances on the Nf = 2+1 CLS ensembles. The long term goal of our investigation is to understand the properties of the X resonances that do not fit into conventional models of quark-antiquark mesons. We tune various parameters of the distillation method and the charm quark mass. As a first result, we present the masses of the ground and excited states in the 0++ and 1- channels
Shock load analysis of rotor for rolling element bearings and gas foil bearings: A comparative study
NASA Astrophysics Data System (ADS)
Bhore, Skylab Paulas
2018-04-01
In this paper, a comparative study on the shock load analysis of rotor supported by rolling element bearings and gas foil journal bearings is presented. The rotor bearing system is modeled using finite element method. Timoshenko beam element with 4 degree of freedom at each node is used. The shock load is represented by half sine pulse and applied to the base of the rotor bearing system. The stiffness and damping coefficient of the bearings are incorporated in the model. The generalized equation of motion of rotor bearing system is solved by Newmark beta method and responses of rotor at bearing position are predicted. It is observed that the responses are sensitive to the direction of applied excitation and its magnitude and pulse duration. The amplitude of responses of rotor supported on gas foil bearings are significantly less than that of rolling element bearings.
NASA Astrophysics Data System (ADS)
Yang, Yuansheng; Zhao, Fuze; Feng, Xiaohui
2017-10-01
The dispersion of carbon nanotubes (CNTs) in AZ91D melt by ultrasonic processing and microstructure formation of CNTs/AZ91D composite were studied using numerical and physical simulations. The sound field and acoustic streaming were predicted using finite element method. Meanwhile, optimal immersion depth of the ultrasonic probe and suitable ultrasonic power were obtained. Single-bubble model was used to predict ultrasonic cavitation in AZ91D melt. The relationship between sound pressure amplitude and ultrasonic cavitation was established. Physical simulations of acoustic streaming and ultrasonic cavitation agreed well with the numerical simulations. It was confirmed that the dispersion of carbon nanotubes was remarkably improved by ultrasonic processing. Microstructure formation of CNTs/AZ91D composite was numerically simulated using cellular automation method. In addition, grain refinement was achieved and the growth of dendrites was changed due to the uniform dispersion of CNTs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomoda, T.
1982-07-01
The method developed in the preceding paper is applied to the calculation of the spectra of positrons produced in the U + U collision. Matrix elements of the radial derivative operator between adiabatic basis states are calculated in the monopole approximation, with the finite nuclear size taken into account. These matrix elements are then modified for the supercritical case with the use of the analytical method presented in paper I of this series. The coupled differential equations for the occupation amplitudes of the basis states are solved and the positron spectra are obtained for the U + U collision. Itmore » is shown that the decomposition of the production probability into a spontaneous and an induced part depends on the definition of the resonance state and cannot be given unambiguously. The results are compared with those obtained by Reinhardt et al.« less
Plasma based optical guiding of an amplitude-modulated electromagnetic beam
NASA Astrophysics Data System (ADS)
Singh, Mamta; Gupta, D. N.
2015-06-01
We propose the stronger optical guiding of an electromagnetic beam in a plasma by considering the amplitude modulation of the fundamental beam. With the advent of high power source of electromagnetic radiation, the electron velocity in a plasma may become quite large (comparable to the light velocity in free space). Thus, the effect of relativistic mass variation must be taken into account. The relativistic effect of the laser propagation in a plasma leads to self-focusing because of the dielectric constant of a plasma being an increasing function of the intensity. The ponderomotive force of the laser beam pushes the electrons out of the region of high intensity, which reduces the local electron density and increases the plasma dielectric function further, leading to even more selffocusing of the laser. In this work, we consider a short pulse laser of finite spot size as an amplitude modulation in time. Our findings show an efficient optical guiding mechanism based on amplitude modulation signal propagation in plasmas. Medium nonlinearity becomes stronger if an amplitude modulated beam is introduced, which contributes significantly in laser guiding in plasmas. Furthermore, the rate of laser self-focusing is increased with modulation index due the fact of stronger Kerr effect. The study related to amplitude modulated optical signal may be useful for communication technology.
NASA Astrophysics Data System (ADS)
Hassan, M. S.; Goggins, J.; Salawdeh, S.
2015-07-01
A numerical imperfection study is carried out on a hot rolled tubular brace member under displacement controlled amplitudes. An appropriate range of global and local imperfections is used in the finite element analyses to evaluate the initial-post buckling compressive strength, lateral storey drift, energy dissipation and mid-length lateral deformation of the brace member. The purpose of this study is to assess the impact of the geometrical imperfection on the numerical performance, and to determine an amplitude range that can be used unequivocally for numerical modelling of brace members. It is shown that the amplitude of global imperfections has an effect on the initial response, whereas the amplitude of local imperfections has influence on the resistance capacity of the brace member at higher ductility level. Based on the results, a refined range of amplitude of global and local imperfections is proposed. This range is found to have a good agreement with design standards. In addition, an already established equation to find lateral deformation is compared to results from the analyses and found that the equation with some modification can be used accurately in design. In this paper, a modification factor is proposed in the equation to find the lateral deformation to account for the imperfection amplitude in the numerical analyses of brace members.
NASA Astrophysics Data System (ADS)
Alhaidari, A. D.; Taiwo, T. J.
2017-02-01
Using a recent formulation of quantum mechanics without a potential function, we present a four-parameter system associated with the Wilson and Racah polynomials. The continuum scattering states are written in terms of the Wilson polynomials whose asymptotics give the scattering amplitude and phase shift. On the other hand, the finite number of discrete bound states are associated with the Racah polynomials.
Large Eddy Simulation of Crashback in Marine Propulsors
NASA Astrophysics Data System (ADS)
Jang, Hyunchul
Crashback is an operating condition to quickly stop a propelled vehicle, where the propeller is rotated in the reverse direction to yield negative thrust. The crashback condition is dominated by the interaction of the free stream flow with the strong reverse flow. This interaction forms a highly unsteady vortex ring, which is a very prominent feature of crashback. Crashback causes highly unsteady loads and flow separation on the blade surface. The unsteady loads can cause propulsor blade damage, and also affect vehicle maneuverability. Crashback is therefore well known as one of the most challenging propeller states to analyze. This dissertation uses Large-Eddy Simulation (LES) to predict the highly unsteady flow field in crashback. A non-dissipative and robust finite volume method developed by Mahesh et al. (2004) for unstructured grids is applied to flow around marine propulsors. The LES equations are written in a rotating frame of reference. The objectives of this dissertation are: (1) to understand the flow physics of crashback in marine propulsors with and without a duct, (2) to develop a finite volume method for highly skewed meshes which usually occur in complex propulsor geometries, and (3) to develop a sliding interface method for simulations of rotor-stator propulsor on parallel platforms. LES is performed for an open propulsor in crashback and validated against experiments performed by Jessup et al. (2004). The LES results show good agreement with experiments. Effective pressures for thrust and side-force are introduced to more clearly understand the physical sources of thrust and side-force. Both thrust and side-force are seen to be mainly generated from the leading edge of the suction side of the propeller. This implies that thrust and side-force have the same source---the highly unsteady leading edge separation. Conditional averaging is performed to obtain quantitative information about the complex flow physics of high- or low-amplitude events. The events for thrust and side force show the same tendency. The conditional averages show that during high amplitude events, the vortex ring core is closer to the propeller blades, the reverse flow induced by the propeller rotation is lower, the forward flow is higher at the root of the blades, and leading and trailing edge flow separations are larger. The instantaneous flow field shows that during low amplitude events, the vortex ring is more axisymmetric and the stronger reverse flow induced by the vortex ring suppresses the forward flow so that flow separation on the blades is smaller. During high amplitude events, the vortex ring is less coherent and the weaker reverse flow cannot overcome the forward flow. The stronger forward flow makes flow separation on the blades larger. The effect of a duct on crashback is studied with LES. Thrust mostly arises from the blade surface, but most of side-force is generated from the duct surface. Both mean and RMS of pressure are much higher on inner surface of duct, especially near blade tips. This implies that side-force on the ducted propulsor is caused by the blade-duct interaction. Strong tip leakage flow is observed behind the suction side at the tip gap. The physical source of the tip leakage flow is seen to be the large pressure difference between pressure and suction sides. The conditional average for high amplitude event shows consistent results; the tip leakage flow and pressure difference are significantly higher when thrust and side-force are higher. A sliding interface method is developed to allow simulations of rotor-stator propulsor in crashback. The method allows relative rotations between different parts of the computational grid. Search algorithm for sliding elements, data structures for message passing, and accurate interpolation scheme at the sliding interface are developed for arbitrary shaped unstructured grids on parallel computing platforms. Preliminary simulations of open propulsor in crashback show reasonable performance.
The stability of stratified spatially periodic shear flows at low Péclet number
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garaud, Pascale, E-mail: pgaraud@ucsc.edu; Gallet, Basile; Bischoff, Tobias
2015-08-15
This work addresses the question of the stability of stratified, spatially periodic shear flows at low Péclet number but high Reynolds number. This little-studied limit is motivated by astrophysical systems, where the Prandtl number is often very small. Furthermore, it can be studied using a reduced set of “low-Péclet-number equations” proposed by Lignières [“The small-Péclet-number approximation in stellar radiative zones,” Astron. Astrophys. 348, 933–939 (1999)]. Through a linear stability analysis, we first determine the conditions for instability to infinitesimal perturbations. We formally extend Squire’s theorem to the low-Péclet-number equations, which shows that the first unstable mode is always two-dimensional. Wemore » then perform an energy stability analysis of the low-Péclet-number equations and prove that for a given value of the Reynolds number, above a critical strength of the stratification, any smooth periodic shear flow is stable to perturbations of arbitrary amplitude. In that parameter regime, the flow can only be laminar and turbulent mixing does not take place. Finding that the conditions for linear and energy stability are different, we thus identify a region in parameter space where finite-amplitude instabilities could exist. Using direct numerical simulations, we indeed find that the system is subject to such finite-amplitude instabilities. We determine numerically how far into the linearly stable region of parameter space turbulence can be sustained.« less
NASA Astrophysics Data System (ADS)
Reddy, K. Sanjeeva; Krishnamurthy, C. V.; Balasubramaniam, Krishnan; Balasubramanian, T.
2010-02-01
This paper discusses the evaluation of diffracted signals from cracks in 2D based on a new Huygen-Fresnel Diffraction Model (H-FDM). The model employs the frequency-domain far-field displacement expressions derived by Miller & Pursey [1] in 2D for a line source located on the free surface of a semi-infinite elastic medium. At each frequency in the bandwidth of a pulsed excitation, the complex diffracted field is obtained by summing over the unblocked virtual sources located in the section containing a vertical crack. The time-domain diffracted signal is obtained using standard FFT procedures. The effect of beam refraction from a wedge-based finite transducer has been modeled by treating the finite transducer as an array of line sources. The model has been used for predicting diffracted signals in time-of-flight from the crack like defect. The model allows the evaluation of back wall signal amplitude and lateral wave amplitude as well. Experiments have been carried out on 10 mm thick aluminum sample with surface breaking crack of lengths 2 mm and 4 mm using shear probe shoe. The simulated A-Scan results for the aluminum sample with 2 mm and 4 mm surface breaking lengths compare very well in relative amplitudes and time of arrivals with experiments. The H-FDM model offers a tool to evaluate diffraction and related phenomena quantitatively with modest computational resources.
Pseudo-incompressible, finite-amplitude gravity waves: wave trains and stability
NASA Astrophysics Data System (ADS)
Schlutow, Mark; Klein, Rupert
2017-04-01
Based on weak asymptotic WKB-like solutions for two-dimensional atmospheric gravity waves (GWs) traveling wave solutions (wave trains) are derived and analyzed with respect to stability. A systematic multiple-scale analysis using the ratio of the dominant wavelength and the scale height as a scale separation parameter is applied on the fully compressible Euler equations. A distinguished limit favorable for GWs close to static instability, reveals that pseudo-incompressible rather than Boussinesq theory applies. A spectral expansion including a mean flow, combined with the additional WKB assumption of slowly varying phases and amplitudes, is used to find general weak asymptotic solutions. This ansatz allows for arbitrarily strong, non-uniform stratification and holds even for finite-amplitude waves. It is deduced that wave trains as leading order solutions can only exist if either some non-uniform background stratification is given but the wave train propagates only horizontally or if the wave train velocity vector is given but the background is isothermal. For the first case, general analytical solutions are obtained that may be used to model mountain lee waves. For the second case with the additional assumption of horizontal periodicity, upward propagating wave train fronts were found. These wave train fronts modify the mean flow beyond the non-acceleration theorem. Stability analysis reveal that they are intrinsically modulationally unstable. The range of validity for the scale separation parameter was tested with fully nonlinear simulations. Even for large values an excellent agreement with the theory was found.
Effects of elastic bed on hydrodynamic forces for a submerged sphere in an ocean of finite depth
NASA Astrophysics Data System (ADS)
Mohapatra, Smrutiranjan
2017-08-01
In this paper, we consider a hydroelastic model to examine the radiation of waves by a submerged sphere for both heave and sway motions in a single-layer fluid flowing over an infinitely extended elastic bottom surface in an ocean of finite depth. The elastic bottom is modeled as a thin elastic plate and is based on the Euler-Bernoulli beam equation. The effect of the presence of surface tension at the free-surface is neglected. In such situation, there exist two modes of time-harmonic waves: the one with a lower wavenumber (surface mode) propagates along the free-surface and the other with higher wavenumber (flexural mode) propagates along the elastic bottom surface. Based on the small amplitude wave theory and by using the multipole expansion method, we find the particular solution for the problem of wave radiation by a submerged sphere of finite depth. Furthermore, this method eliminates the need to use large and cumbersome numerical packages for the solution of such problem and leads to an infinite system of linear algebraic equations which are easily solved numerically by any standard technique. The added-mass and damping coefficients for both heave and sway motions are derived and plotted for different submersion depths of the sphere and flexural rigidity of the elastic bottom surface. It is observed that, whenever the sphere nearer to the elastic bed, the added-mass move toward to a constant value of 1, which is approximately twice of the value of added-mass of a moving sphere in a single-layer fluid flowing over a rigid and flat bottom surface.
