Sample records for finite correlation length

  1. Finite-size scaling above the upper critical dimension in Ising models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Flores-Sola, Emilio J.; Berche, Bertrand; Kenna, Ralph; Weigel, Martin

    2015-01-01

    The correlation length plays a pivotal role in finite-size scaling and hyperscaling at continuous phase transitions. Below the upper critical dimension, where the correlation length is proportional to the system length, both finite-size scaling and hyperscaling take conventional forms. Above the upper critical dimension these forms break down and a new scaling scenario appears. Here we investigate this scaling behaviour by simulating one-dimensional Ising ferromagnets with long-range interactions. We show that the correlation length scales as a non-trivial power of the linear system size and investigate the scaling forms. For interactions of sufficiently long range, the disparity between the correlation length and the system length can be made arbitrarily large, while maintaining the new scaling scenarios. We also investigate the behavior of the correlation function above the upper critical dimension and the modifications imposed by the new scaling scenario onto the associated Fisher relation.

  2. Adsorption of finite semiflexible polymers and their loop and tail distributions

    NASA Astrophysics Data System (ADS)

    Kampmann, Tobias A.; Kierfeld, Jan

    2017-07-01

    We discuss the adsorption of semiflexible polymers to a planar attractive wall and focus on the questions of the adsorption threshold for polymers of finite length and their loop and tail distributions using both Monte Carlo simulations and analytical arguments. For the adsorption threshold, we find three regimes: (i) a flexible or Gaussian regime if the persistence length is smaller than the adsorption potential range, (ii) a semiflexible regime if the persistence length is larger than the potential range, and (iii) for finite polymers, a novel crossover to a rigid rod regime if the deflection length exceeds the contour length. In the flexible and semiflexible regimes, finite size corrections arise because the correlation length exceeds the contour length. In the rigid rod regime, however, it is essential how the global orientational or translational degrees of freedom are restricted by grafting or confinement. We discuss finite size corrections for polymers grafted to the adsorbing surface and for polymers confined by a second (parallel) hard wall. Based on these results, we obtain a method to analyze adsorption data for finite semiflexible polymers such as filamentous actin. For the loop and tail distributions, we find power laws with an exponential decay on length scales exceeding the correlation length. We derive and confirm the loop and tail power law exponents for flexible and semiflexible polymers. This allows us to explain that, close to the transition, semiflexible polymers have significantly smaller loops and both flexible and semiflexible polymers desorb by expanding their tail length. The tail distribution allows us to extract the free energy per length of adsorption for actin filaments from experimental data [D. Welch et al., Soft Matter 11, 7507 (2015)].

  3. Finite size effects on the experimental observables of the Glauber model: a theoretical and experimental investigation

    NASA Astrophysics Data System (ADS)

    Vindigni, A.; Bogani, L.; Gatteschi, D.; Sessoli, R.; Rettori, A.; Novak, M. A.

    2004-05-01

    We investigate the relaxation time, τ, of a dilute Glauber kinetic Ising chain obtained by ac susceptibility and SQUID magnetometry on a Co(II)-organic radical Ising 1D ferrimagnet doped with Zn(II). Theoretically we predicted a crossover in the temperature-dependence of τ, when the average segment is of the same order of the correlation length. Comparing the experimental results with theory we conclude that in the investigted temperature range the correlation length exceeds the finite length also in the pure sample.

  4. Finite word length effects on digital filter implementation.

    NASA Technical Reports Server (NTRS)

    Bowman, J. D.; Clark, F. H.

    1972-01-01

    This paper is a discussion of two known techniques to analyze finite word length effects on digital filters. These techniques are extended to several additional programming forms and the results verified experimentally. A correlation of the analytical weighting functions for the two methods is made through the Mason Gain Formula.

  5. The nature of the laning transition in two dimensions

    NASA Astrophysics Data System (ADS)

    Glanz, T.; Löwen, H.

    2012-11-01

    If a binary colloidal mixture is oppositely driven by an external field, a transition towards a laned state occurs at sufficiently large drives, where particles driven alike form elongated structures (‘lanes’) characterized by a large correlation length ξ along the drive. Here we perform extensive Brownian dynamics computer simulations on a two-dimensional equimolar binary Yukawa system driven by a constant force that acts oppositely on the two species. We systematically address finite-size effects on lane formation by exploring large systems up to 262 144 particles under various boundary conditions. It is found that the correlation length ξ along the field depends exponentially on the driving force (or Peclet number). Conversely, in a finite system, ξ reaches a fraction of the system size at a driving force which is logarithmic in the system size, implying massive finite-size corrections. For a fixed finite drive, ξ does not diverge in the thermodynamic limit. Therefore, though laning has a signature as a sharp transition in a finite system, it is a smooth crossover in the thermodynamic limit.

  6. Measuring Crack Length in Coarse Grain Ceramics

    NASA Technical Reports Server (NTRS)

    Salem, Jonathan A.; Ghosn, Louis J.

    2010-01-01

    Due to a coarse grain structure, crack lengths in precracked spinel specimens could not be measured optically, so the crack lengths and fracture toughness were estimated by strain gage measurements. An expression was developed via finite element analysis to correlate the measured strain with crack length in four-point flexure. The fracture toughness estimated by the strain gaged samples and another standardized method were in agreement.

  7. Two-dimensional Anderson-Hubbard model in the DMFT + {Sigma} approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchinskii, E. Z., E-mail: kuchinsk@iep.uran.ru; Kuleeva, N. A.; Nekrasov, I. A.

    The density of states, the dynamic (optical) conductivity, and the phase diagram of the paramagnetic two-dimensional Anderson-Hubbard model with strong correlations and disorder are analyzed within the generalized dynamical mean field theory (DMFT + {Sigma} approximation). Strong correlations are accounted by the DMFT, while disorder is taken into account via the appropriate generalization of the self-consistent theory of localization. We consider the two-dimensional system with the rectangular 'bare' density of states (DOS). The DMFT effective single-impurity problem is solved by numerical renormalization group (NRG). The 'correlated metal,' Mott insulator, and correlated Anderson insulator phases are identified from the evolution ofmore » the density of states, optical conductivity, and localization length, demonstrating both Mott-Hubbard and Anderson metal-insulator transitions in two-dimensional systems of finite size, allowing us to construct the complete zero-temperature phase diagram of the paramagnetic Anderson-Hubbard model. The localization length in our approximation is practically independent of the strength of Hubbard correlations. But the divergence of the localization length in a finite-size two-dimensional system at small disorder signifies the existence of an effective Anderson transition.« less

  8. Probabilistic finite elements for fracture mechanics

    NASA Technical Reports Server (NTRS)

    Besterfield, Glen

    1988-01-01

    The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.

  9. Predictive Rate-Distortion for Infinite-Order Markov Processes

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah E.; Crutchfield, James P.

    2016-06-01

    Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.

  10. Universality from disorder in the random-bond Blume-Capel model

    NASA Astrophysics Data System (ADS)

    Fytas, N. G.; Zierenberg, J.; Theodorakis, P. E.; Weigel, M.; Janke, W.; Malakis, A.

    2018-04-01

    Using high-precision Monte Carlo simulations and finite-size scaling we study the effect of quenched disorder in the exchange couplings on the Blume-Capel model on the square lattice. The first-order transition for large crystal-field coupling is softened to become continuous, with a divergent correlation length. An analysis of the scaling of the correlation length as well as the susceptibility and specific heat reveals that it belongs to the universality class of the Ising model with additional logarithmic corrections which is also observed for the Ising model itself if coupled to weak disorder. While the leading scaling behavior of the disordered system is therefore identical between the second-order and first-order segments of the phase diagram of the pure model, the finite-size scaling in the ex-first-order regime is affected by strong transient effects with a crossover length scale L*≈32 for the chosen parameters.

  11. Within-Event and Between-Events Ground Motion Variability from Earthquake Rupture Scenarios

    NASA Astrophysics Data System (ADS)

    Crempien, Jorge G. F.; Archuleta, Ralph J.

    2017-09-01

    Measurement of ground motion variability is essential to estimate seismic hazard. Over-estimation of variability can lead to extremely high annual hazard estimates of ground motion exceedance. We explore different parameters that affect the variability of ground motion such as the spatial correlations of kinematic rupture parameters on a finite fault and the corner frequency of the moment-rate spectra. To quantify the variability of ground motion, we simulate kinematic rupture scenarios on several vertical strike-slip faults and compute ground motion using the representation theorem. In particular, for the entire suite of rupture scenarios, we quantify the within-event and the between-events ground motion variability of peak ground acceleration (PGA) and response spectra at several periods, at 40 stations—all approximately at an equal distance of 20 and 50 km from the fault. Both within-event and between-events ground motion variability increase when the slip correlation length on the fault increases. The probability density functions of ground motion tend to truncate at a finite value when the correlation length of slip decreases on the fault, therefore, we do not observe any long-tail distribution of peak ground acceleration when performing several rupture simulations for small correlation lengths. Finally, for a correlation length of 6 km, the within-event and between-events PGA log-normal standard deviations are 0.58 and 0.19, respectively, values slightly smaller than those reported by Boore et al. (Earthq Spectra, 30(3):1057-1085, 2014). The between-events standard deviation is consistently smaller than the within-event for all correlations lengths, a feature that agrees with recent ground motion prediction equations.

  12. Emergence of jams in the generalized totally asymmetric simple exclusion process

    NASA Astrophysics Data System (ADS)

    Derbyshev, A. E.; Povolotsky, A. M.; Priezzhev, V. B.

    2015-02-01

    The generalized totally asymmetric exclusion process (TASEP) [J. Stat. Mech. (2012) P05014, 10.1088/1742-5468/2012/05/P05014] is an integrable generalization of the TASEP equipped with an interaction, which enhances the clustering of particles. The process interpolates between two extremal cases: the TASEP with parallel update and the process with all particles irreversibly merging into a single cluster moving as an isolated particle. We are interested in the large time behavior of this process on a ring in the whole range of the parameter λ controlling the interaction. We study the stationary state correlations, the cluster size distribution, and the large-time fluctuations of integrated particle current. When λ is finite, we find the usual TASEP-like behavior: The correlation length is finite; there are only clusters of finite size in the stationary state and current fluctuations belong to the Kardar-Parisi-Zhang universality class. When λ grows with the system size, so does the correlation length. We find a nontrivial transition regime with clusters of all sizes on the lattice. We identify a crossover parameter and derive the large deviation function for particle current, which interpolates between the case considered by Derrida-Lebowitz and a single-particle diffusion.

  13. Quark structure of static correlators in high temperature QCD

    NASA Astrophysics Data System (ADS)

    Bernard, Claude; DeGrand, Thomas A.; DeTar, Carleton; Gottlieb, Steven; Krasnitz, A.; Ogilvie, Michael C.; Sugar, R. L.; Toussaint, D.

    1992-07-01

    We present results of numerical simulations of quantum chromodynamics at finite temperature with two flavors of Kogut-Susskind quarks on the Intel iPSC/860 parallel processor. We investigate the properties of the objects whose exchange gives static screening lengths by reconstructing their correlated quark-antiquark structure.

  14. Universal entanglement spectra of gapped one-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Cho, Gil Young; Ludwig, Andreas W. W.; Ryu, Shinsei

    2017-03-01

    We discuss the entanglement spectrum of the ground state of a (1+1)-dimensional system in a gapped phase near a quantum phase transition. In particular, in proximity to a quantum phase transition described by a conformal field theory (CFT), the system is represented by a gapped Lorentz invariant field theory in the "scaling limit" (correlation length ξ much larger than microscopic "lattice" scale "a "), and can be thought of as a CFT perturbed by a relevant perturbation. We show that for such (1+1) gapped Lorentz invariant field theories in infinite space, the low-lying entanglement spectrum obtained by tracing out, say, left half-infinite space, is precisely equal to the physical spectrum of the unperturbed gapless, i.e., conformal field theory defined on a finite interval of length Lξ=ln(ξ /a ) with certain boundary conditions. In particular, the low-lying entanglement spectrum of the gapped theory is the finite-size spectrum of a boundary conformal field theory, and is always discrete and universal. Each relevant perturbation, and thus each gapped phase in proximity to the quantum phase transition, maps into a particular boundary condition. A similar property has been known to hold for Baxter's corner transfer matrices in a very special class of fine-tuned, namely, integrable off-critical lattice models, for the entire entanglement spectrum and independent of the scaling limit. In contrast, our result applies to completely general gapped Lorentz invariant theories in the scaling limit, without the requirement of integrability, for the low-lying entanglement spectrum. While the entanglement spectrum of the ground state of a gapped theory on a finite interval of length 2 R with suitable boundary conditions, bipartitioned into two equal pieces, turns out to exhibit a crossover between the finite-size spectra of the same CFT with in general different boundary conditions as the system size R crosses the correlation length from the "critical regime'' R ≪ξ to the "gapped regime'' R ≫ξ , the physical spectrum on a finite interval of length R with the same boundary conditions, on the other hand, is known to undergo a dramatic reorganization during the same crossover from being discrete to being continuous.

  15. The finite scaling for S = 1 XXZ chains with uniaxial single-ion-type anisotropy

    NASA Astrophysics Data System (ADS)

    Wang, Honglei; Xiong, Xingliang

    2014-03-01

    The scaling behavior of criticality for spin-1 XXZ chains with uniaxial single-ion-type anisotropy is investigated by employing the infinite matrix product state representation with the infinite time evolving block decimation method. At criticality, the accuracy of the ground state of a system is limited by the truncation dimension χ of the local Hilbert space. We present four evidences for the scaling of the entanglement entropy, the largest eigenvalue of the Schmidt decomposition, the correlation length, and the connection between the actual correlation length ξ and the energy. The result shows that the finite scalings are governed by the central charge of the critical system. Also, it demonstrates that the infinite time evolving block decimation algorithm by the infinite matrix product state representation can be a quite accurate method to simulate the critical properties at criticality.

  16. General formulation of long-range degree correlations in complex networks

    NASA Astrophysics Data System (ADS)

    Fujiki, Yuka; Takaguchi, Taro; Yakubo, Kousuke

    2018-06-01

    We provide a general framework for analyzing degree correlations between nodes separated by more than one step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions are introduced to fully describe long-range degree correlations with respect to degrees k and k' of two nodes and shortest path length l between them. We present general relations among these probability distributions and clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by the finite-size effect, the functional forms of these probability distributions for random networks are analytically evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to real-world networks.

  17. Entropy of finite random binary sequences with weak long-range correlations.

    PubMed

    Melnik, S S; Usatenko, O V

    2014-11-01

    We study the N-step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  18. Entropy of finite random binary sequences with weak long-range correlations

    NASA Astrophysics Data System (ADS)

    Melnik, S. S.; Usatenko, O. V.

    2014-11-01

    We study the N -step binary stationary ergodic Markov chain and analyze its differential entropy. Supposing that the correlations are weak we express the conditional probability function of the chain through the pair correlation function and represent the entropy as a functional of the pair correlator. Since the model uses the two-point correlators instead of the block probability, it makes it possible to calculate the entropy of strings at much longer distances than using standard methods. A fluctuation contribution to the entropy due to finiteness of random chains is examined. This contribution can be of the same order as its regular part even at the relatively short lengths of subsequences. A self-similar structure of entropy with respect to the decimation transformations is revealed for some specific forms of the pair correlation function. Application of the theory to the DNA sequence of the R3 chromosome of Drosophila melanogaster is presented.

  19. Determination of interaction between bridge concrete approach slab and embankment settlement.

    DOT National Transportation Integrated Search

    2005-07-01

    The main objective of this research is to correlate the deformation and internal force of the approach slab with the approach embankment settlements and the approach slab parameters such as length and thickness. Finite element analysis was carried ou...

  20. Intrinsic autocorrelation time of picoseconds for thermal noise in water.

    PubMed

    Zhu, Zhi; Sheng, Nan; Wan, Rongzheng; Fang, Haiping

    2014-10-02

    Whether thermal noise is colored or white is of fundamental importance. In conventional theory, thermal noise is usually treated as white noise so that there are no directional transportations in the asymmetrical systems without external inputs, since only the colored fluctuations with appropriate autocorrelation time length can lead to directional transportations in the asymmetrical systems. Here, on the basis of molecular dynamics simulations, we show that the autocorrelation time length of thermal noise in water is ~10 ps at room temperature, which indicates that thermal noise is not white in the molecular scale while thermal noise can be reasonably assumed as white in macro- and meso-scale systems. The autocorrelation time length of thermal noise is intrinsic, since the value is almost unchanged for different temperature coupling methods. Interestingly, the autocorrelation time of thermal noise is correlated with the lifetime of hydrogen bonds, suggesting that the finite autocorrelation time length of thermal noise mainly comes from the finite lifetime of the interactions between neighboring water molecules.

  1. Some calculable contributions to entanglement entropy.

    PubMed

    Hertzberg, Mark P; Wilczek, Frank

    2011-02-04

    Entanglement entropy appears as a central property of quantum systems in broad areas of physics. However, its precise value is often sensitive to unknown microphysics, rendering it incalculable. By considering parametric dependence on correlation length, we extract finite, calculable contributions to the entanglement entropy for a scalar field between the interior and exterior of a spatial domain of arbitrary shape. The leading term is proportional to the area of the dividing boundary; we also extract finite subleading contributions for a field defined in the bulk interior of a waveguide in 3+1 dimensions, including terms proportional to the waveguide's cross-sectional geometry: its area, perimeter length, and integrated curvature. We also consider related quantities at criticality and suggest a class of systems for which these contributions might be measurable.

  2. Quantitative evaluation of cross correlation between two finite-length time series with applications to single-molecule FRET.

    PubMed

    Hanson, Jeffery A; Yang, Haw

    2008-11-06

    The statistical properties of the cross correlation between two time series has been studied. An analytical expression for the cross correlation function's variance has been derived. On the basis of these results, a statistically robust method has been proposed to detect the existence and determine the direction of cross correlation between two time series. The proposed method has been characterized by computer simulations. Applications to single-molecule fluorescence spectroscopy are discussed. The results may also find immediate applications in fluorescence correlation spectroscopy (FCS) and its variants.

  3. Density fluctuation correlation measurements in ASDEX Upgrade using poloidal and radial correlation reflectometry

    NASA Astrophysics Data System (ADS)

    Prisiazhniuk, D.; Conway, G. D.; Krämer-Flecken, A.; Stroth, U.; the ASDEX Upgrade Team

    2018-07-01

    The poloidal correlation reflectometry diagnostic operated in ordinary mode with additional radial correlation channel is applied in this paper to investigate the correlation of the turbulent density fluctuations. The perpendicular and radial correlation lengths, l ⊥ and l r , the perpendicular velocity v⊥ and the dissipation (mutation) time τ d are measured simultaneously from the outer core to edge in the L-mode plasmas of ASDEX Upgrade. It is shown that in the outer core region (0.6 < ρ pol < 0.9) the measured correlation lengths scale with the drift wave length, l ⊥ ≈ 5ρ s and l r ≈ 10ρ s , while the dissipation time is inversely correlated with the velocity τ d ≈ 40/v ⊥(τ d is in μs and v ⊥ in km s–1). In the pedestal region (0.925 < ρ pol < 0.98), where the E × B shear flows are present, a loss of measured correlation is observed which can be explained by a combination of small propagation velocity and an additional reduction of τ d . In the E r well region (ρ pol ≈ 0.99), the measured perpendicular correlation length increases {l}\\perp ≈ 13{ρ }s and the radial correlation length decreases l r ≈ 4ρ s compared to the outer core values. The correlation measurements are interpreted in the frame of the linear regime of reflectometry (applied only to ρ pol < 0.9). Using the Born approximation we show that the finite wavenumber sensitivity of the reflectometer increases the measured l ⊥and l r , but does not affect the measured τ d . By the including diagnostic correction the real correlation lengths l ⊥ ≈ l r ≈ 3ρ s are estimated.

  4. Analysis of surface cracks in finite plates under tension or bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1979-01-01

    Stress-intensity factors calculated with a three-dimensional, finite-element analysis for shallow and deep semielliptical surface cracks in finite elastic isotropic plates subjected to tension or bending loads are presented. A wide range of configuration parameters was investigated. The ratio of crack depth to plate thickness ranged from 0.2 to 0.8 and the ratio of crack depth to crack length ranged from 0.2 to 2.0. The effects of plate width on stress-intensity variations along the crack front was also investigated. A wide-range equation for stress-intensity factors along the crack front as a function of crack depth, crack length, plate thickness, and plate width was developed for tension and bending loads. The equation was used to predict patterns of surface-crack growth under tension or bending fatigue loads. A modified form of the equation was also used to correlate surface-crack fracture data for a brittle epoxy material within + or - 10 percent for a wide range of crack shapes and crack sizes.

  5. Quantum mean-field approximation for lattice quantum models: Truncating quantum correlations and retaining classical ones

    NASA Astrophysics Data System (ADS)

    Malpetti, Daniele; Roscilde, Tommaso

    2017-02-01

    The mean-field approximation is at the heart of our understanding of complex systems, despite its fundamental limitation of completely neglecting correlations between the elementary constituents. In a recent work [Phys. Rev. Lett. 117, 130401 (2016), 10.1103/PhysRevLett.117.130401], we have shown that in quantum many-body systems at finite temperature, two-point correlations can be formally separated into a thermal part and a quantum part and that quantum correlations are generically found to decay exponentially at finite temperature, with a characteristic, temperature-dependent quantum coherence length. The existence of these two different forms of correlation in quantum many-body systems suggests the possibility of formulating an approximation, which affects quantum correlations only, without preventing the correct description of classical fluctuations at all length scales. Focusing on lattice boson and quantum Ising models, we make use of the path-integral formulation of quantum statistical mechanics to introduce such an approximation, which we dub quantum mean-field (QMF) approach, and which can be readily generalized to a cluster form (cluster QMF or cQMF). The cQMF approximation reduces to cluster mean-field theory at T =0 , while at any finite temperature it produces a family of systematically improved, semi-classical approximations to the quantum statistical mechanics of the lattice theory at hand. Contrary to standard MF approximations, the correct nature of thermal critical phenomena is captured by any cluster size. In the two exemplary cases of the two-dimensional quantum Ising model and of two-dimensional quantum rotors, we study systematically the convergence of the cQMF approximation towards the exact result, and show that the convergence is typically linear or sublinear in the boundary-to-bulk ratio of the clusters as T →0 , while it becomes faster than linear as T grows. These results pave the way towards the development of semiclassical numerical approaches based on an approximate, yet systematically improved account of quantum correlations.

  6. Effects of a finite outer scale on the measurement of atmospheric-turbulence statistics with a Hartmann wave-front sensor.

    PubMed

    Feng, Shen; Wenhan, Jiang

    2002-06-10

    Phase-structure and aperture-averaged slope-correlated functions with a finite outer scale are derived based on the Taylor hypothesis and a generalized spectrum, such as the von Kármán modal. The effects of the finite outer scale on measuring and determining the character of atmospheric-turbulence statistics are shown especially for an approximately 4-m class telescope and subaperture. The phase structure function and atmospheric coherent length based on the Kolmogorov model are approximations of the formalism we have derived. The analysis shows that it cannot be determined whether the deviation from the power-law parameter of Kolmogorov turbulence is caused by real variations of the spectrum or by the effect of the finite outer scale.

  7. Generalized virial theorem and pressure relation for a strongly correlated Fermi gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shina

    2008-12-15

    For a two-component Fermi gas in the unitarity limit (i.e., with infinite scattering length), there is a well-known virial theorem, first shown by J.E. Thomas et al. A few people rederived this result, and extended it to few-body systems, but their results are all restricted to the unitarity limit. Here I show that there is a generalized virial theorem for FINITE scattering lengths. I also generalize an exact result concerning the pressure to the case of imbalanced populations.

  8. Parallel Computation of Flow in Heterogeneous Media Modelled by Mixed Finite Elements

    NASA Astrophysics Data System (ADS)

    Cliffe, K. A.; Graham, I. G.; Scheichl, R.; Stals, L.

    2000-11-01

    In this paper we describe a fast parallel method for solving highly ill-conditioned saddle-point systems arising from mixed finite element simulations of stochastic partial differential equations (PDEs) modelling flow in heterogeneous media. Each realisation of these stochastic PDEs requires the solution of the linear first-order velocity-pressure system comprising Darcy's law coupled with an incompressibility constraint. The chief difficulty is that the permeability may be highly variable, especially when the statistical model has a large variance and a small correlation length. For reasonable accuracy, the discretisation has to be extremely fine. We solve these problems by first reducing the saddle-point formulation to a symmetric positive definite (SPD) problem using a suitable basis for the space of divergence-free velocities. The reduced problem is solved using parallel conjugate gradients preconditioned with an algebraically determined additive Schwarz domain decomposition preconditioner. The result is a solver which exhibits a good degree of robustness with respect to the mesh size as well as to the variance and to physically relevant values of the correlation length of the underlying permeability field. Numerical experiments exhibit almost optimal levels of parallel efficiency. The domain decomposition solver (DOUG, http://www.maths.bath.ac.uk/~parsoft) used here not only is applicable to this problem but can be used to solve general unstructured finite element systems on a wide range of parallel architectures.

  9. Long-range correlations and charge transport properties of DNA sequences

    NASA Astrophysics Data System (ADS)

    Liu, Xiao-liang; Ren, Yi; Xie, Qiong-tao; Deng, Chao-sheng; Xu, Hui

    2010-04-01

    By using Hurst's analysis and transfer approach, the rescaled range functions and Hurst exponents of human chromosome 22 and enterobacteria phage lambda DNA sequences are investigated and the transmission coefficients, Landauer resistances and Lyapunov coefficients of finite segments based on above genomic DNA sequences are calculated. In a comparison with quasiperiodic and random artificial DNA sequences, we find that λ-DNA exhibits anticorrelation behavior characterized by a Hurst exponent 0.5

  10. On the explicit construction of Parisi landscapes in finite dimensional Euclidean spaces

    NASA Astrophysics Data System (ADS)

    Fyodorov, Y. V.; Bouchaud, J.-P.

    2007-12-01

    An N-dimensional Gaussian landscape with multiscale translation-invariant logarithmic correlations has been constructed, and the statistical mechanics of a single particle in this environment has been investigated. In the limit of a high dimensional N → ∞, the free energy of the system in the thermodynamic limit coincides with the most general version of Derrida’s generalized random energy model. The low-temperature behavior depends essentially on the spectrum of length scales involved in the construction of the landscape. The construction is argued to be valid in any finite spatial dimensions N ≥1.

  11. Exact Lyapunov exponent of the harmonic magnon modes of one-dimensional Heisenberg-Mattis spin glasses

    NASA Astrophysics Data System (ADS)

    Sepehrinia, Reza; Niry, M. D.; Bozorg, B.; Tabar, M. Reza Rahimi; Sahimi, Muhammad

    2008-03-01

    A mapping is developed between the linearized equation of motion for the dynamics of the transverse modes at T=0 of the Heisenberg-Mattis model of one-dimensional (1D) spin glasses and the (discretized) random wave equation. The mapping is used to derive an exact expression for the Lyapunov exponent (LE) of the magnon modes of spin glasses and to show that it follows anomalous scaling at low magnon frequencies. In addition, through numerical simulations, the differences between the LE and the density of states of the wave equation in a discrete 1D model of randomly disordered media (those with a finite correlation length) and that of continuous media (with a zero correlation length) are demonstrated and emphasized.

  12. Linear and nonlinear susceptibilities from diffusion quantum Monte Carlo: application to periodic hydrogen chains.

    PubMed

    Umari, P; Marzari, Nicola

    2009-09-07

    We calculate the linear and nonlinear susceptibilities of periodic longitudinal chains of hydrogen dimers with different bond-length alternations using a diffusion quantum Monte Carlo approach. These quantities are derived from the changes in electronic polarization as a function of applied finite electric field--an approach we recently introduced and made possible by the use of a Berry-phase, many-body electric-enthalpy functional. Calculated susceptibilities and hypersusceptibilities are found to be in excellent agreement with the best estimates available from quantum chemistry--usually extrapolations to the infinite-chain limit of calculations for chains of finite length. It is found that while exchange effects dominate the proper description of the susceptibilities, second hypersusceptibilities are greatly affected by electronic correlations. We also assess how different approximations to the nodal surface of the many-body wave function affect the accuracy of the calculated susceptibilities.

  13. Earthquake scaling laws for rupture geometry and slip heterogeneity

    NASA Astrophysics Data System (ADS)

    Thingbaijam, Kiran K. S.; Mai, P. Martin; Goda, Katsuichiro

    2016-04-01

    We analyze an extensive compilation of finite-fault rupture models to investigate earthquake scaling of source geometry and slip heterogeneity to derive new relationships for seismic and tsunami hazard assessment. Our dataset comprises 158 earthquakes with a total of 316 rupture models selected from the SRCMOD database (http://equake-rc.info/srcmod). We find that fault-length does not saturate with earthquake magnitude, while fault-width reveals inhibited growth due to the finite seismogenic thickness. For strike-slip earthquakes, fault-length grows more rapidly with increasing magnitude compared to events of other faulting types. Interestingly, our derived relationship falls between the L-model and W-model end-members. In contrast, both reverse and normal dip-slip events are more consistent with self-similar scaling of fault-length. However, fault-width scaling relationships for large strike-slip and normal dip-slip events, occurring on steeply dipping faults (δ~90° for strike-slip faults, and δ~60° for normal faults), deviate from self-similarity. Although reverse dip-slip events in general show self-similar scaling, the restricted growth of down-dip fault extent (with upper limit of ~200 km) can be seen for mega-thrust subduction events (M~9.0). Despite this fact, for a given earthquake magnitude, subduction reverse dip-slip events occupy relatively larger rupture area, compared to shallow crustal events. In addition, we characterize slip heterogeneity in terms of its probability distribution and spatial correlation structure to develop a complete stochastic random-field characterization of earthquake slip. We find that truncated exponential law best describes the probability distribution of slip, with observable scale parameters determined by the average and maximum slip. Applying Box-Cox transformation to slip distributions (to create quasi-normal distributed data) supports cube-root transformation, which also implies distinctive non-Gaussian slip distributions. To further characterize the spatial correlations of slip heterogeneity, we analyze the power spectral decay of slip applying the 2-D von Karman auto-correlation function (parameterized by the Hurst exponent, H, and correlation lengths along strike and down-slip). The Hurst exponent is scale invariant, H = 0.83 (± 0.12), while the correlation lengths scale with source dimensions (seismic moment), thus implying characteristic physical scales of earthquake ruptures. Our self-consistent scaling relationships allow constraining the generation of slip-heterogeneity scenarios for physics-based ground-motion and tsunami simulations.

  14. The correlation function for density perturbations in an expanding universe. I - Linear theory

    NASA Technical Reports Server (NTRS)

    Mcclelland, J.; Silk, J.

    1977-01-01

    The evolution of the two-point correlation function for adiabatic density perturbations in the early universe is studied. Analytical solutions are obtained for the evolution of linearized spherically symmetric adiabatic density perturbations and the two-point correlation function for these perturbations in the radiation-dominated portion of the early universe. The results are then extended to the regime after decoupling. It is found that: (1) adiabatic spherically symmetric perturbations comparable in scale with the maximum Jeans length would survive the radiation-dominated regime; (2) irregular fluctuations are smoothed out up to the scale of the maximum Jeans length in the radiation era, but regular fluctuations might survive on smaller scales; (3) in general, the only surviving structures for irregularly shaped adiabatic density perturbations of arbitrary but finite scale in the radiation regime are the size of or larger than the maximum Jeans length in that regime; (4) infinite plane waves with a wavelength smaller than the maximum Jeans length but larger than the critical dissipative damping scale could survive the radiation regime; and (5) black holes would also survive the radiation regime and might accrete sufficient mass after decoupling to nucleate the formation of galaxies.

  15. Self-energy-modified Poisson-Nernst-Planck equations: WKB approximation and finite-difference approaches.

    PubMed

    Xu, Zhenli; Ma, Manman; Liu, Pei

    2014-07-01

    We propose a modified Poisson-Nernst-Planck (PNP) model to investigate charge transport in electrolytes of inhomogeneous dielectric environment. The model includes the ionic polarization due to the dielectric inhomogeneity and the ion-ion correlation. This is achieved by the self energy of test ions through solving a generalized Debye-Hückel (DH) equation. We develop numerical methods for the system composed of the PNP and DH equations. Particularly, toward the numerical challenge of solving the high-dimensional DH equation, we developed an analytical WKB approximation and a numerical approach based on the selective inversion of sparse matrices. The model and numerical methods are validated by simulating the charge diffusion in electrolytes between two electrodes, for which effects of dielectrics and correlation are investigated by comparing the results with the prediction by the classical PNP theory. We find that, at the length scale of the interface separation comparable to the Bjerrum length, the results of the modified equations are significantly different from the classical PNP predictions mostly due to the dielectric effect. It is also shown that when the ion self energy is in weak or mediate strength, the WKB approximation presents a high accuracy, compared to precise finite-difference results.

  16. Unraveling spurious properties of interaction networks with tailored random networks.

    PubMed

    Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus

    2011-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures--known for their complex spatial and temporal dynamics--we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis.

  17. Unraveling Spurious Properties of Interaction Networks with Tailored Random Networks

    PubMed Central

    Bialonski, Stephan; Wendler, Martin; Lehnertz, Klaus

    2011-01-01

    We investigate interaction networks that we derive from multivariate time series with methods frequently employed in diverse scientific fields such as biology, quantitative finance, physics, earth and climate sciences, and the neurosciences. Mimicking experimental situations, we generate time series with finite length and varying frequency content but from independent stochastic processes. Using the correlation coefficient and the maximum cross-correlation, we estimate interdependencies between these time series. With clustering coefficient and average shortest path length, we observe unweighted interaction networks, derived via thresholding the values of interdependence, to possess non-trivial topologies as compared to Erdös-Rényi networks, which would indicate small-world characteristics. These topologies reflect the mostly unavoidable finiteness of the data, which limits the reliability of typically used estimators of signal interdependence. We propose random networks that are tailored to the way interaction networks are derived from empirical data. Through an exemplary investigation of multichannel electroencephalographic recordings of epileptic seizures – known for their complex spatial and temporal dynamics – we show that such random networks help to distinguish network properties of interdependence structures related to seizure dynamics from those spuriously induced by the applied methods of analysis. PMID:21850239

  18. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    PubMed

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.

  19. Numerical and experimental study on buckling and postbuckling behavior of cracked cylindrical shells

    NASA Astrophysics Data System (ADS)

    Saemi, J.; Sedighi, M.; Shariati, M.

    2015-09-01

    The effect of crack on load-bearing capacity and buckling behavior of cylindrical shells is an essential consideration in their design. In this paper, experimental and numerical buckling analysis of steel cylindrical shells of various lengths and diameters with cracks have been studied using the finite element method, and the effect of crack position, crack orientation and the crack length-to-cylindrical shell perimeter ( λ = a/(2 πr)) and shell length-to-diameter ( L/ D) ratios on the buckling and post-buckling behavior of cylindrical shells has been investigated. For several specimens, buckling test was performed using an INSTRON 8802 servo hydraulic machine, and the results of experimental tests were compared to numerical results. A very good correlation was observed between numerical simulation and experimental results. Finally, based on the experimental and numerical results, sensitivity of the buckling load to the shell length, crack length and orientation has also been investigated.

  20. Mapping the current–current correlation function near a quantum critical point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prodan, Emil, E-mail: prodan@yu.edu; Bellissard, Jean

    2016-05-15

    The current–current correlation function is a useful concept in the theory of electron transport in homogeneous solids. The finite-temperature conductivity tensor as well as Anderson’s localization length can be computed entirely from this correlation function. Based on the critical behavior of these two physical quantities near the plateau–insulator or plateau–plateau transitions in the integer quantum Hall effect, we derive an asymptotic formula for the current–current correlation function, which enables us to make several theoretical predictions about its generic behavior. For the disordered Hofstadter model, we employ numerical simulations to map the current–current correlation function, obtain its asymptotic form near amore » critical point and confirm the theoretical predictions.« less

  1. Flexible chain molecules in the marginal and concentrated regimes: universal static scaling laws and cross-over predictions.

    PubMed

    Laso, Manuel; Karayiannis, Nikos Ch

    2008-05-07

    We present predictions for the static scaling exponents and for the cross-over polymer volumetric fractions in the marginal and concentrated solution regimes. Corrections for finite chain length are made. Predictions are based on an analysis of correlated fluctuations in density and chain length, in a semigrand ensemble in which mers and solvent sites exchange identities. Cross-over volumetric fractions are found to be chain length independent to first order, although reciprocal-N corrections are also estimated. Predicted scaling exponents and cross-over regimes are compared with available data from extensive off-lattice Monte Carlo simulations [Karayiannis and Laso, Phys. Rev. Lett. 100, 050602 (2008)] on freely jointed, hard-sphere chains of average lengths from N=12-500 and at packing densities from dilute ones up to the maximally random jammed state.

  2. Hydroelastic analysis of ice shelves under long wave excitation

    NASA Astrophysics Data System (ADS)

    Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.

    2015-05-01

    The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.

  3. Hydroelastic analysis of ice shelves under long wave excitation

    NASA Astrophysics Data System (ADS)

    Papathanasiou, T. K.; Karperaki, A. E.; Theotokoglou, E. E.; Belibassakis, K. A.

    2015-08-01

    The transient hydroelastic response of an ice shelf under long wave excitation is analysed by means of the finite element method. The simple model, presented in this work, is used for the simulation of the generated kinematic and stress fields in an ice shelf, when the latter interacts with a tsunami wave. The ice shelf, being of large length compared to its thickness, is modelled as an elastic Euler-Bernoulli beam, constrained at the grounding line. The hydrodynamic field is represented by the linearised shallow water equations. The numerical solution is based on the development of a special hydroelastic finite element for the system of governing of equations. Motivated by the 2011 Sulzberger Ice Shelf (SIS) calving event and its correlation with the Honshu Tsunami, the SIS stable configuration is studied. The extreme values of the bending moment distribution in both space and time are examined. Finally, the location of these extrema is investigated for different values of ice shelf thickness and tsunami wave length.

  4. Finite-Element Analysis of Crack Arrest Properties of Fiber Reinforced Composites Application in Semi-Elliptical Cracked Pipelines

    NASA Astrophysics Data System (ADS)

    Wang, Linyuan; Song, Shulei; Deng, Hongbo; Zhong, Kai

    2018-04-01

    In nowadays, repair method using fiber reinforced composites as the mainstream pipe repair technology, it can provide security for X100 high-grade steel energy long-distance pipelines in engineering. In this paper, analysis of cracked X100 high-grade steel pipe was conducted, simulation analysis was made on structure of pipes and crack arresters (CAs) to obtain the J-integral value in virtue of ANSYS Workbench finite element software and evaluation on crack arrest effects was done through measured elastic-plastic fracture mechanics parameter J-integral and the crack arrest coefficient K, in a bid to summarize effect laws of composite CAs and size of pipes and cracks for repairing CAs. The results indicate that the K value is correlated with laying angle λ, laying length L2/D1, laying thickness T1/T2of CAs, crack depth c/T1 and crack length a/c, and calculate recommended parameters for repairing fiber reinforced composite CAs in terms of two different crack forms.

  5. Nonlinear effects on the natural modes of oscillation of a finite length inviscid fluid column, supplement 2

    NASA Technical Reports Server (NTRS)

    Lyell, M. J.; Zhang, L.

    1994-01-01

    The aspects of nonlinear behavior of a finite length liquid column is investigated with an emphasis on bridge dynamics. The primary objectives are to determine the nonlinear corrections to the interface shape of a naturally oscillating finite length liquid column and to determine the nonlinear corrections to the oscillation frequencies for various modes of oscillation. Application of the Lindstedt-Poincare expansion in conjunction with the domain perturbation techniques results in an hierarchical system of equations.

  6. Investigation of ellipsometric parameters of 2D microrough surfaces by FDTD.

    PubMed

    Qiu, J; Ran, D F; Liu, Y B; Liu, L H

    2016-07-10

    Ellipsometry is a powerful method for measuring the optical constants of materials and is very sensitive to surface roughness. In previous ellipsometric measurement of optical constants of solid materials with rough surfaces, researchers frequently used effective medium approximation (EMA) with roughness already known to fit the complex refractive index of the material. However, the ignored correlation length, the other important parameter of rough surfaces, will definitely result in fitting errors. Hence it is necessary to consider the influence of surface roughness and correlation length on the ellipsometric parameters Δ (phase difference) and Ψ (azimuth) characterizing practical systems. In this paper, the influence of roughness of two-dimensional randomly microrough surfaces (relative roughness σ/λ ranges from 0.001 to 0.025) of silicon on ellipsometric parameters was simulated by the finite-difference time-domain method which was validated with experimental results. The effects of incident angle, relative roughness, and correlation length were numerically investigated for two-dimensional Gaussian distributed randomly microrough surfaces, respectively. The simulated results showed that compared with the smooth surface, only tiny changes of the ellipsometric parameter Δ could be observed for microrough silicon surface in the vicinity of the Brewster angle, but obviously changes of Ψ occur especially in the vicinity of the Brewster angle. More differences between the ellipsometric parameters of the rough surface and smooth surface can been seen especially in the vicinity of the Brewster angle as the relative roughness σ/λ increases or correlation length τ decreases. The results reveal that when we measure the optical constants of solid materials by ellipsometry, the smaller roughness, larger correlation length and larger incident wavelength will lead to the higher precision of measurements.

  7. Simulations of free-solution electrophoresis of polyelectrolytes with a finite Debye length using the Debye-Hückel approximation.

    PubMed

    Hickey, Owen A; Shendruk, Tyler N; Harden, James L; Slater, Gary W

    2012-08-31

    We introduce a mesoscale simulation method based on multiparticle collision dynamics (MPCD) for the electrohydrodynamics of polyelectrolytes with finite Debye lengths. By applying the Debye-Hückel approximation to assign an effective charge to MPCD particles near charged monomers, our simulations are able to reproduce the rapid rise in the electrophoretic mobility with respect to the degree of polymerization for the shortest polymer lengths followed by a small decrease for longer polymers due to charge condensation. Moreover, these simulations demonstrate the importance of a finite Debye length in accurately determining the mobility of uniformly charged polyelectrolytes and net neutral polyampholytes.

  8. Accuracy of topological entanglement entropy on finite cylinders.

    PubMed

    Jiang, Hong-Chen; Singh, Rajiv R P; Balents, Leon

    2013-09-06

    Topological phases are unique states of matter which support nonlocal excitations which behave as particles with fractional statistics. A universal characterization of gapped topological phases is provided by the topological entanglement entropy (TEE). We study the finite size corrections to the TEE by focusing on systems with a Z2 topological ordered state using density-matrix renormalization group and perturbative series expansions. We find that extrapolations of the TEE based on the Renyi entropies with a Renyi index of n≥2 suffer from much larger finite size corrections than do extrapolations based on the von Neumann entropy. In particular, when the circumference of the cylinder is about ten times the correlation length, the TEE obtained using von Neumann entropy has an error of order 10(-3), while for Renyi entropies it can even exceed 40%. We discuss the relevance of these findings to previous and future searches for topological ordered phases, including quantum spin liquids.

  9. Finite-Length Diocotron Modes in a Non-neutral Plasma Column

    NASA Astrophysics Data System (ADS)

    Walsh, Daniel; Dubin, Daniel

    2017-10-01

    Diocotron modes are 2D distortions of a non-neutral plasma column that propagate azimuthally via E × B drifts. While the infinite-length theory of diocotron modes is well-understood for arbitrary azimuthal mode number l, the finite-length mode frequency is less developed (with some exceptions), and is naturally of relevance to experiments. In this poster, we present an approach to address finite length effects, such as temperature dependence of the mode frequency. We use a bounce-averaged solution to the Vlasov Equation, in which the Vlasov Equation is solved using action-angle variables of the unperturbed Hamiltonian. We write the distribution function as a Fourier series in the bounce-angle variable ψ, keeping only the bounce-averaged term. We demonstrate a numerical solution to this equation for a realistic plasma with a finite Debye Length, compare to the existing l = 1 theory, and discuss possible extensions of the existing theory to l ≠ 1 . Supported by NSF/DOE Partnership Grants PHY1414570 and DESC0002451.

  10. Combined tension and bending testing of tapered composite laminates

    NASA Astrophysics Data System (ADS)

    O'Brien, T. Kevin; Murri, Gretchen B.; Hagemeier, Rick; Rogers, Charles

    1994-11-01

    A simple beam element used at Bell Helicopter was incorporated in the Computational Mechanics Testbed (COMET) finite element code at the Langley Research Center (LaRC) to analyze the responce of tappered laminates typical of flexbeams in composite rotor hubs. This beam element incorporated the influence of membrane loads on the flexural response of the tapered laminate configurations modeled and tested in a combined axial tension and bending (ATB) hydraulic load frame designed and built at LaRC. The moments generated from the finite element model were used in a tapered laminated plate theory analysis to estimate axial stresses on the surface of the tapered laminates due to combined bending and tension loads. Surfaces strains were calculated and compared to surface strains measured using strain gages mounted along the laminate length. The strain distributions correlated reasonably well with the analysis. The analysis was then used to examine the surface strain distribution in a non-linear tapered laminate where a similarly good correlation was obtained. Results indicate that simple finite element beam models may be used to identify tapered laminate configurations best suited for simulating the response of a composite flexbeam in a full scale rotor hub.

  11. Universality of long-range correlations in expansion randomization systems

    NASA Astrophysics Data System (ADS)

    Messer, P. W.; Lässig, M.; Arndt, P. F.

    2005-10-01

    We study the stochastic dynamics of sequences evolving by single-site mutations, segmental duplications, deletions, and random insertions. These processes are relevant for the evolution of genomic DNA. They define a universality class of non-equilibrium 1D expansion-randomization systems with generic stationary long-range correlations in a regime of growing sequence length. We obtain explicitly the two-point correlation function of the sequence composition and the distribution function of the composition bias in sequences of finite length. The characteristic exponent χ of these quantities is determined by the ratio of two effective rates, which are explicitly calculated for several specific sequence evolution dynamics of the universality class. Depending on the value of χ, we find two different scaling regimes, which are distinguished by the detectability of the initial composition bias. All analytic results are accurately verified by numerical simulations. We also discuss the non-stationary build-up and decay of correlations, as well as more complex evolutionary scenarios, where the rates of the processes vary in time. Our findings provide a possible example for the emergence of universality in molecular biology.

  12. Finite Correlation Length Implies Efficient Preparation of Quantum Thermal States

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Kastoryano, Michael J.

    2018-05-01

    Preparing quantum thermal states on a quantum computer is in general a difficult task. We provide a procedure to prepare a thermal state on a quantum computer with a logarithmic depth circuit of local quantum channels assuming that the thermal state correlations satisfy the following two properties: (i) the correlations between two regions are exponentially decaying in the distance between the regions, and (ii) the thermal state is an approximate Markov state for shielded regions. We require both properties to hold for the thermal state of the Hamiltonian on any induced subgraph of the original lattice. Assumption (ii) is satisfied for all commuting Gibbs states, while assumption (i) is satisfied for every model above a critical temperature. Both assumptions are satisfied in one spatial dimension. Moreover, both assumptions are expected to hold above the thermal phase transition for models without any topological order at finite temperature. As a building block, we show that exponential decay of correlation (for thermal states of Hamiltonians on all induced subgraphs) is sufficient to efficiently estimate the expectation value of a local observable. Our proof uses quantum belief propagation, a recent strengthening of strong sub-additivity, and naturally breaks down for states with topological order.

  13. Chord-length and free-path distribution functions for many-body systems

    NASA Astrophysics Data System (ADS)

    Lu, Binglin; Torquato, S.

    1993-04-01

    We study fundamental morphological descriptors of disordered media (e.g., heterogeneous materials, liquids, and amorphous solids): the chord-length distribution function p(z) and the free-path distribution function p(z,a). For concreteness, we will speak in the language of heterogeneous materials composed of two different materials or ``phases.'' The probability density function p(z) describes the distribution of chord lengths in the sample and is of great interest in stereology. For example, the first moment of p(z) is the ``mean intercept length'' or ``mean chord length.'' The chord-length distribution function is of importance in transport phenomena and problems involving ``discrete free paths'' of point particles (e.g., Knudsen diffusion and radiative transport). The free-path distribution function p(z,a) takes into account the finite size of a simple particle of radius a undergoing discrete free-path motion in the heterogeneous material and we show that it is actually the chord-length distribution function for the system in which the ``pore space'' is the space available to a finite-sized particle of radius a. Thus it is shown that p(z)=p(z,0). We demonstrate that the functions p(z) and p(z,a) are related to another fundamentally important morphological descriptor of disordered media, namely, the so-called lineal-path function L(z) studied by us in previous work [Phys. Rev. A 45, 922 (1992)]. The lineal path function gives the probability of finding a line segment of length z wholly in one of the ``phases'' when randomly thrown into the sample. We derive exact series representations of the chord-length and free-path distribution functions for systems of spheres with a polydispersivity in size in arbitrary dimension D. For the special case of spatially uncorrelated spheres (i.e., fully penetrable spheres) we evaluate exactly the aforementioned functions, the mean chord length, and the mean free path. We also obtain corresponding analytical formulas for the case of mutually impenetrable (i.e., spatially correlated) polydispersed spheres.

  14. Matrix product density operators: Renormalization fixed points and boundary theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirac, J.I.; Pérez-García, D., E-mail: dperezga@ucm.es; ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid

    We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well asmore » to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).« less

  15. Correlation Between Fracture Network Properties and Stress Variability in Geological Media

    NASA Astrophysics Data System (ADS)

    Lei, Qinghua; Gao, Ke

    2018-05-01

    We quantitatively investigate the stress variability in fractured geological media under tectonic stresses. The fracture systems studied include synthetic fracture networks following power law length scaling and natural fracture patterns based on outcrop mapping. The stress field is derived from a finite-discrete element model, and its variability is analyzed using a set of mathematical formulations that honor the tensorial nature of stress data. We show that local stress perturbation, quantified by the Euclidean distance of a local stress tensor to the mean stress tensor, has a positive, linear correlation with local fracture intensity, defined as the total fracture length per unit area within a local sampling window. We also evaluate the stress dispersion of the entire stress field using the effective variance, that is, a scalar-valued measure of the overall stress variability. The results show that a well-connected fracture system under a critically stressed state exhibits strong local and global stress variabilities.

  16. Finite length Taylor Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    Axisymmetric numerical solutions of the unsteady Navier-Stokes equations for flow between concentric rotating cylinders of finite length are obtained by a spectral collocation method. These representative results pertain to two-cell/one-cell exchange process, and are compared with recent experiments.

  17. Dynamic Response of Finite Length Maglev Vehicles Subjected to Crosswind Gusts

    DOT National Transportation Integrated Search

    1980-03-01

    This report presents a two-degree-of-freedom model for magnetically levitated finite-length vehicles incorporating sway and yaw dynamics. Aerodynamic lateral forces and yawing moments on the vehicle resulting from constant speed wind gusts were compu...

  18. Diffuse-charge dynamics of ionic liquids in electrochemical systems.

    PubMed

    Zhao, Hui

    2011-11-01

    We employ a continuum theory of solvent-free ionic liquids accounting for both short-range electrostatic correlations and steric effects (finite ion size) [Bazant et al., Phys. Rev. Lett. 106, 046102 (2011)] to study the response of a model microelectrochemical cell to a step voltage. The model problem consists of a 1-1 symmetric ionic liquid between two parallel blocking electrodes, neglecting any transverse transport phenomena. Matched asymptotic expansions in the limit of thin double layers are applied to analyze the resulting one-dimensional equations and study the overall charge-time relation in the weakly nonlinear regime. One important conclusion is that our simple scaling analysis suggests that the length scale √(λ*(D)l*(c)) accurately characterizes the double-layer structure of ionic liquids with strong electrostatic correlations where l*(c) is the electrostatic correlation length (in contrast, the Debye screening length λ*(D) is the primary double-layer length for electrolytes) and the response time of λ(D)(*3/2)L*/(D*l(c)(1/2)) (not λ*(D)L*/D* that is the primary charging time of electrolytes) is the correct charging time scale of ionic liquids with strong electrostatic correlations where D* is the diffusivity and L* is the separation length of the cell. With these two new scales, data of both electric potential versus distance from the electrode and the total diffuse charge versus time collapse onto each individual master curve in the presence of strong electrostatic correlations. In addition, the dependance of the total diffuse charge on steric effects, short-range correlations, and driving voltages is thoroughly examined. The results from the asymptotic analysis are compared favorably with those from full numerical simulations. Finally, the absorption of excess salt by the double layer creates a depletion region outside the double layer. Such salt depletion may bring a correction to the leading order terms and break down the weakly nonlinear analysis. A criterion which justifies the weakly nonlinear analysis is verified with numerical simulations.

  19. Spectral simplicity of apparent complexity. II. Exact complexities and complexity spectra

    NASA Astrophysics Data System (ADS)

    Riechers, Paul M.; Crutchfield, James P.

    2018-03-01

    The meromorphic functional calculus developed in Part I overcomes the nondiagonalizability of linear operators that arises often in the temporal evolution of complex systems and is generic to the metadynamics of predicting their behavior. Using the resulting spectral decomposition, we derive closed-form expressions for correlation functions, finite-length Shannon entropy-rate approximates, asymptotic entropy rate, excess entropy, transient information, transient and asymptotic state uncertainties, and synchronization information of stochastic processes generated by finite-state hidden Markov models. This introduces analytical tractability to investigating information processing in discrete-event stochastic processes, symbolic dynamics, and chaotic dynamical systems. Comparisons reveal mathematical similarities between complexity measures originally thought to capture distinct informational and computational properties. We also introduce a new kind of spectral analysis via coronal spectrograms and the frequency-dependent spectra of past-future mutual information. We analyze a number of examples to illustrate the methods, emphasizing processes with multivariate dependencies beyond pairwise correlation. This includes spectral decomposition calculations for one representative example in full detail.

  20. Entanglement scaling at first order quantum phase transitions

    NASA Astrophysics Data System (ADS)

    Yuste, A.; Cartwright, C.; De Chiara, G.; Sanpera, A.

    2018-04-01

    First order quantum phase transitions (1QPTs) are signalled, in the thermodynamic limit, by discontinuous changes in the ground state properties. These discontinuities affect expectation values of observables, including spatial correlations. When a 1QPT is crossed in the vicinity of a second order one, due to the correlation length divergence of the latter, the corresponding ground state is modified and it becomes increasingly difficult to determine the order of the transition when the size of the system is finite. Here we show that, in such situations, it is possible to apply finite size scaling (FSS) to entanglement measures, as it has recently been done for the order parameters and the energy gap, in order to recover the correct thermodynamic limit (Campostrini et al 2014 Phys. Rev. Lett. 113 070402). Such a FSS can unambiguously discriminate between first and second order phase transitions in the vicinity of multicritical points even when the singularities displayed by entanglement measures lead to controversial results.

  1. 3D Simulation of Multiple Simultaneous Hydraulic Fractures with Different Initial Lengths in Rock

    NASA Astrophysics Data System (ADS)

    Tang, X.; Rayudu, N. M.; Singh, G.

    2017-12-01

    Hydraulic fracturing is widely used technique for extracting shale gas. During this process, fractures with various initial lengths are induced in rock mass with hydraulic pressure. Understanding the mechanism of propagation and interaction between these induced hydraulic cracks is critical for optimizing the fracking process. In this work, numerical results are presented for investigating the effect of in-situ parameters and fluid properties on growth and interaction of multi simultaneous hydraulic fractures. A fully coupled 3D fracture simulator, TOUGH- GFEM is used for simulating the effect of different vital parameters, including in-situ stress, initial fracture length, fracture spacing, fluid viscosity and flow rate on induced hydraulic fractures growth. This TOUGH-GFEM simulator is based on 3D finite volume method (FVM) and partition of unity element method (PUM). Displacement correlation method (DCM) is used for calculating multi - mode (Mode I, II, III) stress intensity factors. Maximum principal stress criteria is used for crack propagation. Key words: hydraulic fracturing, TOUGH, partition of unity element method , displacement correlation method, 3D fracturing simulator

  2. Development of Benchmark Examples for Delamination Onset and Fatigue Growth Prediction

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald

    2011-01-01

    An approach for assessing the delamination propagation and growth capabilities in commercial finite element codes was developed and demonstrated for the Virtual Crack Closure Technique (VCCT) implementations in ABAQUS. The Double Cantilever Beam (DCB) specimen was chosen as an example. First, benchmark results to assess delamination propagation capabilities under static loading were created using models simulating specimens with different delamination lengths. For each delamination length modeled, the load and displacement at the load point were monitored. The mixed-mode strain energy release rate components were calculated along the delamination front across the width of the specimen. A failure index was calculated by correlating the results with the mixed-mode failure criterion of the graphite/epoxy material. The calculated critical loads and critical displacements for delamination onset for each delamination length modeled were used as a benchmark. The load/displacement relationship computed during automatic propagation should closely match the benchmark case. Second, starting from an initially straight front, the delamination was allowed to propagate based on the algorithms implemented in the commercial finite element software. The load-displacement relationship obtained from the propagation analysis results and the benchmark results were compared. Good agreements could be achieved by selecting the appropriate input parameters, which were determined in an iterative procedure.

  3. QCD thermodynamics with two flavors of quarks[1

    NASA Astrophysics Data System (ADS)

    MIMD lattice Computations (MILC) Collaboration

    We present results of numerical simulations of quantum chromodynamics at finite temperature on the Intel iPSC/860 parallel processor. We performed calculations with two flavors of Kogut-Susskind quarks and of Wilson quarks on 6 × 12 3 lattices in order to study the crossover from the low temperature hadronic regime to the high temperature regime. We investigate the properties of the objects whose exchange gives static screening lengths be reconstructing their correlated quark-antiquark structure.

  4. The one-dimensional asymmetric persistent random walk

    NASA Astrophysics Data System (ADS)

    Rossetto, Vincent

    2018-04-01

    Persistent random walks are intermediate transport processes between a uniform rectilinear motion and a Brownian motion. They are formed by successive steps of random finite lengths and directions travelled at a fixed speed. The isotropic and symmetric 1D persistent random walk is governed by the telegrapher’s equation, also called the hyperbolic heat conduction equation. These equations have been designed to resolve the paradox of the infinite speed in the heat and diffusion equations. The finiteness of both the speed and the correlation length leads to several classes of random walks: Persistent random walk in one dimension can display anomalies that cannot arise for Brownian motion such as anisotropy and asymmetries. In this work we focus on the case where the mean free path is anisotropic, the only anomaly leading to a physics that is different from the telegrapher’s case. We derive exact expression of its Green’s function, for its scattering statistics and distribution of first-passage time at the origin. The phenomenology of the latter shows a transition for quantities like the escape probability and the residence time.

