Convergence Rates of Finite Difference Stochastic Approximation Algorithms
2016-06-01
dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It
A total variation diminishing finite difference algorithm for sonic boom propagation models
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
1993-01-01
It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.
A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions
NASA Astrophysics Data System (ADS)
Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.
2014-01-01
We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.
Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation
ERIC Educational Resources Information Center
Prentice, J. S. C.
2012-01-01
An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Parallel processing in finite element structural analysis
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.
1987-01-01
A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).
Iterative algorithms for large sparse linear systems on parallel computers
NASA Technical Reports Server (NTRS)
Adams, L. M.
1982-01-01
Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
Computer-Aided Engineering of Semiconductor Integrated Circuits
1979-07-01
equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk; Tcheverda, Vladimir
We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. Inmore » this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.« less
Finite Volume Algorithms for Heat Conduction
2010-05-01
scalar quantity). Although (3) is relatively easy to discretize by using finite differences , its form in generalized coordinates is not. Later, we...familiar with the finite difference method for discretizing differential equations. In fact, the Newton divided difference is the numerical analog for a...expression (8) for the average derivative matches the Newton divided difference formula, so for uniform one-dimensional meshes, the finite volume and
A Kirchhoff Approach to Seismic Modeling and Prestack Depth Migration
1993-05-01
continuation of sources and geophones by finite difference (S-G finite - difference migration ), are relatively slow and dip-limited. Compared to S-G... finite - difference migration , the Kirchhoff integral implements prestack migration relatively efficiently and has no dip limitation. Liu .Mlodeling and...for modeling and migration . In this paper, a finite - difference algorithm is used to calculate traveltimes and amplitudes. With the help of
Ding, Yi S; He, Yang
2017-08-21
An isotropic impedance sheet model is proposed for a loop-type hexagonal periodic metasurface. Both frequency and wave-vector dispersion are considered near the resonance frequency. Therefore both the angle and polarization dependences of the metasurface impedance can be properly and simultaneously described in our model. The constitutive relation of this model is transformed into auxiliary differential equations which are integrated into the finite-difference time-domain algorithm. Finally, a finite large metasurface sample under oblique illumination is used to test the model and the algorithm. Our model and algorithm can significantly increase the accuracy of the homogenization methods for modeling periodic metasurfaces.
Practical aspects of prestack depth migration with finite differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ober, C.C.; Oldfield, R.A.; Womble, D.E.
1997-07-01
Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Lesoinne, Michel
1993-01-01
Most of the recently proposed computational methods for solving partial differential equations on multiprocessor architectures stem from the 'divide and conquer' paradigm and involve some form of domain decomposition. For those methods which also require grids of points or patches of elements, it is often necessary to explicitly partition the underlying mesh, especially when working with local memory parallel processors. In this paper, a family of cost-effective algorithms for the automatic partitioning of arbitrary two- and three-dimensional finite element and finite difference meshes is presented and discussed in view of a domain decomposed solution procedure and parallel processing. The influence of the algorithmic aspects of a solution method (implicit/explicit computations), and the architectural specifics of a multiprocessor (SIMD/MIMD, startup/transmission time), on the design of a mesh partitioning algorithm are discussed. The impact of the partitioning strategy on load balancing, operation count, operator conditioning, rate of convergence and processor mapping is also addressed. Finally, the proposed mesh decomposition algorithms are demonstrated with realistic examples of finite element, finite volume, and finite difference meshes associated with the parallel solution of solid and fluid mechanics problems on the iPSC/2 and iPSC/860 multiprocessors.
Hasani, Mojtaba H; Gharibzadeh, Shahriar; Farjami, Yaghoub; Tavakkoli, Jahan
2013-09-01
Various numerical algorithms have been developed to solve the Khokhlov-Kuznetsov-Zabolotskaya (KZK) parabolic nonlinear wave equation. In this work, a generalized time-domain numerical algorithm is proposed to solve the diffraction term of the KZK equation. This algorithm solves the transverse Laplacian operator of the KZK equation in three-dimensional (3D) Cartesian coordinates using a finite-difference method based on the five-point implicit backward finite difference and the five-point Crank-Nicolson finite difference discretization techniques. This leads to a more uniform discretization of the Laplacian operator which in turn results in fewer calculation gridding nodes without compromising accuracy in the diffraction term. In addition, a new empirical algorithm based on the LU decomposition technique is proposed to solve the system of linear equations obtained from this discretization. The proposed empirical algorithm improves the calculation speed and memory usage, while the order of computational complexity remains linear in calculation of the diffraction term in the KZK equation. For evaluating the accuracy of the proposed algorithm, two previously published algorithms are used as comparison references: the conventional 2D Texas code and its generalization for 3D geometries. The results show that the accuracy/efficiency performance of the proposed algorithm is comparable with the established time-domain methods.
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.
exponential finite difference technique for solving partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1993-01-01
This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.
A Kirchhoff approach to seismic modeling and prestack depth migration
NASA Astrophysics Data System (ADS)
Liu, Zhen-Yue
1993-05-01
The Kirchhoff integral provides a robust method for implementing seismic modeling and prestack depth migration, which can handle lateral velocity variation and turning waves. With a little extra computation cost, the Kirchoff-type migration can obtain multiple outputs that have the same phase but different amplitudes, compared with that of other migration methods. The ratio of these amplitudes is helpful in computing some quantities such as reflection angle. I develop a seismic modeling and prestack depth migration method based on the Kirchhoff integral, that handles both laterally variant velocity and a dip beyond 90 degrees. The method uses a finite-difference algorithm to calculate travel times and WKBJ amplitudes for the Kirchhoff integral. Compared to ray-tracing algorithms, the finite-difference algorithm gives an efficient implementation and single-valued quantities (first arrivals) on output. In my finite difference algorithm, the upwind scheme is used to calculate travel times, and the Crank-Nicolson scheme is used to calculate amplitudes. Moreover, interpolation is applied to save computation cost. The modeling and migration algorithms require a smooth velocity function. I develop a velocity-smoothing technique based on damped least-squares to aid in obtaining a successful migration.
NASA Technical Reports Server (NTRS)
Ghil, M.; Balgovind, R.
1979-01-01
The inhomogeneous Cauchy-Riemann equations in a rectangle are discretized by a finite difference approximation. Several different boundary conditions are treated explicitly, leading to algorithms which have overall second-order accuracy. All boundary conditions with either u or v prescribed along a side of the rectangle can be treated by similar methods. The algorithms presented here have nearly minimal time and storage requirements and seem suitable for development into a general-purpose direct Cauchy-Riemann solver for arbitrary boundary conditions.
A split finite element algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1979-01-01
An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.
A Robustly Stabilizing Model Predictive Control Algorithm
NASA Technical Reports Server (NTRS)
Ackmece, A. Behcet; Carson, John M., III
2007-01-01
A model predictive control (MPC) algorithm that differs from prior MPC algorithms has been developed for controlling an uncertain nonlinear system. This algorithm guarantees the resolvability of an associated finite-horizon optimal-control problem in a receding-horizon implementation.
Algorithm development for Maxwell's equations for computational electromagnetism
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.
1990-01-01
A new algorithm has been developed for solving Maxwell's equations for the electromagnetic field. It solves the equations in the time domain with central, finite differences. The time advancement is performed implicitly, using an alternating direction implicit procedure. The space discretization is performed with finite volumes, using curvilinear coordinates with electromagnetic components along those directions. Sample calculations are presented of scattering from a metal pin, a square and a circle to demonstrate the capabilities of the new algorithm.
A Parallel, Finite-Volume Algorithm for Large-Eddy Simulation of Turbulent Flows
NASA Technical Reports Server (NTRS)
Bui, Trong T.
1999-01-01
A parallel, finite-volume algorithm has been developed for large-eddy simulation (LES) of compressible turbulent flows. This algorithm includes piecewise linear least-square reconstruction, trilinear finite-element interpolation, Roe flux-difference splitting, and second-order MacCormack time marching. Parallel implementation is done using the message-passing programming model. In this paper, the numerical algorithm is described. To validate the numerical method for turbulence simulation, LES of fully developed turbulent flow in a square duct is performed for a Reynolds number of 320 based on the average friction velocity and the hydraulic diameter of the duct. Direct numerical simulation (DNS) results are available for this test case, and the accuracy of this algorithm for turbulence simulations can be ascertained by comparing the LES solutions with the DNS results. The effects of grid resolution, upwind numerical dissipation, and subgrid-scale dissipation on the accuracy of the LES are examined. Comparison with DNS results shows that the standard Roe flux-difference splitting dissipation adversely affects the accuracy of the turbulence simulation. For accurate turbulence simulations, only 3-5 percent of the standard Roe flux-difference splitting dissipation is needed.
NASA Technical Reports Server (NTRS)
Gartling, D. K.; Roache, P. J.
1978-01-01
The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.
1990-01-01
The Galerkin weighted residual technique using linear triangular weight functions is employed to develop finite difference formulae in Cartesian coordinates for the Laplacian operator on isolated unstructured triangular grids. The weighted residual coefficients associated with the weak formulation of the Laplacian operator along with linear combinations of the residual equations are used to develop the algorithm. The algorithm was tested for a wide variety of unstructured meshes and found to give satisfactory results.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
A comparison of two central difference schemes for solving the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Maksymiuk, C. M.; Swanson, R. C.; Pulliam, T. H.
1990-01-01
Five viscous transonic airfoil cases were computed by two significantly different computational fluid dynamics codes: An explicit finite-volume algorithm with multigrid, and an implicit finite-difference approximate-factorization method with Eigenvector diagonalization. Both methods are described in detail, and their performance on the test cases is compared. The codes utilized the same grids, turbulence model, and computer to provide the truest test of the algorithms. The two approaches produce very similar results, which, for attached flows, also agree well with experimental results; however, the explicit code is considerably faster.
Merritt, M.L.
1993-01-01
The simulation of the transport of injected freshwater in a thin brackish aquifer, overlain and underlain by confining layers containing more saline water, is shown to be influenced by the choice of the finite-difference approximation method, the algorithm for representing vertical advective and dispersive fluxes, and the values assigned to parametric coefficients that specify the degree of vertical dispersion and molecular diffusion that occurs. Computed potable water recovery efficiencies will differ depending upon the choice of algorithm and approximation method, as will dispersion coefficients estimated based on the calibration of simulations to match measured data. A comparison of centered and backward finite-difference approximation methods shows that substantially different transition zones between injected and native waters are depicted by the different methods, and computed recovery efficiencies vary greatly. Standard and experimental algorithms and a variety of values for molecular diffusivity, transverse dispersivity, and vertical scaling factor were compared in simulations of freshwater storage in a thin brackish aquifer. Computed recovery efficiencies vary considerably, and appreciable differences are observed in the distribution of injected freshwater in the various cases tested. The results demonstrate both a qualitatively different description of transport using the experimental algorithms and the interrelated influences of molecular diffusion and transverse dispersion on simulated recovery efficiency. When simulating natural aquifer flow in cross-section, flushing of the aquifer occurred for all tested coefficient choices using both standard and experimental algorithms. ?? 1993.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Priimak, Dmitri
2014-12-01
We present a finite difference numerical algorithm for solving two dimensional spatially homogeneous Boltzmann transport equation which describes electron transport in a semiconductor superlattice subject to crossed time dependent electric and constant magnetic fields. The algorithm is implemented both in C language targeted to CPU and in CUDA C language targeted to commodity NVidia GPU. We compare performances and merits of one implementation versus another and discuss various software optimisation techniques.
NASA Technical Reports Server (NTRS)
Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.
1982-01-01
An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.
An improved flux-split algorithm applied to hypersonic flows in chemical equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1988-01-01
An explicit, finite-difference, shock-capturing numerical algorithm is presented and applied to hypersonic flows assumed to be in thermochemical equilibrium. Real-gas chemistry is either loosely coupled to the gasdynamics by way of a Gibbs free energy minimization package or fully coupled using species mass conservation equations with finite-rate chemical reactions. A scheme is developed that maintains stability in the explicit, finite-rate formulation while allowing relatively high time steps. The codes use flux vector splitting to difference the inviscid fluxes and employ real-gas corrections to viscosity and thermal conductivity. Numerical results are compared against existing ballistic range and flight data. Flows about complex geometries are also computed.
A robust method of computing finite difference coefficients based on Vandermonde matrix
NASA Astrophysics Data System (ADS)
Zhang, Yijie; Gao, Jinghuai; Peng, Jigen; Han, Weimin
2018-05-01
When the finite difference (FD) method is employed to simulate the wave propagation, high-order FD method is preferred in order to achieve better accuracy. However, if the order of FD scheme is high enough, the coefficient matrix of the formula for calculating finite difference coefficients is close to be singular. In this case, when the FD coefficients are computed by matrix inverse operator of MATLAB, inaccuracy can be produced. In order to overcome this problem, we have suggested an algorithm based on Vandermonde matrix in this paper. After specified mathematical transformation, the coefficient matrix is transformed into a Vandermonde matrix. Then the FD coefficients of high-order FD method can be computed by the algorithm of Vandermonde matrix, which prevents the inverse of the singular matrix. The dispersion analysis and numerical results of a homogeneous elastic model and a geophysical model of oil and gas reservoir demonstrate that the algorithm based on Vandermonde matrix has better accuracy compared with matrix inverse operator of MATLAB.
Conservative properties of finite difference schemes for incompressible flow
NASA Technical Reports Server (NTRS)
Morinishi, Youhei
1995-01-01
The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.
A Mixed Finite Volume Element Method for Flow Calculations in Porous Media
NASA Technical Reports Server (NTRS)
Jones, Jim E.
1996-01-01
A key ingredient in the simulation of flow in porous media is the accurate determination of the velocities that drive the flow. The large scale irregularities of the geology, such as faults, fractures, and layers suggest the use of irregular grids in the simulation. Work has been done in applying the finite volume element (FVE) methodology as developed by McCormick in conjunction with mixed methods which were developed by Raviart and Thomas. The resulting mixed finite volume element discretization scheme has the potential to generate more accurate solutions than standard approaches. The focus of this paper is on a multilevel algorithm for solving the discrete mixed FVE equations. The algorithm uses a standard cell centered finite difference scheme as the 'coarse' level and the more accurate mixed FVE scheme as the 'fine' level. The algorithm appears to have potential as a fast solver for large size simulations of flow in porous media.
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.
A fast hidden line algorithm for plotting finite element models
NASA Technical Reports Server (NTRS)
Jones, G. K.
1982-01-01
Effective plotting of finite element models requires the use of fast hidden line plot techniques that provide interactive response. A high speed hidden line technique was developed to facilitate the plotting of NASTRAN finite element models. Based on testing using 14 different models, the new hidden line algorithm (JONES-D) appears to be very fast: its speed equals that for normal (all lines visible) plotting and when compared to other existing methods it appears to be substantially faster. It also appears to be very reliable: no plot errors were observed using the new method to plot NASTRAN models. The new algorithm was made part of the NPLOT NASTRAN plot package and was used by structural analysts for normal production tasks.
Control of Finite-State, Finite Memory Stochastic Systems
NASA Technical Reports Server (NTRS)
Sandell, Nils R.
1974-01-01
A generalized problem of stochastic control is discussed in which multiple controllers with different data bases are present. The vehicle for the investigation is the finite state, finite memory (FSFM) stochastic control problem. Optimality conditions are obtained by deriving an equivalent deterministic optimal control problem. A FSFM minimum principle is obtained via the equivalent deterministic problem. The minimum principle suggests the development of a numerical optimization algorithm, the min-H algorithm. The relationship between the sufficiency of the minimum principle and the informational properties of the problem are investigated. A problem of hypothesis testing with 1-bit memory is investigated to illustrate the application of control theoretic techniques to information processing problems.
THE PSTD ALGORITHM: A TIME-DOMAIN METHOD REQUIRING ONLY TWO CELLS PER WAVELENGTH. (R825225)
A pseudospectral time-domain (PSTD) method is developed for solutions of Maxwell's equations. It uses the fast Fourier transform (FFT), instead of finite differences on conventional finite-difference-time-domain (FDTD) methods, to represent spatial derivatives. Because the Fourie...
Accurate Singular Values and Differential QD Algorithms
1992-07-01
of the Cholesky Algorithm 5 4 The Quotient Difference Algorithm 8 5 Incorporation of Shifts 11 5.1 Shifted qd Algorithms...Effects of Finite Precision 18 7.1 Error Analysis - Overview ........ ........................... 18 7.2 High Relative Accuracy in the Presence of...showing that it was preferable to replace the DK zero-shift QR transform by two steps of zero-shift LR implemented in a qd (quotient- difference ) format
Experimental Investigation of Hydrodynamic Self-Acting Gas Bearings at High Knudsen Numbers.
1980-07-01
Reynolds equation. Two finite - difference algorithms were used to solve the equation. Numerical results - the predicted load and pitch angle - from the two...that should be used. The majority of the numerical solution are still based on the finite difference approximation of the governing equation. But in... finite difference method. Reddi and Chu [26) also noted that it is very difficult to compare the two techniques on the same level since the solution
Group foliation of finite difference equations
NASA Astrophysics Data System (ADS)
Thompson, Robert; Valiquette, Francis
2018-06-01
Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.
NASA Astrophysics Data System (ADS)
Jia, Shouqing; La, Dongsheng; Ma, Xuelian
2018-04-01
The finite difference time domain (FDTD) algorithm and Green function algorithm are implemented into the numerical simulation of electromagnetic waves in Schwarzschild space-time. FDTD method in curved space-time is developed by filling the flat space-time with an equivalent medium. Green function in curved space-time is obtained by solving transport equations. Simulation results validate both the FDTD code and Green function code. The methods developed in this paper offer a tool to solve electromagnetic scattering problems.