Adaptive synchrosqueezing based on a quilted short-time Fourier transform
NASA Astrophysics Data System (ADS)
Berrian, Alexander; Saito, Naoki
2017-08-01
In recent years, the synchrosqueezing transform (SST) has gained popularity as a method for the analysis of signals that can be broken down into multiple components determined by instantaneous amplitudes and phases. One such version of SST, based on the short-time Fourier transform (STFT), enables the sharpening of instantaneous frequency (IF) information derived from the STFT, as well as the separation of amplitude-phase components corresponding to distinct IF curves. However, this SST is limited by the time-frequency resolution of the underlying window function, and may not resolve signals exhibiting diverse time-frequency behaviors with sufficient accuracy. In this work, we develop a framework for an SST based on a "quilted" short-time Fourier transform (SST-QSTFT), which allows adaptation to signal behavior in separate time-frequency regions through the use of multiple windows. This motivates us to introduce a discrete reassignment frequency formula based on a finite difference of the phase spectrum, ensuring computational accuracy for a wider variety of windows. We develop a theoretical framework for the SST-QSTFT in both the continuous and the discrete settings, and describe an algorithm for the automatic selection of optimal windows depending on the region of interest. Using synthetic data, we demonstrate the superior numerical performance of SST-QSTFT relative to other SST methods in a noisy context. Finally, we apply SST-QSTFT to audio recordings of animal calls to demonstrate the potential of our method for the analysis of real bioacoustic signals.
NASA Astrophysics Data System (ADS)
Chróścielewski, Jacek; Schmidt, Rüdiger; Eremeyev, Victor A.
2018-05-01
This paper addresses modeling and finite element analysis of the transient large-amplitude vibration response of thin rod-type structures (e.g., plane curved beams, arches, ring shells) and its control by integrated piezoelectric layers. A geometrically nonlinear finite beam element for the analysis of piezolaminated structures is developed that is based on the Bernoulli hypothesis and the assumptions of small strains and finite rotations of the normal. The finite element model can be applied to static, stability, and transient analysis of smart structures consisting of a master structure and integrated piezoelectric actuator layers or patches attached to the upper and lower surfaces. Two problems are studied extensively: (i) FE analyses of a clamped semicircular ring shell that has been used as a benchmark problem for linear vibration control in several recent papers are critically reviewed and extended to account for the effects of structural nonlinearity and (ii) a smart circular arch subjected to a hydrostatic pressure load is investigated statically and dynamically in order to study the shift of bifurcation and limit points, eigenfrequencies, and eigenvectors, as well as vibration control for loading conditions which may lead to dynamic loss of stability.
Air-structure coupling features analysis of mining contra-rotating axial flow fan cascade
NASA Astrophysics Data System (ADS)
Chen, Q. G.; Sun, W.; Li, F.; Zhang, Y. J.
2013-12-01
The interaction between contra-rotating axial flow fan blade and working gas has been studied by means of establishing air-structure coupling control equation and combining Computational Fluid Dynamics (CFD) and Computational solid mechanics (CSM). Based on the single flow channel model, the Finite Volume Method was used to make the field discrete. Additionally, the SIMPLE algorithm, the Standard k-ε model and the Arbitrary Lagrangian-Eulerian dynamic grids technology were utilized to get the airflow motion by solving the discrete governing equations. At the same time, the Finite Element Method was used to make the field discrete to solve dynamic response characteristics of blade. Based on weak coupling method, data exchange from the fluid solver and the solid solver was processed on the coupling interface. Then interpolation was used to obtain the coupling characteristics. The results showed that the blade's maximum amplitude was on the tip of the last-stage blade and aerodynamic force signal could reflect the blade working conditions to some extent. By analyzing the flow regime in contra-rotating axial flow fan, it could be found that the vortex core region was mainly in the blade surface, the hub and the blade clearance. In those regions, the turbulence intensity was very high. The last-stage blade's operating life is shorter than that of the pre-stage blade due to the fatigue fracture occurs much more easily on the last-stage blade which bears more stress.
Chaotic dynamics of flexible Euler-Bernoulli beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Awrejcewicz, J., E-mail: awrejcew@p.lodz.pl; Krysko, A. V., E-mail: anton.krysko@gmail.com; Kutepov, I. E., E-mail: iekutepov@gmail.com
2013-12-15
Mathematical modeling and analysis of spatio-temporal chaotic dynamics of flexible simple and curved Euler-Bernoulli beams are carried out. The Kármán-type geometric non-linearity is considered. Algorithms reducing partial differential equations which govern the dynamics of studied objects and associated boundary value problems are reduced to the Cauchy problem through both Finite Difference Method with the approximation of O(c{sup 2}) and Finite Element Method. The obtained Cauchy problem is solved via the fourth and sixth-order Runge-Kutta methods. Validity and reliability of the results are rigorously discussed. Analysis of the chaotic dynamics of flexible Euler-Bernoulli beams for a series of boundary conditions ismore » carried out with the help of the qualitative theory of differential equations. We analyze time histories, phase and modal portraits, autocorrelation functions, the Poincaré and pseudo-Poincaré maps, signs of the first four Lyapunov exponents, as well as the compression factor of the phase volume of an attractor. A novel scenario of transition from periodicity to chaos is obtained, and a transition from chaos to hyper-chaos is illustrated. In particular, we study and explain the phenomenon of transition from symmetric to asymmetric vibrations. Vibration-type charts are given regarding two control parameters: amplitude q{sub 0} and frequency ω{sub p} of the uniformly distributed periodic excitation. Furthermore, we detected and illustrated how the so called temporal-space chaos is developed following the transition from regular to chaotic system dynamics.« less
NASA Astrophysics Data System (ADS)
Maitra, Rahul; Sinha, Debalina; Sen, Sangita; Shee, Avijit; Mukherjee, Debashis
2012-06-01
We present here the formulations and implementations of Mukherjee's State-Specific and State-Universal Multi-reference Coupled Cluster theories, which are explicitly spin free being obtained via the Unitary Group Adapted (UGA) approach, and thus, do not suffer from spin-contamination. We refer to them as UGA-SSMRCC and UGASUMRCC respectively. We propose a new multi-exponential cluster Ansatz analogous to but different from the one suggested by Jeziorski and Monkhorst (JM). Unlike the JM Ansatz, our choice involves spin-free unitary generators for the cluster operators and we replace the traditional exponential structure for the wave-operator by a suitable normal ordered exponential. We sketch the consequences of choosing our Ansatz, which leads to fully spin-free finite power series structure of the direct term of the MRCC equations. The UGA-SUMRCC follows from a suitable hierarchical generation of the cluster amplitudes of increasing rank, while the UGA-SSMRCC requires suitable sufficiency conditions to arrive at a well-defined set of equations for the cluster amplitudes. We discuss two distinct and inequivalent sufficiency conditions and their pros and cons. We also discuss a variant of the UGA-SSMRCC, where the number of cluster amplitudes can be drastically reduced by internal contraction of the two-body inactive cluster amplitudes. These are the most numerous, and thus a spin-free internally contracted description will lead to a high speed-up factor. We refer to this as ICID-UGA-SSMRCC. Essentially the same mathematical manipulations provide us with the UGA-SUMRCC theory as well. Pilot numerical results are presented to indicate the promise and the efficacy of all the three methods.
Langley Stability and Transition Analysis Code (LASTRAC) Version 1.2 User Manual
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2004-01-01
LASTRAC is a general-purposed, physics-based transition prediction code released by NASA for Laminar Flow Control studies and transition research. The design and development of the LASTRAC code is aimed at providing an engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. It was written from scratch based on the state-of-the-art numerical methods for stability analysis and modern software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory or linear parabolized stability equations method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. This document describes the governing equations, numerical methods, code development, detailed description of input/output parameters, and case studies for the current release of LASTRAC.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V [Knoxville, TN
2010-08-17
Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.
Band excitation method applicable to scanning probe microscopy
Jesse, Stephen; Kalinin, Sergei V
2013-05-28
Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.
Swimming in a two-dimensional Brinkman fluid: Computational modeling and regularized solutions
NASA Astrophysics Data System (ADS)
Leiderman, Karin; Olson, Sarah D.
2016-02-01
The incompressible Brinkman equation represents the homogenized fluid flow past obstacles that comprise a small volume fraction. In nondimensional form, the Brinkman equation can be characterized by a single parameter that represents the friction or resistance due to the obstacles. In this work, we derive an exact fundamental solution for 2D Brinkman flow driven by a regularized point force and describe the numerical method to use it in practice. To test our solution and method, we compare numerical results with an analytic solution of a stationary cylinder in a uniform Brinkman flow. Our method is also compared to asymptotic theory; for an infinite-length, undulating sheet of small amplitude, we recover an increasing swimming speed as the resistance is increased. With this computational framework, we study a model swimmer of finite length and observe an enhancement in propulsion and efficiency for small to moderate resistance. Finally, we study the interaction of two swimmers where attraction does not occur when the initial separation distance is larger than the screening length.
Automorphic properties of low energy string amplitudes in various dimensions
NASA Astrophysics Data System (ADS)
Green, Michael B.; Russo, Jorge G.; Vanhove, Pierre
2010-04-01
This paper explores the moduli-dependent coefficients of higher-derivative interactions that appear in the low-energy expansion of the four-supergraviton amplitude of maximally supersymmetric string theory compactified on a d torus. These automorphic functions are determined for terms up to order ∂6R4 and various values of d by imposing a variety of consistency conditions. They satisfy Laplace eigenvalue equations with or without source terms, whose solutions are given in terms of Eisenstein series, or more general automorphic functions, for certain parabolic subgroups of the relevant U-duality groups. The ultraviolet divergences of the corresponding supergravity field theory limits are encoded in various logarithms, although the string theory expressions are finite. This analysis includes intriguing representations of SL(d) and SO(d,d) Eisenstein series in terms of toroidally compactified one and two-loop string and supergravity amplitudes.
Nonlinear finite amplitude torsional vibrations of cantilevers in viscous fluids
NASA Astrophysics Data System (ADS)
Aureli, Matteo; Pagano, Christopher; Porfiri, Maurizio
2012-06-01
In this paper, we study torsional vibrations of cantilever beams undergoing moderately large oscillations within a quiescent viscous fluid. The structure is modeled as an Euler-Bernoulli beam, with thin rectangular cross section, under base excitation. The distributed hydrodynamic loading experienced by the vibrating structure is described through a complex-valued hydrodynamic function which incorporates added mass and fluid damping elicited by moderately large rotations. We conduct a parametric study on the two dimensional computational fluid dynamics of a pitching rigid lamina, representative of a generic beam cross section, to investigate the dependence of the hydrodynamic function on the governing flow parameters. As the frequency and amplitude of the oscillation increase, vortex shedding and convection phenomena increase, thus resulting into nonlinear hydrodynamic damping. We derive a handleable nonlinear correction to the classical hydrodynamic function developed for small amplitude torsional vibrations for use in a reduced order nonlinear modal model and we validate theoretical results against experimental findings.
Volume fraction instability in an oscillating non-Brownian iso-dense suspension.
NASA Astrophysics Data System (ADS)
Roht, Y. L.; Gauthier, G.; Hulin, J. P.; Salin, D.; Chertcoff, R.; Auradou, H.; Ippolito, I.
2017-06-01
The instability of an iso-dense non-Brownian suspension of polystyrene beads of diameter 40 μm dispersed in a water-glycerol mixture submitted to a periodic square wave oscillating flow in a Hele-Shaw cell is studied experimentally. The instability gives rise to stationary bead concentration waves transverse to the flow. It has been observed for average particle volume fractions between 0.25 and 0.4, for periods of the square wave flow variation between 0.4 and 10 s and in finite intervals of the amplitude of the fluid displacement. The study shows that the wavelength λ increases roughly linearly with the amplitude of the oscillatory flow; on the other hand, λ is independent of the particle concentration and of the period of oscillation of the flow although the minimum threshold amplitude for observing the instability increases with the period.
Renormalization of position space amplitudes in a massless QFT
NASA Astrophysics Data System (ADS)
Todorov, Ivan
2017-03-01
Ultraviolet renormalization of position space massless Feynman amplitudes has been shown to yield associate homogeneous distributions. Their degree is determined by the degree of divergence while their order—the highest power of logarithm in the dilation anomaly—is given by the number of (sub)divergences. In the present paper we review these results and observe that (convergent) integration over internal vertices does not alter the total degree of (superficial) ultraviolet divergence. For a conformally invariant theory internal integration is also proven to preserve the order of associate homogeneity. The renormalized 4-point amplitudes in the φ4 theory (in four space-time dimensions) are written as (non-analytic) translation invariant functions of four complex variables with calculable conformal anomaly. Our conclusion concerning the (off-shell) infrared finiteness of the ultraviolet renormalized massless φ4 theory agrees with the old result of Lowenstein and Zimmermann [23].
NASA Astrophysics Data System (ADS)
Wang, Xing; Hill, Thomas L.; Neild, Simon A.; Shaw, Alexander D.; Haddad Khodaparast, Hamed; Friswell, Michael I.
2018-02-01
This paper proposes a model updating strategy for localised nonlinear structures. It utilises an initial finite-element (FE) model of the structure and primary harmonic response data taken from low and high amplitude excitations. The underlying linear part of the FE model is first updated using low-amplitude test data with established techniques. Then, using this linear FE model, the nonlinear elements are localised, characterised, and quantified with primary harmonic response data measured under stepped-sine or swept-sine excitations. Finally, the resulting model is validated by comparing the analytical predictions with both the measured responses used in the updating and with additional test data. The proposed strategy is applied to a clamped beam with a nonlinear mechanism and good agreements between the analytical predictions and measured responses are achieved. Discussions on issues of damping estimation and dealing with data from amplitude-varying force input in the updating process are also provided.