  5. Mixed-mode stress intensity factors for kink cracks with finite kink length loaded in tension and bending: application to dentin and enamel.

    PubMed

    Bechtle, Sabine; Fett, Theo; Rizzi, Gabriele; Habelitz, Stefan; Schneider, Gerold A

    2010-05-01

    Fracture toughness resistance curves describe a material's resistance against crack propagation. These curves are often used to characterize biomaterials like bone, nacre or dentin as these materials commonly exhibit a pronounced increase in fracture toughness with crack extension due to co-acting mechanisms such as crack bridging, crack deflection and microcracking. The knowledge of appropriate stress intensity factors which depend on the sample and crack geometry is essential for determining these curves. For the dental biomaterials enamel and dentin it was observed that, under bending and tensile loading, crack propagation occurs under certain constant angles to the initial notch direction during testing procedures used for fracture resistance curve determination. For this special crack geometry (a kink crack of finite length in a finite body) appropriate geometric function solutions are missing. Hence, we present in this study new mixed-mode stress intensity factors for kink cracks with finite kink length within samples of finite dimensions for two loading cases (tension and bending) which were derived from a combination of mixed-mode stress intensity factors of kink cracks with infinitely small kinks and of slant cracks. These results were further applied to determine the fracture resistance curves of enamel and dentin by testing single edge notched bending (SENB) specimens. It was found that kink cracks with finite kink length exhibit identical stress fields to slant cracks as soon as the kink length exceeds 0.15 times the initial straight crack or notch length. The use of stress intensity factor solutions for infinitely small kink cracks for the determination of dentin fracture resistance curves (as was done by other researchers) leads to an overestimation of dentin's fracture resistance of up to 30%. Copyright 2010 Elsevier Ltd. All rights reserved.

  6. A multidimensional generalization of Heilbronn's theorem on the average length of a finite continued fraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Illarionov, A A

    2014-03-31

    Heilbronn's theorem on the average length of a finite continued fraction is generalized to the multidimensional case in terms of relative minima of the lattices which were introduced by Voronoy and Minkowski. Bibliography: 21 titles.

  7. Spectral fluctuations of quantum graphs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pluhař, Z.; Weidenmüller, H. A.

    We prove the Bohigas-Giannoni-Schmit conjecture in its most general form for completely connected simple graphs with incommensurate bond lengths. We show that for graphs that are classically mixing (i.e., graphs for which the spectrum of the classical Perron-Frobenius operator possesses a finite gap), the generating functions for all (P,Q) correlation functions for both closed and open graphs coincide (in the limit of infinite graph size) with the corresponding expressions of random-matrix theory, both for orthogonal and for unitary symmetry.

  8. Nonlinear Electromagnetic Stabilization of Plasma Microturbulence

    NASA Astrophysics Data System (ADS)

    Whelan, G. G.; Pueschel, M. J.; Terry, P. W.

    2018-04-01

    The physical causes for the strong stabilizing effect of finite plasma β on ion-temperature-gradient-driven turbulence, which far exceeds quasilinear estimates, are identified from nonlinear gyrokinetic simulations. The primary contribution stems from a resonance of frequencies in the dominant nonlinear interaction between the unstable mode, the stable mode, and zonal flows, which maximizes the triplet correlation time and therefore the energy transfer efficiency. A modification to mixing-length transport estimates is constructed, which reproduces nonlinear heat fluxes throughout the examined β range.

  9. Electrokinetic energy conversion in a finite length superhydrophobic microchannel

    NASA Astrophysics Data System (ADS)

    Malekidelarestaqi, M.; Mansouri, A.; Chini, S. F.

    2018-07-01

    We investigated the effect of superhydrophobic walls on electrokinetics phenomena in a finite-length microchannel with superhydrophobic walls (in both transient and steady-state). We implemented the effect of superhydrophobicity using Navier's slip-length. To include the importance of the electric double-layer, we scaled the slip-length with respect to Debye-length (κ-1). By increasing the slip-length from 0 to 144 nm (1.5κ-1), streaming-current, streaming-potential, flow-rate and electrokinetic energy conversion increased by 2.55, 2.44, 1.8, and 3.4 folds, accordingly. The electrokinetic energy conversion of each microchannel was in the order of picowatt. To produce more energy, an array of microchannels should be used.

  10. Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II

    NASA Astrophysics Data System (ADS)

    Smith, D.; Boese, M.; Heaton, T. H.

    2015-12-01

    Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.

  11. Localization and elasticity in entangled polymer liquids as a mesoscopic glass transition

    NASA Astrophysics Data System (ADS)

    Schweizer, Kenneth

    2010-03-01

    The reptation-tube model is widely viewed as the correct zeroth order model for entangled linear polymer dynamics under quiescent conditions. Its key ansatz is the existence of a mesoscopic dynamical length scale that prohibits transverse chain motion beyond a tube diameter of order 3-10 nm. However, the theory is phenomenological and lacks a microscopic foundation, and many fundamental questions remain unanswered. These include: (i) where does the confining tube field come from and can it be derived from statistical mechanics? (ii) what is the microscopic origin of the magnitude, and power law scaling with concentration and packing length, of the plateau shear modulus? (iii) is the tube diameter time-dependent? (iv) does the confinement field contribute to elasticity ? (v) do entanglement constraints have a finite strength? Building on our new force-level theories for the dynamical crossover and activated barrier hopping in glassy colloidal suspensions and polymer melts, a first principles self-consistent theory has been developed for entangled polymers. Its basic physical elements, and initial results that address the questions posed above, will be presented. The key idea is that beyond a critical degree of polymerization, the chain connectivity and excluded volume induced intermolecular correlation hole drives temporary localization on an intermediate length scale resulting in a mesoscopic ``ideal kinetic glass transition.'' Large scale isotropic motion is effectively quenched due to the emergence of chain length dependent entropic barriers. However, the barrier height is not infinite, resulting in softening of harmonic localization at large displacements, temporal increase of the confining length scale, and a finite strength of entanglement constraints which can be destroyed by applied stress.

  12. Topological phase transition and the effect of Hubbard interactions on the one-dimensional topological Kondo insulator

    NASA Astrophysics Data System (ADS)

    Pillay, Jason C.; McCulloch, Ian P.

    2018-05-01

    The effect of a local Kondo coupling and Hubbard interaction on the topological phase of the one-dimensional topological Kondo insulator (TKI) is numerically investigated using the infinite matrix-product state density-matrix renormalization group algorithm. The ground state of the TKI is a symmetry-protected topological (SPT) phase protected by inversion symmetry. It is found that on its own, the Hubbard interaction that tends to force fermions into a one-charge per site order is insufficient to destroy the SPT phase. However, when the local Kondo Hamiltonian term that favors a topologically trivial ground state with a one-charge per site order is introduced, the Hubbard interaction assists in the destruction of the SPT phase. This topological phase transition occurs in the charge sector where the correlation length of the charge excitation diverges while the correlation length of the spin excitation remains finite. The critical exponents, central charge, and the phase diagram separating the SPT phase from the topologically trivial phase are presented.

  13. A general statistical test for correlations in a finite-length time series.

    PubMed

    Hanson, Jeffery A; Yang, Haw

    2008-06-07

    The statistical properties of the autocorrelation function from a time series composed of independently and identically distributed stochastic variables has been studied. Analytical expressions for the autocorrelation function's variance have been derived. It has been found that two common ways of calculating the autocorrelation, moving-average and Fourier transform, exhibit different uncertainty characteristics. For periodic time series, the Fourier transform method is preferred because it gives smaller uncertainties that are uniform through all time lags. Based on these analytical results, a statistically robust method has been proposed to test the existence of correlations in a time series. The statistical test is verified by computer simulations and an application to single-molecule fluorescence spectroscopy is discussed.

  14. Influence of stochastic geometric imperfections on the load-carrying behaviour of thin-walled structures using constrained random fields

    NASA Astrophysics Data System (ADS)

    Lauterbach, S.; Fina, M.; Wagner, W.

    2018-04-01

    Since structural engineering requires highly developed and optimized structures, the thickness dependency is one of the most controversially debated topics. This paper deals with stability analysis of lightweight thin structures combined with arbitrary geometrical imperfections. Generally known design guidelines only consider imperfections for simple shapes and loading, whereas for complex structures the lower-bound design philosophy still holds. Herein, uncertainties are considered with an empirical knockdown factor representing a lower bound of existing measurements. To fully understand and predict expected bearable loads, numerical investigations are essential, including geometrical imperfections. These are implemented into a stand-alone program code with a stochastic approach to compute random fields as geometric imperfections that are applied to nodes of the finite element mesh of selected structural examples. The stochastic approach uses the Karhunen-Loève expansion for the random field discretization. For this approach, the so-called correlation length l_c controls the random field in a powerful way. This parameter has a major influence on the buckling shape, and also on the stability load. First, the impact of the correlation length is studied for simple structures. Second, since most structures for engineering devices are more complex and combined structures, these are intensively discussed with the focus on constrained random fields for e.g. flange-web-intersections. Specific constraints for those random fields are pointed out with regard to the finite element model. Further, geometrical imperfections vanish where the structure is supported.

  15. Role of initial correlation in coarsening of a ferromagnet

    NASA Astrophysics Data System (ADS)

    Chakraborty, Saikat; Das, Subir K.

    2015-06-01

    We study the dynamics of ordering in ferromagnets via Monte Carlo simulations of the Ising model, employing the Glauber spin-flip mechanism, in space dimensions d = 2 and 3, on square and simple cubic lattices. Results for the persistence probability and the domain growth are discussed for quenches to various temperatures (Tf) below the critical one (Tc), from different initial temperatures Ti ≥ Tc. In long time limit, for Ti>Tc, the persistence probability exhibits power-law decay with exponents θ ≃ 0.22 and ≃ 0.18 in d = 2 and 3, respectively. For finite Ti, the early time behavior is a different power-law whose life-time diverges and exponent decreases as Ti → Tc. The two steps are connected via power-law as a function of domain length and the crossover to the second step occurs when this characteristic length exceeds the equilibrium correlation length at T = Ti. Ti = Tc is expected to provide a new universality class for which we obtain θ ≡ θc ≃ 0.035 in d = 2 and ≃0.105 in d = 3. The time dependence of the average domain size ℓ, however, is observed to be rather insensitive to the choice of Ti.

  16. Exact Solution of Mutator Model with Linear Fitness and Finite Genome Length

    NASA Astrophysics Data System (ADS)

    Saakian, David B.

    2017-08-01

    We considered the infinite population version of the mutator phenomenon in evolutionary dynamics, looking at the uni-directional mutations in the mutator-specific genes and linear selection. We solved exactly the model for the finite genome length case, looking at the quasispecies version of the phenomenon. We calculated the mutator probability both in the statics and dynamics. The exact solution is important for us because the mutator probability depends on the genome length in a highly non-trivial way.

  17. Evaluation of inductively heated ferromagnetic alloy implants for therapeutic interstitial hyperthermia.

    PubMed

    Paulus, J A; Richardson, J S; Tucker, R D; Park, J B

    1996-04-01

    Ferromagnetic alloys heated by magnetic induction have been investigated as interstitial hyperthermia delivery implants for over a decade, utilizing low Curie temperatures to provide thermal self-regulation. The minimally invasive method is attractive for fractionated thermal treatment of tumors which are not easily heated by focused microwave or ultrasound techniques. Past analyses of ferromagnetic seeds by other authors depict poor experimental correlation with theoretical heating predictions. Improvements in computer hardware and commercially available finite element analysis software have simplified the analysis of inductively heated thermal seeds considerably. This manuscript examines end effects of finite length implants and nonlinear magnetic material properties to account for previous inconsistencies. Two alloys, Ni-28 wt% Cu (NiCu) and Pd-6.15 wt% Co (PdCo), were used for comparison of theoretical and experimental calorimetric results. Length to diameter (L/d) ratios of over 20 for cylindrical seeds are necessary for minimization of end effects. Magnetic properties tested for alloys of NiCu and PdCo illustrate considerable nonlinearity of these materials in field strength ranges used for induction heating. Field strength dependent magnetic permeabilities and calorimetric data illustrate that more detailed material information must be included to accurately estimate induction power loss for these implants.

  18. The Lyman-α power spectrum—CMB lensing convergence cross-correlation

    DOE PAGES

    Chiang, Chi-Ting; Slosar, Anže

    2018-01-11

    We investigate the three-point correlation between the Lyman-α forest and the CMB weak lensing (δ Fδ FΚ) expressed as the cross-correlation between the CMB weak lensing field and local variations in the forest power spectrum. In addition to the standard gravitational bispectrum term, we note the existence of a non-standard systematic term coming from mis-estimation of the mean flux over the finite length of Lyman-α skewers. We numerically calculate the angular cross-power spectrum and discuss its features. We integrate it into zero-lag correlation function and compare our predictions with recent results by Doux et al.. We nd that our predictionsmore » are statistically consistent with the measurement, and including the systematic term improves the agreement with the measurement. We comment on the implication of the response of the Lyman-α forest power spectrum to the long-wavelength density perturbations.« less

  19. The Lyman-α power spectrum—CMB lensing convergence cross-correlation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiang, Chi-Ting; Slosar, Anže

    We investigate the three-point correlation between the Lyman-α forest and the CMB weak lensing (δ Fδ FΚ) expressed as the cross-correlation between the CMB weak lensing field and local variations in the forest power spectrum. In addition to the standard gravitational bispectrum term, we note the existence of a non-standard systematic term coming from mis-estimation of the mean flux over the finite length of Lyman-α skewers. We numerically calculate the angular cross-power spectrum and discuss its features. We integrate it into zero-lag correlation function and compare our predictions with recent results by Doux et al.. We nd that our predictionsmore » are statistically consistent with the measurement, and including the systematic term improves the agreement with the measurement. We comment on the implication of the response of the Lyman-α forest power spectrum to the long-wavelength density perturbations.« less

  20. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position.

    PubMed

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin; Wu, Guangkuan

    2017-05-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method-twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length.

  1. A superlinear iteration method for calculation of finite length journal bearing's static equilibrium position

    PubMed Central

    Zhou, Wenjie; Wei, Xuesong; Wang, Leqin

    2017-01-01

    Solving the static equilibrium position is one of the most important parts of dynamic coefficients calculation and further coupled calculation of rotor system. The main contribution of this study is testing the superlinear iteration convergence method—twofold secant method, for the determination of the static equilibrium position of journal bearing with finite length. Essentially, the Reynolds equation for stable motion is solved by the finite difference method and the inner pressure is obtained by the successive over-relaxation iterative method reinforced by the compound Simpson quadrature formula. The accuracy and efficiency of the twofold secant method are higher in comparison with the secant method and dichotomy. The total number of iterative steps required for the twofold secant method are about one-third of the secant method and less than one-eighth of dichotomy for the same equilibrium position. The calculations for equilibrium position and pressure distribution for different bearing length, clearance and rotating speed were done. In the results, the eccentricity presents linear inverse proportional relationship to the attitude angle. The influence of the bearing length, clearance and bearing radius on the load-carrying capacity was also investigated. The results illustrate that larger bearing length, larger radius and smaller clearance are good for the load-carrying capacity of journal bearing. The application of the twofold secant method can greatly reduce the computational time for calculation of the dynamic coefficients and dynamic characteristics of rotor-bearing system with a journal bearing of finite length. PMID:28572997

  2. Line transport in turbulent atmosphere

    NASA Astrophysics Data System (ADS)

    Nikoghossian, Artur

    We consider the spectral line transfer in turbulent atmospheres with a spatially correlated velocity field. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. New approach proposed in solving this problem is based on invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity and the line width on the mean correlation length and average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulent one occurs within a comparatively narrow range of variation in the correlation length. The diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere is examined. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  3. Line Transport in Turbulent Atmospheres

    NASA Astrophysics Data System (ADS)

    Nikoghossian, A. G.

    2017-07-01

    The spectral line transfer in turbulent atmospheres with a spatially correlated velocity field is examined. Both the finite and semi-infinite media are treated. In finding the observed intensities we first deal with the problem for determining the mean intensity of radiation emerging from the medium for a fixed value of turbulent velocity at its boundary. A new approach proposed for solving this problem is based on the invariant imbedding technique which yields the solution of the proper problems for a family of media of different optical thicknesses and allows tackling different kinds of inhomogeneous problems. The dependence of the line profile, integral intensity, and the line width on the mean correlation length and the average value of the hydrodynamic velocity is studied. It is shown that the transition from a micro-turbulent regime to a macro-turbulence occurs within a comparatively narrow range of variation in the correlation length . Ambartsumian's principle of invariance is used to solve the problem of diffuse reflection of the line radiation from a one-dimensional semi-infinite turbulent atmosphere. In addition to the observed spectral line profile, statistical averages describing the diffusion process in the atmosphere (mean number of scattering events, average time spent by a diffusing photon in the medium) are determined. The dependence of these quantities on the average hydrodynamic velocity and correlation coefficient is studied.

  4. A proof of the Woodward-Lawson sampling method for a finite linear array

    NASA Technical Reports Server (NTRS)

    Somers, Gary A.

    1993-01-01

    An extension of the continuous aperture Woodward-Lawson sampling theorem has been developed for a finite linear array of equidistant identical elements with arbitrary excitations. It is shown that by sampling the array factor at a finite number of specified points in the far field, the exact array factor over all space can be efficiently reconstructed in closed form. The specified sample points lie in real space and hence are measurable provided that the interelement spacing is greater than approximately one half of a wavelength. This paper provides insight as to why the length parameter used in the sampling formulas for discrete arrays is larger than the physical span of the lattice points in contrast with the continuous aperture case where the length parameter is precisely the physical aperture length.

  5. A Fatigue Crack Size Evaluation Method Based on Lamb Wave Simulation and Limited Experimental Data

    PubMed Central

    He, Jingjing; Ran, Yunmeng; Liu, Bin; Yang, Jinsong; Guan, Xuefei

    2017-01-01

    This paper presents a systematic and general method for Lamb wave-based crack size quantification using finite element simulations and Bayesian updating. The method consists of construction of a baseline quantification model using finite element simulation data and Bayesian updating with limited Lamb wave data from target structure. The baseline model correlates two proposed damage sensitive features, namely the normalized amplitude and phase change, with the crack length through a response surface model. The two damage sensitive features are extracted from the first received S0 mode wave package. The model parameters of the baseline model are estimated using finite element simulation data. To account for uncertainties from numerical modeling, geometry, material and manufacturing between the baseline model and the target model, Bayesian method is employed to update the baseline model with a few measurements acquired from the actual target structure. A rigorous validation is made using in-situ fatigue testing and Lamb wave data from coupon specimens and realistic lap-joint components. The effectiveness and accuracy of the proposed method is demonstrated under different loading and damage conditions. PMID:28902148

  6. Empirical scaling of the length of the longest increasing subsequences of random walks

    NASA Astrophysics Data System (ADS)

    Mendonça, J. Ricardo G.

    2017-02-01

    We provide Monte Carlo estimates of the scaling of the length L n of the longest increasing subsequences of n-step random walks for several different distributions of step lengths, short and heavy-tailed. Our simulations indicate that, barring possible logarithmic corrections, {{L}n}∼ {{n}θ} with the leading scaling exponent 0.60≲ θ ≲ 0.69 for the heavy-tailed distributions of step lengths examined, with values increasing as the distribution becomes more heavy-tailed, and θ ≃ 0.57 for distributions of finite variance, irrespective of the particular distribution. The results are consistent with existing rigorous bounds for θ, although in a somewhat surprising manner. For random walks with step lengths of finite variance, we conjecture that the correct asymptotic behavior of L n is given by \\sqrt{n}\\ln n , and also propose the form for the subleading asymptotics. The distribution of L n was found to follow a simple scaling form with scaling functions that vary with θ. Accordingly, when the step lengths are of finite variance they seem to be universal. The nature of this scaling remains unclear, since we lack a working model, microscopic or hydrodynamic, for the behavior of the length of the longest increasing subsequences of random walks.

  7. An experimental study of turbulence by phase-contrast imaging in the DIII-D tokamak

    NASA Astrophysics Data System (ADS)

    Coda, Stefano

    1997-10-01

    A CO2-laser imaging system employing the Zernike phase-contrast technique was designed, built, installed, and operated on the DIII-D tokamak. This system measures the line integrals of plasma density fluctuations along 16 vertical chords at the outer edge of the tokamak (0.85

  8. Study on Edge Thickening Flow Forming Using the Finite Elements Analysis

    NASA Astrophysics Data System (ADS)

    Kim, Young Jin; Park, Jin Sung; Cho, Chongdu

    2011-08-01

    This study is to examine the forming features of flow stress property and the incremental forming method with increasing the thickness of material. Recently, the optimized forming method is widely studied through the finite element analysis to optimize forming process conditions in many different forming fields. The optimal forming method should be adopted to meet geometric requirements as the reduction in volume per unit length of material such as forging, rolling, spinning etc. However conventional studies have not dealt with issue regarding volume per unit length. For the study we use the finite element method and model a gear part of an automotive engine flywheel as the study model, which is a weld assembly of a plate and a gear with respective different thickness. In simulation of the present study, a optimized forming condition for gear machining, considering the thickness of the outer edge of flywheel is studied using the finite elements analysis for the increasing thickness of the forming method. It is concluded from the study that forming method to increase the thickness per unit length for gear machining is reasonable using the finite elements analysis and forming test.

  9. Quasi-phases and pseudo-transitions in one-dimensional models with nearest neighbor interactions

    NASA Astrophysics Data System (ADS)

    de Souza, S. M.; Rojas, Onofre

    2018-01-01

    There are some particular one-dimensional models, such as the Ising-Heisenberg spin models with a variety of chain structures, which exhibit unexpected behaviors quite similar to the first and second order phase transition, which could be confused naively with an authentic phase transition. Through the analysis of the first derivative of free energy, such as entropy, magnetization, and internal energy, a "sudden" jump that closely resembles a first-order phase transition at finite temperature occurs. However, by analyzing the second derivative of free energy, such as specific heat and magnetic susceptibility at finite temperature, it behaves quite similarly to a second-order phase transition exhibiting an astonishingly sharp and fine peak. The correlation length also confirms the evidence of this pseudo-transition temperature, where a sharp peak occurs at the pseudo-critical temperature. We also present the necessary conditions for the emergence of these quasi-phases and pseudo-transitions.

  10. Length-dependent structural stability of linear monatomic Cu wires

    NASA Astrophysics Data System (ADS)

    Singh, Gurvinder; Kumar, Krishan; Singh, Baljinder; Moudgil, R. K.

    2018-05-01

    We present first-principle calculations based on density functional theory for the finite-length monatomic Cu atom linear wires. The structure and its stability with increasing wire length in terms of number of atoms (N) is determined. Interestingly, the bond length is found to exhibit an oscillatory structure (the so-called magic length phenomenon), with a qualitative change in oscillatory behavior as one moves from even N wire to odd N wire. The even N wires follow simple even-odd oscillations whereas odd N wires show a phase change at the half length of the wires. The stability of the wire structure, determined in terms of the wire formation energy, also contains even-odd oscillation as a function of wire length. However, the oscillations in formation energy reverse its phase after the wire length is increased beyond N=12. Our findings are seen to be qualitatively consistent with recent simulations for a similar class finite-length metal atom wires.

  11. Ion sound instability driven by the ion flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshkarov, O., E-mail: koshkarov.alexandr@usask.ca; Smolyakov, A. I.; National Research Centre

    2015-05-15

    Ion sound instabilities driven by the ion flow in a system of a finite length are considered by analytical and numerical methods. The ion sound waves are modified by the presence of stationary ion flow resulting in negative and positive energy modes. The instability develops due to coupling of negative and positive energy modes mediated by reflections from the boundary. It is shown that the wave dispersion due to deviation from quasineutrality is crucial for the stability. In finite length system, the dispersion is characterized by the length of the system measured in units of the Debye length. The instabilitymore » is studied analytically and the results are compared with direct, initial value numerical simulations.« less

  12. Scaling and percolation in the small-world network model

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.; Watts, D. J.

    1999-12-01

    In this paper we study the small-world network model of Watts and Strogatz, which mimics some aspects of the structure of networks of social interactions. We argue that there is one nontrivial length-scale in the model, analogous to the correlation length in other systems, which is well-defined in the limit of infinite system size and which diverges continuously as the randomness in the network tends to zero, giving a normal critical point in this limit. This length-scale governs the crossover from large- to small-world behavior in the model, as well as the number of vertices in a neighborhood of given radius on the network. We derive the value of the single critical exponent controlling behavior in the critical region and the finite size scaling form for the average vertex-vertex distance on the network, and, using series expansion and Padé approximants, find an approximate analytic form for the scaling function. We calculate the effective dimension of small-world graphs and show that this dimension varies as a function of the length-scale on which it is measured, in a manner reminiscent of multifractals. We also study the problem of site percolation on small-world networks as a simple model of disease propagation, and derive an approximate expression for the percolation probability at which a giant component of connected vertices first forms (in epidemiological terms, the point at which an epidemic occurs). The typical cluster radius satisfies the expected finite size scaling form with a cluster size exponent close to that for a random graph. All our analytic results are confirmed by extensive numerical simulations of the model.

  13. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1988-01-01

    Results from numerical simulations of finite-length Taylor-Couette flow are presented. Included are time-accurate and steady-state studies of the change in the nature of the symmetric two-cell/asymmetric one-cell bifurcation with varying aspect ratio and of the Reynolds number/aspect ratio locus of the two-cell/four-cell bifurcation. Preliminary results from wavy-vortex simulations at low aspect ratios are also presented.

  14. Magnetic Field Due to a Finite Length Current-Carrying Wire Using the Concept of Displacement Current

    ERIC Educational Resources Information Center

    Buschauer, Robert

    2014-01-01

    In undergraduate E&M courses the magnetic field due to a finite length, current-carrying wire can be calculated using the Biot-Savart law. However, to the author's knowledge, no textbook presents the calculation of this field using the Ampere-Maxwell law: ?B [multiplied by] dl = µ[subscript 0] (I + e[subscript 0] dF/dt) [multiplied by] 1

  15. Benchmark study of the length dependent thermal conductivity of individual suspended, pristine SWCNTs.

    PubMed

    Liu, Jinhui; Li, Tianyi; Hu, Yudong; Zhang, Xing

    2017-01-26

    The thermal conductivity of individual suspended single-walled carbon nanotubes (SWCNTs) has been theoretically predicated to increase with length but this has never been verified experimentally. This then leads to the question of whether the thermal conductivity saturates to a finite constant value in ultra-long SWCNTs. This paper reports on experimental measurements of the thermal conductivity of individual suspended SWCNTs as a function of the characteristic thermal transport length using the same individual suspended SWCNT sample. Interestingly, at around 360 K, the thermal conductivity first increases with increasing characteristic length and then saturates to a finite constant value at a characteristic length of ∼10 μm. These experimental results provide a fundamental understanding of the phonon transport characteristics in suspended, pristine SWCNTs.

  16. Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirakawa, Evan; Pitarka, Arben; Mellors, Robert

    One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less

  17. Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media

    DOE PAGES

    Hirakawa, Evan; Pitarka, Arben; Mellors, Robert

    2016-07-19

    One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less

  18. Localization length and intraband scattering of excitons in linear aggregates

    NASA Astrophysics Data System (ADS)

    Lemaistre, J. P.

    1999-07-01

    A theoretical model to describe the intraband scattering of excitons in linear aggregates of finite size which exhibit strong intermolecular interactions is presented. From the calculation of the aggregate eigenstates, the localization length of excitons is evaluated for various configurations featuring physical situations like trapping, edge effects, inclusion of diagonal and/or orientational disorders. The intraband scattering is studied by considering the exciton-phonon stochastic coupling induced by the thermal bath. This coupling creates local dynamical fluctuations in the site energies which are characterized by their amplitude ( Δ) and their correlation time ( τc). Expressions of scattering rates are provided and used in a Pauli master equation to calculate the time dependence of the eigenstates populations after initial excitation of the quasi exciton-band. It is shown that the time evolution of the lowest state population as well as the Stokes shift strongly depend on τc. Comparison of the theoretical results to time-resolved experiments performed on triaryl pyrylium salts allows us to interpret the observed Stokes shift and to derive an average value of the exciton-phonon correlation time.

  19. Telomeres shorten and then lengthen before fledging in Magellanic penguins (Spheniscus magellanicus)

    PubMed Central

    Cerchiara, Jack A.; Risques, Rosa Ana; Prunkard, Donna; Smith, Jeffrey R.; Kane, Olivia J.; Dee Boersma, P.

    2017-01-01

    For all species, finite metabolic resources must be allocated toward three competing systems: maintenance, reproduction, and growth. Telomeres, the nucleoprotein tips of chromosomes, which shorten with age in most species, are correlated with increased survival. Chick growth is energetically costly and is associated with telomere shortening in most species. To assess the change in telomeres in penguin chicks, we quantified change in telomere length of wild known-age Magellanic penguin (Spheniscus magellanicus) chicks every 15 days during the species’ growth period, from hatching to 60 days-of-age. Magellanic penguins continue to grow after fledging so we also sampled a set of 1-year-old juvenile penguins, and adults aged 5 years. Telomeres were significantly shorter on day 15 than on hatch day but returned to their initial length by 30 days old and remained at that length through 60 days of age. The length of telomeres of newly hatched chicks, chicks aged 30, 45 and 60 days, juveniles, and adults aged 5 years were similar. Chicks that fledged and those that died had similar telomere lengths. We show that while telomeres shorten during growth, Magellanic penguins elongate telomeres to their length at hatch, which may increase adult life span and reproductive opportunities. PMID:28186493

  20. Majorana bound states in the finite-length chain

    NASA Astrophysics Data System (ADS)

    Zvyagin, A. A.

    2015-08-01

    Recent experiments investigating edge states in ferromagnetic atomic chains on superconducting substrate are analyzed. In particular, finite size effects are considered. It is shown how the energy of the Majorana bound state depends on the length of the chain, as well as on the parameters of the model. Oscillations of the energy of the bound edge state in the chain as a function of the length of the chain, and as a function of the applied voltage (or the chemical potential) are studied. In particular, it has been shown that oscillations can exist only for some values of the effective potential.

  1. The pitch-heave dynamics of transportation vehicles

    NASA Technical Reports Server (NTRS)

    Sweet, L. M.; Richardson, H. H.

    1975-01-01

    The analysis and design of suspensions for vehicles of finite length using pitch-heave models is presented. Dynamic models for the finite length vehicle include the spatial distribution of the guideway input disturbance over the vehicle length, as well as both pitch and heave degrees-of-freedom. Analytical results relate the vehicle front and rear accelerations to the pitch and heave natural frequencies, which are functions of vehicle suspension geometry and mass distribution. The effects of vehicle asymmetry and suspension contact area are evaluated. Design guidelines are presented for the modification of vehicle and suspension parameters to meet alternative ride quality criteria.

  2. Non-Gaussian diffusion in static disordered media

    NASA Astrophysics Data System (ADS)

    Luo, Liang; Yi, Ming

    2018-04-01

    Non-Gaussian diffusion is commonly considered as a result of fluctuating diffusivity, which is correlated in time or in space or both. In this work, we investigate the non-Gaussian diffusion in static disordered media via a quenched trap model, where the diffusivity is spatially correlated. Several unique effects due to quenched disorder are reported. We analytically estimate the diffusion coefficient Ddis and its fluctuation over samples of finite size. We show a mechanism of population splitting in the non-Gaussian diffusion. It results in a sharp peak in the distribution of displacement P (x ,t ) around x =0 , that has frequently been observed in experiments. We examine the fidelity of the coarse-grained diffusion map, which is reconstructed from particle trajectories. Finally, we propose a procedure to estimate the correlation length in static disordered environments, where the information stored in the sample-to-sample fluctuation has been utilized.

  3. The Rainbow Spectrum of RNA Secondary Structures.

    PubMed

    Li, Thomas J X; Reidys, Christian M

    2018-06-01

    In this paper, we analyze the length spectrum of rainbows in RNA secondary structures. A rainbow in a secondary structure is a maximal arc with respect to the partial order induced by nesting. We show that there is a significant gap in this length spectrum. We shall prove that there asymptotically almost surely exists a unique longest rainbow of length at least [Formula: see text] and that with high probability any other rainbow has finite length. We show that the distribution of the length of the longest rainbow converges to a discrete limit law and that, for finite k, the distribution of rainbows of length k becomes for large n a negative binomial distribution. We then put the results of this paper into context, comparing the analytical results with those observed in RNA minimum free energy structures, biological RNA structures and relate our findings to the sparsification of folding algorithms.

  4. Finite-Size Scaling Analysis of Binary Stochastic Processes and Universality Classes of Information Cascade Phase Transition

    NASA Astrophysics Data System (ADS)

    Mori, Shintaro; Hisakado, Masato

    2015-05-01

    We propose a finite-size scaling analysis method for binary stochastic processes X(t) in { 0,1} based on the second moment correlation length ξ for the autocorrelation function C(t). The purpose is to clarify the critical properties and provide a new data analysis method for information cascades. As a simple model to represent the different behaviors of subjects in information cascade experiments, we assume that X(t) is a mixture of an independent random variable that takes 1 with probability q and a random variable that depends on the ratio z of the variables taking 1 among recent r variables. We consider two types of the probability f(z) that the latter takes 1: (i) analog [f(z) = z] and (ii) digital [f(z) = θ(z - 1/2)]. We study the universal functions of scaling for ξ and the integrated correlation time τ. For finite r, C(t) decays exponentially as a function of t, and there is only one stable renormalization group (RG) fixed point. In the limit r to ∞ , where X(t) depends on all the previous variables, C(t) in model (i) obeys a power law, and the system becomes scale invariant. In model (ii) with q ≠ 1/2, there are two stable RG fixed points, which correspond to the ordered and disordered phases of the information cascade phase transition with the critical exponents β = 1 and ν|| = 2.

  5. Finite element modelling of AA6063T52 thin-walled tubes under quasi-static axial loading

    NASA Astrophysics Data System (ADS)

    Othman, A.; Ismail, AE

    2018-04-01

    The behavior of aluminum alloy 6063T52 thin walled tubes have been present in this paper to determine absorbed energy under quasi-static axial loading. The correlation and comparison have been implemented for each experimental and finite element analysis results, respectively. Wall-thickness of 1.6 and 1.9 mm were selected and all specimen tested under room temperature standard. The length of each specimen were fixed at 125 mm as well as diameter as well as a width and diameter of the tube at 50.8 mm. The two types of tubular cross-section were examined whereas a round and square thin-walled profiles. The specific absorbed energy (SEA) and crush force efficiency (CFE) were analyzed for each specimen and model to see the behavior induced to failure under progressive collapse. Result showed that a correlation less than 5% different between both of comparison experimental and finite element model. It has been found that the thin walled round tube absorbed more energy rather than square profile in term of specific energy with both of either 1.6 or 1.9 of 23.93% and 35.36%, respectively. Overall for crush force efficiency (CFE) of each tube profile around 0.42 to 0.58 value. Indicated that the all specimen profile fail under progressive damage. The calibration between deformed model and experimental specimen were examined and discussed. It was found that the similarity failure mechanism observed for each thin walled profiles.

  6. Landau instability and mobility edges of the interacting one-dimensional Bose gas in weak random potentials

    NASA Astrophysics Data System (ADS)

    Cherny, Alexander Yu; Caux, Jean-Sébastien; Brand, Joachim

    2018-01-01

    We study the frictional force exerted on the trapped, interacting 1D Bose gas under the influence of a moving random potential. Specifically we consider weak potentials generated by optical speckle patterns with finite correlation length. We show that repulsive interactions between bosons lead to a superfluid response and suppression of frictional force, which can inhibit the onset of Anderson localisation. We perform a quantitative analysis of the Landau instability based on the dynamic structure factor of the integrable Lieb-Liniger model and demonstrate the existence of effective mobility edges.

  7. Infinite coherence time of edge spins in finite-length chains

    NASA Astrophysics Data System (ADS)

    Maceira, Ivo A.; Mila, Frédéric

    2018-02-01

    Motivated by the recent observation that exponentially long coherence times can be achieved for edge spins in models with strong zero modes, we study the impact of level crossings in finite-length spin chains on the dynamics of the edge spins. Focusing on the X Y spin-1 /2 chain with a transverse or longitudinal magnetic field, two models relevant to understanding recent experimental results on cobalt adatoms, we show that the edge spins can remain coherent for an infinite time even for a finite-length chain if the magnetic field is tuned to a value at which there is a level crossing. Furthermore, we show that the edge spins remain coherent for any initial state for the integrable case of a transverse field because all states have level crossings at the same value of the field, while the coherence time is increasingly large for lower temperatures in the case of a longitudinal field, which is nonintegrable.

  8. Criticality and Connectivity in Macromolecular Charge Complexation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Jian; de Pablo, Juan J.

    We examine the role of molecular connectivity and architecture on the complexation of ionic macromolecules (polyelectrolytes) of finite size. A unified framework is developed and applied to evaluate the electrostatic correlation free energy for point-like, rod-like, and coil-like molecules. That framework is generalized to molecules of variable fractal dimensions, including dendrimers. Analytical expressions for the free energy, correlation length, and osmotic pressure are derived, thereby enabling consideration of the effects of charge connectivity, fractal dimension, and backbone stiffness on the complexation behavior of a wide range of polyelectrolytes. Results are presented for regions in the immediate vicinity of the criticalmore » region and far from it. A transparent and explicit expression for the coexistence curve is derived in order to facilitate analysis of experimentally observed phase diagrams.« less

  9. Theoretical Studies of Relaxation and Optical Properties of Polymers

    NASA Astrophysics Data System (ADS)

    Jin, Bih-Yaw

    1993-01-01

    This thesis is composed of two parts. In the part one, the empirical correlation between the logarithm of tunneling splittings and the temperature at which the spin-lattice relaxation time is minimum for methyl groups in different molecular crystals is explained successfully by taking multiphonon processes into account. We show that one phonon transitions dominate in the low barrier limit. However, in the intermediate barrier range and high barrier limit, it is necessary to include multiphonon processes. We also show that the empirical correlation depends only logarithmically on the details of the phonon bath. In the part two, we have investigated the optical and relaxation properties of conjugated polymers. The connection between the vibronic picture of Raman scattering and the third order perturbation approach in solid state physics is clarified in chapter 2. Starting from the Kramers -Heissenberg-Dirac formula for Raman scattering, we derive expressions for the Condon and Herzberg-Teller terms from a simple two-level system to a two-band system, i.e. polyacetylene, by using traditional vibronic picture. Both the Condon and Herzberg-Teller terms contribute to two-band processes, while three-band processes consist only of Herzberg-Teller terms in the solid state limit. Close to resonance the Condon term dominates and converges to the usual solid state result. In the off-resonance region the Herzberg -Teller term is comparable to Condon term for both small molecule and solid state system. In chapter 3, we will concentrate on the lattice relaxation of the lowest optically allowed 1B_ {u} state, especially, the effect of electron correlation on the excited state geometric relaxation for finite polyenes. We have examined the competition between electron-electron interaction and electron-phonon coupling on the formation of localized lattice distortion in the 1B_{u} state for finite polyene with chain length up to 30 double bonds. The chain length dependence of the lattice relaxation in 1B _{u} state has been studied thoroughly within singly excited configuration interaction for short range Hubbard, extended Hubbard model and long-range Pariser -Parr-Pople model. We have found that local distortion is not favored until a critical chain length is reached. Beyond this critical length, which is a function of electron-electron interaction and electron-phonon coupling strength, a self -trapped exciton is formed rather than the separated soliton -antisoliton configuration as expected in the independent electron theory. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.).

  10. Evidence for three-dimensional XY critical properties in underdoped YBa2Cu3O7-δ

    NASA Astrophysics Data System (ADS)

    Schneider, T.

    2007-05-01

    We perform a detailed analysis of the reversible magnetization data of Salem-Sugui and Babíc of underdoped and optimally doped YBa2Cu3O7-δ single crystals. Near the zero field transition temperature we observe extended consistency with the properties of the three-dimensional XY universality class, even though the attained critical regime is limited by an inhomogeneity induced finite size effect. Nevertheless, as Tc falls from 93.5to41.5K , the critical amplitude of the in-plane correlation length ξab0 , the anisotropy γ=ξab0/ξc0 and the critical amplitude of the in-plane penetration depth λab0 increase substantially, while the critical amplitude of the c -axis correlation length ξc0 does not change much. As a consequence, the correlation volume Vcorr- increases and the critical amplitude of the specific heat singularity A- decreases dramatically, while the rise of λab0 reflects the behavior of the zero temperature counterpart. Conversely, although ξab0 and λab0 increase with reduced Tc , the ratio λab0/ξab0- , corresponding to the Ginzburg-Landau parameter κab , decreases substantially and YBa2Cu3O7-δ crosses over from an extreme to a weak type-II superconductor.

  11. Computation of canonical correlation and best predictable aspect of future for time series

    NASA Technical Reports Server (NTRS)

    Pourahmadi, Mohsen; Miamee, A. G.

    1989-01-01

    The canonical correlation between the (infinite) past and future of a stationary time series is shown to be the limit of the canonical correlation between the (infinite) past and (finite) future, and computation of the latter is reduced to a (generalized) eigenvalue problem involving (finite) matrices. This provides a convenient and essentially, finite-dimensional algorithm for computing canonical correlations and components of a time series. An upper bound is conjectured for the largest canonical correlation.

  12. Finite-size polyelectrolyte bundles at thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Sayar, M.; Holm, C.

    2007-01-01

    We present the results of extensive computer simulations performed on solutions of monodisperse charged rod-like polyelectrolytes in the presence of trivalent counterions. To overcome energy barriers we used a combination of parallel tempering and hybrid Monte Carlo techniques. Our results show that for small values of the electrostatic interaction the solution mostly consists of dispersed single rods. The potential of mean force between the polyelectrolyte monomers yields an attractive interaction at short distances. For a range of larger values of the Bjerrum length, we find finite-size polyelectrolyte bundles at thermodynamic equilibrium. Further increase of the Bjerrum length eventually leads to phase separation and precipitation. We discuss the origin of the observed thermodynamic stability of the finite-size aggregates.

  13. Optimization of block-floating-point realizations for digital controllers with finite-word-length considerations.

    PubMed

    Wu, Jun; Hu, Xie-he; Chen, Sheng; Chu, Jian

    2003-01-01

    The closed-loop stability issue of finite-precision realizations was investigated for digital controllers implemented in block-floating-point format. The controller coefficient perturbation was analyzed resulting from using finite word length (FWL) block-floating-point representation scheme. A block-floating-point FWL closed-loop stability measure was derived which considers both the dynamic range and precision. To facilitate the design of optimal finite-precision controller realizations, a computationally tractable block-floating-point FWL closed-loop stability measure was then introduced and the method of computing the value of this measure for a given controller realization was developed. The optimal controller realization is defined as the solution that maximizes the corresponding measure, and a numerical optimization approach was adopted to solve the resulting optimal realization problem. A numerical example was used to illustrate the design procedure and to compare the optimal controller realization with the initial realization.

  14. On the performance of finite journal bearings lubricated with micropolar fluids

    NASA Technical Reports Server (NTRS)

    Khonsari, M. M.; Brewe, D. E.

    1988-01-01

    A study of the performance parameters for a journal bearing of finite length lubricated with micropolar fluids is undertaken. Results indicate that a significantly higher load carrying capacity than the Newtonian fluids may result depending on the size of material characteristic length and the coupling number. It is also shown that although the frictional force associated with micropolar fluid is in general higher than that of a Newtonian fluid, the friction coefficient of micropolar fluids tends to be lower than that of the Newtonian.

  15. On the performance of finite journal bearings lubricated with micropolar fluids

    NASA Technical Reports Server (NTRS)

    Khonsari, M. M.; Brewe, D. E.

    1989-01-01

    A study of the performance parameters for a journal bearing of finite length lubricated with micropolar fluids is undertaken. Results indicate that a significantly higher load carrying capacity than the Newtonian fluids may result depending on the size of material characteristics length and the coupling number. It is also shown that although the frictional force associated with micropolar fluid is, in general, higher than that of a Newtonian fluid, the friction coefficient of micropolar fluids tends to be lower than that of the Newtonian.

  16. Finite-Length Line Source Superposition Model (FLLSSM)

    NASA Astrophysics Data System (ADS)

    1980-03-01

    A linearized thermal conduction model was developed to economically determine media temperatures in geologic repositories for nuclear wastes. Individual canisters containing either high level waste or spent fuel assemblies were represented as finite length line sources in a continuous media. The combined effects of multiple canisters in a representative storage pattern were established at selected points of interest by superposition of the temperature rises calculated for each canister. The methodology is outlined and the computer code FLLSSM which performs required numerical integrations and superposition operations is described.

  17. Plasma influence on the dispersion properties of finite-length, corrugated waveguides

    NASA Astrophysics Data System (ADS)

    Shkvarunets, A.; Kobayashi, S.; Weaver, J.; Carmel, Y.; Rodgers, J.; Antonsen, T. M., Jr.; Granatstein, V. L.; Destler, W. W.; Ogura, K.; Minami, K.

    1996-03-01

    We present an experimental study of the electromagnetic properties of transverse magnetic modes in a corrugated-wall cavity filled with a radially inhomogeneous plasma. The shifts of the resonant frequencies of a finite-length, corrugated cavity were measured as a function of the background plasma density and the dispersion diagram was reconstructed up to a peak plasma density of 1012 cm-3. Good agreement with a calculated dispersion diagram is obtained for plasma densities below 5×1011 cm-3.

  18. Ferromagnetic Potts models with multisite interaction

    NASA Astrophysics Data System (ADS)

    Schreiber, Nir; Cohen, Reuven; Haber, Simi

    2018-03-01

    We study the q -state Potts model with four-site interaction on a square lattice. Based on the asymptotic behavior of lattice animals, it is argued that when q ≤4 the system exhibits a second-order phase transition and when q >4 the transition is first order. The q =4 model is borderline. We find 1 /lnq to be an upper bound on Tc, the exact critical temperature. Using a low-temperature expansion, we show that 1 /(θ lnq ) , where θ >1 is a q -dependent geometrical term, is an improved upper bound on Tc. In fact, our findings support Tc=1 /(θ lnq ) . This expression is used to estimate the finite correlation length in first-order transition systems. These results can be extended to other lattices. Our theoretical predictions are confirmed numerically by an extensive study of the four-site interaction model using the Wang-Landau entropic sampling method for q =3 ,4 ,5 . In particular, the q =4 model shows an ambiguous finite-size pseudocritical behavior.

  19. KC-135 aero-optical turbulent boundary layer/shear layer experiment revisited

    NASA Technical Reports Server (NTRS)

    Craig, J.; Allen, C.

    1987-01-01

    The aero-optical effects associated with propagating a laser beam through both an aircraft turbulent boundary layer and artificially generated shear layers are examined. The data present comparisons from observed optical performance with those inferred from aerodynamic measurements of unsteady density and correlation lengths within the same random flow fields. Using optical instrumentation with tens of microsecond temporal resolution through a finite aperture, optical performance degradation was determined and contrasted with the infinite aperture time averaged aerodynamic measurement. In addition, the optical data were artificially clipped to compare to theoretical scaling calculations. Optical instrumentation consisted of a custom Q switched Nd:Yag double pulsed laser, and a holographic camera which recorded the random flow field in a double pass, double pulse mode. Aerodynamic parameters were measured using hot film anemometer probes and a five hole pressure probe. Each technique is described with its associated theoretical basis for comparison. The effects of finite aperture and spatial and temporal frequencies of the random flow are considered.

  20. Interaction of a finite-length ion beam with a background plasma - Reflected ions at the quasi-parallel bow shock

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Winske, D.; Thomsen, M. F.

    1991-01-01

    The coupling of a finite-length, field-aligned, ion beam with a uniform background plasma is investigated using one-dimensional hybrid computer simulations. The finite-length beam is used to study the interaction between the incident solar wind and ions reflected from the earth's quasi-parallel bow shock, where the reflection process may vary with time. The coupling between the reflected ions and the solar wind is relevant to ion heating at the bow shock and possibly to the formation of hot, flow anomalies and re-formation of the shock itself. Consistent with linear theory, the waves which dominate the interaction are the electromagnetic right-hand polarized resonant and nonresonant modes. However, in addition to the instability growth rates, the length of time that the waves are in contact with the beam is also an important factor in determining which wave mode will dominate the interaction. It is found that interaction will result in strong coupling, where a significant fraction of the available free energy is converted into thermal energy in a short time, provided the beam is sufficiently dense or sufficiently long.

  1. Critical Nucleation Length for Accelerating Frictional Slip

    NASA Astrophysics Data System (ADS)

    Aldam, Michael; Weikamp, Marc; Spatschek, Robert; Brener, Efim A.; Bouchbinder, Eran

    2017-11-01

    The spontaneous nucleation of accelerating slip along slowly driven frictional interfaces is central to a broad range of geophysical, physical, and engineering systems, with particularly far-reaching implications for earthquake physics. A common approach to this problem associates nucleation with an instability of an expanding creep patch upon surpassing a critical length Lc. The critical nucleation length Lc is conventionally obtained from a spring-block linear stability analysis extended to interfaces separating elastically deformable bodies using model-dependent fracture mechanics estimates. We propose an alternative approach in which the critical nucleation length is obtained from a related linear stability analysis of homogeneous sliding along interfaces separating elastically deformable bodies. For elastically identical half-spaces and rate-and-state friction, the two approaches are shown to yield Lc that features the same scaling structure, but with substantially different numerical prefactors, resulting in a significantly larger Lc in our approach. The proposed approach is also shown to be naturally applicable to finite-size systems and bimaterial interfaces, for which various analytic results are derived. To quantitatively test the proposed approach, we performed inertial Finite-Element-Method calculations for a finite-size two-dimensional elastically deformable body in rate-and-state frictional contact with a rigid body under sideway loading. We show that the theoretically predicted Lc and its finite-size dependence are in reasonably good quantitative agreement with the full numerical solutions, lending support to the proposed approach. These results offer a theoretical framework for predicting rapid slip nucleation along frictional interfaces.

  2. Hyperscaling breakdown and Ising spin glasses: The Binder cumulant

    NASA Astrophysics Data System (ADS)

    Lundow, P. H.; Campbell, I. A.

    2018-02-01

    Among the Renormalization Group Theory scaling rules relating critical exponents, there are hyperscaling rules involving the dimension of the system. It is well known that in Ising models hyperscaling breaks down above the upper critical dimension. It was shown by Schwartz (1991) that the standard Josephson hyperscaling rule can also break down in Ising systems with quenched random interactions. A related Renormalization Group Theory hyperscaling rule links the critical exponents for the normalized Binder cumulant and the correlation length in the thermodynamic limit. An appropriate scaling approach for analyzing measurements from criticality to infinite temperature is first outlined. Numerical data on the scaling of the normalized correlation length and the normalized Binder cumulant are shown for the canonical Ising ferromagnet model in dimension three where hyperscaling holds, for the Ising ferromagnet in dimension five (so above the upper critical dimension) where hyperscaling breaks down, and then for Ising spin glass models in dimension three where the quenched interactions are random. For the Ising spin glasses there is a breakdown of the normalized Binder cumulant hyperscaling relation in the thermodynamic limit regime, with a return to size independent Binder cumulant values in the finite-size scaling regime around the critical region.

  3. Adsorption of small hydrocarbon radicals on single walled carbon nanotubes of finite length

    NASA Astrophysics Data System (ADS)

    Wu, Jianhua; Hagelberg, Frank

    2010-04-01

    Adsorption of the hydrocarbon radicals CH, CH2 , and CH3 on finite single walled carbon nanotubes (SWNTs) of the (10,0) type is investigated by density-functional theory (DFT). Two classes of finite SWNTs are considered: truncated SWNTs, where admission is made for geometric reconstruction of the tube ends, and those capped with fullerene hemispheres. Both prototypes are characterized by ground states with nonvanishing magnetic moments, where antiferromagnetic coordination between nds is preferred over the ferromagnetic alternative. The focus of this study is on the influence exerted by the adsorbates on the magnetic structure of the system as a whole, as well as the relative impact of both, confinement due to the finite lengths of the considered SWNTs and their magnetic structure on the preferred positions of hydrocarbon adsorbates. In particular, it is shown that the confinement outweighs the magnetic effect in defining the adsorption energy variations among nonequivalent sites of attachment. The SWNT spin-density distributions turn out to affect the nature of the bonding between finite SWNT substrates and hydrocarbon radical adsorbates.

  4. Effects of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet

    NASA Astrophysics Data System (ADS)

    Sadeghi, Hamed; Lavoie, Philippe; Pollard, Andrew

    2018-03-01

    The effect of finite hot-wire spatial resolution on turbulence statistics and velocity spectra in a round turbulent free jet is investigated. To quantify spatial resolution effects, measurements were taken using a nano-scale thermal anemometry probe (NSTAP) and compared to results from conventional hot-wires with sensing lengths of l=0.5 and 1 mm. The NSTAP has a sensing length significantly smaller than the Kolmogorov length scale η for the present experimental conditions, whereas the sensing lengths for the conventional probes are larger than η. The spatial resolution is found to have a significant impact on the dissipation both on and off the jet centreline with the NSTAP results exceeding those obtained from the conventional probes. The resolution effects along the jet centreline are adequately predicted using a Wyngaard-type spectral technique (Wyngaard in J Sci Instr 1(2):1105-1108,1968), but additional attenuation on the measured turbulence quantities are observed off the centreline. The magnitude of this attenuation is a function of both the ratio of wire length to Kolmogorov length scale and the magnitude of the shear. The effect of spatial resolution is noted to have an impact on the power-law decay parameters for the turbulent kinetic energy that is computed. The effect of spatial filtering on the streamwise dissipation energy spectra is also considered. Empirical functions are proposed to estimate the effect of finite resolution, which take into account the mean shear.

  5. Carbon nanotube oscillator surface profiling device and method of use

    DOEpatents

    Popescu, Adrian [Tampa, FL; Woods, Lilia M [Tampa, FL; Bondarev, Igor V [Fuquay Varina, NC

    2011-11-15

    The proposed device is based on a carbon nanotube oscillator consisting of a finite length outer stationary nanotube and a finite length inner oscillating nanotube. Its main function is to measure changes in the characteristics of the motion of the carbon nanotube oscillating near a sample surface, and profile the roughness of this surface. The device operates in a non-contact mode, thus it can be virtually non-wear and non-fatigued system. It is an alternative to the existing atomic force microscope (AFM) tips used to scan surfaces to determine their roughness.

  6. Entangled photon pair generation by spontaneous parametric down-conversion in finite-length one-dimensional photonic crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Centini, M.; Sciscione, L.; Sibilia, C.

    A description of spontaneous parametric down-conversion in finite-length one-dimensional nonlinear photonic crystals is developed using semiclassical and quantum approaches. It is shown that if a suitable averaging is added to the semiclassical model, its results are in very good agreement with the quantum approach. We propose two structures made with GaN/AlN that generate both degenerate and nondegenerate entangled photon pairs. Both structures are designed so as to achieve a high efficiency of the nonlinear process.

  7. Nonlinear susceptibilities of finite conjugated organic polymers

    NASA Technical Reports Server (NTRS)

    Beratan, David N.; Onuchic, Jose Nelson; Perry, Joseph W.

    1987-01-01

    Tight-binding calculations of the length dependence of the third-order molecular hyperpolarizability for polyenes and polyynes are reported. The pi-electron wave functions were determined by exploiting the limited translational symmetry of the molecules. Perturbation theory was used to calculate the longitudinal component of the electronic nonresonant hyperpolarizability. This is the first two-'band' calculation of third-order hyperpolarizabilities on finite pi-electron systems of varying length. In contrast to the results of the one-'band' models, the hyperpolarizability densities increase rapidly and then, after about 10-15 repeating units, approach an asymptotic value.

  8. Azimuthal asymmetries and the emergence of “collectivity” from multi-particle correlations in high-energy pA collisions

    DOE PAGES

    Dumitru, Adrian; McLerran, Larry; Skokov, Vladimir

    2015-02-23

    In this study, we show how angular asymmetries ~cos2φ can arise in dipole scattering at high energies. We illustrate the effects due to anisotropic fluctuations of the saturation momentum of the target with a finite correlation length in the transverse impact parameter plane, i.e. from a domain-like structure. We compute the two-particle azimuthal cumulant in this model including both one-particle factorizable as well as genuine two-particle non-factorizable contributions to the two-particle cross section. We also compute the full BBGKY hierarchy for the four-particle azimuthal cumulant and find that only the fully factorizable contribution to c 2{4} is negative while allmore » contributions from genuine two, three and four particle correlations are positive. Our results may provide some qualitative insight into the origin of azimuthal asymmetries in p + Pb collisions at the LHC which reveal a change of sign of c 2{4} in high multiplicity events. (author)« less

  9. Properties of the Magnitude Terms of Orthogonal Scaling Functions.

    PubMed

    Tay, Peter C; Havlicek, Joseph P; Acton, Scott T; Hossack, John A

    2010-09-01

    The spectrum of the convolution of two continuous functions can be determined as the continuous Fourier transform of the cross-correlation function. The same can be said about the spectrum of the convolution of two infinite discrete sequences, which can be determined as the discrete time Fourier transform of the cross-correlation function of the two sequences. In current digital signal processing, the spectrum of the contiuous Fourier transform and the discrete time Fourier transform are approximately determined by numerical integration or by densely taking the discrete Fourier transform. It has been shown that all three transforms share many analogous properties. In this paper we will show another useful property of determining the spectrum terms of the convolution of two finite length sequences by determining the discrete Fourier transform of the modified cross-correlation function. In addition, two properties of the magnitude terms of orthogonal wavelet scaling functions are developed. These properties are used as constraints for an exhaustive search to determine an robust lower bound on conjoint localization of orthogonal scaling functions.

  10. Gaussian free field in the background of correlated random clusters, formed by metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Cheraghalizadeh, Jafar; Najafi, Morteza N.; Mohammadzadeh, Hossein

    2018-05-01

    The effect of metallic nano-particles (MNPs) on the electrostatic potential of a disordered 2D dielectric media is considered. The disorder in the media is assumed to be white-noise Coulomb impurities with normal distribution. To realize the correlations between the MNPs we have used the Ising model with an artificial temperature T that controls the number of MNPs as well as their correlations. In the T → 0 limit, one retrieves the Gaussian free field (GFF), and in the finite temperature the problem is equivalent to a GFF in iso-potential islands. The problem is argued to be equivalent to a scale-invariant random surface with some critical exponents which vary with T and correspondingly are correlation-dependent. Two type of observables have been considered: local and global quantities. We have observed that the MNPs soften the random potential and reduce its statistical fluctuations. This softening is observed in the local as well as the geometrical quantities. The correlation function of the electrostatic and its total variance are observed to be logarithmic just like the GFF, i.e. the roughness exponent remains zero for all temperatures, whereas the proportionality constants scale with T - T c . The fractal dimension of iso-potential lines ( D f ), the exponent of the distribution function of the gyration radius ( τ r ), and the loop lengths ( τ l ), and also the exponent of the loop Green function x l change in terms of T - T c in a power-law fashion, with some critical exponents reported in the text. Importantly we have observed that D f ( T) - D f ( T c ) 1/√ ξ( T), in which ξ( T) is the spin correlation length in the Ising model.