NASA Astrophysics Data System (ADS)
Horstmann, Jan Tobias; Le Garrec, Thomas; Mincu, Daniel-Ciprian; Lévêque, Emmanuel
2017-11-01
Despite the efficiency and low dissipation of the stream-collide scheme of the discrete-velocity Boltzmann equation, which is nowadays implemented in many lattice Boltzmann solvers, a major drawback exists over alternative discretization schemes, i.e. finite-volume or finite-difference, that is the limitation to Cartesian uniform grids. In this paper, an algorithm is presented that combines the positive features of each scheme in a hybrid lattice Boltzmann method. In particular, the node-based streaming of the distribution functions is coupled with a second-order finite-volume discretization of the advection term of the Boltzmann equation under the Bhatnagar-Gross-Krook approximation. The algorithm is established on a multi-domain configuration, with the individual schemes being solved on separate sub-domains and connected by an overlapping interface of at least 2 grid cells. A critical parameter in the coupling is the CFL number equal to unity, which is imposed by the stream-collide algorithm. Nevertheless, a semi-implicit treatment of the collision term in the finite-volume formulation allows us to obtain a stable solution for this condition. The algorithm is validated in the scope of three different test cases on a 2D periodic mesh. It is shown that the accuracy of the combined discretization schemes agrees with the order of each separate scheme involved. The overall numerical error of the hybrid algorithm in the macroscopic quantities is contained between the error of the two individual algorithms. Finally, we demonstrate how such a coupling can be used to adapt to anisotropic flows with some gradual mesh refinement in the FV domain.
NASA Technical Reports Server (NTRS)
Bui, Trong T.; Mankbadi, Reda R.
1995-01-01
Numerical simulation of a very small amplitude acoustic wave interacting with a shock wave in a quasi-1D convergent-divergent nozzle is performed using an unstructured finite volume algorithm with a piece-wise linear, least square reconstruction, Roe flux difference splitting, and second-order MacCormack time marching. First, the spatial accuracy of the algorithm is evaluated for steady flows with and without the normal shock by running the simulation with a sequence of successively finer meshes. Then the accuracy of the Roe flux difference splitting near the sonic transition point is examined for different reconstruction schemes. Finally, the unsteady numerical solutions with the acoustic perturbation are presented and compared with linear theory results.
A semi-implicit finite difference model for three-dimensional tidal circulation,
Casulli, V.; Cheng, R.T.
1992-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.
Local multiplicative Schwarz algorithms for convection-diffusion equations
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Sarkis, Marcus
1995-01-01
We develop a new class of overlapping Schwarz type algorithms for solving scalar convection-diffusion equations discretized by finite element or finite difference methods. The preconditioners consist of two components, namely, the usual two-level additive Schwarz preconditioner and the sum of some quadratic terms constructed by using products of ordered neighboring subdomain preconditioners. The ordering of the subdomain preconditioners is determined by considering the direction of the flow. We prove that the algorithms are optimal in the sense that the convergence rates are independent of the mesh size, as well as the number of subdomains. We show by numerical examples that the new algorithms are less sensitive to the direction of the flow than either the classical multiplicative Schwarz algorithms, and converge faster than the additive Schwarz algorithms. Thus, the new algorithms are more suitable for fluid flow applications than the classical additive or multiplicative Schwarz algorithms.
The Laguerre finite difference one-way equation solver
NASA Astrophysics Data System (ADS)
Terekhov, Andrew V.
2017-05-01
This paper presents a new finite difference algorithm for solving the 2D one-way wave equation with a preliminary approximation of a pseudo-differential operator by a system of partial differential equations. As opposed to the existing approaches, the integral Laguerre transform instead of Fourier transform is used. After carrying out the approximation of spatial variables it is possible to obtain systems of linear algebraic equations with better computing properties and to reduce computer costs for their solution. High accuracy of calculations is attained at the expense of employing finite difference approximations of higher accuracy order that are based on the dispersion-relationship-preserving method and the Richardson extrapolation in the downward continuation direction. The numerical experiments have verified that as compared to the spectral difference method based on Fourier transform, the new algorithm allows one to calculate wave fields with a higher degree of accuracy and a lower level of numerical noise and artifacts including those for non-smooth velocity models. In the context of solving the geophysical problem the post-stack migration for velocity models of the types Syncline and Sigsbee2A has been carried out. It is shown that the images obtained contain lesser noise and are considerably better focused as compared to those obtained by the known Fourier Finite Difference and Phase-Shift Plus Interpolation methods. There is an opinion that purely finite difference approaches do not allow carrying out the seismic migration procedure with sufficient accuracy, however the results obtained disprove this statement. For the supercomputer implementation it is proposed to use the parallel dichotomy algorithm when solving systems of linear algebraic equations with block-tridiagonal matrices.
A time-spectral approach to numerical weather prediction
NASA Astrophysics Data System (ADS)
Scheffel, Jan; Lindvall, Kristoffer; Yik, Hiu Fai
2018-05-01
Finite difference methods are traditionally used for modelling the time domain in numerical weather prediction (NWP). Time-spectral solution is an attractive alternative for reasons of accuracy and efficiency and because time step limitations associated with causal CFL-like criteria, typical for explicit finite difference methods, are avoided. In this work, the Lorenz 1984 chaotic equations are solved using the time-spectral algorithm GWRM (Generalized Weighted Residual Method). Comparisons of accuracy and efficiency are carried out for both explicit and implicit time-stepping algorithms. It is found that the efficiency of the GWRM compares well with these methods, in particular at high accuracy. For perturbative scenarios, the GWRM was found to be as much as four times faster than the finite difference methods. A primary reason is that the GWRM time intervals typically are two orders of magnitude larger than those of the finite difference methods. The GWRM has the additional advantage to produce analytical solutions in the form of Chebyshev series expansions. The results are encouraging for pursuing further studies, including spatial dependence, of the relevance of time-spectral methods for NWP modelling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tabares-Velasco, P. C.; Christensen, C.; Bianchi, M.
2012-08-01
Phase change materials (PCM) represent a potential technology to reduce peak loads and HVAC energy consumption in residential buildings. This paper summarizes NREL efforts to obtain accurate energy simulations when PCMs are modeled in residential buildings: the overall methodology to verify and validate Conduction Finite Difference (CondFD) and PCM algorithms in EnergyPlus is presented in this study. It also shows preliminary results of three residential building enclosure technologies containing PCM: PCM-enhanced insulation, PCM impregnated drywall and thin PCM layers. The results are compared based on predicted peak reduction and energy savings using two algorithms in EnergyPlus: the PCM and Conductionmore » Finite Difference (CondFD) algorithms.« less
NASA Technical Reports Server (NTRS)
Desideri, J. A.; Steger, J. L.; Tannehill, J. C.
1978-01-01
The iterative convergence properties of an approximate-factorization implicit finite-difference algorithm are analyzed both theoretically and numerically. Modifications to the base algorithm were made to remove the inconsistency in the original implementation of artificial dissipation. In this way, the steady-state solution became independent of the time-step, and much larger time-steps can be used stably. To accelerate the iterative convergence, large time-steps and a cyclic sequence of time-steps were used. For a model transonic flow problem governed by the Euler equations, convergence was achieved with 10 times fewer time-steps using the modified differencing scheme. A particular form of instability due to variable coefficients is also analyzed.
Generalization of von Neumann analysis for a model of two discrete half-spaces: The acoustic case
Haney, M.M.
2007-01-01
Evaluating the performance of finite-difference algorithms typically uses a technique known as von Neumann analysis. For a given algorithm, application of the technique yields both a dispersion relation valid for the discrete time-space grid and a mathematical condition for stability. In practice, a major shortcoming of conventional von Neumann analysis is that it can be applied only to an idealized numerical model - that of an infinite, homogeneous whole space. Experience has shown that numerical instabilities often arise in finite-difference simulations of wave propagation at interfaces with strong material contrasts. These interface instabilities occur even though the conventional von Neumann stability criterion may be satisfied at each point of the numerical model. To address this issue, I generalize von Neumann analysis for a model of two half-spaces. I perform the analysis for the case of acoustic wave propagation using a standard staggered-grid finite-difference numerical scheme. By deriving expressions for the discrete reflection and transmission coefficients, I study under what conditions the discrete reflection and transmission coefficients become unbounded. I find that instabilities encountered in numerical modeling near interfaces with strong material contrasts are linked to these cases and develop a modified stability criterion that takes into account the resulting instabilities. I test and verify the stability criterion by executing a finite-difference algorithm under conditions predicted to be stable and unstable. ?? 2007 Society of Exploration Geophysicists.
Improved Algorithm For Finite-Field Normal-Basis Multipliers
NASA Technical Reports Server (NTRS)
Wang, C. C.
1989-01-01
Improved algorithm reduces complexity of calculations that must precede design of Massey-Omura finite-field normal-basis multipliers, used in error-correcting-code equipment and cryptographic devices. Algorithm represents an extension of development reported in "Algorithm To Design Finite-Field Normal-Basis Multipliers" (NPO-17109), NASA Tech Briefs, Vol. 12, No. 5, page 82.
NASA Technical Reports Server (NTRS)
Van Dalsem, W. R.; Steger, J. L.
1983-01-01
A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.
Weighted cubic and biharmonic splines
NASA Astrophysics Data System (ADS)
Kvasov, Boris; Kim, Tae-Wan
2017-01-01
In this paper we discuss the design of algorithms for interpolating discrete data by using weighted cubic and biharmonic splines in such a way that the monotonicity and convexity of the data are preserved. We formulate the problem as a differential multipoint boundary value problem and consider its finite-difference approximation. Two algorithms for automatic selection of shape control parameters (weights) are presented. For weighted biharmonic splines the resulting system of linear equations can be efficiently solved by combining Gaussian elimination with successive over-relaxation method or finite-difference schemes in fractional steps. We consider basic computational aspects and illustrate main features of this original approach.
Li, J; Guo, L-X; Zeng, H; Han, X-B
2009-06-01
A message-passing-interface (MPI)-based parallel finite-difference time-domain (FDTD) algorithm for the electromagnetic scattering from a 1-D randomly rough sea surface is presented. The uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different processors is illustrated for one sea surface realization, and the computation time of the parallel FDTD algorithm is dramatically reduced compared to a single-process implementation. Finally, some numerical results are shown, including the backscattering characteristics of sea surface for different polarization and the bistatic scattering from a sea surface with large incident angle and large wind speed.
Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer
NASA Astrophysics Data System (ADS)
Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian
2015-10-01
Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.
Lagrangian continuum dynamics in ALEGRA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Michael K. W.; Love, Edward
Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.
The MUSIC algorithm for impedance tomography of small inclusions from discrete data
NASA Astrophysics Data System (ADS)
Lechleiter, A.
2015-09-01
We consider a point-electrode model for electrical impedance tomography and show that current-to-voltage measurements from finitely many electrodes are sufficient to characterize the positions of a finite number of point-like inclusions. More precisely, we consider an asymptotic expansion with respect to the size of the small inclusions of the relative Neumann-to-Dirichlet operator in the framework of the point electrode model. This operator is naturally finite-dimensional and models difference measurements by finitely many small electrodes of the electric potential with and without the small inclusions. Moreover, its leading-order term explicitly characterizes the centers of the small inclusions if the (finite) number of point electrodes is large enough. This characterization is based on finite-dimensional test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion centers. We show both the feasibility and limitations of this imaging technique via two-dimensional numerical experiments, considering in particular the influence of the number of point electrodes on the algorithm’s images.
Applications of an exponential finite difference technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.; Keith, T.G. Jr.
1988-07-01
An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.
On-the-fly Numerical Surface Integration for Finite-Difference Poisson-Boltzmann Methods.
Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2011-11-01
Most implicit solvation models require the definition of a molecular surface as the interface that separates the solute in atomic detail from the solvent approximated as a continuous medium. Commonly used surface definitions include the solvent accessible surface (SAS), the solvent excluded surface (SES), and the van der Waals surface. In this study, we present an efficient numerical algorithm to compute the SES and SAS areas to facilitate the applications of finite-difference Poisson-Boltzmann methods in biomolecular simulations. Different from previous numerical approaches, our algorithm is physics-inspired and intimately coupled to the finite-difference Poisson-Boltzmann methods to fully take advantage of its existing data structures. Our analysis shows that the algorithm can achieve very good agreement with the analytical method in the calculation of the SES and SAS areas. Specifically, in our comprehensive test of 1,555 molecules, the average unsigned relative error is 0.27% in the SES area calculations and 1.05% in the SAS area calculations at the grid spacing of 1/2Å. In addition, a systematic correction analysis can be used to improve the accuracy for the coarse-grid SES area calculations, with the average unsigned relative error in the SES areas reduced to 0.13%. These validation studies indicate that the proposed algorithm can be applied to biomolecules over a broad range of sizes and structures. Finally, the numerical algorithm can also be adapted to evaluate the surface integral of either a vector field or a scalar field defined on the molecular surface for additional solvation energetics and force calculations.
A general algorithm using finite element method for aerodynamic configurations at low speeds
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1975-01-01
A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.
Finite difference methods for the solution of unsteady potential flows
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1982-01-01
Various problems which are confronted in the development of an unsteady finite difference potential code are reviewed mainly in the context of what is done for a typical small disturbance and full potential method. The issues discussed include choice of equations, linearization and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three dimensional rotor calculations, are demonstrated.
Finite-difference modeling of the electroseismic logging in a fluid-saturated porous formation
NASA Astrophysics Data System (ADS)
Guan, Wei; Hu, Hengshan
2008-05-01
In a fluid-saturated porous medium, an electromagnetic (EM) wavefield induces an acoustic wavefield due to the electrokinetic effect. A potential geophysical application of this effect is electroseismic (ES) logging, in which the converted acoustic wavefield is received in a fluid-filled borehole to evaluate the parameters of the porous formation around the borehole. In this paper, a finite-difference scheme is proposed to model the ES logging responses to a vertical low frequency electric dipole along the borehole axis. The EM field excited by the electric dipole is calculated separately by finite-difference first, and is considered as a distributed exciting source term in a set of extended Biot's equations for the converted acoustic wavefield in the formation. This set of equations is solved by a modified finite-difference time-domain (FDTD) algorithm that allows for the calculation of dynamic permeability so that it is not restricted to low-frequency poroelastic wave problems. The perfectly matched layer (PML) technique without splitting the fields is applied to truncate the computational region. The simulated ES logging waveforms approximately agree with those obtained by the analytical method. The FDTD algorithm applies also to acoustic logging simulation in porous formations.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Dougherty, F. C.; Benek, J. A.
1983-01-01
A mesh system composed of multiple overset body-conforming grids is described for adapting finite-difference procedures to complex aircraft configurations. In this so-called 'chimera mesh,' a major grid is generated about a main component of the configuration and overset minor grids are used to resolve all other features. Methods for connecting overset multiple grids and modifications of flow-simulation algorithms are discussed. Computational tests in two dimensions indicate that the use of multiple overset grids can simplify the task of grid generation without an adverse effect on flow-field algorithms and computer code complexity.
Finite pure integer programming algorithms employing only hyperspherically deduced cuts
NASA Technical Reports Server (NTRS)
Young, R. D.
1971-01-01
Three algorithms are developed that may be based exclusively on hyperspherically deduced cuts. The algorithms only apply, therefore, to problems structured so that these cuts are valid. The algorithms are shown to be finite.
NASA Technical Reports Server (NTRS)
Chen, Zhangxin; Ewing, Richard E.
1996-01-01
Multigrid algorithms for nonconforming and mixed finite element methods for second order elliptic problems on triangular and rectangular finite elements are considered. The construction of several coarse-to-fine intergrid transfer operators for nonconforming multigrid algorithms is discussed. The equivalence between the nonconforming and mixed finite element methods with and without projection of the coefficient of the differential problems into finite element spaces is described.
Slices: A Scalable Partitioner for Finite Element Meshes
NASA Technical Reports Server (NTRS)
Ding, H. Q.; Ferraro, R. D.
1995-01-01
A parallel partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The element based partitioner can handle mixtures of different element types. All algorithms adopted in the partitioner are scalable, including a communication template for unpredictable incoming messages, as shown in actual timing measurements.
NPLOT: an Interactive Plotting Program for NASTRAN Finite Element Models
NASA Technical Reports Server (NTRS)
Jones, G. K.; Mcentire, K. J.
1985-01-01
The NPLOT (NASTRAN Plot) is an interactive computer graphics program for plotting undeformed and deformed NASTRAN finite element models. Developed at NASA's Goddard Space Flight Center, the program provides flexible element selection and grid point, ASET and SPC degree of freedom labelling. It is easy to use and provides a combination menu and command driven user interface. NPLOT also provides very fast hidden line and haloed line algorithms. The hidden line algorithm in NPLOT proved to be both very accurate and several times faster than other existing hidden line algorithms. A fast spatial bucket sort and horizon edge computation are used to achieve this high level of performance. The hidden line and the haloed line algorithms are the primary features that make NPLOT different from other plotting programs.
NASA Astrophysics Data System (ADS)
Sheng, Lizeng
The dissertation focuses on one of the major research needs in the area of adaptive/intelligent/smart structures, the development and application of finite element analysis and genetic algorithms for optimal design of large-scale adaptive structures. We first review some basic concepts in finite element method and genetic algorithms, along with the research on smart structures. Then we propose a solution methodology for solving a critical problem in the design of a next generation of large-scale adaptive structures---optimal placements of a large number of actuators to control thermal deformations. After briefly reviewing the three most frequently used general approaches to derive a finite element formulation, the dissertation presents techniques associated with general shell finite element analysis using flat triangular laminated composite elements. The element used here has three nodes and eighteen degrees of freedom and is obtained by combining a triangular membrane element and a triangular plate bending element. The element includes the coupling effect between membrane deformation and bending deformation. The membrane element is derived from the linear strain triangular element using Cook's transformation. The discrete Kirchhoff triangular (DKT) element is used as the plate bending element. For completeness, a complete derivation of the DKT is presented. Geometrically nonlinear finite element formulation is derived for the analysis of adaptive structures under the combined thermal and electrical loads. Next, we solve the optimization problems of placing a large number of piezoelectric actuators to control thermal distortions in a large mirror in the presence of four different thermal loads. We then extend this to a multi-objective optimization problem of determining only one set of piezoelectric actuator locations that can be used to control the deformation in the same mirror under the action of any one of the four thermal loads. A series of genetic algorithms, GA Version 1, 2 and 3, were developed to find the optimal locations of piezoelectric actuators from the order of 1021 ˜ 1056 candidate placements. Introducing a variable population approach, we improve the flexibility of selection operation in genetic algorithms. Incorporating mutation and hill climbing into micro-genetic algorithms, we are able to develop a more efficient genetic algorithm. Through extensive numerical experiments, we find that the design search space for the optimal placements of a large number of actuators is highly multi-modal and that the most distinct nature of genetic algorithms is their robustness. They give results that are random but with only a slight variability. The genetic algorithms can be used to get adequate solution using a limited number of evaluations. To get the highest quality solution, multiple runs including different random seed generators are necessary. The investigation time can be significantly reduced using a very coarse grain parallel computing. Overall, the methodology of using finite element analysis and genetic algorithm optimization provides a robust solution approach for the challenging problem of optimal placements of a large number of actuators in the design of next generation of adaptive structures.