NASA Astrophysics Data System (ADS)
Beloy, Kyle; Derevianko, Andrei
2008-05-01
The dual-kinetic-balance (DKB) finite basis set method for solving the Dirac equation for hydrogen-like ions [V. M. Shabaev et al., Phys. Rev. Lett. 93, 130405 (2004)] is extended to problems with a non-local spherically-symmetric Dirac-Hartree-Fock potential. We implement the DKB method using B-spline basis sets and compare its performance with the widely- employed approach of Notre Dame (ND) group [W.R. Johnson, S.A. Blundell, J. Sapirstein, Phys. Rev. A 37, 307-15 (1988)]. We compare the performance of the ND and DKB methods by computing various properties of Cs atom: energies, hyperfine integrals, the parity-non-conserving amplitude of the 6s1/2-7s1/2 transition, and the second-order many-body correction to the removal energy of the valence electrons. We find that for a comparable size of the basis set the accuracy of both methods is similar for matrix elements accumulated far from the nuclear region. However, for atomic properties determined by small distances, the DKB method outperforms the ND approach.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
NASA Astrophysics Data System (ADS)
Vazquez, Justin; Ali, Halima; Punjabi, Alkesh
2009-11-01
Ciraolo, Vittot and Chandre method of building invariant manifolds inside chaos in Hamiltonian systems [Ali H. and Punjabi A, Plasma Phys. Control. Fusion, 49, 1565--1582 (2007)] is used in the ASDEX UG tokamak. In this method, a second order perturbation is added to the perturbed Hamiltonian [op cit]. It creates an invariant torus inside the chaos, and reduces the plasma transport. The perturbation that is added to the equilibrium Hamiltonian is at least an order of magnitude smaller than the perturbation that causes chaos. This additional term has a finite, limited number of Fourier modes. Resonant magnetic perturbations (m,n) = (3,2)+(4,3) are added to the field line Hamiltonian for the ASDEX UG. An area-preserving map for the field line trajectories in the ASDEX UG is used. The common amplitude δ of these modes that gives complete chaos between the resonant surfaces ψ43 and ψ32 is determined. A magnetic barrier is built at a surface with noble q that is very nearly equals to the q at the physical midpoint between the two resonant surfaces. The maximum amplitude of magnetic perturbation for which this barrier can be sustained is determined. This work is supported by US Department of Energy grants DE-FG02-07ER54937, DE-FG02-01ER54624 and DE-FG02-04ER54793.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1999-01-01
Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
Analysis of dynamic cantilever behavior in tapping mode atomic force microscopy.
Deng, Wenqi; Zhang, Guang-Ming; Murphy, Mark F; Lilley, Francis; Harvey, David M; Burton, David R
2015-10-01
Tapping mode atomic force microscopy (AFM) provides phase images in addition to height and amplitude images. Although the behavior of tapping mode AFM has been investigated using mathematical modeling, comprehensive understanding of the behavior of tapping mode AFM still poses a significant challenge to the AFM community, involving issues such as the correct interpretation of the phase images. In this paper, the cantilever's dynamic behavior in tapping mode AFM is studied through a three dimensional finite element method. The cantilever's dynamic displacement responses are firstly obtained via simulation under different tip-sample separations, and for different tip-sample interaction forces, such as elastic force, adhesion force, viscosity force, and the van der Waals force, which correspond to the cantilever's action upon various different representative computer-generated test samples. Simulated results show that the dynamic cantilever displacement response can be divided into three zones: a free vibration zone, a transition zone, and a contact vibration zone. Phase trajectory, phase shift, transition time, pseudo stable amplitude, and frequency changes are then analyzed from the dynamic displacement responses that are obtained. Finally, experiments are carried out on a real AFM system to support the findings of the simulations. © 2015 Wiley Periodicals, Inc.
Nonlinear ultrasound imaging of nanoscale acoustic biomolecules
NASA Astrophysics Data System (ADS)
Maresca, David; Lakshmanan, Anupama; Lee-Gosselin, Audrey; Melis, Johan M.; Ni, Yu-Li; Bourdeau, Raymond W.; Kochmann, Dennis M.; Shapiro, Mikhail G.
2017-02-01
Ultrasound imaging is widely used to probe the mechanical structure of tissues and visualize blood flow. However, the ability of ultrasound to observe specific molecular and cellular signals is limited. Recently, a unique class of gas-filled protein nanostructures called gas vesicles (GVs) was introduced as nanoscale (˜250 nm) contrast agents for ultrasound, accompanied by the possibilities of genetic engineering, imaging of targets outside the vasculature and monitoring of cellular signals such as gene expression. These possibilities would be aided by methods to discriminate GV-generated ultrasound signals from anatomical background. Here, we show that the nonlinear response of engineered GVs to acoustic pressure enables selective imaging of these nanostructures using a tailored amplitude modulation strategy. Finite element modeling predicted a strongly nonlinear mechanical deformation and acoustic response to ultrasound in engineered GVs. This response was confirmed with ultrasound measurements in the range of 10 to 25 MHz. An amplitude modulation pulse sequence based on this nonlinear response allows engineered GVs to be distinguished from linear scatterers and other GV types with a contrast ratio greater than 11.5 dB. We demonstrate the effectiveness of this nonlinear imaging strategy in vitro, in cellulo, and in vivo.
Jeong, Hyunjo; Barnard, Daniel; Cho, Sungjong; Zhang, Shuzeng; Li, Xiongbing
2017-11-01
This paper presents analytical and experimental techniques for accurate determination of the nonlinearity parameter (β) in thick solid samples. When piezoelectric transducers are used for β measurements, the receiver calibration is required to determine the transfer function from which the absolute displacement can be calculated. The measured fundamental and second harmonic displacement amplitudes should be modified to account for beam diffraction and material absorption. All these issues are addressed in this study and the proposed technique is validated through the β measurements of thick solid samples. A simplified self-reciprocity calibration procedure for a broadband receiver is described. The diffraction and attenuation corrections for the fundamental and second harmonics are explicitly derived. Aluminum alloy samples in five different thicknesses (4, 6, 8, 10, 12cm) are prepared and β measurements are made using the finite amplitude, through-transmission method. The effects of diffraction and attenuation corrections on β measurements are systematically investigated. When diffraction and attenuation corrections are all properly made, the variation of β between different thickness samples is found to be less than 3.2%. Copyright © 2017 Elsevier B.V. All rights reserved.
Frequency domain analysis of errors in cross-correlations of ambient seismic noise
NASA Astrophysics Data System (ADS)
Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri
2016-12-01
We analyse random errors (variances) in cross-correlations of ambient seismic noise in the frequency domain, which differ from previous time domain methods. Extending previous theoretical results on ensemble averaged cross-spectrum, we estimate confidence interval of stacked cross-spectrum of finite amount of data at each frequency using non-overlapping windows with fixed length. The extended theory also connects amplitude and phase variances with the variance of each complex spectrum value. Analysis of synthetic stationary ambient noise is used to estimate the confidence interval of stacked cross-spectrum obtained with different length of noise data corresponding to different number of evenly spaced windows of the same duration. This method allows estimating Signal/Noise Ratio (SNR) of noise cross-correlation in the frequency domain, without specifying filter bandwidth or signal/noise windows that are needed for time domain SNR estimations. Based on synthetic ambient noise data, we also compare the probability distributions, causal part amplitude and SNR of stacked cross-spectrum function using one-bit normalization or pre-whitening with those obtained without these pre-processing steps. Natural continuous noise records contain both ambient noise and small earthquakes that are inseparable from the noise with the existing pre-processing steps. Using probability distributions of random cross-spectrum values based on the theoretical results provides an effective way to exclude such small earthquakes, and additional data segments (outliers) contaminated by signals of different statistics (e.g. rain, cultural noise), from continuous noise waveforms. This technique is applied to constrain values and uncertainties of amplitude and phase velocity of stacked noise cross-spectrum at different frequencies, using data from southern California at both regional scale (˜35 km) and dense linear array (˜20 m) across the plate-boundary faults. A block bootstrap resampling method is used to account for temporal correlation of noise cross-spectrum at low frequencies (0.05-0.2 Hz) near the ocean microseismic peaks.
NASA Astrophysics Data System (ADS)
Diaz, Manuel A.; Solovchuk, Maxim A.; Sheu, Tony W. H.
2018-06-01
A nonlinear system of partial differential equations capable of describing the nonlinear propagation and attenuation of finite amplitude perturbations in thermoviscous media is presented. This system constitutes a full nonlinear wave model that has been formulated in the conservation form. Initially, this model is investigated analytically in the inviscid limit where it has been found that the resulting flux function fulfills the Lax-Wendroff theorem, and the scheme can match the solutions of the Westervelt and Burgers equations numerically. Here, high-order numerical descriptions of strongly nonlinear wave propagations become of great interest. For that matter we consider finite difference formulations of the weighted essentially non-oscillatory (WENO) schemes associated with explicit strong stability preserving Runge-Kutta (SSP-RK) time integration methods. Although this strategy is known to be computationally demanding, it is found to be effective when implemented to be solved in graphical processing units (GPUs). As we consider wave propagations in unbounded domains, perfectly matching layers (PML) have been also considered in this work. The proposed system model is validated and illustrated by using one- and two-dimensional benchmark test cases proposed in the literature for nonlinear acoustic propagation in homogeneous thermoviscous media.
Finite element simulation for damage detection of surface rust in steel rebars using elastic waves
NASA Astrophysics Data System (ADS)
Tang, Qixiang; Yu, Tzuyang
2016-04-01
Steel rebar corrosion reduces the integrity and service life of reinforced concrete (RC) structures and causes their gradual and sudden failures. Early stage detection of steel rebar corrosion can improve the efficiency of routine maintenance and prevent sudden failures from happening. In this paper, detecting the presence of surface rust in steel rebars is investigated by the finite element method (FEM) using surface-generated elastic waves. Simulated wave propagation mimics the sensing scheme of a fiber optic acoustic generator mounted on the surface of steel rebars. Formation of surface rust in steel rebars is modeled by changing material's property at local elements. In this paper, various locations of a fiber optic acoustic transducer and a receiver were considered. Megahertz elastic waves were used and different sizes of surface rust were applied. Transient responses of surface displacement and pressure were studied. It is found that surface rust is most detectable when the rust location is between the transducer and the receiver. Displacement response of intact steel rebar is needed in order to obtain background-subtracted response with a better signal-to-noise ratio. When the size of surface rust increases, reduced amplitude in displacement was obtained by the receiver.
NASA Technical Reports Server (NTRS)
Chang, C. J.; Brown, R. A.
1983-01-01
The roles of natural convection in the melt and the shape of the melt/solid interface on radial dopant segregation are analyzed for a prototype of vertical Bridgman crystal growth system by finite element methods that solve simultaneously for the velocity field in the melt, the shape of the solidification isotherm, and the temperature distribution in both phases. Results are presented for crystal and melt with thermophysical properties similar to those of gallium-doped germanium in Bridgman configurations with melt below (thermally destabilizing) and above (stabilizing) the crystal. Steady axisymmetric flow are classified according to Rayleigh number as either being nearly the growth velocity, having a weak cellular structure or having large amplitude cellular convention. The flows in the two Bridgman configurations are driven by different temperature gradients and are in opposite directions. Finite element calculations for the transport of a dilute dopant by these flow fields reveal radial segregation levels as large as sixty percent of the mean concentration. Segregation is found most severe at an intermediate value of Rayleigh number above which the dopant distribution along the interface levels as the intensity of the flow increases.
Liu, P.; Archuleta, R.J.; Hartzell, S.H.
2006-01-01
We present a new method for calculating broadband time histories of ground motion based on a hybrid low-frequency/high-frequency approach with correlated source parameters. Using a finite-difference method we calculate low- frequency synthetics (< ∼1 Hz) in a 3D velocity structure. We also compute broadband synthetics in a 1D velocity model using a frequency-wavenumber method. The low frequencies from the 3D calculation are combined with the high frequencies from the 1D calculation by using matched filtering at a crossover frequency of 1 Hz. The source description, common to both the 1D and 3D synthetics, is based on correlated random distributions for the slip amplitude, rupture velocity, and rise time on the fault. This source description allows for the specification of source parameters independent of any a priori inversion results. In our broadband modeling we include correlation between slip amplitude, rupture velocity, and rise time, as suggested by dynamic fault modeling. The method of using correlated random source parameters is flexible and can be easily modified to adjust to our changing understanding of earthquake ruptures. A realistic attenuation model is common to both the 3D and 1D calculations that form the low- and high-frequency components of the broadband synthetics. The value of Q is a function of the local shear-wave velocity. To produce more accurate high-frequency amplitudes and durations, the 1D synthetics are corrected with a randomized, frequency-dependent radiation pattern. The 1D synthetics are further corrected for local site and nonlinear soil effects by using a 1D nonlinear propagation code and generic velocity structure appropriate for the site’s National Earthquake Hazards Reduction Program (NEHRP) site classification. The entire procedure is validated by comparison with the 1994 Northridge, California, strong ground motion data set. The bias and error found here for response spectral acceleration are similar to the best results that have been published by others for the Northridge rupture.
Loops in AdS from conformal field theory
NASA Astrophysics Data System (ADS)
Aharony, Ofer; Alday, Luis F.; Bissi, Agnese; Perlmutter, Eric
2017-07-01
We propose and demonstrate a new use for conformal field theory (CFT) crossing equations in the context of AdS/CFT: the computation of loop amplitudes in AdS, dual to non-planar correlators in holographic CFTs. Loops in AdS are largely unexplored, mostly due to technical difficulties in direct calculations. We revisit this problem, and the dual 1 /N expansion of CFTs, in two independent ways. The first is to show how to explicitly solve the crossing equations to the first subleading order in 1 /N 2, given a leading order solution. This is done as a systematic expansion in inverse powers of the spin, to all orders. These expansions can be resummed, leading to the CFT data for finite values of the spin. Our second approach involves Mellin space. We show how the polar part of the four-point, loop-level Mellin amplitudes can be fully reconstructed from the leading-order data. The anomalous dimensions computed with both methods agree. In the case of ϕ 4 theory in AdS, our crossing solution reproduces a previous computation of the one-loop bubble diagram. We can go further, deriving the four-point scalar triangle diagram in AdS, which had never been computed. In the process, we show how to analytically derive anomalous dimensions from Mellin amplitudes with an infinite series of poles, and discuss applications to more complicated cases such as the N = 4 super-Yang-Mills theory.
Suomi, Visa; Edwards, David; Cleveland, Robin
2015-12-01
Optical tracking was used to characterize acoustic radiation force-induced displacements in a tissue-mimicking phantom. Amplitude-modulated 3.3-MHz ultrasound was used to induce acoustic radiation force in the phantom, which was embedded with 10-μm microspheres that were tracked using a microscope objective and high-speed camera. For sine and square amplitude modulation, the harmonic components of the fundamental and second and third harmonic frequencies were measured. The displacement amplitudes were found to increase linearly with acoustic radiation force up to 10 μm, with sine modulation having 19.5% lower peak-to-peak amplitude values than square modulation. Square modulation produced almost no second harmonic, but energy was present in the third harmonic. For the sine modulation, energy was present in the second harmonic and low energy in the third harmonic. A finite-element model was used to simulate the deformation and was both qualitatively and quantitatively in agreement with the measurements. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.