  11. Micellar hexagonal phases in lyotropic liquid crystals

    NASA Astrophysics Data System (ADS)

    Amaral, L. Q.; Gulik, A.; Itri, R.; Mariani, P.

    1992-09-01

    The hexagonal cell parameter a of the system sodium dodecyl lauryl sulfate and water as a function of volume concentration cv in phase Hα shows the functional behavior expected for micelles of finite length: a~c-1/3v. The interpretation of x-ray data based on finite micelles leads to an alternative description of the hexagonal phase Hα: spherocylindrical micelles of constant radius with length that may grow along the range of the Hα phase. Results are compared with recent statistical-mechanical calculations for the isotropic I-Hα transition. The absence of diffraction in the direction perpendicular to the hexagonal plane is ascribed to polydispersity of micellar length, which also is a necessary condition for the occurrence of direct I-Hα transitions.

  12. A 640-MHz 32-megachannel real-time polyphase-FFT spectrum analyzer

    NASA Technical Reports Server (NTRS)

    Zimmerman, G. A.; Garyantes, M. F.; Grimm, M. J.; Charny, B.

    1991-01-01

    A polyphase fast Fourier transform (FFT) spectrum analyzer being designed for NASA's Search for Extraterrestrial Intelligence (SETI) Sky Survey at the Jet Propulsion Laboratory is described. By replacing the time domain multiplicative window preprocessing with polyphase filter processing, much of the processing loss of windowed FFTs can be eliminated. Polyphase coefficient memory costs are minimized by effective use of run length compression. Finite word length effects are analyzed, producing a balanced system with 8 bit inputs, 16 bit fixed point polyphase arithmetic, and 24 bit fixed point FFT arithmetic. Fixed point renormalization midway through the computation is seen to be naturally accommodated by the matrix FFT algorithm proposed. Simulation results validate the finite word length arithmetic analysis and the renormalization technique.

  13. Why the Long Face? The Mechanics of Mandibular Symphysis Proportions in Crocodiles

    PubMed Central

    Walmsley, Christopher W.; Smits, Peter D.; Quayle, Michelle R.; McCurry, Matthew R.; Richards, Heather S.; Oldfield, Christopher C.; Wroe, Stephen; Clausen, Phillip D.; McHenry, Colin R.

    2013-01-01

    Background Crocodilians exhibit a spectrum of rostral shape from long snouted (longirostrine), through to short snouted (brevirostrine) morphologies. The proportional length of the mandibular symphysis correlates consistently with rostral shape, forming as much as 50% of the mandible’s length in longirostrine forms, but 10% in brevirostrine crocodilians. Here we analyse the structural consequences of an elongate mandibular symphysis in relation to feeding behaviours. Methods/Principal Findings Simple beam and high resolution Finite Element (FE) models of seven species of crocodile were analysed under loads simulating biting, shaking and twisting. Using beam theory, we statistically compared multiple hypotheses of which morphological variables should control the biomechanical response. Brevi- and mesorostrine morphologies were found to consistently outperform longirostrine types when subject to equivalent biting, shaking and twisting loads. The best predictors of performance for biting and twisting loads in FE models were overall length and symphyseal length respectively; for shaking loads symphyseal length and a multivariate measurement of shape (PC1– which is strongly but not exclusively correlated with symphyseal length) were equally good predictors. Linear measurements were better predictors than multivariate measurements of shape in biting and twisting loads. For both biting and shaking loads but not for twisting, simple beam models agree with best performance predictors in FE models. Conclusions/Significance Combining beam and FE modelling allows a priori hypotheses about the importance of morphological traits on biomechanics to be statistically tested. Short mandibular symphyses perform well under loads used for feeding upon large prey, but elongate symphyses incur high strains under equivalent loads, underlining the structural constraints to prey size in the longirostrine morphotype. The biomechanics of the crocodilian mandible are largely consistent with beam theory and can be predicted from simple morphological measurements, suggesting that crocodilians are a useful model for investigating the palaeobiomechanics of other aquatic tetrapods. PMID:23342027

  14. ANALYTICAL SOLUTION TO SATURATED FLOW IN A FINITE STRATIFIED AQUIFER

    EPA Science Inventory

    An analytical solution for the flow of water in a saturated-stratified aquitard-aquifer-aquitard system of finite length is presented. The analytical solution assumes one-dimensional horizontal flow in the aquifer and two-dimensional flow in the aquitards. Several examples are gi...

  15. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background.

    PubMed

    Luminet, Jean-Pierre; Weeks, Jeffrey R; Riazuelo, Alain; Lehoucq, Roland; Uzan, Jean-Philippe

    2003-10-09

    The current 'standard model' of cosmology posits an infinite flat universe forever expanding under the pressure of dark energy. First-year data from the Wilkinson Microwave Anisotropy Probe (WMAP) confirm this model to spectacular precision on all but the largest scales. Temperature correlations across the microwave sky match expectations on angular scales narrower than 60 degrees but, contrary to predictions, vanish on scales wider than 60 degrees. Several explanations have been proposed. One natural approach questions the underlying geometry of space--namely, its curvature and topology. In an infinite flat space, waves from the Big Bang would fill the universe on all length scales. The observed lack of temperature correlations on scales beyond 60 degrees means that the broadest waves are missing, perhaps because space itself is not big enough to support them. Here we present a simple geometrical model of a finite space--the Poincaré dodecahedral space--which accounts for WMAP's observations with no fine-tuning required. The predicted density is Omega(0) approximately 1.013 > 1, and the model also predicts temperature correlations in matching circles on the sky.

  16. High-frequency sum rules for classical one-component plasma in a magnetic field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Genga, R.O.

    A high-frequency sum-rule expansion is derived for all elements of a classical plasma dielectric tensor in the presence of an external magnetic field. Omega/sub 4//sup 13/ is found to be the only coefficient of omega/sup -4/ that has no correlational and finite-radiation-temperature contributions. The finite-radiation-temperature effect results in an upward renormalization of the frequencies of the modes; it also leads to either reduction of the negative correlational effect on the positive thermal dispersion or, together with correlation, enhancement of the positive thermal dispersion for finite k, depending on the direction of propagation. Further, for the extraordinary mode, the finite-radiation-temperature effectmore » increases the positive refractive dispersion for finite k.« less

  17. Memory effects in active particles with exponentially correlated propulsion

    NASA Astrophysics Data System (ADS)

    Sandford, Cato; Grosberg, Alexander Y.

    2018-01-01

    The Ornstein-Uhlenbeck particle (OUP) model imagines a microscopic swimmer propelled by an active force which is correlated with itself on a finite time scale. Here we investigate the influence of external potentials on an ideal suspension of OUPs, in both one and two spatial dimensions, with particular attention paid to the pressure exerted on "confining walls." We employ a mathematical connection between the local density of OUPs and the statistics of their propulsion force to demonstrate the existence of an equation of state in one dimension. In higher dimensions we show that active particles generate a nonconservative force field in the surrounding medium. A simplified far-from-equilibrium model is proposed to account for OUP behavior in the vicinity of potentials. Building on this, we interpret simulations of OUPs in more complicated situations involving asymmetrical and spatially curved potentials, and characterize the resulting inhomogeneous stresses in terms of competing active length scales.

  18. Conditions for similitude and the effect of finite Debye length in electroosmotic flows.

    PubMed

    Oh, Jung Min; Kang, Kwan Hyoung

    2007-06-15

    Under certain conditions, the velocity field is similar to the electric field for electroosmotic flow (EOF) inside a channel. There was a disagreement between investigators on the necessity of the infinitesimal-Reynolds-number condition for the similarity when the Helmholtz-Smoluchowski relation is applied throughout the boundaries. What is puzzling is a recent numerical result that showed, contrary to the conventional belief, an evident Reynolds number dependence of the EOF. We show here that the notion that the infinitesimal-Reynolds-number condition is required originates from the misunderstanding that the EOF is the Stokes flow. We point out that the EOF becomes the potential flow when the Helmholtz-Smoluchowski relation is applied at the boundaries. We carry out a numerical simulation to investigate the effect of finiteness of the Debye length and the vorticity layer inherently existing at the channel wall. We show that the Reynolds number dependence of the previous numerical simulation resulted from the finiteness of the Debye length and subsequent convective transport of vorticity toward the bulk flow. We discuss in detail how the convection of vorticity occurs and what factors are involved in the transport process, after carrying out the simulation for different Reynolds numbers, Debye lengths, corner radii, and geometries.

  19. A Comparative Analysis on Two Types of Oral Implants, Bone-Level and Tissue-Level, with Different Cantilever Lengths of Fixed Prosthesis.

    PubMed

    Mosavar, Alireza; Nili, Monireh; Hashemi, Sayed Raouf; Kadkhodaei, Mahmoud

    2017-06-01

    Depending on esthetic, anatomical, and functional aspects, in implant-prosthetic restoration of a completely edentulous jaw, the selection of implant type is highly important; however, bone- and tissue-level implants and their stress distribution in bone have not yet been comparatively investigated. Hence, finite element analysis was used to study the influence of cantilever length in a fixed prosthesis on stress distribution in peri-implant bone around these two types of oral implants. A 3D edentulous mandible was modeled. In simulations, a framework with four posterior cantilever lengths and two types of implants, bone-level and tissue-level, was considered. A compressive load was applied to the distal regions of the cantilevers, and the von-Mises stress of peri-implant bone was investigated. The independent t-test and the Pearson correlation coefficient analyzed the results (α = 0.05). Stresses in the cortical bone around the bone-level implants were greater than those in the tissue-level implants with the same cantilever length. In addition, by extending the cantilever length, the stress values in peri-implant bone increased. Therefore, when the cantilever was at its maximum length, the maximum stress was in cortical bone and around the bone-level distal implants. The results of the present study indicate that treatment with tissue-level implants is potentially more advantageous than with bone-level implants for implant-supported fixed prostheses. © 2015 by the American College of Prosthodontists.

  20. Plan, formulate, discuss and correlate a NASTRAN finite element vibrations model of the Boeing Model 360 helicopter airframe

    NASA Technical Reports Server (NTRS)

    Gabel, R.; Lang, P. F.; Smith, L. A.; Reed, D. A.

    1989-01-01

    Boeing Helicopter, together with other United States helicopter manufacturers, participated in a finite element applications program to emplace in the United States a superior capability to utilize finite element analysis models in support of helicopter airframe design. The activities relating to planning and creating a finite element vibrations model of the Boeing Model 36-0 composite airframe are summarized, along with the subsequent analytical correlation with ground shake test data.

  1. Energy Finite Element Analysis for Computing the High Frequency Vibration of the Aluminum Testbed Cylinder and Correlating the Results to Test Data

    NASA Technical Reports Server (NTRS)

    Vlahopoulos, Nickolas

    2005-01-01

    The Energy Finite Element Analysis (EFEA) is a finite element based computational method for high frequency vibration and acoustic analysis. The EFEA solves with finite elements governing differential equations for energy variables. These equations are developed from wave equations. Recently, an EFEA method for computing high frequency vibration of structures either in vacuum or in contact with a dense fluid has been presented. The presence of fluid loading has been considered through added mass and radiation damping. The EFEA developments were validated by comparing EFEA results to solutions obtained by very dense conventional finite element models and solutions from classical techniques such as statistical energy analysis (SEA) and the modal decomposition method for bodies of revolution. EFEA results have also been compared favorably with test data for the vibration and the radiated noise generated by a large scale submersible vehicle. The primary variable in EFEA is defined as the time averaged over a period and space averaged over a wavelength energy density. A joint matrix computed from the power transmission coefficients is utilized for coupling the energy density variables across any discontinuities, such as change of plate thickness, plate/stiffener junctions etc. When considering the high frequency vibration of a periodically stiffened plate or cylinder, the flexural wavelength is smaller than the interval length between two periodic stiffeners, therefore the stiffener stiffness can not be smeared by computing an equivalent rigidity for the plate or cylinder. The periodic stiffeners must be regarded as coupling components between periodic units. In this paper, Periodic Structure (PS) theory is utilized for computing the coupling joint matrix and for accounting for the periodicity characteristics.

  2. Full-thickness tears of the supraspinatus tendon: A three-dimensional finite element analysis.

    PubMed

    Quental, C; Folgado, J; Monteiro, J; Sarmento, M

    2016-12-08

    Knowledge regarding the likelihood of propagation of supraspinatus tears is important to allow an early identification of patients for whom a conservative treatment is more likely to fail, and consequently, to improve their clinical outcome. The aim of this study was to investigate the potential for propagation of posterior, central, and anterior full-thickness tears of different sizes using the finite element method. A three-dimensional finite element model of the supraspinatus tendon was generated from the Visible Human Project data. The mechanical behaviour of the tendon was fitted from experimental data using a transversely isotropic hyperelastic constitutive model. The full-thickness tears were simulated at the supraspinatus tendon insertion by decreasing the interface area. Tear sizes from 10% to 90%, in 10% increments, of the anteroposterior length of the supraspinatus footprint were considered in the posterior, central, and anterior regions of the tendon. For each tear, three finite element analyses were performed for a supraspinatus force of 100N, 200N, and 400N. Considering a correlation between tendon strain and the risk of tear propagation, the simulated tears were compared qualitatively and quantitatively by evaluating the volume of tendon for which a maximum strain criterion was not satisfied. The finite element analyses showed a significant impact of tear size and location not only on the magnitude, but also on the patterns of the maximum principal strains. The mechanical outcome of the anterior full-thickness tears was consistently, and significantly, more severe than that of the central or posterior full-thickness tears, which suggests that the anterior tears are at greater risk of propagating than the central or posterior tears. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Pressure algorithm for elliptic flow calculations with the PDF method

    NASA Technical Reports Server (NTRS)

    Anand, M. S.; Pope, S. B.; Mongia, H. C.

    1991-01-01

    An algorithm to determine the mean pressure field for elliptic flow calculations with the probability density function (PDF) method is developed and applied. The PDF method is a most promising approach for the computation of turbulent reacting flows. Previous computations of elliptic flows with the method were in conjunction with conventional finite volume based calculations that provided the mean pressure field. The algorithm developed and described here permits the mean pressure field to be determined within the PDF calculations. The PDF method incorporating the pressure algorithm is applied to the flow past a backward-facing step. The results are in good agreement with data for the reattachment length, mean velocities, and turbulence quantities including triple correlations.

  4. Testing a Model of Planck-Scale Quantum Geometry With Broadband Correlation of Colocated 40m Interferometers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCuller, Lee Patrick

    2015-12-01

    The Holometer is designed to test for a Planck diffractive-scaling uncertainty in long-baseline position measurements due to an underlying noncommutative geometry normalized to relate Black hole entropy bounds of the Holographic principle to the now-finite number of position states. The experiment overlaps two independent 40 meter optical Michelson interferometers to detect the proposed uncertainty as a common broadband length fluctuation. 150 hours of instrument cross-correlation data are analyzed to test the prediction of a correlated noise magnitude ofmore » $$7\\times10^{−21}$$ m/$$\\sqrt{\\rm Hz}$$ with an effective bandwidth of 750kHz. The interferometers each have a quantum-limited sensitivity of $$2.5\\times 10^{−18}$$ m/$$\\sqrt{\\rm Hz}$$, but their correlation with a time-bandwidth product of $$4\\times 10^{11}$$ digs between the noise floors in search for the covarying geometric jitter. The data presents an exclusion of 5 standard deviations for the tested model. This exclusion is defended through analysis of the calibration methods for the instrument as well as further sub shot noise characterization of the optical systems to limit spurious background-correlations from undermining the signal.« less

  5. Electronic part of the optical correlation function at finite temperature: the S-matrix expansion

    NASA Astrophysics Data System (ADS)

    Tavares, M.; Marques, G. E.; Tejedor, C.

    1998-12-01

    We present an extension to finite temperature of the Mahan-Nozières-De Dominicis framework to obtain the electronic part of the current-current correlation function. Its Fourier transform gives the absorption and emission spectra of doped low-dimensional semiconductors. We show the meaning of the new finite-temperature contributions characterizing the electronic part.

  6. Superconducting Cavity Development for Free Electron Lasers.

    DTIC Science & Technology

    1986-06-30

    effects have been modeled extensively using the code PARMELA, including finite space charge . The conflict is resolved through the use of harmonically...depends on the specifics of how the whole accelerator is run, i.e., bunch length, interpulse spacing , macrobunch length, charge per bunch, external...this indicates that the bunch length should be as long as possible. 2.4 OPTIMUM BUNCH LENGTH 20 Although wakefield, HOM excitation and space charge

  7. Electromagnetic scattering from a layer of finite length, randomly oriented, dielectric, circular cylinders over a rough interface with application to vegetation

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1988-01-01

    A scattering model for defoliated vegetation is developed by treating a layer of defoliated vegetation as a collection of randomly oriented dielectric cylinders of finite length over an irregular ground surface. Both polarized and depolarized backscattering are computed and their behavior versus the volume fraction, the incidence angle, the frequency, the angular distribution and the cylinder size are illustrated. It is found that both the angular distribution and the cylinder size have significant effects on the backscattered signal. The present theory is compared with measurements from defoliated vegetations.

  8. Event plane dependence of the flow modulated background in dihadron and jet-hadron correlations in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Nattrass, Christine; Todoroki, Takahito

    2018-05-01

    Dihadron and jet-hadron correlationsare commonly used in relativistic heavy ion collisions to study the soft component of jets in a quark gluon plasma. There is a large correlated background which is described by the Fourier decomposition of the azimuthal anisotropy where vn is the n th order coefficient. The path length dependence of partonic energy loss can be studied by varying the angle of the high momentum trigger particle or jet relative to a reconstructed event plane. This modifies the shape of the background correlated with that event plane. The original derivation of the shape of this background only considered correlations relative to the second-order event plane, which is correlated to the initial participant plane. We derive the shape of this background for an event plane at an arbitrary order. There is a phase shift in the case of jets restricted to asymmetric regions relative to the event plane. For realistic correlations between event planes, the correlation between the second- and fourth-order event planes leads to a much smaller effect than the finite event plane resolution at each order. Finally, we assess the status of the rapidity even v1 term due to flow, which has been measured to be comparable to v2 and v3 terms.

  9. An integral transform approach for a mixed boundary problem involving a flowing partially penetrating well with infinitesimal well skin

    NASA Astrophysics Data System (ADS)

    Chang, Chien-Chieh; Chen, Chia-Shyun

    2002-06-01

    A flowing partially penetrating well with infinitesimal well skin is a mixed boundary because a Cauchy condition is prescribed along the screen length and a Neumann condition of no flux is stipulated over the remaining unscreened part. An analytical approach based on the integral transform technique is developed to determine the Laplace domain solution for such a mixed boundary problem in a confined aquifer of finite thickness. First, the mixed boundary is changed into a homogeneous Neumann boundary by substituting the Cauchy condition with a Neumann condition in terms of well bore flux that varies along the screen length and is time dependent. Despite the well bore flux being unknown a priori, the modified model containing this homogeneous Neumann boundary can be solved with the Laplace and the finite Fourier cosine transforms. To determine well bore flux, screen length is discretized into a finite number of segments, to which the Cauchy condition is reinstated. This reinstatement also restores the relation between the original model and the solutions obtained. For a given time, the numerical inversion of the Laplace domain solution yields the drawdown distributions, well bore flux, and the well discharge. This analytical approach provides an alternative for dealing with the mixed boundary problems, especially when aquifer thickness is assumed to be finite.

  10. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics

    DOE PAGES

    Ackerman, David M.; Evans, James W.

    2017-01-19

    Here, we perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient D tr(x), at various positions x within themore » pore. D tr(x) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.« less

  11. Tracer counterpermeation analysis of diffusivity in finite-length nanopores with and without single-file dynamics

    NASA Astrophysics Data System (ADS)

    Ackerman, David M.; Evans, James W.

    2017-01-01

    We perform a tracer counterpermeation (TCP) analysis for a stochastic model of diffusive transport through a narrow linear pore where passing of species within the pore is inhibited or even excluded (single-file diffusion). TCP involves differently labeled but otherwise identical particles from two decoupled infinite reservoirs adsorbing into opposite ends of the pore, and desorbing from either end. In addition to transient behavior, we assess steady-state concentration profiles, spatial correlations, particle number fluctuations, and diffusion fluxes through the pore. From the profiles and fluxes, we determine a generalized tracer diffusion coefficient Dtr(x ) , at various positions x within the pore. Dtr(x ) has a plateau value in the pore center scaling inversely with the pore length, but it is enhanced near the pore openings. The latter feature reflects the effect of fluctuations in adsorption and desorption, and it is also associated with a nontrivial scaling of the concentration profiles near the pore openings.

  12. Observation and modeling of deflagration-to-detonation transition (DDT) in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph W.; Vandersall, Kevin S.; Reaugh, John E.; Levie, Harold W.; Henson, Bryan F.; Smilowitz, Laura B.; Parker, Gary R.

    2017-01-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (˜1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a more temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder.

  13. Non-steady peristaltic propulsion with exponential variable viscosity: a study of transport through the digestive system.

    PubMed

    Tripathi, Dharmendra; Pandey, S K; Siddiqui, Abdul; Bég, O Anwar

    2014-01-01

    A theoretical study is presented for transient peristaltic flow of an incompressible fluid with variable viscosity in a finite length cylindrical tube as a simulation of transport in physiological vessels and biomimetic peristaltic pumps. The current axisymmetric analysis is qualitatively similar to two-dimensional analysis but exhibits quantitative variations. The current analysis is motivated towards further elucidating the physiological migration of gastric suspensions (food bolus) in the human digestive system. It also applies to variable viscosity industrial fluid (waste) peristaltic pumping systems. First, an axisymmetric model is analysed in the limit of large wavelength ([Formula: see text]) and low Reynolds number ([Formula: see text]) for axial velocity, radial velocity, pressure, hydromechanical efficiency and stream function in terms of radial vibration of the wall ([Formula: see text]), amplitude of the wave ([Formula: see text]), averaged flow rate ([Formula: see text]) and variable viscosity ([Formula: see text]). Subsequently, the peristaltic flow of a fluid with an exponential viscosity model is examined, which is based on the analytical solutions for pressure, wall shear stress, hydromechanical efficiency and streamline patterns in the finite length tube. The results are found to correlate well with earlier studies using a constant viscosity formulation. This study reveals some important features in the flow characteristics including the observation that pressure as well as both number and size of lower trapped bolus increases. Furthermore, the study indicates that hydromechanical efficiency reduces with increasing magnitude of viscosity parameter.

  14. Evaluation of scaling invariance embedded in short time series.

    PubMed

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  15. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  16. A Calculation Method for Convective Heat and Mass Transfer in Multiply-Slotted Film-Cooling Applications.

    DTIC Science & Technology

    1980-01-01

    Transport of Heat ..... .......... 8 3. THE SOLUTION PROCEDURE ..... .. ................. 8 3.1 The Finite-Difference Grid Network ... .......... 8 3.2...The Finite-Difference Grid Network. Figure 4: The Iterative Solution Procedure used at each Streamwise Station. Figure 5: Velocity Profiles in the...the finite-difference grid in the y-direction. I is the mixing length. L is the distance in the x-direction from the injection slot entrance to the

  17. The ξ/ξ2nd ratio as a test for Effective Polyakov Loop Actions

    NASA Astrophysics Data System (ADS)

    Caselle, Michele; Nada, Alessandro

    2018-03-01

    Effective Polyakov line actions are a powerful tool to study the finite temperature behaviour of lattice gauge theories. They are much simpler to simulate than the original (3+1) dimensional LGTs and are affected by a milder sign problem. However it is not clear to which extent they really capture the rich spectrum of the original theories, a feature which is instead of great importance if one aims to address the sign problem. We propose here a simple way to address this issue based on the so called second moment correlation length ξ2nd. The ratio ξ/ξ2nd between the exponential correlation length and the second moment one is equal to 1 if only a single mass is present in the spectrum, and becomes larger and larger as the complexity of the spectrum increases. Since both ξexp and ξ2nd are easy to measure on the lattice, this is an economic and effective way to keep track of the spectrum of the theory. In this respect we show using both numerical simulation and effective string calculations that this ratio increases dramatically as the temperature decreases. This non-trivial behaviour should be reproduced by the Polyakov loop effective action.

  18. Molecular Static Third-Order Polarizabilities of Carbon-Cage Fullerene and Their Correlation with Three Geometric Properties: Symmetry, Aromaticity, and Size

    NASA Technical Reports Server (NTRS)

    Moore, C. E.; Cardelino, B. H.; Frazier, D. O.; Niles, J.; Wang, X.-Q.

    1998-01-01

    The static third-order polarizabilities (gamma) of C60, C70, five isomers of C78 and two isomers of C84 were analyzed in terms of three properties, from a geometric point of view: symmetry, aromaticity and size. The polarizability values were based on the finite field approximation using a semiempirical Hamiltonian (AM1) and applied to molecular structures obtained from density functional theory calculations. Symmetry was characterized by the molecular group order. The selection of 6-member rings as aromatic was determined from an analysis of bond lengths. Maximum interatomic distance and surface area were the parameters considered with respect to size. Based on triple linear regression analysis, it was found that the static linear polarizability (alpha) and gamma in these molecules respond differently to geometrical properties: alpha depends almost exclusively on surface area while gamma is affected by a combination of number of aromatic rings, length and group order, in decreasing importance. In the case of alpha, valence electron contributions provide the same information as all-electron estimates. For gamma, the best correlation coefficients are obtained when all-electron estimates are used and when the dependent parameter is ln(gamma) instead of gamma.

  19. High-frequency Po/So guided waves in the oceanic lithosphere: I-long-distance propagation

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.; Furumura, T.

    2013-12-01

    In many parts of the ocean high-frequency seismic energy is carried to very great distances from the source. The onsets of the P and S energy travel with speeds characteristic of the mantle lithosphere. The complex and elongated waveforms of such Po and So waves and their efficient transport of high frequencies (>10 Hz) have proved difficult to explain in full. Much of the character can be captured with stratified models, provided a full allowance is made for reverberations in the ocean and the basal sediments. The nature of the observations implies a strong scattering environment. By analysing the nature of the long-distance propagation we are able to identify the critical role played by shallow reverberations in the water and sediments, and the way that these link with propagation in a heterogeneous mantle. 2-D finite difference modelling to 10 Hz for ranges over 1000 km demonstrates the way in which heterogeneity shapes the wavefield, and the way in which the properties of the lithosphere and asthenosphere control the nature of the propagation processes. The nature of the Po and So phases are consistent with pervasive heterogeneity in the oceanic lithosphere with a horizontal correlation length (˜10 km) much larger than the vertical correlation length (˜0.5 km).

  20. Statistical mechanics of a single particle in a multiscale random potential: Parisi landscapes in finite-dimensional Euclidean spaces

    NASA Astrophysics Data System (ADS)

    Fyodorov, Yan V.; Bouchaud, Jean-Philippe

    2008-08-01

    We construct an N-dimensional Gaussian landscape with multiscale, translation invariant, logarithmic correlations and investigate the statistical mechanics of a single particle in this environment. In the limit of high dimension N → ∞ the free energy of the system and overlap function are calculated exactly using the replica trick and Parisi's hierarchical ansatz. In the thermodynamic limit, we recover the most general version of the Derrida's generalized random energy model (GREM). The low-temperature behaviour depends essentially on the spectrum of length scales involved in the construction of the landscape. If the latter consists of K discrete values, the system is characterized by a K-step replica symmetry breaking solution. We argue that our construction is in fact valid in any finite spatial dimensions N >= 1. We discuss the implications of our results for the singularity spectrum describing multifractality of the associated Boltzmann-Gibbs measure. Finally we discuss several generalizations and open problems, such as the dynamics in such a landscape and the construction of a generalized multifractal random walk.

  1. An Investigation into the Postbuckling Response of a Single Blade-Stiffened Composite Panel

    NASA Astrophysics Data System (ADS)

    Spediacci, Alexander Daniel

    The large strength reserves of stiffened composite structures in the postbuckling range appeal to the aerospace industry because of the high strength-to weight-ratio. Design and analysis of these large-scale, complex structures is technical, and requires major computational effort. Using the building-block approach, a smaller, single-stringer panel can be a useful and efficient tool for initial design, and can reveal critical behavior of a larger, multi-stringer panel. A characterization, through finite element modeling, of buckling and postbuckling response of a single blade-stiffened composite panel is proposed. Several factors affecting buckling and postbuckling behavior are investigated, including specimen length, initial imperfections, mode switching, and skin stringer separation. Two specimens are repeatedly tested under quasi- static compression loading well into the postbuckling range, showing no sign of damage. The test data from the specimens are used to compare and validate the nonlinear finite element models, show good correlation with the models. Ultimately, this work will serve to demonstrate the safety of stiffened structures operating in the postbuckling range and allow for thinner, lighter structures, which can increase the overall efficiency of aircraft.

  2. First-principles calculations of finite temperature Sc and O NMR parameters in Pb(Sc2/3W1/3)O3

    NASA Astrophysics Data System (ADS)

    Krakauer, Henry; Walter, Eric J.; Ellden, Jeremy; Hoatson, Gina L.; Vold, Robert L.

    2012-02-01

    Understanding the dynamics of complex relaxor ferroelectrics is important to characterizing their large electromechanical coupling. Preliminary NMR measurements of Sc electric-field-gradients (EFG) in Pb(Sc2/3W1/3)O3 (PSW) show a strong temperature dependence in the range T = 250 - 330 K. To understand this behavior, we use the first-principles GIPAWootnotetextC. J. Pickard and F. Mauri, Phys. Rev. B 63, 245101 (2001); method within the Quantum Espresso (QE) packageootnotetextP. Giannozzi et al., Journal of Physics: Condensed Matter 21, 395502 (2009) to calculate ^45Sc and ^17O chemical-shifts and EFG tensors. To study finite temperature effects, we incorporate the thermal expansion of the lattice and sample thermal disorder, using the phonon degrees of freedom. As in our previous studies of perovksites,ootnotetextD. L. Pechkis, E. J. Walter, and H. Krakauer. J. Chem. Phys. 135, 114507 (2011); ibid. 131, 184511 (2009) we show that the ^17O chemical shifts in PSW also exhibit a linear correlation with the nearest-neighbor B-O bond length.

  3. Effects of plaque lengths on stent surface roughness.

    PubMed

    Syaifudin, Achmad; Takeda, Ryo; Sasaki, Katsuhiko

    2015-01-01

    The physical properties of the stent surface influence the effectiveness of vascular disease treatment after stent deployment. During the expanding process, the stent acquires high-level deformation that could alter either its microstructure or the magnitude of surface roughness. This paper constructed a finite element simulation to observe the changes in surface roughness during the stenting process. Structural transient dynamic analysis was performed using ANSYS, to identify the deformation after the stent is placed in a blood vessel. Two types of bare metal stents are studied: a Palmaz type and a Sinusoidal type. The relationship between plaque length and the changes in surface roughness was investigated by utilizing three different length of plaque; plaque length longer than the stent, shorter than the stent and the same length as the stent. In order to reduce computational time, 3D cyclical and translational symmetry was implemented into the FE model. The material models used was defined as a multilinear isotropic for stent and hyperelastic for the balloon, plaque and vessel wall. The correlation between the plastic deformation and the changes in surface roughness was obtained by intermittent pure tensile test using specimen whose chemical composition was similar to that of actual stent material. As the plastic strain is achieved from FE simulation, the surface roughness can be assessed thoroughly. The study found that the plaque size relative to stent length significantly influenced the critical changes in surface roughness. It was found that the length of stent which is equal to the plaque length was preferable due to the fact that it generated only moderate change in surface roughness. This effect was less influential to the Sinusoidal stent.

  4. Casimir interaction of rodlike particles in a two-dimensional critical system.

    PubMed

    Eisenriegler, E; Burkhardt, T W

    2016-09-01

    We consider the fluctuation-induced interaction of two thin, rodlike particles, or "needles," immersed in a two-dimensional critical fluid of Ising symmetry right at the critical point. Conformally mapping the plane containing the needles onto a simpler geometry in which the stress tensor is known, we analyze the force and torque between needles of arbitrary length, separation, and orientation. For infinite and semi-infinite needles we utilize the mapping of the plane bounded by the needles onto the half plane, and for two needles of finite length we use the mapping onto an annulus. For semi-infinite and infinite needles the force is expressed in terms of elementary functions, and we also obtain analytical results for the force and torque between needles of finite length with separation much greater than their length. Evaluating formulas in our approach numerically for several needle geometries and surface universality classes, we study the full crossover from small to large values of the separation to length ratio. In these two limits the numerical results agree with results for infinitely long needles and with predictions of the small-particle operator expansion, respectively.

  5. Collisionless electron heating in inductively coupled discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaing, K.C.; Aydemir, A.Y.

    1996-07-01

    A kinetic theory of collisionless electron heating is developed for inductively coupled discharges with a finite height L. The novel effect associated with the finite-length system is the resonance between the bounce motion of the electrons and the wave frequency, leading to enhanced heating. The theory is in agreement with results of particle simulations.

  6. Finite-Difference Modeling of Seismic Wave Scattering in 3D Heterogeneous Media: Generation of Tangential Motion from an Explosion Source

    NASA Astrophysics Data System (ADS)

    Hirakawa, E. T.; Pitarka, A.; Mellors, R. J.

    2015-12-01

    Evan Hirakawa, Arben Pitarka, and Robert Mellors One challenging task in explosion seismology is development of physical models for explaining the generation of S-waves during underground explosions. Pitarka et al. (2015) used finite difference simulations of SPE-3 (part of Source Physics Experiment, SPE, an ongoing series of underground chemical explosions at the Nevada National Security Site) and found that while a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography are necessary to better match the data. Large-scale features in the velocity model used in the SPE simulations are well constrained, however, small-scale heterogeneity is poorly constrained. In our study we used a stochastic representation of small-scale variability in order to produce additional high-frequency scattering. Two methods for generating the distributions of random scatterers are tested. The first is done in the spatial domain by essentially smoothing a set of random numbers over an ellipsoidal volume using a Gaussian weighting function. The second method consists of filtering a set of random numbers in the wavenumber domain to obtain a set of heterogeneities with a desired statistical distribution (Frankel and Clayton, 1986). This method is capable of generating distributions with either Gaussian or von Karman autocorrelation functions. The key parameters that affect scattering are the correlation length, the standard deviation of velocity for the heterogeneities, and the Hurst exponent, which is only present in the von Karman media. Overall, we find that shorter correlation lengths as well as higher standard deviations result in increased tangential motion in the frequency band of interest (0 - 10 Hz). This occurs partially through S-wave refraction, but mostly by P-S and Rg-S waves conversions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

  7. Rectifiability of Line Defects in Liquid Crystals with Variable Degree of Orientation

    NASA Astrophysics Data System (ADS)

    Alper, Onur

    2018-04-01

    In [2], H ardt, L in and the author proved that the defect set of minimizers of the modified Ericksen energy for nematic liquid crystals consists locally of a finite union of isolated points and Hölder continuous curves with finitely many crossings. In this article, we show that each Hölder continuous curve in the defect set is of finite length. Hence, locally, the defect set is rectifiable. For the most part, the proof closely follows the work of D e L ellis et al. (Rectifiability and upper minkowski bounds for singularities of harmonic q-valued maps, arXiv:1612.01813, 2016) on harmonic Q-valued maps. The blow-up analysis in A lper et al. (Calc Var Partial Differ Equ 56(5):128, 2017) allows us to simplify the covering arguments in [11] and locally estimate the length of line defects in a geometric fashion.

  8. Bond between smooth prestressing wires and concrete : finite element model and transfer length analysis for pretensioned concrete crossties.

    DOT National Transportation Integrated Search

    2014-04-03

    Pretensioned concrete ties are increasingly employed in railroad high speed : and heavy haul applications. The bond between prestressing wires or strands and : concrete plays an important role in determining the transfer length of pretensioned : conc...

  9. Entropy uncertainty relations and stability of phase-temporal quantum cryptography with finite-length transmitted strings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molotkov, S. N., E-mail: sergei.molotkov@gmail.com

    2012-12-15

    Any key-generation session contains a finite number of quantum-state messages, and it is there-fore important to understand the fundamental restrictions imposed on the minimal length of a string required to obtain a secret key with a specified length. The entropy uncertainty relations for smooth min and max entropies considerably simplify and shorten the proof of security. A proof of security of quantum key distribution with phase-temporal encryption is presented. This protocol provides the maximum critical error compared to other protocols up to which secure key distribution is guaranteed. In addition, unlike other basic protocols (of the BB84 type), which aremore » vulnerable with respect to an attack by 'blinding' of avalanche photodetectors, this protocol is stable with respect to such an attack and guarantees key security.« less

  10. Electromagnetic propagation in PEC and absorbing curved S-ducts

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1988-01-01

    A finite-element Galerkin formulation has been developed to study transverse magnetic (TM) wave propagation in 2-D S-curved ducts with both perfectly conducting and absorbing walls. The reflection and transmission at the entrances and the exits of the curved ducts are determined by coupling the finite-element solutions in the curved ducts to the eigenfunctions of an infinite, uniform, perfectly conducting duct. Example solutions are presented for a double mitred and S-ducts of various lengths. The length of the S-duct is found to significantly effect the reflective characteristics of the duct. Also, the effect of curvature on an absorbing duct is illustrated.

  11. Scattering models for some vegetation samples

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.; Antar, Y. M. M.

    1987-01-01

    The Helmholtz integral equation is presently derived for a scatterer of arbitrary shape, and reduced in order to obtain the far zone-scattered field in terms of the field within the scatterer. Attention is given to the effect of different approaches to field estimation within the scatterer on the backscattering cross section, as illustrated numerically by the cases of a circular disk, a needle, and a finite-length cylinder. A comparison is made of the results obtained by modeling a leaf by means of a circular disk within the Shifrin approximation, and a tree branch by means of a finite-length cylinder, with measurements from a single leaf and a single branch.

  12. Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms.

    USGS Publications Warehouse

    Cady, J.W.

    1980-01-01

    An equation is derived for the vertical gravity field due to a homogeneous body with polygonal cross‐section and finite strike‐length. The equation can be separated into the two‐dimensional (2-D) terms of Talwani et al. (1959) and exact terms for the contributions of the ends of the prism. Equations for the magnetic field due to a similar body were derived by Shuey and Pasquale (1973), who coined the term “two‐and‐a‐half dimensional” (2 1/2-D) to describe the geometry. Magnetic intensities are expressed as a vector sum, from which the common dot product formulation can be obtained by binomial expansion.

  13. Precisely and Accurately Inferring Single-Molecule Rate Constants

    PubMed Central

    Kinz-Thompson, Colin D.; Bailey, Nevette A.; Gonzalez, Ruben L.

    2017-01-01

    The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants that govern the biomolecular state versus time trajectories (i.e., state trajectories) of individual biomolecules. To do so, the experimental signal versus time trajectories (i.e., signal trajectories) obtained from observing individual biomolecules are often idealized to generate state trajectories by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for idealizing signal trajectories and calculating stochastic rate constants from the resulting state trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories restrict the precision of these approaches, and demonstrate how Bayesian inference-based versions of these approaches allow rigorous determination of this precision. Similarly, we provide an analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the accuracy of these approaches, and describe methods that, by accounting for the effects of the finite length and limited time resolution of signal trajectories, substantially improve this accuracy. Collectively, therefore, the methods we consider here enable a rigorous assessment of the precision, and a significant enhancement of the accuracy, with which stochastic rate constants can be calculated from single-molecule signal trajectories. PMID:27793280

  14. Multiple symbol partially coherent detection of MPSK

    NASA Technical Reports Server (NTRS)

    Simon, M. K.; Divsalar, D.

    1992-01-01

    It is shown that by using the known (or estimated) value of carrier tracking loop signal to noise ratio (SNR) in the decision metric, it is possible to improve the error probability performance of a partially coherent multiple phase-shift-keying (MPSK) system relative to that corresponding to the commonly used ideal coherent decision rule. Using a maximum-likeihood approach, an optimum decision metric is derived and shown to take the form of a weighted sum of the ideal coherent decision metric (i.e., correlation) and the noncoherent decision metric which is optimum for differential detection of MPSK. The performance of a receiver based on this optimum decision rule is derived and shown to provide continued improvement with increasing length of observation interval (data symbol sequence length). Unfortunately, increasing the observation length does not eliminate the error floor associated with the finite loop SNR. Nevertheless, in the limit of infinite observation length, the average error probability performance approaches the algebraic sum of the error floor and the performance of ideal coherent detection, i.e., at any error probability above the error floor, there is no degradation due to the partial coherence. It is shown that this limiting behavior is virtually achievable with practical size observation lengths. Furthermore, the performance is quite insensitive to mismatch between the estimate of loop SNR (e.g., obtained from measurement) fed to the decision metric and its true value. These results may be of use in low-cost Earth-orbiting or deep-space missions employing coded modulations.

  15. Finite Density Condensation and Scattering Data: A Study in ϕ4 Lattice Field Theory

    NASA Astrophysics Data System (ADS)

    Gattringer, Christof; Giuliani, Mario; Orasch, Oliver

    2018-06-01

    We study the quantum field theory of a charged ϕ4 field in lattice regularization at finite density and low temperature in 2 and 4 dimensions with the goal of analyzing the connection of condensation phenomena to scattering data in a nonperturbative way. The sign problem of the theory at nonzero chemical potential μ is overcome by using a worldline representation for the Monte Carlo simulation. At low temperature we study the particle number as a function of μ and observe the steps for 1-, 2-, and 3-particle condensation. We determine the corresponding critical values μncrit , n =1 , 2, 3 and analyze their dependence on the spatial extent L of the lattice. Linear combinations of the μncrit give the interaction energies in the 2- and 3-particle sectors and their dependence on L is related to scattering data by Lüscher's formula and its generalizations to three particles. For two dimensions we determine the scattering phase shift and for four dimensions the scattering length. We cross-check our results with a determination of the mass and the 2- and 3-particle energies from conventional 2-, 4-, and 6-point correlators at zero chemical potential. The letter demonstrates that the physics of condensation at finite density and low temperature is closely related to scattering data of a quantum field theory.

  16. Spatial correlation of probabilistic earthquake ground motion and loss

    USGS Publications Warehouse

    Wesson, R.L.; Perkins, D.M.

    2001-01-01

    Spatial correlation of annual earthquake ground motions and losses can be used to estimate the variance of annual losses to a portfolio of properties exposed to earthquakes A direct method is described for the calculations of the spatial correlation of earthquake ground motions and losses. Calculations for the direct method can be carried out using either numerical quadrature or a discrete, matrix-based approach. Numerical results for this method are compared with those calculated from a simple Monte Carlo simulation. Spatial correlation of ground motion and loss is induced by the systematic attenuation of ground motion with distance from the source, by common site conditions, and by the finite length of fault ruptures. Spatial correlation is also strongly dependent on the partitioning of the variability, given an event, into interevent and intraevent components. Intraevent variability reduces the spatial correlation of losses. Interevent variability increases spatial correlation of losses. The higher the spatial correlation, the larger the variance in losses to a port-folio, and the more likely extreme values become. This result underscores the importance of accurately determining the relative magnitudes of intraevent and interevent variability in ground-motion studies, because of the strong impact in estimating earthquake losses to a portfolio. The direct method offers an alternative to simulation for calculating the variance of losses to a portfolio, which may reduce the amount of calculation required.

  17. Computing Earthquake Probabilities on Global Scales

    NASA Astrophysics Data System (ADS)

    Holliday, James R.; Graves, William R.; Rundle, John B.; Turcotte, Donald L.

    2016-03-01

    Large devastating events in systems such as earthquakes, typhoons, market crashes, electricity grid blackouts, floods, droughts, wars and conflicts, and landslides can be unexpected and devastating. Events in many of these systems display frequency-size statistics that are power laws. Previously, we presented a new method for calculating probabilities for large events in systems such as these. This method counts the number of small events since the last large event and then converts this count into a probability by using a Weibull probability law. We applied this method to the calculation of large earthquake probabilities in California-Nevada, USA. In that study, we considered a fixed geographic region and assumed that all earthquakes within that region, large magnitudes as well as small, were perfectly correlated. In the present article, we extend this model to systems in which the events have a finite correlation length. We modify our previous results by employing the correlation function for near mean field systems having long-range interactions, an example of which is earthquakes and elastic interactions. We then construct an application of the method and show examples of computed earthquake probabilities.

  18. Stress-intensity factors for small surface and corner cracks in plates

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Atluri, S. N.; Newman, J. C., Jr.

    1988-01-01

    Three-dimensional finite-element and finite-alternating methods were used to obtain the stress-intensity factors for small surface and corner cracked plates subjected to remote tension and bending loads. The crack-depth-to-crack-length ratios (a/c) ranged from 0.2 to 1 and the crack-depth-to-plate-thickness ratios (a/t) ranged from 0.05 to 0.2. The performance of the finite-element alternating method was studied on these crack configurations. A study of the computational effort involved in the finite-element alternating method showed that several crack configurations could be analyzed with a single rectangular mesh idealization, whereas the conventional finite-element method requires a different mesh for each configuration. The stress-intensity factors obtained with the finite-element-alternating method agreed well (within 5 percent) with those calculated from the finite-element method with singularity elements.

  19. Gluon and ghost correlation functions of 2-color QCD at finite density

    NASA Astrophysics Data System (ADS)

    Hajizadeh, Ouraman; Boz, Tamer; Maas, Axel; Skullerud, Jon-Ivar

    2018-03-01

    2-color QCD, i. e. QCD with the gauge group SU(2), is the simplest non-Abelian gauge theory without sign problem at finite quark density. Therefore its study on the lattice is a benchmark for other non-perturbative approaches at finite density. To provide such benchmarks we determine the minimal-Landau-gauge 2-point and 3-gluon correlation functions of the gauge sector and the running gauge coupling at finite density. We observe no significant effects, except for some low-momentum screening of the gluons at and above the supposed high-density phase transition.

  20. Exact correlators on the Wilson loop in N=4 SYM: localization, defect CFT, and integrability

    NASA Astrophysics Data System (ADS)

    Giombi, Simone; Komatsu, Shota

    2018-05-01

    We compute a set of correlation functions of operator insertions on the 1 /8 BPS Wilson loop in N=4 SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the 't Hooft coupling and the rank of the gauge group. When applied to the 1 /2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS2 string worldsheet. We also explain the connection of our results to the "generalized Bremsstrahlung functions" previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite N generalization. Furthermore, we show that the correlators at large N can be recast as simple integrals of products of polynomials (known as Q-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.

  1. Banach spaces that realize minimal fillings

    NASA Astrophysics Data System (ADS)

    Bednov, B. B.; Borodin, P. A.

    2014-04-01

    It is proved that a real Banach space realizes minimal fillings for all its finite subsets (a shortest network spanning a fixed finite subset always exists and has the minimum possible length) if and only if it is a predual of L_1. The spaces L_1 are characterized in terms of Steiner points (medians). Bibliography: 25 titles.

  2. Electrostatic stiffening and induced persistence length for coassembled molecular bottlebrushes

    NASA Astrophysics Data System (ADS)

    Storm, Ingeborg M.; Stuart, Martien A. Cohen; de Vries, Renko; Leermakers, Frans A. M.

    2018-03-01

    A self-consistent field analysis for tunable contributions to the persistence length of isolated semiflexible polymer chains including electrostatically driven coassembled deoxyribonucleic acid (DNA) bottlebrushes is presented. When a chain is charged, i.e., for polyelectrolytes, there is, in addition to an intrinsic rigidity, an electrostatic stiffening effect, because the electric double layer resists bending. For molecular bottlebrushes, there is an induced contribution due to the grafts. We explore cases beyond the classical phantom main-chain approximation and elaborate molecularly more realistic models where the backbone has a finite volume, which is necessary for treating coassembled bottlebrushes. We find that the way in which the linear charge density or the grafting density is regulated is important. Typically, the stiffening effect is reduced when there is freedom for these quantities to adapt to the curvature stresses. Electrostatically driven coassembled bottlebrushes, however, are relatively stiff because the chains have a low tendency to escape from the compressed regions and the electrostatic binding force is largest in the convex part. For coassembled bottlebrushes, the induced persistence length is a nonmonotonic function of the polymer concentration: For low polymer concentrations, the stiffening grows quadratically with coverage; for semidilute polymer concentrations, the brush chains retract and regain their Gaussian size. When doing so, they lose their induced persistence length contribution. Our results correlate well with observed physical characteristics of electrostatically driven coassembled DNA-bioengineered protein-polymer bottlebrushes.

  3. Modified Bose-Einstein and Fermi-Dirac statistics if excitations are localized on an intermediate length scale: applications to non-Debye specific heat.

    PubMed

    Chamberlin, Ralph V; Davis, Bryce F

    2013-10-01

    Disordered systems show deviations from the standard Debye theory of specific heat at low temperatures. These deviations are often attributed to two-level systems of uncertain origin. We find that a source of excess specific heat comes from correlations between quanta of energy if excitations are localized on an intermediate length scale. We use simulations of a simplified Creutz model for a system of Ising-like spins coupled to a thermal bath of Einstein-like oscillators. One feature of this model is that energy is quantized in both the system and its bath, ensuring conservation of energy at every step. Another feature is that the exact entropies of both the system and its bath are known at every step, so that their temperatures can be determined independently. We find that there is a mismatch in canonical temperature between the system and its bath. In addition to the usual finite-size effects in the Bose-Einstein and Fermi-Dirac distributions, if excitations in the heat bath are localized on an intermediate length scale, this mismatch is independent of system size up to at least 10(6) particles. We use a model for correlations between quanta of energy to adjust the statistical distributions and yield a thermodynamically consistent temperature. The model includes a chemical potential for units of energy, as is often used for other types of particles that are quantized and conserved. Experimental evidence for this model comes from its ability to characterize the excess specific heat of imperfect crystals at low temperatures.

  4. Statistical errors in molecular dynamics averages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, S.K.; Wallace, D.C.

    1985-11-15

    A molecular dynamics calculation produces a time-dependent fluctuating signal whose average is a thermodynamic quantity of interest. The average of the kinetic energy, for example, is proportional to the temperature. A procedure is described for determining when the molecular dynamics system is in equilibrium with respect to a given variable, according to the condition that the mean and the bandwidth of the signal should be sensibly constant in time. Confidence limits for the mean are obtained from an analysis of a finite length of the equilibrium signal. The role of serial correlation in this analysis is discussed. The occurence ofmore » unstable behavior in molecular dynamics data is noted, and a statistical test for a level shift is described.« less

  5. Space and time renormalization in phase transition dynamics

    DOE PAGES

    Francuz, Anna; Dziarmaga, Jacek; Gardas, Bartłomiej; ...

    2016-02-18

    Here, when a system is driven across a quantum critical point at a constant rate, its evolution must become nonadiabatic as the relaxation time τ diverges at the critical point. According to the Kibble-Zurek mechanism (KZM), the emerging post-transition excited state is characterized by a finite correlation length ξˆ set at the time tˆ=τˆ when the critical slowing down makes it impossible for the system to relax to the equilibrium defined by changing parameters. This observation naturally suggests a dynamical scaling similar to renormalization familiar from the equilibrium critical phenomena. We provide evidence for such KZM-inspired spatiotemporal scaling by investigatingmore » an exact solution of the transverse field quantum Ising chain in the thermodynamic limit.« less

  6. An Improved Correlation between Impression and Uniaxial Creep

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsueh, Chun-Hway; Miranda, Pedro; Becher, Paul F

    2006-01-01

    A semiempirical correlation between impression and uniaxial creep has been established by Hyde et al. [Int. J. Mech. Sci. 35, 451 (1993) ] using finite element results for materials exhibiting general power-law creep with the stress exponent n in the range 2 {<=} n {<=} 15. Here, we derive the closed-form solution for a special case of viscoelastic materials, i.e., n = 1, subjected to impression creep and obtain the exact correlation between impression and uniaxial creep. This analytical solution serves as a checkpoint for the finite element results. We then perform finite element analyses for the general case tomore » derive a semiempirical correlation, which agrees well with both analytical viscoelastic results and the existing experimental data. Our improved correlation agrees with the correlation of Hyde et al. for n {>=} 4, and the difference increases with decreasing n for n<4.« less

  7. Estimated correlation matrices and portfolio optimization

    NASA Astrophysics Data System (ADS)

    Pafka, Szilárd; Kondor, Imre

    2004-11-01

    Correlations of returns on various assets play a central role in financial theory and also in many practical applications. From a theoretical point of view, the main interest lies in the proper description of the structure and dynamics of correlations, whereas for the practitioner the emphasis is on the ability of the models to provide adequate inputs for the numerous portfolio and risk management procedures used in the financial industry. The theory of portfolios, initiated by Markowitz, has suffered from the “curse of dimensions” from the very outset. Over the past decades a large number of different techniques have been developed to tackle this problem and reduce the effective dimension of large bank portfolios, but the efficiency and reliability of these procedures are extremely hard to assess or compare. In this paper, we propose a model (simulation)-based approach which can be used for the systematical testing of all these dimensional reduction techniques. To illustrate the usefulness of our framework, we develop several toy models that display some of the main characteristic features of empirical correlations and generate artificial time series from them. Then, we regard these time series as empirical data and reconstruct the corresponding correlation matrices which will inevitably contain a certain amount of noise, due to the finiteness of the time series. Next, we apply several correlation matrix estimators and dimension reduction techniques introduced in the literature and/or applied in practice. As in our artificial world the only source of error is the finite length of the time series and, in addition, the “true” model, hence also the “true” correlation matrix, are precisely known, therefore in sharp contrast with empirical studies, we can precisely compare the performance of the various noise reduction techniques. One of our recurrent observations is that the recently introduced filtering technique based on random matrix theory performs consistently well in all the investigated cases. Based on this experience, we believe that our simulation-based approach can also be useful for the systematic investigation of several related problems of current interest in finance.

  8. Dependence of exponents on text length versus finite-size scaling for word-frequency distributions

    NASA Astrophysics Data System (ADS)

    Corral, Álvaro; Font-Clos, Francesc

    2017-08-01

    Some authors have recently argued that a finite-size scaling law for the text-length dependence of word-frequency distributions cannot be conceptually valid. Here we give solid quantitative evidence for the validity of this scaling law, using both careful statistical tests and analytical arguments based on the generalized central-limit theorem applied to the moments of the distribution (and obtaining a novel derivation of Heaps' law as a by-product). We also find that the picture of word-frequency distributions with power-law exponents that decrease with text length [X. Yan and P. Minnhagen, Physica A 444, 828 (2016), 10.1016/j.physa.2015.10.082] does not stand with rigorous statistical analysis. Instead, we show that the distributions are perfectly described by power-law tails with stable exponents, whose values are close to 2, in agreement with the classical Zipf's law. Some misconceptions about scaling are also clarified.

  9. A Finite Length Cylinder Model for Mixed Oxide-Ion and Electron Conducting Cathodes Suited for Intermediate-Temperature Solid Oxide Fuel Cells

    DOE PAGES

    Jin, Xinfang; Wang, Jie; Jiang, Long; ...

    2016-03-25

    A physics-based model is presented to simulate the electrochemical behavior of mixed ion and electron conducting (MIEC) cathodes for intermediate-temperature solid oxide fuel cells. Analytic solutions for both transient and impedance models based on a finite length cylinder are derived. These solutions are compared to their infinite length counterparts. The impedance solution is also compared to experimental electrochemical impedance spectroscopy data obtained from both a traditional well-established La 0.6Sr 0.4Co 0.2Fe 0.8O 3-δ (LSCF) cathode and a new SrCo 0.9Nb 0.1O 3-δ (SCN) porous cathode. Lastly, the impedance simulations agree well with the experimental values, demonstrating that the new modelsmore » can be used to extract electro-kinetic parameters of MIEC SOFC cathodes.« less

  10. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  11. Transverse spin correlation function of the one-dimensional spin- {1}/{2} XY model

    NASA Astrophysics Data System (ADS)

    Tonegawa, Takashi

    1981-12-01

    The transverse spin pair correlation function pxn=< SxmSxm+ n>=< SxmSxm+ n> is calculated exactly in the thermodynamic limit of the system described by the one-dimensional, isotropic, spin- {1}/{2}, XY Hamiltonian H=-2J limit∑l=1N(S xlS xl+1+S ylS yl+1) . It is found that at absolute zero temperature ( T = 0), the correlation function ρ xn for n ≥ 0 is given by ρ x2p= {1}/{4}{2}/{π}2plimitΠj=1p-1{4j 2}/{4j 2-1 }2p-2jif n=2p , ρ x2p+1=± {1}/{4}{2}/{π}2p+1limitΠj=1p{4j 2}/{4j 2-1 }2p+2jif n=2p+1 , where the plus sign applies when J is positive and the minus sign applies when J is negative. From these the asymptotic behavior as n → ∞ of |ϱ xn| at T = 0 is derived to be |ρ xn| ˜ {a}/{n} with a = 0.147088⋯. For finite temperatures, ρ xn is calculated numerically. By using the results for ϱ xn, the transverse inverse correlation length and the wavenumber dependent transverse spin pair correlation function are also calculated exactly.

  12. Variations of a global constraint factor in cracked bodies under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Crews, J. H., Jr.; Bigelow, C. A.; Dawicke, D. S.

    1994-01-01

    Elastic-plastic finite-element analyses were used to calculate stresses and displacements around a crack in finite-thickness plates for an elastic-perfectly plastic material. Middle- and edge-crack specimens were analyzed under tension and bending loads. Specimens were 1.25 to 20 mm thick with various widths and crack lengths. A global constraint factor alpha(sub g), an averaged normal-stress to flow-stress ratio over the plastic region, was defined to simulate three-dimensional (3D) effects in two-dimensional (2D) models. For crack lengths and uncracked ligament lengths greater than four times the thickness, the global constraint factor was found to be nearly a unique function of a normalized stress-intensity factor (related to plastic-zone size to thickness ratio) from small- to large-scale yielding conditions for various specimen types and thickness. For crack length-to-thickness ratios less than four, the global constraint factor was specimen type, crack length and thickness dependent. Using a 2D strip-yield model and the global constraint factors, plastic-zone sizes and crack-tip displacements agreed reasonably well with the 3D analyses. For a thin sheet aluminum alloy, the critical crack-tip-opening angle during stable tearing was found to be independent of specimen type and crack length for crack length-to-thickness ratios greater than 4.