A fast finite-difference algorithm for topology optimization of permanent magnets
NASA Astrophysics Data System (ADS)
Abert, Claas; Huber, Christian; Bruckner, Florian; Vogler, Christoph; Wautischer, Gregor; Suess, Dieter
2017-09-01
We present a finite-difference method for the topology optimization of permanent magnets that is based on the fast-Fourier-transform (FFT) accelerated computation of the stray-field. The presented method employs the density approach for topology optimization and uses an adjoint method for the gradient computation. Comparison to various state-of-the-art finite-element implementations shows a superior performance and accuracy. Moreover, the presented method is very flexible and easy to implement due to various preexisting FFT stray-field implementations that can be used.
AN FDTD ALGORITHM WITH PERFECTLY MATCHED LAYERS FOR CONDUCTIVE MEDIA. (R825225)
We extend Berenger's perfectly matched layers (PML) to conductive media. A finite-difference-time-domain (FDTD) algorithm with PML as an absorbing boundary condition is developed for solutions of Maxwell's equations in inhomogeneous, conductive media. For a perfectly matched laye...
A PML-FDTD ALGORITHM FOR SIMULATING PLASMA-COVERED CAVITY-BACKED SLOT ANTENNAS. (R825225)
A three-dimensional frequency-dependent finite-difference time-domain (FDTD) algorithm with perfectly matched layer (PML) absorbing boundary condition (ABC) and recursive convolution approaches is developed to model plasma-covered open-ended waveguide or cavity-backed slot antenn...
A parallel finite-difference method for computational aerodynamics
NASA Technical Reports Server (NTRS)
Swisshelm, Julie M.
1989-01-01
A finite-difference scheme for solving complex three-dimensional aerodynamic flow on parallel-processing supercomputers is presented. The method consists of a basic flow solver with multigrid convergence acceleration, embedded grid refinements, and a zonal equation scheme. Multitasking and vectorization have been incorporated into the algorithm. Results obtained include multiprocessed flow simulations from the Cray X-MP and Cray-2. Speedups as high as 3.3 for the two-dimensional case and 3.5 for segments of the three-dimensional case have been achieved on the Cray-2. The entire solver attained a factor of 2.7 improvement over its unitasked version on the Cray-2. The performance of the parallel algorithm on each machine is analyzed.
Parallel solution of high-order numerical schemes for solving incompressible flows
NASA Technical Reports Server (NTRS)
Milner, Edward J.; Lin, Avi; Liou, May-Fun; Blech, Richard A.
1993-01-01
A new parallel numerical scheme for solving incompressible steady-state flows is presented. The algorithm uses a finite-difference approach to solving the Navier-Stokes equations. The algorithms are scalable and expandable. They may be used with only two processors or with as many processors as are available. The code is general and expandable. Any size grid may be used. Four processors of the NASA LeRC Hypercluster were used to solve for steady-state flow in a driven square cavity. The Hypercluster was configured in a distributed-memory, hypercube-like architecture. By using a 50-by-50 finite-difference solution grid, an efficiency of 74 percent (a speedup of 2.96) was obtained.
An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Lessard, Victor R.
1990-01-01
The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.
NASA Astrophysics Data System (ADS)
Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.
2012-11-01
Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)
NASA Astrophysics Data System (ADS)
Burtyka, Filipp
2018-01-01
The paper considers algorithms for finding diagonalizable and non-diagonalizable roots (so called solvents) of monic arbitrary unilateral second-order matrix polynomial over prime finite field. These algorithms are based on polynomial matrices (lambda-matrices). This is an extension of existing general methods for computing solvents of matrix polynomials over field of complex numbers. We analyze how techniques for complex numbers can be adapted for finite field and estimate asymptotic complexity of the obtained algorithms.
Finite difference methods for the solution of unsteady potential flows
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1985-01-01
A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.
A Non-Intrusive Algorithm for Sensitivity Analysis of Chaotic Flow Simulations
NASA Technical Reports Server (NTRS)
Blonigan, Patrick J.; Wang, Qiqi; Nielsen, Eric J.; Diskin, Boris
2017-01-01
We demonstrate a novel algorithm for computing the sensitivity of statistics in chaotic flow simulations to parameter perturbations. The algorithm is non-intrusive but requires exposing an interface. Based on the principle of shadowing in dynamical systems, this algorithm is designed to reduce the effect of the sampling error in computing sensitivity of statistics in chaotic simulations. We compare the effectiveness of this method to that of the conventional finite difference method.
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1976-01-01
An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.
A generalized algorithm to design finite field normal basis multipliers
NASA Technical Reports Server (NTRS)
Wang, C. C.
1986-01-01
Finite field arithmetic logic is central in the implementation of some error-correcting coders and some cryptographic devices. There is a need for good multiplication algorithms which can be easily realized. Massey and Omura recently developed a new multiplication algorithm for finite fields based on a normal basis representation. Using the normal basis representation, the design of the finite field multiplier is simple and regular. The fundamental design of the Massey-Omura multiplier is based on a design of a product function. In this article, a generalized algorithm to locate a normal basis in a field is first presented. Using this normal basis, an algorithm to construct the product function is then developed. This design does not depend on particular characteristics of the generator polynomial of the field.
Analysis of composite ablators using massively parallel computation
NASA Technical Reports Server (NTRS)
Shia, David
1995-01-01
In this work, the feasibility of using massively parallel computation to study the response of ablative materials is investigated. Explicit and implicit finite difference methods are used on a massively parallel computer, the Thinking Machines CM-5. The governing equations are a set of nonlinear partial differential equations. The governing equations are developed for three sample problems: (1) transpiration cooling, (2) ablative composite plate, and (3) restrained thermal growth testing. The transpiration cooling problem is solved using a solution scheme based solely on the explicit finite difference method. The results are compared with available analytical steady-state through-thickness temperature and pressure distributions and good agreement between the numerical and analytical solutions is found. It is also found that a solution scheme based on the explicit finite difference method has the following advantages: incorporates complex physics easily, results in a simple algorithm, and is easily parallelizable. However, a solution scheme of this kind needs very small time steps to maintain stability. A solution scheme based on the implicit finite difference method has the advantage that it does not require very small times steps to maintain stability. However, this kind of solution scheme has the disadvantages that complex physics cannot be easily incorporated into the algorithm and that the solution scheme is difficult to parallelize. A hybrid solution scheme is then developed to combine the strengths of the explicit and implicit finite difference methods and minimize their weaknesses. This is achieved by identifying the critical time scale associated with the governing equations and applying the appropriate finite difference method according to this critical time scale. The hybrid solution scheme is then applied to the ablative composite plate and restrained thermal growth problems. The gas storage term is included in the explicit pressure calculation of both problems. Results from ablative composite plate problems are compared with previous numerical results which did not include the gas storage term. It is found that the through-thickness temperature distribution is not affected much by the gas storage term. However, the through-thickness pressure and stress distributions, and the extent of chemical reactions are different from the previous numerical results. Two types of chemical reaction models are used in the restrained thermal growth testing problem: (1) pressure-independent Arrhenius type rate equations and (2) pressure-dependent Arrhenius type rate equations. The numerical results are compared to experimental results and the pressure-dependent model is able to capture the trend better than the pressure-independent one. Finally, a performance study is done on the hybrid algorithm using the ablative composite plate problem. It is found that there is a good speedup of performance on the CM-5. For 32 CPU's, the speedup of performance is 20. The efficiency of the algorithm is found to be a function of the size and execution time of a given problem and the effective parallelization of the algorithm. It also seems that there is an optimum number of CPU's to use for a given problem.
NASA Astrophysics Data System (ADS)
Chirico, G. B.; Medina, H.; Romano, N.
2014-07-01
This paper examines the potential of different algorithms, based on the Kalman filtering approach, for assimilating near-surface observations into a one-dimensional Richards equation governing soil water flow in soil. Our specific objectives are: (i) to compare the efficiency of different Kalman filter algorithms in retrieving matric pressure head profiles when they are implemented with different numerical schemes of the Richards equation; (ii) to evaluate the performance of these algorithms when nonlinearities arise from the nonlinearity of the observation equation, i.e. when surface soil water content observations are assimilated to retrieve matric pressure head values. The study is based on a synthetic simulation of an evaporation process from a homogeneous soil column. Our first objective is achieved by implementing a Standard Kalman Filter (SKF) algorithm with both an explicit finite difference scheme (EX) and a Crank-Nicolson (CN) linear finite difference scheme of the Richards equation. The Unscented (UKF) and Ensemble Kalman Filters (EnKF) are applied to handle the nonlinearity of a backward Euler finite difference scheme. To accomplish the second objective, an analogous framework is applied, with the exception of replacing SKF with the Extended Kalman Filter (EKF) in combination with a CN numerical scheme, so as to handle the nonlinearity of the observation equation. While the EX scheme is computationally too inefficient to be implemented in an operational assimilation scheme, the retrieval algorithm implemented with a CN scheme is found to be computationally more feasible and accurate than those implemented with the backward Euler scheme, at least for the examined one-dimensional problem. The UKF appears to be as feasible as the EnKF when one has to handle nonlinear numerical schemes or additional nonlinearities arising from the observation equation, at least for systems of small dimensionality as the one examined in this study.
NASA Technical Reports Server (NTRS)
Shuen, Jian-Shun; Liou, Meng-Sing; Van Leer, Bram
1989-01-01
The extension of the known flux-vector and flux-difference splittings to real gases via rigorous mathematical procedures is demonstrated. Formulations of both equilibrium and finite-rate chemistry for real-gas flows are described, with emphasis on derivations of finite-rate chemistry. Split-flux formulas from other authors are examined. A second-order upwind-based TVD scheme is adopted to eliminate oscillations and to obtain a sharp representation of discontinuities.
Linear and nonlinear pattern selection in Rayleigh-Benard stability problems
NASA Technical Reports Server (NTRS)
Davis, Sanford S.
1993-01-01
A new algorithm is introduced to compute finite-amplitude states using primitive variables for Rayleigh-Benard convection on relatively coarse meshes. The algorithm is based on a finite-difference matrix-splitting approach that separates all physical and dimensional effects into one-dimensional subsets. The nonlinear pattern selection process for steady convection in an air-filled square cavity with insulated side walls is investigated for Rayleigh numbers up to 20,000. The internalization of disturbances that evolve into coherent patterns is investigated and transient solutions from linear perturbation theory are compared with and contrasted to the full numerical simulations.
Efficient Controls for Finitely Convergent Sequential Algorithms
Chen, Wei; Herman, Gabor T.
2010-01-01
Finding a feasible point that satisfies a set of constraints is a common task in scientific computing: examples are the linear feasibility problem and the convex feasibility problem. Finitely convergent sequential algorithms can be used for solving such problems; an example of such an algorithm is ART3, which is defined in such a way that its control is cyclic in the sense that during its execution it repeatedly cycles through the given constraints. Previously we found a variant of ART3 whose control is no longer cyclic, but which is still finitely convergent and in practice it usually converges faster than ART3 does. In this paper we propose a general methodology for automatic transformation of finitely convergent sequential algorithms in such a way that (i) finite convergence is retained and (ii) the speed of convergence is improved. The first of these two properties is proven by mathematical theorems, the second is illustrated by applying the algorithms to a practical problem. PMID:20953327
Styopin, Nikita E; Vershinin, Anatoly V; Zingerman, Konstantin M; Levin, Vladimir A
2016-09-01
Different variants of the Uzawa algorithm are compared with one another. The comparison is performed for the case in which this algorithm is applied to large-scale systems of linear algebraic equations. These systems arise in the finite-element solution of the problems of elasticity theory for incompressible materials. A modification of the Uzawa algorithm is proposed. Computational experiments show that this modification improves the convergence of the Uzawa algorithm for the problems of solid mechanics. The results of computational experiments show that each variant of the Uzawa algorithm considered has its advantages and disadvantages and may be convenient in one case or another.
A comparative study of computational solutions to flow over a backward-facing step
NASA Technical Reports Server (NTRS)
Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.
1993-01-01
A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.
Substructure System Identification for Finite Element Model Updating
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
NASA Astrophysics Data System (ADS)
He, Xiao; Hu, Hengshan; Wang, Xiuming
2013-01-01
Sedimentary rocks can exhibit strong permeability anisotropy due to layering, pre-stresses and the presence of aligned microcracks or fractures. In this paper, we develop a modified cylindrical finite-difference algorithm to simulate the borehole acoustic wavefield in a saturated poroelastic medium with transverse isotropy of permeability and tortuosity. A linear interpolation process is proposed to guarantee the leapfrog finite difference scheme for the generalized dynamic equations and Darcy's law for anisotropic porous media. First, the modified algorithm is validated by comparison against the analytical solution when the borehole axis is parallel to the symmetry axis of the formation. The same algorithm is then used to numerically model the dipole acoustic log in a borehole with its axis being arbitrarily deviated from the symmetry axis of transverse isotropy. The simulation results show that the amplitudes of flexural modes vary with the dipole orientation because the permeability tensor of the formation is dependent on the wellbore azimuth. It is revealed that the attenuation of the flexural wave increases approximately linearly with the radial permeability component in the direction of the transmitting dipole. Particularly, when the borehole axis is perpendicular to the symmetry axis of the formation, it is possible to estimate the anisotropy of permeability by evaluating attenuation of the flexural wave using a cross-dipole sonic logging tool according to the results of sensitivity analyses. Finally, the dipole sonic logs in a deviated borehole surrounded by a stratified porous formation are modelled using the proposed finite difference code. Numerical results show that the arrivals and amplitudes of transmitted flexural modes near the layer interface are sensitive to the wellbore inclination.
Finite-difference modeling with variable grid-size and adaptive time-step in porous media
NASA Astrophysics Data System (ADS)
Liu, Xinxin; Yin, Xingyao; Wu, Guochen
2014-04-01
Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
2004-01-01
This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. Other related issues in high order WENO finite difference and finite volume methods have also been investigated. methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present some quantitative comparisons of the third order finite volume WENO methods and discontinuous Galerkin methods for a series of test problems to assess their relative merits in accuracy and CPU timing. In [3], we review the development of the Runge-Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.
Finite element solution for energy conservation using a highly stable explicit integration algorithm
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1972-01-01
Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.
A finite element-based algorithm for rubbing induced vibration prediction in rotors
NASA Astrophysics Data System (ADS)
Behzad, Mehdi; Alvandi, Mehdi; Mba, David; Jamali, Jalil
2013-10-01
In this paper, an algorithm is developed for more realistic investigation of rotor-to-stator rubbing vibration, based on finite element theory with unilateral contact and friction conditions. To model the rotor, cross sections are assumed to be radially rigid. A finite element discretization based on traditional beam theories which sufficiently accounts for axial and transversal flexibility of the rotor is used. A general finite element discretization model considering inertial and viscoelastic characteristics of the stator is used for modeling the stator. Therefore, for contact analysis, only the boundary of the stator is discretized. The contact problem is defined as the contact between the circular rigid cross section of the rotor and “nodes” of the stator only. Next, Gap function and contact conditions are described for the contact problem. Two finite element models of the rotor and the stator are coupled via the Lagrange multipliers method in order to obtain the constrained equation of motion. A case study of the partial rubbing is simulated using the algorithm. The synchronous and subsynchronous responses of the partial rubbing are obtained for different rotational speeds. In addition, a sensitivity analysis is carried out with respect to the initial clearance, the stator stiffness, the damping parameter, and the coefficient of friction. There is a good agreement between the result of this research and the experimental result in the literature.
Generalization of mixed multiscale finite element methods with applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, C S
Many science and engineering problems exhibit scale disparity and high contrast. The small scale features cannot be omitted in the physical models because they can affect the macroscopic behavior of the problems. However, resolving all the scales in these problems can be prohibitively expensive. As a consequence, some types of model reduction techniques are required to design efficient solution algorithms. For practical purpose, we are interested in mixed finite element problems as they produce solutions with certain conservative properties. Existing multiscale methods for such problems include the mixed multiscale finite element methods. We show that for complicated problems, the mixedmore » multiscale finite element methods may not be able to produce reliable approximations. This motivates the need of enrichment for coarse spaces. Two enrichment approaches are proposed, one is based on generalized multiscale finte element metthods (GMsFEM), while the other is based on spectral element-based algebraic multigrid (rAMGe). The former one, which is called mixed GMsFEM, is developed for both Darcy’s flow and linear elasticity. Application of the algorithm in two-phase flow simulations are demonstrated. For linear elasticity, the algorithm is subtly modified due to the symmetry requirement of the stress tensor. The latter enrichment approach is based on rAMGe. The algorithm differs from GMsFEM in that both of the velocity and pressure spaces are coarsened. Due the multigrid nature of the algorithm, recursive application is available, which results in an efficient multilevel construction of the coarse spaces. Stability, convergence analysis, and exhaustive numerical experiments are carried out to validate the proposed enrichment approaches. iii« less
High order multi-grid methods to solve the Poisson equation
NASA Technical Reports Server (NTRS)
Schaffer, S.
1981-01-01
High order multigrid methods based on finite difference discretization of the model problem are examined. The following methods are described: (1) a fixed high order FMG-FAS multigrid algorithm; (2) the high order methods; and (3) results are presented on four problems using each method with the same underlying fixed FMG-FAS algorithm.
Efficiency of unconstrained minimization techniques in nonlinear analysis
NASA Technical Reports Server (NTRS)
Kamat, M. P.; Knight, N. F., Jr.
1978-01-01
Unconstrained minimization algorithms have been critically evaluated for their effectiveness in solving structural problems involving geometric and material nonlinearities. The algorithms have been categorized as being zeroth, first, or second order depending upon the highest derivative of the function required by the algorithm. The sensitivity of these algorithms to the accuracy of derivatives clearly suggests using analytically derived gradients instead of finite difference approximations. The use of analytic gradients results in better control of the number of minimizations required for convergence to the exact solution.
A finite-state, finite-memory minimum principle, part 2
NASA Technical Reports Server (NTRS)
Sandell, N. R., Jr.; Athans, M.
1975-01-01
In part 1 of this paper, a minimum principle was found for the finite-state, finite-memory (FSFM) stochastic control problem. In part 2, conditions for the sufficiency of the minimum principle are stated in terms of the informational properties of the problem. This is accomplished by introducing the notion of a signaling strategy. Then a min-H algorithm based on the FSFM minimum principle is presented. This algorithm converges, after a finite number of steps, to a person - by - person extremal solution.