Integrands for QCD rational terms and {N} = {4} SYM from massive CSW rules
NASA Astrophysics Data System (ADS)
Elvang, Henriette; Freedman, Daniel Z.; Kiermaier, Michael
2012-06-01
We use massive CSW rules to derive explicit compact expressions for integrands of rational terms in QCD with any number of external legs. Specifically, we present all- n integrands for the one-loop all-plus and one-minus gluon amplitudes in QCD. We extract the finite part of spurious external-bubble contributions systematically; this is crucial for the application of integrand-level CSW rules in theories without supersymmetry. Our approach yields integrands that are independent of the choice of CSW reference spinor even before integration. Furthermore, we present a recursive derivation of the recently proposed massive CSW-style vertex expansion for massive tree amplitudes and loop integrands on the Coulomb-branch of {N} = {4} SYM. The derivation requires a careful study of boundary terms in all-line shift recursion relations, and provides a rigorous (albeit indirect) proof of the recently proposed construction of massive amplitudes from soft-limits of massless on-shell amplitudes. We show that the massive vertex expansion manifestly preserves all holomorphic and half of the anti-holomorphic supercharges, diagram-by-diagram, even off-shell.
Vibration amplitude sonoelastography lesion imaging using low-frequency audible vibration
NASA Astrophysics Data System (ADS)
Taylor, Lawrence; Parker, Kevin
2003-04-01
Sonoelastography or vibration amplitude imaging is an ultrasound imaging technique in which low-amplitude, low-frequency shear waves, less than 0.1-mm displacement and 1-kHz frequency, are propagated deep into tissue, while real time Doppler techniques are used to image the resulting vibration pattern. Finite-element studies and experiments on tissue-mimicking phantoms verify that a discrete hard inhomogeneity present within a larger region of soft tissue will cause a decrease in the vibration field at its location. This forms the basis for tumor detection using sonoelastography. Real time relative imaging of the vibration field is possible because a vibrating particle will phase modulate an ultrasound signal. The particle's amplitude is directly proportional to the spectral spread of the reflected Doppler echo. Real time estimation of the variance of the Doppler power spectrum at each pixel allows the vibration field to be imaged. Results are shown for phantom lesions, thermal lesions, and 3-D in vitro and 2-D in vivo prostate cancer. MRI and whole mount histology is used to validate the system accuracy.
A symbol of uniqueness: the cluster bootstrap for the 3-loop MHV heptagon
Drummond, J. M.; Papathanasiou, G.; Spradlin, M.
2015-03-16
Seven-particle scattering amplitudes in planar super-Yang-Mills theory are believed to belong to a special class of generalised polylogarithm functions called heptagon functions. These are functions with physical branch cuts whose symbols may be written in terms of the 42 cluster A-coordinates on Gr(4, 7). Motivated by the success of the hexagon bootstrap programme for constructing six-particle amplitudes we initiate the systematic study of the symbols of heptagon functions. We find that there is exactly one such symbol of weight six which satisfies the MHV last-entry condition and is finite in the 7 ll 6 collinear limit. This unique symbol ismore » both dihedral and parity-symmetric, and remarkably its collinear limit is exactly the symbol of the three-loop six-particle MHV amplitude, although none of these properties were assumed a priori. It must therefore be the symbol of the threeloop seven-particle MHV amplitude. The simplicity of its construction suggests that the n-gon bootstrap may be surprisingly powerful for n > 6.« less
Review of fatigue and fracture research at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Everett, Richard A., Jr.
1988-01-01
Most dynamic components in helicopters are designed with a safe-life constant-amplitude testing approach that has not changed in many years. In contrast, the fatigue methodology in other industries has advanced significantly in the last two decades. Recent research at the NASA Langley Research Center and the U.S. Army Aerostructures Directorate at Langley are reviewed relative to fatigue and fracture design methodology for metallic components. Most of the Langley research was directed towards the damage tolerance design approach, but some work was done that is applicable to the safe-life approach. In the areas of testing, damage tolerance concepts are concentrating on the small-crack effect in crack growth and measurement of crack opening stresses. Tests were conducted to determine the effects of a machining scratch on the fatigue life of a high strength steel. In the area of analysis, work was concentrated on developing a crack closure model that will predict fatigue life under spectrum loading for several different metal alloys including a high strength steel that is often used in the dynamic components of helicopters. Work is also continuing in developing a three-dimensional, finite-element stress analysis for cracked and uncracked isotropic and anisotropic structures. A numerical technique for solving simultaneous equations called the multigrid method is being pursued to enhance the solution schemes in both the finite-element analysis and the boundary element analysis. Finally, a fracture mechanics project involving an elastic-plastic finite element analysis of J-resistance curve is also being pursued.
Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Qingping; Wu, Lijun; Welch, David O.
2015-06-17
We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less
NASA Astrophysics Data System (ADS)
Young, Frederic; Siegel, Edward
Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!
Dynamics of nonspherical microbubble oscillations above instability threshold
NASA Astrophysics Data System (ADS)
Guédra, Matthieu; Cleve, Sarah; Mauger, Cyril; Blanc-Benon, Philippe; Inserra, Claude
2017-12-01
Time-resolved dynamics of nonspherical oscillations of micrometer-sized bubbles are captured and analyzed using high-speed imaging. The axisymmetry of the bubble shape is ensured with certainty for the first time from the recordings of two synchronous high-speed cameras located at 90∘. The temporal dynamics of finite-amplitude nonspherical oscillations are then analyzed for various acoustic pressures above the instability threshold. The experimental results are compared with recent theories accounting for nonlinearities and mode coupling, highlighting particular effects inherent to these mechanisms (saturation of the instability, triggering of nonparametric shape modes). Finally, the amplitude of the nonspherical oscillations is given as function of the driving pressure both for quadrupolar and octupolar bubbles.
N-point functions in rolling tachyon background
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jokela, Niko; Keski-Vakkuri, Esko; Department of Physics, P.O. Box 64, FIN-00014, University of Helsinki
2009-04-15
We study n-point boundary correlation functions in timelike boundary Liouville theory, relevant for open string multiproduction by a decaying unstable D brane. We give an exact result for the one-point function of the tachyon vertex operator and show that it is consistent with a previously proposed relation to a conserved charge in string theory. We also discuss when the one-point amplitude vanishes. Using a straightforward perturbative expansion, we find an explicit expression for a tachyon n-point amplitude for all n, however the result is still a toy model. The calculation uses a new asymptotic approximation for Toeplitz determinants, derived bymore » relating the system to a Dyson gas at finite temperature.« less
Simulations and experiments of ejecta generation in twice-shocked metals
NASA Astrophysics Data System (ADS)
Karkhanis, Varad; Ramaprabhu, Praveen; Buttler, William; Hammerberg, James; Cherne, Frank; Andrews, Malcolm
2016-11-01
Using continuum hydrodynamics embedded in the FLASH code, we model ejecta generation in recent target experiments, where a metallic surface was loaded by two successive shock waves. The experimental data were obtained from a two-shockwave, high-explosive tool at Los Alamos National Laboratory, capable of generating ejecta from a shocked tin surface in to a vacuum. In both simulations and experiment, linear growth is observed following the first shock event, while the second shock strikes a finite-amplitude interface leading to nonlinear growth. The timing of the second incident shock was varied systematically in our simulations to realize a finite-amplitude re-initialization of the RM instability driving the ejecta. We find the shape of the interface at the event of second shock is critical in determining the amount of ejecta, and thus must be used as an initial condition to evaluate subsequent ejected mass using a source model. In particular, the agreement between simulations, experiments and the mass model is improved when shape effects associated with the interface at second shock are incorporated. This work was supported in part by the (U.S.) Department of Energy (DOE) under Contract No. DE-AC52-06NA2-5396.
Development of a computerized analysis for solid propellant combustion instability with turbulence
NASA Technical Reports Server (NTRS)
Chung, T. J.; Park, O. Y.
1988-01-01
A multi-dimensional numerical model has been developed for the unsteady state oscillatory combustion of solid propellants subject to acoustic pressure disturbances. Including the gas phase unsteady effects, the assumption of uniform pressure across the flame zone, which has been conventionally used, is relaxed so that a higher frequency response in the long flame of a double-base propellant can be calculated. The formulation is based on a premixed, laminar flame with a one-step overall chemical reaction and the Arrhenius law of decomposition with no condensed phase reaction. In a given geometry, the Galerkin finite element solution shows the strong resonance and damping effect at the lower frequencies, similar to the result of Denison and Baum. Extended studies deal with the higher frequency region where the pressure varies in the flame thickness. The nonlinear system behavior is investigated by carrying out the second order expansion in wave amplitude when the acoustic pressure oscillations are finite in amplitude. Offset in the burning rate shows a negative sign in the whole frequency region considered, and it verifies the experimental results of Price. Finally, the velocity coupling in the two-dimensional model is discussed.
Particle image velocimetry investigation of a finite amplitude pressure wave
NASA Astrophysics Data System (ADS)
Thornhill, D.; Currie, T.; Fleck, R.; Chatfield, G.
2006-03-01
Particle image velocimetry is used to study the motion of gas within a duct subject to the passage of a finite amplitude pressure wave. The wave is representative of the pressure waves found in the exhaust systems of internal combustion engines. Gas particles are accelerated from stationary to 150 m/s and then back to stationary in 8 ms. It is demonstrated that gas particles at the head of the wave travel at the same velocity across the duct cross section at a given point in time. Towards the tail of the wave viscous effects are plainly evident causing the flow profile to tend towards parabolic. However, the instantaneous mean particle velocity across the section is shown to match well with the velocity calculated from a corresponding measured pressure history using 1D gas dynamic theory. The measured pressure history at a point in the duct was acquired using a high speed pressure transducer of the type typically used for engine research in intake and exhaust systems. It is demonstrated that these are unable to follow the rapid changes in pressure accurately and that they are prone to resonate under certain circumstances.
Preferential Heating of Oxygen 5+ Ions by Finite-Amplitude Oblique Alfven Waves
NASA Technical Reports Server (NTRS)
Maneva, Yana G.; Vinas, Adolfo; Araneda, Jamie; Poedts, Stefaan
2016-01-01
Minor ions in the fast solar wind are known to have higher temperatures and to flow faster than protons in the interplanetary space. In this study we combine previous research on parametric instability theory and 2.5D hybrid simulations to study the onset of preferential heating of Oxygen 5+ ions by large-scale finite-amplitude Alfven waves in the collisionless fast solar wind. We consider initially non-drifting isotropic multi-species plasma, consisting of isothermal massless fluid electrons, kinetic protons and kinetic Oxygen 5+ ions. The external energy source for the plasma heating and energization are oblique monochromatic Alfven-cyclotron waves. The waves have been created by rotating the direction of initial parallel pump, which is a solution of the multi-fluid plasma dispersion relation. We consider propagation angles theta less than or equal to 30 deg. The obliquely propagating Alfven pump waves lead to strong diffusion in the ion phase space, resulting in highly anisotropic heavy ion velocity distribution functions and proton beams. We discuss the application of the model to the problems of preferential heating of minor ions in the solar corona and the fast solar wind.
Experimental investigation of outdoor propagation of finite-amplitude noise. [aircraft noise
NASA Technical Reports Server (NTRS)
Webster, D. A.; Blackstock, D. T.
1978-01-01
The outdoor propagation of finite amplitude acoustic waves was investigated using a conventional electroacoustic transmitter which was mounted on the ground and pointed upward in order to avoid ground reflection effects. The propagation path was parallel to a radio tower 85 m tall, whose elevator carried the receiving microphone. The observations and conclusions are as follows: (1) At the higher source levels nonlinear propagation distortion caused a strong generation of high frequency noise over the propagation path. For example, at 70 m for a frequency 2-3 octaves above the source noise band, the measured noise was up to 30 dB higher than the linear theory prediction. (2) The generation occurred in both the nearfield and the farfield of the transmitter. (3) At no measurement point was small-signal behavior established for the high requency noise. Calculations support the contention that the nonlinearity generated high frequency noise never becomes small-signal in its behavior, regardless of distance. (4) When measured spectra are scaled in frequency and level to make them comparable with spectra of actual jet noise, they are found to be well within the jet noise range. It is therefore entirely possible that nonlinear distortion affects jet noise.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castelluccio, Gustavo M.; McDowell, David L.
The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less
Castelluccio, Gustavo M.; McDowell, David L.
2015-05-22
The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less
NASA Astrophysics Data System (ADS)
Maneva, Y. G.; Araneda, J. A.; Poedts, S.
2014-12-01
We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.
Modeling the effect of shroud contact and friction dampers on the mistuned response of turbopumps
NASA Technical Reports Server (NTRS)
Griffin, Jerry H.; Yang, M.-T.
1994-01-01
The contract has been revised. Under the revised scope of work a reduced order model has been developed that can be used to predict the steady-state response of mistuned bladed disks. The approach has been implemented in a computer code, LMCC. It is concluded that: the reduced order model displays structural fidelity comparable to that of a finite element model of an entire bladed disk system with significantly improved computational efficiency; and, when the disk is stiff, both the finite element model and LMCC predict significantly more amplitude variation than was predicted by earlier models. This second result may have important practical ramifications, especially in the case of integrally bladed disks.
Electromagnetic wave scattering from some vegetation samples
NASA Technical Reports Server (NTRS)
Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.
1988-01-01
For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Tadjfar, M.; Welch, W. J. C.; Duck, P. W.
1989-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite-difference and spectral methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T-S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves.
Diffraction Efficiency of Thin Film Holographic Beam Steering Devices
NASA Technical Reports Server (NTRS)
Titus, Charles M.; Pouch, John; Nguyen, Hung; Miranda, Felix; Bos, Philip J.
2003-01-01
Dynamic holography has been demonstrated as a method for correcting aberrations in space deployable optics, and can also be used to achieve high-resolution beam steering in the same environment. In this paper, we consider some of the factors affecting the efficiency of these devices. Specifically, the effect on the efficiency of a highly collimated beam from the number of discrete phase steps per period is considered for a blazed thin film beam steering grating. The effect of the number of discrete phase steps per period on steering resolution is also considered. We also present some result of Finite-Difference Time-Domain (FDTD) calculations of light propagating through liquid crystal "blazed" gratings. Liquid crystal gratings are shown to spatially modulate both the phase and amplitude of the propagating light.