  13. A numerical simulation of finite-length Taylor-Couette flow

    NASA Technical Reports Server (NTRS)

    Streett, C. L.; Hussaini, M. Y.

    1987-01-01

    The processes leading to laminar-turbulent transition in finite-channel-length Taylor-Couette flow are investigated analytically, solving the unsteady incompressible Navier-Stokes equations by spectral-collocation methods. A time-split algorithm, implementable in both axisymmetric and fully three-dimensional time-accurate versions, and an algorithm based on the staggered-mesh discretization of Bernardi and Maday (1986) are described in detail, and results obtained by applying the axisymmetric version of the first algorithm and a steady-state version of the second are presented graphically and compared with published experimental data. The feasibility of full three-dimensional simulations of the progression through chaotic states to turbulence under the constraints of Taylor-Couette flow is demonstrated.

  14. Electromagnetic wave scattering from some vegetation samples

    NASA Technical Reports Server (NTRS)

    Karam, Mostafa A.; Fung, Adrian K.; Antar, Yahia M.

    1988-01-01

    For an incident plane wave, the field inside a thin scatterer (disk and needle) is estimated by the generalized Rayleigh-Gans (GRG) approximation. This leads to a scattering amplitude tensor equal to that obtained via the Rayleigh approximation (dipole term) with a modifying function. For a finite-length cylinder the inner field is estimated by the corresponding field for the same cylinder of infinite lenght. The effects of different approaches in estimating the field inside the scatterer on the backscattering cross section are illustrated numerically for a circular disk, a needle, and a finite-length cylinder as a function of the wave number and the incidence angle. Finally, the modeling predictions are compared with measurements.

  15. Analysis of Large Quasistatic Deformations of Inelastic Solids by a New Stress Based Finite Element Method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Reed, Kenneth W.

    1992-01-01

    A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.

  16. Stress-intensity factor equations for cracks in three-dimensional finite bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Raju, I. S.

    1981-01-01

    Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.

  17. Convergence rates for finite element problems with singularities. Part 1: Antiplane shear. [crack

    NASA Technical Reports Server (NTRS)

    Plunkett, R.

    1980-01-01

    The problem of a finite crack in an infinite medium under antiplane shear load is considered. It is shown that the nodal forces at the tip of the crack accurately gives the order of singularity, that n energy release methods can give the strength to better than 1 percent with element size 1/10 the crack length, and that nodal forces give a much better estimate of the stress field than do the elements themselves. The finite element formulation and the factoring of tridiagonal matrices are discussed.

  18. Adaptive finite element method for turbulent flow near a propeller

    NASA Astrophysics Data System (ADS)

    Pelletier, Dominique; Ilinca, Florin; Hetu, Jean-Francois

    1994-11-01

    This paper presents an adaptive finite element method based on remeshing to solve incompressible turbulent free shear flow near a propeller. Solutions are obtained in primitive variables using a highly accurate finite element approximation on unstructured grids. Turbulence is modeled by a mixing length formulation. Two general purpose error estimators, which take into account swirl and the variation of the eddy viscosity, are presented and applied to the turbulent wake of a propeller. Predictions compare well with experimental measurements. The proposed adaptive scheme is robust, reliable and cost effective.

  19. Random Matrix Theory in molecular dynamics analysis.

    PubMed

    Palese, Luigi Leonardo

    2015-01-01

    It is well known that, in some situations, principal component analysis (PCA) carried out on molecular dynamics data results in the appearance of cosine-shaped low index projections. Because this is reminiscent of the results obtained by performing PCA on a multidimensional Brownian dynamics, it has been suggested that short-time protein dynamics is essentially nothing more than a noisy signal. Here we use Random Matrix Theory to analyze a series of short-time molecular dynamics experiments which are specifically designed to be simulations with high cosine content. We use as a model system the protein apoCox17, a mitochondrial copper chaperone. Spectral analysis on correlation matrices allows to easily differentiate random correlations, simply deriving from the finite length of the process, from non-random signals reflecting the intrinsic system properties. Our results clearly show that protein dynamics is not really Brownian also in presence of the cosine-shaped low index projections on principal axes. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. The effect of chain rigidity on the interfacial layer thickness and dynamics of polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Cheng, Shiwang; Carrillo, Jan-Michael Y.; Carroll, Bobby; Sumpter, Bobby G.; Sokolov, Alexei P.

    There are growing experimental evidences showing the existence of an interfacial layer that has a finite thickness with slowing down dynamics in polymer nanocomposites (PNCs). Moreover, it is believed that the interfacial layer plays a significant role on various macroscopic properties of PNCs. A thicker interfacial layer is found to have more pronounced effect on the macroscopic properties such as the mechanical enhancement. However, it is not clear what molecular parameter controls the interfacial layer thickness. Inspired by our recent computer simulations that showed the chain rigidity correlated well with the interfacial layer thickness, we performed systematic experimental studies on different polymer nanocomposites by varying the chain stiffness. Combining small-angle X-ray scattering, broadband dielectric spectroscopy and temperature modulated differential scanning calorimetry, we find a good correlation between the polymer Kuhn length and the thickness of the interfacial layer, confirming the earlier computer simulations results. Our findings provide a direct guidance for the design of new PNCs with desired properties.

  1. Asymmetric Outer Bow Length and Cervical Headgear Force System: 3D Analysis Using Finite Element Method.

    PubMed

    Geramy, Allahyar; Hassanpour, Mehdi; Emadian Razavi, Elham Sadat

    2015-03-01

    This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths. Four 3D finite element method (FEM) models of a cervical headgear attached to the maxillary first molars were designed in SolidWorks 2010 software and transferred to ANSYS Workbench ver. 11 software. Models contained the first molars, their periodontal ligament (PDL), cancellous and cortical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with differences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was calculated trigonometrically using data from a volunteer. The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N) and distal (= 1.008 N) forces and also generated moments (5.044 N.mm). As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. A difference range of 1mm to 15 mm of length in cervical headgear can be considered as a safe length of outer bow shortening in clinical use.

  2. Numerical analysis of finite Debye-length effects in induced-charge electro-osmosis.

    PubMed

    Gregersen, Misha Marie; Andersen, Mathias Baekbo; Soni, Gaurav; Meinhart, Carl; Bruus, Henrik

    2009-06-01

    For a microchamber filled with a binary electrolyte and containing a flat unbiased center electrode at one wall, we employ three numerical models to study the strength of the resulting induced-charge electro-osmotic (ICEO) flow rolls: (i) a full nonlinear continuum model resolving the double layer, (ii) a linear slip-velocity model not resolving the double layer and without tangential charge transport inside this layer, and (iii) a nonlinear slip-velocity model extending the linear model by including the tangential charge transport inside the double layer. We show that, compared to the full model, the slip-velocity models significantly overestimate the ICEO flow. This provides a partial explanation of the quantitative discrepancy between observed and calculated ICEO velocities reported in the literature. The discrepancy increases significantly for increasing Debye length relative to the electrode size, i.e., for nanofluidic systems. However, even for electrode dimensions in the micrometer range, the discrepancies in velocity due to the finite Debye length can be more than 10% for an electrode of zero height and more than 100% for electrode heights comparable to the Debye length.

  3. The application of the Wigner Distribution to wave type identification in finite length beams

    NASA Technical Reports Server (NTRS)

    Wahl, T. J.; Bolton, J. Stuart

    1994-01-01

    The object of the research described in this paper was to develop a means of identifying the wave-types propagating between two points in a finite length beam. It is known that different structural wave-types possess different dispersion relations: i.e., that their group speeds and the frequency dependence of their group speeds differ. As a result of those distinct dispersion relationships, different wave-types may be associated with characteristic features when structural responses are examined in the time frequency domain. Previously, the time-frequency character of analytically generated structural responses of both single element and multi-element structures were examined by using the Wigner Distribution (WD) along with filtering techniques that were designed to detect the wave-types present in the responses. In the work to be described here, the measure time-frequency response of finite length beam is examined using the WD and filtering procedures. This paper is organized as follows. First the concept of time-frequency analysis of structural responses is explained. The WD is then introduced along with a description of the implementation of a discrete version. The time-frequency filtering techniques are then presented and explained. The results of applying the WD and the filtering techniques to the analysis of a transient response is then presented.

  4. Analysis of crack propagation in human long bone by using finite element modeling

    NASA Astrophysics Data System (ADS)

    Salim, Mohammad Shahril; Salleh, Ahmad Faizal; Daud, Ruslizam

    2017-12-01

    The aim of this research is to present a numerical modeling of crack for human long bone specifically on femur shaft bone under mode I loading condition. Two - dimensional model (2D) of long bone was developed based on past research study. The finite element analysis and construction of the model are done using Mechanical APDL (ANSYS) v14.0 software. The research was conducted mainly based on two conditions that were at different crack lengths and different loading forces for male and female. In order to evaluate the stress intensity factor (KI) of the femur shaft of long bone, this research employed finite element method to predict the brittle fracture loading by using three-point bending test. The result of numerical test found that the crack was formed when the crack length reached 0.0022 m where KI values are proportional with the crack's length. Also, various loading forces in range of 400 N to 1000 N were applied in an attempt to study their effect on stress intensity factor and it was found that the female dimension has higher KI values compared to male. It was also observed that K values found by this method have good agreement with theoretical results based on previous research.

  5. Stress analysis of the cracked-lap-shear specimen - An ASTM round-robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1987-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  6. Stress analysis of the cracked lap shear specimens: An ASTM round robin

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1986-01-01

    This ASTM Round Robin was conducted to evaluate the state of the art in stress analysis of adhesively bonded joint specimens. Specifically, the participants were asked to calculate the strain-energy-release rate for two different geometry cracked lap shear (CLS) specimens at four different debond lengths. The various analytical techniques consisted of 2- and 3-dimensional finite element analysis, beam theory, plate theory, and a combination of beam theory and finite element analysis. The results were examined in terms of the total strain-energy-release rate and the mode I to mode II ratio as a function of debond length for each specimen geometry. These results basically clustered into two groups: geometric linear or geometric nonlinear analysis. The geometric nonlinear analysis is required to properly analyze the CLS specimens. The 3-D finite element analysis gave indications of edge closure plus some mode III loading. Each participant described his analytical technique and results. Nine laboratories participated.

  7. The Development of Directional Decohesion Finite Elements for Multiscale Failure Analysis of Metallic Polycrystals

    NASA Technical Reports Server (NTRS)

    Saether, Erik; Glaessgen, Edward H.

    2009-01-01

    Atomistic simulations of intergranular fracture have indicated that grain-scale crack growth in polycrystalline metals can be direction dependent. At these material length scales, the atomic environment greatly influences the nature of intergranular crack propagation, through either brittle or ductile mechanisms, that are a function of adjacent grain orientation and direction of crack propagation. Methods have been developed to obtain cohesive zone models (CZM) directly from molecular dynamics simulations. These CZMs may be incorporated into decohesion finite element formulations to simulate fracture at larger length scales. A new directional decohesion element is presented that calculates the direction of Mode I opening and incorporates a material criterion for dislocation emission based on the local crystallographic environment to automatically select the CZM that best represents crack growth. The simulation of fracture in 2-D and 3-D aluminum polycrystals is used to illustrate the effect of parameterized CZMs and the effectiveness of directional decohesion finite elements.

  8. Stress and efficiency studies in EFG

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The goals of this program were: (1) to define minimum stress configurations for silicon sheet growth at high speeds; (2) to quantify dislocation electrical activity and their limits on minority carrier diffusion length in deformed silicon; and (3) to study reasons for degradation of lifetime with increases in doping level in edge-defined film-fed growth (EFG) materials. A finite element model was developed for calculating residual stress with plastic deformation. A finite element model was verified for EFG control variable relationships to temperature field of the sheet to permit prediction of profiles and stresses encountered in EFG systems. A residual stress measurement technique was developed for finite size EFG material blanks using shadow Moire interferometry. Transient creep response of silicon was investigated in the temperature range between 800 and 1400 C in strain and strain regimes of interest in stress analysis of sheet growth. Quantitative relationships were established between minority carrier diffusion length and dislocation densities using Electron Beam Induced Current (EBIC) measurement in FZ silicon deformed in four point bending tests.

  9. The reality of artificial viscosity

    DOE PAGES

    Margolin, L. G.

    2018-02-24

    Artificial viscosity is used in the computer simulation of high Reynolds number flows and is one of the oldest numerical artifices. In this work, I will describe the origin and the interpretation of artificial viscosity as a physical phenomenon. The basis of this interpretation is the finite scale theory, which describes the evolution of integral averages of the fluid solution over finite (length) scales. I will outline the derivation of finite scale Navier–Stokes equations and highlight the particular properties of the equations that depend on the finite scales. Those properties include enslavement, inviscid dissipation, and a law concerning the partitionmore » of total flux of conserved quantities into advective and diffusive components.« less

  10. Linear quadratic tracking problems in Hilbert space - Application to optimal active noise suppression

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Silcox, R. J.; Keeling, S. L.; Wang, C.

    1989-01-01

    A unified treatment of the linear quadratic tracking (LQT) problem, in which a control system's dynamics are modeled by a linear evolution equation with a nonhomogeneous component that is linearly dependent on the control function u, is presented; the treatment proceeds from the theoretical formulation to a numerical approximation framework. Attention is given to two categories of LQT problems in an infinite time interval: the finite energy and the finite average energy. The behavior of the optimal solution for finite time-interval problems as the length of the interval tends to infinity is discussed. Also presented are the formulations and properties of LQT problems in a finite time interval.

  11. The reality of artificial viscosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Margolin, L. G.

    Artificial viscosity is used in the computer simulation of high Reynolds number flows and is one of the oldest numerical artifices. In this work, I will describe the origin and the interpretation of artificial viscosity as a physical phenomenon. The basis of this interpretation is the finite scale theory, which describes the evolution of integral averages of the fluid solution over finite (length) scales. I will outline the derivation of finite scale Navier–Stokes equations and highlight the particular properties of the equations that depend on the finite scales. Those properties include enslavement, inviscid dissipation, and a law concerning the partitionmore » of total flux of conserved quantities into advective and diffusive components.« less

  12. Exact Length Distribution of Filamentous Structures Assembled from a Finite Pool of Subunits.

    PubMed

    Harbage, David; Kondev, Jané

    2016-07-07

    Self-assembling filamentous structures made of protein subunits are ubiquitous in cell biology. These structures are often highly dynamic, with subunits in a continuous state of flux, binding to and falling off of filaments. In spite of this constant turnover of their molecular parts, many cellular structures seem to maintain a well-defined size over time, which is often required for their proper functioning. One widely discussed mechanism of size regulation involves the cell maintaining a finite pool of protein subunits available for assembly. This finite pool mechanism can control the length of a single filament by having assembly proceed until the pool of free subunits is depleted to the point when assembly and disassembly are balanced. Still, this leaves open the question of whether the same mechanism can provide size control for multiple filamentous structures that are assembled from a common pool of protein subunits, as is often the case in cells. We address this question by solving the steady-state master equation governing the stochastic assembly and disassembly of multifilament structures made from a shared finite pool of subunits. We find that, while the total number of subunits within a multifilament structure is well-defined, individual filaments within the structure have a wide, power-law distribution of lengths. We also compute the phase diagram for two multifilament structures competing for the same pool of subunits and identify conditions for coexistence when both have a well-defined size. These predictions can be tested in cell experiments in which the size of the subunit pool or the number of filament nucleators is tuned.

  13. Mach wave properties in the presence of source and medium heterogeneity

    NASA Astrophysics Data System (ADS)

    Vyas, J. C.; Mai, P. M.; Galis, M.; Dunham, Eric M.; Imperatori, W.

    2018-06-01

    We investigate Mach wave coherence for kinematic supershear ruptures with spatially heterogeneous source parameters, embedded in 3D scattering media. We assess Mach wave coherence considering: 1) source heterogeneities in terms of variations in slip, rise time and rupture speed; 2) small-scale heterogeneities in Earth structure, parameterized from combinations of three correlation lengths and two standard deviations (assuming von Karman power spectral density with fixed Hurst exponent); and 3) joint effects of source and medium heterogeneities. Ground-motion simulations are conducted using a generalized finite-difference method, choosing a parameterization such that the highest resolved frequency is ˜5 Hz. We discover that Mach wave coherence is slightly diminished at near fault distances (< 10 km) due to spatially variable slip and rise time; beyond this distance the Mach wave coherence is more strongly reduced by wavefield scattering due to small-scale heterogeneities in Earth structure. Based on our numerical simulations and theoretical considerations we demonstrate that the standard deviation of medium heterogeneities controls the wavefield scattering, rather than the correlation length. In addition, we find that peak ground accelerations in the case of combined source and medium heterogeneities are consistent with empirical ground motion prediction equations for all distances, suggesting that in nature ground shaking amplitudes for supershear ruptures may not be elevated due to complexities in the rupture process and seismic wave-scattering.

  14. Influence of crack opening and incident wave angle on second harmonic generation of Lamb waves

    NASA Astrophysics Data System (ADS)

    Yang, Yi; Ng, Ching-Tai; Kotousov, Andrei

    2018-05-01

    Techniques utilising second harmonic generation (SHG) have proven their great potential in detecting contact-type damage. However, the gap between the practical applications and laboratory studies is still quite large. The current work is aimed to bridge this gap by investigating the effects of the applied load and incident wave angle on the detectability of fatigue cracks at various lengths. Both effects are critical for practical implementations of these techniques. The present experimental study supported by three-dimensional (3D) finite element (FE) modelling has demonstrated that the applied load, which changes the crack opening and, subsequently, the contact nonlinearity, significantly affects the amplitude of the second harmonic generated by the fundamental symmetric mode (S0) of Lamb wave. This amplitude is also dependent on the length of the fatigue crack as well as the incident wave angle. The experimental and FE results correlate well, so the modelling approach can be implemented for practical design of damage monitoring systems as well as for the evaluation of the severity of the fatigue cracks.

  15. Damage-Tolerance Characteristics of Composite Fuselage Sandwich Structures with Thick Facesheets

    NASA Technical Reports Server (NTRS)

    McGowan, David M.; Ambur, Damodar R.

    1997-01-01

    Damage tolerance characteristics and results from experimental and analytical studies of a composite fuselage keel sandwich structure subjected to low-speed impact damage and discrete-source damage are presented. The test specimens are constructed from graphite-epoxy skins borided to a honeycomb core, and they are representative of a highly loaded fuselage keel structure. Results of compression-after-impact (CAI) and notch-length sensitivity studies of 5-in.-wide by 10-in.long specimens are presented. A correlation between low-speed-impact dent depth, the associated damage area, and residual strength for different impact-energy levels is described; and a comparison of the strength for undamaged and damaged specimens with different notch-length-to-specimen-width ratios is presented. Surface strains in the facesheets of the undamaged specimens as well as surface strains that illustrate the load redistribution around the notch sites in the notched specimens are presented and compared with results from finite element analyses. Reductions in strength of as much as 53.1 percent for the impacted specimens and 64.7 percent for the notched specimens are observed.

  16. The influence of uncemented femoral stem length and design on its primary stability: a finite element analysis.

    PubMed

    Reimeringer, M; Nuño, N; Desmarais-Trépanier, C; Lavigne, M; Vendittoli, P A

    2013-01-01

    One of the crucial factors for short- and long-term clinical success of total hip arthroplasty cementless implants is primary stability. Indeed, motion at the bone-implant interface above 40 μm leads to partial bone ingrowth, while motion exceeding 150 μm completely inhibits bone ingrowth. The aim of this study was to investigate the effect of two cementless femoral stem designs with different lengths on the primary stability. A finite element model of a composite Sawbones(®) fourth generation, implanted with five lengths of the straight prosthesis design and four lengths of the curved prosthesis design, was loaded with hip joint and abductor forces representing two physiological activities: fast walking and stair climbing. We found that reducing the straight stem length from 146 to 54 mm increased the average micromotion from 17 to 52 μm during fast walking, while the peak value increased from 42 to 104 μm. With the curved stem, reducing length from 105 to 54 mm increased the average micromotion from 10 to 29 μm, while the peak value increased from 37 to 101 μm. Similar findings are obtained for stair climbing for both stems. Although the present study showed that femoral stem length as well as stem design directly influences its primary stability, for the two femoral stems tested, length could be reduced substantially without compromising the primary stability. With the aim of minimising surgical invasiveness, newer femoral stem design and currently well performing stems might be used with a reduced length without compromising primary stability and hence, long-term survivorship.

  17. Hydro-mechanical coupled simulation of hydraulic fracturing using the eXtended Finite Element Method (XFEM)

    NASA Astrophysics Data System (ADS)

    Youn, Dong Joon

    This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach combining XFEM and random field is named as eXtended Random Finite Element Method (XRFEM). All the numerical analysis codes in this thesis are written in Fortran 2003, and these codes are applicable as a series of sub-modules within a suite of finite element codes developed by Smith and Griffiths (2004).

  18. Correlation of finite-element structural dynamic analysis with measured free vibration characteristics for a full-scale helicopter fuselage

    NASA Technical Reports Server (NTRS)

    Kenigsberg, I. J.; Dean, M. W.; Malatino, R.

    1974-01-01

    The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.

  19. Researches on the behaviour of cellular antiballistic composites based on AlMg-SiC alloys

    NASA Astrophysics Data System (ADS)

    Bălţătescu, O.; Florea, R. M.; Rusu, I.; Carcea, I.

    2015-11-01

    The researches presented in this paper refers basically to the impact of a small/medium caliber bullet shot on a light armor built on the base of a AlMg-SiC metallic composite cellular/foam. Thus, we study the antiballistic behavior and protection properties of the armor, based on the effects that occur at the impact zone of the bullet with the composite surface. We performed an antiballistic behavior modeling by means of a finite element analysis, based on a "multi grid" Fast Finite Element (FFE) system. We used for this purpose the DYNA 2D software package. The obtained samples show after the impact the occurrence of concentration / deformation pores effect and intercellular cracks development to the interior of the composite. Those effects, depending on speed, mass and length of the projectile ballistic trajectory, reduce zonal tensions due to the effect of cell walls deformation. It was obtained a good correlation between modeling results and the electron microscope analyse of the impact area. It is worth mentioning that almost all values for impact energy absorbed by the composite armor are in the protection active zone provided by it.

  20. The Distributed Lambda (?) Model (DLM): A 3-D, Finite-Element Muscle Model Based on Feldman's ? Model; Assessment of Orofacial Gestures

    ERIC Educational Resources Information Center

    Nazari, Mohammad Ali; Perrier, Pascal; Payan, Yohan

    2013-01-01

    Purpose: The authors aimed to design a distributed lambda model (DLM), which is well adapted to implement three-dimensional (3-D), finite-element descriptions of muscles. Method: A muscle element model was designed. Its stress-strain relationships included the active force-length characteristics of the ? model along the muscle fibers, together…

  1. The Magnetic Field of a Finite Solenoid

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E.; Maslen, Stephen H.

    1960-01-01

    The axial and radial fields at any point inside or outside a finite solenoid with infinitely thin walls are derived. Solution of the equations has been obtained in terms of tabulated complete elliptic integrals. For the axial field an accurate approximation is given in terms of elementary functions. Fields internal and external to the solenoid are presented in graphical form for a wide variety of solenoid lengths.

  2. Flow adjustment inside large finite-size wind farms approaching the infinite wind farm regime

    NASA Astrophysics Data System (ADS)

    Wu, Ka Ling; Porté-Agel, Fernando

    2017-04-01

    Due to the increasing number and the growing size of wind farms, the distance among them continues to decrease. Thus, it is necessary to understand how these large finite-size wind farms and their wakes could interfere the atmospheric boundary layer (ABL) dynamics and adjacent wind farms. Fully-developed flow inside wind farms has been extensively studied through numerical simulations of infinite wind farms. The transportation of momentum and energy is only vertical and the advection of them is neglected in these infinite wind farms. However, less attention has been paid to examine the length of wind farms required to reach such asymptotic regime and the ABL dynamics in the leading and trailing edges of the large finite-size wind farms. Large eddy simulations are performed in this study to investigate the flow adjustment inside large finite-size wind farms in conventionally-neutral boundary layer with the effect of Coriolis force and free-atmosphere stratification from 1 to 5 K/km. For the large finite-size wind farms considered in the present work, when the potential temperature lapse rate is 5 K/km, the wind farms exceed the height of the ABL by two orders of magnitude for the incoming flow inside the farms to approach the fully-developed regime. An entrance fetch of approximately 40 times of the ABL height is also required for such flow adjustment. At the fully-developed flow regime of the large finite-size wind farms, the flow characteristics match those of infinite wind farms even though they have different adjustment length scales. The role of advection at the entrance and exit regions of the large finite-size wind farms is also examined. The interaction between the internal boundary layer developed above the large finite-size wind farms and the ABL under different potential temperature lapse rates are compared. It is shown that the potential temperature lapse rate plays a role in whether the flow inside the large finite-size wind farms adjusts to the fully-developed flow regime. The flow characteristics of the wake of these large finite-size wind farms are reported to forecast the effect of large finite-size wind farms on adjacent wind farms. A power deficit as large as 8% is found at a distance of 10 km downwind from the large finite-size wind farms.

  3. Mechanical principles of effects of botulinum toxin on muscle length-force characteristics: an assessment by finite element modeling.

    PubMed

    Turkoglu, Ahu N; Huijing, Peter A; Yucesoy, Can A

    2014-05-07

    Recent experiments involving muscle force measurements over a range of muscle lengths show that effects of botulinum toxin (BTX) are complex e.g., force reduction varies as a function of muscle length. We hypothesized that altered conditions of sarcomeres within active parts of partially paralyzed muscle is responsible for this effect. Using finite element modeling, the aim was to test this hypothesis and to study principles of how partial activation as a consequence of BTX affects muscle mechanics. In order to model the paralyzing effect of BTX, only 50% of the fascicles (most proximal, or middle, or most distal) of the modeled muscle were activated. For all muscle lengths, a vast majority of sarcomeres of these BTX-cases were at higher lengths than identical sarcomeres of the BTX-free muscle. Due to such "longer sarcomere effect", activated muscle parts show an enhanced potential of active force exertion (up to 14.5%). Therefore, a muscle force reduction originating exclusively from the paralyzed muscle fiber populations, is compromised by the changes of active sarcomeres leading to a smaller net force reduction. Moreover, such "compromise to force reduction" varies as a function of muscle length and is a key determinant of muscle length dependence of force reduction caused by BTX. Due to longer sarcomere effect, muscle optimum length tends to shift to a lower muscle length. Muscle fiber-extracellular matrix interactions occurring via their mutual connections along full peripheral fiber lengths (i.e., myofascial force transmission) are central to these effects. Our results may help improving our understanding of mechanisms of how the toxin secondarily affects the muscle mechanically. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Entanglement entropy in a boundary impurity model.

    PubMed

    Levine, G C

    2004-12-31

    Boundary impurities are known to dramatically alter certain bulk properties of (1+1)-dimensional strongly correlated systems. The entanglement entropy of a zero temperature Luttinger liquid bisected by a single impurity is computed using a novel finite size scaling or bosonization scheme. For a Luttinger liquid of length 2L and UV cutoff epsilon, the boundary impurity correction (deltaSimp) to the logarithmic entanglement entropy (Sent proportional, variant lnL/epsilon scales as deltaSimp approximately yrlnL/epsilon, where yr is the renormalized backscattering coupling constant. In this way, the entanglement entropy within a region is related to scattering through the region's boundary. In the repulsive case (g<1), deltaSimp diverges (negatively) suggesting that the entropy vanishes. Our results are consistent with the recent conjecture that entanglement entropy decreases irreversibly along renormalization group flow.

  5. Renormalization of concurrence: The application of the quantum renormalization group to quantum-information systems

    NASA Astrophysics Data System (ADS)

    Kargarian, M.; Jafari, R.; Langari, A.

    2007-12-01

    We have combined the idea of renormalization group and quantum-information theory. We have shown how the entanglement or concurrence evolve as the size of the system becomes large, i.e., the finite size scaling is obtained. Moreover, we introduce how the renormalization-group approach can be implemented to obtain the quantum-information properties of a many-body system. We have obtained the concurrence as a measure of entanglement, its derivatives and their scaling behavior versus the size of system for the one-dimensional Ising model in transverse field. We have found that the derivative of concurrence between two blocks each containing half of the system size diverges at the critical point with the exponent, which is directly associated with the divergence of the correlation length.

  6. A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map

    NASA Astrophysics Data System (ADS)

    Liu, Lingfeng; Lin, Jun; Miao, Suoxia; Liu, Bocheng

    2017-06-01

    The digital Baker map is widely used in different kinds of cryptosystems, especially for image encryption. However, any chaotic map which is realized on the finite precision device (e.g. computer) will suffer from dynamical degradation, which refers to short cycle lengths, low complexity and strong correlations. In this paper, a novel double perturbation method is proposed for reducing the dynamical degradation of the digital Baker map. Both state variables and system parameters are perturbed by the digital logistic map. Numerical experiments show that the perturbed Baker map can achieve good statistical and cryptographic properties. Furthermore, a new image encryption algorithm is provided as a simple application. With a rather simple algorithm, the encrypted image can achieve high security, which is competitive to the recently proposed image encryption algorithms.

  7. Efimov effect for heteronuclear three-body systems at positive scattering length and finite temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emmons, Samuel B.; Kang, Daekyoung; Acharya, Bijaya

    2017-09-08

    Here, we study the recombination process of three atoms scattering into an atom and diatomic molecule in heteronuclear mixtures of ultracold atomic gases with large and positive interspecies scattering length at finite temperature. We calculate the temperature dependence of the three-body recombination rates by extracting universal scaling functions that parametrize the energy dependence of the scattering matrix. We compare our results to experimental data for the 40K– 87Rb mixture and make a prediction for 6Li– 87Rb. We find that contributions from higher partial wave channels significantly impact the total rate and, in systems with particularly large mass imbalance, can evenmore » obliterate the recombination minima associated with the Efimov effect.« less

  8. Current noise generated by spin imbalance in presence of spin relaxation

    NASA Astrophysics Data System (ADS)

    Khrapai, V. S.; Nagaev, K. E.

    2017-01-01

    We calculate current (shot) noise in a metallic diffusive conductor generated by spin imbalance in the absence of a net electric current. This situation is modeled in an idealized three-terminal setup with two biased ferromagnetic leads (F-leads) and one normal lead (N-lead). Parallel magnetization of the F-leads gives rise to spin-imbalance and finite shot noise at the N-lead. Finite spin relaxation results in an increase in the shot noise, which depends on the ratio of the length of the conductor ( L) and the spin relaxation length ( l s). For L >> l s the shot noise increases by a factor of two and coincides with the case of the antiparallel magnetization of the F-leads.

  9. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  10. Effect of Curved Radial Vane Cavity Arrangements on Predicted Inter-Turbine Burner (ITB) Performance

    DTIC Science & Technology

    2007-06-01

    on for only short duration and at certain points in the conditions and with flame lengths up to 50% shorter than aircraft’s mission profile to...remaining exit parameters are as finite-rate flame length , combustion heat release, and extrapolated from the interior domain. Mass flow rates ITB exit

  11. Estimation of stature from sternal lengths. A correlation meta-analysis.

    PubMed

    Yammine, Kaissar; Assi, Chahine

    2017-01-01

    Methods based on the positive linear relationship existing between stature and long bones are most commonly used to estimate living stature in forensic anthropology. The length of the sternum and its parts has been advanced as a plausible alternative to estimate stature when such long bones are missing or damaged. This meta-analysis aims to quantify evidence on the correlation between the sternum/sternal parts length and stature. Nine studies were included with 1118 sternal bones. Analyses showed that the length of the meso-sternum (manubrium + body) yielded the best correlation with stature; 53.5% and 55.42% for men and women, respectively. The second best variable is the total sternal length with correlations of 44.3% and 55% for men and women, respectively. Subgroup analysis of autopsy studies demonstrated even a higher correlation of 58.2% for the meso-sternal length. Manubrium and body lengths showed the least correlation values. Except for the body length, females exhibit a better correlation than man between all other sternal lengths and stature. While the meso-sternal length is found to be the most correlated variable with stature, all sternal lengths are to be considered with caution when estimating stature. The relatively low values of the weighted correlation results should raise the question of reliability and limit the use of sternal length when long bones are available. Future research using larger samples from different populations and taking into account the fusion status of the sternum are needed.

  12. Modeling of Ceiling Fire Spread and Thermal Radiation.

    DTIC Science & Technology

    1981-10-01

    under a PMMA ceiling and flame lengths under an inert ceiling are found to be in reasonable agreement with full-scale behavior. Although fire spread...5 3 Flame Lengths under Full-Scale Ceilings 12 4 Correlation of Flame Length under Inert Ceilings 16 5 Correlation of Flame Length under No 234 Model...Ceilings 17 6 Correlation of Flame Length under No B8811 Model Ceilings 18 7 Correlation of Flame Length under No. 223 Model Ceilings 19 8

  13. Efimov states near a Feshbach resonance and the limits of van der Waals universality at finite background scattering length

    NASA Astrophysics Data System (ADS)

    Langmack, Christian; Schmidt, Richard; Zwerger, Wilhelm

    2018-03-01

    We calculate the spectrum of three-body Efimov bound states near a Feshbach resonance within a model which accounts both for the finite range of interactions and the presence of background scattering. The latter may be due to direct interactions in an open channel or a second overlapping Feshbach resonance. It is found that background scattering gives rise to substantial changes in the trimer spectrum as a function of the detuning away from a Feshbach resonance, in particular in the regime where the background channel supports Efimov states on its own. Compared to the situation with negligible background scattering, the regime where van der Waals universality applies is shifted to larger values of the resonance strength if the background scattering length is positive. For negative background scattering lengths, in turn, van der Waals universality extends to even small values of the resonance strength parameter, consistent with experimental results on Efimov states in 39K. Within a simple model, we show that short-range three-body forces do not affect van der Waals universality significantly. Repulsive three-body forces may, however, explain the observed variation between around -8 and -10 of the ratio between the scattering length where the first Efimov trimer appears and the van der Waals length.

  14. Asymmetric Outer Bow Length and Cervical Headgear Force System: 3D Analysis Using Finite Element Method

    PubMed Central

    Geramy, Allahyar; Hassanpour, Mehdi; Emadian Razavi, Elham sadat

    2015-01-01

    Objectives: This study sought to assess distal and lateral forces and moments of asymmetric headgears by variable outer bow lengths. Materials and Methods: Four 3D finite element method (FEM) models of a cervical headgear attached to the maxillary first molars were designed in SolidWorks 2010 software and transferred to ANSYS Workbench ver. 11 software. Models contained the first molars, their periodontal ligament (PDL), cancellous and cortical bones, a mesiodistal slice of the maxillae and the headgear. Models were the same except for the outer bow length in headgears. The headgear was symmetric in model 1. In models 2 to 4, the headgears were asymmetric in length with differences of 5mm, 10mm and 15mm, respectively. A 2.5 N force in horizontal plane was applied and the loading manner of each side of the outer bow was calculated trigonometrically using data from a volunteer. Results: The 15mm difference in outer bow length caused the greatest difference in lateral (=0.21 N) and distal (= 1.008 N) forces and also generated moments (5.044 N.mm). Conclusion: As the difference in outer bow length became greater, asymmetric effects increased. Greater distal force in the longer arm side was associated with greater lateral force towards the shorter arm side and more net yawing moment. Clinical Relevance: A difference range of 1mm to 15 mm of length in cervical headgear can be considered as a safe length of outer bow shortening in clinical use. PMID:26622275

  15. Entanglement entropy in a one-dimensional disordered interacting system: the role of localization.

    PubMed

    Berkovits, Richard

    2012-04-27

    The properties of the entanglement entropy (EE) in one-dimensional disordered interacting systems are studied. Anderson localization leaves a clear signature on the average EE, as it saturates on the length scale exceeding the localization length. This is verified by numerically calculating the EE for an ensemble of disordered realizations using the density matrix renormalization group method. A heuristic expression describing the dependence of the EE on the localization length, which takes into account finite-size effects, is proposed. This is used to extract the localization length as a function of the interaction strength. The localization length dependence on the interaction fits nicely with the expectations.

  16. Some considerations on instability of combined loaded thin-walled tubes with a crack

    NASA Astrophysics Data System (ADS)

    Shariati, M.; Akbarpour, A.

    2016-05-01

    Instability of a thin-walled stainless steel tube with a crack-shaped defect under combined loading is studied in this paper. Furthermore, the effects of the tube length, crack orientation, and crack length on the buckling behavior of tubes are investigated. The behavior of tubes subjected to combined is analyzed by using the finite element method (by Abaqus software). For cracked tubes with a fixed thickness, the buckling load decreases as the tube length and the ratio of the tube length to its diameter increase. Moreover, the buckling load of cracked tubes under combined loading also decreases with increasing crack length.

  17. Not all (possibly) “random” sequences are created equal

    PubMed Central

    Pincus, Steve; Kalman, Rudolf E.

    1997-01-01

    The need to assess the randomness of a single sequence, especially a finite sequence, is ubiquitous, yet is unaddressed by axiomatic probability theory. Here, we assess randomness via approximate entropy (ApEn), a computable measure of sequential irregularity, applicable to single sequences of both (even very short) finite and infinite length. We indicate the novelty and facility of the multidimensional viewpoint taken by ApEn, in contrast to classical measures. Furthermore and notably, for finite length, finite state sequences, one can identify maximally irregular sequences, and then apply ApEn to quantify the extent to which given sequences differ from maximal irregularity, via a set of deficit (defm) functions. The utility of these defm functions which we show allows one to considerably refine the notions of probabilistic independence and normality, is featured in several studies, including (i) digits of e, π, √2, and √3, both in base 2 and in base 10, and (ii) sequences given by fractional parts of multiples of irrationals. We prove companion analytic results, which also feature in a discussion of the role and validity of the almost sure properties from axiomatic probability theory insofar as they apply to specified sequences and sets of sequences (in the physical world). We conclude by relating the present results and perspective to both previous and subsequent studies. PMID:11038612

  18. Reflection and diffraction corrections for nonlinear materials characterization by quasi-static pulse measurement

    NASA Astrophysics Data System (ADS)

    Nagy, Peter B.; Qu, Jianmin; Jacobs, Laurence J.

    2014-02-01

    A harmonic acoustic tone burst propagating through an elastic solid with quadratic nonlinearity produces not only a parallel burst of second harmonic but also an often neglected quasi-static pulse associated with the acoustic radiation-induced eigenstrain. Although initial analytical and experimental studies by Yost and Cantrell suggested that the pulse might have a right-angled triangular shape with the peak displacement at the leading edge being proportional to the length of the tone burst, more recent theoretical, analytical, numerical, and experimental studies proved that the pulse has a flat-top shape and the peak displacement is proportional to the propagation length. In this paper, analytical and numerical simulation results are presented to illustrate two types of finite-size effects. First, the finite axial dimension of the specimen cannot be simply accounted for by a linear reflection coefficient that neglects the nonlinear interaction between the combined incident and reflected fields. Second, the quasistatic pulse generated by a transducer of finite aperture suffers more severe divergence than both the fundamental and second harmonic pulses generated by the same transducer. These finite-size effects can make the top of the quasi-static pulse sloped rather than flat and therefore must be taken into consideration in the interpretation of experimental data.

  19. Reflection and diffraction corrections for nonlinear materials characterization by quasi-static pulse measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagy, Peter B.; Qu, Jianmin; Jacobs, Laurence J.

    A harmonic acoustic tone burst propagating through an elastic solid with quadratic nonlinearity produces not only a parallel burst of second harmonic but also an often neglected quasi-static pulse associated with the acoustic radiation-induced eigenstrain. Although initial analytical and experimental studies by Yost and Cantrell suggested that the pulse might have a right-angled triangular shape with the peak displacement at the leading edge being proportional to the length of the tone burst, more recent theoretical, analytical, numerical, and experimental studies proved that the pulse has a flat-top shape and the peak displacement is proportional to the propagation length. In thismore » paper, analytical and numerical simulation results are presented to illustrate two types of finite-size effects. First, the finite axial dimension of the specimen cannot be simply accounted for by a linear reflection coefficient that neglects the nonlinear interaction between the combined incident and reflected fields. Second, the quasistatic pulse generated by a transducer of finite aperture suffers more severe divergence than both the fundamental and second harmonic pulses generated by the same transducer. These finite-size effects can make the top of the quasi-static pulse sloped rather than flat and therefore must be taken into consideration in the interpretation of experimental data.« less

  20. Crossover from Polaronic to Magnetically Phase-Separated Behavior in La1-xSrxCoO3

    NASA Astrophysics Data System (ADS)

    Phelan, D.; El Khatib, S.; Wang, S.; Barker, J.; Zhao, J.; Zheng, H.; Mitchell, J. F.; Leighton, C.

    2013-03-01

    Dilute hole-doping in La1-xSrxCoO3 leads to the formation of ``spin-state polarons'' where a non-zero spin-state is stabilized on the nearest Co3+ ions surrounding a hole. Here, we discuss the development of electronic/magnetic properties of this system from non-magnetic x=0, through the regime of spin-state polarons, and into the region where longer-range spin correlations and phase separation develop. We present magnetometry, transport, heat capacity, and small-angle neutron scattering (SANS) on single crystals. Magnetometry indicates a crossover with x from Langevin-like behavior (polaronic) to a state with a freezing temperature and finite coercivity. Fascinating correlations with this behavior are seen in transport measurements, the evolution from polaronic to clustered states being accompanied by a crossover from Mott variable range hopping to intercluster hopping. SANS data shows Lorentzian scattering from short-range ferromagnetic clusters first emerging around x = 0.03 with correlation lengths of order two unit cells. We argue that this system provides a unique opportunity to understand in detail the crossover from polaronic to truly phase-separated states.

  1. Thermodynamics of Ising spins on the triangular kagome lattice: Exact analytical method and Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Loh, Y. L.; Yao, D. X.; Carlson, E. W.

    2008-04-01

    A new class of two-dimensional magnetic materials Cu9X2(cpa)6ṡxH2O ( cpa=2 -carboxypentonic acid; X=F,Cl,Br ) was recently fabricated in which Cu sites form a triangular kagome lattice (TKL). As the simplest model of geometric frustration in such a system, we study the thermodynamics of Ising spins on the TKL using exact analytic method as well as Monte Carlo simulations. We present the free energy, internal energy, specific heat, entropy, sublattice magnetizations, and susceptibility. We describe the rich phase diagram of the model as a function of coupling constants, temperature, and applied magnetic field. For frustrated interactions in the absence of applied field, the ground state is a spin liquid phase with residual entropy per spin s0/kB=(1)/(9)ln72≈0.4752… . In weak applied field, the system maps to the dimer model on a honeycomb lattice, with residual entropy 0.0359 per spin and quasi-long-range order with power-law spin-spin correlations that should be detectable by neutron scattering. The power-law correlations become exponential at finite temperatures, but the correlation length may still be long.

  2. Screening in ionic systems: simulations for the Lebowitz length.

    PubMed

    Kim, Young C; Luijten, Erik; Fisher, Michael E

    2005-09-30

    Simulations of the Lebowitz length, xiL (T, rho), are reported for the restricted primitive model hard-core (diameter a) 1:1 electrolyte for densities rho approximately < 4rho(c) and T(c) approximately < T approximately < 40T(c). Finite-size effects are elucidated for the charge fluctuations in various subdomains that serve to evaluate xiL. On extrapolation to the bulk limit for T approximately > 10T(c) the exact low-density expansions are seen to fail badly when rho > 1/10 rho(c) (with rho(c)a3 approximately = 0.08). At higher densities xiL rises above the Debye length, xiD proportional to square root(T/rho), by 10%-30% (up to rho approximately =1.3rho(c)); the variation is portrayed fairly well by the generalized Debye-Hückel theory. On approaching criticality at fixed rho or fixed T, xiL (T, rho) remains finite with xiL(c) approximately = 0.30a approximately = 1.3xiD(c) but displays a weak entropylike singularity.

  3. Theory of compact nonporous windscreens for infrasonic measurements.

    PubMed

    Zuckerwar, Allan J

    2010-06-01

    The principle of the compact nonporous windscreen is based on the great penetrability of infrasound through matter. The windscreen performance is characterized by the ratio of the sound pressure at an interior microphone, located in the center of a windscreen, to the incident sound pressure in the free field. The frequency dependence of this pressure ratio is derived as a function of the windscreen material and geometric properties. Four different windscreen geometries are considered: a subsurface, box-shaped windscreen, a cylindrical windscreen of infinite length, a cylindrical windscreen of finite length, and a spherical windscreen. Results are presented for windscreens made of closed-cell polyurethane foam and for typical dimensions of each of the above geometries. The cylindrical windscreen of finite length, featuring evanescent radial modes, behaves as a unity-gain, low-pass filter, cutting off sharply at the end of the infrasonic range. The remaining geometries reveal a pass band that extends well into the audio range, terminated by a pronounced peak beyond which the response plummets rapidly.

  4. Acoustic propagation in curved ducts with extended reacting wall treatment

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation was employed to study the attenuation of acoustic waves propagating in two-dimensional S-curved ducts with absorbing walls without a mean flow. The reflection and transmission at the entrance and the exit of a curved duct were determined by coupling the finite-element solutions in the curved duct to the eigenfunctions of an infinite, uniform, hard wall duct. In the frequency range where the duct height and acoustic wave length are nearly equal, the effects of duct length, curvature (duct offset) and absorber thickness were examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. A means of reducing the number of elements in the absorber region was also presented. In addition, for a curved duct, power attenuation contours were examined to determine conditions for maximum acoustic power absorption. Again, wall curvature was found to significantly effect the optimization process.

  5. Modeling of thermal lensing in side and end-pumped finite solid-state laser rods. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Brackett, Vincent G.

    1990-01-01

    An analytical expression for approximating the time-dependent thermal focal length in finite solid state laser rods was derived. The analysis is based on the temperature variation of the material refractive index caused by optical pumping of these rods. Several quantities were found to be relevant to this analysis. These quantities were the specific thermal profiles of the rods, type of optical pumping employed, type of cooling scheme employed (side and end-cooling parameters), and the specific material characteristics of the rods. The Thermal Lensing Model was formulated using the geometric ray tracing approach. The focal lengths are then approximated, by calculating the phase shift in the index of refraction, as the different rays of an incident plane wave are tracked through a lens-like crystal medium. The approach also applies in the case of Gaussian or parabolic pump beams. It is shown that the prediction of thermal focal length is in good quantitative agreement with experimentally obtained data.

  6. Finite Element Analysis of a NASA National Transonic Facility Wind Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C.

    1996-01-01

    This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.

  7. Finite Element Analysis of a NASA National Transonic Facility Wide Tunnel Balance

    NASA Technical Reports Server (NTRS)

    Lindell, Michael C. (Editor)

    1999-01-01

    This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.

  8. On the validation of seismic imaging methods: Finite frequency or ray theory?

    DOE PAGES

    Maceira, Monica; Larmat, Carene; Porritt, Robert W.; ...

    2015-01-23

    We investigate the merits of the more recently developed finite-frequency approach to tomography against the more traditional and approximate ray theoretical approach for state of the art seismic models developed for western North America. To this end, we employ the spectral element method to assess the agreement between observations on real data and measurements made on synthetic seismograms predicted by the models under consideration. We check for phase delay agreement as well as waveform cross-correlation values. Based on statistical analyses on S wave phase delay measurements, finite frequency shows an improvement over ray theory. Random sampling using cross-correlation values identifiesmore » regions where synthetic seismograms computed with ray theory and finite-frequency models differ the most. Our study suggests that finite-frequency approaches to seismic imaging exhibit measurable improvement for pronounced low-velocity anomalies such as mantle plumes.« less

  9. Forgetfulness can help you win games.

    PubMed

    Burridge, James; Gao, Yu; Mao, Yong

    2015-09-01

    We present a simple game model where agents with different memory lengths compete for finite resources. We show by simulation and analytically that an instability exists at a critical memory length, and as a result, different memory lengths can compete and coexist in a dynamical equilibrium. Our analytical formulation makes a connection to statistical urn models, and we show that temperature is mirrored by the agent's memory. Our simple model of memory may be incorporated into other game models with implications that we briefly discuss.

  10. Effects of Subscale Size and Shape on Global Energy Dissipation in a Multiscale Model of a Fiber-Reinforced Composite Exhibiting Post-Peak Strain Softening Using Abaqus and FEAMAC

    NASA Technical Reports Server (NTRS)

    Pineda, Evan, J.; Bednarcyk, Brett, A.; Arnold, Steven, M.

    2012-01-01

    A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales.

  11. Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments

    NASA Astrophysics Data System (ADS)

    Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak

    2015-10-01

    The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.

  12. Excitations in the Yang–Gaudin Bose gas

    DOE PAGES

    Robinson, Neil J.; Konik, Robert M.

    2017-06-01

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Neil J.; Konik, Robert M.

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  14. The Combinatorial Trace Method in Action

    ERIC Educational Resources Information Center

    Krebs, Mike; Martinez, Natalie C.

    2013-01-01

    On any finite graph, the number of closed walks of length k is equal to the sum of the kth powers of the eigenvalues of any adjacency matrix. This simple observation is the basis for the combinatorial trace method, wherein we attempt to count (or bound) the number of closed walks of a given length so as to obtain information about the graph's…

  15. Application of computational mechanics to the analysis of natural data: an example in geomagnetism.

    PubMed

    Clarke, Richard W; Freeman, Mervyn P; Watkins, Nicholas W

    2003-01-01

    We discuss how the ideal formalism of computational mechanics can be adapted to apply to a noninfinite series of corrupted and correlated data, that is typical of most observed natural time series. Specifically, a simple filter that removes the corruption that creates rare unphysical causal states is demonstrated, and the concept of effective soficity is introduced. We believe that computational mechanics cannot be applied to a noisy and finite data series without invoking an argument based upon effective soficity. A related distinction between noise and unresolved structure is also defined: Noise can only be eliminated by increasing the length of the time series, whereas the resolution of previously unresolved structure only requires the finite memory of the analysis to be increased. The benefits of these concepts are demonstrated in a simulated times series by (a) the effective elimination of white noise corruption from a periodic signal using the expletive filter and (b) the appearance of an effectively sofic region in the statistical complexity of a biased Poisson switch time series that is insensitive to changes in the word length (memory) used in the analysis. The new algorithm is then applied to an analysis of a real geomagnetic time series measured at Halley, Antarctica. Two principal components in the structure are detected that are interpreted as the diurnal variation due to the rotation of the Earth-based station under an electrical current pattern that is fixed with respect to the Sun-Earth axis and the random occurrence of a signature likely to be that of the magnetic substorm. In conclusion, some useful terminology for the discussion of model construction in general is introduced.

  16. Spectroscopic properties and STM images of carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Rubio, A.

    We present a theoretical study of the role of the local environment in the electronic properties of carbon nanotubes: isolated single- and multi-wall nanotubes, nanotube ropes, tubes supported on gold and cut to finite length. Interaction with the substrate or with other tubes does not alter the scanning tunneling microscopy patterns (STM) observed for isolated tubes. A finite-length nanotube shows standing-wave patterns that can be completely characterized by a set of four different three-dimensional shapes. These patterns are understood in terms of a simple π-electron tight-binding (TB) model. STM-topographic images of topological defects ani (pentagon/heptagon pair) and tube caps have also been studied. In both cases the image obtained depends on the sign of the applied voltage and can be described in terms of the previous catalog of STM images (interference between electronic waves scattered by the defect). We have also computed the electronic density of states for isolated tubes with different chiralities and radii, confirming a correlation between the peak structure in the DOS and nanotube diameter. However, the metallic plateau in the DOS also depends on the nanotube chirality. Furthermore the conduction an valence band structures are not fully symmetrical to one another. This anisotropy shows up in the DOS and indicates the limitations of the π-TB model in describing spectroscopic data. In contrast to STM images, here the interaction with the substrate does modify the energy levels of the nanotube. We observe opening of small pseudogaps around the Fermi level and broadening of the sharp van Hove singularities of the isolated single-walled nanotubes that can be used to extract useful information about the tube structure and bonding. The combination of STM and spectroscopic studies provides a new way to address the electronic and structural properties of carbon and composite nanotubes.

  17. 3D digital image correlation methods for full-field vibration measurement

    NASA Astrophysics Data System (ADS)

    Helfrick, Mark N.; Niezrecki, Christopher; Avitabile, Peter; Schmidt, Timothy

    2011-04-01

    In the area of modal test/analysis/correlation, significant effort has been expended over the past twenty years in order to make reduced models and to expand test data for correlation and eventual updating of the finite element models. This has been restricted by vibration measurements which are traditionally limited to the location of relatively few applied sensors. Advances in computers and digital imaging technology have allowed 3D digital image correlation (DIC) methods to measure the shape and deformation of a vibrating structure. This technique allows for full-field measurement of structural response, thus providing a wealth of simultaneous test data. This paper presents some preliminary results for the test/analysis/correlation of data measured using the DIC approach along with traditional accelerometers and a scanning laser vibrometer for comparison to a finite element model. The results indicate that all three approaches correlated well with the finite element model and provide validation for the DIC approach for full-field vibration measurement. Some of the advantages and limitations of the technique are presented and discussed.

  18. Temporal and spatiotemporal correlation functions for trapped Bose gases

    NASA Astrophysics Data System (ADS)

    Kohnen, M.; Nyman, R. A.

    2015-03-01

    Density correlations unambiguously reveal the quantum nature of matter. Here, we study correlations between measurements of density in cold-atom clouds at different times at one position, and also at two separated positions. We take into account the effects of finite-size and -duration measurements made by light beams passing through the atom cloud. We specialize to the case of Bose gases in harmonic traps above critical temperature, for weakly perturbative measurements. For overlapping measurement regions, shot-noise correlations revive after a trap oscillation period. For nonoverlapping regions, bosonic correlations dominate at long times, and propagate at finite speeds. Finally, we give a realistic measurement protocol for performing such experiments.

  19. Scaling relationships of channel networks at large scales: Examples from two large-magnitude watersheds in Brittany, France

    NASA Astrophysics Data System (ADS)

    Crave, A.; Davy, P.

    1997-01-01

    We present a statistical analysis on two watersheds in French Brittany whose drainage areas are about 10,000 and 2000 km2. The channel system was analysed from the digitised blue lines of the 1:100,000 map and from a 250-m DEM. Link lengths follow an exponential distribution, consistent with the Markovian model of channel branching proposed by Smart (1968). The departure from the exponential distribution for small lengths, that has been extensively discussed before, results from a statistical effect due to the finite number of channels and junctions. The Strahler topology applied on channels defines a self-similar organisation whose similarity dimension is about 1.7, that is clearly smaller than the value of 2 expected for a random organisation. The similarity dimension is consistent with an independent measurement of the Horton ratios of stream numbers and lengths. The variables defined by an upstream integral (drainage area, mainstream length, upstream length) follow power-law distributions limited at large scales by a finite size effect, due to the finite area of the watersheds. A special emphasis is given to the exponent of the drainage area, aA, that has been previously discussed in the context of different aggregation models relevant to channel network growth. We show that aA is consistent with 4/3, a value that was obtained and analytically demonstrated from directed random walk aggregating models, inspired by the model of Scheidegger (1967). The drainage density and mainstream length present no simple scaling with area, except at large areas where they tend to trivial values: constant density and square root of drainage area, respectively. These asymptotic limits necessarily imply that the space dimension of channel networks is 2, equal to the embedding space. The limits are reached for drainage areas larger than 100 km2. For smaller areas, the asymptotic limit represents either a lower bound (drainage density) or an upper bound (mainstream length) of the distributions. Because the fluctuations of the drainage density slowly converge to a finite limit, the system could be adequately described as a fat fractal, where the average drainage density is the sum of a constant plus a fluctuation decreasing as a power law with integrating area. A fat fractal hypothesis could explain why the similarity dimension is not equal to the fractal capacity dimension, as it is for thin fractals. The physical consequences are not yet really understood, but we draw an analogy with a directed aggregating system where the growth process involves both stochastic and deterministic growth. These models are known to be fat fractals, and the deterministic growth, which constitutes a fundamental ingredient of these models, could be attributed in river systems to the role of terrestrial gravity.

  20. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.

    1993-01-01

    Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.

  1. Surface-plasmon polariton scattering from a finite array of nanogrooves/ridges: Efficient mirrors

    NASA Astrophysics Data System (ADS)

    Sánchez-Gil, José A.; Maradudin, Alexei A.

    2005-06-01

    The scattering of surface-plasmon polaritons (SPP) by finite arrays of one-dimensional nanodefects on metal surfaces is theoretically investigated on the basis of the reduced Rayleigh equation. Numerical calculations are carried out that rigorously account for all the scattering channels: SPP reflection and transmission, and radiative leakage. We analyze the range of parameters (defect size and number) for which high SPP reflection efficiency (low radiative losses) is achieved within a SPP band gap (negligible SPP transmission), neglecting ohmic losses (justified for array lengths significantly shorter than the SPP inelastic length): Smaller defects play better as SPP mirrors (e.g., efficiency >90% at λ ˜650nm for Gaussian ridges/grooves with sub-30nm height and half-width) than larger defects, since the latter yield significant radiative losses.

  2. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  3. Analysis of transient, linear wave propagation in shells by the finite difference method

    NASA Technical Reports Server (NTRS)

    Geers, T. L.; Sobel, L. H.

    1971-01-01

    The applicability of the finite difference method to propagation problems in shells, and the response of a cylindrical shell with cutouts to both longitudinal and radial transient excitations are investigated. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. The short wave length limitations of thin shell theory create significant convergence difficulties may often be overcome through proper selection of finite difference mesh dimensions and temporal or spatial smoothing of the excitation. Cutouts produce moderate changes in early and intermediate time response of a cylindrical shell to axisymmetric pulse loads applied at one end. The cutouts may facilitate the undesirable late-time transfer of load-injected extensional energy into nonaxisymmetric flexural response.

  4. A comparative study of computational solutions to flow over a backward-facing step

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.

    1993-01-01

    A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.

  5. Tunneling of Massive Flux Lines in a High Tc Superconductor at absolute Zero

    NASA Astrophysics Data System (ADS)

    Narahari Achar, B. N.; Waleed Gaber, M.

    1997-11-01

    Our previous study(M. W. Gaber and B. N. N. Achar, Phys. Rev. B52, 1314(1995)) of quantum tunneling of damped flux lines of finite mass has been extended over the temperature range from the crossover temperature T0 to T=0 with a view to investigate further the temperature dependence of the tunneling rate found earlier. It has been found that at T=0, for the case of the cubic pinning potential, the action can be evaluated in a closed form for a flux line of finite length. The only non-zero contribution arises from the dissipation term resulting in a finite action.