NASA Astrophysics Data System (ADS)
Young, Frederic; Siegel, Edward
Cook-Levin theorem theorem algorithmic computational-complexity(C-C) algorithmic-equivalence reducibility/completeness equivalence to renormalization-(semi)-group phase-transitions critical-phenomena statistical-physics universality-classes fixed-points, is exploited via Siegel FUZZYICS =CATEGORYICS = ANALOGYICS =PRAGMATYICS/CATEGORY-SEMANTICS ONTOLOGY COGNITION ANALYTICS-Aristotle ``square-of-opposition'' tabular list-format truth-table matrix analytics predicts and implements ''noise''-induced phase-transitions (NITs) to accelerate versus to decelerate Harel [Algorithmics (1987)]-Sipser[Intro.Thy. Computation(`97)] algorithmic C-C: ''NIT-picking''(!!!), to optimize optimization-problems optimally(OOPO). Versus iso-''noise'' power-spectrum quantitative-only amplitude/magnitude-only variation stochastic-resonance, ''NIT-picking'' is ''noise'' power-spectrum QUALitative-type variation via quantitative critical-exponents variation. Computer-''science''/SEANCE algorithmic C-C models: Turing-machine, finite-state-models, finite-automata,..., discrete-maths graph-theory equivalence to physics Feynman-diagrams are identified as early-days once-workable valid but limiting IMPEDING CRUTCHES(!!!), ONLY IMPEDE latter-days new-insights!!!
Finite-time stabilization of chaotic gyros based on a homogeneous supertwisting-like algorithm
NASA Astrophysics Data System (ADS)
Khamsuwan, Pitcha; Sangpet, Teerawat; Kuntanapreeda, Suwat
2018-01-01
This paper presents a finite-time stabilization scheme for nonlinear chaotic gyros. The scheme utilizes a supertwisting-like continuous control algorithm for the systems of dimension more than one with a Lipschitz disturbance. The algorithm yields finite-time convergence similar to that produces by discontinuous sliding mode control algorithms. To design the controller, the nonlinearities in the gyro are treated as a disturbance in the system. Thanks to the dissipativeness of chaotic systems, the nonlinearities also possess the Lipschitz property. Numerical results are provided to illustrate the effectiveness of the scheme.
A vortex wake capturing method for potential flow calculations
NASA Technical Reports Server (NTRS)
Murman, E. M.; Stremel, P. M.
1982-01-01
A method is presented for modifying finite difference solutions of the potential equation to include the calculation of non-planar vortex wake features. The approach is an adaptation of Baker's 'cloud in cell' algorithm developed for the stream function-vorticity equations. The vortex wake is tracked in a Lagrangian frame of reference as a group of discrete vortex filaments. These are distributed to the Eulerian mesh system on which the velocity is calculated by a finite difference solution of the potential equation. An artificial viscosity introduced by the finite difference equations removes the singular nature of the vortex filaments. Computed examples are given for the two-dimensional time dependent roll-up of vortex wakes generated by wings with different spanwise loading distributions.
Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic
NASA Technical Reports Server (NTRS)
Baker, A. J.; Orzechowski, J. A.
1983-01-01
A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.
Accuracy Improvement for Light-Emitting-Diode-Based Colorimeter by Iterative Algorithm
NASA Astrophysics Data System (ADS)
Yang, Pao-Keng
2011-09-01
We present a simple algorithm, combining an interpolating method with an iterative calculation, to enhance the resolution of spectral reflectance by removing the spectral broadening effect due to the finite bandwidth of the light-emitting diode (LED) from it. The proposed algorithm can be used to improve the accuracy of a reflective colorimeter using multicolor LEDs as probing light sources and is also applicable to the case when the probing LEDs have different bandwidths in different spectral ranges, to which the powerful deconvolution method cannot be applied.
Introduction to multigrid methods
NASA Technical Reports Server (NTRS)
Wesseling, P.
1995-01-01
These notes were written for an introductory course on the application of multigrid methods to elliptic and hyperbolic partial differential equations for engineers, physicists and applied mathematicians. The use of more advanced mathematical tools, such as functional analysis, is avoided. The course is intended to be accessible to a wide audience of users of computational methods. We restrict ourselves to finite volume and finite difference discretization. The basic principles are given. Smoothing methods and Fourier smoothing analysis are reviewed. The fundamental multigrid algorithm is studied. The smoothing and coarse grid approximation properties are discussed. Multigrid schedules and structured programming of multigrid algorithms are treated. Robustness and efficiency are considered.
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Banerjee, Saswatee; Hoshino, Tetsuya; Cole, James B
2008-08-01
We introduce a new implementation of the finite-difference time-domain (FDTD) algorithm with recursive convolution (RC) for first-order Drude metals. We implemented RC for both Maxwell's equations for light polarized in the plane of incidence (TM mode) and the wave equation for light polarized normal to the plane of incidence (TE mode). We computed the Drude parameters at each wavelength using the measured value of the dielectric constant as a function of the spatial and temporal discretization to ensure both the accuracy of the material model and algorithm stability. For the TE mode, where Maxwell's equations reduce to the wave equation (even in a region of nonuniform permittivity) we introduced a wave equation formulation of RC-FDTD. This greatly reduces the computational cost. We used our methods to compute the diffraction characteristics of metallic gratings in the visible wavelength band and compared our results with frequency-domain calculations.
High-order flux correction/finite difference schemes for strand grids
NASA Astrophysics Data System (ADS)
Katz, Aaron; Work, Dalon
2015-02-01
A novel high-order method combining unstructured flux correction along body surfaces and high-order finite differences normal to surfaces is formulated for unsteady viscous flows on strand grids. The flux correction algorithm is applied in each unstructured layer of the strand grid, and the layers are then coupled together via a source term containing derivatives in the strand direction. Strand-direction derivatives are approximated to high-order via summation-by-parts operators for first derivatives and second derivatives with variable coefficients. We show how this procedure allows for the proper truncation error canceling properties required for the flux correction scheme. The resulting scheme possesses third-order design accuracy, but often exhibits fourth-order accuracy when higher-order derivatives are employed in the strand direction, especially for highly viscous flows. We prove discrete conservation for the new scheme and time stability in the absence of the flux correction terms. Results in two dimensions are presented that demonstrate improvements in accuracy with minimal computational and algorithmic overhead over traditional second-order algorithms.
Modeling and new equipment definition for the vibration isolation box equipment system
NASA Technical Reports Server (NTRS)
Sani, Robert L.
1993-01-01
Our MSAD-funded research project is to provide numerical modeling support for the VIBES (Vibration Isolation Box Experiment System) which is an IML2 flight experiment being built by the Japanese research team of Dr. H. Azuma of the Japanese National Aerospace Laboratory. During this reporting period, the following have been accomplished: A semi-consistent mass finite element projection algorithm for 2D and 3D Boussinesq flows has been implemented on Sun, HP And Cray Platforms. The algorithm has better phase speed accuracy than similar finite difference or lumped mass finite element algorithms, an attribute which is essential for addressing realistic g-jitter effects as well as convectively-dominated transient systems. The projection algorithm has been benchmarked against solutions generated via the commercial code FIDAP. The algorithm appears to be accurate as well as computationally efficient. Optimization and potential parallelization studies are underway. Our implementation to date has focused on execution of the basic algorithm with at most a concern for vectorization. The initial time-varying gravity Boussinesq flow simulation is being set up. The mesh is being designed and the input file is being generated. Some preliminary 'small mesh' cases will be attempted on our HP9000/735 while our request to MSAD for supercomputing resources is being addressed. The Japanese research team for VIBES was visited, the current set up and status of the physical experiment was obtained and ongoing E-Mail communication link was established.
Supercomputer implementation of finite element algorithms for high speed compressible flows
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.
1986-01-01
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.
A spectral, quasi-cylindrical and dispersion-free Particle-In-Cell algorithm
Lehe, Remi; Kirchen, Manuel; Andriyash, Igor A.; ...
2016-02-17
We propose a spectral Particle-In-Cell (PIC) algorithm that is based on the combination of a Hankel transform and a Fourier transform. For physical problems that have close-to-cylindrical symmetry, this algorithm can be much faster than full 3D PIC algorithms. In addition, unlike standard finite-difference PIC codes, the proposed algorithm is free of spurious numerical dispersion, in vacuum. This algorithm is benchmarked in several situations that are of interest for laser-plasma interactions. These benchmarks show that it avoids a number of numerical artifacts, that would otherwise affect the physics in a standard PIC algorithm - including the zero-order numerical Cherenkov effect.
A comparison of VLSI architecture of finite field multipliers using dual, normal or standard basis
NASA Technical Reports Server (NTRS)
Hsu, I. S.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Reed, I. S.
1987-01-01
Three different finite field multipliers are presented: (1) a dual basis multiplier due to Berlekamp; (2) a Massy-Omura normal basis multiplier; and (3) the Scott-Tavares-Peppard standard basis multiplier. These algorithms are chosen because each has its own distinct features which apply most suitably in different areas. Finally, they are implemented on silicon chips with nitride metal oxide semiconductor technology so that the multiplier most desirable for very large scale integration implementations can readily be ascertained.
Computational Fluid Dynamics: Algorithms and Supercomputers
1988-03-01
1985. 1.2. Pulliam, T., and Steger, J. , Implicit Finite Difference Simulations of Three Dimensional Compressible Flow, AIAA Journal , Vol. 18, No. 2...approaches infinity, assuming N is bounded. The question as to actual performance when M is finite and N varies, is a different matter. (Note: the CYBER...PARTICLE-IN-CELL 9i% 3.b7 j.48 WEATHER FORECAST 98% 3.77 3.55 SEISMIC MIGRATION 98% 3.85 3.45 MONTE CARLO 99% 3.85 3.75 LATTICE GAUGE 100% 4.00 3.77
NASA Technical Reports Server (NTRS)
Dey, C.; Dey, S. K.
1983-01-01
An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.
Transport and dispersion of pollutants in surface impoundments: a finite difference model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeh, G.T.
1980-07-01
A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.
Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation
NASA Technical Reports Server (NTRS)
Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.
1996-01-01
We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.
Finite grade pheromone ant colony optimization for image segmentation
NASA Astrophysics Data System (ADS)
Yuanjing, F.; Li, Y.; Liangjun, K.
2008-06-01
By combining the decision process of ant colony optimization (ACO) with the multistage decision process of image segmentation based on active contour model (ACM), an algorithm called finite grade ACO (FACO) for image segmentation is proposed. This algorithm classifies pheromone into finite grades and updating of the pheromone is achieved by changing the grades and the updated quantity of pheromone is independent from the objective function. The algorithm that provides a new approach to obtain precise contour is proved to converge to the global optimal solutions linearly by means of finite Markov chains. The segmentation experiments with ultrasound heart image show the effectiveness of the algorithm. Comparing the results for segmentation of left ventricle images shows that the ACO for image segmentation is more effective than the GA approach and the new pheromone updating strategy appears good time performance in optimization process.
Robust non-fragile finite-frequency H∞ static output-feedback control for active suspension systems
NASA Astrophysics Data System (ADS)
Wang, Gang; Chen, Changzheng; Yu, Shenbo
2017-07-01
This paper deals with the problem of non-fragile H∞ static output-feedback control of vehicle active suspension systems with finite-frequency constraint. The control objective is to improve ride comfort within the given frequency range and ensure the hard constraints in the time-domain. Moreover, in order to enhance the robustness of the controller, the control gain perturbation is also considered in controller synthesis. Firstly, a new non-fragile H∞ finite-frequency control condition is established by using generalized Kalman-Yakubovich-Popov (GKYP) lemma. Secondly, the static output-feedback control gain is directly derived by using a non-iteration algorithm. Different from the existing iteration LMI results, the static output-feedback design is simple and less conservative. Finally, the proposed control algorithm is applied to a quarter-car active suspension model with actuator dynamics, numerical results are made to show the effectiveness and merits of the proposed method.
An efficicient data structure for three-dimensional vertex based finite volume method
NASA Astrophysics Data System (ADS)
Akkurt, Semih; Sahin, Mehmet
2017-11-01
A vertex based three-dimensional finite volume algorithm has been developed using an edge based data structure.The mesh data structure of the given algorithm is similar to ones that exist in the literature. However, the data structures are redesigned and simplied in order to fit requirements of the vertex based finite volume method. In order to increase the cache efficiency, the data access patterns for the vertex based finite volume method are investigated and these datas are packed/allocated in a way that they are close to each other in the memory. The present data structure is not limited with tetrahedrons, arbitrary polyhedrons are also supported in the mesh without putting any additional effort. Furthermore, the present data structure also supports adaptive refinement and coarsening. For the implicit and parallel implementation of the FVM algorithm, PETSc and MPI libraries are employed. The performance and accuracy of the present algorithm are tested for the classical benchmark problems by comparing the CPU time for the open source algorithms.
Efficient Parallel Algorithm For Direct Numerical Simulation of Turbulent Flows
NASA Technical Reports Server (NTRS)
Moitra, Stuti; Gatski, Thomas B.
1997-01-01
A distributed algorithm for a high-order-accurate finite-difference approach to the direct numerical simulation (DNS) of transition and turbulence in compressible flows is described. This work has two major objectives. The first objective is to demonstrate that parallel and distributed-memory machines can be successfully and efficiently used to solve computationally intensive and input/output intensive algorithms of the DNS class. The second objective is to show that the computational complexity involved in solving the tridiagonal systems inherent in the DNS algorithm can be reduced by algorithm innovations that obviate the need to use a parallelized tridiagonal solver.
Algorithms for Zonal Methods and Development of Three Dimensional Mesh Generation Procedures.
1984-02-01
a r-re complete set of equations is used, but their effect is imposed by means of a right hand side forcing function, not by means of a zonal boundary...modifications of flow-simulation algorithms The explicit finite-difference code of Magnus and are discussed. Computational tests in two dimensions...used to simplify the task of grid generation without an adverse achieve computational efficiency. More recently, effect on flow-field algorithms and
An implicit flux-split algorithm to calculate hypersonic flowfields in chemical equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1987-01-01
An implicit, finite-difference, shock-capturing algorithm that calculates inviscid, hypersonic flows in chemical equilibrium is presented. The flux vectors and flux Jacobians are differenced using a first-order, flux-split technique. The equilibrium composition of the gas is determined by minimizing the Gibbs free energy at every node point. The code is validated by comparing results over an axisymmetric hemisphere against previously published results. The algorithm is also applied to more practical configurations. The accuracy, stability, and versatility of the algorithm have been promising.
Finite element method formulation in polar coordinates for transient heat conduction problems
NASA Astrophysics Data System (ADS)
Duda, Piotr
2016-04-01
The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.
Sato, Y; Teixeira, E R; Tsuga, K; Shindoi, N
1999-08-01
More validity of finite element analysis (FEA) in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To evaluate the effectiveness of a new algorithm established for more valid FEA model construction without downsizing, three-dimensional FEA bone trabeculae models with different element sizes (300, 150 and 75 micron) were constructed. Four algorithms of stepwise (1 to 4 ranks) assignment of Young's modulus accorded with bone volume in the individual cubic element was used and then stress distribution against vertical loading was analysed. The model with 300 micron element size, with 4 ranks of Young's moduli accorded with bone volume in each element presented similar stress distribution to the model with the 75 micron element size. These results show that the new algorithm was effective, and the use of the 300 micron element for bone trabeculae representation was proposed, without critical changes in stress values and for possible savings on computer memory and calculation time in the laboratory.
A new algorithm for DNS of turbulent polymer solutions using the FENE-P model
NASA Astrophysics Data System (ADS)
Vaithianathan, T.; Collins, Lance; Robert, Ashish; Brasseur, James
2004-11-01
Direct numerical simulations (DNS) of polymer solutions based on the finite extensible nonlinear elastic model with the Peterlin closure (FENE-P) solve for a conformation tensor with properties that must be maintained by the numerical algorithm. In particular, the eigenvalues of the tensor are all positive (to maintain positive definiteness) and the sum is bounded by the maximum extension length. Loss of either of these properties will give rise to unphysical instabilities. In earlier work, Vaithianathan & Collins (2003) devised an algorithm based on an eigendecomposition that allows you to update the eigenvalues of the conformation tensor directly, making it easier to maintain the necessary conditions for a stable calculation. However, simple fixes (such as ceilings and floors) yield results that violate overall conservation. The present finite-difference algorithm is inherently designed to satisfy all of the bounds on the eigenvalues, and thus restores overall conservation. New results suggest that the earlier algorithm may have exaggerated the energy exchange at high wavenumbers. In particular, feedback of the polymer elastic energy to the isotropic turbulence is now greatly reduced.
Distributed finite-time containment control for double-integrator multiagent systems.
Wang, Xiangyu; Li, Shihua; Shi, Peng
2014-09-01
In this paper, the distributed finite-time containment control problem for double-integrator multiagent systems with multiple leaders and external disturbances is discussed. In the presence of multiple dynamic leaders, by utilizing the homogeneous control technique, a distributed finite-time observer is developed for the followers to estimate the weighted average of the leaders' velocities at first. Then, based on the estimates and the generalized adding a power integrator approach, distributed finite-time containment control algorithms are designed to guarantee that the states of the followers converge to the dynamic convex hull spanned by those of the leaders in finite time. Moreover, as a special case of multiple dynamic leaders with zero velocities, the proposed containment control algorithms also work for the case of multiple stationary leaders without using the distributed observer. Simulations demonstrate the effectiveness of the proposed control algorithms.
Reliability analysis of laminated CMC components through shell subelement techniques
NASA Technical Reports Server (NTRS)
Starlinger, Alois; Duffy, Stephen F.; Gyekenyesi, John P.
1992-01-01
An updated version of the integrated design program Composite Ceramics Analysis and Reliability Evaluation of Structures (C/CARES) was developed for the reliability evaluation of ceramic matrix composites (CMC) laminated shell components. The algorithm is now split into two modules: a finite-element data interface program and a reliability evaluation algorithm. More flexibility is achieved, allowing for easy implementation with various finite-element programs. The interface program creates a neutral data base which is then read by the reliability module. This neutral data base concept allows easy data transfer between different computer systems. The new interface program from the finite-element code Matrix Automated Reduction and Coupling (MARC) also includes the option of using hybrid laminates (a combination of plies of different materials or different layups) and allows for variations in temperature fields throughout the component. In the current version of C/CARES, a subelement technique was implemented, enabling stress gradients within an element to be taken into account. The noninteractive reliability function is now evaluated at each Gaussian integration point instead of using averaging techniques. As a result of the increased number of stress evaluation points, considerable improvements in the accuracy of reliability analyses were realized.