Electromagnetic holographic sensitivity field of two-phase flow in horizontal wells
NASA Astrophysics Data System (ADS)
Zhang, Kuo; Wu, Xi-Ling; Yan, Jing-Fu; Cai, Jia-Tie
2017-03-01
Electromagnetic holographic data are characterized by two modes, suggesting that image reconstruction requires a dual-mode sensitivity field as well. We analyze an electromagnetic holographic field based on tomography theory and Radon inverse transform to derive the expression of the electromagnetic holographic sensitivity field (EMHSF). Then, we apply the EMHSF calculated by using finite-element methods to flow simulations and holographic imaging. The results suggest that the EMHSF based on the partial derivative of radius of the complex electric potential φ is closely linked to the Radon inverse transform and encompasses the sensitivities of the amplitude and phase data. The flow images obtained with inversion using EMHSF better agree with the actual flow patterns. The EMHSF overcomes the limitations of traditional single-mode sensitivity fields.
Seismic Response Analysis of an Unanchored Steel Tank under Horizontal Excitation
NASA Astrophysics Data System (ADS)
Rulin, Zhang; Xudong, Cheng; Youhai, Guan
2017-06-01
The seismic performance of liquid storage tank affects the safety of people’s life and property. A 3-D finite element method (FEM) model of storage tank is established, which considers the liquid-solid coupling effect. Then, the displacement and stress distribution along the tank wall is studied under El Centro earthquake. Results show that, large amplitude sloshing with long period appears on liquid surface. The elephant-foot deformation occurs near the tank bottom, and at the elephant-foot deformation position maximum hoop stress and axial stress appear. The maximum axial compressive stress is very close to the allowable critical stress calculated by the design code, and may be local buckling failure occurs. The research can provide some reference for the seismic design of storage tanks.
Magnus-induced ratchet effects for skyrmions interacting with asymmetric substrates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reichhardt, C.; Ray, D.; Reichhardt, C. J. Olson
2015-07-31
We show using numerical simulations that pronounced ratchet effects can occur for ac driven skyrmions moving over asymmetric quasi-one-dimensional substrates. We find a new type of ratchet effect called a Magnus-induced transverse ratchet that arises when the ac driving force is applied perpendicular rather than parallel to the asymmetry direction of the substrate. This transverse ratchet effect only occurs when the Magnus term is finite, and the threshold ac amplitude needed to induce it decreases as the Magnus term becomes more prominent. Ratcheting skyrmions follow ordered orbits in which the net displacement parallel to the substrate asymmetry direction is quantized.more » As a result, skyrmion ratchets represent a new ac current-based method for controlling skyrmion positions and motion for spintronic applications.« less
NASA Technical Reports Server (NTRS)
Breneman, A.; Cattell, C.; Wygant, J.; Kersten, K.; Wilson, L. B., III; Schreiner, S.; Kellogg, P. J.; Goetz, K.
2011-01-01
We report observations of very large amplitude whistler mode waves in the Earth fs nightside inner radiation belt enabled by the STEREO Time Domain Sampler. Amplitudes range from 30.110 mV/m (zero ]peak), 2 to 3 orders of magnitude larger than previously observed in this region. Measurements from the peak electric field detector (TDSMax) indicate that these large ]amplitude waves are prevalent throughout the plasmasphere. A detailed examination of high time resolution electric field waveforms is undertaken on a subset of these whistlers at L < 2, associated with pump waves from lightning flashes and the naval transmitter NPM in Hawaii, that become unstable after propagation through the ionosphere and grow to large amplitudes. Many of the waveforms undergo periodic polarization reversals near the lower hybrid and NPM naval transmitter frequencies. The reversals may be related to finite plasma temperature and gradients in density induced by ion cyclotron heating of the plasma at 200 Hz, the modulation frequency of the continuous ]mode NPM naval transmitter signal. Test particle simulations using the amplitudes and durations of the waves observed herein suggest that they can interact strongly with high ]energy (>100 keV) electrons on a time scale of <1 s and thus may be an important previously unaccounted for source of energization or pitch ]angle scattering in the inner radiation belt.
Topology of Large-Scale Structures of Galaxies in two Dimensions—Systematic Effects
NASA Astrophysics Data System (ADS)
Appleby, Stephen; Park, Changbom; Hong, Sungwook E.; Kim, Juhan
2017-02-01
We study the two-dimensional topology of galactic distribution when projected onto two-dimensional spherical shells. Using the latest Horizon Run 4 simulation data, we construct the genus of the two-dimensional field and consider how this statistic is affected by late-time nonlinear effects—principally gravitational collapse and redshift space distortion (RSD). We also consider systematic and numerical artifacts, such as shot noise, galaxy bias, and finite pixel effects. We model the systematics using a Hermite polynomial expansion and perform a comprehensive analysis of known effects on the two-dimensional genus, with a view toward using the statistic for cosmological parameter estimation. We find that the finite pixel effect is dominated by an amplitude drop and can be made less than 1% by adopting pixels smaller than 1/3 of the angular smoothing length. Nonlinear gravitational evolution introduces time-dependent coefficients of the zeroth, first, and second Hermite polynomials, but the genus amplitude changes by less than 1% between z = 1 and z = 0 for smoothing scales {R}{{G}}> 9 {Mpc}/{{h}}. Non-zero terms are measured up to third order in the Hermite polynomial expansion when studying RSD. Differences in the shapes of the genus curves in real and redshift space are small when we adopt thick redshift shells, but the amplitude change remains a significant ˜ { O }(10 % ) effect. The combined effects of galaxy biasing and shot noise produce systematic effects up to the second Hermite polynomial. It is shown that, when sampling, the use of galaxy mass cuts significantly reduces the effect of shot noise relative to random sampling.
Estimation of Low Cycle Fatigue Response of 316 LN Stainless Steel in the Presence of Notch
NASA Astrophysics Data System (ADS)
Agrawal, Richa; Veerababu, J.; Goyal, Sunil; Sandhya, R.; Uddanwadiker, Rashmi; Padole, Pramod
2018-02-01
Notches introduced in the plain specimen result in the multiaxial state of stress that exists in the actual components due to the presence of flaws and defects. In the present work, low cycle fatigue life estimation of plain and notched specimens of 316 LN stainless steel is carried out at room temperature and 823 K. The plain and notched specimens with different notch radii were subjected to varying strain amplitudes ranging from ± 0.25 to ± 1.0% at a strain rate of 3 × 10-3 s-1. The fatigue life decreased in the presence of notch for all strain amplitudes at both the temperatures. The decrease in fatigue life was found to be more at room temperature than at 823 K. The fatigue life of the notched specimen decreased by approximately 94.2% compared to plain specimen at room temperature. However, at 823 K the decrease in fatigue life for notched specimen was approximately 84.6%. Low cycle fatigue life of the plain and notched specimens was estimated by Neuber's rule and finite element analysis approach. Neuber's rule overestimated the fatigue life by maximum factor of 2.6 for specimens at room temperature and by maximum factor of 5 for specimens at 823 K. However, it gives closer approximation at higher strain amplitudes at 823 K. Life estimation by finite element analysis at room temperature was within a factor of 1.5 as compared to experimental life, whereas it underestimated the fatigue life within a factor of 6 at high temperature.
Tsunami Amplitude Estimation from Real-Time GNSS.
NASA Astrophysics Data System (ADS)
Jeffries, C.; MacInnes, B. T.; Melbourne, T. I.
2017-12-01
Tsunami early warning systems currently comprise modeling of observations from the global seismic network, deep-ocean DART buoys, and a global distribution of tide gauges. While these tools work well for tsunamis traveling teleseismic distances, saturation of seismic magnitude estimation in the near field can result in significant underestimation of tsunami excitation for local warning. Moreover, DART buoy and tide gauge observations cannot be used to rectify the underestimation in the available time, typically 10-20 minutes, before local runup occurs. Real-time GNSS measurements of coseismic offsets may be used to estimate finite faulting within 1-2 minutes and, in turn, tsunami excitation for local warning purposes. We describe here a tsunami amplitude estimation algorithm; implemented for the Cascadia subduction zone, that uses continuous GNSS position streams to estimate finite faulting. The system is based on a time-domain convolution of fault slip that uses a pre-computed catalog of hydrodynamic Green's functions generated with the GeoClaw shallow-water wave simulation software and maps seismic slip along each section of the fault to points located off the Cascadia coast in 20m of water depth and relies on the principle of the linearity in tsunami wave propagation. The system draws continuous slip estimates from a message broker, convolves the slip with appropriate Green's functions which are then superimposed to produce wave amplitude at each coastal location. The maximum amplitude and its arrival time are then passed into a database for subsequent monitoring and display. We plan on testing this system using a suite of synthetic earthquakes calculated for Cascadia whose ground motions are simulated at 500 existing Cascadia GPS sites, as well as real earthquakes for which we have continuous GNSS time series and surveyed runup heights, including Maule, Chile 2010 and Tohoku, Japan 2011. This system has been implemented in the CWU Geodesy Lab for the Cascadia subduction zone but will be expanded to the circum-Pacific as real-time processing of international GNSS data streams become available.
Li, Ying; Liu, Dan; Xu, Kailiang; Le, Lawrence H.; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S0 and A0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S0 and A0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A0, while the amplitude of S0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S0 and A0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S0 and A0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring. PMID:28182135
Li, Ying; Liu, Dan; Xu, Kailiang; Ta, Dean; Le, Lawrence H; Wang, Weiqi
2017-01-01
Ultrasonic guided waves have recently been used in fracture evaluation and fracture healing monitoring. An axial transmission technique has been used to quantify the impact of the gap breakage width and fracture angle on the amplitudes of low order guided wave modes S 0 and A 0 under a 100 kHz narrowband excitation. In our two dimensional finite-difference time-domain (2D-FDTD) simulation, the long bones are modeled as three layers with a soft tissue overlay and marrow underlay. The simulations of the transversely and obliquely fractured long bones show that the amplitudes of both S 0 and A 0 decrease as the gap breakage widens. Fixing the crack width, the increase of the fracture angle relative to the cross section perpendicular to the long axis enhances the amplitude of A 0, while the amplitude of S 0 shows a nonmonotonic trend with the decrease of the fracture angle. The amplitude ratio between the S 0 and A 0 modes is used to quantitatively evaluate the fracture width and angles. The study suggests that the low order guided wave modes S 0 and A 0 have potentials for transverse and oblique bone fracture evaluation and fracture healing monitoring.
Kvit, Anton A; Devine, Erin E; Jiang, Jack J; Vamos, Andrew C; Tao, Chao
2015-05-01
Vocal fold tissue is biphasic and consists of a solid extracellular matrix skeleton swelled with interstitial fluid. Interactions between the liquid and solid impact the material properties and stress response of the tissue. The objective of this study was to model the movement of liquid during vocal fold vibration and to estimate the volume of liquid accumulation and stress experienced by the tissue near the anterior-posterior midline, where benign lesions are observed to form. A three-dimensional biphasic finite element model of a single vocal fold was built to solve for the liquid velocity, pore pressure, and von Mises stress during and just after vibration using the commercial finite element software COMSOL Multiphysics (Version 4.3a, 2013, Structural Mechanics and Subsurface Flow Modules). Vibration was induced by applying direct load pressures to the subglottal and intraglottal surfaces. Pressure ranges, frequency, and material parameters were chosen based on those reported in the literature. Postprocessing included liquid velocity, pore pressure, and von Mises stress calculations as well as the frequency-stress and amplitude-stress relationships. Resulting time-averaged velocity vectors during vibration indicated liquid movement toward the midline of the fold, as well as upward movement in the inferior-superior direction. Pore pressure and von Misses stresses were higher in this region just after vibration. A linear relationship was found between the amplitude and pore pressure, whereas a nonlinear relationship was found between the frequency and pore pressure. Although this study had certain computational simplifications, it is the first biphasic finite element model to use a realistic geometry and demonstrate the ability to characterize liquid movement due to vibration. Results indicate that there is a significant amount of liquid that accumulates at the midline; however, the role of this accumulation still requires investigation. Further investigation of these mechanical factors may lend insight into the mechanism of benign lesion formation. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
The Blended Finite Element Method for Multi-fluid Plasma Modeling
2016-07-01
Briefing Charts 3. DATES COVERED (From - To) 07 June 2016 - 01 July 2016 4. TITLE AND SUBTITLE The Blended Finite Element Method for Multi-fluid Plasma...BLENDED FINITE ELEMENT METHOD FOR MULTI-FLUID PLASMA MODELING Éder M. Sousa1, Uri Shumlak2 1ERC INC., IN-SPACE PROPULSION BRANCH (RQRS) AIR FORCE RESEARCH...MULTI-FLUID PLASMA MODEL 2 BLENDED FINITE ELEMENT METHOD Blended Finite Element Method Nodal Continuous Galerkin Modal Discontinuous Galerkin Model
Secondary subharmonic instability of boundary layers with pressure gradient and suction
NASA Technical Reports Server (NTRS)
El-Hady, Nabil M.
1988-01-01
Three-dimensional linear secondary instability is investigated for boundary layers with pressure gradient and suction in the presence of a finite amplitude TS wave. The focus is on principal parametric resonance responsible for a strong growth of subharmonics in a low disturbance environment. Calculations are presented for the effect of pressure gradients and suction on controlling the onset and amplification of the secondary instability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, D.K.; Sandler, I.; Rubin, D.
This report describes a three-dimensional nonlinear TRANAL finite element analysis of a nuclear reactor subjected to ground shaking from a buried 50 kg explosive source. The analysis is a pretest simulation of a test event which was scheduled to be conducted in West Germany on 3 November 1979.
The effects of core-reflected waves on finite fault inversions with teleseismic body wave data
NASA Astrophysics Data System (ADS)
Qian, Yunyi; Ni, Sidao; Wei, Shengji; Almeida, Rafael; Zhang, Han
2017-11-01
Teleseismic body waves are essential for imaging rupture processes of large earthquakes. Earthquake source parameters are usually characterized by waveform analyses such as finite fault inversions using only turning (direct) P and SH waves without considering the reflected phases from the core-mantle boundary (CMB). However, core-reflected waves such as ScS usually have amplitudes comparable to direct S waves due to the total reflection from the CMB and might interfere with the S waves used for inversion, especially at large epicentral distances for long duration earthquakes. In order to understand how core-reflected waves affect teleseismic body wave inversion results, we develop a procedure named Multitel3 to compute Green's functions that contain turning waves (direct P, pP, sP, direct S, sS and reverberations in the crust) and core-reflected waves (PcP, pPcP, sPcP, ScS, sScS and associated reflected phases from the CMB). This ray-based method can efficiently generate synthetic seismograms for turning and core-reflected waves independently, with the flexibility to take into account the 3-D Earth structure effect on the timing between these phases. The performance of this approach is assessed through a series of numerical inversion tests on synthetic waveforms of the 2008 Mw7.9 Wenchuan earthquake and the 2015 Mw7.8 Nepal earthquake. We also compare this improved method with the turning-wave only inversions and explore the stability of the new procedure when there are uncertainties in a priori information (such as fault geometry and epicentre location) or arrival time of core-reflected phases. Finally, a finite fault inversion of the 2005 Mw8.7 Nias-Simeulue earthquake is carried out using the improved Green's functions. Using enhanced Green's functions yields better inversion results as expected. While the finite source inversion with conventional P and SH waves is able to recover large-scale characteristics of the earthquake source, by adding PcP and ScS phases, the inverted slip model and moment rate function better match previous results incorporating field observations, geodetic and seismic data.