  6. ICANT, a code for the self-consistent computation of ICRH antenna coupling

    NASA Astrophysics Data System (ADS)

    Pécoul, S.; Heuraux, S.; Koch, R.; Leclert, G.

    1996-02-01

    The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in y and z directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are very close to analytical solutions when available.

  7. ξ /ξ2 n d ratio as a tool to refine effective Polyakov loop models

    NASA Astrophysics Data System (ADS)

    Caselle, Michele; Nada, Alessandro

    2017-10-01

    Effective Polyakov line actions are a powerful tool to study the finite temperature behavior of lattice gauge theories. They are much simpler to simulate than the original lattice model and are affected by a milder sign problem, but it is not clear to which extent they really capture the rich spectrum of the original theories. We propose here a simple way to address this issue based on the so-called second moment correlation length ξ2 n d . The ratio ξ /ξ2 n d between the exponential correlation length and the second moment one is equal to 1 if only a single mass is present in the spectrum, and it becomes larger and larger as the complexity of the spectrum increases. Since both ξ and ξ2 n d are easy to measure on the lattice, this is a cheap and efficient way to keep track of the spectrum of the theory. As an example of the information one can obtain with this tool, we study the behavior of ξ /ξ2 n d in the confining phase of the (D =3 +1 ) SU(2) gauge theory and show that it is compatible with 1 near the deconfinement transition, but it increases dramatically as the temperature decreases. We also show that this increase can be well understood in the framework of an effective string description of the Polyakov loop correlator. This nontrivial behavior should be reproduced by the Polyakov loop effective action; thus, it represents a stringent and challenging test of existing proposals, and it may be used to fine-tune the couplings and to identify the range of validity of the approximations involved in their construction.

  8. Limited-path-length entanglement percolation in quantum complex networks

    NASA Astrophysics Data System (ADS)

    Cuquet, Martí; Calsamiglia, John

    2011-03-01

    We study entanglement distribution in quantum complex networks where nodes are connected by bipartite entangled states. These networks are characterized by a complex structure, which dramatically affects how information is transmitted through them. For pure quantum state links, quantum networks exhibit a remarkable feature absent in classical networks: it is possible to effectively rewire the network by performing local operations on the nodes. We propose a family of such quantum operations that decrease the entanglement percolation threshold of the network and increase the size of the giant connected component. We provide analytic results for complex networks with an arbitrary (uncorrelated) degree distribution. These results are in good agreement with numerical simulations, which also show enhancement in correlated and real-world networks. The proposed quantum preprocessing strategies are not robust in the presence of noise. However, even when the links consist of (noisy) mixed-state links, one can send quantum information through a connecting path with a fidelity that decreases with the path length. In this noisy scenario, complex networks offer a clear advantage over regular lattices, namely, the fact that two arbitrary nodes can be connected through a relatively small number of steps, known as the small-world effect. We calculate the probability that two arbitrary nodes in the network can successfully communicate with a fidelity above a given threshold. This amounts to working out the classical problem of percolation with a limited path length. We find that this probability can be significant even for paths limited to few connections and that the results for standard (unlimited) percolation are soon recovered if the path length exceeds by a finite amount the average path length, which in complex networks generally scales logarithmically with the size of the network.

  9. A molecular scale perspective: Monte Carlo simulation for rupturing of ultra thin polymer film melts

    NASA Astrophysics Data System (ADS)

    Singh, Satya Pal

    2017-04-01

    Monte Carlo simulation has been performed to study the rupturing process of thin polymer film under strong confinement. The change in mean square displacement; pair correlation function; density distribution; average bond length and microscopic viscosity are sampled by varying the molecular interaction parameters such as the strength and the equilibrium positions of the bonding, non-bonding potentials and the sizes of the beads. The variation in mean square angular displacement χθ = [ < Δθ2 > - < Δθ>2 ] fits very well to a function of type y (t) = A + B *e-t/τ. This may help to study the viscous properties of the films and its dependence on different parameters. The ultra thin film annealed at high temperature gets ruptured and holes are created in the film mimicking spinodal dewetting. The pair correlation function and density profile reveal rich information about the equilibrium structure of the film. The strength and equilibrium bond length of finite extensible non-linear elastic potential (FENE) and non-bonding Morse potential have clear impact on microscopic rupturing of the film. The beads show Rouse or repetition motion forming rim like structures near the holes created inside the film. The higher order interaction as dipole-quadrupole may get prominence under strong confinement. The enhanced excluded volume interaction under strong confinement may overlap with the molecular dispersion forces. It can work to reorganize the molecules at the bottom of the scale and can imprint its signature in complex patterns evolved.

  10. Critical transition in the constrained traveling salesman problem.

    PubMed

    Andrecut, M; Ali, M K

    2001-04-01

    We investigate the finite size scaling of the mean optimal tour length as a function of density of obstacles in a constrained variant of the traveling salesman problem (TSP). The computational experience pointed out a critical transition (at rho(c) approximately 85%) in the dependence between the excess of the mean optimal tour length over the Held-Karp lower bound and the density of obstacles.

  11. A finite element model on effects of impact load and cavitation on fatigue crack propagation in mechanical bileaflet aortic heart valve.

    PubMed

    Mohammadi, H; Klassen, R J; Wan, W-K

    2008-10-01

    Pyrolytic carbon mechanical heart valves (MHVs) are widely used to replace dysfunctional and failed heart valves. As the human heart beats around 40 million times per year, fatigue is the prime mechanism of mechanical failure. In this study, a finite element approach is implemented to develop a model for fatigue analysis of MHVs due to the impact force between the leaflet and the stent and cavitation in the aortic position. A two-step method to predict crack propagation in the leaflets of MHVs has been developed. Stress intensity factors (SIFs) are computed at a small initiated crack located on the leaflet edge (the worst case) using the boundary element method (BEM). Static analysis of the crack is performed to analyse the stress distribution around the front crack zone when the crack is opened; this is followed by a dynamic crack analysis to consider crack propagation using the finite element approach. Two factors are taken into account in the calculation of the SIFs: first, the effect of microjet formation due to cavitation in the vicinity of leaflets, resulting in water hammer pressure; second, the effect of the impact force between the leaflet and the stent of the MHVs, both in the closing phase. The critical initial crack length, the SIFs, the water hammer pressure, and the maximum jet velocity due to cavitation have been calculated. With an initial crack length of 35 microm, the fatigue life of the heart valve is greater than 60 years (i.e. about 2.2 x 10(9) cycles) and, with an initial crack length of 170 microm, the fatigue life of the heart valve would be around 2.5 years (i.e. about 9.1 x 10(7) cycles). For an initial crack length greater than 170 microm, there is catastrophic failure and fatigue cracking no longer occurs. A finite element model of fatigue analysis using Patran command language (PCL custom code) in MSC software can be used to evaluate the useful lifespan of MHVs. Similar methodologies can be extended to other medical devices under cyclic loads.

  12. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalenko, V. N.; Vechernin, V. V.

    2016-01-22

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity.more » In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data.« less

  13. Semiclassical theory for liquidlike behavior of the frustrated magnet Ca10Cr7O28

    NASA Astrophysics Data System (ADS)

    Biswas, Sounak; Damle, Kedar

    2018-03-01

    We identify the low energy effective Hamiltonian that is expected to describe the low temperature properties of the frustrated magnet Ca10Cr7O28 . Motivated by the fact that this effective Hamiltonian has S =3 /2 effective moments as its degrees of freedom, we use semiclassical spin-wave theory to study the T =0 physics of this effective model and argue that singular spin-wave fluctuations destabilize the spiral order favored by the exchange couplings of this effective Hamiltonian. We also use a combination of classical Monte-Carlo simulations and molecular dynamics, as well as analytical approximations, to study the physics at low, nonzero temperatures. The results of these nonzero temperature calculations capture the liquidlike structure factors observed in the temperature range accessed by recent experiments. Additionally, at still lower temperatures, they predict that a transition to nematic order in the bond energies reflects itself in the spin channel in the form of a crossover to a regime with large but finite correlation length for spiral spin correlations and a corresponding slowing down of spin dynamics.

  14. Statistical theory for the Kardar-Parisi-Zhang equation in (1+1) dimensions.

    PubMed

    Masoudi, A A; Shahbazi, F; Davoudi, J; Tabar, M Reza Rahimi

    2002-02-01

    The Kardar-Parisi-Zhang (KPZ) equation in (1+1) dimensions dynamically develops sharply connected valley structures within which the height derivative is not continuous. We develop a statistical theory for the KPZ equation in (1+1) dimensions driven with a random forcing that is white in time and Gaussian-correlated in space. A master equation is derived for the joint probability density function of height difference and height gradient P(h-h*, partial differential(x)h,t) when the forcing correlation length is much smaller than the system size and much larger than the typical sharp valley width. In the time scales before the creation of the sharp valleys, we find the exact generating function of h-h* and partial differential(x)h. The time scale of the sharp valley formation is expressed in terms of the force characteristics. In the stationary state, when the sharp valleys are fully developed, finite-size corrections to the scaling laws of the structure functions left angle bracket(h-h*)(n)(partial differential(x)h)(m)right angle bracket are also obtained.

  15. Multiple dynamic regimes in colloid-polymer dispersions: New insight using X-ray photon correlation spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, Sunita; Kishore, Suhasini; Narayanan, Suresh

    We present an X-ray photon correlation spectros- copy (XPCS) study of dynamic transitions in an anisotropic colloid-polymer dispersion with multiple arrested states. The results provide insight into the mechanism for formation of repulsive glasses, attractive glasses, and networked gels of col- loids with weakly adsorbing polymer chains. In the presence of adsorbing polymer chains, we observe three distinct regimes: a state with slow dynamics consisting of finite particles and clusters, for which interparticle interactions are predominantly repulsive; a second dynamic regime occurring above the satu- ration concentration of added polymer, in which small clusters of nanoparticles form via a short-rangemore » depletion attraction; and a third regime above the overlap concentration in which dynamics of clusters are independent of polymer chain length. The observed complex dynamic state diagram is primarily gov- erned by the structural reorganization of a nanoparticle cluster and polymer chains at the nanoparticle-polymer surface and in the concentrated medium, which in turn controls the dynamics of the dispersion« less

  16. Quantum critical fluctuations in the heavy fermion compound Ce(Ni 0.935Pd 0.065) 2Ge 2

    DOE PAGES

    Wang, C. H.; Poudel, L.; Taylor, Alice E.; ...

    2014-12-03

    Electric resistivity, specific heat, magnetic susceptibility, and inelastic neutron scattering experiments were performed on a single crystal of the heavy fermion compound Ce(Ni 0.935Pd 0.065) 2Ge 2 in order to research the spin fluctuations near an antiferromagnetic (AF) quantum critical point (QCP). The resistivity and the specific heat coefficient for T ≤ 1 K exhibit the power law behavior expected for a 3D itinerant AF QCP (ρ(T) ~ T 3/2 and γ(T) ~ γ 0 - bT 1/2). However, for 2 ≤ T ≤ 10 K, the susceptibility and specific heat vary as log T and the resistivity varies linearlymore » with temperature. In addition, despite the fact that the resistivity and specific heat exhibit the non-Fermi liquid behavior expected at a QCP, the correlation length, correlation time, and staggered susceptibility of the spin fluctuations remain finite at low temperature. In conclusion, we suggest that these deviations from the divergent behavior expected for a QCP may result from alloy disorder.« less

  17. [Geographic variation of seed morphological traits of Picea schrenkiana var. tianschanica in Tianshan Mountains, Xinjiang of Northwest China].

    PubMed

    Liu, Gui-Feng; Zang, Run-Guo; Liu, Hua; Bai, Zhi-Qiang; Guo, Zhong-Jun; Ding, Yi

    2012-06-01

    Taking the Picea schrenkiana var. tianschanica forests at three sites with different longitudes (Zhaosu, Tianchi, and Qitai) in Tianshan Mountains as the objects, the cones were collected along an altitudinal gradient to analyze the variation of their seed morphological traits (seed scale length and width, seed scale length/width ratio, seed wing length and width, seed wing length/ width ratio, seed length and width, and seed length/width ratio). All the seed traits except seed width tended to decrease with increasing altitude. The seed traits except seed wing width, seed width, and seed length/width ratio all had significant negative correlations with altitude. Seed scale length and width and seed scale length/width ratio had significant positive correlations with longitude. Seed scale length, seed scale length/width ratio, and seed wing length/width ratio had significant negative correlations with slope degree. No significant correlations were observed between the seed traits except seed wing width and the slope aspect. Altitude was the main factor affecting the seed scale length, seed scale length/width ratio, and seed wing length/width ratio.

  18. Sonographic Measurement of Fetal Ear Length in Turkish Women with a Normal Pregnancy

    PubMed Central

    Özdemir, Mucize Eriç; Uzun, Işıl; Karahasanoğlu, Ayşe; Aygün, Mehmet; Akın, Hale; Yazıcıoğlu, Fehmi

    2014-01-01

    Background: Abnormal fetal ear length is a feature of chromosomal disorders. Fetal ear length measurement is a simple measurement that can be obtained during ultrasonographic examinations. Aims: To develop a nomogram for fetal ear length measurements in our population and investigate the correlation between fetal ear length, gestational age, and other standard fetal biometric measurements. Study Design: Cohort study. Methods: Ear lengths of the fetuses were measured in normal singleton pregnancies. The relationship between gestational age and fetal ear length in millimetres was analysed by simple linear regression. In addition, the correlation of fetal ear length measurements with biparietal diameter, head circumference, abdominal circumference, and femur length were evaluated.Ear length measurements were obtained from fetuses in 389 normal singleton pregnancies ranging between 16 and 28 weeks of gestation. Results: A nomogram was developed by linear regression analysis of the parameters ear length and gestational age. Fetal ear length (mm) = y = (1.348 X gestational age)−12.265), where gestational ages is in weeks. A high correlation was found between fetal ear length and gestational age, and a significant correlation was also found between fetal ear length and the biparietal diameter (r=0.962; p<0.001). Similar correlations were found between fetal ear length and head circumference, and fetal ear length and femur length. Conclusion: The results of this study provide a nomogram for fetal ear length. The study also demonstrates the relationship between ear length and other biometric measurements. PMID:25667783

  19. Elastic collapse in disordered isostatic networks

    NASA Astrophysics Data System (ADS)

    Moukarzel, C. F.

    2012-02-01

    Isostatic networks are minimally rigid and therefore have, generically, nonzero elastic moduli. Regular isostatic networks have finite moduli in the limit of large sizes. However, numerical simulations show that all elastic moduli of geometrically disordered isostatic networks go to zero with system size. This holds true for positional as well as for topological disorder. In most cases, elastic moduli decrease as inverse power laws of system size. On directed isostatic networks, however, of which the square and cubic lattices are particular cases, the decrease of the moduli is exponential with size. For these, the observed elastic weakening can be quantitatively described in terms of the multiplicative growth of stresses with system size, giving rise to bulk and shear moduli of order e-bL. The case of sphere packings, which only accept compressive contact forces, is considered separately. It is argued that these have a finite bulk modulus because of specific correlations in contact disorder, introduced by the constraint of compressivity. We discuss why their shear modulus, nevertheless, is again zero for large sizes. A quantitative model is proposed that describes the numerically measured shear modulus, both as a function of the loading angle and system size. In all cases, if a density p>0 of overconstraints is present, as when a packing is deformed by compression or when a glass is outside its isostatic composition window, all asymptotic moduli become finite. For square networks with periodic boundary conditions, these are of order \\sqrt{p} . For directed networks, elastic moduli are of order e-c/p, indicating the existence of an "isostatic length scale" of order 1/p.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helinski, Ryan

    This Python package provides high-performance implementations of the functions and examples presented in "BiEntropy - The Approximate Entropy of a Finite Binary String" by Grenville J. Croll, presented at ANPA 34 in 2013. https://arxiv.org/abs/1305.0954 According to the paper, BiEntropy is "a simple algorithm which computes the approximate entropy of a finite binary string of arbitrary length" using "a weighted average of the Shannon Entropies of the string and all but the last binary derivative of the string."

  1. Correlations of leaf area with length and width measurements of leaves of black oak, white oak, and sugar maple

    Treesearch

    Philip M. Wargo

    1978-01-01

    Correlations of leaf area with length, width, and length times width of leaves of black oak, white oak, and sugar maple were determined to see if length and/or width could be used as accurate estimators of leaf area. The correlation of length times width with leaf area was high (r > + .95) for all three species. The linear equation Y = a + bX, where X = length times...

  2. Strain-energy-release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; Obrien, T. K.

    1987-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtural crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  3. Simulation of fatigue crack growth under large scale yielding conditions

    NASA Astrophysics Data System (ADS)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  4. Reconstruction of explicit structural properties at the nanoscale via spectroscopic microscopy

    NASA Astrophysics Data System (ADS)

    Cherkezyan, Lusik; Zhang, Di; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-02-01

    The spectrum registered by a reflected-light bright-field spectroscopic microscope (SM) can quantify the microscopically indiscernible, deeply subdiffractional length scales within samples such as biological cells and tissues. Nevertheless, quantification of biological specimens via any optical measures most often reveals ambiguous information about the specific structural properties within the studied samples. Thus, optical quantification remains nonintuitive to users from the diverse fields of technique application. In this work, we demonstrate that the SM signal can be analyzed to reconstruct explicit physical measures of internal structure within label-free, weakly scattering samples: characteristic length scale and the amplitude of spatial refractive-index (RI) fluctuations. We present and validate the reconstruction algorithm via finite-difference time-domain solutions of Maxwell's equations on an example of exponential spatial correlation of RI. We apply the validated algorithm to experimentally measure structural properties within isolated cells from two genetic variants of HT29 colon cancer cell line as well as within a prostate tissue biopsy section. The presented methodology can lead to the development of novel biophotonics techniques that create two-dimensional maps of explicit structural properties within biomaterials: the characteristic size of macromolecular complexes and the variance of local mass density.

  5. One-electron densities of freely rotating Wigner molecules

    NASA Astrophysics Data System (ADS)

    Cioslowski, Jerzy

    2017-12-01

    A formalism enabling computation of the one-particle density of a freely rotating assembly of identical particles that vibrate about their equilibrium positions with amplitudes much smaller than their average distances is presented. It produces densities as finite sums of products of angular and radial functions, the length of the expansion being determined by the interplay between the point-group and permutational symmetries of the system in question. Obtaining from a convolution of the rotational and bosonic components of the parent wavefunction, the angular functions are state-dependent. On the other hand, the radial functions are Gaussians with maxima located at the equilibrium lengths of the position vectors of individual particles and exponents depending on the scalar products of these vectors and the eigenvectors of the corresponding Hessian as well as the respective eigenvalues. Although the new formalism is particularly useful for studies of the Wigner molecules formed by electrons subject to weak confining potentials, it is readily adaptable to species (such as ´balliums’ and Coulomb crystals) composed of identical particles with arbitrary spin statistics and permutational symmetry. Several examples of applications of the present approach to the harmonium atoms within the strong-correlation regime are given.

  6. Observation and modeling of deflagration-to-detonation (DDT) transition in low-density HMX

    NASA Astrophysics Data System (ADS)

    Tringe, Joseph; Vandersall, Kevin; Reaugh, Jack; Levie, Harold; Henson, Bryan; Smilowitz, Laura; Parker, Gary

    2015-06-01

    We employ simultaneous flash x-ray radiography and streak imaging, together with a multi-phase finite element model, to understand deflagration-to-detonation transition (DDT) phenomena in low-density (~ 1.2 gm/cm3) powder of the explosive cyclotetramethylene-tetranitramine (HMX). HMX powder was lightly hand-tamped in a 12.7 mm diameter column, relatively lightly-confined in an optically-transparent polycarbonate cylinder with wall thickness 25.4 mm. We observe apparent compaction of the powder in advance of the detonation transition, both by x-ray contrast and by the motion of small steel spheres pre-emplaced throughout the length of explosive. High-speed imaging along the explosive cylinder length provides a temporally continuous record of the transition that is correlated with the high-resolution x-ray image record. Preliminary simulation of these experiments with the HERMES model implemented in the ALE3D code enables improved understanding of the explosive particle burning, compaction and detonation phenomena which are implied by the observed reaction rate and transition location within the cylinder. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  7. Algorithm for quantum-mechanical finite-nuclear-mass variational calculations of atoms with two p electrons using all-electron explicitly correlated Gaussian basis functions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy

    2009-12-15

    A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.

  8. Two-point correlation function for Dirichlet L-functions

    NASA Astrophysics Data System (ADS)

    Bogomolny, E.; Keating, J. P.

    2013-03-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.

  9. Saturation Length of Erodible Sediment Beds Subject to Shear Flow

    NASA Astrophysics Data System (ADS)

    Casler, D. M.; Kahn, B. P.; Furbish, D. J.; Schmeeckle, M. W.

    2016-12-01

    We examine the initial growth and wavelength selection of sand ripples based on probabilistic formulations of the flux and the Exner equation. Current formulations of this problem as a linear stability analysis appeal to the idea of a saturation length-the lag between the bed stress and the flux-as a key stabilizing influence leading to selection of a finite wavelength. We present two contrasting formulations. The first is based on the Fokker-Planck approximation of the divergence form of the Exner equation, and thus involves particle diffusion associated with variations in particle activity, in addition to the conventionally assumed advective term. The role of a saturation length associated with the particle activity is similar to previous analyses. However, particle diffusion provides an attenuating influence on the growth of small wavelengths, independent of a saturation length, and is thus a sufficient, if not necessary, condition contributing to selection of a finite wavelength. The second formulation is based on the entrainment form of the Exner equation. As a precise, probabilistic formulation of conservation, this form of the Exner equation does not distinguish between advection and diffusion, and, because it directly accounts for all particle motions via a convolution of the distribution of particle hop distances, it pays no attention to the idea of a saturation length. The formulation and resulting description of initial ripple growth and wavelength selection thus inherently subsume the effects embodied in the ideas of advection, diffusion, and a saturation length as used in other formulations. Moreover, the formulation does not distinguish between bed load and suspended load, and is thus broader in application. The analysis reveals that the length scales defined by the distribution of hop distances are more fundamental than the saturation length in determining the initial growth or decay of bedforms. Formulations involving the saturation length coincide with the special case of an exponential distribution of hop distance, where the saturation length is equal to the mean hop distance.

  10. Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 microm.

    PubMed

    Seol, Yeonee; Li, Jinyu; Nelson, Philip C; Perkins, Thomas T; Betterton, M D

    2007-12-15

    The wormlike chain (WLC) model currently provides the best description of double-stranded DNA elasticity for micron-sized molecules. This theory requires two intrinsic material parameters-the contour length L and the persistence length p. We measured and then analyzed the elasticity of double-stranded DNA as a function of L (632 nm-7.03 microm) using the classic solution to the WLC model. When the elasticity data were analyzed using this solution, the resulting fitted value for the persistence length p(wlc) depended on L; even for moderately long DNA molecules (L = 1300 nm), this apparent persistence length was 10% smaller than its limiting value for long DNA. Because p is a material parameter, and cannot depend on length, we sought a new solution to the WLC model, which we call the "finite wormlike chain (FWLC)," to account for effects not considered in the classic solution. Specifically we accounted for the finite chain length, the chain-end boundary conditions, and the bead rotational fluctuations inherent in optical trapping assays where beads are used to apply the force. After incorporating these corrections, we used our FWLC solution to generate force-extension curves, and then fit those curves with the classic WLC solution, as done in the standard experimental analysis. These results qualitatively reproduced the apparent dependence of p(wlc) on L seen in experimental data when analyzed with the classic WLC solution. Directly fitting experimental data to the FWLC solution reduces the apparent dependence of p(fwlc) on L by a factor of 3. Thus, the FWLC solution provides a significantly improved theoretical framework in which to analyze single-molecule experiments over a broad range of experimentally accessible DNA lengths, including both short (a few hundred nanometers in contour length) and very long (microns in contour length) molecules.

  11. Exchange-correlation approximations for reduced-density-matrix-functional theory at finite temperature: Capturing magnetic phase transitions in the homogeneous electron gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldsiefen, Tim; Cangi, Attila; Eich, F. G.

    Here, we derive an intrinsically temperature-dependent approximation to the correlation grand potential for many-electron systems in thermodynamical equilibrium in the context of finite-temperature reduced-density-matrix-functional theory (FT-RDMFT). We demonstrate its accuracy by calculating the magnetic phase diagram of the homogeneous electron gas. We compare it to known limits from highly accurate quantum Monte Carlo calculations as well as to phase diagrams obtained within existing exchange-correlation approximations from density functional theory and zero-temperature RDMFT.

  12. Exchange-correlation approximations for reduced-density-matrix-functional theory at finite temperature: Capturing magnetic phase transitions in the homogeneous electron gas

    DOE PAGES

    Baldsiefen, Tim; Cangi, Attila; Eich, F. G.; ...

    2017-12-18

    Here, we derive an intrinsically temperature-dependent approximation to the correlation grand potential for many-electron systems in thermodynamical equilibrium in the context of finite-temperature reduced-density-matrix-functional theory (FT-RDMFT). We demonstrate its accuracy by calculating the magnetic phase diagram of the homogeneous electron gas. We compare it to known limits from highly accurate quantum Monte Carlo calculations as well as to phase diagrams obtained within existing exchange-correlation approximations from density functional theory and zero-temperature RDMFT.

  13. A study of reacting free and ducted hydrogen/air jets

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.

    1975-01-01

    The mixing and reaction of a supersonic jet of hydrogen in coaxial free and ducted high temperature test gases were investigated. The importance of chemical kinetics on computed results, and the utilization of free-jet theoretical approaches to compute enclosed flow fields were studied. Measured pitot pressure profiles were correlated by use of a parabolic mixing analysis employing an eddy viscosity model. All computations, including free, ducted, reacting, and nonreacting cases, use the same value of the empirical constant in the viscosity model. Equilibrium and finite rate chemistry models were utilized. The finite rate assumption allowed prediction of observed ignition delay, but the equilibrium model gave the best correlations downstream from the ignition location. Ducted calculations were made with finite rate chemistry; correlations were, in general, as good as the free-jet results until problems with the boundary conditions were encountered.

  14. Electron Dynamics Within the Electron Diffusion Region of Asymmetric Reconnection

    NASA Astrophysics Data System (ADS)

    Argall, M. R.; Paulson, K.; Alm, L.; Rager, A.; Dorelli, J.; Shuster, J.; Wang, S.; Torbert, R. B.; Vaith, H.; Dors, I.; Chutter, M.; Farrugia, C.; Burch, J.; Pollock, C.; Giles, B.; Gershman, D.; Lavraud, B.; Russell, C. T.; Strangeway, R.; Magnes, W.; Lindqvist, P.-A.; Khotyaintsev, Yu. V.; Ergun, R. E.; Ahmadi, N.

    2018-01-01

    We investigate the agyrotropic nature of electron distribution functions and their substructure to illuminate electron dynamics in a previously reported electron diffusion region (EDR) event. In particular, agyrotropy is examined as a function of energy to reveal detailed finite Larmor radius effects for the first time. It is shown that the previously reported ˜66 eV agyrotropic "crescent" population that has been accelerated as a result of reconnection is evanescent in nature because it mixes with a denser, gyrotopic background. Meanwhile, accelerated agyrotropic populations at 250 and 500 eV are more prominent because the background plasma at those energies is more tenuous. Agyrotropy at 250 and 500 eV is also more persistent than at 66 eV because of finite Larmor radius effects; agyrotropy is observed 2.5 ion inertial lengths from the EDR at 500 eV, but only in close proximity to the EDR at 66 eV. We also observe linearly polarized electrostatic waves leading up to and within the EDR. They have wave normal angles near 90°, and their occurrence and intensity correlate with agyrotropy. Within the EDR, they modulate the flux of 500 eV electrons travelling along the current layer. The net electric field intensifies the reconnection current, resulting in a flow of energy from the fields into the plasma.

  15. Finite element modelling of human auditory periphery including a feed-forward amplification of the cochlea.

    PubMed

    Wang, Xuelin; Wang, Liling; Zhou, Jianjun; Hu, Yujin

    2014-08-01

    A three-dimensional finite element model is developed for the simulation of the sound transmission through the human auditory periphery consisting of the external ear canal, middle ear and cochlea. The cochlea is modelled as a straight duct divided into two fluid-filled scalae by the basilar membrane (BM) having an orthotropic material property with dimensional variation along its length. In particular, an active feed-forward mechanism is added into the passive cochlear model to represent the activity of the outer hair cells (OHCs). An iterative procedure is proposed for calculating the nonlinear response resulting from the active cochlea in the frequency domain. Results on the middle-ear transfer function, BM steady-state frequency response and intracochlear pressure are derived. A good match of the model predictions with experimental data from the literatures demonstrates the validity of the ear model for simulating sound pressure gain of middle ear, frequency to place map, cochlear sensitivity and compressive output for large intensity input. The current model featuring an active cochlea is able to correlate directly the sound stimulus in the ear canal with the vibration of BM and provides a tool to explore the mechanisms by which sound pressure in the ear canal is converted to a stimulus for the OHCs.

  16. Numerical Study of Quantum Hall Bilayers at Total Filling νT=1 : A New Phase at Intermediate Layer Distances

    NASA Astrophysics Data System (ADS)

    Zhu, Zheng; Fu, Liang; Sheng, D. N.

    2017-10-01

    We study the phase diagram of quantum Hall bilayer systems with total filing νT=1 /2 +1 /2 of the lowest Landau level as a function of layer distances d . Based on numerical exact diagonalization calculations, we obtain three distinct phases, including an exciton superfluid phase with spontaneous interlayer coherence at small d , a composite Fermi liquid at large d , and an intermediate phase for 1.1

  17. The spectra and periodograms of anti-correlated discrete fractional Gaussian noise.

    PubMed

    Raymond, G M; Percival, D B; Bassingthwaighte, J B

    2003-05-01

    Discrete fractional Gaussian noise (dFGN) has been proposed as a model for interpreting a wide variety of physiological data. The form of actual spectra of dFGN for frequencies near zero varies as f(1-2H), where 0 < H < 1 is the Hurst coefficient; however, this form for the spectra need not be a good approximation at other frequencies. When H approaches zero, dFGN spectra exhibit the 1 - 2H power-law behavior only over a range of low frequencies that is vanishingly small. When dealing with a time series of finite length drawn from a dFGN process with unknown H, practitioners must deal with estimated spectra in lieu of actual spectra. The most basic spectral estimator is the periodogram. The expected value of the periodogram for dFGN with small H also exhibits non-power-law behavior. At the lowest Fourier frequencies associated with a time series of N values sampled from a dFGN process, the expected value of the periodogram for H approaching zero varies as f(0) rather than f(1-2H). For finite N and small H, the expected value of the periodogram can in fact exhibit a local power-law behavior with a spectral exponent of 1 - 2H at only two distinct frequencies.

  18. Hydrodynamic ion sound instability in systems of a finite length

    NASA Astrophysics Data System (ADS)

    Koshkarov, O.; Chapurin, O.; Smolyakov, A.; Kaganovich, I.; Ilgisonis, V.

    2016-09-01

    Plasmas permeated by an energetic ion beam is prone to the kinetic ion-sound instability that occurs as a result of the inverse Landau damping for ion velocity. It is shown here that in a finite length system there exists another type of the ion sound instability which occurs for v02

  19. Finite-difference time-domain analysis of photonic nanojets from liquid-crystal-containing microcylinder

    NASA Astrophysics Data System (ADS)

    Matsui, Tatsunosuke; Okajima, Akiko

    2014-01-01

    The photonic nanojet (PNJ) from a microcylinder with liquid crystals (LCs) showing tangential molecular alignment inside the microcylinder has been numerically analyzed on the basis of the finite-difference time-domain method. By introducing a small degree of birefringence, the characteristics of the PNJ, such as propagation length and polarization state, can be drastically changed. The azimuth angle and the ellipticity of the elliptically polarized PNJ obtained from the LC microcylinder changes within the propagation lengths in the micrometer range even in the isotropic matrix, which might be attributed to the jet like spatial profile of the PNJ. By using LC microcylinders or microspheres, we may obtain a rich variety of PNJs with unique polarization characteristics, which might open a new avenue for the development of novel optical devices with electrical tunability.

  20. Frequency domain analysis of errors in cross-correlations of ambient seismic noise

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Ben-Zion, Yehuda; Zigone, Dimitri

    2016-12-01

    We analyse random errors (variances) in cross-correlations of ambient seismic noise in the frequency domain, which differ from previous time domain methods. Extending previous theoretical results on ensemble averaged cross-spectrum, we estimate confidence interval of stacked cross-spectrum of finite amount of data at each frequency using non-overlapping windows with fixed length. The extended theory also connects amplitude and phase variances with the variance of each complex spectrum value. Analysis of synthetic stationary ambient noise is used to estimate the confidence interval of stacked cross-spectrum obtained with different length of noise data corresponding to different number of evenly spaced windows of the same duration. This method allows estimating Signal/Noise Ratio (SNR) of noise cross-correlation in the frequency domain, without specifying filter bandwidth or signal/noise windows that are needed for time domain SNR estimations. Based on synthetic ambient noise data, we also compare the probability distributions, causal part amplitude and SNR of stacked cross-spectrum function using one-bit normalization or pre-whitening with those obtained without these pre-processing steps. Natural continuous noise records contain both ambient noise and small earthquakes that are inseparable from the noise with the existing pre-processing steps. Using probability distributions of random cross-spectrum values based on the theoretical results provides an effective way to exclude such small earthquakes, and additional data segments (outliers) contaminated by signals of different statistics (e.g. rain, cultural noise), from continuous noise waveforms. This technique is applied to constrain values and uncertainties of amplitude and phase velocity of stacked noise cross-spectrum at different frequencies, using data from southern California at both regional scale (˜35 km) and dense linear array (˜20 m) across the plate-boundary faults. A block bootstrap resampling method is used to account for temporal correlation of noise cross-spectrum at low frequencies (0.05-0.2 Hz) near the ocean microseismic peaks.

  1. Best Stent Length Predicted by Simple CT Measurement Rather than Patient Height.

    PubMed

    Barrett, Keith; Foell, Kirsten; Lantz, Andrea; Ordon, Michael; Lee, Jason Y; Pace, Kenneth T; Honey, R John D'A

    2016-09-01

    Ureteral stent length is important, as stents that are too long might worsen symptoms and too short are at higher risk of migration. The purpose of this study was to determine if patient or radiologic parameters correlate with directly measured ureteral length and if directly measured ureteral length predicts proper stent positioning. During stent placement, ureteral length (ureteropelvic junction to ureterovesical junction distance) was directly measured by endoscopically viewing a ureteral catheter (with 1-cm marking) emanating from the ureteral orifice. A 22, 24, or 26 cm stent was chosen to be closest to the measured ureteral length. For ureters >26 cm, a 26 cm stent was chosen. Ends of an "ideally positioned" stent were fully curled in the renal pelvis and bladder, without crossing the bladder midline. Rates of ideal stent position were compared between patients with matching stent and ureteral lengths and those with stent lengths differing by ≥1 cm (mismatched). The measured ureteral length was correlated with patient height, L1-L5 height, and length measured on CT. Fifty-nine ureters from 57 patients were included. Height was reasonably correlated with L1-L5 height (Spearman correlation coefficient [rho] = 0.79), although both were poorly correlated with directly measured ureteral length (rho = 0.18 for height and 0.32 for lumbar height). Ureteral lengths measured on CT correlated well with direct measurement (rho = 0.63 for axial cuts and rho = 0.64 for coronal cuts). Matched stent length was associated with higher rates of ideal stent position than mismatched (100% vs 70.9%, p = 0.006). CT measurements, rather than height, correlate well with measured length and could be used to choose the appropriate stent length. Stents matching directly measured ureteral lengths are associated with high rates of ideal stent position.

  2. A study of unsteady physiological magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping.

    PubMed

    Tripathi, Dharmendra; Bég, O Anwar

    2012-08-01

    Magnetohydrodynamic peristaltic flows arise in controlled magnetic drug targeting, hybrid haemodynamic pumps and biomagnetic phenomena interacting with the human digestive system. Motivated by the objective of improving an understanding of the complex fluid dynamics in such flows, we consider in the present article the transient magneto-fluid flow and heat transfer through a finite length channel by peristaltic pumping. Reynolds number is small enough and the wavelength to diameter ratio is large enough to negate inertial effects. Analytical solutions for temperature field, axial velocity, transverse velocity, pressure gradient, local wall shear stress, volume flowrate and averaged volume flowrate are obtained. The effects of the transverse magnetic field, Grashof number and thermal conductivity on the flow patterns induced by peristaltic waves (sinusoidal propagation along the length of channel) are studied using graphical plots. The present study identifies that greater pressure is required to propel the magneto-fluid by peristaltic pumping in comparison to a non-conducting Newtonian fluid, whereas, a lower pressure is required if heat transfer is effective. The analytical solutions further provide an important benchmark for future numerical simulations.

  3. Quantum gravity in three dimensions, Witten spinors and the quantisation of length

    NASA Astrophysics Data System (ADS)

    Wieland, Wolfgang

    2018-05-01

    In this paper, I investigate the quantisation of length in euclidean quantum gravity in three dimensions. The starting point is the classical hamiltonian formalism in a cylinder of finite radius. At this finite boundary, a counter term is introduced that couples the gravitational field in the interior to a two-dimensional conformal field theory for an SU (2) boundary spinor, whose norm determines the conformal factor between the fiducial boundary metric and the physical metric in the bulk. The equations of motion for this boundary spinor are derived from the boundary action and turn out to be the two-dimensional analogue of the Witten equations appearing in Witten's proof of the positive mass theorem. The paper concludes with some comments on the resulting quantum theory. It is shown, in particular, that the length of a one-dimensional cross section of the boundary turns into a number operator on the Fock space of the theory. The spectrum of this operator is discrete and matches the results from loop quantum gravity in the spin network representation.

  4. Continuum calculations of continental deformation in transcurrent environments

    NASA Technical Reports Server (NTRS)

    Sonder, L. J.; England, P. C.; Houseman, G. A.

    1986-01-01

    A thin viscous sheet approximation is used to investigate continental deformation near a strike-slip boundary. The vertically averaged velocity field is calculated for a medium characterized by a power law rheology with stress exponent n. Driving stresses include those applied along boundaries of the sheet and those arising from buoyancy forces related to lateral differences in crustal thickness. Exact and approximate analytic solutions for a region with a sinusoidal strike-slip boundary condition are compared with solutions for more geologically relevant boundary conditions obtained using a finite element technique. The across-strike length scale of the deformation is approximately 1/4pi x sq rt n times the dominant wavelength of the imposed strike-slip boundary condition for both the analytic and the numerical solutions; this result is consistent with length scales observed in continental regions of large-scale transcurrent faulting. An approximate, linear relationship between displacement and rotation is found that depends only on the deformation length scale and the rheology. Calculated displacements, finite rotations, and distribution of crustal thicknesses are consistent with those observed in the region of the Pacific-North America plate boundary in California.

  5. A comparative evaluation of mandibular finite element models with different lengths and elements for implant biomechanics.

    PubMed

    Teixeira, E R; Sato, Y; Akagawa, Y; Shindoi, N

    1998-04-01

    Further validity of finite element analysis (FEA) in implant biomechanics requires an increase of modelled range and mesh refinement, and a consequent increase in element number and calculation time. To develop a new method that allows a decrease of the modelled range and element number (along with less calculation time and less computer memory), 10 FEA models of the mandible with different mesio-distal lengths and elements were constructed based on three-dimensional graphic data of the bone structure around an osseointegrated implant. Analysis of stress distribution followed by 100 N loading with the fixation of the most external planes of the models indicated that a minimal bone length of 4.2 mm of the mesial and distal sides was acceptable for FEA representation. Moreover, unification of elements located far away from the implant surface did not affect stress distribution. These results suggest that it may be possible to develop a replica FEA implant model of the mandible with less range and fewer elements without altering stress distribution.

  6. Near-tip dual-length scale mechanics of mode-I cracking in laminate brittle matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, R.; Islam, S.; Charalambides, P. G.

    1992-01-01

    This paper presents the preliminary results of an on-going study of the near-tip mechanics of mode-I cracking in brittle matrix composite laminates. A finite element model is developed within the context of two competing characteristic lengths present in the composite: the microstructural length (the thickness of the layers) and a macro-length (crack-length, uncracked ligament size, etc.). For various values of the parameters which describe the ratio of these lengths and the constituent properties, the stresses ahead of a crack perpendicular to the laminates are compared with those predicted by assuming the composite is homogeneous orthotropic. The results can be used to determine the conditions for which homogenization can provide a sufficiently accurate description of the stresses in the vicinity of the crack-tip.

  7. Time-domain finite-difference based analysis of induced crosstalk in multiwall carbon nanotube interconnects

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Nehra, Vikas; Kaushik, Brajesh Kumar

    2017-08-01

    Graphene rolled-up cylindrical sheets i.e. carbon nanotubes (CNTs) is one of the finest and emerging research area. This paper presents the investigation of induced crosstalk in coupled on-chip multiwalled carbon nanotube (MWCNT) interconnects using finite-difference analysis (FDA) in time-domain i.e. the finite-difference time-domain (FDTD) method. The exceptional properties of versatile MWCNTs profess their candidacy to replace conventional on-chip copper interconnects. Time delay and crosstalk noise have been evaluated for coupled on-chip MWCNT interconnects. With a decrease in CNT length, the obtained results for an MWCNT shows that transmission performance improves as the number of shells increases. It has been observed that the obtained results using the finite-difference time domain (FDTD) technique shows a very close match with the HSPICE simulated results.

  8. Wave envelope technique for multimode wave guide problems

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Sudharsanan, S. I.

    1986-01-01

    A fast method for solving wave guide problems is proposed. In particular, the guide is considered to be inhomogeneous allowing propagation of waves of higher order modes. Such problems have been handled successfully for acoustic wave propagation problems with single mode and finite length. This paper extends this concept to electromagnetic wave guides with several modes and infinite length. The method is described and results of computations are presented.

  9. Analyse dynamique des lignes de grande portee sous charges de vent

    NASA Astrophysics Data System (ADS)

    Ashby, Mathieu

    There are two types of electric crossing : i) subterranean / submarine line ii) overhead-line crossing. We always consider the last one as a more economic option. The inconvenience of an overhead-line crossing would be the environmental constraints among which the existing obstacles, the clearance for the navigation and the aesthetics demanded by the public. The overhead-line crossings usually have conductors of long ranges which are outside of the field of application for the current transmission line codes. These are limited to reaches of a length included between 200 m and 800 m, as well as a height of support lower than 60 m. However, for reaches over 800 m and over a height over 60 m, the criteria of conception in the transmission line codes for the calculation of wind loads are not applicable. In this study we concentrate on loads on the supports owed to the limit wind applied to bare conductors and insulators chains The objective of the present study is to examine the effect of the temporal and spatial correlation of the wind load along the conductors on a finite element model. A special attention was brought to the evaluation of the importance of the dynamic load transmitted on by the conductors and the insulators chains for the case of a turbulent wind load. The numerical study on finite element model for the example of a overhead-line crossing was done with the software ADINA. The wind load for the finite element model for the example of a overhead-line crossing was generated by the software WindGen which uses the method of Simiu-Scanlan and the method of spectral representation developed by Shinozuka-Deodatis. Wind loads generated where integrated into the finite element model ADINA for a dynamic analysis of the overhead-line crossing. For the first part, the current methods are used to calculate the efforts in supports due to the wind loads with an engineering approach and a comparaison approach. The current methods are then compared with the efforts obtained from an advanced method, transient dynamic and spectral stochastic, and specifically for the case of a simple overhead-line and an overhead-line crossings. For the second part, the effect of the longitudinal correlation of the wind load on two parallel conductors was examined. Finally, dynamic experiments on an insulators chain were made to determine the variation of the damping and the rigidity of the system for different type of insulators, different speed of application of the load and the inclination of the insulator. Key words : transient dynamics, spectral stochastic, turbulent wind, conductor, aerodynamic damping, structural damping, spatial correlation, wind spectra

  10. A fully covariant information-theoretic ultraviolet cutoff for scalar fields in expanding Friedmann Robertson Walker spacetimes

    NASA Astrophysics Data System (ADS)

    Kempf, A.; Chatwin-Davies, A.; Martin, R. T. W.

    2013-02-01

    While a natural ultraviolet cutoff, presumably at the Planck length, is widely assumed to exist in nature, it is nontrivial to implement a minimum length scale covariantly. This is because the presence of a fixed minimum length needs to be reconciled with the ability of Lorentz transformations to contract lengths. In this paper, we implement a fully covariant Planck scale cutoff by cutting off the spectrum of the d'Alembertian. In this scenario, consistent with Lorentz contractions, wavelengths that are arbitrarily smaller than the Planck length continue to exist. However, the dynamics of modes of wavelengths that are significantly smaller than the Planck length possess a very small bandwidth. This has the effect of freezing the dynamics of such modes. While both wavelengths and bandwidths are frame dependent, Lorentz contraction and time dilation conspire to make the freezing of modes of trans-Planckian wavelengths covariant. In particular, we show that this ultraviolet cutoff can be implemented covariantly also in curved spacetimes. We focus on Friedmann Robertson Walker spacetimes and their much-discussed trans-Planckian question: The physical wavelength of each comoving mode was smaller than the Planck scale at sufficiently early times. What was the mode's dynamics then? Here, we show that in the presence of the covariant UV cutoff, the dynamical bandwidth of a comoving mode is essentially zero up until its physical wavelength starts exceeding the Planck length. In particular, we show that under general assumptions, the number of dynamical degrees of freedom of each comoving mode all the way up to some arbitrary finite time is actually finite. Our results also open the way to calculating the impact of this natural UV cutoff on inflationary predictions for the cosmic microwave background.

  11. Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.

    1988-01-01

    The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.

  12. Interference phenomena in the refraction of a surface polariton by vertical dielectric barriers

    NASA Technical Reports Server (NTRS)

    Shen, T. P.; Wallis, R. F.; Maradudin, A. A.; Stegeman, G. I.

    1984-01-01

    A normal mode analysis is used to calculate the transmission and reflection coefficients for a surface polariton propagating along the interface between a surface active medium and a dielectric and incident normally on a vertical dielectric barrier of finite thickness or a thin dielectric film of finite length. The efficiencies of conversion of the surface polariton into transmitted and reflected bulk waves are also determined. The radiation patterns associated with the latter waves are presented.

  13. Eigenvalue asymptotics for the damped wave equation on metric graphs

    NASA Astrophysics Data System (ADS)

    Freitas, Pedro; Lipovský, Jiří

    2017-09-01

    We consider the linear damped wave equation on finite metric graphs and analyse its spectral properties with an emphasis on the asymptotic behaviour of eigenvalues. In the case of equilateral graphs and standard coupling conditions we show that there is only a finite number of high-frequency abscissas, whose location is solely determined by the averages of the damping terms on each edge. We further describe some of the possible behaviour when the edge lengths are no longer necessarily equal but remain commensurate.

  14. Comparison of ATLOG and Xyce for Bell Labs Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Ground Plane.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    campione, Salvatore; Warne, Larry K.; Schiek, Richard

    This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to the Bell Labs electromagnetic pulse excitation. We use both a frequency-domain and a time-domain method based on transmission line theory through a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared to the circuit simulator Xyce for selected cases. Intentionally Left Blank

  15. Two-dimensional potential flow past a smooth wall with partly constant curvature

    NASA Technical Reports Server (NTRS)

    Koppenfels, Werner Von

    1941-01-01

    The speed of a two-dimensional flow potential flow past a smooth wall, which evinces a finite curvature jump at a certain point and approximates to two arcs in the surrounding area, has a vertical tangent of inflection in the critical point as a function of the arc length of the boundary curve. This report looks at a general theorem of the local character of the conformal function at the critical point as well as the case of the finite curvature jump.

  16. Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Conducting Ground Plane in the Frequency Domain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    campione, Salvatore; Warne, Larry K.; Schiek, Richard

    2017-09-01

    This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a frequency-domain method based on transmission line theory and implemented it in a code we call ATLOG - Analytic Transmission Line Over Ground. Select results are compared to ones computed using the circuit simulator Xyce. Intentionally Left Blank

  17. Numerical investigation of electron localization in polymer chains

    NASA Astrophysics Data System (ADS)

    Paulsson, Magnus; Stafström, Sven

    1998-01-01

    Using finite-size scaling, we have calculated the localization-delocalization phase diagrams for electronic wave functions in different disordered polymeric systems. The disorder considered here simulates finite polymer chain lengths, breaks in the conjugation, and disorder in an external potential. It is shown that a system of interacting chains, even at rather weak interchain interactions, allows for enough flexibility for the scattered waves to avoid dephasing and localization. Localization and the metal-insulator transition in highly conducting polymers are discussed in view of these results.

  18. Influence of the random walk finite step on the first-passage probability

    NASA Astrophysics Data System (ADS)

    Klimenkova, Olga; Menshutin, Anton; Shchur, Lev

    2018-01-01

    A well known connection between first-passage probability of random walk and distribution of electrical potential described by Laplace equation is studied. We simulate random walk in the plane numerically as a discrete time process with fixed step length. We measure first-passage probability to touch the absorbing sphere of radius R in 2D. We found a regular deviation of the first-passage probability from the exact function, which we attribute to the finiteness of the random walk step.

  19. Least-squares finite element solutions for three-dimensional backward-facing step flow

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Hou, Lin-Jun; Lin, Tsung-Liang

    1993-01-01

    Comprehensive numerical solutions of the steady state incompressible viscous flow over a three-dimensional backward-facing step up to Re equals 800 are presented. The results are obtained by the least-squares finite element method (LSFEM) which is based on the velocity-pressure-vorticity formulation. The computed model is of the same size as that of Armaly's experiment. Three-dimensional phenomena are observed even at low Reynolds number. The calculated values of the primary reattachment length are in good agreement with experimental results.

  20. Propagating plane harmonic waves through finite length plates of variable thickness using finite element techniques

    NASA Technical Reports Server (NTRS)

    Clark, J. H.; Kalinowski, A. J.; Wagner, C. A.

    1983-01-01

    An analysis is given using finite element techniques which addresses the propagaton of a uniform incident pressure wave through a finite diameter axisymmetric tapered plate immersed in a fluid. The approach utilized in developing a finite element solution to this problem is based upon a technique for axisymmetric fluid structure interaction problems. The problem addressed is that of a 10 inch diameter axisymmetric fixed plate totally immersed in a fluid. The plate increases in thickness from approximately 0.01 inches thick at the center to 0.421 inches thick at a radius of 5 inches. Against each face of the tapered plate a cylindrical fluid volume was represented extending five wavelengths off the plate in the axial direction. The outer boundary of the fluid and plate regions were represented as a rigid encasement cylinder as was nearly the case in the physical problem. The primary objective of the analysis is to determine the form of the transmitted pressure distribution on the downstream side of the plate.

  1. Determining Correlation and Coherence Lengths in Turbulent Boundary Layer Flight Data

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan

    2012-01-01

    Wall pressure data acquired during flight tests at several flight conditions are analysed and the correlation and coherence lengths of the data reported. It is found that the correlation and coherence lengths are influenced by the origin of the structure producing the pressure and the frequency bandwidth over which the analyses are performed. It is shown how the frequency bandwidth biases the correlation length and how the convection of the pressure field might reduce the coherence measured between sensors. A convected form of the cross correlation and cross spectrum is introduced to compensate for the effects of convection. Coherence lengths measured in the streamwise direction appear much longer than expected. Coherent structures detected using the convected cross correlation do not exhibit an exponential coherent power decay.

  2. Finite Element Bond Modeling for Indented Wires in Pretensioned Concrete Crossties

    DOT National Transportation Integrated Search

    2016-04-12

    Indented wires have been increasingly employed by : concrete crosstie manufacturers to improve the bond between : prestressing steel reinforcements and concrete, as bond can : affect several critical performance measures, including transfer : length,...

  3. The detection and stabilisation of limit cycle for deterministic finite automata

    NASA Astrophysics Data System (ADS)

    Han, Xiaoguang; Chen, Zengqiang; Liu, Zhongxin; Zhang, Qing

    2018-04-01

    In this paper, the topological structure properties of deterministic finite automata (DFA), under the framework of the semi-tensor product of matrices, are investigated. First, the dynamics of DFA are converted into a new algebraic form as a discrete-time linear system by means of Boolean algebra. Using this algebraic description, the approach of calculating the limit cycles of different lengths is given. Second, we present two fundamental concepts, namely, domain of attraction of limit cycle and prereachability set. Based on the prereachability set, an explicit solution of calculating domain of attraction of a limit cycle is completely characterised. Third, we define the globally attractive limit cycle, and then the necessary and sufficient condition for verifying whether all state trajectories of a DFA enter a given limit cycle in a finite number of transitions is given. Fourth, the problem of whether a DFA can be stabilised to a limit cycle by the state feedback controller is discussed. Criteria for limit cycle-stabilisation are established. All state feedback controllers which implement the minimal length trajectories from each state to the limit cycle are obtained by using the proposed algorithm. Finally, an illustrative example is presented to show the theoretical results.

  4. Nucleon axial charge in (2+1)-flavor dynamical-lattice QCD with domain-wall fermions.

    PubMed

    Yamazaki, T; Aoki, Y; Blum, T; Lin, H W; Lin, M F; Ohta, S; Sasaki, S; Tweedie, R J; Zanotti, J M

    2008-05-02

    We present results for the nucleon axial charge g{A} at a fixed lattice spacing of 1/a=1.73(3) GeV using 2+1 flavors of domain wall fermions on size 16;{3} x 32 and 24;{3} x 64 lattices (L=1.8 and 2.7 fm) with length 16 in the fifth dimension. The length of the Monte Carlo trajectory at the lightest m_{pi} is 7360 units, including 900 for thermalization. We find finite volume effects are larger than the pion mass dependence at m{pi}=330 MeV. We also find a scaling with the single variable m{pi}L which can also be seen in previous two-flavor domain wall and Wilson fermion calculations. Using this scaling to eliminate the finite-volume effect, we obtain g{A}=1.20(6)(4) at the physical pion mass, m_{pi}=135 MeV, where the first and second errors are statistical and systematic. The observed finite-volume scaling also appears in similar quenched simulations, but disappear when V>or=(2.4 fm);{3}. We argue this is a dynamical quark effect.

  5. Simplicial Palatini action

    NASA Astrophysics Data System (ADS)

    Khatsymovsky, V. M.

    2018-01-01

    We consider the piecewise flat spacetime and a simplicial analog of the Palatini form of the general relativity (GR) action where the discrete Christoffel symbols are given on the tetrahedra as variables that are independent of the metric. Excluding these variables with the help of the equations of motion gives exactly the Regge action. This paper continues our previous work. Now, we include the parity violation term and the analog of the Barbero-Immirzi parameter introduced in the orthogonal connection form of GR. We consider the path integral and the functional integration over the connection. The result of the latter (for certain limiting cases of some parameters) is compared with the earlier found result of the functional integration over the connection for the analogous orthogonal connection representation of Regge action. These results, mainly as some measures on the lengths/areas, are discussed for the possibility of the diagram technique where the perturbative diagrams for the Regge action calculated using the measure obtained are finite. This finiteness is due to these measures providing elementary lengths being mostly bounded and separated from zero, just as the finiteness of a theory on a lattice with an analogous probability distribution of spacings.

  6. Quantum Correlation in the XY Spin Model with Anisotropic Three-Site Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Yao; Chai, Bing-Bing; Guo, Jin-Liang

    2018-05-01

    We investigate pairwise entanglement and quantum discord (QD) in the XY spin model with anisotropic three-site interaction at zero and finite temperatures. For both the nearest-neighbor spins and the next nearest-neighbor spins, special attention is paid to the dependence of entanglement and QD on the anisotropic parameter δ induced by the next nearest-neighbor spins. We show that the behavior of QD differs in many ways from entanglement under the influences of the anisotropic three-site interaction at finite temperatures. More important, comparing the effects of δ on the entanglement and QD, we find the anisotropic three-site interaction plays an important role in the quantum correlations at zero and finite temperatures. It is found that δ can strengthen the quantum correlation for both the nearest-neighbor spins and the next nearest-neighbor spins, especially for the nearest-neighbor spins at low temperature.

  7. The large-N Yang-Mills S matrix is ultraviolet finite, but the large-N QCD S matrix is only renormalizable

    NASA Astrophysics Data System (ADS)

    Bochicchio, Marco

    2017-03-01

    Yang-Mills (YM) theory and QCD are known to be renormalizable, but not ultraviolet (UV) finite, order by order, in perturbation theory. It is a fundamental question whether YM theory or QCD is UV finite, or only renormalizable, order by order, in the large-N 't Hooft or Veneziano expansions. We demonstrate that the renormalization group (RG) and asymptotic freedom imply that in 't Hooft large-N expansion the S matrix in YM theory is UV finite, while in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massless QCD is renormalizable but not UV finite. By the same argument, the large-N N =1 supersymmetry (SUSY) YM S matrix is UV finite as well. Besides, we demonstrate that, in both 't Hooft and Veneziano large-N expansions, the correlators of local gauge-invariant operators, as opposed to the S matrix, are renormalizable but, in general, not UV finite, either in YM theory and N =1 SUSY YM theory or a fortiori in massless QCD. Moreover, we compute explicitly the counterterms that arise from renormalizing the 't Hooft and Veneziano expansions by deriving in confining massless QCD-like theories a low-energy theorem of the Novikov-Shifman-Vainshtein-Zakharov type that relates the log derivative with respect to the gauge coupling of a k -point correlator, or the log derivative with respect to the RG-invariant scale, to a (k +1 )-point correlator with the insertion of Tr F2 at zero momentum. Finally, we argue that similar results hold in the large-N limit of a vast class of confining massive QCD-like theories, provided a renormalization scheme exists—as, for example, MS ¯ —in which the beta function is not dependent on the masses. Specifically, in both 't Hooft and Veneziano large-N expansions, the S matrix in confining massive QCD and massive N =1 SUSY QCD is renormalizable but not UV finite.

  8. Exact finite volume expectation values of \\overline{Ψ}Ψ in the massive Thirring model from light-cone lattice correlators

    NASA Astrophysics Data System (ADS)

    Hegedűs, Árpád

    2018-03-01

    In this paper, using the light-cone lattice regularization, we compute the finite volume expectation values of the composite operator \\overline{Ψ}Ψ between pure fermion states in the Massive Thirring Model. In the light-cone regularized picture, this expectation value is related to 2-point functions of lattice spin operators being located at neighboring sites of the lattice. The operator \\overline{Ψ}Ψ is proportional to the trace of the stress-energy tensor. This is why the continuum finite volume expectation values can be computed also from the set of non-linear integral equations (NLIE) governing the finite volume spectrum of the theory. Our results for the expectation values coming from the computation of lattice correlators agree with those of the NLIE computations. Previous conjectures for the LeClair-Mussardo-type series representation of the expectation values are also checked.