Finite Set Control Transcription for Optimal Control Applications
2009-05-01
Figures 1.1 The Parameters of x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1 Categories of Optimization Algorithms ...Programming (NLP) algorithm , such as SNOPT2 (hereafter, called the optimizer). The Finite Set Control Transcription (FSCT) method is essentially a...artificial neural networks, ge- netic algorithms , or combinations thereof for analysis.4,5 Indeed, an actual biological neural network is an example of
Improved Regional Seismic Event Locations Using 3-D Velocity Models
1999-12-15
regional velocity model to estimate event hypocenters. Travel times for the regional phases are calculated using a sophisticated eikonal finite...can greatly improve estimates of event locations. Our algorithm calculates travel times using a finite difference approximation of the eikonal ...such as IASP91 or J-B. 3-D velocity models require more sophisticated travel time modeling routines; thus, we use a 3-D eikonal equation solver
A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation
NASA Astrophysics Data System (ADS)
Vergez, Guillaume; Danaila, Ionut; Auliac, Sylvain; Hecht, Frédéric
2016-12-01
We present a new numerical system using classical finite elements with mesh adaptivity for computing stationary solutions of the Gross-Pitaevskii equation. The programs are written as a toolbox for FreeFem++ (www.freefem.org), a free finite-element software available for all existing operating systems. This offers the advantage to hide all technical issues related to the implementation of the finite element method, allowing to easily code various numerical algorithms. Two robust and optimized numerical methods were implemented to minimize the Gross-Pitaevskii energy: a steepest descent method based on Sobolev gradients and a minimization algorithm based on the state-of-the-art optimization library Ipopt. For both methods, mesh adaptivity strategies are used to reduce the computational time and increase the local spatial accuracy when vortices are present. Different run cases are made available for 2D and 3D configurations of Bose-Einstein condensates in rotation. An optional graphical user interface is also provided, allowing to easily run predefined cases or with user-defined parameter files. We also provide several post-processing tools (like the identification of quantized vortices) that could help in extracting physical features from the simulations. The toolbox is extremely versatile and can be easily adapted to deal with different physical models.
NASA Astrophysics Data System (ADS)
Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Guillemot, C.; Murray, J. R.
2015-12-01
The earthquake early warning (EEW) systems in California and elsewhere can greatly benefit from algorithms that generate estimates of finite-fault parameters. These estimates could significantly improve real-time shaking calculations and yield important information for immediate disaster response. Minson et al. (2015) determined that combining FinDer's seismic-based algorithm (Böse et al., 2012) with BEFORES' geodetic-based algorithm (Minson et al., 2014) yields a more robust and informative joint solution than using either algorithm alone. FinDer examines the distribution of peak ground accelerations from seismic stations and determines the best finite-fault extent and strike from template matching. BEFORES employs a Bayesian framework to search for the best slip inversion over all possible fault geometries in terms of strike and dip. Using FinDer and BEFORES together generates estimates of finite-fault extent, strike, dip, preferred slip, and magnitude. To yield the quickest, most flexible, and open-source version of the joint algorithm, we translated BEFORES and FinDer from Matlab into C++. We are now developing a C++ Application Protocol Interface for these two algorithms to be connected to the seismic and geodetic data flowing from the EEW system. The interface that is being developed will also enable communication between the two algorithms to generate the joint solution of finite-fault parameters. Once this interface is developed and implemented, the next step will be to run test seismic and geodetic data through the system via the Earthworm module, Tank Player. This will allow us to examine algorithm performance on simulated data and past real events.
A parallel algorithm for generation and assembly of finite element stiffness and mass matrices
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.
1991-01-01
A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.
Systolic Signal Processor/High Frequency Direction Finding
1990-10-01
MUSIC ) algorithm and the finite impulse response (FIR) filter onto the testbed hardware was supported by joint sponsorship of the block and major bid...computational throughput. The systolic implementations of a four-channel finite impulse response (FIR) filter and multiple signal classification ( MUSIC ... MUSIC ) algorithm was mated to a bank of finite impulse response (FIR) filters and a four-channel data acquisition subsystem. A complete description
Guo, L-X; Li, J; Zeng, H
2009-11-01
We present an investigation of the electromagnetic scattering from a three-dimensional (3-D) object above a two-dimensional (2-D) randomly rough surface. A Message Passing Interface-based parallel finite-difference time-domain (FDTD) approach is used, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of the FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. This makes the parallel FDTD algorithm easier to implement. The parallel performance with different number of processors is illustrated for one rough surface realization and shows that the computation time of our parallel FDTD algorithm is dramatically reduced relative to a single-processor implementation. Finally, the composite scattering coefficients versus scattered and azimuthal angle are presented and analyzed for different conditions, including the surface roughness, the dielectric constants, the polarization, and the size of the 3-D object.
Numerical simulation of steady supersonic flow. [spatial marching
NASA Technical Reports Server (NTRS)
Schiff, L. B.; Steger, J. L.
1981-01-01
A noniterative, implicit, space-marching, finite-difference algorithm was developed for the steady thin-layer Navier-Stokes equations in conservation-law form. The numerical algorithm is applicable to steady supersonic viscous flow over bodies of arbitrary shape. In addition, the same code can be used to compute supersonic inviscid flow or three-dimensional boundary layers. Computed results from two-dimensional and three-dimensional versions of the numerical algorithm are in good agreement with those obtained from more costly time-marching techniques.
Duan, Qian-Qian; Yang, Gen-Ke; Pan, Chang-Chun
2014-01-01
A hybrid optimization algorithm combining finite state method (FSM) and genetic algorithm (GA) is proposed to solve the crude oil scheduling problem. The FSM and GA are combined to take the advantage of each method and compensate deficiencies of individual methods. In the proposed algorithm, the finite state method makes up for the weakness of GA which is poor at local searching ability. The heuristic returned by the FSM can guide the GA algorithm towards good solutions. The idea behind this is that we can generate promising substructure or partial solution by using FSM. Furthermore, the FSM can guarantee that the entire solution space is uniformly covered. Therefore, the combination of the two algorithms has better global performance than the existing GA or FSM which is operated individually. Finally, a real-life crude oil scheduling problem from the literature is used for conducting simulation. The experimental results validate that the proposed method outperforms the state-of-art GA method. PMID:24772031
Microseismic response characteristics modeling and locating of underground water supply pipe leak
NASA Astrophysics Data System (ADS)
Wang, J.; Liu, J.
2015-12-01
In traditional methods of pipeline leak location, geophones must be located on the pipe wall. If the exact location of the pipeline is unknown, the leaks cannot be identified accurately. To solve this problem, taking into account the characteristics of the pipeline leak, we propose a continuous random seismic source model and construct geological models to investigate the proposed method for locating underground pipeline leaks. Based on two dimensional (2D) viscoacoustic equations and the staggered grid finite-difference (FD) algorithm, the microseismic wave field generated by a leaking pipe is modeled. Cross-correlation analysis and the simulated annealing (SA) algorithm were utilized to obtain the time difference and the leak location. We also analyze and discuss the effect of the number of recorded traces, the survey layout, and the offset and interval of the traces on the accuracy of the estimated location. The preliminary results of the simulation and data field experiment indicate that (1) a continuous random source can realistically represent the leak microseismic wave field in a simulation using 2D visco-acoustic equations and a staggered grid FD algorithm. (2) The cross-correlation method is effective for calculating the time difference of the direct wave relative to the reference trace. However, outside the refraction blind zone, the accuracy of the time difference is reduced by the effects of the refracted wave. (3) The acquisition method of time difference based on the microseismic theory and SA algorithm has a great potential for locating leaks from underground pipelines from an array located on the ground surface. Keywords: Viscoacoustic finite-difference simulation; continuous random source; simulated annealing algorithm; pipeline leak location
Synthesizing Dynamic Programming Algorithms from Linear Temporal Logic Formulae
NASA Technical Reports Server (NTRS)
Rosu, Grigore; Havelund, Klaus
2001-01-01
The problem of testing a linear temporal logic (LTL) formula on a finite execution trace of events, generated by an executing program, occurs naturally in runtime analysis of software. We present an algorithm which takes an LTL formula and generates an efficient dynamic programming algorithm. The generated algorithm tests whether the LTL formula is satisfied by a finite trace of events given as input. The generated algorithm runs in linear time, its constant depending on the size of the LTL formula. The memory needed is constant, also depending on the size of the formula.
NASA Technical Reports Server (NTRS)
Ryabenkii, V. S.; Turchaninov, V. I.; Tsynkov, S. V.
1999-01-01
We propose a family of algorithms for solving numerically a Cauchy problem for the three-dimensional wave equation. The sources that drive the equation (i.e., the right-hand side) are compactly supported in space for any given time; they, however, may actually move in space with a subsonic speed. The solution is calculated inside a finite domain (e.g., sphere) that also moves with a subsonic speed and always contains the support of the right-hand side. The algorithms employ a standard consistent and stable explicit finite-difference scheme for the wave equation. They allow one to calculate tile solution for arbitrarily long time intervals without error accumulation and with the fixed non-growing amount of tile CPU time and memory required for advancing one time step. The algorithms are inherently three-dimensional; they rely on the presence of lacunae in the solutions of the wave equation in oddly dimensional spaces. The methodology presented in the paper is, in fact, a building block for constructing the nonlocal highly accurate unsteady artificial boundary conditions to be used for the numerical simulation of waves propagating with finite speed over unbounded domains.
Solidification of a binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.
1982-01-01
The time dependent concentration and temperature profiles of a finite layer of a binary mixture are investigated during solidification. The coupled time dependent Stefan problem is solved numerically using an implicit finite differencing algorithm with the method of lines. Specifically, the temporal operator is approximated via an implicit finite difference operator resulting in a coupled set of ordinary differential equations for the spatial distribution of the temperature and concentration for each time. Since the resulting differential equations set form a boundary value problem with matching conditions at an unknown spatial point, the method of invariant imbedding is used for its solution.
2008-09-01
algorithms that have been proposed to accomplish it fall into three broad categories. Eikonal solvers (e.g., Vidale, 1988, 1990; Podvin and Lecomte, 1991...difference eikonal solvers, the FMM algorithm works by following a wavefront as it moves across a volume of grid points, updating the travel times in...the grid according to the eikonal differential equation, using a second-order finite-difference scheme. We chose to use FMM for our comparison because
NASA Astrophysics Data System (ADS)
Chu, Chunlei; Stoffa, Paul L.
2012-01-01
Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Debojyoti; Constantinescu, Emil M.
The numerical simulation of meso-, convective-, and microscale atmospheric flows requires the solution of the Euler or the Navier-Stokes equations. Nonhydrostatic weather prediction algorithms often solve the equations in terms of derived quantities such as Exner pressure and potential temperature (and are thus not conservative) and/or as perturbations to the hydrostatically balanced equilibrium state. This paper presents a well-balanced, conservative finite difference formulation for the Euler equations with a gravitational source term, where the governing equations are solved as conservation laws for mass, momentum, and energy. Preservation of the hydrostatic balance to machine precision by the discretized equations is essentialmore » because atmospheric phenomena are often small perturbations to this balance. The proposed algorithm uses the weighted essentially nonoscillatory and compact-reconstruction weighted essentially nonoscillatory schemes for spatial discretization that yields high-order accurate solutions for smooth flows and is essentially nonoscillatory across strong gradients; however, the well-balanced formulation may be used with other conservative finite difference methods. The performance of the algorithm is demonstrated on test problems as well as benchmark atmospheric flow problems, and the results are verified with those in the literature.« less
Adaptive Wavelet Modeling of Geophysical Data
NASA Astrophysics Data System (ADS)
Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.
2009-12-01
Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.
NASA Astrophysics Data System (ADS)
Nakamura, Yoshimasa; Sekido, Hiroto
2018-04-01
The finite or the semi-infinite discrete-time Toda lattice has many applications to various areas in applied mathematics. The purpose of this paper is to review how the Toda lattice appears in the Lanczos algorithm through the quotient-difference algorithm and its progressive form (pqd). Then a multistep progressive algorithm (MPA) for solving linear systems is presented. The extended Lanczos parameters can be given not by computing inner products of the extended Lanczos vectors but by using the pqd algorithm with highly relative accuracy in a lower cost. The asymptotic behavior of the pqd algorithm brings us some applications of MPA related to eigenvectors.
An algorithm for the basis of the finite Fourier transform
NASA Technical Reports Server (NTRS)
Santhanam, Thalanayar S.
1995-01-01
The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-11-25
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design.
Algorithm implementation on the Navier-Stokes computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krist, S.E.; Zang, T.A.
1987-03-01
The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.
Algorithm implementation on the Navier-Stokes computer
NASA Technical Reports Server (NTRS)
Krist, Steven E.; Zang, Thomas A.
1987-01-01
The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.
Efficient calculation of higher-order optical waveguide dispersion.
Mores, J A; Malheiros-Silveira, G N; Fragnito, H L; Hernández-Figueroa, H E
2010-09-13
An efficient numerical strategy to compute the higher-order dispersion parameters of optical waveguides is presented. For the first time to our knowledge, a systematic study of the errors involved in the higher-order dispersions' numerical calculation process is made, showing that the present strategy can accurately model those parameters. Such strategy combines a full-vectorial finite element modal solver and a proper finite difference differentiation algorithm. Its performance has been carefully assessed through the analysis of several key geometries. In addition, the optimization of those higher-order dispersion parameters can also be carried out by coupling to the present scheme a genetic algorithm, as shown here through the design of a photonic crystal fiber suitable for parametric amplification applications.
Structural optimisation of cage induction motors using finite element analysis
NASA Astrophysics Data System (ADS)
Palko, S.
The current trend in motor design is to have highly efficient, low noise, low cost, and modular motors with a high power factor. High torque motors are useful in applications like servo motors, lifts, cranes, and rolling mills. This report contains a detailed review of different optimization methods applicable in various design problems. Special attention is given to the performance of different methods, when they are used with finite element analysis (FEA) as an objective function, and accuracy problems arising from the numerical simulations. Also an effective method for designing high starting torque and high efficiency motors is presented. The method described in this work utilizes FEA combined with algorithms for the optimization of the slot geometry. The optimization algorithm modifies the position of the nodal points in the element mesh. The number of independent variables ranges from 14 to 140 in this work.
Computation of the acoustic radiation force using the finite-difference time-domain method.
Cai, Feiyan; Meng, Long; Jiang, Chunxiang; Pan, Yu; Zheng, Hairong
2010-10-01
The computational details related to calculating the acoustic radiation force on an object using a 2-D grid finite-difference time-domain method (FDTD) are presented. The method is based on propagating the stress and velocity fields through the grid and determining the energy flow with and without the object. The axial and radial acoustic radiation forces predicted by FDTD method are in excellent agreement with the results obtained by analytical evaluation of the scattering method. In particular, the results indicate that it is possible to trap the steel cylinder in the radial direction by optimizing the width of Gaussian source and the operation frequency. As the sizes of the relating objects are smaller than or comparable to wavelength, the algorithm presented here can be easily extended to 3-D and include torque computation algorithms, thus providing a highly flexible and universally usable computation engine.
OpenSeesPy: Python library for the OpenSees finite element framework
NASA Astrophysics Data System (ADS)
Zhu, Minjie; McKenna, Frank; Scott, Michael H.
2018-01-01
OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.
Solution of a tridiagonal system of equations on the finite element machine
NASA Technical Reports Server (NTRS)
Bostic, S. W.
1984-01-01
Two parallel algorithms for the solution of tridiagonal systems of equations were implemented on the Finite Element Machine. The Accelerated Parallel Gauss method, an iterative method, and the Buneman algorithm, a direct method, are discussed and execution statistics are presented.
Optimum and Heuristic Algorithms for Finite State Machine Decomposition and Partitioning
1989-09-01
Heuristic Algorithms for Finite State Machine Decomposition and Partitioning Pravnav Ashar, Srinivas Devadas , and A. Richard Newton , T E’,’ .,jpf~s’!i3...94720. Devadas : Department of Electrical Engineering and Computer Science, Room 36-848, MIT, Cambridge, MA 02139. (617) 253-0454. Copyright* 1989 MIT...and reduction, A finite state miachinie is represenutedl by its State Transition Graphi itodlitied froini two-level B ~oolean imiinimizers. Ilist
A finite difference solution for the propagation of sound in near sonic flows
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Lester, H. C.
1983-01-01
An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.
Numerical Simulation of a Solar Domestic Hot Water System
NASA Astrophysics Data System (ADS)
Mongibello, L.; Bianco, N.; Di Somma, M.; Graditi, G.; Naso, V.
2014-11-01
An innovative transient numerical model is presented for the simulation of a solar Domestic Hot Water (DHW) system. The solar collectors have been simulated by using a zerodimensional analytical model. The temperature distributions in the heat transfer fluid and in the water inside the tank have been evaluated by one-dimensional models. The reversion elimination algorithm has been used to include the effects of natural convection among the water layers at different heights in the tank on the thermal stratification. A finite difference implicit scheme has been implemented to solve the energy conservation equation in the coil heat exchanger, and the energy conservation equation in the tank has been solved by using the finite difference Euler implicit scheme. Energy conservation equations for the solar DHW components models have been coupled by means of a home-made implicit algorithm. Results of the simulation performed using as input data the experimental values of the ambient temperature and the solar irradiance in a summer day are presented and discussed.
NASA Astrophysics Data System (ADS)
Noble, David R.; Georgiadis, John G.; Buckius, Richard O.
1996-07-01
The lattice Boltzmann method (LBM) is used to simulate flow in an infinite periodic array of octagonal cylinders. Results are compared with those obtained by a finite difference (FD) simulation solved in terms of streamfunction and vorticity using an alternating direction implicit scheme. Computed velocity profiles are compared along lines common to both the lattice Boltzmann and finite difference grids. Along all such slices, both streamwise and transverse velocity predictions agree to within 05% of the average streamwise velocity. The local shear on the surface of the cylinders also compares well, with the only deviations occurring in the vicinity of the corners of the cylinders, where the slope of the shear is discontinuous. When a constant dimensionless relaxation time is maintained, LBM exhibits the same convergence behaviour as the FD algorithm, with the time step increasing as the square of the grid size. By adjusting the relaxation time such that a constant Mach number is achieved, the time step of LBM varies linearly with the grid size. The efficiency of LBM on the CM-5 parallel computer at the National Center for Supercomputing Applications (NCSA) is evaluated by examining each part of the algorithm. Overall, a speed of 139 GFLOPS is obtained using 512 processors for a domain size of 2176×2176.