Modelling viscoacoustic wave propagation with the lattice Boltzmann method.
Xia, Muming; Wang, Shucheng; Zhou, Hui; Shan, Xiaowen; Chen, Hanming; Li, Qingqing; Zhang, Qingchen
2017-08-31
In this paper, the lattice Boltzmann method (LBM) is employed to simulate wave propagation in viscous media. LBM is a kind of microscopic method for modelling waves through tracking the evolution states of a large number of discrete particles. By choosing different relaxation times in LBM experiments and using spectrum ratio method, we can reveal the relationship between the quality factor Q and the parameter τ in LBM. A two-dimensional (2D) homogeneous model and a two-layered model are tested in the numerical experiments, and the LBM results are compared against the reference solution of the viscoacoustic equations based on the Kelvin-Voigt model calculated by finite difference method (FDM). The wavefields and amplitude spectra obtained by LBM coincide with those by FDM, which demonstrates the capability of the LBM with one relaxation time. The new scheme is relatively simple and efficient to implement compared with the traditional lattice methods. In addition, through a mass of experiments, we find that the relaxation time of LBM has a quantitative relationship with Q. Such a novel scheme offers an alternative forward modelling kernel for seismic inversion and a new model to describe the underground media.
Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers
NASA Astrophysics Data System (ADS)
Leighton, Timothy G.
2004-11-01
Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.
Numerical study of electromagnetic waves generated by a prototype dielectric logging tool
Ellefsen, K.J.; Abraham, J.D.; Wright, D.L.; Mazzella, A.T.
2004-01-01
To understand the electromagnetic waves generated by a prototype dielectric logging tool, a numerical study was conducted using both the finite-difference, time-domain method and a frequency-wavenumber method. When the propagation velocity in the borehole was greater than that in the formation (e.g., an air-filled borehole in the unsaturated zone), only a guided wave propagated along the borehole. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave radiated electromagnetic energy into the formation, causing its amplitude to decrease. When the propagation velocity in the borehole was less than that in the formation (e.g., a water-filled borehole in the saturated zone), both a refracted wave and a guided wave propagated along the borehole. The velocity of the refracted wave equaled the phase velocity of a plane wave in the formation, and the refracted wave preceded the guided wave. As the frequency decreased, both the phase and the group velocities of the guided wave asymptotically approached the phase velocity of a plane wave in the formation. The guided wave did not radiate electromagnetic energy into the formation. To analyze traces recorded by the prototype tool during laboratory tests, they were compared to traces calculated with the finite-difference method. The first parts of both the recorded and the calculated traces were similar, indicating that guided and refracted waves indeed propagated along the prototype tool. ?? 2004 Society of Exploration Geophysicists. All rights reserved.
Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios
Julian, B.R.; Foulger, G.R.
1996-01-01
The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.
An ultrashort mixing length micromixer: the shear superposition micromixer.
Bottausci, Frédéric; Cardonne, Caroline; Meinhart, Carl; Mezić, Igor
2007-03-01
We report for the first time a laminar high-performance continuous micromixing process of two fluids over a length of 200 microns in under 10 milliseconds achieved by an optimization of the control parameters amplitude and frequency in the mixing device denoted as 'Shear Superposition Micromixer'. We improve mixing time by approximately 5 orders of magnitude over diffusion-limited mixing. The data indicate that rapid mixing is a result of the combined action of Taylor-Aris dispersion in the main and secondary microchannels and unsteady vortex motion that occurs at finite Reynolds number, which occurs above a threshold amplitude and frequency. The mixing performance is quantified using micron-resolution particle image velocimetry (micro-PIV) and computational fluid dynamics (CFD) simulations.
Modeling walker synchronization on the Millennium Bridge.
Eckhardt, Bruno; Ott, Edward; Strogatz, Steven H; Abrams, Daniel M; McRobie, Allan
2007-02-01
On its opening day the London Millennium footbridge experienced unexpected large amplitude wobbling subsequent to the migration of pedestrians onto the bridge. Modeling the stepping of the pedestrians on the bridge as phase oscillators, we obtain a model for the combined dynamics of people and the bridge that is analytically tractable. It provides predictions for the phase dynamics of individual walkers and for the critical number of people for the onset of oscillations. Numerical simulations and analytical estimates reproduce the linear relation between pedestrian force and bridge velocity as observed in experiments. They allow prediction of the amplitude of bridge motion, the rate of relaxation to the synchronized state and the magnitude of the fluctuations due to a finite number of people.
Sensitivity to perturbations and quantum phase transitions.
Wisniacki, D A; Roncaglia, A J
2013-05-01
The local density of states or its Fourier transform, usually called fidelity amplitude, are important measures of quantum irreversibility due to imperfect evolution. In this Rapid Communication we study both quantities in a paradigmatic many body system, the Dicke Hamiltonian, where a single-mode bosonic field interacts with an ensemble of N two-level atoms. This model exhibits a quantum phase transition in the thermodynamic limit, while for finite instances the system undergoes a transition from quasi-integrability to quantum chaotic. We show that the width of the local density of states clearly points out the imprints of the transition from integrability to chaos but no trace remains of the quantum phase transition. The connection with the decay of the fidelity amplitude is also established.
The ShakeOut earthquake scenario: Verification of three simulation sets
Bielak, J.; Graves, R.W.; Olsen, K.B.; Taborda, R.; Ramirez-Guzman, L.; Day, S.M.; Ely, G.P.; Roten, D.; Jordan, T.H.; Maechling, P.J.; Urbanic, J.; Cui, Y.; Juve, G.
2010-01-01
This paper presents a verification of three simulations of the ShakeOut scenario, an Mw 7.8 earthquake on a portion of the San Andreas fault in southern California, conducted by three different groups at the Southern California Earthquake Center using the SCEC Community Velocity Model for this region. We conducted two simulations using the finite difference method, and one by the finite element method, and performed qualitative and quantitative comparisons between the corresponding results. The results are in good agreement with each other; only small differences occur both in amplitude and phase between the various synthetics at ten observation points located near and away from the fault-as far as 150 km away from the fault. Using an available goodness-of-fit criterion all the comparisons scored above 8, with most above 9.2. This score would be regarded as excellent if the measurements were between recorded and synthetic seismograms. We also report results of comparisons based on time-frequency misfit criteria. Results from these two criteria can be used for calibrating the two methods for comparing seismograms. In those cases in which noticeable discrepancies occurred between the seismograms generated by the three groups, we found that they were the product of inherent characteristics of the various numerical methods used and their implementations. In particular, we found that the major source of discrepancy lies in the difference between mesh and grid representations of the same material model. Overall, however, even the largest differences in the synthetic seismograms are small. Thus, given the complexity of the simulations used in this verification, it appears that the three schemes are consistent, reliable and sufficiently accurate and robust for use in future large-scale simulations. ?? 2009 The Authors Journal compilation ?? 2009 RAS.
Direct Lattice Shaking of Bose Condensates: Finite Momentum Superfluids
Anderson, Brandon M.; Clark, Logan W.; Crawford, J
2017-05-31
Here, we address band engineering in the presence of periodic driving by numerically shaking a lattice containing a bosonic condensate. By not restricting to simplified band structure models we are able to address arbitrary values of the shaking frequency, amplitude, and interaction strengths g. For "near-resonant" shaking frequencies with moderate g, a quantum phase transition to a finite momentum superfluid is obtained with Kibble-Zurek scaling and quantitative agreement with experiment. We use this successful calibration as a platform to support a more general investigation of the interplay between (one particle) Floquet theory and the effects associated with arbitrary g. Bandmore » crossings lead to superfluid destabilization, but where this occurs depends on g in a complicated fashion.« less
A four-dimensional primitive equation model for coupled coastal-deep ocean studies
NASA Technical Reports Server (NTRS)
Haidvogel, D. B.
1981-01-01
A prototype four dimensional continental shelf/deep ocean model is described. In its present form, the model incorporates the effects of finite amplitude topography, advective nonlinearities, and variable stratification and rotation. The model can be forced either directly by imposed atmospheric windstress and surface pressure distributions, and energetic mean currents imposed by the exterior oceanic circulation; or indirectly by initial distributions of shoreward propagation mesoscale waves and eddies. To avoid concerns over the appropriate specification of 'open' boundary conditions on the cross-shelf and seaward model boundaries, a periodic channel geometry (oriented along-coast) is used. The model employs a traditional finite difference expansion in the cross-shelf direction, and a Fourier (periodic) representation in the long-shelf coordinate.
Energetics and optimum motion of oscillating lifting surfaces of finite span
NASA Technical Reports Server (NTRS)
Ahmadi, A. R.; Widnall, S. E.
1986-01-01
In certain modes of animal propulsion in nature, such as bird flight and fish swimming, the efficiency compared to man-made vehicles is very high. In such cases, wing and tail motions are typically associated with relatively high Reynolds numbers, where viscous effects are confined to a thin boundary layer at the surface and a thin trailing wake. The propulsive forces, which are generated primarily by the inertial forces, can be calculated from potential-flow theory using linearized unsteady-wing theory (for small-amplitude oscillations). In the present study, a recently developed linearized, low-frequency, unsteady lifting-line theory is employed to calculate the (sectional and total) energetic quantities and optimum motion of an oscillating wing of finite span.
A Model-Based Approach to Trial-By-Trial P300 Amplitude Fluctuations
Kolossa, Antonio; Fingscheidt, Tim; Wessel, Karl; Kopp, Bruno
2013-01-01
It has long been recognized that the amplitude of the P300 component of event-related brain potentials is sensitive to the degree to which eliciting stimuli are surprising to the observers (Donchin, 1981). While Squires et al. (1976) showed and modeled dependencies of P300 amplitudes from observed stimuli on various time scales, Mars et al. (2008) proposed a computational model keeping track of stimulus probabilities on a long-term time scale. We suggest here a computational model which integrates prior information with short-term, long-term, and alternation-based experiential influences on P300 amplitude fluctuations. To evaluate the new model, we measured trial-by-trial P300 amplitude fluctuations in a simple two-choice response time task, and tested the computational models of trial-by-trial P300 amplitudes using Bayesian model evaluation. The results reveal that the new digital filtering (DIF) model provides a superior account of the trial-by-trial P300 amplitudes when compared to both Squires et al.’s (1976) model, and Mars et al.’s (2008) model. We show that the P300-generating system can be described as two parallel first-order infinite impulse response (IIR) low-pass filters and an additional fourth-order finite impulse response (FIR) high-pass filter. Implications of the acquired data are discussed with regard to the neurobiological distinction between short-term, long-term, and working memory as well as from the point of view of predictive coding models and Bayesian learning theories of cortical function. PMID:23404628
K-->pipi amplitudes from lattice QCD with a light charm quark.
Giusti, L; Hernández, P; Laine, M; Pena, C; Wennekers, J; Wittig, H
2007-02-23
We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light. They are extracted by comparing the predictions of finite-volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm-quark mass in K-->pipi amplitudes. The use of fermions with an exact chiral symmetry is an essential ingredient in our computation.
Secondary Instability of Stationary Crossflow Vortices in Mach 6 Boundary Layer Over a Circular Cone
NASA Technical Reports Server (NTRS)
Li, Fei; Choudhari, Meelan M.; Paredes-Gonzalez, Pedro; Duan, Lian
2015-01-01
Hypersonic boundary layer flows over a circular cone at moderate incidence can support strong crossflow instability. Due to more efficient excitation of stationary crossflow vortices by surface roughness, such boundary layer flows may transition to turbulence via rapid amplification of the high-frequency secondary instabilities of finite amplitude stationary crossflow vortices. The amplification characteristics of these secondary instabilities are investigated for crossflow vortices generated by an azimuthally periodic array of roughness elements over a 7-degree half-angle circular cone in a Mach 6 free stream. Depending on the local amplitude of the stationary crossflow mode, the most unstable secondary disturbances either originate from the second (i.e., Mack) mode instabilities of the unperturbed boundary layer or correspond to genuine secondary instabilities that reduce to stable disturbances at sufficiently small amplitudes of the stationary crossflow vortex. The predicted frequencies of dominant secondary disturbances are similar to those measured during wind tunnel experiments at Purdue University and the Technical University of Braunschweig, Germany.
Tsunami Ionospheric warning and Ionospheric seismology
NASA Astrophysics Data System (ADS)
Lognonne, Philippe; Rolland, Lucie; Rakoto, Virgile; Coisson, Pierdavide; Occhipinti, Giovanni; Larmat, Carene; Walwer, Damien; Astafyeva, Elvira; Hebert, Helene; Okal, Emile; Makela, Jonathan
2014-05-01
The last decade demonstrated that seismic waves and tsunamis are coupled to the ionosphere. Observations of Total Electron Content (TEC) and airglow perturbations of unique quality and amplitude were made during the Tohoku, 2011 giant Japan quake, and observations of much lower tsunamis down to a few cm in sea uplift are now routinely done, including for the Kuril 2006, Samoa 2009, Chili 2010, Haida Gwai 2012 tsunamis. This new branch of seismology is now mature enough to tackle the new challenge associated to the inversion of these data, with either the goal to provide from these data maps or profile of the earth surface vertical displacement (and therefore crucial information for tsunami warning system) or inversion, with ground and ionospheric data set, of the various parameters (atmospheric sound speed, viscosity, collision frequencies) controlling the coupling between the surface, lower atmosphere and the ionosphere. We first present the state of the art in the modeling of the tsunami-atmospheric coupling, including in terms of slight perturbation in the tsunami phase and group velocity and dependance of the coupling strength with local time, ocean depth and season. We then show the confrontation of modelled signals with observations. For tsunami, this is made with the different type of measurement having proven ionospheric tsunami detection over the last 5 years (ground and space GPS, Airglow), while we focus on GPS and GOCE observation for seismic waves. These observation systems allowed to track the propagation of the signal from the ground (with GPS and seismometers) to the neutral atmosphere (with infrasound sensors and GOCE drag measurement) to the ionosphere (with GPS TEC and airglow among other ionospheric sounding techniques). Modelling with different techniques (normal modes, spectral element methods, finite differences) are used and shown. While the fits of the waveform are generally very good, we analyse the differences and draw direction of future studies and improvements, enabling the integration of lateral variations of the solid earth, bathymetry or atmosphere, finite model sources, non-linearity of the waves and better attenuation and coupling processes. All these effects are revealed by phase or amplitude discrepancies in selected observations. We then present goals and first results of source inversions, with a focus on estimations of the sea level uplift location and amplitude, either by using GPS networks close from the epicentre or, for tsunamis, GPS of the Hawaii Islands.