  9. Vibration Response Models of a Stiffened Aluminum Plate Excited by a Shaker

    NASA Technical Reports Server (NTRS)

    Cabell, Randolph H.

    2008-01-01

    Numerical models of structural-acoustic interactions are of interest to aircraft designers and the space program. This paper describes a comparison between two energy finite element codes, a statistical energy analysis code, a structural finite element code, and the experimentally measured response of a stiffened aluminum plate excited by a shaker. Different methods for modeling the stiffeners and the power input from the shaker are discussed. The results show that the energy codes (energy finite element and statistical energy analysis) accurately predicted the measured mean square velocity of the plate. In addition, predictions from an energy finite element code had the best spatial correlation with measured velocities. However, predictions from a considerably simpler, single subsystem, statistical energy analysis model also correlated well with the spatial velocity distribution. The results highlight a need for further work to understand the relationship between modeling assumptions and the prediction results.

  10. Gradient corrections to the exchange-correlation free energy

    DOE PAGES

    Sjostrom, Travis; Daligault, Jerome

    2014-10-07

    We develop the first-order gradient correction to the exchange-correlation free energy of the homogeneous electron gas for use in finite-temperature density functional calculations. Based on this, we propose and implement a simple temperature-dependent extension for functionals beyond the local density approximation. These finite-temperature functionals show improvement over zero-temperature functionals, as compared to path-integral Monte Carlo calculations for deuterium equations of state, and perform without computational cost increase compared to zero-temperature functionals and so should be used for finite-temperature calculations. Furthermore, while the present functionals are valid at all temperatures including zero, non-negligible difference with zero-temperature functionals begins at temperatures abovemore » 10 000 K.« less

  11. Experimental evidence of phase coherence of magnetohydrodynamic turbulence in the solar wind: GEOTAIL satellite data.

    PubMed

    Koga, D; Chian, A C-L; Hada, T; Rempel, E L

    2008-02-13

    Magnetohydrodynamic (MHD) turbulence is commonly observed in the solar wind. Nonlinear interactions among MHD waves are likely to produce finite correlation of the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in the quasi-linear theory) or have a finite coherence. Using a method based on the surrogate data technique, we analysed the GEOTAIL magnetic field data to evaluate the phase coherence in MHD turbulence in the Earth's foreshock region. The results demonstrate the existence of finite phase correlation, indicating that nonlinear wave-wave interactions are in progress.

  12. Measurement of the Correlation and Coherence Lengths in Boundary Layer Flight Data

    NASA Technical Reports Server (NTRS)

    Palumbo, Daniel L.

    2011-01-01

    Wall pressure data acquired during flight tests at several flight conditions are analyzed and the correlation and coherence lengths of the data reported. It is shown how the frequency bandwidth of the analysis biases the correlation length and how the convection of the flow acts to reduce the coherence length. Coherence lengths measured in the streamwise direction appear much longer than would be expected based on classical results for flow over a flat plat.

  13. Morphology and Length Correlated in Terminal Flushes of Longleaf Pine Saplings

    Treesearch

    R.M. Allen; N.M. Scarbrough

    1970-01-01

    In longleafpine (Pinuspalustris Mill.) saplings growing in southern Mississippi the length of the first or spring flush was significantly correlated with that of the second flush; the correlation of length between flushes two and three was also statistically significant. The correlations were due more to similarities in internode elongation than to node number. Flush...

  14. Integration of length and curvature in haptic perception.

    PubMed

    Panday, Virjanand; Tiest, Wouter M Bergmann; Kappers, Astrid M L

    2014-01-24

    We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle, or anti-correlated. We found that when both length and curvature are present, performance is significantly better than when only one of the two cues is available. Therefore, we conclude that there is integration of length and curvature. Moreover, if the two cues are correlated in a circular cross-section instead of in an anti-correlated way, performance is better than predicted by a combination of two independent cues. We conclude that integration of curvature and length is highly efficient when the cues in the object are combined as in a circle, which is the most common combination of curvature and length in daily life.

  15. Test and analysis of Celion 3000/PMR-15, graphite/polyimide bonded composite joints: Data report

    NASA Technical Reports Server (NTRS)

    Cushman, J. B.; Mccleskey, S. F.; Ward, S. H.

    1982-01-01

    Standard single lap, double lap and symmetric step lap bonded joints of Celion 3000/PMR-15 graphite/polyimide composite were evaluated. Composite to composite and composite to titanium joints were tested at 116 K (-250 F), 294 K (70 F) and 561 K (550 F). Joint parameters evaluated are lap length, adherend thickness, adherend axial stiffness, lamina stacking sequence and adherend tapering. Advanced joint concepts were examined to establish the change in performance of preformed adherends, scalloped adherends and hybrid systems. The material properties of the high temperature adhesive, designated A7F, used for bonding were established. The bonded joint tests resulted in interlaminar shear or peel failures of the composite and there were very few adhesive failures. Average test results agree with expected performance trends for the various test parameters. Results of finite element analyses and of test/analysis correlations are also presented.

  16. Magnetic phase transition in Heisenberg antiferromagnetic films with easy-axis single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Pan, Kok-Kwei

    2012-03-01

    The staggered susceptibility of spin-1 and spin-3/2 Heisenberg antiferromagnet with easy-axis single-ion anisotropy on the cubic lattice films consisting of n=2, 3, 4, 5 and 6 interacting square lattice layers is studied by high-temperature series expansions. Sixth order series in J/kBT have been obtained for free-surface boundary conditions. The dependence of the Néel temperature on film thickness n and easy-axis anisotropy D has been investigated. The shifts of the Néel temperature from the bulk value can be described by a power law n with a shift exponent λ, where λ is the inverse of the bulk correlation length exponent. The effect of easy-axis single-ion anisotropy on shift exponent of antiferromagnetic films has been studied. A comparison is made with related works. The results obtained are qualitatively consistent with the predictions of finite-size scaling theory.

  17. Unified concept of effective one component plasma for hot dense plasmas

    DOE PAGES

    Clerouin, Jean; Arnault, Philippe; Ticknor, Christopher; ...

    2016-03-17

    Orbital-free molecular dynamics simulations are used to benchmark two popular models for hot dense plasmas: the one component plasma (OCP) and the Yukawa model. A unified concept emerges where an effective OCP (EOCP) is constructed from the short-range structure of the plasma. An unambiguous ionization and the screening length can be defined and used for a Yukawa system, which reproduces the long-range structure with finite compressibility. Similarly, the dispersion relation of longitudinal waves is consistent with the screened model at vanishing wave number but merges with the OCP at high wave number. Additionally, the EOCP reproduces the overall relaxation timemore » scales of the correlation functions associated with ionic motion. Lastly, in the hot dense regime, this unified concept of EOCP can be fruitfully applied to deduce properties such as the equation of state, ionic transport coefficients, and the ion feature in x-ray Thomson scattering experiments.« less

  18. Rigorous decoupling between edge states in frustrated spin chains and ladders

    NASA Astrophysics Data System (ADS)

    Chepiga, Natalia; Mila, Frédéric

    2018-05-01

    We investigate the occurrence of exact zero modes in one-dimensional quantum magnets of finite length that possess edge states. Building on conclusions first reached in the context of the spin-1/2 X Y chain in a field and then for the spin-1 J1-J2 Heisenberg model, we show that the development of incommensurate correlations in the bulk invariably leads to oscillations in the sign of the coupling between edge states, and hence to exact zero energy modes at the crossing points where the coupling between the edge states rigorously vanishes. This is true regardless of the origin of the frustration (e.g., next-nearest-neighbor coupling or biquadratic coupling for the spin-1 chain), of the value of the bulk spin (we report on spin-1/2, spin-1, and spin-2 examples), and of the value of the edge-state emergent spin (spin-1/2 or spin-1).

  19. Random cascade model in the limit of infinite integral scale as the exponential of a nonstationary 1/f noise: Application to volatility fluctuations in stock markets

    NASA Astrophysics Data System (ADS)

    Muzy, Jean-François; Baïle, Rachel; Bacry, Emmanuel

    2013-04-01

    In this paper we propose a new model for volatility fluctuations in financial time series. This model relies on a nonstationary Gaussian process that exhibits aging behavior. It turns out that its properties, over any finite time interval, are very close to continuous cascade models. These latter models are indeed well known to reproduce faithfully the main stylized facts of financial time series. However, it involves a large-scale parameter (the so-called “integral scale” where the cascade is initiated) that is hard to interpret in finance. Moreover, the empirical value of the integral scale is in general deeply correlated to the overall length of the sample. This feature is precisely predicted by our model, which, as illustrated by various examples from daily stock index data, quantitatively reproduces the empirical observations.

  20. The nature of the continuous non-equilibrium phase transition of Axelrod's model

    NASA Astrophysics Data System (ADS)

    Peres, Lucas R.; Fontanari, José F.

    2015-09-01

    Axelrod's model in the square lattice with nearest-neighbors interactions exhibits culturally homogeneous as well as culturally fragmented absorbing configurations. In the case in which the agents are characterized by F = 2 cultural features and each feature assumes k states drawn from a Poisson distribution of parameter q, these regimes are separated by a continuous transition at qc = 3.10 +/- 0.02 . Using Monte Carlo simulations and finite-size scaling we show that the mean density of cultural domains μ is an order parameter of the model that vanishes as μ ∼ (q - q_c)^β with β = 0.67 +/- 0.01 at the critical point. In addition, for the correlation length critical exponent we find ν = 1.63 +/- 0.04 and for Fisher's exponent, τ = 1.76 +/- 0.01 . This set of critical exponents places the continuous phase transition of Axelrod's model apart from the known universality classes of non-equilibrium lattice models.

  1. Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality

    NASA Astrophysics Data System (ADS)

    Plumb, K. W.; Morey, J. R.; Rodriguez-Rivera, J. A.; Wu, Hui; Podlesnyak, A. A.; McQueen, T. M.; Broholm, C. L.

    2016-10-01

    We present neutron scattering measurements on powder samples of the spinel FeSc2S4 that reveal a previously unobserved magnetic ordering transition occurring at 11.8(2) K. Magnetic ordering occurs subsequent to a subtle cubic-to-tetragonal structural transition that distorts Fe coordinating sulfur tetrahedra and lifts the orbital degeneracy. The orbital ordering is not truly long ranged, but occurs over finite-sized domains that limit magnetic correlation lengths. The application of 1 GPa hydrostatic pressure appears to destabilize this Néel state, reducing the transition temperature to 8.6(8) K and redistributing magnetic spectral weight to higher energies. The relative magnitudes of ordered ⟨m ⟩2=3.1 (2 ) μB2 and fluctuating moments ⟨δ m ⟩=13 (1 ) μB2 show that the magnetically ordered state of FeSc2 S4 is drastically renormalized and close to criticality.

  2. Experimental and analytical investigation of the fracture processes of boron/aluminum laminates containing notches

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.; Bigelow, C. A.; Bahei-El-din, Y. A.

    1983-01-01

    Experimental results for five laminate orientations of boron/aluminum composites containing either circular holes or crack-like slits are presented. Specimen stress-strain behavior, stress at first fiber failure, and ultimate strength were determined. Radiographs were used to monitor the fracture process. The specimens were analyzed with a three-dimensional elastic-elastic finite-element model. The first fiber failures in notched specimens with laminate orientation occurred at or very near the specimen ultimate strength. For notched unidirectional specimens, the first fiber failure occurred at approximately one-half of the specimen ultimate strength. Acoustic emission events correlated with fiber breaks in unidirectional composites, but did not for other laminates. Circular holes and crack-like slits of the same characteristic length were found to produce approximately the same strength reduction. The predicted stress-strain responses and stress at first fiber failure compared very well with test data for laminates containing 0 deg fibers.

  3. Antiferromagnetic and Orbital Ordering on a Diamond Lattice Near Quantum Criticality

    DOE PAGES

    Plumb, K. W.; Morey, J. R.; Rodriguez-Rivera, J. A.; ...

    2016-12-01

    Here, we present neutron scattering measurements on powder samples of the spinel FeSc 2 S 4 that reveal a previously unobserved magnetic ordering transition occurring at 11.8(2) K. Magnetic ordering occurs subsequent to a subtle cubic-to-tetragonal structural transition that distorts Fe coordinating sulfur tetrahedra and lifts the orbital degeneracy. Furthermore, the orbital ordering is not truly long ranged, but occurs over finite-sized domains that limit magnetic correlation lengths. During the application of 1 GPa hydrostatic pressure appears to destabilize this Néel state, reducing the transition temperature to 8.6(8) K and redistributing magnetic spectral weight to higher energies. The relative magnitudes of ordered 2= 3.1(2) μmore » $$2\\atop{B}$$ and fluctuating moments < δm >= 13(1) μ$$2\\atop{B}$$ show that the magnetically ordered state of FeSc 2 S 4 is drastically renormalized and close to criticality.« less

  4. Correlation function for generalized Pólya urns: Finite-size scaling analysis

    NASA Astrophysics Data System (ADS)

    Mori, Shintaro; Hisakado, Masato

    2015-11-01

    We describe a universality class for the transitions of a generalized Pólya urn by studying the asymptotic behavior of the normalized correlation function C (t ) using finite-size scaling analysis. X (1 ),X (2 ),... are the successive additions of a red (blue) ball [X (t )=1 (0 )] at stage t and C (t )≡Cov[X (1 ),X (t +1 )]/Var[X (1 )] . Furthermore, z (t ) =∑s=1tX (s ) /t represents the successive proportions of red balls in an urn to which, at the (t +1 )th stage, a red ball is added [X (t +1 )=1 ] with probability q [z (t )]=(tanh{J [2 z (t )-1 ]+h }+1 )/2 ,J ≥0 , and a blue ball is added [X (t +1 )=0 ] with probability 1 -q [z (t )] . A boundary [Jc(h ) ,h ] exists in the (J ,h ) plane between a region with one stable fixed point and another region with two stable fixed points for q (z ) . C (t ) ˜c +c'.tl -1 with c =0 (>0 ) for J Jc) , and l is the (larger) value of the slope(s) of q (z ) at the stable fixed point(s). On the boundary J =Jc(h ) ,C (t ) ≃c +c'.(lnt) -α' and c =0 (c >0 ) ,α'=1 /2 (1 ) for h =0 (h ≠0 ) . The system shows a continuous phase transition for h =0 and C (t ) behaves as C (t ) ≃(lnt) -α'g [(1 -l ) lnt ] with a universal function g (x ) and a length scale 1 /(1 -l ) with respect to lnt . β =ν||.α' holds with β =1 /2 and ν||=1 .

  5. U (1 ) -symmetric infinite projected entangled-pair states study of the spin-1/2 square J1-J2 Heisenberg model

    NASA Astrophysics Data System (ADS)

    Haghshenas, R.; Sheng, D. N.

    2018-05-01

    We develop an improved variant of U (1 ) -symmetric infinite projected entangled-pair states (iPEPS) ansatz to investigate the ground-state phase diagram of the spin-1 /2 square J1-J2 Heisenberg model. In order to improve the accuracy of the ansatz, we discuss a simple strategy to select automatically relevant symmetric sectors and also introduce an optimization method to treat second-neighbor interactions more efficiently. We show that variational ground-state energies of the model obtained by the U (1 ) -symmetric iPEPS ansatz (for a fixed bond dimension D ) set a better upper bound, improving previous tensor-network-based results. By studying the finite-D scaling of the magnetically order parameter, we find a Néel phase for J2/J1<0.53 . For 0.53

  6. Electrostatic stability of electron-positron plasmas in dipole geometry

    NASA Astrophysics Data System (ADS)

    Mishchenko, Alexey; Plunk, Gabriel G.; Helander, Per

    2018-04-01

    The electrostatic stability of electron-positron plasmas is investigated in the point-dipole and Z-pinch limits of dipole geometry. The kinetic dispersion relation for sub-bounce-frequency instabilities is derived and solved. For the zero-Debye-length case, the stability diagram is found to exhibit singular behaviour. However, when the Debye length is non-zero, a fluid mode appears, which resolves the observed singularity, and also demonstrates that both the temperature and density gradients can drive instability. It is concluded that a finite Debye length is necessary to determine the stability boundaries in parameter space. Landau damping is investigated at scales sufficiently smaller than the Debye length, where instability is absent.

  7. Theory of a Nearly Two-Dimensional Dipolar Bose Gas

    DTIC Science & Technology

    2016-05-11

    temperatures, and when roton excitations are present. Further, BECs in nearly 2D geometries take the form of quasi -condensates, or BECs with finite spatial...extent. Quasi -condensates behave like BECs on shorter length scales, but not on longer length scales. The project incorporates the presence of a quasi ... Quasi -Condensate 23 J. Superfluidity 25 III. Results 26 A. Three Dimensions with Contact Interactions 26 B. Two Dimensions with Contact Interactions

  8. Spatio-temporal correlations in the Manna model in one, three and five dimensions

    NASA Astrophysics Data System (ADS)

    Willis, Gary; Pruessner, Gunnar

    2018-02-01

    Although the paradigm of criticality is centered around spatial correlations and their anomalous scaling, not many studies of self-organized criticality (SOC) focus on spatial correlations. Often, integrated observables, such as avalanche size and duration, are used, not least as to avoid complications due to the unavoidable lack of translational invariance. The present work is a survey of spatio-temporal correlation functions in the Manna Model of SOC, measured numerically in detail in d = 1,3 and 5 dimensions and compared to theoretical results, in particular relating them to “integrated” observables such as avalanche size and duration scaling, that measure them indirectly. Contrary to the notion held by some of SOC models organizing into a critical state by re-arranging their spatial structure avalanche by avalanche, which may be expected to result in large, nontrivial, system-spanning spatial correlations in the quiescent state (between avalanches), correlations of inactive particles in the quiescent state have a small amplitude that does not and cannot increase with the system size, although they display (noisy) power law scaling over a range linear in the system size. Self-organization, however, does take place as the (one-point) density of inactive particles organizes into a particular profile that is asymptotically independent of the driving location, also demonstrated analytically in one dimension. Activity and its correlations, on the other hand, display nontrivial long-ranged spatio-temporal scaling with exponents that can be related to established results, in particular avalanche size and duration exponents. The correlation length and amplitude are set by the system size (confirmed analytically for some observables), as expected in systems displaying finite size scaling. In one dimension, we find some surprising inconsistencies of the dynamical exponent. A (spatially extended) mean field theory (MFT) is recovered, with some corrections, in five dimensions.

  9. Spectra of Full 3-D PIC Simulations of Finite Meteor Trails

    NASA Astrophysics Data System (ADS)

    Tarnecki, L. K.; Oppenheim, M. M.

    2016-12-01

    Radars detect plasma trails created by the billions of small meteors that impact the Earth's atmosphere daily, returning data used to infer characteristics of the meteoroid population and upper atmosphere. Researchers use models to investigate the dynamic evolution of the trails. Previously, all models assumed a trail of infinite length, due to the constraints of simulation techniques. We present the first simulations of 3D meteor trails of finite length. This change more accurately captures the physics of the trails. We characterize the turbulence that develops as the trail evolves and study the effects of varying the external electric field, altitude, and initial density. The simulations show that turbulence develops in all cases, and that trails travel with the neutral wind rather than electric field. Our results will allow us to draw more detailed and accurate information from non-specular radar observations of meteors.

  10. Electromagnetic wave extinction within a forested canopy

    NASA Technical Reports Server (NTRS)

    Karam, M. A.; Fung, A. K.

    1989-01-01

    A forested canopy is modeled by a collection of randomly oriented finite-length cylinders shaded by randomly oriented and distributed disk- or needle-shaped leaves. For a plane wave exciting the forested canopy, the extinction coefficient is formulated in terms of the extinction cross sections (ECSs) in the local frame of each forest component and the Eulerian angles of orientation (used to describe the orientation of each component). The ECSs in the local frame for the finite-length cylinders used to model the branches are obtained by using the forward-scattering theorem. ECSs in the local frame for the disk- and needle-shaped leaves are obtained by the summation of the absorption and scattering cross-sections. The behavior of the extinction coefficients with the incidence angle is investigated numerically for both deciduous and coniferous forest. The dependencies of the extinction coefficients on the orientation of the leaves are illustrated numerically.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz

    This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less

  12. Two Universality Properties Associated with the Monkey Model of Zipf's Law

    NASA Astrophysics Data System (ADS)

    Perline, Richard; Perline, Ron

    2016-03-01

    The distribution of word probabilities in the monkey model of Zipf's law is associated with two universality properties: (1) the power law exponent converges strongly to $-1$ as the alphabet size increases and the letter probabilities are specified as the spacings from a random division of the unit interval for any distribution with a bounded density function on $[0,1]$; and (2), on a logarithmic scale the version of the model with a finite word length cutoff and unequal letter probabilities is approximately normally distributed in the part of the distribution away from the tails. The first property is proved using a remarkably general limit theorem for the logarithm of sample spacings from Shao and Hahn, and the second property follows from Anscombe's central limit theorem for a random number of i.i.d. random variables. The finite word length model leads to a hybrid Zipf-lognormal mixture distribution closely related to work in other areas.

  13. Exponential convergence through linear finite element discretization of stratified subdomains

    NASA Astrophysics Data System (ADS)

    Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali

    2016-10-01

    Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.

  14. Finite element analysis of left ventricle during cardiac cycles in viscoelasticity.

    PubMed

    Shen, Jing Jin; Xu, Feng Yu; Yang, Wen An

    2016-08-01

    To investigate the effect of myocardial viscoeslasticity on heart function, this paper presents a finite element model based on a hyper-viscoelastic model for the passive myocardium and Hill's three-element model for the active contraction. The hyper-viscoelastic model considers the myocardium microstructure, while the active model is phenomenologically based on the combination of Hill's equation for the steady tetanized contraction and the specific time-length-force property of the myocardial muscle. To validate the finite element model, the end-diastole strains and the end-systole strain predicted by the model are compared with the experimental values in the literature. It is found that the proposed model not only can estimate well the pumping function of the heart, but also predicts the transverse shear strains. The finite element model is also applied to analyze the influence of viscoelasticity on the residual stresses in the myocardium. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. A Design of Finite Memory Residual Generation Filter for Sensor Fault Detection

    NASA Astrophysics Data System (ADS)

    Kim, Pyung Soo

    2017-04-01

    In the current paper, a residual generation filter with finite memory structure is proposed for sensor fault detection. The proposed finite memory residual generation filter provides the residual by real-time filtering of fault vector using only the most recent finite measurements and inputs on the window. It is shown that the residual given by the proposed residual generation filter provides the exact fault for noisefree systems. The proposed residual generation filter is specified to the digital filter structure for the amenability to hardware implementation. Finally, to illustrate the capability of the proposed residual generation filter, extensive simulations are performed for the discretized DC motor system with two types of sensor faults, incipient soft bias-type fault and abrupt bias-type fault. In particular, according to diverse noise levels and windows lengths, meaningful simulation results are given for the abrupt bias-type fault.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas

    The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.

  17. Evaluating Multispectral Snowpack Reflectivity With Changing Snow Correlation Lengths

    NASA Technical Reports Server (NTRS)

    Kang, Do Hyuk; Barros, Ana P.; Kim, Edward J.

    2016-01-01

    This study investigates the sensitivity of multispectral reflectivity to changing snow correlation lengths. Matzler's ice-lamellae radiative transfer model was implemented and tested to evaluate the reflectivity of snow correlation lengths at multiple frequencies from the ultraviolet (UV) to the microwave bands. The model reveals that, in the UV to infrared (IR) frequency range, the reflectivity and correlation length are inversely related, whereas reflectivity increases with snow correlation length in the microwave frequency range. The model further shows that the reflectivity behavior can be mainly attributed to scattering rather than absorption for shallow snowpacks. The largest scattering coefficients and reflectivity occur at very small correlation lengths (approximately 10(exp -5 m) for frequencies higher than the IR band. In the microwave range, the largest scattering coefficients are found at millimeter wavelengths. For validation purposes, the ice-lamella model is coupled with a multilayer snow physics model to characterize the reflectivity response of realistic snow hydrological processes. The evolution of the coupled model simulated reflectivities in both the visible and the microwave bands is consistent with satellite-based reflectivity observations in the same frequencies. The model results are also compared with colocated in situ snow correlation length measurements (Cold Land Processes Field Experiment 2002-2003). The analysis and evaluation of model results indicate that the coupled multifrequency radiative transfer and snow hydrology modeling system can be used as a forward operator in a data-assimilation framework to predict the status of snow physical properties, including snow correlation length.

  18. Passive advection of a vector field: Anisotropy, finite correlation time, exact solution, and logarithmic corrections to ordinary scaling

    NASA Astrophysics Data System (ADS)

    Antonov, N. V.; Gulitskiy, N. M.

    2015-10-01

    In this work we study the generalization of the problem considered in [Phys. Rev. E 91, 013002 (2015), 10.1103/PhysRevE.91.013002] to the case of finite correlation time of the environment (velocity) field. The model describes a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow. Inertial-range asymptotic behavior is studied by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and preassigned pair correlation function. Due to the presence of distinguished direction n , all the multiloop diagrams in this model vanish, so that the results obtained are exact. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to the two nontrivial fixed points of the RG equations. Their stability depends on the relation between the exponents in the energy spectrum E ∝k⊥1 -ξ and the dispersion law ω ∝k⊥2 -η . In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the corrections to ordinary scaling are polynomials of logarithms of the integral turbulence scale L .

  19. Critical behavior and correlations on scale-free small-world networks: Application to network design

    NASA Astrophysics Data System (ADS)

    Ostilli, M.; Ferreira, A. L.; Mendes, J. F. F.

    2011-06-01

    We analyze critical phenomena on networks generated as the union of hidden variable models (networks with any desired degree sequence) with arbitrary graphs. The resulting networks are general small worlds similar to those à la Watts and Strogatz, but with a heterogeneous degree distribution. We prove that the critical behavior (thermal or percolative) remains completely unchanged by the presence of finite loops (or finite clustering). Then, we show that, in large but finite networks, correlations of two given spins may be strong, i.e., approximately power-law-like, at any temperature. Quite interestingly, if γ is the exponent for the power-law distribution of the vertex degree, for γ⩽3 and with or without short-range couplings, such strong correlations persist even in the thermodynamic limit, contradicting the common opinion that, in mean-field models, correlations always disappear in this limit. Finally, we provide the optimal choice of rewiring under which percolation phenomena in the rewired network are best performed, a natural criterion to reach best communication features, at least in noncongested regimes.

  20. Extension and Application of High-Speed Digital Imaging Analysis Via Spatiotemporal Correlation and Eigenmode Analysis of Vocal Fold Vibration Before and After Polyp Excision.

    PubMed

    Wang, Jun-Sheng; Olszewski, Emily; Devine, Erin E; Hoffman, Matthew R; Zhang, Yu; Shao, Jun; Jiang, Jack J

    2016-08-01

    To evaluate the spatiotemporal correlation of vocal fold vibration using eigenmode analysis before and after polyp removal and explore the potential clinical relevance of spatiotemporal analysis of correlation length and entropy as quantitative voice parameters. We hypothesized that increased order in the vibrating signal after surgical intervention would decrease the eigenmode-based entropy and increase correlation length. Prospective case series. Forty subjects (23 males, 17 females) with unilateral (n = 24) or bilateral (n = 16) polyps underwent polyp removal. High-speed videoendoscopy was performed preoperatively and 2 weeks postoperatively. Spatiotemporal analysis was performed to determine entropy, quantification of signal disorder, correlation length, size, and spatially ordered structure of vocal fold vibration in comparison to full spatial consistency. The signal analyzed consists of the vibratory pattern in space and time derived from the high-speed video glottal area contour. Entropy decreased (Z = -3.871, P < .001) and correlation length increased (t = -8.913, P < .001) following polyp excision. The intraclass correlation coefficients (ICC) for correlation length and entropy were 0.84 and 0.93. Correlation length and entropy are sensitive to mass lesions. These parameters could potentially be used to augment subjective visualization after polyp excision when evaluating procedural efficacy. © The Author(s) 2016.

  1. Mechanical properties investigation on single-wall ZrO2 nanotubes: A finite element method with equivalent Poisson's ratio for chemical bonds

    NASA Astrophysics Data System (ADS)

    Yang, Xiao; Li, Huijian; Hu, Minzheng; Liu, Zeliang; Wärnå, John; Cao, Yuying; Ahuja, Rajeev; Luo, Wei

    2018-04-01

    A method to obtain the equivalent Poisson's ratio in chemical bonds as classical beams with finite element method was proposed from experimental data. The UFF (Universal Force Field) method was employed to calculate the elastic force constants of Zrsbnd O bonds. By applying the equivalent Poisson's ratio, the mechanical properties of single-wall ZrNTs (ZrO2 nanotubes) were investigated by finite element analysis. The nanotubes' Young's modulus (Y), Poisson's ratio (ν) of ZrNTs as function of diameters, length and chirality have been discussed, respectively. We found that the Young's modulus of single-wall ZrNTs is calculated to be between 350 and 420 GPa.

  2. ICANT, a code for the self-consistent computation of ICRH antenna coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pecoul, S.; Heuraux, S.; Koch, R.

    1996-02-01

    The code deals with 3D antenna structures (finite length antennae) that are used to launch electromagnetic waves into tokamak plasmas. The antenna radiation problem is solved using a finite boundary element technique combined with a spectral solution of the interior problem. The slab approximation is used, and periodicity in {ital y} and {ital z} directions is introduced to account for toroidal geometry. We present results for various types of antennae radiating in vacuum: antenna with a finite Faraday screen and ideal Faraday screen, antenna with side limiters and phased antenna arrays. The results (radiated power, current profile) obtained are verymore » close to analytical solutions when available. {copyright} {ital 1996 American Institute of Physics.}« less

  3. The influence of the lysimeter filling on the soil monolith inside

    NASA Astrophysics Data System (ADS)

    Puetz, T.; Schilling, J.; Vereecken, H.

    2009-04-01

    In general, lysimeters are vessels containing disturbed or undisturbed soil blocks, for the most realistic scenario with regard to real outdoor conditions an undisturbed soil block so called soil monolith is preferable. The lower boundary condition was realized in two different ways: as a zero-tension lysimeter with a perforated bottom plate or as controlled lower boundary condition with a suction plate. The optimal surface area and the lysimeter length depend mainly on the scientific question. For cropped lysimeter experiments the lysimeter length has to reflect to a maximum root length. The base area is strongly connected to the scale of observation, whereby small-scale heterogeneity will be averaged using large base areas. For our experiments lysimeters with 2.5 m length, 2 m2 base area and with a wall thickness of the round vessel of 10 mm were used. A base frame weighted down by 120 t of concrete weights is necessary to press a lysimeter cylinder into the ground by the aid of a hydraulic press. The hydraulic press is connected with the base frame via chains. Because of the control of the four hydraulic cylinders a very precise vertical pressing process is guaranteed. To visualize the impact of the lysimeter filling on the intactness of the soil monolith a finite element computation was conducted. The finite element package ANSYS Release 11 was used to execute a nonlinear static analysis on a 2D-axisymmetric finite element model, to simulate the pressing process starting from a soil initial stress state and ending with the full length of the vessel driven into the soil, after which the hydraulic press and the concrete weights are deactivated and the vessel-surrounding soil is excavated. The numerical model of the pressing process considers among other things, a cap non-associative plasticity model with shear and volumetric hardening, soil to soil contact with cohesive zone modelling, soil to vessel contact with high friction, soil excavation using element birth and death and a stagger-loop over the complete pressing process to determine the actual cutting plane

  4. Effect of Finite Computational Domain on Turbulence Scaling Law in Both Physical and Spectral Spaces

    NASA Technical Reports Server (NTRS)

    Hou, Thomas Y.; Wu, Xiao-Hui; Chen, Shiyi; Zhou, Ye

    1998-01-01

    The well-known translation between the power law of energy spectrum and that of the correlation function or the second order structure function has been widely used in analyzing random data. Here, we show that the translation is valid only in proper scaling regimes. The regimes of valid translation are different for the correlation function and the structure function. Indeed, they do not overlap. Furthermore, in practice, the power laws exist only for a finite range of scales. We show that this finite range makes the translation inexact even in the proper scaling regime. The error depends on the scaling exponent. The current findings are applicable to data analysis in fluid turbulence and other stochastic systems.

  5. The finite element method for micro-scale modeling of ultrasound propagation in cancellous bone.

    PubMed

    Vafaeian, B; El-Rich, M; El-Bialy, T; Adeeb, S

    2014-08-01

    Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid-fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Aerodynamics and Hovering Control of LTA Vehicles

    DTIC Science & Technology

    1977-05-01

    not at all the usual terminology for Magnus Force which is usually thought of as arising from viscous effects when cylinder or sphere is rotating and...Number for Circular Cylinders 9 Ratio of the Drag Coefficient of a Circular Cylinder 29 of Finite Length to That of a Cylincer of Infinite Length as...Application of Non-Linear Drag 82 30 Directional Stability Derivative 83 31 Center of Lateral Pressure Location 84 32 Dihedral Effect Derivative 85 v Figures

  7. Particle-in-a-box model of exciton absorption and electroabsorption in conjugated polymers

    NASA Astrophysics Data System (ADS)

    Pedersen, Thomas G.

    2000-12-01

    The recently proposed particle-in-a-box model of one-dimensional excitons in conjugated polymers is applied in calculations of optical absorption and electroabsorption spectra. It is demonstrated that for polymers of long conjugation length a superposition of single exciton resonances produces a line shape characterized by a square-root singularity in agreement with experimental spectra near the absorption edge. The effects of finite conjugation length on both absorption and electroabsorption spectra are analyzed.

  8. Introducing a model of pairing based on base pair specific interactions between identical DNA sequences

    NASA Astrophysics Data System (ADS)

    (O' Lee, Dominic J.

    2018-02-01

    At present, there have been suggested two types of physical mechanism that may facilitate preferential pairing between DNA molecules, with identical or similar base pair texts, without separation of base pairs. One mechanism solely relies on base pair specific patterns of helix distortion being the same on the two molecules, discussed extensively in the past. The other mechanism proposes that there are preferential interactions between base pairs of the same composition. We introduce a model, built on this second mechanism, where both thermal stretching and twisting fluctuations are included, as well as the base pair specific helix distortions. Firstly, we consider an approximation for weak pairing interactions, or short molecules. This yields a dependence of the energy on the square root of the molecular length, which could explain recent experimental data. However, analysis suggests that this approximation is no longer valid at large DNA lengths. In a second approximation, for long molecules, we define two adaptation lengths for twisting and stretching, over which the pairing interaction can limit the accumulation of helix disorder. When the pairing interaction is sufficiently strong, both adaptation lengths are finite; however, as we reduce pairing strength, the stretching adaptation length remains finite but the torsional one becomes infinite. This second state persists to arbitrarily weak values of the pairing strength; suggesting that, if the molecules are long enough, the pairing energy scales as length. To probe differences between the two pairing mechanisms, we also construct a model of similar form. However, now, pairing between identical sequences solely relies on the intrinsic helix distortion patterns. Between the two models, we see interesting qualitative differences. We discuss our findings, and suggest new work to distinguish between the two mechanisms.

  9. Three-dimensional finite element analysis of stress distribution on different bony ridges with different lengths of morse taper implants and prosthesis dimensions.

    PubMed

    Toniollo, Marcelo Bighetti; Macedo, Ana Paula; Rodrigues, Renata Cristina Silveira; Ribeiro, Ricardo Faria; de Mattos, Maria da Gloria Chiarello

    2012-11-01

    This finite element analysis (FEA) compared stress distribution on different bony ridges rehabilitated with different lengths of morse taper implants, varying dimensions of metal-ceramic crowns to maintain the occlusal alignment. Three-dimensional FE models were designed representing a posterior left side segment of the mandible: group control, 3 implants of 11 mm length; group 1, implants of 13 mm, 11 mm and 5 mm length; group 2, 1 implant of 11 mm and 2 implants of 5 mm length; and group 3, 3 implants of 5 mm length. The abutments heights were 3.5 mm for 13- and 11-mm implants (regular), and 0.8 mm for 5-mm implants (short). Evaluation was performed on Ansys software, oblique loads of 365N for molars and 200N for premolars. There was 50% higher stress on cortical bone for the short implants than regular implants. There was 80% higher stress on trabecular bone for the short implants than regular implants. There was higher stress concentration on the bone region of the short implants neck. However, these implants were capable of dissipating the stress to the bones, given the applied loads, but achieving near the threshold between elastic and plastic deformation to the trabecular bone. Distal implants and/or with biggest occlusal table generated greatest stress regions on the surrounding bone. It was concluded that patients requiring short implants associated with increased proportions implant prostheses need careful evaluation and occlusal adjustment, as a possible overload in these short implants, and even in regular ones, can generate stress beyond the physiological threshold of the surrounding bone, compromising the whole system.

  10. In muscle lengthening surgery multiple aponeurotomy does not improve intended acute effects and may counter-indicate: an assessment by finite element modelling.

    PubMed

    Yucesoy, Can A; Seref-Ferlengez, Zeynep; Huijing, Peter A

    2013-01-01

    The goal was to assess the effects of multiple aponeurotomy on mechanics of muscle with extramuscular myofascial connections. Using finite element modelling, effects of combinations of the intervention carried out at a proximal (P), an intermediate (I) and a distal (D) location were studied: (1) Case P, (2) Case P-I, (3) Case P-D and (4) Case P-I-D. Compared to Case P, the effects of multiple interventions on muscle geometry and sarcomere lengths were sizable for the distal population of muscle fibres: e.g. at high muscle length (1) summed gap lengths between the cut ends of aponeurosis increased by 16, 25 and 27% for Cases P-I, P-D and P-I-D, respectively, (2) characteristic substantial sarcomere shortening became more pronounced (mean shortening was 26, 29, 30 and 31% for Cases P, P-I, P-D and P-I-D, respectively) and (3) fibre stresses decreased (mean stress equalled 0.49, 0.39, 0.38 and 0.33 for Cases P, P-I, P-D and P-I-D, respectively). In contrast, no appreciable effects were shown for the proximal population. The overall change in sarcomere length heterogeneity was limited. Consequently, the effects of multiple aponeurotomy on muscle length-force characteristics were marginal: (1) a limited reduction in active muscle force (maximal 'muscle weakening effect' remained between 5 and 11%) and (2) an even less pronounced change in slack to optimum length range of force exertion (maximal 'muscle lengthening effect' distally was 0.2% for Case P-I-D) were shown. The intended effects of the intervention were dominated by the one intervention carried out closer to the tendon suggesting that aponeurotomies done additionally to that may counter-indicated.

  11. Finite Element Analysis of Bone Stress around Micro-Implants of Different Diameters and Lengths with Application of a Single or Composite Torque Force.

    PubMed

    Lu, Ying-juan; Chang, Shao-hai; Ye, Jian-tao; Ye, Yu-shan; Yu, Yan-song

    2015-01-01

    Stress on the bone surrounding dental micro-implants affects implant success. To compare the stress on the bone surrounding a micro-implant after application of a single force (SF) of 200 g or a composite force (CF) of 200 g and 6 N.mm torque. Finite element models were developed for micro-implant diameters of 1.2, 1.6, and 2.0 mm, and lengths of 6, 8, 10, and 12 mm and either a SF or CF was applied. The maximum equivalent stress (Max EQS) of the bone surrounding the micro-implant was determined, and the relationships among type of force, diameter, and length were evaluated. The Max EQS of the CF exceeded that of the SF (P< 0.05). The effect of force on stress was related to implant diameter, but not to implant length. The larger CF led to greater instability of the micro-implant and the effect was most pronounced at an implant diameter of 1.2 mm. The use of implant diameters of 1.6 mm and 2.0 mm produced no significant difference in implant stability when either a CF or SF was applied. When considering the use of an implant to perform three-dimensional control on the teeth, the implant diameter chosen should be > 1.2 mm.

  12. Finite Element Analysis of Bone Stress around Micro-Implants of Different Diameters and Lengths with Application of a Single or Composite Torque Force

    PubMed Central

    Lu, Ying-juan; Chang, Shao-hai; Ye, Jian-tao; Ye, Yu-shan; Yu, Yan-song

    2015-01-01

    Background Stress on the bone surrounding dental micro-implants affects implant success. Purpose To compare the stress on the bone surrounding a micro-implant after application of a single force (SF) of 200 g or a composite force (CF) of 200 g and 6 N.mm torque. Materials and Methods Finite element models were developed for micro-implant diameters of 1.2, 1.6, and 2.0 mm, and lengths of 6, 8, 10, and 12 mm and either a SF or CF was applied. The maximum equivalent stress (Max EQS) of the bone surrounding the micro-implant was determined, and the relationships among type of force, diameter, and length were evaluated. Results The Max EQS of the CF exceeded that of the SF (P< 0.05). The effect of force on stress was related to implant diameter, but not to implant length. The larger CF led to greater instability of the micro-implant and the effect was most pronounced at an implant diameter of 1.2 mm. The use of implant diameters of 1.6 mm and 2.0 mm produced no significant difference in implant stability when either a CF or SF was applied. Conclusion When considering the use of an implant to perform three-dimensional control on the teeth, the implant diameter chosen should be > 1.2 mm. PMID:26659581

  13. Relationship between photoreceptor outer segment length and visual acuity in diabetic macular edema.

    PubMed

    Forooghian, Farzin; Stetson, Paul F; Meyer, Scott A; Chew, Emily Y; Wong, Wai T; Cukras, Catherine; Meyerle, Catherine B; Ferris, Frederick L

    2010-01-01

    The purpose of this study was to quantify photoreceptor outer segment (PROS) length in 27 consecutive patients (30 eyes) with diabetic macular edema using spectral domain optical coherence tomography and to describe the correlation between PROS length and visual acuity. Three spectral domain-optical coherence tomography scans were performed on all eyes during each session using Cirrus HD-OCT. A prototype algorithm was developed for quantitative assessment of PROS length. Retinal thicknesses and PROS lengths were calculated for 3 parameters: macular grid (6 x 6 mm), central subfield (1 mm), and center foveal point (0.33 mm). Intrasession repeatability was assessed using coefficient of variation and intraclass correlation coefficient. The association between retinal thickness and PROS length with visual acuity was assessed using linear regression and Pearson correlation analyses. The main outcome measures include intrasession repeatability of macular parameters and correlation of these parameters with visual acuity. Mean retinal thickness and PROS length were 298 mum to 381 microm and 30 microm to 32 mum, respectively, for macular parameters assessed in this study. Coefficient of variation values were 0.75% to 4.13% for retinal thickness and 1.97% to 14.01% for PROS length. Intraclass correlation coefficient values were 0.96 to 0.99 and 0.73 to 0.98 for retinal thickness and PROS length, respectively. Slopes from linear regression analyses assessing the association of retinal thickness and visual acuity were not significantly different from 0 (P > 0.20), whereas the slopes of PROS length and visual acuity were significantly different from 0 (P < 0.0005). Correlation coefficients for macular thickness and visual acuity ranged from 0.13 to 0.22, whereas coefficients for PROS length and visual acuity ranged from -0.61 to -0.81. Photoreceptor outer segment length can be quantitatively assessed using Cirrus HD-OCT. Although the intrasession repeatability of PROS measurements was less than that of macular thickness measurements, the stronger correlation of PROS length with visual acuity suggests that the PROS measures may be more directly related to visual function. Photoreceptor outer segment length may be a useful physiologic outcome measure, both clinically and as a direct assessment of treatment effects.

  14. Autoregressive modeling for the spectral analysis of oceanographic data

    NASA Technical Reports Server (NTRS)

    Gangopadhyay, Avijit; Cornillon, Peter; Jackson, Leland B.

    1989-01-01

    Over the last decade there has been a dramatic increase in the number and volume of data sets useful for oceanographic studies. Many of these data sets consist of long temporal or spatial series derived from satellites and large-scale oceanographic experiments. These data sets are, however, often 'gappy' in space, irregular in time, and always of finite length. The conventional Fourier transform (FT) approach to the spectral analysis is thus often inapplicable, or where applicable, it provides questionable results. Here, through comparative analysis with the FT for different oceanographic data sets, the possibilities offered by autoregressive (AR) modeling to perform spectral analysis of gappy, finite-length series, are discussed. The applications demonstrate that as the length of the time series becomes shorter, the resolving power of the AR approach as compared with that of the FT improves. For the longest data sets examined here, 98 points, the AR method performed only slightly better than the FT, but for the very short ones, 17 points, the AR method showed a dramatic improvement over the FT. The application of the AR method to a gappy time series, although a secondary concern of this manuscript, further underlines the value of this approach.

  15. Radiation loss of planar surface plasmon polaritons transmission lines at microwave frequencies.

    PubMed

    Xu, Zhixia; Li, Shunli; Yin, Xiaoxing; Zhao, Hongxin; Liu, Leilei

    2017-07-21

    Radiation loss of a typical spoof surface plasmon polaritons (SSPPs) transmission line (TL) is investigated in this paper. A 325 mm-long SSPPs TL is designed and fabricated. Simulated results show that radiation loss contributes more to transmission loss than dielectric loss and conductor loss from 2 GHz to 10 GHz. Radiation loss of the SSPPs TL could be divided into two parts, one is caused by the input mode converter, and the other is caused by the corrugated metallic strip. This paper explains mechanisms of radiation loss from different parts, designs a loaded SSPPs TL with a series of resistors to absorb electromagnetic energy on corrugated metallic strip, and then discriminates radiation loss from the input mode converter, proposes the concept of average radiation length (ARL) to evaluate radiation loss from SSPPs of finite length, and concludes that radiation loss is mainly caused by corrugated structure of finite length at low frequency band and by the input mode converter at high frequency band. To suppress radiation loss, a mixed slow wave TL based on the combination of coplanar waveguides (CPWs) and SSPPs is presented. The designed structure, sample fabrication and experimental verification are discussed.

  16. Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis.

    PubMed

    Kong, Liang; Gu, Zexu; Li, Tao; Wu, Junjie; Hu, Kaijin; Liu, Yanpu; Zhou, Hongzhi; Liu, Baolin

    2009-01-01

    A nonlinear finite element method was applied to examine the effects of implant diameter and length on the maximum von Mises stresses in the jaw, and to evaluate the maximum displacement of the implant-abutment complex in immediate-loading models. The implant diameter (D) ranged from 3.0 to 5.0 mm and implant length (L) ranged from 6.0 to 16.0 mm. The results showed that the maximum von Mises stress in cortical bone was decreased by 65.8% under a buccolingual load with an increase in D. In cancellous bone, it was decreased by 71.5% under an axial load with an increase in L. The maximum displacement in the implant-abutment complex decreased by 64.8% under a buccolingual load with an increase in D. The implant was found to be more sensitive to L than to D under axial loads, while D played a more important role in enhancing its stability under buccolingual loads. When D exceeded 4.0 mm and L exceeded 11.0 mm, both minimum stress and displacement were obtained. Therefore, these dimensions were the optimal biomechanical selections for immediate-loading implants in type B/2 bone.

  17. Microscope basics.

    PubMed

    Sluder, Greenfield; Nordberg, Joshua J

    2013-01-01

    This chapter provides information on how microscopes work and discusses some of the microscope issues to be considered in using a video camera on the microscope. There are two types of microscopes in use today for research in cell biology-the older finite tube-length (typically 160mm mechanical tube length) microscopes and the infinity optics microscopes that are now produced. The objective lens forms a magnified, real image of the specimen at a specific distance from the objective known as the intermediate image plane. All objectives are designed to be used with the specimen at a defined distance from the front lens element of the objective (the working distance) so that the image formed is located at a specific location in the microscope. Infinity optics microscopes differ from the finite tube-length microscopes in that the objectives are designed to project the image of the specimen to infinity and do not, on their own, form a real image of the specimen. Three types of objectives are in common use today-plan achromats, plan apochromats, and plan fluorite lenses. The concept of mounting video cameras on the microscope is also presented in the chapter. Copyright © 2003 Elsevier Inc. All rights reserved.

  18. Spectral functions at small energies and the electrical conductivity in hot quenched lattice QCD.

    PubMed

    Aarts, Gert; Allton, Chris; Foley, Justin; Hands, Simon; Kim, Seyong

    2007-07-13

    In lattice QCD, the maximum entropy method can be used to reconstruct spectral functions from Euclidean correlators obtained in numerical simulations. We show that at finite temperature the most commonly used algorithm, employing Bryan's method, is inherently unstable at small energies and gives a modification that avoids this. We demonstrate this approach using the vector current-current correlator obtained in quenched QCD at finite temperature. Our first results indicate a small electrical conductivity above the deconfinement transition.

  19. Structural properties and magic structures in hydrogenated finite and infinite silicon nanowires

    NASA Astrophysics Data System (ADS)

    Zdetsis, A. D.; Koukaras, E. N.; Garoufalis, C. S.

    2007-11-01

    Unusual effects such as bending and "canting," related with the stability, have been identified by ab initio real-space calculations for hydrogenated silicon nanowires. We have examined in detail the electronic and structural properties of finite and infinite nanowires as a function of length (and width) and have developed stability and bending rules, demonstrating that "magic" wires do not bend. Reconstructed 2×1 nanowires are practically as stable as the magic ones. Our calculations are in good agreement with the experimental data of Ma et al. [Science 299, 1874 (2003).].

  20. A stiffness derivative finite element technique for determination of crack tip stress intensity factors

    NASA Technical Reports Server (NTRS)

    Parks, D. M.

    1974-01-01

    A finite element technique for determination of elastic crack tip stress intensity factors is presented. The method, based on the energy release rate, requires no special crack tip elements. Further, the solution for only a single crack length is required, and the crack is 'advanced' by moving nodal points rather than by removing nodal tractions at the crack tip and performing a second analysis. The promising straightforward extension of the method to general three-dimensional crack configurations is presented and contrasted with the practical impossibility of conventional energy methods.

  1. Computational simulation of laser heat processing of materials

    NASA Astrophysics Data System (ADS)

    Shankar, Vijaya; Gnanamuthu, Daniel

    1987-04-01

    A computational model simulating the laser heat treatment of AISI 4140 steel plates with a CW CO2 laser beam has been developed on the basis of the three-dimensional, time-dependent heat equation (subject to the appropriate boundary conditions). The solution method is based on Newton iteration applied to a triple-approximate factorized form of the equation. The method is implicit and time-accurate; the maintenance of time-accuracy in the numerical formulation is noted to be critical for the simulation of finite length workpieces with a finite laser beam dwell time.

  2. Simulation, fabrication, and characterization of a tunable electrowetting-based lens with a wedge-shaped PDMS dielectric layer.

    PubMed

    Moghaddam, Mohammadreza Salehi; Latifi, H; Shahraki, Hamidreza; Cheri, Mohammad Sadegh

    2015-04-01

    Microlenses with tunable focal length have wide applications in optofluidic devices. This work presents a numerical and experimental investigation on a tunable electrowetting-based concave lens. Optical properties such as focal length of the lens and visibility of images were investigated numerically and experimentally. A finite element analysis and a ZEMAX simulation were used for determination of surface profile and focal length of the lens. The results show that the theoretical surface profile and focal length of the lens are in good agreement with the experimental ones. The lens has a wide tuning focal length equal to 6.5 (cm). Because the polydimethylsiloxane (PDMS) layer is wedge shaped (as both the dielectric and hydrophobic layers), lower applied voltage is needed. A commercial program was used to find the focal length of the lens from maximum visibility value by tuning the applied voltage.

  3. Inflatable penile prosthesis implant length with baseline characteristic correlations: preliminary analysis of the PROPPER study

    PubMed Central

    Henry, Gerard; Karpman, Edward; Brant, William; Jones, LeRoy; Khera, Mohit; Kohler, Tobias; Christine, Brian; Rhee, Eugene; Kansas, Bryan; Bella, Anthony J.

    2017-01-01

    Background “Prospective Registry of Outcomes with Penile Prosthesis for Erectile Restoration” (PROPPER) is a large, multi-institutional, prospective clinical study to collect, analyze, and report real-world outcomes for men implanted with penile prosthetic devices. We prospectively correlated co-morbid conditions and demographic data with implanted penile prosthesis size to enable clinicians to better predict implanted penis size following penile implantation. We present many new data points for the first time in the literature and postulate that radical prostatectomy (RP) is negatively correlated with penile corporal length. Methods Patient demographics, medical history, baseline characteristics and surgical details were compiled prospectively. Pearson correlation coefficient was generated for the correlation between demographic, etiology of ED, duration of ED, co-morbid conditions, pre-operative penile length (flaccid and stretched) and length of implanted penile prosthesis. Multivariate analysis was performed to define predictors of implanted prosthesis length. Results From June 2011 to June 2017, 1,135 men underwent primary implantation of penile prosthesis at a total of 11 study sites. Malleable (Spectra), 2-piece Ambicor, and 3-piece AMS 700 CX/LGX were included in the analysis. The most common patient comorbidities were CV disease (26.1%), DM (11.1%), and PD (12.4%). Primary etiology of ED: RP (27.4%), DM (20.3%), CVD (18.0%), PD (10.3%), and Priapism (1.4%), others (22.6%). Mean duration of ED is 6.2¡À4.1 years. Implant length was weakly negatively correlated with White/Caucasian (r=−0.18; P<0.01), history of RP (r=−0.13; P<0.01), PD as comorbidity (r=−0.16; P<0.01), venous leak (r=−0.08; P<0.01), and presence of stress incontinence (r=−0.13; P<0.01). Analyses showed weak positive correlations with Black/AA (r=0.32; P<0.01), CV disease as primary ED etiology (r=0.08; P<0.01) and pre-operative stretched penile length (r=0.18; P<0.01). There is a moderate correlation with pre-operative flaccid penile length (r=0.30; P<0.01). Conclusions Implanted penile prosthesis length is negatively correlated with some ethnic groups, prostatectomy, and incontinence. Positive correlates include CV disease, preoperative stretched penile length, and flaccid penile length. PMID:29354506

  4. Comparison of Linear Induction Motor Theories for the LIMRV and TLRV Motors

    DOT National Transportation Integrated Search

    1978-01-01

    The Oberretl, Yamamura, and Mosebach theories of the linear induction motor are described and also applied to predict performance characteristics of the TLRV & LIMRV linear induction motors. The effect of finite motor width and length on performance ...

  5. Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing

    PubMed Central

    Fry, Karl E.; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc

    2016-01-01

    Background: Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. Hypotheses: The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Study Design: Prospective cohort study. Level of Evidence: Level 3. Methods: Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Results: Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated (P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. Conclusions: There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Clinical Relevance: Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs. PMID:27864504

  6. Youth Baseball Pitching Stride Length: Normal Values and Correlation With Field Testing.

    PubMed

    Fry, Karl E; Pipkin, Andrew; Wittman, Kelcie; Hetzel, Scott; Sherry, Marc

    Pitching biomechanical analysis has been recommended as an important component of performance, injury prevention, and rehabilitation. Normal values for youth pitching stride length have not been established, leading to application of normative values found among professional pitchers to youth pitchers. The average youth pitching stride length will be significantly less than that of college and professional pitchers. There will be a positive correlation between stride length, lower extremity power, balance, and pitching experience. Prospective cohort study. Level 3. Ninety-two youth baseball pitchers (aged 9-14 years) met the inclusion/exclusion criteria and completed the study. Stride length was recorded using a Dartfish video system over 3 maximal effort pitches. Both intra- and interrater reliability was calculated for the assessment of stride length. Double-leg vertical jump, single-leg stance time, leg length, weight, age, and pitching experience were also recorded. Mean (SD) stride length was 66.0% (7.1%) of height. Stride length was correlated ( P < 0.01) with vertical jump (0.38), pitching experience (0.36), and single-leg balance (0.28), with excellent intra- and interrater reliability (0.985 or higher). No significant correlations between stride length and body weight, leg length, or age existed. There was a significant difference between youth pitching stride length and the current published norms for older and more elite throwers. There was a positive correlation between stride length and lower extremity power, pitching experience, and single-leg balance. Two-dimensional analysis of stride length allows for the assessment of pitching biomechanics in a practical manner. These values can be used for return to pitching parameters after an injury and designing injury prevention and performance programs.

  7. Multiscale Pores in TBCs for Lower Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Zhang, Wei-Wei; Li, Guang-Rong; Zhang, Qiang; Yang, Guan-Jun

    2017-08-01

    The morphology and pattern (including orientation and aspect ratio) of pores in thermal barrier coatings (TBCs) significantly affect their thermal insulation performance. In this work, finite element analysis was used to comprehensively understand the thermal insulation effect of pores and correlate the effective thermal conductivity with the structure. The results indicated that intersplat pores, and in particular their aspect ratio, dominantly affect the heat transfer in the top coat. The effective thermal conductivity decreased as a function of aspect ratio, since a larger aspect ratio often corresponds to a greater proportion of effective length of the pores. However, in conventional plasma-sprayed TBCs, intersplat pores often fail to maximize thermal insulation due to their distinct lower aspect ratios. Therefore, considering this effect of aspect ratio, a new structure design with multiscale pores is proposed and a corresponding structural model developed to correlate the thermal properties with this pore-rich structure. The predictions of the model are well consistent with experimental data. This study provides comprehensive understanding of the effect of pores on the thermal insulation performance, shedding light on the possibility of structural tailoring to obtain advanced TBCs with lower thermal conductivity.

  8. SAW correlator spread spectrum receiver

    DOEpatents

    Brocato, Robert W

    2014-04-01

    A surface acoustic wave (SAW) correlator spread-spectrum (SS) receiver is disclosed which utilizes a first demodulation stage with a chip length n and a second demodulation stage with a chip length m to decode a transmitted SS signal having a code length l=n.times.m which can be very long (e.g. up to 2000 chips or more). The first demodulation stage utilizes a pair of SAW correlators which demodulate the SS signal to generate an appropriate code sequence at an intermediate frequency which can then be fed into the second demodulation stage which can be formed from another SAW correlator, or by a digital correlator. A compound SAW correlator comprising two input transducers and a single output transducer is also disclosed which can be used to form the SAW correlator SS receiver, or for use in processing long code length signals.

  9. Infinite Systems of Interacting Chains with Memory of Variable Length—A Stochastic Model for Biological Neural Nets

    NASA Astrophysics Data System (ADS)

    Galves, A.; Löcherbach, E.

    2013-06-01

    We consider a new class of non Markovian processes with a countable number of interacting components. At each time unit, each component can take two values, indicating if it has a spike or not at this precise moment. The system evolves as follows. For each component, the probability of having a spike at the next time unit depends on the entire time evolution of the system after the last spike time of the component. This class of systems extends in a non trivial way both the interacting particle systems, which are Markovian (Spitzer in Adv. Math. 5:246-290, 1970) and the stochastic chains with memory of variable length which have finite state space (Rissanen in IEEE Trans. Inf. Theory 29(5):656-664, 1983). These features make it suitable to describe the time evolution of biological neural systems. We construct a stationary version of the process by using a probabilistic tool which is a Kalikow-type decomposition either in random environment or in space-time. This construction implies uniqueness of the stationary process. Finally we consider the case where the interactions between components are given by a critical directed Erdös-Rényi-type random graph with a large but finite number of components. In this framework we obtain an explicit upper-bound for the correlation between successive inter-spike intervals which is compatible with previous empirical findings.