2001-06-01
Algorithms for Vertical Fin Buffeting Using Strain Actuation DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the...UNCLASSIFIED 8-1 Finite Element Approach for the Design of Control Algorithms for Vertical Fin Buffeting Using Strain Actuation Fred Nitzsche...groups), the disturbance (buffet load), and the two output variables (a choice among four Introduction accelerometers and five strain - gauge positions
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Projection methods for incompressible flow problems with WENO finite difference schemes
NASA Astrophysics Data System (ADS)
de Frutos, Javier; John, Volker; Novo, Julia
2016-03-01
Weighted essentially non-oscillatory (WENO) finite difference schemes have been recommended in a competitive study of discretizations for scalar evolutionary convection-diffusion equations [20]. This paper explores the applicability of these schemes for the simulation of incompressible flows. To this end, WENO schemes are used in several non-incremental and incremental projection methods for the incompressible Navier-Stokes equations. Velocity and pressure are discretized on the same grid. A pressure stabilization Petrov-Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to account for the violation of the discrete inf-sup condition. Algorithmic aspects of the proposed schemes are discussed. The schemes are studied on several examples with different features. It is shown that the WENO finite difference idea can be transferred to the simulation of incompressible flows. Some shortcomings of the methods, which are due to the splitting in projection schemes, become also obvious.
A monolithic homotopy continuation algorithm with application to computational fluid dynamics
NASA Astrophysics Data System (ADS)
Brown, David A.; Zingg, David W.
2016-09-01
A new class of homotopy continuation methods is developed suitable for globalizing quasi-Newton methods for large sparse nonlinear systems of equations. The new continuation methods, described as monolithic homotopy continuation, differ from the classical predictor-corrector algorithm in that the predictor and corrector phases are replaced with a single phase which includes both a predictor and corrector component. Conditional convergence and stability are proved analytically. Using a Laplacian-like operator to construct the homotopy, the new algorithm is shown to be more efficient than the predictor-corrector homotopy continuation algorithm as well as an implementation of the widely-used pseudo-transient continuation algorithm for some inviscid and turbulent, subsonic and transonic external aerodynamic flows over the ONERA M6 wing and the NACA 0012 airfoil using a parallel implicit Newton-Krylov finite-difference flow solver.
NASA Astrophysics Data System (ADS)
Liu, Ying; Xu, Zhenhuan; Li, Yuguo
2018-04-01
We present a goal-oriented adaptive finite element (FE) modelling algorithm for 3-D magnetotelluric fields in generally anisotropic conductivity media. The model consists of a background layered structure, containing anisotropic blocks. Each block and layer might be anisotropic by assigning to them 3 × 3 conductivity tensors. The second-order partial differential equations are solved using the adaptive finite element method (FEM). The computational domain is subdivided into unstructured tetrahedral elements, which allow for complex geometries including bathymetry and dipping interfaces. The grid refinement process is guided by a global posteriori error estimator and is performed iteratively. The system of linear FE equations for electric field E is solved with a direct solver MUMPS. Then the magnetic field H can be found, in which the required derivatives are computed numerically using cubic spline interpolation. The 3-D FE algorithm has been validated by comparisons with both the 3-D finite-difference solution and 2-D FE results. Two model types are used to demonstrate the effects of anisotropy upon 3-D magnetotelluric responses: horizontal and dipping anisotropy. Finally, a 3D sea hill model is modelled to study the effect of oblique interfaces and the dipping anisotropy.
NASA Technical Reports Server (NTRS)
Baker, A. J.
1974-01-01
The finite-element method is used to establish a numerical solution algorithm for the Navier-Stokes equations for two-dimensional flows of a viscous compressible fluid. Numerical experiments confirm the advection property for the finite-element equivalent of the nonlinear convection term for both unidirectional and recirculating flowfields. For linear functionals, the algorithm demonstrates good accuracy using coarse discretizations and h squared convergence with discretization refinement.
Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples
NASA Astrophysics Data System (ADS)
Hsu, Liang-Yi; Tsai, Mi-Ching
2004-11-01
This paper presents a tooth shape optimization method based on a generic algorithm to reduce the torque ripple of brushless permanent magnet motors under two different magnetization directions. The analysis of this design method mainly focuses on magnetic saturation and cogging torque and the computation of the optimization process is based on an equivalent magnetic network circuit. The simulation results, obtained from the finite element analysis, are used to confirm the accuracy and performance. Finite element analysis results from different tooth shapes are compared to show the effectiveness of the proposed method.
NASA Astrophysics Data System (ADS)
Citro, V.; Luchini, P.; Giannetti, F.; Auteri, F.
2017-09-01
The study of the stability of a dynamical system described by a set of partial differential equations (PDEs) requires the computation of unstable states as the control parameter exceeds its critical threshold. Unfortunately, the discretization of the governing equations, especially for fluid dynamic applications, often leads to very large discrete systems. As a consequence, matrix based methods, like for example the Newton-Raphson algorithm coupled with a direct inversion of the Jacobian matrix, lead to computational costs too large in terms of both memory and execution time. We present a novel iterative algorithm, inspired by Krylov-subspace methods, which is able to compute unstable steady states and/or accelerate the convergence to stable configurations. Our new algorithm is based on the minimization of the residual norm at each iteration step with a projection basis updated at each iteration rather than at periodic restarts like in the classical GMRES method. The algorithm is able to stabilize any dynamical system without increasing the computational time of the original numerical procedure used to solve the governing equations. Moreover, it can be easily inserted into a pre-existing relaxation (integration) procedure with a call to a single black-box subroutine. The procedure is discussed for problems of different sizes, ranging from a small two-dimensional system to a large three-dimensional problem involving the Navier-Stokes equations. We show that the proposed algorithm is able to improve the convergence of existing iterative schemes. In particular, the procedure is applied to the subcritical flow inside a lid-driven cavity. We also discuss the application of Boostconv to compute the unstable steady flow past a fixed circular cylinder (2D) and boundary-layer flow over a hemispherical roughness element (3D) for supercritical values of the Reynolds number. We show that Boostconv can be used effectively with any spatial discretization, be it a finite-difference, finite-volume, finite-element or spectral method.
NASA Astrophysics Data System (ADS)
Costantini, Mario; Malvarosa, Fabio; Minati, Federico
2010-03-01
Phase unwrapping and integration of finite differences are key problems in several technical fields. In SAR interferometry and differential and persistent scatterers interferometry digital elevation models and displacement measurements can be obtained after unambiguously determining the phase values and reconstructing the mean velocities and elevations of the observed targets, which can be performed by integrating differential estimates of these quantities (finite differences between neighboring points).In this paper we propose a general formulation for robust and efficient integration of finite differences and phase unwrapping, which includes standard techniques methods as sub-cases. The proposed approach allows obtaining more reliable and accurate solutions by exploiting redundant differential estimates (not only between nearest neighboring points) and multi-dimensional information (e.g. multi-temporal, multi-frequency, multi-baseline observations), or external data (e.g. GPS measurements). The proposed approach requires the solution of linear or quadratic programming problems, for which computationally efficient algorithms exist.The validation tests obtained on real SAR data confirm the validity of the method, which was integrated in our production chain and successfully used also in massive productions.
Xiao, Li; Cai, Qin; Li, Zhilin; Zhao, Hongkai; Luo, Ray
2014-01-01
A multi-scale framework is proposed for more realistic molecular dynamics simulations in continuum solvent models by coupling a molecular mechanics treatment of solute with a fluid mechanics treatment of solvent. This article reports our initial efforts to formulate the physical concepts necessary for coupling the two mechanics and develop a 3D numerical algorithm to simulate the solvent fluid via the Navier-Stokes equation. The numerical algorithm was validated with multiple test cases. The validation shows that the algorithm is effective and stable, with observed accuracy consistent with our design. PMID:25404761
Numerical Simulation of Combustion and Rotor-Stator Interaction in a Turbine Combustor
Isvoranu, Dragos D.; Cizmas, Paul G. A.
2003-01-01
This article presents the development of a numerical algorithm for the computation of flow and combustion in a turbine combustor. The flow and combustion are modeled by the Reynolds-averaged Navier-Stokes equations coupled with the species-conservation equations. The chemistry model used herein is a two-step, global, finite-rate combustion model for methane and combustion gases. The governing equations are written in the strong conservation form and solved using a fully implicit, finite-difference approximation. The gas dynamics and chemistry equations are fully decoupled. A correction technique has been developed to enforce the conservation of mass fractions. The numerical algorithm developed herein has beenmore » used to investigate the flow and combustion in a one-stage turbine combustor.« less
Scalable algorithms for three-field mixed finite element coupled poromechanics
NASA Astrophysics Data System (ADS)
Castelletto, Nicola; White, Joshua A.; Ferronato, Massimiliano
2016-12-01
We introduce a class of block preconditioners for accelerating the iterative solution of coupled poromechanics equations based on a three-field formulation. The use of a displacement/velocity/pressure mixed finite-element method combined with a first order backward difference formula for the approximation of time derivatives produces a sequence of linear systems with a 3 × 3 unsymmetric and indefinite block matrix. The preconditioners are obtained by approximating the two-level Schur complement with the aid of physically-based arguments that can be also generalized in a purely algebraic approach. A theoretical and experimental analysis is presented that provides evidence of the robustness, efficiency and scalability of the proposed algorithm. The performance is also assessed for a real-world challenging consolidation experiment of a shallow formation.
Wilson, John D.; Naff, Richard L.
2004-01-01
A geometric multigrid solver (GMG), based in the preconditioned conjugate gradient algorithm, has been developed for solving systems of equations resulting from applying the cell-centered finite difference algorithm to flow in porous media. This solver has been adapted to the U.S. Geological Survey ground-water flow model MODFLOW-2000. The documentation herein is a description of the solver and the adaptation to MODFLOW-2000.
NASA Technical Reports Server (NTRS)
Warming, R. F.; Beam, R. M.
1978-01-01
Efficient, noniterative, implicit finite difference algorithms are systematically developed for nonlinear conservation laws including purely hyperbolic systems and mixed hyperbolic parabolic systems. Utilization of a rational fraction or Pade time differencing formulas, yields a direct and natural derivation of an implicit scheme in a delta form. Attention is given to advantages of the delta formation and to various properties of one- and two-dimensional algorithms.
Finite element concepts in computational aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.
Wong, J.; Göktepe, S.; Kuhl, E.
2014-01-01
Summary Computational modeling of the human heart allows us to predict how chemical, electrical, and mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac disease has advanced significantly over the past decades, yet it remains unclear how the local biochemistry of an individual heart cell translates into global cardiac function. Here we propose a novel, unified strategy to simulate excitable biological systems across three biological scales. To discretize the governing chemical, electrical, and mechanical equations in space, we propose a monolithic finite element scheme. We apply a highly efficient and inherently modular global-local split, in which the deformation and the transmembrane potential are introduced globally as nodal degrees of freedom, while the chemical state variables are treated locally as internal variables. To ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference scheme to discretize the resulting system in time. To increase algorithmic robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and stable, with calculation times on the order of four days on a standard desktop computer. PMID:23798328
NASA Astrophysics Data System (ADS)
Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.
1988-11-01
Many physical problems require the solution of coupled partial differential equations on three-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES3 allows each spatial operator to have 7, 15, 19, or 27 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect induces which is vectorizable on some of the newer scientific computers.
NASA Astrophysics Data System (ADS)
Anderson, D. V.; Koniges, A. E.; Shumaker, D. E.
1988-11-01
Many physical problems require the solution of coupled partial differential equations on two-dimensional domains. When the time scales of interest dictate an implicit discretization of the equations a rather complicated global matrix system needs solution. The exact form of the matrix depends on the choice of spatial grids and on the finite element or finite difference approximations employed. CPDES2 allows each spatial operator to have 5 or 9 point stencils and allows for general couplings between all of the component PDE's and it automatically generates the matrix structures needed to perform the algorithm. The resulting sparse matrix equation is solved by either the preconditioned conjugate gradient (CG) method or by the preconditioned biconjugate gradient (BCG) algorithm. An arbitrary number of component equations are permitted only limited by available memory. In the sub-band representation used, we generate an algorithm that is written compactly in terms of indirect indices which is vectorizable on some of the newer scientific computers.
An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.
1989-01-01
An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.
NASA Astrophysics Data System (ADS)
Didari, Azadeh; Pinar Mengüç, M.
2017-08-01
Advances in nanotechnology and nanophotonics are inextricably linked with the need for reliable computational algorithms to be adapted as design tools for the development of new concepts in energy harvesting, radiative cooling, nanolithography and nano-scale manufacturing, among others. In this paper, we provide an outline for such a computational tool, named NF-RT-FDTD, to determine the near-field radiative transfer between structured surfaces using Finite Difference Time Domain method. NF-RT-FDTD is a direct and non-stochastic algorithm, which accounts for the statistical nature of the thermal radiation and is easily applicable to any arbitrary geometry at thermal equilibrium. We present a review of the fundamental relations for far- and near-field radiative transfer between different geometries with nano-scale surface and volumetric features and gaps, and then we discuss the details of the NF-RT-FDTD formulation, its application to sample geometries and outline its future expansion to more complex geometries. In addition, we briefly discuss some of the recent numerical works for direct and indirect calculations of near-field thermal radiation transfer, including Scattering Matrix method, Finite Difference Time Domain method (FDTD), Wiener Chaos Expansion, Fluctuating Surface Current (FSC), Fluctuating Volume Current (FVC) and Thermal Discrete Dipole Approximations (TDDA).
Free Mesh Method: fundamental conception, algorithms and accuracy study
YAGAWA, Genki
2011-01-01
The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752
Gong, Chunye; Bao, Weimin; Tang, Guojian; Jiang, Yuewen; Liu, Jie
2014-01-01
It is very time consuming to solve fractional differential equations. The computational complexity of two-dimensional fractional differential equation (2D-TFDE) with iterative implicit finite difference method is O(M(x)M(y)N(2)). In this paper, we present a parallel algorithm for 2D-TFDE and give an in-depth discussion about this algorithm. A task distribution model and data layout with virtual boundary are designed for this parallel algorithm. The experimental results show that the parallel algorithm compares well with the exact solution. The parallel algorithm on single Intel Xeon X5540 CPU runs 3.16-4.17 times faster than the serial algorithm on single CPU core. The parallel efficiency of 81 processes is up to 88.24% compared with 9 processes on a distributed memory cluster system. We do think that the parallel computing technology will become a very basic method for the computational intensive fractional applications in the near future.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Functional Data Approximation on Bounded Domains using Polygonal Finite Elements.
Cao, Juan; Xiao, Yanyang; Chen, Zhonggui; Wang, Wenping; Bajaj, Chandrajit
2018-07-01
We construct and analyze piecewise approximations of functional data on arbitrary 2D bounded domains using generalized barycentric finite elements, and particularly quadratic serendipity elements for planar polygons. We compare approximation qualities (precision/convergence) of these partition-of-unity finite elements through numerical experiments, using Wachspress coordinates, natural neighbor coordinates, Poisson coordinates, mean value coordinates, and quadratic serendipity bases over polygonal meshes on the domain. For a convex n -sided polygon, the quadratic serendipity elements have 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, rather than the usual n ( n + 1)/2 basis functions to achieve quadratic convergence. Two greedy algorithms are proposed to generate Voronoi meshes for adaptive functional/scattered data approximations. Experimental results show space/accuracy advantages for these quadratic serendipity finite elements on polygonal domains versus traditional finite elements over simplicial meshes. Polygonal meshes and parameter coefficients of the quadratic serendipity finite elements obtained by our greedy algorithms can be further refined using an L 2 -optimization to improve the piecewise functional approximation. We conduct several experiments to demonstrate the efficacy of our algorithm for modeling features/discontinuities in functional data/image approximation.
An Implicit Characteristic Based Method for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.; Briley, W. Roger
2001-01-01
An implicit characteristic-based approach for numerical solution of Maxwell's time-dependent curl equations in flux conservative form is introduced. This method combines a characteristic based finite difference spatial approximation with an implicit lower-upper approximate factorization (LU/AF) time integration scheme. This approach is advantageous for three-dimensional applications because the characteristic differencing enables a two-factor approximate factorization that retains its unconditional stability in three space dimensions, and it does not require solution of tridiagonal systems. Results are given both for a Fourier analysis of stability, damping and dispersion properties, and for one-dimensional model problems involving propagation and scattering for free space and dielectric materials using both uniform and nonuniform grids. The explicit Finite Difference Time Domain Method (FDTD) algorithm is used as a convenient reference algorithm for comparison. The one-dimensional results indicate that for low frequency problems on a highly resolved uniform or nonuniform grid, this LU/AF algorithm can produce accurate solutions at Courant numbers significantly greater than one, with a corresponding improvement in efficiency for simulating a given period of time. This approach appears promising for development of dispersion optimized LU/AF schemes for three dimensional applications.
Momentum Advection on a Staggered Mesh
NASA Astrophysics Data System (ADS)
Benson, David J.
1992-05-01
Eulerian and ALE (arbitrary Lagrangian-Eulerian) hydrodynamics programs usually split a timestep into two parts. The first part is a Lagrangian step, which calculates the incremental motion of the material. The second part is referred to as the Eulerian step, the advection step, or the remap step, and it accounts for the transport of material between cells. In most finite difference and finite element formulations, all the solution variables except the velocities are cell-centered while the velocities are edge- or vertex-centered. As a result, the advection algorithm for the momentum is, by necessity, different than the algorithm used for the other variables. This paper reviews three momentum advection methods and proposes a new one. One method, pioneered in YAQUI, creates a new staggered mesh, while the other two, used in SALE and SHALE, are cell-centered. The new method is cell-centered and its relationship to the other methods is discussed. Both pure advection and strong shock calculations are presented to substantiate the mathematical analysis. From the standpoint of numerical accuracy, both the staggered mesh and the cell-centered algorithms can give good results, while the computational costs are highly dependent on the overall architecture of a code.
NASA Astrophysics Data System (ADS)
Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.
2010-08-01
Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric modelling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with high spatial variability of electrical conductivities. The linear dependence of the modelling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.
On the performance of explicit and implicit algorithms for transient thermal analysis
NASA Astrophysics Data System (ADS)
Adelman, H. M.; Haftka, R. T.