NASA Astrophysics Data System (ADS)
Nolet, G.; Mercerat, D.; Zaroli, C.
2012-12-01
We present the first complete test of finite frequency tomography with banana-doughnut kernels, from the generation of seismograms in a 3D model to the final inversion, and are able to lay to rest all of the so-called `controversies' that have slowed down its adoption. Cross-correlation delay times are influenced by energy arriving in a time window that includes later arrivals, either scattered from, or diffracted around lateral heterogeneities. We present here the results of a 3D test in which we generate 1716 seismograms using the spectral element method in a cross-borehole experiment conducted in a checkerboard box. Delays are determined for the broadband signals as well as for five frequency bands (each one octave apart) by cross-correlating seismograms for a homogeneous pattern with those for a checkerboard. The large (10 per cent) velocity contrast and the regularity of the checkerboard pattern causes severe reverberations that arrive late in the cross-correlation window. Data errors are estimated by comparing linearity between delays measured for a model with 10 per cent velocity contrast with those with a 4 per cent contrast. Sensitivity kernels are efficiently computed with ray theory using the `banana-doughnut' kernels from Dahlen et al. (GJI 141:157, 2000). The model resulting from the inversion with a data fit with reduced χ2red=1 shows an excellent correspondence with the input model and allows for a complete validation of the theory. Amplitudes in the (well resolved) top part of the model are close to the input amplitudes. Comparing a model derived from one band only shows the power of using multiple frequency bands in resolving detail - essentially the observed dispersion captures some of the waveform information. Finite frequency theory also allows us to image the checkerboard at some distance from the borehole plane. Most disconcertingly for advocates of ray theory are the results obtained when we interpret cross-correlation delays with ray theory. We shall present an extreme case of the devil's checkerboard (the term is from Jacobsen and Sigloch), in which the sign of the anomalies in the checkerboard is reversed in the ray-theoretical solution, a clear demonstration of the reality of effects of the doughnut hole. We conclude that the test fully validates `banana-doughnut' theory, and disqualifies ray theoretical inversions of cross-correlation delays.
Magnetically induced rotor vibration in dual-stator permanent magnet motors
NASA Astrophysics Data System (ADS)
Xie, Bang; Wang, Shiyu; Wang, Yaoyao; Zhao, Zhifu; Xiu, Jie
2015-07-01
Magnetically induced vibration is a major concern in permanent magnet (PM) motors, which is especially true for dual-stator motors. This work develops a two-dimensional model of the rotor by using energy method, and employs this model to examine the rigid- and elastic-body vibrations induced by the inner stator tooth passage force and that by the outer. The analytical results imply that there exist three typical vibration modes. Their presence or absence depends on the combination of magnet/slot, force's frequency and amplitude, the relative position between two stators, and other structural parameters. The combination and relative position affect these modes via altering the force phase. The predicted results are verified by magnetic force wave analysis by finite element method (FEM) and comparison with the existing results. Potential directions are also given with the anticipation of bringing forth more interesting and useful findings. As an engineering application, the magnetically induced vibration can be first reduced via the combination and then a suitable relative position.
NASA Technical Reports Server (NTRS)
Przekwas, A. J.; Yang, H. Q.
1989-01-01
The capability of accurate nonlinear flow analysis of resonance systems is essential in many problems, including combustion instability. Classical numerical schemes are either too diffusive or too dispersive especially for transient problems. In the last few years, significant progress has been made in the numerical methods for flows with shocks. The objective was to assess advanced shock capturing schemes on transient flows. Several numerical schemes were tested including TVD, MUSCL, ENO, FCT, and Riemann Solver Godunov type schemes. A systematic assessment was performed on scalar transport, Burgers' and gas dynamic problems. Several shock capturing schemes are compared on fast transient resonant pipe flow problems. A system of 1-D nonlinear hyperbolic gas dynamics equations is solved to predict propagation of finite amplitude waves, the wave steepening, formation, propagation, and reflection of shocks for several hundred wave cycles. It is shown that high accuracy schemes can be used for direct, exact nonlinear analysis of combustion instability problems, preserving high harmonic energy content for long periods of time.
NLO Higgs+jet at Large Transverse Momenta Including Top Quark Mass Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Neumann, Tobias
We present a next-to-leading order calculation of H+jet in gluon fusion including the effect of a finite top quark massmore » $$m_t$$ at large transverse momenta. Using the recently published two-loop amplitudes in the high energy expansion and our previous setup that includes finite $$m_t$$ effects in a low energy expansion, we are able to obtain $$m_t$$-finite results for transverse momenta below 225 GeV and above 500 GeV with negligible remaining top quark mass uncertainty. The only remaining region that has to rely on the common leading order rescaling approach is the threshold region $$\\sqrt{\\hat s}\\simeq 2m_t$$. We demonstrate that this rescaling provides an excellent approximation in the high $$p_T$$ region. Our calculation settles the issue of top quark mass effects at large transverse momenta. It is implemented in the parton level Monte Carlo code MCFM and is publicly available immediately in version 8.2.« less
Statespace geometry of puff formation in pipe flow
NASA Astrophysics Data System (ADS)
Budanur, Nazmi Burak; Hof, Bjoern
2017-11-01
Localized patches of chaotically moving fluid known as puffs play a central role in the transition to turbulence in pipe flow. Puffs coexist with the laminar flow and their large-scale dynamics sets the critical Reynolds number: When the rate of puff splitting exceeds that of decaying, turbulence in a long pipe becomes sustained in a statistical sense. Since puffs appear despite the linear stability of the Hagen-Poiseuille flow, one expects them to emerge from the bifurcations of finite-amplitude solutions of Navier-Stokes equations. In numerical simulations of pipe flow, Avila et al., discovered a pair of streamwise localized relative periodic orbits, which are time-periodic solutions with spatial drifts. We combine symmetry reduction and Poincaré section methods to compute the unstable manifolds of these orbits, revealing statespace structures associated with different stages of puff formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslem, W. M.; Sabry, R.; Shukla, P. K.
2010-03-15
By using the hydrodynamic equations of ions, Thomas-Fermi electron/positron density distribution, and Poisson equation, a three-dimensional cylindrical Kadomtsev-Petviashvili (CKP) equation is derived for small but finite amplitude ion-acoustic waves. The generalized expansion method is used to analytically solve the CKP equation. New class of solutions admits a train of well-separated bell-shaped periodic pulses is obtained. At certain condition, the latter degenerates to solitary wave solution. The effects of physical parameters on the solitary pulse structures are examined. Furthermore, the energy integral equation is used to study the existence regions of the localized pulses. The present study might be helpful tomore » understand the excitation of nonlinear ion-acoustic waves in a very dense astrophysical objects such as white dwarfs.« less
NASA Astrophysics Data System (ADS)
Sobolev, A. F.; Yakovets, M. A.
2017-11-01
Exact solutions to problems of the propagation of acoustic modes in lined channels with an impedance jump in the presence of a uniform flow are constructed. Two problems that can be solved by the Wiener- Hopf method—the propagation of acoustic modes in an infinite cylindrical channel with a transverse impedance jump and the propagation of acoustic modes in a rectangular channel with an impedance jump on one of its walls—are considered. On the channel walls, the Ingard-Myers boundary conditions are imposed and, as an additional boundary condition in the vicinity of the junction of the linings, the condition expressing the finiteness of the acoustic energy. Analytical expressions for the amplitudes of the transmitted and reflected fields are obtained.
On the Nonlinear Dynamics of a Tunable Shock Micro-switch
NASA Astrophysics Data System (ADS)
Azizi, Saber; Javaheri, Hamid; Ghanati, Parisa
2016-12-01
A tunable shock micro-switch based on piezoelectric excitation is proposed in this study. This model includes a clamped-clamped micro-beam sandwiched with two piezoelectric layers throughout the entire length. Actuation of the piezoelectric layers via a DC voltage leads to an initial axial force in the micro-beam and directly affects on its overall bending stiffness; accordingly enables two-side tuning of both the trigger time and threshold shock. The governing motion equation, in the presence of an electrostatic actuation and a shock wave, is derived using Hamilton's principle. We employ the finite element method based on the Galerkin technique to obtain the temporal and phase responses subjected to three different shock waves including half sine, triangular and rectangular forms. Subsequently, we investigate the effect of the piezoelectric excitations on the threshold shock amplitude and trigger time.
Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Duck, P. W.
1992-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.
Boundary-layer receptivity due to a wall suction and control of Tollmien-Schlichting waves
NASA Technical Reports Server (NTRS)
Bodonyi, R. J.; Duck, P. W.
1990-01-01
A numerical study of the generation of Tollmien-Schlichting (T-S) waves due to the interaction between a small free-stream disturbance and a small localized suction slot on an otherwise flat surface was carried out using finite difference methods. The nonlinear steady flow is of the viscous-inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier-Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of T-S waves generated by the interaction between the free-stream disturbance and the suction slot, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T-S waves and the demonstration of the possible active control of the growth of T-S waves.
Amplitude Excitations in a Symmetry-Breaking Quantum Phase Transition
NASA Astrophysics Data System (ADS)
Boguslawski, Matthew; H M, Bharath; Barrios, Maryrose; Chapman, Michael
Quantum phase transitions (QPT) can be characterized using a local order parameter. In a symmetry-breaking phase transition, this order parameter spontaneously breaks one or more of the symmetries of the Hamiltonian while crossing the quantum critical point (QCP). A spin-1 Bose Einstein condensate, in a single spatial mode, undergoes a QPT when the applied magnetic field is quenched through a critical value. The transverse spin component is an order parameter characterizing this QPT. It shares a U(1)Ã'SO(2) symmetry with the Hamiltonian, but one of these two symmetries is broken when the system is quenched through the QCP. As a result, two massless, coupled phonon-magnon modes are present along with a single massive, or Higgs-like mode which has the form of amplitude excitations of the order parameter. Here, we experimentally characterize this phase transition and the resulting amplitude excitations by inducing coherent oscillation in the spin population. We further use the amplitude oscillations to measure the energy gap between the ground state and the first excited state for different phases of the QPT. At the QCP, finite size effects lead to a non-zero gap, and our measurements are consistent with this prediction.
The Influence of Second Harmonic Phase and Amplitude Variation in Cyclically Pitching Wings
NASA Astrophysics Data System (ADS)
Culler, Ethan; Farnsworth, John
2017-11-01
From wind tunnel testing of a cyber-physical wing model, it has been found that the pitch trajectory for stall flutter is described by an array of higher harmonic frequencies with decaying energy content. These frequencies distort the stall flutter motion from that of a pure sinusoidal oscillation in pitch and can have a significant effect on the resulting force production. In order to understand how these higher harmonic frequencies contribute to the overall pitching moment characteristics of a wing in stall flutter, a rigid finite span wing model, with aspect ratio four, was pitched in the wind tunnel. The prescribed motion of the pitch cycle was varied by changing the amplitude ratio and phase of the second harmonic of the oscillation frequency. The second harmonic represents the second highest energy mode in the pitching cycle spectra. Pitching moment and planar particle image velocimetry data was collected. From these pitching trajectories, a significant dependence of pitching moment on both the phase and amplitude of the prescribed waveforms was found. Specifically, for the same amplitude ratio, variations in the phase produced changes of approximately 30 percent in the phase averaged pitching moment.
Chen, Y; Tsong, T Y
1994-01-01
The stationary-state kinetic properties of a simplified two-state electro-conformational coupling model (ECC) in the presence of alternating rectangular electric potential pulses are derived analytically. Analytic expressions for the transport flux, the rate of electric energy dissipation, and the efficiency of the transducing system are obtained as a function of the amplitude and frequency of the oscillation. These formulas clarify some fundamental concept of the ECC model and are directly applicable to the interpretation and design of experiments. Based on these formulas, the reversibility and the degree of coupling of the system can be studied quantitatively. It is found that the oscillation-induced free energy transduction is reversible and tight-coupled only when the amplitude of the oscillating electric field is infinitely large. In general, the coupling is not tight when the amplitude of the electric field is finite. Furthermore, depending on the kinetic parameters of the model, there may exist a "critical" electric field amplitude, below which free energy transduction is not reversible. That is, energy may be transduced from the electric to the chemical, but not from the chemical to the electric. PMID:8075348
A study of self-propelled elastic cylindrical micro-swimmers using modeling and computation
NASA Astrophysics Data System (ADS)
Shi, Lingling; Čanić, Sunčica; Quaini, Annalisa; Pan, Tsorng-Whay
2016-06-01
We study propulsion of micro-swimmers in 3D creeping flow. The swimmers are assumed to be made of elastic cylindrical hollow tubes. The swimming is generated by the contractions of the tube's elastic membrane walls producing a traveling wave in the form of a ;step-function; traversing the swimmer from right to left, propelling the swimmer from left to right. The problem is motivated by medical applications such as drug delivery. The influence of several non-dimensional design parameters on the velocity of the swimmer is investigated, including the swimmer aspect ratio, and the amplitude of the traveling wave relative to the swimmer radius. An immersed boundary method based on a finite element method approach is successfully combined with an elastic spring network model to simulate the two-way fluid-structure interaction coupling between the elastic cylindrical tube and the flow of a 3D viscous, incompressible fluid. To gain a deeper insight into the influence of various parameters on the swimmer speed, a reduced 1D fluid-structure interaction model was derived and validated. It was found that fast swimmers are those with large tube aspect ratios, and with the amplitude of the traveling wave which is roughly 50% of the reference swimmer radius. It was shown that the speed of our ;optimal swimmer; is around 1.5 swimmer lengths per second, which is at the top of the class of all currently manufactured micro-swimmers swimming in low Reynolds number flows (Re =10-6), reported in [11].