  10. Prediction of anthropometric measurements from tooth length--A Dravidian study.

    PubMed

    Sunitha, J; Ananthalakshmi, R; Sathiya, Jeeva J; Nadeem, Jeddy; Dhanarathnam, Shanmugam

    2015-12-01

    Anthropometric measurement is essential for identification of both victims and suspects. Often, this data is not readily available in a crime scene situation. The availability of one data set should help in predicting the other. This study was hypothesised on the basis of a correlation and geometry between the tooth length and various body measurements. To correlate face, palm, foot and stature measurements with tooth length. To derive a regression formula to estimate the various measurements from tooth length. The present study was conducted on Dravidian dental students in the age group 18 - 25 with a sample size of 372. All of the dental and physical parameters were measured using standard anthropometric equipments and techniques. The data was analysed using SPSS software and the methods used for statistical analysis were linear regression analysis and Pearson correlation. The parameters (incisor height (IH), face height (FH), palm length (PL), foot length (FL) and stature (S) showed nil to mild correlation (R = 0.2 ≤ 0.4) except for palm length (PL) and foot length (FL). (R>0.6). It is concluded that odontometric data is not a reliable source for estimating the face height (FH), palm length (PL), foot length (FL) and stature (S).

  11. Insensitivity to Flaws Leads to Damage Tolerance in Brittle Architected Meta-Materials

    NASA Astrophysics Data System (ADS)

    Montemayor, L. C.; Wong, W. H.; Zhang, Y.-W.; Greer, J. R.

    2016-02-01

    Cellular solids are instrumental in creating lightweight, strong, and damage-tolerant engineering materials. By extending feature size down to the nanoscale, we simultaneously exploit the architecture and material size effects to substantially enhance structural integrity of architected meta-materials. We discovered that hollow-tube alumina nanolattices with 3D kagome geometry that contained pre-fabricated flaws always failed at the same load as the pristine specimens when the ratio of notch length (a) to sample width (w) is no greater than 1/3, with no correlation between failure occurring at or away from the notch. Samples with (a/w) > 0.3, and notch length-to-unit cell size ratios of (a/l) > 5.2, failed at a lower peak loads because of the higher sample compliance when fewer unit cells span the intact region. Finite element simulations show that the failure is governed by purely tensile loading for (a/w) < 0.3 for the same (a/l); bending begins to play a significant role in failure as (a/w) increases. This experimental and computational work demonstrates that the discrete-continuum duality of architected structural meta-materials may give rise to their damage tolerance and insensitivity of failure to the presence of flaws even when made entirely of intrinsically brittle materials.

  12. A quantum Otto engine with finite heat baths: energy, correlations, and degradation

    NASA Astrophysics Data System (ADS)

    Pozas-Kerstjens, Alejandro; Brown, Eric G.; Hovhannisyan, Karen V.

    2018-04-01

    We study a driven harmonic oscillator operating an Otto cycle by strongly interacting with two thermal baths of finite size. Using the tools of Gaussian quantum mechanics, we directly simulate the dynamics of the engine as a whole, without the need to make any approximations. This allows us to understand the non-equilibrium thermodynamics of the engine not only from the perspective of the working medium, but also as it is seen from the thermal baths’ standpoint. For sufficiently large baths, our engine is capable of running a number of perfect cycles, delivering finite power while operating very close to maximal efficiency. Thereafter, having traversed the baths, the perturbations created by the interaction abruptly deteriorate the engine’s performance. We additionally study the correlations generated in the system, and, in particular, we find a direct connection between the build up of bath–bath correlations and the degradation of the engine’s performance over the course of many cycles.

  13. Nontrivial thermodynamics in 't Hooft's large-N limit

    NASA Astrophysics Data System (ADS)

    Cubero, Axel Cortés

    2015-05-01

    We study the finite volume/temperature correlation functions of the (1 +1 )-dimensional SU (N ) principal chiral sigma model in the planar limit. The exact S-matrix of the sigma model is known to simplify drastically at large N , and this leads to trivial thermodynamic Bethe ansatz (TBA) equations. The partition function, if derived using the TBA, can be shown to be that of free particles. We show that the correlation functions and expectation values of operators at finite volume/temperature are not those of the free theory, and that the TBA does not give enough information to calculate them. Our analysis is done using the Leclair-Mussardo formula for finite-volume correlators, and knowledge of the exact infinite-volume form factors. We present analytical results for the one-point function of the energy-momentum tensor, and the two-point function of the renormalized field operator. The results for the energy-momentum tensor can be used to define a nontrivial partition function.

  14. A combinatorial approach to the design of vaccines.

    PubMed

    Martínez, Luis; Milanič, Martin; Legarreta, Leire; Medvedev, Paul; Malaina, Iker; de la Fuente, Ildefonso M

    2015-05-01

    We present two new problems of combinatorial optimization and discuss their applications to the computational design of vaccines. In the shortest λ-superstring problem, given a family S1,...,S(k) of strings over a finite alphabet, a set Τ of "target" strings over that alphabet, and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ target strings as substrings of S(i). In the shortest λ-cover superstring problem, given a collection X1,...,X(n) of finite sets of strings over a finite alphabet and an integer λ, the task is to find a string of minimum length containing, for each i, at least λ elements of X(i) as substrings. The two problems are polynomially equivalent, and the shortest λ-cover superstring problem is a common generalization of two well known combinatorial optimization problems, the shortest common superstring problem and the set cover problem. We present two approaches to obtain exact or approximate solutions to the shortest λ-superstring and λ-cover superstring problems: one based on integer programming, and a hill-climbing algorithm. An application is given to the computational design of vaccines and the algorithms are applied to experimental data taken from patients infected by H5N1 and HIV-1.

  15. A remark on the theory of measuring thermal diffusivity by the modified Angstrom's method. [in lunar samples

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.

    1981-01-01

    A theory of the measurement of the thermal diffusivity of a sample by the modified Angstrom method is developed for the case in which radiative heat loss from the end surface of the sample is not negligible, and applied to measurements performed on lunar samples. Formulas allowing sample thermal diffusivity to be determined from the amplitude decay and phase lag of a temperature wave traveling through the sample are derived for a flat disk sample for which only heat loss from the end surface is important, and a sample of finite diameter and length for which heat loss through the end and side surfaces must be considered. It is noted that in the case of a flat disk, measurements at a single angular frequency of the temperature wave are sufficient, while the sample of finite diameter and length requires measurements at two discrete angular frequencies. Comparison of the values of the thermal diffusivities of two lunar samples of dimensions approximately 1 x 1 x 2 cm derived by the present methods and by the Angstrom theory for a finite bar reveals them to differ by not more than 5%, and indicates that more refined data are required as the measurement theory becomes more complicated.

  16. The Lateral Compressive Buckling Performance of Aluminum Honeycomb Panels for Long-Span Hollow Core Roofs

    PubMed Central

    Zhao, Caiqi; Zheng, Weidong; Ma, Jun; Zhao, Yangjian

    2016-01-01

    To solve the problem of critical buckling in the structural analysis and design of the new long-span hollow core roof architecture proposed in this paper (referred to as a “honeycomb panel structural system” (HSSS)), lateral compression tests and finite element analyses were employed in this study to examine the lateral compressive buckling performance of this new type of honeycomb panel with different length-to-thickness ratios. The results led to two main conclusions: (1) Under the experimental conditions that were used, honeycomb panels with the same planar dimensions but different thicknesses had the same compressive stiffness immediately before buckling, while the lateral compressive buckling load-bearing capacity initially increased rapidly with an increasing honeycomb core thickness and then approached the same limiting value; (2) The compressive stiffnesses of test pieces with the same thickness but different lengths were different, while the maximum lateral compressive buckling loads were very similar. Overall instability failure is prone to occur in long and flexible honeycomb panels. In addition, the errors between the lateral compressive buckling loads from the experiment and the finite element simulations are within 6%, which demonstrates the effectiveness of the nonlinear finite element analysis and provides a theoretical basis for future analysis and design for this new type of spatial structure. PMID:28773567

  17. Sella size and jaw bases - Is there a correlation???

    PubMed

    Neha; Mogra, Subraya; Shetty, Vorvady Surendra; Shetty, Siddarth

    2016-01-01

    Sella turcica is an important cephalometric structure and attempts have been made in the past to correlate its dimensions to the malocclusion. However, no study has so far compared the size of sella to the jaw bases that determine the type of malocclusion. The present study was undertaken to find out any such correlation if it exists. Lateral cephalograms of 110 adults consisting of 40 Class I, 40 Class II, and 30 Class III patients were assessed for the measurement of sella length, width, height, and area. The maxillary length, mandibular ramus height, and body length were also measured. The sella dimensions were compared among three malocclusion types by one-way ANOVA. Pearson correlation was calculated between the jaw size and sella dimensions. Furthermore, the ratio of jaw base lengths and sella area were calculated. Mean sella length, width and area were found to be greatest in Class III, followed by Class I and least in Class II though the results were not statistically significant. 3 out of 4 measured dimensions of sella, correlated significantly with mandibular ramus and body length each. However, only one dimension of sella showed significant correlation with maxilla. The mandibular ramus and body length show a nearly constant ratio to sella area (0.83-0.85, 0.64-0.65, respectively) in all the three malocclusions. Thus, mandible has a definite and better correlation to the size of sella turcica.

  18. Key Parameters Evaluation for Hip Prosthesis with Finite Element Analysis

    NASA Astrophysics Data System (ADS)

    Guo, Hongqiang; Li, Dichen; Lian, Qin; Li, Xiang; Jin, Zhongmin

    2007-09-01

    Stem length and cross section are two key parameters that influence the stability and longevity of metallic hip prosthesis in the total hip arthroplasty (THA). In order to assess their influence to the stress and fatigue behavior of hip prosthesis, a series model of hip prosthesis with round-shaped or drum-shaped cross section, and with different stem lengths were created. These models were analyzed under both static and dynamic loading conditions with finite element analysis, and dynamic loading represents normal walking was used in the dynamic analysis. The stress on the metallic stem, cement, and adjacent bone were got, micromotion on the cement-metal interface were got too. Safety factors for fatigue life of the hip prothesis were calculated based on data obtained from dynamic analysis. Static analysis shows that drum-shaped cross section can decrease the displacement of the stem, that stress on drum-shaped stem focus on the corner of the femoral neck and the distal part of hip prosthesis, whereas the stress on the round-shaped stem distributes evenly over most part of the stem, and maximum stress on stem prosthesis fluctuates with stem length bottoming out at stem length range from 80 mm to 110 mm, that drum-shaped stems with drum height 8 mm generate more stress at the distal part of stem than drum-shaped stems with drum height 10 mm and round stems do. Dynamic and fatigue analysis shows that drum-shaped stem with drum height 10 mm and stem length 90 mm has the greatest safety factor therefore long fatigue life.

  19. Packing a pinch: functional implications of chela shapes in scorpions using finite element analysis

    PubMed Central

    van der Meijden, Arie; Kleinteich, Thomas; Coelho, Pedro

    2012-01-01

    Scorpions depend on their pedipalps for prey capture, defense, mating and sensing their environment. Some species additionally use their pedipalps for burrowing or climbing. Because the pincers or chelae at the end of the pedipalps vary widely in shape, they have been used as part of a suite of characters to delimit ecomorphotypes. We here evaluate the influence of the different chela cuticular shapes on their performance under natural loading conditions. Chelae of 20 species, representing seven families and spanning most of the range of chela morphologies, were assigned to clusters based on chela shape parameters using hierarchical cluster analysis. Several clusters were identified corresponding approximately to described scorpion ecomorphotypes. Finite element models of the chela cuticulae were constructed from CT scans and loaded with estimated pinch forces based on in vivo force measurements. Chela shape clusters differed significantly in mean Von Mises stress and strain energy. Normalized FEA showed that chela shape significantly influenced Von Mises stress and strain energy in the chela cuticula, with Von Mises stress varying up to an order of magnitude and strain energy up to two orders of magnitude. More elongate, high-aspect ratio chela forms showed significantly higher mean stress compared with more robust low-aspect ratio forms. This suggests that elongate chelae are at a higher risk of failure when operating near the maximum pinch force. Phylogenetic independent contrasts (PIC) were calculated based on a partly resolved phylogram with branch lengths based on an alignment of the 12S, 16S and CO1 mitochondrial genes. PIC showed that cuticular stress and strain in the chela were correlated with several shape parameters, such as aspect ratio, movable finger length, and chela height, independently of phylogenetic history. Our results indicate that slender chela morphologies may be less suitable for high-force functions such as burrowing and defense. Further implications of these findings for the ecology and evolution of the different chela morphologies are discussed. PMID:22360433

  20. Effect of length to thickness ratio on free vibration analysis of thick fiber reinforced plastic skew cross-ply laminate with circular cutout

    NASA Astrophysics Data System (ADS)

    Srividya, K.; Reddy, Ch. Kishore; Sumanth, Ch. Mohan; Krishnaiah, P. Gopala; Kishan, V. Mallikharjuna

    2018-04-01

    The present investigation deals with the free vibration analysis of a thick four-layered symmetric cross-ply skew laminated composite plate with a circular cutout. Three dimensional finite element models (FEM) which use the elasticity theory for the determination of stiffness matrices are modeled in ANSYS software to evaluate first five natural frequencies of the laminate. The variations of the first five natural frequencies with respect to length to thickness ratio (S) for different diameter to length ratios (d/l) are presented. It is observed that, the natural frequencies decreases with increase of thickness ratio(S).

  1. The Thick Level-Set model for dynamic fragmentation

    DOE PAGES

    Stershic, Andrew J.; Dolbow, John E.; Moës, Nicolas

    2017-01-04

    The Thick Level-Set (TLS) model is implemented to simulate brittle media undergoing dynamic fragmentation. This non-local model is discretized by the finite element method with damage represented as a continuous field over the domain. A level-set function defines the extent and severity of damage, and a length scale is introduced to limit the damage gradient. Numerical studies in one dimension demonstrate that the proposed method reproduces the rate-dependent energy dissipation and fragment length observations from analytical, numerical, and experimental approaches. In conclusion, additional studies emphasize the importance of appropriate bulk constitutive models and sufficient spatial resolution of the length scale.

  2. Compressive buckling of black phosphorene nanotubes: an atomistic study

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Trang; Le, Minh-Quy

    2018-04-01

    We investigate through molecular dynamics finite element method with Stillinger-Weber potential the uniaxial compression of armchair and zigzag black phosphorene nanotubes. We focus especially on the effects of the tube’s diameter with fixed length-diameter ratio, effects of the tube’s length for a pair of armchair and zigzag tubes of equal diameters, and effects of the tube’s diameter with fixed lengths. Their Young’s modulus, critical compressive stress and critical compressive strain are studied and discussed for these 3 case studies. Compressive buckling was clearly observed in the armchair nanotubes. Local bond breaking near the boundary occurred in the zigzag ones under compression.

  3. Anomalous scaling of a passive scalar advected by the Navier-Stokes velocity field: two-loop approximation.

    PubMed

    Adzhemyan, L Ts; Antonov, N V; Honkonen, J; Kim, T L

    2005-01-01

    The field theoretic renormalization group and operator-product expansion are applied to the model of a passive scalar quantity advected by a non-Gaussian velocity field with finite correlation time. The velocity is governed by the Navier-Stokes equation, subject to an external random stirring force with the correlation function proportional to delta(t- t')k(4-d-2epsilon). It is shown that the scalar field is intermittent already for small epsilon, its structure functions display anomalous scaling behavior, and the corresponding exponents can be systematically calculated as series in epsilon. The practical calculation is accomplished to order epsilon2 (two-loop approximation), including anisotropic sectors. As for the well-known Kraichnan rapid-change model, the anomalous scaling results from the existence in the model of composite fields (operators) with negative scaling dimensions, identified with the anomalous exponents. Thus the mechanism of the origin of anomalous scaling appears similar for the Gaussian model with zero correlation time and the non-Gaussian model with finite correlation time. It should be emphasized that, in contrast to Gaussian velocity ensembles with finite correlation time, the model and the perturbation theory discussed here are manifestly Galilean covariant. The relevance of these results for real passive advection and comparison with the Gaussian models and experiments are briefly discussed.

  4. The NASA/industry Design Analysis Methods for Vibrations (DAMVIBS) program: McDonnell-Douglas Helicopter Company achievements

    NASA Technical Reports Server (NTRS)

    Toossi, Mostafa; Weisenburger, Richard; Hashemi-Kia, Mostafa

    1993-01-01

    This paper presents a summary of some of the work performed by McDonnell Douglas Helicopter Company under NASA Langley-sponsored rotorcraft structural dynamics program known as DAMVIBS (Design Analysis Methods for VIBrationS). A set of guidelines which is applicable to dynamic modeling, analysis, testing, and correlation of both helicopter airframes and a large variety of structural finite element models is presented. Utilization of these guidelines and the key features of their applications to vibration modeling of helicopter airframes are discussed. Correlation studies with the test data, together with the development and applications of a set of efficient finite element model checkout procedures, are demonstrated on a large helicopter airframe finite element model. Finally, the lessons learned and the benefits resulting from this program are summarized.

  5. Highly selective surface-wave resonators for terahertz frequency range formed by metallic Bragg gratings

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Malkin, A. M.; Sergeev, A. S.; Fil'chenkov, S. E.; Zaslavsky, V. Yu.

    2018-04-01

    In the frame of the quasi-optical approach we solve the diffraction problem and describe surface modes confined at a metallic plate with a shallow grating of finite length. We prove that such planar grating can form a highly selective surface-wave Bragg resonator. For a given material conductivity and grating length, we find the optimum corrugation depth that provides the maximum value of Q factor. These results are applicable for developing resonators for terahertz frequency bands.

  6. Lamb Wave Propagation in a Restricted Geometry Composite PI-Joint Specimen (Preprint)

    DTIC Science & Technology

    2011-11-01

    adhesive, and were located along the length and height of the specimen as depicted in Figure 3. The sensors were 6.35 mm round disks of PZT , with a...in both cases for R1, R2, and R3. 3D Finite Element Model Geometry 200mm length 50mm width 140mm height x z y PZT Actuation Sensor...health monitoring using scanning laser vibrometry: III. Lamb waves for fatigue crack detection”, Smart Mater. Struct., Vol. 14, No. 6, 2005. 16

  7. Size-dependent chemical transformation, structural phase-change, and optical properties of nanowires

    PubMed Central

    Piccione, Brian; Agarwal, Rahul; Jung, Yeonwoong; Agarwal, Ritesh

    2013-01-01

    Nanowires offer a unique approach for the bottom up assembly of electronic and photonic devices with the potential of integrating photonics with existing technologies. The anisotropic geometry and mesoscopic length scales of nanowires also make them very interesting systems to study a variety of size-dependent phenomenon where finite size effects become important. We will discuss the intriguing size-dependent properties of nanowire systems with diameters in the 5 – 300 nm range, where finite size and interfacial phenomena become more important than quantum mechanical effects. The ability to synthesize and manipulate nanostructures by chemical methods allows tremendous versatility in creating new systems with well controlled geometries, dimensions and functionality, which can then be used for understanding novel processes in finite-sized systems and devices. PMID:23997656

  8. Desert bird associations with broad-scale boundary length: Applications in avian conservation

    USGS Publications Warehouse

    Gutzwiller, K.J.; Barrow, W.C.

    2008-01-01

    1. Current understanding regarding the effects of boundaries on bird communities has originated largely from studies of forest-non-forest boundaries in mesic systems. To assess whether broad-scale boundary length can affect bird community structure in deserts, and to identify patterns and predictors of species' associations useful in avian conservation, we studied relations between birds and boundary-length variables in Chihuahuan Desert landscapes. Operationally, a boundary was the border between two adjoining land covers, and broad-scale boundary length was the total length of such borders in a large area. 2. Within 2-km radius areas, we measured six boundary-length variables. We analysed bird-boundary relations for 26 species, tested for assemblage-level patterns in species' associations with boundary-length variables, and assessed whether body size, dispersal ability and cowbird-host status were correlates of these associations. 3. The abundances or occurrences of a significant majority of species were associated with boundary-length variables, and similar numbers of species were related positively and negatively to boundary-length variables. 4. Disproportionately small numbers of species were correlated with total boundary length, land-cover boundary length and shrubland-grassland boundary length (variables responsible for large proportions of boundary length). Disproportionately large numbers of species were correlated with roadside boundary length and riparian vegetation-grassland boundary length (variables responsible for small proportions of boundary length). Roadside boundary length was associated (positively and negatively) with the most species. 5. Species' associations with boundary-length variables were not correlated with body size, dispersal ability or cowbird-host status. 6. Synthesis and applications. For the species we studied, conservationists can use the regressions we report as working models to anticipate influences of boundary-length changes on bird abundance and occurrence, and to assess avifaunal composition for areas under consideration for protection. Boundary-length variables associated with a disproportionate or large number of species can be used as foci for landscape management. Assessing the underlying causes of bird-boundary relations may improve the prediction accuracy of associated models. We therefore advocate local- and broad-scale manipulative experiments involving the boundary types with which species were correlated, as indicated by the regressions. ?? 2008 The Authors.

  9. Finite length filters with maximally confined spectral power

    NASA Technical Reports Server (NTRS)

    Knight, J. W.; Newman, C. E.

    1975-01-01

    The problem of finding a function which, in addition to being zero outside a specified range in x-space, has its spectral power well confined to a certain range in k-space is solved numerically. Properties of the solutions are also discussed.

  10. Shallow-Water Performance of a Planing Boat

    DTIC Science & Technology

    1969-04-25

    coefficient h Finite depth of water, ft Fn Froude number based on length Nomenclature used is ITTC Standard Symbols and that recommended in SNAME T & R...Published by SNAME, 1967. 3. "Systematishe Untersuchungen von Kleinschiffsformen auf flachem Wasser im unter- und Uberuritishen

  11. The electrostatic persistence length of polymers beyond the OSF limit.

    PubMed

    Everaers, R; Milchev, A; Yamakov, V

    2002-05-01

    We use large-scale Monte Carlo simulations to test scaling theories for the electrostatic persistence length l(e) of isolated, uniformly charged polymers with Debye-Hückel intrachain interactions in the limit where the screening length kappa(-1) exceeds the intrinsic persistence length of the chains. Our simulations cover a significantly larger part of the parameter space than previous studies. We observe no significant deviations from the prediction l(e) proportional to kappa(-2) by Khokhlov and Khachaturian which is based on applying the Odijk-Skolnick-Fixman theories of electrostatic bending rigidity and electrostatically excluded volume to the stretched de Gennes-Pincus-Velasco-Brochard polyelectrolyte blob chain. A linear or sublinear dependence of the persistence length on the screening length can be ruled out. We show that previous results pointing into this direction are due to a combination of excluded-volume and finite chain length effects. The paper emphasizes the role of scaling arguments in the development of useful representations for experimental and simulation data.

  12. Singular eigenstates in the even(odd) length Heisenberg spin chain

    NASA Astrophysics Data System (ADS)

    Ranjan Giri, Pulak; Deguchi, Tetsuo

    2015-05-01

    We study the implications of the regularization for the singular solutions on the even(odd) length spin-1/2 XXX chains in some specific down-spin sectors. In particular, the analytic expressions of the Bethe eigenstates for three down-spin sector have been obtained along with their numerical forms in some fixed length chains. For an even-length chain if the singular solutions \\{{{λ }α }\\} are invariant under the sign changes of their rapidities \\{{{λ }α }\\}=\\{-{{λ }α }\\}, then the Bethe ansatz equations are reduced to a system of (M-2)/2((M-3)/2) equations in an even (odd) down-spin sector. For an odd N length chain in the three down-spin sector, it has been analytically shown that there exist singular solutions in any finite length of the spin chain of the form N=3(2k+1) with k=1,2,3,\\cdots . It is also shown that there exist no singular solutions in the four down-spin sector for some odd-length spin-1/2 XXX chains.

  13. Modal Test/Analysis Correlation of Space Station Structures Using Nonlinear Sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlation. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  14. Modal test/analysis correlation of Space Station structures using nonlinear sensitivity

    NASA Technical Reports Server (NTRS)

    Gupta, Viney K.; Newell, James F.; Berke, Laszlo; Armand, Sasan

    1992-01-01

    The modal correlation problem is formulated as a constrained optimization problem for validation of finite element models (FEM's). For large-scale structural applications, a pragmatic procedure for substructuring, model verification, and system integration is described to achieve effective modal correlations. The space station substructure FEM's are reduced using Lanczos vectors and integrated into a system FEM using Craig-Bampton component modal synthesis. The optimization code is interfaced with MSC/NASTRAN to solve the problem of modal test/analysis correlation; that is, the problem of validating FEM's for launch and on-orbit coupled loads analysis against experimentally observed frequencies and mode shapes. An iterative perturbation algorithm is derived and implemented to update nonlinear sensitivity (derivatives of eigenvalues and eigenvectors) during optimizer iterations, which reduced the number of finite element analyses.

  15. Quantum correlation properties in Matrix Product States of finite-number spin rings

    NASA Astrophysics Data System (ADS)

    Zhu, Jing-Min; He, Qi-Kai

    2018-02-01

    The organization and structure of quantum correlation (QC) of quantum spin-chains are very rich and complex. Hence the depiction and measures about the QC of finite-number spin rings deserved to be investigated intensively by using Matrix Product States(MPSs) in addition to the case with infinite-number. Here the dependencies of the geometric quantum discord(GQD) of two spin blocks on the total spin number, the spacing spin number and the environment parameter are presented in detail. We also compare the GQD with the total correlation(TC) and the classical correlation(CC) and illustrate its characteristics. Predictably, our findings may provide the potential of designing the optimal QC experimental detection proposals and pave the way for the designation of optimal quantum information processing schemes.

  16. Large-scale parent–child comparison confirms a strong paternal influence on telomere length

    PubMed Central

    Nordfjäll, Katarina; Svenson, Ulrika; Norrback, Karl-Fredrik; Adolfsson, Rolf; Roos, Göran

    2010-01-01

    Telomere length is documented to have a hereditary component, and both paternal and X-linked inheritance have been proposed. We investigated blood cell telomere length in 962 individuals with an age range between 0 and 102 years. Telomere length correlations were analyzed between parent–child pairs in different age groups and between grandparent–grandchild pairs. A highly significant correlation between the father's and the child's telomere length was observed (r=0.454, P<0.001), independent of the sex of the offspring (father–son: r=0.465, P<0.001; father–daughter: r=0.484, P<0.001). For mothers, the correlations were weaker (mother–child: r=0.148, P=0.098; mother–son: r=0.080, P=0.561; mother–daughter: r=0.297, P=0.013). A positive telomere length correlation was also observed for grandparent–grandchild pairs (r=0.272, P=0.013). Our findings indicate that fathers contribute significantly stronger to the telomere length of the offspring compared with mothers (P=0.012), but we cannot exclude a maternal influence on the daughter's telomeres. Interestingly, the father–child correlations diminished with increasing age (P=0.022), suggesting that nonheritable factors have an impact on telomere length dynamics during life. PMID:19826452

  17. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT).

    PubMed

    Pottecher, Pierre; Engelke, Klaus; Duchemin, Laure; Museyko, Oleg; Moser, Thomas; Mitton, David; Vicaut, Eric; Adams, Judith; Skalli, Wafa; Laredo, Jean Denis; Bousson, Valérie

    2016-09-01

    Purpose To evaluate the performance of three imaging methods (radiography, dual-energy x-ray absorptiometry [DXA], and quantitative computed tomography [CT]) and that of a numerical analysis with finite element modeling (FEM) in the prediction of failure load of the proximal femur and to identify the best densitometric or geometric predictors of hip failure load. Materials and Methods Institutional review board approval was obtained. A total of 40 pairs of excised cadaver femurs (mean patient age at time of death, 82 years ± 12 [standard deviation]) were examined with (a) radiography to measure geometric parameters (lengths, angles, and cortical thicknesses), (b) DXA (reference standard) to determine areal bone mineral densities (BMDs), and (c) quantitative CT with dedicated three-dimensional analysis software to determine volumetric BMDs and geometric parameters (neck axis length, cortical thicknesses, volumes, and moments of inertia), and (d) quantitative CT-based FEM to calculate a numerical value of failure load. The 80 femurs were fractured via mechanical testing, with random assignment of one femur from each pair to the single-limb stance configuration (hereafter, stance configuration) and assignment of the paired femur to the sideways fall configuration (hereafter, side configuration). Descriptive statistics, univariate correlations, and stepwise regression models were obtained for each imaging method and for FEM to enable us to predict failure load in both configurations. Results Statistics reported are for stance and side configurations, respectively. For radiography, the strongest correlation with mechanical failure load was obtained by using a geometric parameter combined with a cortical thickness (r(2) = 0.66, P < .001; r(2) = 0.65, P < .001). For DXA, the strongest correlation with mechanical failure load was obtained by using total BMD (r(2) = 0.73, P < .001) and trochanteric BMD (r(2) = 0.80, P < .001). For quantitative CT, in both configurations, the best model combined volumetric BMD and a moment of inertia (r(2) = 0.78, P < .001; r(2) = 0.85, P < .001). FEM explained 87% (P < .001) and 83% (P < .001) of bone strength, respectively. By combining (a) radiography and DXA and (b) quantitative CT and DXA, correlations with mechanical failure load increased to 0.82 (P < .001) and 0.84 (P < .001), respectively, for radiography and DXA and to 0.80 (P < .001) and 0.86 (P < .001) , respectively, for quantitative CT and DXA. Conclusion Quantitative CT-based FEM was the best method with which to predict the experimental failure load; however, combining quantitative CT and DXA yielded a performance as good as that attained with FEM. The quantitative CT DXA combination may be easier to use in fracture prediction, provided standardized software is developed. These findings also highlight the major influence on femoral failure load, particularly in the trochanteric region, of a densitometric parameter combined with a geometric parameter. (©) RSNA, 2016 Online supplemental material is available for this article.

  18. Correlation of finite element free vibration predictions using random vibration test data. M.S. Thesis - Cleveland State Univ.

    NASA Technical Reports Server (NTRS)

    Chambers, Jeffrey A.

    1994-01-01

    Finite element analysis is regularly used during the engineering cycle of mechanical systems to predict the response to static, thermal, and dynamic loads. The finite element model (FEM) used to represent the system is often correlated with physical test results to determine the validity of analytical results provided. Results from dynamic testing provide one means for performing this correlation. One of the most common methods of measuring accuracy is by classical modal testing, whereby vibratory mode shapes are compared to mode shapes provided by finite element analysis. The degree of correlation between the test and analytical mode shapes can be shown mathematically using the cross orthogonality check. A great deal of time and effort can be exhausted in generating the set of test acquired mode shapes needed for the cross orthogonality check. In most situations response data from vibration tests are digitally processed to generate the mode shapes from a combination of modal parameters, forcing functions, and recorded response data. An alternate method is proposed in which the same correlation of analytical and test acquired mode shapes can be achieved without conducting the modal survey. Instead a procedure is detailed in which a minimum of test information, specifically the acceleration response data from a random vibration test, is used to generate a set of equivalent local accelerations to be applied to the reduced analytical model at discrete points corresponding to the test measurement locations. The static solution of the analytical model then produces a set of deformations that once normalized can be used to represent the test acquired mode shapes in the cross orthogonality relation. The method proposed has been shown to provide accurate results for both a simple analytical model as well as a complex space flight structure.

  19. Surface and finite size effect on fluctuations dynamics in nanoparticles with long-range order

    NASA Astrophysics Data System (ADS)

    Morozovska, A. N.; Eliseev, E. A.

    2010-02-01

    The influence of surface and finite size on the dynamics of the order parameter fluctuations and critical phenomena in the three-dimensional (3D)-confined systems with long-range order was not considered theoretically. In this paper, we study the influence of surface and finite size on the dynamics of the order parameter fluctuations in the particles of arbitrary shape. We consider concrete examples of the spherical and cylindrical ferroic nanoparticles within Landau-Ginzburg-Devonshire phenomenological approach. Allowing for the strong surface energy contribution in micro and nanoparticles, the analytical expressions derived for the Ornstein-Zernike correlator of the long-range order parameter spatial-temporal fluctuations, dynamic generalized susceptibility, relaxation times, and correlation radii discrete spectra are different from those known for bulk systems. Obtained analytical expressions for the correlation function of the order parameter spatial-temporal fluctuations in micro and nanosized systems can be useful for the quantitative analysis of the dynamical structural factors determined from magnetic resonance diffraction and scattering spectra. Besides the practical importance of the correlation function for the analysis of the experimental data, derived expressions for the fluctuations strength determine the fundamental limits of phenomenological theories applicability for 3D-confined systems.

  20. Earth-ionosphere transmission line model for an impulsive geomagnetic disturbance at the dayside geomagnetic equator

    NASA Astrophysics Data System (ADS)

    Kikuchi, T.

    2004-12-01

    The near instantaneous onset of a geomagnetic impulse such as the preliminary reverse impulse (PRI) of the geomagnetic sudden commencement at high latitude and at the dayside geomagnetic equator has been explained by means of the TM0 mode waves in the Earth-ionosphere waveguide (Kikuchi and Araki, J. Atmosph. Terrest. Phys., 41, 927-936, 1979). There is, on the other hand, a time lag of the order of 10 sec in the peak amplitude of the magnetic impulse at the dayside equator. To explain these two temporal aspects, we examine transmission of the TM0 mode in a finite-length Earth-ionosphere transmission line composed of a finitely conducting ionosphere and the perfectly conducting Earth, with a fixed electric potential at one end and null potential at the other end of the transmission line, corresponding to the foot of a field-aligned current on the dawn- or dusk-side in the polar cap and middle point on the noon-midnight meridian at low latitude, respectively. Successive transmission and reflection in the bounded transmission line lead to that the ionospheric currents start to grow instantaneously, but reach a steady state with a relaxation time proportional to the length of the transmission line and the ionospheric conductivity. The relaxation time is of the order of 10 sec when we give high conductivity applicable to the equatorial ionosphere, which matches the observed time lag in the peak amplitude of the equatorial geomagnetic impulse. Consequently, the TM0 mode in the finite-length Earth-ionosphere transmission line explains both the instantaneous onset and time lag in the peak amplitude of the geomagnetic impulse at the dayside geomagnetic equator.

  1. Hole pairing and ground state properties of high-Tc superconductivity within the t-t'-J-V model

    NASA Astrophysics Data System (ADS)

    Roy, Krishanu; Pal, Papiya; Nath, Subhadip; Ghosh, Nanda Kumar

    2018-04-01

    The t-t'-J-V model, one of the realistic models for studying high-Tc cuprates, has been investigated to explore the hole pairing and other ground state properties using exact diagonalization (ED) technique with 2 holes in a small 8-site cluster. The role of next-nearest-neighbor (NNN) hopping and nearest-neighbor (NN) Coulomb repulsion has been considered. It appears that qualitative behavior of the ground state energies of an 8-site and 16- or 18-site cluster is similar. Results show that a small short-ranged antiferromagnetic (AF) correlation exists in the 2 hole case which is favored by large V/t. A superconducting phase emerges at 0 ≤ V/t ≤ 4J. Hole-hole correlation calculation also suggests that the two holes of the pair are either at |i - j| = 1 or √2. Negative t'/t suppresses the possibility of pairing of holes. Though s-wave pairing susceptibility is dominant, pairing correlation length calculation indicates that the long range pairing, which is suitable for superconductivity, is in the d-wave channel. Both s- and d-wave pairing susceptibility gets suppressed by V/t while d-(s-) wave susceptibility gets favored (suppressed) by t'/t. The charge gap shows a gapped behavior while a spin-gapless region exists at small V/t for finite t'/t.

  2. Stochastic dynamics of uncoupled neural oscillators: Fokker-Planck studies with the finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galan, Roberto F.; Urban, Nathaniel N.; Center for the Neural Basis of Cognition, Mellon Institute, Pittsburgh, Pennsylvania 15213

    We have investigated the effect of the phase response curve on the dynamics of oscillators driven by noise in two limit cases that are especially relevant for neuroscience. Using the finite element method to solve the Fokker-Planck equation we have studied (i) the impact of noise on the regularity of the oscillations quantified as the coefficient of variation, (ii) stochastic synchronization of two uncoupled phase oscillators driven by correlated noise, and (iii) their cross-correlation function. We show that, in general, the limit of type II oscillators is more robust to noise and more efficient at synchronizing by correlated noise thanmore » type I.« less

  3. Analysis of the sound field in finite length infinite baffled cylindrical ducts with vibrating walls of finite impedance.

    PubMed

    Shao, Wei; Mechefske, Chris K

    2005-04-01

    This paper describes an analytical model of finite cylindrical ducts with infinite flanges. This model is used to investigate the sound radiation characteristics of the gradient coil system of a magnetic resonance imaging (MRI) scanner. The sound field in the duct satisfies both the boundary conditions at the wall and at the open ends. The vibrating cylindrical wall of the duct is assumed to be the only sound source. Different acoustic conditions for the wall (rigid and absorptive) are used in the simulations. The wave reflection phenomenon at the open ends of the finite duct is described by general radiation impedance. The analytical model is validated by the comparison with its counterpart in a commercial code based on the boundary element method (BEM). The analytical model shows significant advantages over the BEM model with better numerical efficiency and a direct relation between the design parameters and the sound field inside the duct.

  4. Finite element analysis of the end notched flexure specimen for measuring Mode II fracture toughness

    NASA Technical Reports Server (NTRS)

    Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.

    1986-01-01

    The paper presents a finite element analysis of the end-notched flexure (ENF) test specimen for Mode II interlaminar fracture testing of composite materials. Virtual crack closure and compliance techniques employed to calculate strain energy release rates from linear elastic two-dimensional analysis indicate that the ENF specimen is a pure Mode II fracture test within the constraints of small deflection theory. Furthermore, the ENF fracture specimen is shown to be relatively insensitive to process-induced cracks, offset from the laminate midplane. Frictional effects are investigated by including the contact problem in the finite element model. A parametric study investigating the influence of delamination length, span, thickness, and material properties assessed the accuracy of beam theory expressions for compliance and strain energy release rate, GII. Finite element results indicate that data reduction schemes based upon beam theory underestimate GII by approximately 20-40 percent for typical unidirectional graphite fiber composite test specimen geometries. Consequently, an improved data reduction scheme is proposed.

  5. Mean bond-length variations in crystals for ions bonded to oxygen

    PubMed Central

    2017-01-01

    Variations in mean bond length are examined in oxide and oxysalt crystals for 55 cation configurations bonded to O2−. Stepwise multiple regression analysis shows that mean bond length is correlated to bond-length distortion in 42 ion configurations at the 95% confidence level, with a mean coefficient of determination (〈R 2〉) of 0.35. Previously published correlations between mean bond length and mean coordination number of the bonded anions are found not to be of general applicability to inorganic oxide and oxysalt structures. For two of 11 ions tested for the 95% confidence level, mean bond lengths predicted using a fixed radius for O2− are significantly more accurate as those predicted using an O2− radius dependent on coordination number, and are statistically identical otherwise. As a result, the currently accepted ionic radii for O2− in different coordinations are not justified by experimental data. Previously reported correlation between mean bond length and the mean electronegativity of the cations bonded to the oxygen atoms of the coordination polyhedron is shown to be statistically insignificant; similar results are obtained with regard to ionization energy. It is shown that a priori bond lengths calculated for many ion configurations in a single structure-type leads to a high correlation between a priori and observed mean bond lengths, but a priori bond lengths calculated for a single ion configuration in many different structure-types leads to negligible correlation between a priori and observed mean bond lengths. This indicates that structure type has a major effect on mean bond length, the magnitude of which goes beyond that of the other variables analyzed here.

  6. THE TWO-LEVEL MODEL AT FINITE-TEMPERATURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, A.L.

    1980-07-01

    The finite-temperature HFB cranking equations are solved for the two-level model. The pair gap, moment of inertia and internal energy are determined as functions of spin and temperature. Thermal excitations and rotations collaborate to destroy the pair correlations. Raising the temperature eliminates the backbending effect and improves the HFB approximation.

  7. System Identification of Damped Truss-Like Space Structures. Ph.D. Thesis - Cleveland State Univ., Mar. 1994

    NASA Technical Reports Server (NTRS)

    Armand, Sasan

    1995-01-01

    A spacecraft payload flown on a launch vehicle experiences dynamic loads. The dynamic loads are caused by various phenomena ranging from the start-up of the launch vehicle engine to wind gusts. A spacecraft payload should be designed to meet launch vehicle dynamic loads. One of the major steps taken towards determining the dynamic loads is to correlate the finite element model of the spacecraft with the test results of a modal survey test. A test-verified finite element model of the spacecraft should possess the same spatial properties (stiffness, mass, and damping) and modal properties (frequencies and mode shapes) as the test hardware representing the spacecraft. The test-verified and correlated finite element model of the spacecraft is then coupled with the finite element model of the launch vehicle for analysis of loads and stress. Modal survey testing, verification of a finite element model, and modification of the finite element model to match the modal survey test results can easily be accomplished if the spacecraft structure is simple. However, this is rarely the case. A simple structure here is defined as a structure where the influence of nonlinearity between force and displacement (uncertainty in a test, for example, with errors in input and output), and the influence of damping (structural, coulomb, and viscous) are not pronounced. The objective of this study is to develop system identification and correlation methods with the focus on the structural systems that possess nonproportional damping. Two approaches to correct the nonproportional damping matrix of a truss structure were studied, and have been implemented on truss-like structures such as the National Aeronautics and Space Administration's space station truss. The results of this study showed nearly 100 percent improvement of the correlated eigensystem over the analytical eigensystem. The first method showed excellent results with up to three modes used in the system identification process. The second method could handle more modes, but required more computer usage time, and the results were less accurate than those of the first method.

  8. Quantum discord length is enhanced while entanglement length is not by introducing disorder in a spin chain.

    PubMed

    Sadhukhan, Debasis; Roy, Sudipto Singha; Rakshit, Debraj; Prabhu, R; Sen De, Aditi; Sen, Ujjwal

    2016-01-01

    Classical correlation functions of ground states typically decay exponentially and polynomially, respectively, for gapped and gapless short-range quantum spin systems. In such systems, entanglement decays exponentially even at the quantum critical points. However, quantum discord, an information-theoretic quantum correlation measure, survives long lattice distances. We investigate the effects of quenched disorder on quantum correlation lengths of quenched averaged entanglement and quantum discord, in the anisotropic XY and XYZ spin glass and random field chains. We find that there is virtually neither reduction nor enhancement in entanglement length while quantum discord length increases significantly with the introduction of the quenched disorder.

  9. Lower airway dimensions in pediatric patients-A computed tomography study.

    PubMed

    Szelloe, Patricia; Weiss, Markus; Schraner, Thomas; Dave, Mital H

    2017-10-01

    The aim of this study was to obtain lower airway dimensions in children by means of computed tomography (CT). Chest CT scans from 195 pediatric patients (118 boys/77 girls) aged 0.04-15.99 years were analyzed. Tracheal and bronchial lengths, anterior-posterior and lateral diameters, as well as cross-sectional area were assessed at the following levels: mid trachea, right proximal and distal bronchus, proximal bronchus intermedius, and left proximal and distal bronchus. Mediastinal angles of tracheal bifurcation were measured. Data were analyzed by means of linear and polynomial regression plots. The strongest correlations were found between tracheal and bronchial diameters and age as well as between tracheal and bronchial lengths and body length. All measured airway parameters correlated poorly to body weight. Bronchial angles revealed no association with patient's age, body length, or weight. This comprehensive anatomical database of lower airway dimensions demonstrates that tracheal and bronchial diameters correlate better to age, and that tracheal and bronchial length correlate better to body length. All measured airway parameters correlated poorly to body weight. © 2017 John Wiley & Sons Ltd.

  10. Scaling analysis of the non-Abelian quasiparticle tunneling in Z}}_k FQH states

    NASA Astrophysics Data System (ADS)

    Li, Qi; Jiang, Na; Wan, Xin; Hu, Zi-Xiang

    2018-06-01

    Quasiparticle tunneling between two counter propagating edges through point contacts could provide information on its statistics. Previous study of the short distance tunneling displays a scaling behavior, especially in the conformal limit with zero tunneling distance. The scaling exponents for the non-Abelian quasiparticle tunneling exhibit some non-trivial behaviors. In this work, we revisit the quasiparticle tunneling amplitudes and their scaling behavior in a full range of the tunneling distance by putting the electrons on the surface of a cylinder. The edge–edge distance can be smoothly tuned by varying the aspect ratio for a finite size cylinder. We analyze the scaling behavior of the quasiparticles for the Read–Rezayi states for and 4 both in the short and long tunneling distance region. The finite size scaling analysis automatically gives us a critical length scale where the anomalous correction appears. We demonstrate this length scale is related to the size of the quasiparticle at which the backscattering between two counter propagating edges starts to be significant.

  11. Numerical approach to describe complementary drying of banana slices osmotically dehydrated

    NASA Astrophysics Data System (ADS)

    da Silva Júnior, Aluízio Freire; da Silva, Wilton Pereira; de Farias Aires, Juarez Everton; Farias Aires, Kalina Lígia C. A.

    2018-02-01

    In this work, diffusion model was used to describe the water loss in the complementary drying process of cylindrical slices of banana pretreated by osmotic dehydration. A numerical solution has been proposed for the diffusion equation in cylindrical coordinates, which was obtained through the Finite Volume Method. The diffusion equation was discretized assuming that the effective water diffusivity and the dimensions of a finite cylinder may vary; also considering the boundary condition of the third kind. The banana slices were cut in length of about 1.00 cm and average radius 1.70 cm before osmotic pretreatment, and completed the pretreatment with length of about 0.74 cm and average radius 1.40 cm. The complementary drying was carried out in a kiln with circulation and air exchange. Drying temperatures were the same as used in the osmotic pretreatment (40 to 70 °C). The proposed model described well the water loss, with good statistical indicators for all fits.

  12. Linear theory of boundary effects in open wind tunnels with finite jet lengths

    NASA Technical Reports Server (NTRS)

    Katzoff, S; Gardner, Clifford S; Diesendruck, Leo; Eisenstadt, Bertram J

    1950-01-01

    In the first part, the boundary conditions for an open wind tunnel (incompressible flow) are examined with special reference to the effects of the closed entrance and exit sections. Basic conditions are that the velocity must be continuous at the entrance lip and that the velocities in the upstream and downstream closed portions must be equal. In the second part, solutions are derived for four types of two-dimensional open tunnels, including one in which the pressures on the two free surfaces are not equal. Numerical results are given for every case. In general, if the lifting element is more than half the tunnel height from the inlet, the boundary effect at the lifting element is the same as for an infinitely long open tunnel. In the third part, a general method is given for calculating the boundary effect in an open circular wind tunnel of finite jet length. Numerical results are given for a lifting element concentrate at a point on the axis.

  13. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2005-01-01

    The finite-difference time-domain method was used to simulate radar waves that were generated by a transmitting antenna inside a borehole. The simulations were of four different models that included features such as a water-filled borehole and an antenna with resistive loading. For each model, radiation patterns for the far-field region were calculated. The radiation patterns show that the amplitude of the radar wave was strongly affected by its frequency, the water-filled borehole, the resistive loading of the antenna, and the external metal parts of the antenna (e.g., the cable head and the battery pack). For the models with a water-filled borehole, their normalized radiation patterns were practically identical to the normalized radiation pattern of a finite-length electric dipole when the wavelength in the formation was significantly greater than the total length of the radiating elements of the model antenna. The minimum wavelength at which this criterion was satisfied depended upon the features of the antenna, especially its external metal parts. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  14. Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy.

    PubMed

    Mansouri, Ali; Bhattacharjee, Subir; Kostiuk, Larry W

    2007-11-08

    Numerical simulations with the fluid mechanics based on the unsteady Navier-Stokes equations and the Poisson-Nernst-Planck formulation of electrostatics and ion transport were used to explore the transient transport of charge through a finite length cylindrical microchannel that is driven by a pressure difference. The evolution of the transcapillary potential from a no-flow equilibrium to the steady-state-steady-flow streaming potential was analyzed by following the convection, migration, and net currents. Observations of the unsteady characteristics of the streaming current, electrical resistance, and capacitance led to an electrical analogy. This electrical analogy was made from a current source (to represent convection current), which was placed in parallel with a capacitor (to allow the accumulation of charge) and a resistor (to permit a migration current). A parametric study involving a range of geometries, fluid mechanics, electrostatics, and mass transfer states allowed predictive submodels for the current source, capacitor, and resistor to be developed based on a dimensional analysis.

  15. Distributed support modelling for vertical track dynamic analysis

    NASA Astrophysics Data System (ADS)

    Blanco, B.; Alonso, A.; Kari, L.; Gil-Negrete, N.; Giménez, J. G.

    2018-04-01

    The finite length nature of rail-pad supports is characterised by a Timoshenko beam element formulation over an elastic foundation, giving rise to the distributed support element. The new element is integrated into a vertical track model, which is solved in frequency and time domain. The developed formulation is obtained by solving the governing equations of a Timoshenko beam for this particular case. The interaction between sleeper and rail via the elastic connection is considered in an analytical, compact and efficient way. The modelling technique results in realistic amplitudes of the 'pinned-pinned' vibration mode and, additionally, it leads to a smooth evolution of the contact force temporal response and to reduced amplitudes of the rail vertical oscillation, as compared to the results from concentrated support models. Simulations are performed for both parametric and sinusoidal roughness excitation. The model of support proposed here is compared with a previous finite length model developed by other authors, coming to the conclusion that the proposed model gives accurate results at a reduced computational cost.

  16. Analytical Model-Based Design Optimization of a Transverse Flux Machine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Iftekhar; Husain, Tausif; Sozer, Yilmaz

    This paper proposes an analytical machine design tool using magnetic equivalent circuit (MEC)-based particle swarm optimization (PSO) for a double-sided, flux-concentrating transverse flux machine (TFM). The magnetic equivalent circuit method is applied to analytically establish the relationship between the design objective and the input variables of prospective TFM designs. This is computationally less intensive and more time efficient than finite element solvers. A PSO algorithm is then used to design a machine with the highest torque density within the specified power range along with some geometric design constraints. The stator pole length, magnet length, and rotor thickness are the variablesmore » that define the optimization search space. Finite element analysis (FEA) was carried out to verify the performance of the MEC-PSO optimized machine. The proposed analytical design tool helps save computation time by at least 50% when compared to commercial FEA-based optimization programs, with results found to be in agreement with less than 5% error.« less

  17. Supercomputer implementation of finite element algorithms for high speed compressible flows

    NASA Technical Reports Server (NTRS)

    Thornton, E. A.; Ramakrishnan, R.

    1986-01-01

    Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.

  18. The principle of finiteness - a guideline for physical laws

    NASA Astrophysics Data System (ADS)

    Sternlieb, Abraham

    2013-04-01

    I propose a new principle in physics-the principle of finiteness (FP). It stems from the definition of physics as a science that deals with measurable dimensional physical quantities. Since measurement results including their errors, are always finite, FP postulates that the mathematical formulation of legitimate laws in physics should prevent exactly zero or infinite solutions. I propose finiteness as a postulate, as opposed to a statement whose validity has to be corroborated by, or derived theoretically or experimentally from other facts, theories or principles. Some consequences of FP are discussed, first in general, and then more specifically in the fields of special relativity, quantum mechanics, and quantum gravity. The corrected Lorentz transformations include an additional translation term depending on the minimum length epsilon. The relativistic gamma is replaced by a corrected gamma, that is finite for v=c. To comply with FP, physical laws should include the relevant extremum finite values in their mathematical formulation. An important prediction of FP is that there is a maximum attainable relativistic mass/energy which is the same for all subatomic particles, meaning that there is a maximum theoretical value for cosmic rays energy. The Generalized Uncertainty Principle required by Quantum Gravity is actually a necessary consequence of FP at Planck's scale. Therefore, FP may possibly contribute to the axiomatic foundation of Quantum Gravity.

  19. From three-dimensional long-term tectonic numerical models to synthetic structural data: semi-automatic extraction of instantaneous & finite strain quantities

    NASA Astrophysics Data System (ADS)

    Duclaux, Guillaume; May, Dave

    2017-04-01

    Over the past three decades thermo-mechanical numerical modelling has transformed the way we look at deformation in the lithosphere. More than just generating aesthetically pleasing pictures, the output from a numerical models contains a rich source of quantitative information that can be used to measure deformation quantities in plan view or three-dimensions. Adding value to any numerical experiment requires a thorough post-processing of the modelling results. Such work aims to produce visual information that will resonate to seasoned structural geologists and assist with comparing experimental and observational data. Here we introduce two methods to generate synthetic structural data from numerical model outputs. We first present an image processing and shape recognition workflow developed to extract the active faults orientation from surface velocity gradients. In order to measure the active faults lengths and directions along with their distribution at the surface of the model we implemented an automated sequential mapping technique based on the second invariant of the strain rate tensor and using a suite a python functions. Active fault direction measurements are achieved using a probabilistic method for extracting linear features orientation from any surface. This method has the undeniable advantage to avoid interpretation bias. Strike measurements for individual segments are weighted according to their length and orientation distribution data are presented in an equal-area moving average rose diagrams produced using a weighted method. Finally, we discuss a method for mapping finite strain in three-dimensions. A high-resolution Lagrangian regular grid which advects during the numerical experiment is used to track the progressive deformation within the model. Thanks to this data we can measure the finite strain ellipsoids for any region of interest in the model. This method assumes that the finite strain is homogenous within one unit cell of the grid. We can compute individual ellipsoid's parameters (orientation, shape, etc.) and represent the finite deformation for any region of interest in a Flinn diagram. In addition, we can use the finite strain ellipsoids to estimate the prevailing foliation and/or lineation directions anywhere in the model. These two methods are applied to measure the instantaneous and finite deformation patterns within an oblique rift zone ongoing constant extension in the absence of surface processes.

  20. Beam tuning and bunch length measurement in the bunch compression operation at the cERL

    NASA Astrophysics Data System (ADS)

    Honda, Y.; Shimada, M.; Miyajima, T.; Hotei, T.; Nakamura, N.; Kato, R.; Obina, T.; Takai, R.; Harada, K.; Ueda, A.

    2017-12-01

    Realization of a short bunch beam by manipulating the longitudinal phase space distribution with a finite longitudinal dispersion following an off-crest acceleration is a widely used technique. The technique was applied in a compact test accelerator of an energy-recovery linac scheme for compressing the bunch length at the return loop. A diagnostic system utilizing coherent transition radiation was developed for the beam tuning and for estimating the bunch length. By scanning the beam parameters, we experimentally found the best condition for the bunch compression. The RMS bunch length of 250 ±50 fs was obtained at a bunch charge of 2 pC. This result confirmed the design and the tuning procedure of the bunch compression operation for the future energy-recovery linac (ERL).

  1. Fault-tolerant measurement-based quantum computing with continuous-variable cluster states.

    PubMed

    Menicucci, Nicolas C

    2014-03-28

    A long-standing open question about Gaussian continuous-variable cluster states is whether they enable fault-tolerant measurement-based quantum computation. The answer is yes. Initial squeezing in the cluster above a threshold value of 20.5 dB ensures that errors from finite squeezing acting on encoded qubits are below the fault-tolerance threshold of known qubit-based error-correcting codes. By concatenating with one of these codes and using ancilla-based error correction, fault-tolerant measurement-based quantum computation of theoretically indefinite length is possible with finitely squeezed cluster states.

  2. The fundamental theorem of asset pricing under default and collateral in finite discrete time

    NASA Astrophysics Data System (ADS)

    Alvarez-Samaniego, Borys; Orrillo, Jaime

    2006-08-01

    We consider a financial market where time and uncertainty are modeled by a finite event-tree. The event-tree has a length of N, a unique initial node at the initial date, and a continuum of branches at each node of the tree. Prices and returns of J assets are modeled, respectively, by a R2JxR2J-valued stochastic process . In this framework we prove a version of the Fundamental Theorem of Asset Pricing which applies to defaultable securities backed by exogenous collateral suffering a contingent linear depreciation.

  3. Finite-key analysis for the 1-decoy state QKD protocol

    NASA Astrophysics Data System (ADS)

    Rusca, Davide; Boaron, Alberto; Grünenfelder, Fadri; Martin, Anthony; Zbinden, Hugo

    2018-04-01

    It has been shown that in the asymptotic case of infinite-key length, the 2-decoy state Quantum Key Distribution (QKD) protocol outperforms the 1-decoy state protocol. Here, we present a finite-key analysis of the 1-decoy method. Interestingly, we find that for practical block sizes of up to 108 bits, the 1-decoy protocol achieves for almost all experimental settings higher secret key rates than the 2-decoy protocol. Since using only one decoy is also easier to implement, we conclude that it is the best choice for QKD, in most common practical scenarios.

  4. Electromagnetic Pulse Excitation of Finite-Long Dissipative Conductors over a Conducting Ground Plane in the Time Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Campione, Salvatore; Warne, Larry K.; Schiek, Richard

    2017-09-01

    This report details the modeling results for the response of a finite-length dissipative conductor interacting with a conducting ground to a hypothetical nuclear device with the same output energy spectrum as the Fat Man device. We use a time-domain method based on transmission line theory that allows accounting for time-varying air conductivities. We implemented such method in a code we call ATLOG - Analytic Transmission Line Over Ground. Results are compared the frequency-domain version of ATLOG previously developed and to the circuit simulator Xyce in some instances. Intentionally Left Blank

  5. Trajectory Calculator for Finite-Radius Cutter on a Lathe

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Strekalov, Dmitry; Yu, Nan

    2009-01-01

    A computer program calculates the two-dimensional trajectory (radial vs. axial position) of a finite-radius-of-curvature cutting tool on a lathe so as to cut a workpiece to a piecewise-continuous, analytically defined surface of revolution. (In the original intended application, the tool is a diamond cutter, and the workpiece is made of a crystalline material and is to be formed into an optical resonator disk.) The program also calculates an optimum cutting speed as F/L, where F is a material-dependent empirical factor and L is the effective instantaneous length of the cutting edge.