1980-09-01
The status of an effort to increase the efficiency of calculating transient temperature fields in complex aerospace vehicle structures is described. The advantages and disadvantages of explicit and implicit algorithms are discussed. A promising set of implicit algorithms, known as the GEAR package is described. Four test problems, used for evaluating and comparing various algorithms, have been selected and finite element models of the configurations are discribed. These problems include a space shuttle frame component, an insulated cylinder, a metallic panel for a thermal protection system and a model of the space shuttle orbiter wing. Calculations were carried out using the SPAR finite element program, the MITAS lumped parameter program and a special purpose finite element program incorporating the GEAR algorithms. Results generally indicate a preference for implicit over explicit algorithms for solution of transient structural heat transfer problems when the governing equations are stiff. Careful attention to modeling detail such as avoiding thin or short high-conducting elements can sometimes reduce the stiffness to the extent that explicit methods become advantageous.
Direct phase projection and transcranial focusing of ultrasound for brain therapy.
Pinton, Gianmarco F; Aubry, Jean-Francois; Tanter, Mickaël
2012-06-01
Ultrasound can be used to noninvasively treat the human brain with hyperthermia by focusing through the skull. To obtain an accurate focus, especially at high frequencies (>500 kHz), the phase of the transmitted wave must be modified to correct the aberrations introduced by the patient's individual skull morphology. Currently, three-dimensional finite-difference time-domain simulations are used to model a point source at the target. The outward-propagating wave crosses the measured representation of the human skull and is recorded at the therapy array transducer locations. The signal is then time reversed and experimentally transmitted back to its origin. These simulations are resource intensive and add a significant delay to treatment planning. Ray propagation is computationally efficient because it neglects diffraction and only describes two propagation parameters: the wave's direction and the phase. We propose a minimal method that is based only on the phase. The phase information is projected from the external skull surface to the array locations. This replaces computationally expensive finite-difference computations with an almost instantaneous direct phase projection calculation. For the five human skull samples considered, the phase distribution outside of the skull is shown to vary by less than λ/20 as it propagates over a 5 cm distance and the validity of phase projection is established over these propagation distances. The phase aberration introduced by the skull is characterized and is shown to have a good correspondence with skull morphology. The shape of this aberration is shown to have little variation with propagation distance. The focusing quality with the proposed phase-projection algorithm is shown to be indistinguishable from the gold-standard full finite-difference simulation. In conclusion, a spherical wave that is aberrated by the skull has a phase propagation that can be accurately described as radial, even after it has been distorted. By combining finite-difference simulations with a phase-projection algorithm, the time required for treatment planning is significantly reduced. The correlation length of the phase is used to validate the algorithm and it can also be used to provide guiding parameters for clinical array transducer design in terms of transducer spacing and phase error.
NASA Technical Reports Server (NTRS)
Cooke, C. H.; Blanchard, D. K.
1975-01-01
A finite element algorithm for solution of fluid flow problems characterized by the two-dimensional compressible Navier-Stokes equations was developed. The program is intended for viscous compressible high speed flow; hence, primitive variables are utilized. The physical solution was approximated by trial functions which at a fixed time are piecewise cubic on triangular elements. The Galerkin technique was employed to determine the finite-element model equations. A leapfrog time integration is used for marching asymptotically from initial to steady state, with iterated integrals evaluated by numerical quadratures. The nonsymmetric linear systems of equations governing time transition from step-to-step are solved using a rather economical block iterative triangular decomposition scheme. The concept was applied to the numerical computation of a free shear flow. Numerical results of the finite-element method are in excellent agreement with those obtained from a finite difference solution of the same problem.
Cooperative combinatorial optimization: evolutionary computation case study.
Burgin, Mark; Eberbach, Eugene
2008-01-01
This paper presents a formalization of the notion of cooperation and competition of multiple systems that work toward a common optimization goal of the population using evolutionary computation techniques. It is proved that evolutionary algorithms are more expressive than conventional recursive algorithms, such as Turing machines. Three classes of evolutionary computations are introduced and studied: bounded finite, unbounded finite, and infinite computations. Universal evolutionary algorithms are constructed. Such properties of evolutionary algorithms as completeness, optimality, and search decidability are examined. A natural extension of evolutionary Turing machine (ETM) model is proposed to properly reflect phenomena of cooperation and competition in the whole population.
Eigensolution of finite element problems in a completely connected parallel architecture
NASA Technical Reports Server (NTRS)
Akl, F.; Morel, M.
1989-01-01
A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm is successfully implemented on a tightly coupled MIMD parallel processor. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts, and the dimension of the subspace on the performance of the algorithm is investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18, and 3.61 are achieved on two, four, six, and eight processors, respectively.
NASA Astrophysics Data System (ADS)
Castro-Mateos, Isaac; Pozo, Jose M.; Lazary, Aron; Frangi, Alejandro F.
2016-03-01
Computational medicine aims at developing patient-specific models to help physicians in the diagnosis and treatment selection for patients. The spine, and other skeletal structures, is an articulated object, composed of rigid bones (vertebrae) and non-rigid parts (intervertebral discs (IVD), ligaments and muscles). These components are usually extracted from different image modalities, involving patient repositioning. In the case of the spine, these models require the segmentation of IVDs from MR and vertebrae from CT. In the literature, there exists a vast selection of segmentations methods, but there is a lack of approaches to align the vertebrae and IVDs. This paper presents a method to create patient-specific finite element meshes for biomechanical simulations, integrating rigid and non-rigid parts of articulated objects. First, the different parts are aligned in a complete surface model. Vertebrae extracted from CT are rigidly repositioned in between the IVDs, initially using the IVDs location and then refining the alignment using the MR image with a rigid active shape model algorithm. Finally, a mesh morphing algorithm, based on B-splines, is employed to map a template finite-element (volumetric) mesh to the patient-specific surface mesh. This morphing reduces possible misalignments and guarantees the convexity of the model elements. Results show that the accuracy of the method to align vertebrae into MR, together with IVDs, is similar to that of the human observers. Thus, this method is a step forward towards the automation of patient-specific finite element models for biomechanical simulations.
Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements
NASA Astrophysics Data System (ADS)
Arntsen, B.
2017-12-01
The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.
Monte Carlo PDF method for turbulent reacting flow in a jet-stirred reactor
NASA Astrophysics Data System (ADS)
Roekaerts, D.
1992-01-01
A stochastic algorithm for the solution of the modeled scalar probability density function (PDF) transport equation for single-phase turbulent reacting flow is described. Cylindrical symmetry is assumed. The PDF is represented by ensembles of N representative values of the thermochemical variables in each cell of a nonuniform finite-difference grid and operations on these elements representing convection, diffusion, mixing and reaction are derived. A simplified model and solution algorithm which neglects the influence of turbulent fluctuations on mean reaction rates is also described. Both algorithms are applied to a selectivity problem in a real reactor.
Terao, Takamichi
2010-08-01
We propose a numerical method to calculate interior eigenvalues and corresponding eigenvectors for nonsymmetric matrices. Based on the subspace projection technique onto expanded Ritz subspace, it becomes possible to obtain eigenvalues and eigenvectors with sufficiently high precision. This method overcomes the difficulties of the traditional nonsymmetric Lanczos algorithm, and improves the accuracy of the obtained interior eigenvalues and eigenvectors. Using this algorithm, we investigate three-dimensional metamaterial composites consisting of positive and negative refractive index materials, and it is demonstrated that the finite-difference frequency-domain algorithm is applicable to analyze these metamaterial composites.
Algorithm For Hypersonic Flow In Chemical Equilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.
An improved cylindrical FDTD method and its application to field-tissue interaction study in MRI.
Chi, Jieru; Liu, Feng; Xia, Ling; Shao, Tingting; Mason, David G; Crozier, Stuart
2010-01-01
This paper presents a three dimensional finite-difference time-domain (FDTD) scheme in cylindrical coordinates with an improved algorithm for accommodating the numerical singularity associated with the polar axis. The regularization of this singularity problem is entirely based on Ampere's law. The proposed algorithm has been detailed and verified against a problem with a known solution obtained from a commercial electromagnetic simulation package. The numerical scheme is also illustrated by modeling high-frequency RF field-human body interactions in MRI. The results demonstrate the accuracy and capability of the proposed algorithm.
MARKOV: A methodology for the solution of infinite time horizon MARKOV decision processes
Williams, B.K.
1988-01-01
Algorithms are described for determining optimal policies for finite state, finite action, infinite discrete time horizon Markov decision processes. Both value-improvement and policy-improvement techniques are used in the algorithms. Computing procedures are also described. The algorithms are appropriate for processes that are either finite or infinite, deterministic or stochastic, discounted or undiscounted, in any meaningful combination of these features. Computing procedures are described in terms of initial data processing, bound improvements, process reduction, and testing and solution. Application of the methodology is illustrated with an example involving natural resource management. Management implications of certain hypothesized relationships between mallard survival and harvest rates are addressed by applying the optimality procedures to mallard population models.
Application of firefly algorithm to the dynamic model updating problem
NASA Astrophysics Data System (ADS)
Shabbir, Faisal; Omenzetter, Piotr
2015-04-01
Model updating can be considered as a branch of optimization problems in which calibration of the finite element (FE) model is undertaken by comparing the modal properties of the actual structure with these of the FE predictions. The attainment of a global solution in a multi dimensional search space is a challenging problem. The nature-inspired algorithms have gained increasing attention in the previous decade for solving such complex optimization problems. This study applies the novel Firefly Algorithm (FA), a global optimization search technique, to a dynamic model updating problem. This is to the authors' best knowledge the first time FA is applied to model updating. The working of FA is inspired by the flashing characteristics of fireflies. Each firefly represents a randomly generated solution which is assigned brightness according to the value of the objective function. The physical structure under consideration is a full scale cable stayed pedestrian bridge with composite bridge deck. Data from dynamic testing of the bridge was used to correlate and update the initial model by using FA. The algorithm aimed at minimizing the difference between the natural frequencies and mode shapes of the structure. The performance of the algorithm is analyzed in finding the optimal solution in a multi dimensional search space. The paper concludes with an investigation of the efficacy of the algorithm in obtaining a reference finite element model which correctly represents the as-built original structure.
NASA Technical Reports Server (NTRS)
Chiappetta, L. M.
1983-01-01
Described is a computer program for the analysis of the subsonic, swirling, reacting turbulent flow in an axisymmetric, bluff-body research combustor. The program features an improved finite-difference procedure designed to reduce the effects of numerical diffusion and a new algorithm for predicting the pressure distribution within the combustor. A research version of the computer program described in the report was supplied to United Technologies Research Center by Professor A. D. Gosman and his students, R. Benodeker and R. I. Issa, of Imperial College, London. The Imperial College staff also supplied much of the program documentation. Presented are a description of the mathematical model for flow within an axisymmetric bluff-body combustor, the development of the finite-difference procedure used to represent the system of equations, an outline of the algorithm for determining the static pressure distribution within the combustor, a description of the computer program including its input format, and the results for representative test cases.
Evaluation of algorithms for geological thermal-inertia mapping
NASA Technical Reports Server (NTRS)
Miller, S. H.; Watson, K.
1977-01-01
The errors incurred in producing a thermal inertia map are of three general types: measurement, analysis, and model simplification. To emphasize the geophysical relevance of these errors, they were expressed in terms of uncertainty in thermal inertia and compared with the thermal inertia values of geologic materials. Thus the applications and practical limitations of the technique were illustrated. All errors were calculated using the parameter values appropriate to a site at the Raft River, Id. Although these error values serve to illustrate the magnitudes that can be expected from the three general types of errors, extrapolation to other sites should be done using parameter values particular to the area. Three surface temperature algorithms were evaluated: linear Fourier series, finite difference, and Laplace transform. In terms of resulting errors in thermal inertia, the Laplace transform method is the most accurate (260 TIU), the forward finite difference method is intermediate (300 TIU), and the linear Fourier series method the least accurate (460 TIU).
Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices
NASA Astrophysics Data System (ADS)
Polstyanko, Sergey V.; Lee, Jin-Fa
1998-03-01
In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.
NASA Technical Reports Server (NTRS)
Osher, S.
1984-01-01
The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented.
A stable partitioned FSI algorithm for incompressible flow and deforming beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, L., E-mail: lil19@rpi.edu; Henshaw, W.D., E-mail: henshw@rpi.edu; Banks, J.W., E-mail: banksj3@rpi.edu
2016-05-01
An added-mass partitioned (AMP) algorithm is described for solving fluid–structure interaction (FSI) problems coupling incompressible flows with thin elastic structures undergoing finite deformations. The new AMP scheme is fully second-order accurate and stable, without sub-time-step iterations, even for very light structures when added-mass effects are strong. The fluid, governed by the incompressible Navier–Stokes equations, is solved in velocity-pressure form using a fractional-step method; large deformations are treated with a mixed Eulerian-Lagrangian approach on deforming composite grids. The motion of the thin structure is governed by a generalized Euler–Bernoulli beam model, and these equations are solved in a Lagrangian frame usingmore » two approaches, one based on finite differences and the other on finite elements. The key AMP interface condition is a generalized Robin (mixed) condition on the fluid pressure. This condition, which is derived at a continuous level, has no adjustable parameters and is applied at the discrete level to couple the partitioned domain solvers. Special treatment of the AMP condition is required to couple the finite-element beam solver with the finite-difference-based fluid solver, and two coupling approaches are described. A normal-mode stability analysis is performed for a linearized model problem involving a beam separating two fluid domains, and it is shown that the AMP scheme is stable independent of the ratio of the mass of the fluid to that of the structure. A traditional partitioned (TP) scheme using a Dirichlet–Neumann coupling for the same model problem is shown to be unconditionally unstable if the added mass of the fluid is too large. A series of benchmark problems of increasing complexity are considered to illustrate the behavior of the AMP algorithm, and to compare the behavior with that of the TP scheme. The results of all these benchmark problems verify the stability and accuracy of the AMP scheme. Results for one benchmark problem modeling blood flow in a deforming artery are also compared with corresponding results available in the literature.« less
NASA Technical Reports Server (NTRS)
Reed, Kenneth W.
1992-01-01
A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.
Reliability analysis of laminated CMC components through shell subelement techniques
NASA Technical Reports Server (NTRS)
Starlinger, A.; Duffy, S. F.; Gyekenyesi, J. P.
1992-01-01
An updated version of the integrated design program C/CARES (composite ceramic analysis and reliability evaluation of structures) was developed for the reliability evaluation of CMC laminated shell components. The algorithm is now split in two modules: a finite-element data interface program and a reliability evaluation algorithm. More flexibility is achieved, allowing for easy implementation with various finite-element programs. The new interface program from the finite-element code MARC also includes the option of using hybrid laminates and allows for variations in temperature fields throughout the component.
NASA Technical Reports Server (NTRS)
Nakajima, Yukio; Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element methodology is formulated to handle traveling load problems involving large deformation fields in structure composed of viscoelastic media. The main thrust of this paper is to develop an overall finite element methodology and associated solution algorithms to handle the transient aspects of moving problems involving contact impact type loading fields. Based on the methodology and algorithms formulated, several numerical experiments are considered. These include the rolling/sliding impact of tires with road obstructions.
A contact algorithm for shell problems via Delaunay-based meshing of the contact domain
NASA Astrophysics Data System (ADS)
Kamran, K.; Rossi, R.; Oñate, E.
2013-07-01
The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.
Numerical study of hydrogen-air supersonic combustion by using elliptic and parabolized equations
NASA Technical Reports Server (NTRS)
Chitsomboon, T.; Tiwari, S. N.
1986-01-01
The two-dimensional Navier-Stokes and species continuity equations are used to investigate supersonic chemically reacting flow problems which are related to scramjet-engine configurations. A global two-step finite-rate chemistry model is employed to represent the hydrogen-air combustion in the flow. An algebraic turbulent model is adopted for turbulent flow calculations. The explicit unsplit MacCormack finite-difference algorithm is used to develop a computer program suitable for a vector processing computer. The computer program developed is then used to integrate the system of the governing equations in time until convergence is attained. The chemistry source terms in the species continuity equations are evaluated implicitly to alleviate stiffness associated with fast chemical reactions. The problems solved by the elliptic code are re-investigated by using a set of two-dimensional parabolized Navier-Stokes and species equations. A linearized fully-coupled fully-implicit finite difference algorithm is used to develop a second computer code which solves the governing equations by marching in spce rather than time, resulting in a considerable saving in computer resources. Results obtained by using the parabolized formulation are compared with the results obtained by using the fully-elliptic equations. The comparisons indicate fairly good agreement of the results of the two formulations.
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
The user options available for running the MHOST finite element analysis package is described. MHOST is a solid and structural analysis program based on the mixed finite element technology, and is specifically designed for 3-D inelastic analysis. A family of 2- and 3-D continuum elements along with beam and shell structural elements can be utilized, many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. The outline of solution algorithms is discussed along with the data input and output, analysis options including the user subroutines and the definition of the finite elements implemented in the program package.
Heidenreich, Elvio A; Ferrero, José M; Doblaré, Manuel; Rodríguez, José F
2010-07-01
Many problems in biology and engineering are governed by anisotropic reaction-diffusion equations with a very rapidly varying reaction term. This usually implies the use of very fine meshes and small time steps in order to accurately capture the propagating wave while avoiding the appearance of spurious oscillations in the wave front. This work develops a family of macro finite elements amenable for solving anisotropic reaction-diffusion equations with stiff reactive terms. The developed elements are incorporated on a semi-implicit algorithm based on operator splitting that includes adaptive time stepping for handling the stiff reactive term. A linear system is solved on each time step to update the transmembrane potential, whereas the remaining ordinary differential equations are solved uncoupled. The method allows solving the linear system on a coarser mesh thanks to the static condensation of the internal degrees of freedom (DOF) of the macroelements while maintaining the accuracy of the finer mesh. The method and algorithm have been implemented in parallel. The accuracy of the method has been tested on two- and three-dimensional examples demonstrating excellent behavior when compared to standard linear elements. The better performance and scalability of different macro finite elements against standard finite elements have been demonstrated in the simulation of a human heart and a heterogeneous two-dimensional problem with reentrant activity. Results have shown a reduction of up to four times in computational cost for the macro finite elements with respect to equivalent (same number of DOF) standard linear finite elements as well as good scalability properties.
Numerical Differentiation of Noisy, Nonsmooth Data
Chartrand, Rick
2011-01-01
We consider the problem of differentiating a function specified by noisy data. Regularizing the differentiation process avoids the noise amplification of finite-difference methods. We use total-variation regularization, which allows for discontinuous solutions. The resulting simple algorithm accurately differentiates noisy functions, including those which have a discontinuous derivative.