NASA Astrophysics Data System (ADS)
Salvalaglio, Marco; Backofen, Rainer; Elder, K. R.; Voigt, Axel
2018-05-01
We address a three-dimensional, coarse-grained description of dislocation networks at grain boundaries between rotated crystals. The so-called amplitude expansion of the phase-field crystal model is exploited with the aid of finite element method calculations. This approach allows for the description of microscopic features, such as dislocations, while simultaneously being able to describe length scales that are orders of magnitude larger than the lattice spacing. Moreover, it allows for the direct description of extended defects by means of a scalar order parameter. The versatility of this framework is shown by considering both fcc and bcc lattice symmetries and different rotation axes. First, the specific case of planar, twist grain boundaries is illustrated. The details of the method are reported and the consistency of the results with literature is discussed. Then, the dislocation networks forming at the interface between a spherical, rotated crystal embedded in an unrotated crystalline structure, are shown. Although explicitly accounting for dislocations which lead to an anisotropic shrinkage of the rotated grain, the extension of the spherical grain boundary is found to decrease linearly over time in agreement with the classical theory of grain growth and recent atomistic investigations. It is shown that the results obtained for a system with bcc symmetry agree very well with existing results, validating the methodology. Furthermore, fully original results are shown for fcc lattice symmetry, revealing the generality of the reported observations.
Lee, Jaesun; Achenbach, Jan D; Cho, Younho
2018-03-01
Guided waves can effectively be used for inspection of large scale structures. Surface corrosion is often found as major defect type in large scale structures such as pipelines. Guided wave interaction with surface corrosion can provide useful information for sizing and classification. In this paper, the elastodynamic reciprocity theorem is used to formulate and solve complicated scattering problems in a simple manner. The approach has already been applied to scattering of Rayleigh and Lamb waves by defects to produce closed form solutions of amplitude of scattered waves. In this paper, the scattering of the lowest axially symmetric torsional mode, which is widely used in commercial applications, is analyzed by the reciprocity theorem. In the present paper, the theorem is used to determine the scattering of the lowest torsional mode by a tapered defect that was earlier considered experimentally and numerically by the finite element method. It is shown that by the presented method it is simple to obtain the ratio of amplitudes of scattered torsional modes for a tapered notch. The results show a good agreement with earlier numerical results. The wave field superposition technique in conjunction with the reciprocity theorem simplifies the solution of the scattering problem to yield a closed form solution which can play a significant role in quantitative signal interpretation. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor.
Rifat, Ahmmed A; Haider, Firoz; Ahmed, Rajib; Mahdiraji, Ghafour Amouzad; Mahamd Adikan, F R; Miroshnichenko, Andrey E
2018-02-15
Highly sensitive and miniaturized sensors are highly desirable for real-time analyte/sample detection. In this Letter, we propose a highly sensitive plasmonic sensing scheme with the miniaturized photonic crystal fiber (PCF) attributes. A large cavity is introduced in the first ring of the PCFs for the efficient field excitation of the surface plasmon polariton mode and proficient infiltration of the sensing elements. Due to the irregular air-hole diameter in the first ring, the cavity exhibits the birefringence behavior which enhances the sensing performance. The novel plasmonic material gold has been used considering the chemical stability in an aqueous environment. The guiding properties and the effects of the sensing performance with different parameters have been investigated by the finite element method, and the proposed PCFs have been fabricated using the stack-and-draw fiber drawing method. The proposed sensor performance was investigated based on the wavelength and amplitude sensing techniques and shows the maximum sensitivities of 11,000 nm/RIU and 1,420 RIU -1 , respectively. It also shows the maximum sensor resolutions of 9.1×10 -6 and 7×10 -6 RIU for the wavelength and amplitude sensing schemes, respectively, and the maximum figure of merits of 407. Furthermore, the proposed sensor is able to detect the analyte refractive indices in the range of 1.33-1.42; as a result, it will find the possible applications in the medical diagnostics, biomolecules, organic chemical, and chemical analyte detection.
NASA Astrophysics Data System (ADS)
Steckiewicz, Adam; Butrylo, Boguslaw
2017-08-01
In this paper we discussed the results of a multi-criteria optimization scheme as well as numerical calculations of periodic conductive structures with selected geometry. Thin printed structures embedded on a flexible dielectric substrate may be applied as simple, cheap, passive low-pass filters with an adjustable cutoff frequency in low (up to 1 MHz) radio frequency range. The analysis of an electromagnetic phenomena in presented structures was realized on the basis of a three-dimensional numerical model of three proposed geometries of periodic elements. The finite element method (FEM) was used to obtain a solution of an electromagnetic harmonic field. Equivalent lumped electrical parameters of printed cells obtained in such manner determine the shape of an amplitude transmission characteristic of a low-pass filter. A nonlinear influence of a printed cell geometry on equivalent parameters of cells electric model, makes it difficult to find the desired optimal solution. Therefore an optimization problem of optimal cell geometry estimation with regard to an approximation of the determined amplitude transmission characteristic with an adjusted cutoff frequency, was obtained by the particle swarm optimization (PSO) algorithm. A dynamically suitable inertia factor was also introduced into the algorithm to improve a convergence to a global extremity of a multimodal objective function. Numerical results as well as PSO simulation results were characterized in terms of approximation accuracy of predefined amplitude characteristics in a pass-band, stop-band and cutoff frequency. Three geometries of varying degrees of complexity were considered and their use in signal processing systems was evaluated.
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
NASA Astrophysics Data System (ADS)
Le Bouteiller, P.; Benjemaa, M.; Métivier, L.; Virieux, J.
2018-03-01
Accurate numerical computation of wave traveltimes in heterogeneous media is of major interest for a large range of applications in seismics, such as phase identification, data windowing, traveltime tomography and seismic imaging. A high level of precision is needed for traveltimes and their derivatives in applications which require quantities such as amplitude or take-off angle. Even more challenging is the anisotropic case, where the general Eikonal equation is a quartic in the derivatives of traveltimes. Despite their efficiency on Cartesian meshes, finite-difference solvers are inappropriate when dealing with unstructured meshes and irregular topographies. Moreover, reaching high orders of accuracy generally requires wide stencils and high additional computational load. To go beyond these limitations, we propose a discontinuous-finite-element-based strategy which has the following advantages: (1) the Hamiltonian formalism is general enough for handling the full anisotropic Eikonal equations; (2) the scheme is suitable for any desired high-order formulation or mixing of orders (p-adaptivity); (3) the solver is explicit whatever Hamiltonian is used (no need to find the roots of the quartic); (4) the use of unstructured meshes provides the flexibility for handling complex boundary geometries such as topographies (h-adaptivity) and radiation boundary conditions for mimicking an infinite medium. The point-source factorization principles are extended to this discontinuous Galerkin formulation. Extensive tests in smooth analytical media demonstrate the high accuracy of the method. Simulations in strongly heterogeneous media illustrate the solver robustness to realistic Earth-sciences-oriented applications.
The effect of abdominal wall morphology on ultrasonic pulse distortion. Part II. Simulations.
Mast, T D; Hinkelman, L M; Orr, M J; Waag, R C
1998-12-01
Wavefront propagation through the abdominal wall was simulated using a finite-difference time-domain implementation of the linearized wave propagation equations for a lossless, inhomogeneous, two-dimensional fluid as well as a simplified straight-ray model for a two-dimensional absorbing medium. Scanned images of six human abdominal wall cross sections provided the data for the propagation media in the simulations. The images were mapped into regions of fat, muscle, and connective tissue, each of which was assigned uniform sound speed, density, and absorption values. Propagation was simulated through each whole specimen as well as through each fat layer and muscle layer individually. Wavefronts computed by the finite-difference method contained arrival time, energy level, and wave shape distortion similar to that in measurements. Straight-ray simulations produced arrival time fluctuations similar to measurements but produced much smaller energy level fluctuations. These simulations confirm that both fat and muscle produce significant wavefront distortion and that distortion produced by fat sections differs from that produced by muscle sections. Spatial correlation of distortion with tissue composition suggests that most major arrival time fluctuations are caused by propagation through large-scale inhomogeneities such as fatty regions within muscle layers, while most amplitude and waveform variations are the result of scattering from smaller inhomogeneities such as septa within the subcutaneous fat. Additional finite-difference simulations performed using uniform-layer models of the abdominal wall indicate that wavefront distortion is primarily caused by tissue structures and inhomogeneities rather than by refraction at layer interfaces or by variations in layer thicknesses.
Predicting double negativity using transmitted phase in space coiling metamaterials.
Maurya, Santosh K; Pandey, Abhishek; Shukla, Shobha; Saxena, Sumit
2018-05-01
Metamaterials are engineered materials that offer the flexibility to manipulate the incident waves leading to exotic applications such as cloaking, extraordinary transmission, sub-wavelength imaging and negative refraction. These concepts have largely been explored in the context of electromagnetic waves. Acoustic metamaterials, similar to their optical counterparts, demonstrate anomalous effective elastic properties. Recent developments have shown that coiling up the propagation path of acoustic wave results in effective elastic response of the metamaterial beyond the natural response of its constituent materials. The effective response of metamaterials is generally evaluated using the 'S' parameter retrieval method based on amplitude of the waves. The phase of acoustic waves contains information of wave pressure and particle velocity. Here, we show using finite-element methods that phase reversal of transmitted waves may be used to predict extreme acoustic properties in space coiling metamaterials. This change is the difference in the phase of the transmitted wave with respect to the incident wave. This method is simpler when compared with the more rigorous 'S' parameter retrieval method. The inferences drawn using this method have been verified experimentally for labyrinthine metamaterials by showing negative refraction for the predicted band of frequencies.
Stress-intensity factors for small surface and corner cracks in plates
NASA Technical Reports Server (NTRS)
Raju, I. S.; Atluri, S. N.; Newman, J. C., Jr.
1988-01-01
Three-dimensional finite-element and finite-alternating methods were used to obtain the stress-intensity factors for small surface and corner cracked plates subjected to remote tension and bending loads. The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The performance of the finite-element alternating method was studied on these crack configurations. A study of the computational effort involved in the finite-element alternating method showed that several crack configurations could be analyzed with a single rectangular mesh idealization, whereas the conventional finite-element method requires a different mesh for each configuration. The stress-intensity factors obtained with the finite-element-alternating method agreed well (within 5 percent) with those calculated from the finite-element method with singularity elements.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-03-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.
Constructing Current Singularity in a 3D Line-tied Plasma
Zhou, Yao; Huang, Yi-Min; Qin, Hong; ...
2017-12-27
We revisit Parker's conjecture of current singularity formation in 3D line-tied plasmas using a recently developed numerical method, variational integration for ideal magnetohydrodynamics in Lagrangian labeling. With the frozen-in equation built-in, the method is free of artificial reconnection, and hence it is arguably an optimal tool for studying current singularity formation. Using this method, the formation of current singularity has previously been confirmed in the Hahm–Kulsrud–Taylor problem in 2D. In this paper, we extend this problem to 3D line-tied geometry. The linear solution, which is singular in 2D, is found to be smooth for arbitrary system length. However, with finitemore » amplitude, the linear solution can become pathological when the system is sufficiently long. The nonlinear solutions turn out to be smooth for short systems. Nonetheless, the scaling of peak current density versus system length suggests that the nonlinear solution may become singular at finite length. Finally, with the results in hand, we can neither confirm nor rule out this possibility conclusively, since we cannot obtain solutions with system length near the extrapolated critical value.« less
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-07-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.
NASA Astrophysics Data System (ADS)
Lee, Sinyoung; Koike, Takuji
2018-05-01
The inner hair cells (IHCs) in the cochlea transduce mechanical vibration of the basilar membrane (BM), caused by sound pressure, to electrical signals that are transported along the acoustic nerve to the brain. The mechanical vibration of the BM and the ionic behaviors of the IHCs have been investigated. However, consideration of the ionic behavior of the IHCs related to mechanical vibration is necessary to investigate the mechano-electrical transduction of the cochlea. In this study, a finite-element model of the BM, which takes into account the non-linear activities of the outer hair cells (OHCs), and an ionic current model of IHC were combined. The amplitudes and phases of the vibration at several points on the BM were obtained from the finite-element model by applying sound pressure. These values were fed into the ionic current model, and changes in membrane potential and calcium ion concentration of the IHCs were calculated. The membrane potential of the IHC at the maximum amplitude point (CF point) was higher than that at the non-CF points. The calcium ion concentration at the CF point was also higher than that at the non-CF points. These results suggest that the cochlea achieves its good frequency discrimination ability through mechano-electrical transduction.
Hsu, Hung-Yao
2016-01-01
Bone cells are deformed according to mechanical stimulation they receive and their mechanical characteristics. However, how osteoblasts are affected by mechanical vibration frequency and acceleration amplitude remains unclear. By developing 3D osteoblast finite element (FE) models, this study investigated the effect of cell shapes on vibration characteristics and effect of acceleration (vibration intensity) on vibrational responses of cultured osteoblasts. Firstly, the developed FE models predicted natural frequencies of osteoblasts within 6.85–48.69 Hz. Then, three different levels of acceleration of base excitation were selected (0.5, 1, and 2 g) to simulate vibrational responses, and acceleration of base excitation was found to have no influence on natural frequencies of osteoblasts. However, vibration response values of displacement, stress, and strain increased with the increase of acceleration. Finally, stress and stress distributions of osteoblast models under 0.5 g acceleration in Z-direction were investigated further. It was revealed that resonance frequencies can be a monotonic function of cell height or bottom area when cell volumes and material properties were assumed as constants. These findings will be useful in understanding how forces are transferred and influence osteoblast mechanical responses during vibrations and in providing guidance for cell culture and external vibration loading in experimental and clinical osteogenesis studies. PMID:28074178
Malkus, W V
1968-04-19
I have proposed that the precessional torques acting on the earth can sustain a turbulent hydromagnetic flow in the molten core. A gross balance of the Coriolis force, the Lorentz force, and the precessional force in the core fluid provided estimates of the fluid velocity and the interior magnetic field characteristic of such flow. Then these numbers and a balance of the processes responsible for the decay and regeneration of the magnetic field provided an estimate of the magnetic field external to the core. This external field is in keeping with the observations, but its value is dependent upon the speculative value for the electrical conductivity of core material. The proposal that turbulent flow due to precession can occur in the core was tested in a study of nonmagnetic laboratory flows induced by the steady precession of fluid-filled rotating spheroids. It was found that these flows exhibit both small wavelike instabilities and violent finite-amplitude instability to turbulent motion above critical values of the precession rate. The observed critical parameters indicate that a laminar flow in the core, due to the earth's precession, would have weak hydrodynamic instabilities at most, but that finite-amplitude hydromagnetic instability could lead to fully turbulent flow.
Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.
Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung
2018-01-01
A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.