  6. A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada.

    PubMed

    Ménard, Richard; Deshaies-Jacques, Martin; Gasset, Nicolas

    2016-09-01

    An objective analysis is one of the main components of data assimilation. By combining observations with the output of a predictive model we combine the best features of each source of information: the complete spatial and temporal coverage provided by models, with a close representation of the truth provided by observations. The process of combining observations with a model output is called an analysis. To produce an analysis requires the knowledge of observation and model errors, as well as its spatial correlation. This paper is devoted to the development of methods of estimation of these error variances and the characteristic length-scale of the model error correlation for its operational use in the Canadian objective analysis system. We first argue in favor of using compact support correlation functions, and then introduce three estimation methods: the Hollingsworth-Lönnberg (HL) method in local and global form, the maximum likelihood method (ML), and the [Formula: see text] diagnostic method. We perform one-dimensional (1D) simulation studies where the error variance and true correlation length are known, and perform an estimation of both error variances and correlation length where both are non-uniform. We show that a local version of the HL method can capture accurately the error variances and correlation length at each observation site, provided that spatial variability is not too strong. However, the operational objective analysis requires only a single and globally valid correlation length. We examine whether any statistics of the local HL correlation lengths could be a useful estimate, or whether other global estimation methods such as by the global HL, ML, or [Formula: see text] should be used. We found in both 1D simulation and using real data that the ML method is able to capture physically significant aspects of the correlation length, while most other estimates give unphysical and larger length-scale values. This paper describes a proposed improvement of the objective analysis of surface pollutants at Environment and Climate Change Canada (formerly known as Environment Canada). Objective analyses are essentially surface maps of air pollutants that are obtained by combining observations with an air quality model output, and are thought to provide a complete and more accurate representation of the air quality. The highlight of this study is an analysis of methods to estimate the model (or background) error correlation length-scale. The error statistics are an important and critical component to the analysis scheme.

  7. Reversible and Irreversible Behavior of Glass-forming Materials from the Standpoint of Hierarchical Dynamical Facilitation

    NASA Astrophysics Data System (ADS)

    Keys, Aaron

    2013-03-01

    Using molecular simulation and coarse-grained lattice models, we study the dynamics of glass-forming liquids above and below the glass transition temperature. In the supercooled regime, we study the structure, statistics, and dynamics of excitations responsible for structural relaxation for several atomistic models of glass-formers. Excitations (or soft spots) are detected in terms of persistent particle displacements. At supercooled conditions, we find that excitations are associated with correlated particle motions that are sparse and localized, and the statistics and dynamics of these excitations are facilitated and hierarchical. Excitations at one point in space facilitate the birth and death of excitations at neighboring locations, and space-time excitation structures are microcosms of heterogeneous dynamics at larger scales. Excitation-energy scales grow logarithmically with the characteristic size of the excitation, giving structural-relaxation times that can be predicted quantitatively from dynamics at short time scales. We demonstrate that these same physical principles govern the dynamics of glass-forming systems driven out-of-equilibrium by time-dependent protocols. For a system cooled and re-heated through the glass transition, non-equilibrium response functions, such as heat capacities, are notably asymmetric in time, and the response to melting a glass depends markedly on the cooling protocol by which the glass was formed. We introduce a quantitative description of this behavior based on the East model, with parameters determined from reversible transport data, that agrees well with irreversible differential scanning calorimetry. We find that the observed hysteresis and asymmetric response is a signature of an underlying dynamical transition between equilibrium melts with no trivial spatial correlations and non-equilibrium glasses with correlation lengths that are both large and dependent upon the rate at which the glass is prepared. The correlation length corresponds to the size of amorphous domains bounded by excitations that remain frozen on the observation time scale, thus forming stripes when viewed in space and time. We elucidate properties of the striped phase and show that glasses of this type, traditionally prepared through cooling, can be considered a finite-size realization of the inactive phase formed by the s-ensemble in the space-time thermodynamic limit.

  8. Crack Turning and Arrest Mechanisms for Integral Structure

    NASA Technical Reports Server (NTRS)

    Pettit, Richard; Ingraffea, Anthony

    1999-01-01

    In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate quarter-point scheme to obtain stress intensity factors.

  9. Forward and back diffusion through argillaceous formations

    NASA Astrophysics Data System (ADS)

    Yang, Minjune; Annable, Michael D.; Jawitz, James W.

    2017-05-01

    The exchange of solutes between aquifers and lower-permeability argillaceous formations is of considerable interest for solute and contaminant fate and transport. We present a synthesis of analytical solutions for solute diffusion between aquifers and single aquitard systems, validated in well-controlled experiments, and applied to several data sets from laboratory and field-scale problems with diffusion time and length scales ranging from 10-2 to 108 years and 10-2 to 102 m. One-dimensional diffusion models were applied using the method of images to consider the general cases of a finite aquitard bounded by two aquifers at the top and bottom, or a semiinfinite aquitard bounded by an aquifer. The simpler semiinfinite equations are appropriate for all domains with dimensionless relative diffusion length, ZD < 0.7. At dimensionless length scales above this threshold, application of semiinfinite equations to aquitards of finite thickness leads to increasing errors and solutions based on the method of images are required. Measured resident solute concentration profiles in aquitards and flux-averaged solute concentrations in surrounding aquifers were accurately modeled by appropriately accounting for generalized dynamic aquifer-aquitard boundary conditions, including concentration gradient reversals. Dimensionless diffusion length scales were used to illustrate the transferability of these relatively simple models to physical systems with dimensions that spanned 10 orders of magnitude. The results of this study offer guidance on the application of a simplified analytical approach to environmentally important layered problems with one or two diffusion interfaces.

  10. Effect of bracket slot and archwire dimensions on anterior tooth movement during space closure in sliding mechanics: a 3-dimensional finite element study.

    PubMed

    Tominaga, Jun-ya; Ozaki, Hiroya; Chiang, Pao-Chang; Sumi, Mayumi; Tanaka, Motohiro; Koga, Yoshiyuki; Bourauel, Christoph; Yoshida, Noriaki

    2014-08-01

    It has been found that controlled movement of the anterior teeth can be obtained by attaching a certain length of power arm onto an archwire in sliding mechanics. However, the impact of the archwire/bracket play on anterior tooth movement has not been clarified. The purpose of this study was to compare the effect of the power arm on anterior tooth movements with different dimensions of bracket slots and archwires. A 3-dimensional finite element method was used to simulate en-masse anterior tooth retraction in sliding mechanics. Displacements of the maxillary central incisor and the archwire deformation were calculated when applying retraction forces from different lengths of power arms. When a 0.017 × 0.022-in archwire was engaged into the 0.018-in slot bracket, bodily movement of the incisor was obtained with 9.1-mm length of the power arm. When a 0.022-in slot system was coupled with a 0.019 × 0.025-in archwire, bodily movement was observed with a power arm length of 11.6 mm. Archwire/bracket play has a remarkable impact on anterior tooth movement. An effective torque application to the anterior teeth becomes clinically difficult in sliding mechanics combined with power arms when the archwire/bracket play is large. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  11. Correlating PMC-MMC Bonded Joint 3D FEA with Test

    NASA Technical Reports Server (NTRS)

    Jacobson, Mindy; Rodini, Benjamin; Chen, Wayne C.; Flom, Yury A.; Posey, Alan J.

    2005-01-01

    A viewgraph presentation on the correlation of Polymer Matrix Composites (PMC) and Metal Matrix Composites (MMC) bonded joints using three dimensional finite element analyses with materials tests is shown.

  12. Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites: Part II. Short-range order parameter as a criterion of the distinction between relaxor and normal ferroelectrics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, S.; Jang, H.M.

    1997-08-01

    A classification scheme of Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskites with respect to the B-site order parameters was proposed based on the theoretical calculation of the short-range order parameter ({sigma}) using the pair-correlation model. The calculated order parameters predict that a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type perovskite without any charge difference between B{sup {prime}} and B{sup {prime}{prime}} cations [e.g., Pb(Zr{sub 1/2}Ti{sub 1/2})O{sub 3} (PZT)] is represented by a completely disordered state with the absence of a finite coherence length. On the other hand, a Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3} type perovskite system having different ionic charges ismore » characterized either by the short-range ordering with a nanoscale coherence length or by the macroscopic long-range ordering, depending on the magnitude of ionic charge difference between B{sup {prime}} and B{sup {prime}{prime}} ions. The normal ferroelectricity in Pb(B{sup {prime}}{sub 1/2}B{sup {prime}{prime}}{sub 1/2})O{sub 3}-type complex perovskites was then correlated either with a completely disordered state ({sigma}=0) or with a perfectly ordered state ({sigma}=1), whereas the relaxor behavior was attributed to the nanoscale short-range ordering (0{lt}{sigma}{lt}1) in the configuration of the B-site cations. {copyright} {ital 1997 Materials Research Society.}« less

  13. Different behaviour-body length correlations in two populations of juvenile three-spined stickleback (Gasterosteus aculeatus).

    PubMed

    De Winter, Gunnar; Martins, Henrique Ramalho; Trovo, Rafael Arnoni; Chapman, Ben B

    2016-01-01

    Behavioural variation among individuals has received a lot of attention by behavioural ecologists in the past few years. Its causes and consequences are becoming vast areas of research. The origin and maintenance of individual variation in behaviour within and among populations is affected by many facets of the biotic and abiotic environment. Here, two populations of lab-reared juvenile three-spined sticklebacks (Gasterosteus aculeatus) are tested for three behaviours (boldness, exploration, and sociability). Given the identical rearing conditions, the only difference between these populations is the parental habitat. In both populations, correlations between behaviour and body length are found. Interestingly, these differ between the populations. In one population body length was negatively correlated with exploratory behaviour, while in the other one body length correlated negatively with sociability. Considering the identical environment these juvenile fish were exposed to, these findings suggest a potential (epi)genetic foundation for these correlations and shows that, in three-spined sticklebacks, the proximate basis for correlations between body length and behaviour appears quite malleable. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Nonperturbative finite-temperature Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Cyrol, Anton K.; Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2018-03-01

    We present nonperturbative correlation functions in Landau-gauge Yang-Mills theory at finite temperature. The results are obtained from the functional renormalisation group within a self-consistent approximation scheme. In particular, we compute the magnetic and electric components of the gluon propagator, and the three- and four-gluon vertices. We also show the ghost propagator and the ghost-gluon vertex at finite temperature. Our results for the propagators are confronted with lattice simulations and our Debye mass is compared to hard thermal loop perturbation theory.

  15. REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UMEDA, T.; MATSUFURU, H.

    2005-07-25

    We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.

  16. An anthropometric study to evaluate the correlation between the occlusal vertical dimension and length of the thumb.

    PubMed

    Basnet, Bishal Babu; Parajuli, Prakash Kumar; Singh, Raj Kumar; Suwal, Pramita; Shrestha, Pragya; Baral, Dharanidhar

    2015-01-01

    Establishment of proper occlusal vertical dimension (OVD) is one of the important tasks for successful prosthodontic therapy. An ideal method for determining OVD in terms of cost, time, and instrument requirements has been sought in prosthodontics by various investigators. However, no such single method has been formulated. In the current anthropometric study, the relationship of the length of the thumb to the OVD was tested in two ethnic groups of Nepal, Aryans, and Mongoloids. The result of this study can be useful in determining proper OVD in edentulous patients. The primary aim of the present study was to evaluate the correlation between the length of the thumb and OVD in Aryan and Mongoloid ethnic groups. The secondary aim was to compare the correlation between OVD and other anatomic measurements (eye-ear distance and pupil-to-rima oris distance) in these ethnicities. The OVD, thumb length, eye-ear distance and distance between pupil of eye and rima oris were measured in a total of 500 adult dentulous volunteers. The correlation between OVD and thumb length as well as other anatomic measurements was checked with Pearson's product moment correlation coefficient. Linear regression analysis was performed to determine the relationship of OVD to the length of the thumb. The thumb length was significantly (P≤0.05) correlated with strong and positive values (Pearson's coefficient =0.874 in the whole population, 0.826 in Aryans, and 0.944 in Mongoloids). Regression analysis showed that thumb length was significantly related to OVD in both ethnic groups. Within the limitations of the present study, the result implies that thumb length can be used as an adjunct for establishing OVD in the edentulous patients.

  17. Correlation between Visible Length of the Iris and the Length of the Maxillary Central Incisor Using Digital Image Analysis- A Pilot Study.

    PubMed

    Rohini; Hemalatha; Chander, Gopi Naveen; Anitha, Kuttae Viswanathan

    2017-02-01

    Complete denture therapy is one such modality where science and art goes hand in hand. Selection of artificial teeth for completely edentulous patients is not easy in the absence of pre extraction records, because till date concrete guidelines do not exist. The purpose of this study was to determine if a correlation existed between the visible length of the iris and the length of the maxillary central incisor to potentially provide a guide for teeth selection. A total of 20 Indian dental students consented to participate in the pilot study. Standardized digital images of the face revealing the eyes and component of teeth on smiling was captured using a digital camera. The digital measurements of the visible iris length (medial aperture height, tangential to iris) and the length of the maxillary central incisor from the zenith to the incisal edge were analysed using Adobe Photoshop creative cloud software. The data was statistically evaluated and results were tabulated. Karl Pearson's Coefficient of Correlation was utilized to detect if any association existed between the two variables. The mean value of length of central incisor was 10.39 mm and the mean value of the visible length of iris was found to be 12.9 mm. A Pearson correlation analysis revealed an r-value <0.3 indicating minimal association between the two variables with a p-value >0.01 (.322). On inference, the correlation between the visible iris length and that of maxillary central incisor were unable to produce a strong positive statistical association. However, an association factor between the two has been obtained. Deduction of 2.5 mm from the dimension of visible iris length will help in attaining the length of artificial maxillary central incisor tooth.

  18. Size effects on the structural, electronic, and optical properties of (5,0) finite-length carbon nanotube: An ab-initio electronic structure study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarighi Ahmadpour, Mahdi; Rostamnejadi, Ali; Hashemifar, S. Javad

    2016-07-07

    We use density functional computations to study the zero temperature structural, electronic, magnetic, and optical properties of (5,0) finite carbon nanotubes (FCNT), with length in the range of 4–44 Å. It is found that the structural and electronic properties of (5,0) FCNTs, in the ground state, converge at a length of about 30 Å, while the excited state properties exhibit long-range edge effects. We discuss that curvature effects enhance energy gap of FCNTs, in contrast to the known trend in the periodic limit. It is seen that compensation of curvature effects in two special small sizes may give rise to spontaneous magnetization.more » The obtained cohesive energies provide some insights into the effects of environment on the growth of FCNTs. The second-order difference of the total energies reveals an important magic size of about 15 Å. The optical and dynamical magnetic responses of the FCNTs to polarized electromagnetic pulses are studied by time dependent density functional theory. The results show that the static and dynamic magnetic properties mainly come from the edge carbon atoms. The optical absorption properties are described in terms of local field effects and characterized by Casida linear response method.« less

  19. Effect of dislocation pile-up on size-dependent yield strength in finite single-crystal micro-samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp; Zhang, Xu

    2015-07-07

    Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources andmore » pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.« less

  20. Finite element modeling of arachnid slit sensilla-I. The mechanical significance of different slit arrays.

    PubMed

    Hössl, Bernhard; Böhm, Helmut J; Rammerstorfer, Franz G; Barth, Friedrich G

    2007-04-01

    Arachnid strain sensitive slit sensilla are elongated openings in the cuticle with aspect ratios (slit length l/slit width b) of up to 100. Planar Finite Element (FE) models are used to calculate the relative slit face displacements, Dc, at the centers of single slits and of arrangements of mechanically interacting slits under uni-axial compressive far-field loads. Our main objective is to quantitatively study the role of the following geometrical parameters in stimulus transformation: aspect ratio, slit shape, geometry of the slits' centerlines, load direction, lateral distance S, longitudinal shift lambda, and difference in slit length Deltal between neighboring slits. Slit face displacements are primarily sensitive to slit length and load direction but little affected by aspect ratios between 20 and 100. In stacks of five parallel slits at lateral distances typical of lyriform organs (S=0.03 l) the longitudinal shift lambda substantially influences slit compression. A change of lambda from 0 to 0.85 l causes changes of up to 420% in Dc. Even minor morphological variations in the arrangements can substantially influence the stimulus transformation. The site of transduction in real slit sensilla does not always coincide with the position of maximum slit compression predicted by simplified models.

  1. Softening of the stiffness of bottle-brush polymers by mutual interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolisetty, S.; Airaud, C.; Rosenfeldt, S.

    2007-04-15

    We study bottle-brush macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and dynamic light scattering (DLS). These polymers consist of a linear backbone to which long side chains are chemically grafted. The backbone contains about 1600 monomer units (weight average) and every second monomer unit carries side chains with approximately 60 monomer units. The SLS and SANS data extrapolated to infinite dilution lead to the form factor of the polymer that can be described in terms of a wormlike chain with a contour length of 380 nm and a persistence length of 17.5 nm.more » An analysis of the DLS data confirms these model parameters. The scattering intensities taken at finite concentration can be modeled using the polymer reference interaction site model. It reveals a softening of the bottle-brush polymers caused by their mutual interaction. We demonstrate that the persistence decreases from 17.5 nm down to 5 nm upon increasing the concentration from dilute solution to the highest concentration (40.59 g/l) under consideration. The observed softening of the chains is comparable to the theoretically predicted decrease of the electrostatic persistence length of linear polyelectrolyte chains at finite concentrations.« less

  2. Thermal form-factor approach to dynamical correlation functions of integrable lattice models

    NASA Astrophysics Data System (ADS)

    Göhmann, Frank; Karbach, Michael; Klümper, Andreas; Kozlowski, Karol K.; Suzuki, Junji

    2017-11-01

    We propose a method for calculating dynamical correlation functions at finite temperature in integrable lattice models of Yang-Baxter type. The method is based on an expansion of the correlation functions as a series over matrix elements of a time-dependent quantum transfer matrix rather than the Hamiltonian. In the infinite Trotter-number limit the matrix elements become time independent and turn into the thermal form factors studied previously in the context of static correlation functions. We make this explicit with the example of the XXZ model. We show how the form factors can be summed utilizing certain auxiliary functions solving finite sets of nonlinear integral equations. The case of the XX model is worked out in more detail leading to a novel form-factor series representation of the dynamical transverse two-point function.

  3. Net Force of an Ideal Conductor on an Element of a Line of Charge Moving With Extreme Relativistic Speed

    ERIC Educational Resources Information Center

    Cawley, Robert

    1978-01-01

    Considers the problem of determining the force on an element of a finite length line of charge moving horizontally with extreme relativistic speed through an evacuated space above an infinite plane ideal conducting surface. (SL)

  4. Finite-block-length analysis in classical and quantum information theory.

    PubMed

    Hayashi, Masahito

    2017-01-01

    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects.

  5. Finite-block-length analysis in classical and quantum information theory

    PubMed Central

    HAYASHI, Masahito

    2017-01-01

    Coding technology is used in several information processing tasks. In particular, when noise during transmission disturbs communications, coding technology is employed to protect the information. However, there are two types of coding technology: coding in classical information theory and coding in quantum information theory. Although the physical media used to transmit information ultimately obey quantum mechanics, we need to choose the type of coding depending on the kind of information device, classical or quantum, that is being used. In both branches of information theory, there are many elegant theoretical results under the ideal assumption that an infinitely large system is available. In a realistic situation, we need to account for finite size effects. The present paper reviews finite size effects in classical and quantum information theory with respect to various topics, including applied aspects. PMID:28302962

  6. Elastic guided waves in a layered plate with rectangular cross section.

    PubMed

    Mukdadi, O M; Desai, Y M; Datta, S K; Shah, A H; Niklasson, A J

    2002-11-01

    Guided waves in a layered elastic plate of rectangular cross section (finite width and thickness) has been studied in this paper. A semianalytical finite element method in which the deformation of the cross section is modeled by two-dimensional finite elements and analytical representation of propagating waves along the length of the plate has been used. The method is applicable to arbitrary number of layers and general anisotropic material properties of each layer, and is similar to the stiffness method used earlier to study guided waves in a laminated composite plate of infinite width. Numerical results showing the effect of varying the width of the plate on the dispersion of guided waves are presented and are compared with those for an infinite plate. In addition, effect of thin anisotropic coating or interface layers on the guided waves is investigated.

  7. Utilising flags to reduce drag around a short finite circular cylinder

    NASA Astrophysics Data System (ADS)

    Javadi, Kh.; Kiani, F.; Tahaye Abadi, M.

    2018-03-01

    This paper utilises flags to decrease the drag around a short finite circular cylinder. Wall-adapted large eddy simulation and two-way fluid-structure interaction methods were applied to resolve unsteady turbulent flow structure. The far-field Reynolds number of the current configuration based on the cylinder diameter was chosen to be 20,000. In addition, the length-to-diameter ratio of the cylinder was assumed to be L/D = 2 whereas the flexible flag had a width-to-diameter ratio of W/D = 1.5. The results were compared with the regular short finite circular cylinder and the rigid flagged cylinder in our previous work. The results indicate that utilising flags inside the near-wake region of the cylinder reduces the pressure drag. The physical mechanism of this drag reduction is presented.

  8. Biomechanical aspects of segmented arch mechanics combined with power arm for controlled anterior tooth movement: A three-dimensional finite element study.

    PubMed

    Ozaki, Hiroya; Tominaga, Jun-Ya; Hamanaka, Ryo; Sumi, Mayumi; Chiang, Pao-Chang; Tanaka, Motohiro; Koga, Yoshiyuki; Yoshida, Noriaki

    2015-01-01

    The porpose of this study was to determine the optimal length of power arms for achieving controlled anterior tooth movement in segmented arch mechanics combined with power arm. A three-dimensional finite element method was applied for the simulation of en masse anterior tooth retraction in segmented power arm mechanics. The type of tooth movement, namely, the location of center of rotation of the maxillary central incisor in association with power arm length, was calculated after the retraction force was applied. When a 0.017 × 0.022-in archwire was inserted into the 0.018-in slot bracket, bodily movement was obtained at 9.1 mm length of power arm, namely, at the level of 1.8 mm above the center of resistance. In case a 0.018 × 0.025-in full-size archwire was used, bodily movement of the tooth was produced at the power arm length of 7.0 mm, namely, at the level of 0.3 mm below the center of resistance. Segmented arch mechanics required shorter length of power arms for achieving any type of controlled anterior tooth movement as compared to sliding mechanics. Therefore, this space closing mechanics could be widely applied even for the patients whose gingivobuccal fold is shallow. The segmented arch mechanics combined with power arm could provide higher amount of moment-to-force ratio sufficient for controlled anterior tooth movement without generating friction, and vertical forces when applying retraction force parallel to the occlusal plane. It is, therefore, considered that the segmented power arm mechanics has a simple appliance design and allows more efficient and controllable tooth movement.

  9. Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method.

    PubMed

    Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P

    2013-03-11

    The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.

  10. Direct phase projection and transcranial focusing of ultrasound for brain therapy.

    PubMed

    Pinton, Gianmarco F; Aubry, Jean-Francois; Tanter, Mickaël

    2012-06-01

    Ultrasound can be used to noninvasively treat the human brain with hyperthermia by focusing through the skull. To obtain an accurate focus, especially at high frequencies (>500 kHz), the phase of the transmitted wave must be modified to correct the aberrations introduced by the patient's individual skull morphology. Currently, three-dimensional finite-difference time-domain simulations are used to model a point source at the target. The outward-propagating wave crosses the measured representation of the human skull and is recorded at the therapy array transducer locations. The signal is then time reversed and experimentally transmitted back to its origin. These simulations are resource intensive and add a significant delay to treatment planning. Ray propagation is computationally efficient because it neglects diffraction and only describes two propagation parameters: the wave's direction and the phase. We propose a minimal method that is based only on the phase. The phase information is projected from the external skull surface to the array locations. This replaces computationally expensive finite-difference computations with an almost instantaneous direct phase projection calculation. For the five human skull samples considered, the phase distribution outside of the skull is shown to vary by less than λ/20 as it propagates over a 5 cm distance and the validity of phase projection is established over these propagation distances. The phase aberration introduced by the skull is characterized and is shown to have a good correspondence with skull morphology. The shape of this aberration is shown to have little variation with propagation distance. The focusing quality with the proposed phase-projection algorithm is shown to be indistinguishable from the gold-standard full finite-difference simulation. In conclusion, a spherical wave that is aberrated by the skull has a phase propagation that can be accurately described as radial, even after it has been distorted. By combining finite-difference simulations with a phase-projection algorithm, the time required for treatment planning is significantly reduced. The correlation length of the phase is used to validate the algorithm and it can also be used to provide guiding parameters for clinical array transducer design in terms of transducer spacing and phase error.

  11. Relationship between hamstring length and gluteus maximus strength with and without normalization.

    PubMed

    Lee, Dong-Kyu; Oh, Jae-Seop

    2018-01-01

    [Purpose] This study assessed the relationship between hamstring length and gluteus maximus (GM) strength with and without normalization by body weight and height. [Subjects and Methods] In total, 34 healthy male subjects volunteered for this study. To measure GM strength, subjects performed maximal hip joint extension with the knee joints flexed to 90° in the prone position. GM strength was normalized for body weight and height. [Results] GM strength with normalization was positively correlated with hamstring length, whereas GM strength without normalization was negatively correlated with hamstring length. [Conclusion] The normalization of GM strength by body weight and height has the potential to lead to more appropriate conclusions and interpretations about its correlation with hamstring length. Hamstring length may be related to GM strength.

  12. Systematic correlation of environmental exposure and physiological and self-reported behaviour factors with leukocyte telomere length.

    PubMed

    Patel, Chirag J; Manrai, Arjun K; Corona, Erik; Kohane, Isaac S

    2017-02-01

    It is hypothesized that environmental exposures and behaviour influence telomere length, an indicator of cellular ageing. We systematically associated 461 indicators of environmental exposures, physiology and self-reported behaviour with telomere length in data from the US National Health and Nutrition Examination Survey (NHANES) in 1999-2002. Further, we tested whether factors identified in the NHANES participants are also correlated with gene expression of telomere length modifying genes. We correlated 461 environmental exposures, behaviours and clinical variables with telomere length, using survey-weighted linear regression, adjusting for sex, age, age squared, race/ethnicity, poverty level, education and born outside the USA, and estimated the false discovery rate to adjust for multiple hypotheses. We conducted a secondary analysis to investigate the correlation between identified environmental variables and gene expression levels of telomere-associated genes in publicly available gene expression samples. After correlating 461 variables with telomere length, we found 22 variables significantly associated with telomere length after adjustment for multiple hypotheses. Of these varaibales, 14 were associated with longer telomeres, including biomarkers of polychlorinated biphenyls([PCBs; 0.1 to 0.2 standard deviation (SD) increase for 1 SD increase in PCB level, P  < 0.002] and a form of vitamin A, retinyl stearate. Eight variables associated with shorter telomeres, including biomarkers of cadmium, C-reactive protein and lack of physical activity. We could not conclude that PCBs are correlated with gene expression of telomere-associated genes. Both environmental exposures and chronic disease-related risk factors may play a role in telomere length. Our secondary analysis found no evidence of association between PCBs/smoking and gene expression of telomere-associated genes. All correlations between exposures, behaviours and clinical factors and changes in telomere length will require further investigation regarding biological influence of exposure. © The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association

  13. Test-Analysis Correlation of a Crash Simulation of a Vertical Drop Test of a Commuter-Category Aircraft

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.

    2004-01-01

    A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-feet per second (9.14-meters per second) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kilograms) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, simulated engines and fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial finite element code for performing explicit transient dynamic simulations. Analytical predictions of structural deformation and selected time-history responses were correlated with experimental data from the drop test to validate the simulation.

  14. Constraints on food chain length arising from regional metacommunity dynamics

    PubMed Central

    Calcagno, Vincent; Massol, François; Mouquet, Nicolas; Jarne, Philippe; David, Patrice

    2011-01-01

    Classical ecological theory has proposed several determinants of food chain length, but the role of metacommunity dynamics has not yet been fully considered. By modelling patchy predator–prey metacommunities with extinction–colonization dynamics, we identify two distinct constraints on food chain length. First, finite colonization rates limit predator occupancy to a subset of prey-occupied sites. Second, intrinsic extinction rates accumulate along trophic chains. We show how both processes concur to decrease maximal and average food chain length in metacommunities. This decrease is mitigated if predators track their prey during colonization (habitat selection) and can be reinforced by top-down control of prey vital rates (especially extinction). Moreover, top-down control of colonization and habitat selection can interact to produce a counterintuitive positive relationship between perturbation rate and food chain length. Our results show how novel limits to food chain length emerge in spatially structured communities. We discuss the connections between these constraints and the ones commonly discussed, and suggest ways to test for metacommunity effects in food webs. PMID:21367786

  15. Introduction to the theory and application of a unified Bohm criterion for arbitrary-ion-temperature collision-free plasmas with finite Debye lengths

    NASA Astrophysics Data System (ADS)

    Kos, L.; Jelić, N.; Kuhn, S.; Tskhakaya, D. D.

    2018-04-01

    At present, identifying and characterizing the common plasma-sheath edge (PSE) in the conventional fluid approach leads to intrinsic oversimplifications, while the kinetic one results in unusable over-generalizations. In addition, none of these approaches can be justified in realistic plasmas, i.e., those which are characterized by non-negligible Debye lengths and a well-defined non-negligible ion temperature. In an attempt to resolve this problem, we propose a new formulation of the Bohm criterion [D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields (McGraw-Hill, New York, 1949)], which is here expressed in terms of fluid, kinetic, and electrostatic-pressure contributions. This "unified" Bohm criterion consists of a set of two equations for calculating the ion directional energy (i.e., the mean directional velocity) and the plasma potential at the common PSE, and is valid for arbitrary ion-to-electron temperature ratios. It turns out to be exact at any point of the quasi-neutral plasma provided that the ion differential polytropic coefficient function (DPCF) of Kuhn et al. [Phys. Plasmas 13, 013503 (2006)] is employed, with the advantage that the DPCF is an easily measurable fluid quantity. Moreover, our unified Bohm criterion holds in plasmas with finite Debye lengths, for which the famous kinetic criterion formulated by Harrison and Thompson [Proc. Phys. Soc. 74, 145 (1959)] fails. Unlike the kinetic criterion in the case of negligible Debye length, the kinetic contribution to the unified Bohm criterion, arising due to the presence of negative and zero velocities in the ion velocity distribution function, can be calculated separately from the fluid term. This kinetic contribution disappears identically at the PSE, yielding strict equality of the ion directional velocity there and the ion sound speed, provided that the latter is formulated in terms of the present definition of DPCFs. The numerical values of these velocities are found for the Tonks-Langmuir collision-free, plane-parallel discharge model [Phys. Rev. 34, 876 (1929)], however, with the ion-source temperature extended here from the original (zero) value to arbitrary high ones. In addition, it turns out, that the charge-density derivative (in the potential "space") with respect to the potential exhibits two characteristic points, i.e., potentials, namely the points of inflection and maximum of that derivative (in the potential space), which stay "fixed" at their respective potentials independent of the Debye length until it is kept fairly small. Plasma quasi-neutrality appears well satisfied up to the first characteristic point/potential, so we identify that one as the plasma edge (PE). Adopting the convention that the sheath is a region characterized by considerable electrostatic pressure (energy density), we identify the second characteristic point/potential as the sheath edge (SE). Between these points, the charge density increases from zero to a finite value. Thus, the interval between the PE and SE, with the "fixed" width (in the potential "space") of about one third of the electron temperature, will be named the plasma-sheath transition (PST). Outside the PST, the electrostatic-pressure term and its derivatives turn out to be nearly identical with each other, independent of the particular values of the ion temperature and Debye length. In contrast, an increase in Debye lengths from zero to finite values causes the location of the sonic point/potential (laying inside the PST) to shift from the PE (for vanishing Debye length) towards the SE, while at the same time, the absolute value of the corresponding ion-sound velocity slightly decreases. These shifts turn out to be manageable with employing the mathematical concept of the plasma-to-sheath transition (different from, but related to our natural PST concept), resulting in approximate, but sufficiently reliable semi-analytic expressions, which are functions of the ion temperature and Debye length.

  16. Mineralogic correlates of fibrosis in chrysotile miners and millers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Churg, A.; Wright, J.L.; DePaoli, L.

    1989-04-01

    To determine which mineral parameters relate to the degree of interstitial fibrosis (asbestosis) in the lungs of chrysotile miners and millers, we graded fibrosis histologically and correlated fibrosis grades with fiber concentration and mean size, surface area, and mass, and with total sample fiber length, surface area, and mass in 21 cases. A positive correlation of fibrosis grade with tremolite concentration and a lesser correlation with chrysotile concentration was found for whole lungs, specific sites within lungs, and, for tremolite, single microscopic fields. No correlations were found for measures of chrysotile fiber size, surface area, or mass, but tremolite meanmore » fiber length, aspect ratio, and surface area were, surprisingly, negatively correlated with fibrosis grade. Measures based on total rather than on mean case or site parameters failed to show correlations with fibrosis. We conclude that: (1) degree of pulmonary fibrosis reflects fiber concentration at both a bulk and a microscopic level; (2) mean fiber length and parameters related to mean fiber length also correlate with fibrosis grade, but, contrary to predictions from animal studies, this correlation is negative, suggesting that short fibers may be more important in the genesis of pulmonary fibrosis than is commonly believed; (3) there is no evidence that parameters such as total fiber length, surface area, or mass provide predictors of degree of fibrosis.« less

  17. Laminar dispersion at low and high Peclet numbers in finite-length patterned microtubes

    NASA Astrophysics Data System (ADS)

    Adrover, Alessandra; Cerbelli, Stefano

    2017-06-01

    Laminar dispersion of solutes in finite-length patterned microtubes is investigated at values of the Reynolds number below unity. Dispersion is strongly influenced by axial flow variations caused by patterns of periodic pillars and gaps in the flow direction. We focus on the Cassie-Baxter state, where the gaps are filled with air pockets, therefore enforcing free-slip boundary conditions at the flat liquid-air interface. The analysis of dispersion is approached by considering the temporal moments of solute concentration. Based on this approach, we investigate the dispersion properties in a wide range of values of the Peclet number, thus gaining insight into how the patterned structure of the microtube influences both the Taylor-Aris and the convection-dominated dispersion regimes. Numerical results for the velocity field and for the moment hierarchy are obtained by means of finite element method solution of the corresponding transport equations. We show that for different patterned geometries, in a range of Peclet values spanning up to six decades, the dispersion features in a patterned microtube are equivalent to those of a microtube characterized by a uniform slip velocity equal to the wall-average velocity of the patterned case. This suggests that two patterned micropipes with different geometry yet characterized by the same flow rate and average wall velocity will exhibit the same dispersion features as well as the same macroscopic pressure drop.

  18. Bose-Einstein condensation in atomic alkali gases

    NASA Astrophysics Data System (ADS)

    Dodd, Robert J.

    1998-05-01

    I present a review of the time-independent Gross-Pitaevskii (GP), Bogoliubov, and finite-temperature Hartree-Fock-Bogoliubov (HFB) mean-field theories used to study trapped, Bose-Einstein condensed alkali gases. Numerical solutions of the (zero-temperature) GP equation are presented for attractive (negative scattering length) and repulsive (positive scattering length) interactions. Comparison is made with the Thomas-Fermi and (variational) trial wavefunction appr oximations that are used in the literature to study condensed gases. Numerical calculations of the (zero-temperature) Bogoliubov quasi-particle excitation frequencies are found to be in excellent agreement with the experimental results. The finite-temperature properties of condensed gases are examined using the Popov approximation (of the HFB theory) and a simple two-gas model. Specific, quantitative comparisons are made with experimental results for finite-temperature excitation frequencies. Qualitative comparisons are made between the results of the Popov approximation, two-gas model, and other published models for condensate fraction and thermal density distribution. The time-independent mean-field theories are found to be in excellent agreement with experimental results at relatively low temperatures (high condensate fractions). However, at higher temperatures (and condensate fractions of less than 50%) there are significant discrepancies between experimental data and theoretical calculations. This work was undertaken at the University of Maryland at College Park and was supported in part by the National Science Foundation (PHY-9601261) and the U.S. Office of Naval Research.

  19. Finite Element Stress Analysis of Spent Nuclear Fuel Disposal Canister in a Deep Geological Repository

    NASA Astrophysics Data System (ADS)

    Kwon, Young Joo; Choi, Jong Won

    This paper presents the finite element stress analysis of a spent nuclear fuel disposal canister to provide basic information for dimensioning the canister and configuration of canister components and consequently to suggest the structural analysis methodology for the disposal canister in a deep geological repository which is nowadays very important in the environmental waste treatment technology. Because of big differences in the pressurized water reactor (PWR) and the Canadian deuterium and uranium reactor (CANDU) fuel properties, two types of canisters are conceived. For manufacturing, operational reasons and standardization, however, both canisters have the same outer diameter and length. The construction type of canisters introduced here is a solid structure with a cast insert and a corrosion resistant overpack. The structural stress analysis is carried out using a finite element analysis code, NISA, and focused on the structural strength of the canister against the expected external pressures due to the swelling of the bentonite buffer and the hydrostatic head. The canister must withstand these large pressure loads. Consequently, canisters presented here contain 4 PWR fuel assemblies and 33×9 CANDU fuel bundles. The outside diameter of the canister for both fuels is 122cm and the cast insert diameter is 112cm. The total length of the canister is 483cm with the lid/bottom and the outer shell of 5cm.

  20. Three-dimensional finite element analyses of four designs of a high-strength silicon nitride implant.

    PubMed

    Lin, S; Shi, S; LeGeros, R Z; LeGeros, J P

    2000-01-01

    The effects of implant shape and size on the stress distribution around high-strength silicon nitride implants under vertical and oblique forces were determined using a three-dimensional finite element analysis. Finite element models were designed using as a basis the serial sections of the mandible. Using Auto-CAD software, the model simulated the placement of implants in the molar region of the left mandible. Results of the analyses demonstrated that mainly the implant root shape and the directions of bite forces influence the stress distributions in the supporting bone around each implant. Implant size is a lesser factor. The serrated implants presented a larger surface area to the bone than either the cylindrical or tapered implants, which resulted in lower compressive stress around the serrated implants. With increasing implant diameter and length, compressive stress decreased. The mean compressive stress distribution on the serrated implants was more flat (platykurtic) than on either the cylindrical or tapered implants. Results of studies on two load directions (vertical and oblique) showed that, in either case, the compressive stress in the cortical bone around the neck of the implant was higher than in the cancellous bone along the length of the implant. The most extreme principal compressive stress was found with oblique force. This study provides the first information on the relationship between shape of the silicon nitride implant and stress on the supporting bone.

  1. Strain energy release rate analysis of the end-notched flexure specimen using the finite-element method

    NASA Technical Reports Server (NTRS)

    Salpekar, S. A.; Raju, I. S.; O'Brien, T. K.

    1988-01-01

    Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finte-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

  2. The electric field in capacitively coupled RF discharges: a smooth step model that includes thermal and dynamic effects

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter

    2015-12-01

    The electric field in radio-frequency driven capacitively coupled plasmas (RF-CCP) is studied, taking thermal (finite electron temperature) and dynamic (finite electron mass) effects into account. Two dimensionless numbers are introduced, the ratios ε ={λ\\text{D}}/l of the electron Debye length {λ\\text{D}} to the minimum plasma gradient length l (typically the sheath thickness) and η ={ω\\text{RF}}/{ω\\text{pe}} of the RF frequency {ω\\text{RF}} to the electron plasma frequency {ω\\text{pe}} . Assuming both numbers small but finite, an asymptotic expansion of an electron fluid model is carried out up to quadratic order inclusively. An expression for the electric field is obtained which yields (i) the space charge field in the sheath, (ii) the generalized Ohmic and ambipolar field in the plasma, and (iii) a smooth interpolation for the transition in between. The new expression is a direct generalization of the Advanced Algebraic Approximation (AAA) proposed by the same author (2009 J. Phys. D: Appl. Phys. 42 194009), which can be recovered for η \\to 0 , and of the established Step Model (SM) by Godyak (1976 Sov. J. Plasma Phys. 2 78), which corresponds to the simultaneous limits η \\to 0 , ε \\to 0 . A comparison of the hereby proposed Smooth Step Model (SSM) with a numerical solution of the full dynamic problem proves very satisfactory.

  3. Fast, purely growing collisionless reconnection as an eigenfunction problem related to but not involving linear whistler waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellan, Paul M.

    If either finite electron inertia or finite resistivity is included in 2D magnetic reconnection, the two-fluid equations become a pair of second-order differential equations coupling the out-of-plane magnetic field and vector potential to each other to form a fourth-order system. The coupling at an X-point is such that out-of-plane even-parity electric and odd-parity magnetic fields feed off each other to produce instability if the scale length on which the equilibrium magnetic field changes is less than the ion skin depth. The instability growth rate is given by an eigenvalue of the fourth-order system determined by boundary and symmetry conditions. Themore » instability is a purely growing mode, not a wave, and has growth rate of the order of the whistler frequency. The spatial profile of both the out-of-plane electric and magnetic eigenfunctions consists of an inner concave region having extent of the order of the electron skin depth, an intermediate convex region having extent of the order of the equilibrium magnetic field scale length, and a concave outer exponentially decaying region. If finite electron inertia and resistivity are not included, the inner concave region does not exist and the coupled pair of equations reduces to a second-order differential equation having non-physical solutions at an X-point.« less

  4. A Finite Element Solution of Lateral Periodic Poisson–Boltzmann Model for Membrane Channel Proteins

    PubMed Central

    Xu, Jingjie; Lu, Benzhuo

    2018-01-01

    Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson–Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z-axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations. PMID:29495644

  5. A Finite Element Solution of Lateral Periodic Poisson-Boltzmann Model for Membrane Channel Proteins.

    PubMed

    Ji, Nan; Liu, Tiantian; Xu, Jingjie; Shen, Longzhu Q; Lu, Benzhuo

    2018-02-28

    Membrane channel proteins control the diffusion of ions across biological membranes. They are closely related to the processes of various organizational mechanisms, such as: cardiac impulse, muscle contraction and hormone secretion. Introducing a membrane region into implicit solvation models extends the ability of the Poisson-Boltzmann (PB) equation to handle membrane proteins. The use of lateral periodic boundary conditions can properly simulate the discrete distribution of membrane proteins on the membrane plane and avoid boundary effects, which are caused by the finite box size in the traditional PB calculations. In this work, we: (1) develop a first finite element solver (FEPB) to solve the PB equation with a two-dimensional periodicity for membrane channel proteins, with different numerical treatments of the singular charges distributions in the channel protein; (2) add the membrane as a dielectric slab in the PB model, and use an improved mesh construction method to automatically identify the membrane channel/pore region even with a tilt angle relative to the z -axis; and (3) add a non-polar solvation energy term to complete the estimation of the total solvation energy of a membrane protein. A mesh resolution of about 0.25 Å (cubic grid space)/0.36 Å (tetrahedron edge length) is found to be most accurate in linear finite element calculation of the PB solvation energy. Computational studies are performed on a few exemplary molecules. The results indicate that all factors, the membrane thickness, the length of periodic box, membrane dielectric constant, pore region dielectric constant, and ionic strength, have individually considerable influence on the solvation energy of a channel protein. This demonstrates the necessity to treat all of those effects in the PB model for membrane protein simulations.

  6. Multi Length Scale Finite Element Design Framework for Advanced Woven Fabrics

    NASA Astrophysics Data System (ADS)

    Erol, Galip Ozan

    Woven fabrics are integral parts of many engineering applications spanning from personal protective garments to surgical scaffolds. They provide a wide range of opportunities in designing advanced structures because of their high tenacity, flexibility, high strength-to-weight ratios and versatility. These advantages result from their inherent multi scale nature where the filaments are bundled together to create yarns while the yarns are arranged into different weave architectures. Their highly versatile nature opens up potential for a wide range of mechanical properties which can be adjusted based on the application. While woven fabrics are viable options for design of various engineering systems, being able to understand the underlying mechanisms of the deformation and associated highly nonlinear mechanical response is important and necessary. However, the multiscale nature and relationships between these scales make the design process involving woven fabrics a challenging task. The objective of this work is to develop a multiscale numerical design framework using experimentally validated mesoscopic and macroscopic length scale approaches by identifying important deformation mechanisms and recognizing the nonlinear mechanical response of woven fabrics. This framework is exercised by developing mesoscopic length scale constitutive models to investigate plain weave fabric response under a wide range of loading conditions. A hyperelastic transversely isotropic yarn material model with transverse material nonlinearity is developed for woven yarns (commonly used in personal protection garments). The material properties/parameters are determined through an inverse method where unit cell finite element simulations are coupled with experiments. The developed yarn material model is validated by simulating full scale uniaxial tensile, bias extension and indentation experiments, and comparing to experimentally observed mechanical response and deformation mechanisms. Moreover, mesoscopic unit cell finite elements are coupled with a design-of-experiments method to systematically identify the important yarn material properties for the macroscale response of various weave architectures. To demonstrate the macroscopic length scale approach, two new material models for woven fabrics were developed. The Planar Material Model (PMM) utilizes two important deformation mechanisms in woven fabrics: (1) yarn elongation, and (2) relative yarn rotation due to shear loads. The yarns' uniaxial tensile response is modeled with a nonlinear spring using constitutive relations while a nonlinear rotational spring is implemented to define fabric's shear stiffness. The second material model, Sawtooth Material Model (SMM) adopts the sawtooth geometry while recognizing the biaxial nature of woven fabrics by implementing the interactions between the yarns. Material properties/parameters required by both PMM and SMM can be directly determined from standard experiments. Both macroscopic material models are implemented within an explicit finite element code and validated by comparing to the experiments. Then, the developed macroscopic material models are compared under various loading conditions to determine their accuracy. Finally, the numerical models developed in the mesoscopic and macroscopic length scales are linked thus demonstrating the new systematic design framework involving linked mesoscopic and macroscopic length scale modeling approaches. The approach is demonstrated with both Planar and Sawtooth Material Models and the simulation results are verified by comparing the results obtained from meso and macro models.

  7. Can insertion length for a double-lumen endobronchial tube be predicted?

    PubMed

    Dyer, R A; Heijke, S A; Russell, W J; Bloch, M B; James, M F

    2000-12-01

    It has been suggested that the appropriate length of insertion for double-lumen tubes can be estimated by external measurement. This study examined the accuracy of external measurement in estimating the actual length of insertion required in 130 patients. It also examined the relationship between the length inserted and the patient's height in 126 patients and their weight in 125 patients. Although there was a fair correlation between the measured external length and the final inserted length (r = 0.61), the 95% confidence intervals of slope and intercept allowed a large variation and the prediction was too wide to be clinically useful. Height was reasonably well correlated with the final length (r = 0.51) but an equally wide 95% confidence interval rendered it of little clinical value. There was no correlation between weight and final tube length. It is concluded that external measurement alone is not adequate to predict a clinically acceptable position of the double-lumen tube.

  8. Finite Element Analysis of Crack-Path Selection in a Brick and Mortar Structure

    NASA Astrophysics Data System (ADS)

    Sarrafi-Nour, Reza; Manoharan, Mohan; Johnson, Curtis A.

    Many natural composite materials rely on organized architectures that span several length scales. The structures of natural shells such as nacre (mother-of-pearl) and conch are prominent examples of such organizations where the calcium carbonate platelets, the main constituent of natural shells, are held together in an organized fashion within an organic matrix. At one or multiple length scales, these organized arrangements often resemble a brick-and-mortar structure, with calcium carbonate platelets acting as bricks connected through the organic mortar phase.

  9. From coupled elementary units to the complexity of the glass transition.

    PubMed

    Rehwald, Christian; Rubner, Oliver; Heuer, Andreas

    2010-09-10

    Supercooled liquids display fascinating properties upon cooling such as the emergence of dynamic length scales. Different models strongly vary with respect to the choice of the elementary subsystems as well as their mutual coupling. Here we show via computer simulations of a glass former that both ingredients can be identified via analysis of finite-size effects within the continuous-time random walk framework. The subsystems already contain complete information about thermodynamics and diffusivity, whereas the coupling determines structural relaxation and the emergence of dynamic length scales.

  10. A probabilistic analysis of electrical equipment vulnerability to carbon fibers

    NASA Technical Reports Server (NTRS)

    Elber, W.

    1980-01-01

    The statistical problems of airborne carbon fibers falling onto electrical circuits were idealized and analyzed. The probability of making contact between randomly oriented finite length fibers and sets of parallel conductors with various spacings and lengths was developed theoretically. The probability of multiple fibers joining to bridge a single gap between conductors, or forming continuous networks is included. From these theoretical considerations, practical statistical analyses to assess the likelihood of causing electrical malfunctions was produced. The statistics obtained were confirmed by comparison with results of controlled experiments.

  11. In-plane crashworthiness of bio-inspired hierarchical honeycombs

    DOE PAGES

    Yin, Hanfeng; Huang, Xiaofei; Scarpa, Fabrizio; ...

    2018-03-13

    Biological tissues like bone, wood, and sponge possess hierarchical cellular topologies, which are lightweight and feature an excellent energy absorption capability. Here we present a system of bio-inspired hierarchical honeycomb structures based on hexagonal, Kagome, and triangular tessellations. The hierarchical designs and a reference regular honeycomb configuration are subjected to simulated in-plane impact using the nonlinear finite element code LS-DYNA. The numerical simulation results show that the triangular hierarchical honeycomb provides the best performance compared to the other two hierarchical honeycombs, and features more than twice the energy absorbed by the regular honeycomb under similar loading conditions. We also proposemore » a parametric study correlating the microstructure parameters (hierarchical length ratio r and the number of sub cells N) to the energy absorption capacity of these hierarchical honeycombs. The triangular hierarchical honeycomb with N = 2 and r = 1/8 shows the highest energy absorption capacity among all the investigated cases, and this configuration could be employed as a benchmark for the design of future safety protective systems.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chremos, Alexandros, E-mail: achremos@imperial.ac.uk; Nikoubashman, Arash, E-mail: arashn@princeton.edu; Panagiotopoulos, Athanassios Z.

    In this contribution, we develop a coarse-graining methodology for mapping specific block copolymer systems to bead-spring particle-based models. We map the constituent Kuhn segments to Lennard-Jones particles, and establish a semi-empirical correlation between the experimentally determined Flory-Huggins parameter χ and the interaction of the model potential. For these purposes, we have performed an extensive set of isobaric–isothermal Monte Carlo simulations of binary mixtures of Lennard-Jones particles with the same size but with asymmetric energetic parameters. The phase behavior of these monomeric mixtures is then extended to chains with finite sizes through theoretical considerations. Such a top-down coarse-graining approach is importantmore » from a computational point of view, since many characteristic features of block copolymer systems are on time and length scales which are still inaccessible through fully atomistic simulations. We demonstrate the applicability of our method for generating parameters by reproducing the morphology diagram of a specific diblock copolymer, namely, poly(styrene-b-methyl methacrylate), which has been extensively studied in experiments.« less

  13. Phase transition in the parametric natural visibility graph.

    PubMed

    Snarskii, A A; Bezsudnov, I V

    2016-10-01

    We investigate time series by mapping them to the complex networks using a parametric natural visibility graph (PNVG) algorithm that generates graphs depending on arbitrary continuous parameter-the angle of view. We study the behavior of the relative number of clusters in PNVG near the critical value of the angle of view. Artificial and experimental time series of different nature are used for numerical PNVG investigations to find critical exponents above and below the critical point as well as the exponent in the finite size scaling regime. Altogether, they allow us to find the critical exponent of the correlation length for PNVG. The set of calculated critical exponents satisfies the basic Widom relation. The PNVG is found to demonstrate scaling behavior. Our results reveal the similarity between the behavior of the relative number of clusters in PNVG and the order parameter in the second-order phase transitions theory. We show that the PNVG is another example of a system (in addition to magnetic, percolation, superconductivity, etc.) with observed second-order phase transition.

  14. Kerr microscopy studies of the effects of bending stress on galfenola)

    NASA Astrophysics Data System (ADS)

    Raghunath, Ganesh; Marana, Michael; Na, Suok-Min; Flatau, Alison

    2014-05-01

    This work deals with using a magneto-optic Kerr effect (MOKE) microscope to optically analyze the evolution of magnetic domains in a rolled and Goss textured galfenol (Fe81Ga19 + 1.0% NbC) sample when subjected to a bending stress. The initial magnetization state of the cantilevered sample was fixed along its length by a 0.3 T permanent magnet. The magnetic state was monitored with the MOKE microscope as a tip load was applied to bend the sample. The magnetic state of galfenol depends on its magneto-elastic properties. A finite element model that incorporates an energy based formulation of magnetostriction [W. D. Armstrong, J. Magn. Magn. Mater. 263(1-2), 208-218 (2003)] was used to investigate the stresses in the sample and the corresponding change in the magnetic induction as bending occurred. A qualitative comparison with the domain pictures is presented, and the experimental micromagnetic behavior results are shown to correlate well to the macro scale bending stress and magnetization results obtained in the FEM simulations.

  15. The effect of magnetic islands on Ion Temperature Gradient turbulence driven transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, P., E-mail: peter.hill@york.ac.uk; York Plasma Institute, Department of Physics, University of York, Heslington, York YO10 5DD; Hariri, F.

    2015-04-15

    In this work, we address the question of the influence of magnetic islands on the perpendicular transport due to steady-state ITG turbulence on the energy transport time scale. We demonstrate that turbulence can cross the separatrix and enhance the perpendicular transport across magnetic islands. As the perpendicular transport in the interior of the island sets the critical island size needed for growth of neoclassical tearing modes, this increased transport leads to a critical island size larger than that predicted from considering collisional conductivities, but smaller than that using anomalous effective conductivities. We find that on Bohm time scales, the turbulencemore » is able to re-establish the temperature gradient across the island for islands widths w ≲ λ{sub turb}, the turbulence correlation length. The reduction in the island flattening is estimated by comparison with simulations retaining only the perpendicular temperature and no turbulence. At intermediate island widths, comparable to λ{sub turb}, turbulence is able to maintain finite temperature gradients across the island.« less

  16. Ising antiferromagnet on a finite triangular lattice with free boundary conditions

    NASA Astrophysics Data System (ADS)

    Kim, Seung-Yeon

    2015-11-01

    The exact integer values for the density of states of the Ising model on an equilateral triangular lattice with free boundary conditions are evaluated up to L = 24 spins on a side for the first time by using the microcanonical transfer matrix. The total number of states is 2 N s = 2300 ≈ 2.037 × 1090 for L = 24, where N s = L( L+1)/2 is the number of spins. Classifying all 2300 spin states according to their energy values is an enormous work. From the density of states, the exact partition function zeros in the complex temperature plane of the triangular-lattice Ising model are evaluated. Using the density of states and the partition function zeros, we investigate the properties of the triangularlattice Ising antiferromagnet. The scaling behavior of the ground-state entropy and the form of the correlation length at T = 0 are studied for the triangular-lattice Ising antiferromagnet with free boundary conditions. Also, the scaling behavior of the Fisher edge singularity is investigated.

  17. In-plane crashworthiness of bio-inspired hierarchical honeycombs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yin, Hanfeng; Huang, Xiaofei; Scarpa, Fabrizio

    Biological tissues like bone, wood, and sponge possess hierarchical cellular topologies, which are lightweight and feature an excellent energy absorption capability. Here we present a system of bio-inspired hierarchical honeycomb structures based on hexagonal, Kagome, and triangular tessellations. The hierarchical designs and a reference regular honeycomb configuration are subjected to simulated in-plane impact using the nonlinear finite element code LS-DYNA. The numerical simulation results show that the triangular hierarchical honeycomb provides the best performance compared to the other two hierarchical honeycombs, and features more than twice the energy absorbed by the regular honeycomb under similar loading conditions. We also proposemore » a parametric study correlating the microstructure parameters (hierarchical length ratio r and the number of sub cells N) to the energy absorption capacity of these hierarchical honeycombs. The triangular hierarchical honeycomb with N = 2 and r = 1/8 shows the highest energy absorption capacity among all the investigated cases, and this configuration could be employed as a benchmark for the design of future safety protective systems.« less

  18. Ghost Particle Velocimetry: Accurate 3D Flow Visualization Using Standard Lab Equipment

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, Stefano; Secchi, Eleonora; Piazza, Roberto

    2013-07-01

    We describe and test a new approach to particle velocimetry, based on imaging and cross correlating the scattering speckle pattern generated on a near-field plane by flowing tracers with a size far below the diffraction limit, which allows reconstructing the velocity pattern in microfluidic channels without perturbing the flow. As a matter of fact, adding tracers is not even strictly required, provided that the sample displays sufficiently refractive-index fluctuations. For instance, phase separation in liquid mixtures in the presence of shear is suitable to be directly investigated by this “ghost particle velocimetry” technique, which just requires a microscope with standard lamp illumination equipped with a low-cost digital camera. As a further bonus, the peculiar spatial coherence properties of the illuminating source, which displays a finite longitudinal coherence length, allows for a 3D reconstruction of the profile with a resolution of few tenths of microns and makes the technique suitable to investigate turbid samples with negligible multiple scattering effects.

  19. Lattice dynamics in elemental modulated Sb 2 Te 3 films: Lattice dynamics in elemental modulated Sb 2 Te 3 films

    DOE PAGES

    Bessas, D.; Winkler, M.; Sergueev, I.; ...

    2015-09-03

    We investigate the crystallinity and the lattice dynamics in elemental modulated Sbinline imageTeinline image films microscopically using high energy synchrotron radiation diffraction combined with inline imageSb nuclear inelastic scattering. The correlation length is found to be finite but less than 100 . Moreover, the element specific density of phonon states is extracted. A comparison with the element specific density of phonon states in bulk Sbinline imageTeinline image confirms that the main features in the density of phonon states arise from the layered structure. The average speed of sound at inline image inline image, is almost the same compared to bulkmore » Sbinline imageTeinline image at inline image, inline image. Similarly, the change in the acoustic cut-off energy is within the experimental detection limit. Therefore, we suggest that the lattice thermal conductivity in elemental modulated Sbinline imageTeinline image films should not be significantly changed from its bulk value.« less

  20. Derivation and Applicability of Asymptotic Results for Multiple Subtests Person-Fit Statistics

    PubMed Central

    Albers, Casper J.; Meijer, Rob R.; Tendeiro, Jorge N.

    2016-01-01

    In high-stakes testing, it is important to check the validity of individual test scores. Although a test may, in general, result in valid test scores for most test takers, for some test takers, test scores may not provide a good description of a test taker’s proficiency level. Person-fit statistics have been proposed to check the validity of individual test scores. In this study, the theoretical asymptotic sampling distribution of two person-fit statistics that can be used for tests that consist of multiple subtests is first discussed. Second, simulation study was conducted to investigate the applicability of this asymptotic theory for tests of finite length, in which the correlation between subtests and number of items in the subtests was varied. The authors showed that these distributions provide reasonable approximations, even for tests consisting of subtests of only 10 items each. These results have practical value because researchers do not have to rely on extensive simulation studies to simulate sampling distributions. PMID:29881053

Top