ERIC Educational Resources Information Center
Song, Hairong; Ferrer, Emilio
2009-01-01
This article presents a state-space modeling (SSM) technique for fitting process factor analysis models directly to raw data. The Kalman smoother via the expectation-maximization algorithm to obtain maximum likelihood parameter estimates is used. To examine the finite sample properties of the estimates in SSM when common factors are involved, a…
Rotational degree-of-freedom synthesis: An optimised finite difference method for non-exact data
NASA Astrophysics Data System (ADS)
Gibbons, T. J.; Öztürk, E.; Sims, N. D.
2018-01-01
Measuring the rotational dynamic behaviour of a structure is important for many areas of dynamics such as passive vibration control, acoustics, and model updating. Specialist and dedicated equipment is often needed, unless the rotational degree-of-freedom is synthesised based upon translational data. However, this involves numerically differentiating the translational mode shapes to approximate the rotational modes, for example using a finite difference algorithm. A key challenge with this approach is choosing the measurement spacing between the data points, an issue which has often been overlooked in the published literature. The present contribution will for the first time prove that the use of a finite difference approach can be unstable when using non-exact measured data and a small measurement spacing, for beam-like structures. Then, a generalised analytical error analysis is used to propose an optimised measurement spacing, which balances the numerical error of the finite difference equation with the propagation error from the perturbed data. The approach is demonstrated using both numerical and experimental investigations. It is shown that by obtaining a small number of test measurements it is possible to optimise the measurement accuracy, without any further assumptions on the boundary conditions of the structure.
Parallel processors and nonlinear structural dynamics algorithms and software
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Gilbertsen, Noreen D.; Neal, Mark O.; Plaskacz, Edward J.
1989-01-01
The adaptation of a finite element program with explicit time integration to a massively parallel SIMD (single instruction multiple data) computer, the CONNECTION Machine is described. The adaptation required the development of a new algorithm, called the exchange algorithm, in which all nodal variables are allocated to the element with an exchange of nodal forces at each time step. The architectural and C* programming language features of the CONNECTION Machine are also summarized. Various alternate data structures and associated algorithms for nonlinear finite element analysis are discussed and compared. Results are presented which demonstrate that the CONNECTION Machine is capable of outperforming the CRAY XMP/14.
Efficient option valuation of single and double barrier options
NASA Astrophysics Data System (ADS)
Kabaivanov, Stanimir; Milev, Mariyan; Koleva-Petkova, Dessislava; Vladev, Veselin
2017-12-01
In this paper we present an implementation of pricing algorithm for single and double barrier options using Mellin transformation with Maximum Entropy Inversion and its suitability for real-world applications. A detailed analysis of the applied algorithm is accompanied by implementation in C++ that is then compared to existing solutions in terms of efficiency and computational power. We then compare the applied method with existing closed-form solutions and well known methods of pricing barrier options that are based on finite differences.
A fast Poisson solver for unsteady incompressible Navier-Stokes equations on the half-staggered grid
NASA Technical Reports Server (NTRS)
Golub, G. H.; Huang, L. C.; Simon, H.; Tang, W. -P.
1995-01-01
In this paper, a fast Poisson solver for unsteady, incompressible Navier-Stokes equations with finite difference methods on the non-uniform, half-staggered grid is presented. To achieve this, new algorithms for diagonalizing a semi-definite pair are developed. Our fast solver can also be extended to the three dimensional case. The motivation and related issues in using this second kind of staggered grid are also discussed. Numerical testing has indicated the effectiveness of this algorithm.
NASA Astrophysics Data System (ADS)
Guevara Hidalgo, Esteban; Nemoto, Takahiro; Lecomte, Vivien
Rare trajectories of stochastic systems are important to understand because of their potential impact. However, their properties are by definition difficult to sample directly. Population dynamics provide a numerical tool allowing their study, by means of simulating a large number of copies of the system, which are subjected to a selection rule that favors the rare trajectories of interest. However, such algorithms are plagued by finite simulation time- and finite population size- effects that can render their use delicate. Using the continuous-time cloning algorithm, we analyze the finite-time and finite-size scalings of estimators of the large deviation functions associated to the distribution of the rare trajectories. We use these scalings in order to propose a numerical approach which allows to extract the infinite-time and infinite-size limit of these estimators.
Methods for High-Order Multi-Scale and Stochastic Problems Analysis, Algorithms, and Applications
2016-10-17
finite volume schemes, discontinuous Galerkin finite element method, and related methods, for solving computational fluid dynamics (CFD) problems and...approximation for finite element methods. (3) The development of methods of simulation and analysis for the study of large scale stochastic systems of...laws, finite element method, Bernstein-Bezier finite elements , weakly interacting particle systems, accelerated Monte Carlo, stochastic networks 16
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Zapp, John; Hsa, Chang-Yu; Volakis, John L.
1990-01-01
An extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation (FFT) is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. By virtue of the finite element method, the algorithm is applicable to structures of arbitrary material composition. Several improvements to the two dimensional algorithm are also described. These include: (1) modifications for terminating the mesh at circular boundaries without distorting the convolutionality of the boundary integrals; (2) the development of nonproprietary mesh generation routines for two dimensional applications; (3) the development of preprocessors for interfacing SDRC IDEAS with the main algorithm; and (4) the development of post-processing algorithms based on the public domain package GRAFIC to generate two and three dimensional gray level and color field maps.
A pipeline design of a fast prime factor DFT on a finite field
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, In-Shek; Shao, H. M.; Reed, Irving S.; Shyu, Hsuen-Chyun
1988-01-01
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.
A MULTIPLE GRID ALGORITHM FOR ONE-DIMENSIONAL TRANSIENT OPEN CHANNEL FLOWS. (R825200)
Numerical modeling of open channel flows with shocks using explicit finite difference schemes is constrained by the choice of time step, which is limited by the CFL stability criteria. To overcome this limitation, in this work we introduce the application of a multiple grid al...
Computationally efficient finite-difference modal method for the solution of Maxwell's equations.
Semenikhin, Igor; Zanuccoli, Mauro
2013-12-01
In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method.
Healy, R.W.; Russell, T.F.
1993-01-01
A new mass-conservative method for solution of the one-dimensional advection-dispersion equation is derived and discussed. Test results demonstrate that the finite-volume Eulerian-Lagrangian localized adjoint method (FVELLAM) outperforms standard finite-difference methods, in terms of accuracy and efficiency, for solute transport problems that are dominated by advection. For dispersion-dominated problems, the performance of the method is similar to that of standard methods. Like previous ELLAM formulations, FVELLAM systematically conserves mass globally with all types of boundary conditions. FVELLAM differs from other ELLAM approaches in that integrated finite differences, instead of finite elements, are used to approximate the governing equation. This approach, in conjunction with a forward tracking scheme, greatly facilitates mass conservation. The mass storage integral is numerically evaluated at the current time level, and quadrature points are then tracked forward in time to the next level. Forward tracking permits straightforward treatment of inflow boundaries, thus avoiding the inherent problem in backtracking, as used by most characteristic methods, of characteristic lines intersecting inflow boundaries. FVELLAM extends previous ELLAM results by obtaining mass conservation locally on Lagrangian space-time elements. Details of the integration, tracking, and boundary algorithms are presented. Test results are given for problems in Cartesian and radial coordinates.
NASA Technical Reports Server (NTRS)
Sandell, N. R., Jr.; Athans, M.
1975-01-01
The development of the theory of the finite - state, finite - memory (FSFM) stochastic control problem is discussed. The sufficiency of the FSFM minimum principle (which is in general only a necessary condition) was investigated. By introducing the notion of a signaling strategy as defined in the literature on games, conditions under which the FSFM minimum principle is sufficient were determined. This result explicitly interconnects the information structure of the FSFM problem with its optimality conditions. The min-H algorithm for the FSFM problem was studied. It is demonstrated that a version of the algorithm always converges to a particular type of local minimum termed a person - by - person extremal.
Fuzzy automata and pattern matching
NASA Technical Reports Server (NTRS)
Setzer, C. B.; Warsi, N. A.
1986-01-01
A wide-ranging search for articles and books concerned with fuzzy automata and syntactic pattern recognition is presented. A number of survey articles on image processing and feature detection were included. Hough's algorithm is presented to illustrate the way in which knowledge about an image can be used to interpret the details of the image. It was found that in hand generated pictures, the algorithm worked well on following the straight lines, but had great difficulty turning corners. An algorithm was developed which produces a minimal finite automaton recognizing a given finite set of strings. One difficulty of the construction is that, in some cases, this minimal automaton is not unique for a given set of strings and a given maximum length. This algorithm compares favorably with other inference algorithms. More importantly, the algorithm produces an automaton with a rigorously described relationship to the original set of strings that does not depend on the algorithm itself.
Three-dimensional electrical impedance tomography: a topology optimization approach.
Mello, Luís Augusto Motta; de Lima, Cícero Ribeiro; Amato, Marcelo Britto Passos; Lima, Raul Gonzalez; Silva, Emílio Carlos Nelli
2008-02-01
Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.
NASA Astrophysics Data System (ADS)
Boccaccio, Antonio; Uva, Antonio E.; Papi, Massimiliano; Fiorentino, Michele; De Spirito, Marco; Monno, Giuseppe
2017-01-01
Characterisation of the mechanical behaviour of cancer cells is an issue of crucial importance as specific cell mechanical properties have been measured and utilized as possible biomarkers of cancer progression. Atomic force microscopy certainly occupies a prominent place in the field of the mechanical characterisation devices. We developed a hybrid approach to characterise different cell lines (SW620 and SW480) of the human colon carcinoma submitted to nanoindentation measurements. An ad hoc algorithm was written that compares the force-indentation curves experimentally retrieved with those predicted by a finite element model that simulates the nanoindentation process and reproduces the cell geometry and the surface roughness. The algorithm perturbs iteratively the values of the cell mechanical properties implemented in the finite element model until the difference between the experimental and numerical force-indentation curves reaches the minimum value. The occurrence of this indicates that the implemented material properties are very close to the real ones. Different hyperelastic constitutive models, such as Arruda-Boyce, Mooney-Rivlin and Neo-Hookean were utilized to describe the structural behaviour of indented cells. The algorithm was capable of separating, for all the cell lines investigated, the mechanical properties of cell cortex and cytoskeleton. Material properties determined via the algorithm were different with respect to those obtained with the Hertzian contact theory. This demonstrates that factors such as: the cell geometry/anatomy and the hyperelastic constitutive behaviour, which are not contemplated in the Hertz’s theory hypotheses, do affect the nanoindentation measurements. The proposed approach represents a powerful tool that, only on the basis of nanoindentation measurements, is capable of characterising material at the subcellular level.
Computing Quantitative Characteristics of Finite-State Real-Time Systems
1994-05-04
Current methods for verifying real - time systems are essentially decision procedures that establish whether the system model satisfies a given...specification. We present a general method for computing quantitative information about finite-state real - time systems . We have developed algorithms that...our technique can be extended to a more general representation of real - time systems , namely, timed transition graphs. The algorithms presented in this
Nonlinear Computational Aeroelasticity: Formulations and Solution Algorithms
2003-03-01
problem is proposed. Fluid-structure coupling algorithms are then discussed with some emphasis on distributed computing strategies. Numerical results...the structure and the exchange of structure motion to the fluid. The computational fluid dynamics code PFES is our finite element code for the numerical ...unstructured meshes). It was numerically demonstrated [1-3] that EBS can be less diffusive than SUPG [4-6] and the standard Finite Volume schemes
Semi-implicit finite difference methods for three-dimensional shallow water flow
Casulli, Vincenzo; Cheng, Ralph T.
1992-01-01
A semi-implicit finite difference method for the numerical solution of three-dimensional shallow water flows is presented and discussed. The governing equations are the primitive three-dimensional turbulent mean flow equations where the pressure distribution in the vertical has been assumed to be hydrostatic. In the method of solution a minimal degree of implicitness has been adopted in such a fashion that the resulting algorithm is stable and gives a maximal computational efficiency at a minimal computational cost. At each time step the numerical method requires the solution of one large linear system which can be formally decomposed into a set of small three-diagonal systems coupled with one five-diagonal system. All these linear systems are symmetric and positive definite. Thus the existence and uniquencess of the numerical solution are assured. When only one vertical layer is specified, this method reduces as a special case to a semi-implicit scheme for solving the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm has been shown to be fast, accurate and mass-conservative and can also be applied to simulate flooding and drying of tidal mud-flats in conjunction with three-dimensional flows. Furthermore, the resulting algorithm is fully vectorizable for an efficient implementation on modern vector computers.
NASA Technical Reports Server (NTRS)
Kurtz, L. A.; Smith, R. E.; Parks, C. L.; Boney, L. R.
1978-01-01
Steady state solutions to two time dependent partial differential systems have been obtained by the Method of Lines (MOL) and compared to those obtained by efficient standard finite difference methods: (1) Burger's equation over a finite space domain by a forward time central space explicit method, and (2) the stream function - vorticity form of viscous incompressible fluid flow in a square cavity by an alternating direction implicit (ADI) method. The standard techniques were far more computationally efficient when applicable. In the second example, converged solutions at very high Reynolds numbers were obtained by MOL, whereas solution by ADI was either unattainable or impractical. With regard to 'set up' time, solution by MOL is an attractive alternative to techniques with complicated algorithms, as much of the programming difficulty is eliminated.
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1994-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques, and a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical, and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data.
Numerical algorithms for computations of feedback laws arising in control of flexible systems
NASA Technical Reports Server (NTRS)
Lasiecka, Irena
1989-01-01
Several continuous models will be examined, which describe flexible structures with boundary or point control/observation. Issues related to the computation of feedback laws are examined (particularly stabilizing feedbacks) with sensors and actuators located either on the boundary or at specific point locations of the structure. One of the main difficulties is due to the great sensitivity of the system (hyperbolic systems with unbounded control actions), with respect to perturbations caused either by uncertainty of the model or by the errors introduced in implementing numerical algorithms. Thus, special care must be taken in the choice of the appropriate numerical schemes which eventually lead to implementable finite dimensional solutions. Finite dimensional algorithms are constructed on a basis of a priority analysis of the properties of the original, continuous (infinite diversional) systems with the following criteria in mind: (1) convergence and stability of the algorithms and (2) robustness (reasonable insensitivity with respect to the unknown parameters of the systems). Examples with mixed finite element methods and spectral methods are provided.
Genetic algorithms for multicriteria shape optimization of induction furnace
NASA Astrophysics Data System (ADS)
Kůs, Pavel; Mach, František; Karban, Pavel; Doležel, Ivo
2012-09-01
In this contribution we deal with a multi-criteria shape optimization of an induction furnace. We want to find shape parameters of the furnace in such a way, that two different criteria are optimized. Since they cannot be optimized simultaneously, instead of one optimum we find set of partially optimal designs, so called Pareto front. We compare two different approaches to the optimization, one using nonlinear conjugate gradient method and second using variation of genetic algorithm. As can be seen from the numerical results, genetic algorithm seems to be the right choice for this problem. Solution of direct problem (coupled problem consisting of magnetic and heat field) is done using our own code Agros2D. It uses finite elements of higher order leading to fast and accurate solution of relatively complicated coupled problem. It also provides advanced scripting support, allowing us to prepare parametric model of the furnace and simply incorporate various types of optimization algorithms.
Matrix-Product-State Algorithm for Finite Fractional Quantum Hall Systems
NASA Astrophysics Data System (ADS)
Liu, Zhao; Bhatt, R. N.
2015-09-01
Exact diagonalization is a powerful tool to study fractional quantum Hall (FQH) systems. However, its capability is limited by the exponentially increasing computational cost. In order to overcome this difficulty, density-matrix-renormalization-group (DMRG) algorithms were developed for much larger system sizes. Very recently, it was realized that some model FQH states have exact matrix-product-state (MPS) representation. Motivated by this, here we report a MPS code, which is closely related to, but different from traditional DMRG language, for finite FQH systems on the cylinder geometry. By representing the many-body Hamiltonian as a matrix-product-operator (MPO) and using single-site update and density matrix correction, we show that our code can efficiently search the ground state of various FQH systems. We also compare the performance of our code with traditional DMRG. The possible generalization of our code to infinite FQH systems and other physical systems is also discussed.
Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere
NASA Astrophysics Data System (ADS)
Yi, Tae-Hyeong; Park, Ja-Rin
2017-06-01
A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.
POSE Algorithms for Automated Docking
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.; Howard, Richard T.
2011-01-01
POSE (relative position and attitude) can be computed in many different ways. Given a sensor that measures bearing to a finite number of spots corresponding to known features (such as a target) of a spacecraft, a number of different algorithms can be used to compute the POSE. NASA has sponsored the development of a flash LIDAR proximity sensor called the Vision Navigation Sensor (VNS) for use by the Orion capsule in future docking missions. This sensor generates data that can be used by a variety of algorithms to compute POSE solutions inside of 15 meters, including at the critical docking range of approximately 1-2 meters. Previously NASA participated in a DARPA program called Orbital Express that achieved the first automated docking for the American space program. During this mission a large set of high quality mated sensor data was obtained at what is essentially the docking distance. This data set is perhaps the most accurate truth data in existence for docking proximity sensors in orbit. In this paper, the flight data from Orbital Express is used to test POSE algorithms at 1.22 meters range. Two different POSE algorithms are tested for two different Fields-of-View (FOVs) and two different pixel noise levels. The results of the analysis are used to predict future performance of the POSE algorithms with VNS data.
Pernice, W H; Payne, F P; Gallagher, D F
2007-09-03
We present a novel numerical scheme for the simulation of the field enhancement by metal nano-particles in the time domain. The algorithm is based on a combination of the finite-difference time-domain method and the pseudo-spectral time-domain method for dispersive materials. The hybrid solver leads to an efficient subgridding algorithm that does not suffer from spurious field spikes as do FDTD schemes. Simulation of the field enhancement by gold particles shows the expected exponential field profile. The enhancement factors are computed for single particles and particle arrays. Due to the geometry conforming mesh the algorithm is stable for long integration times and thus suitable for the simulation of resonance phenomena in coupled nano-particle structures.
Optimization Based Efficiencies in First Order Reliability Analysis
NASA Technical Reports Server (NTRS)
Peck, Jeffrey A.; Mahadevan, Sankaran
2003-01-01
This paper develops a method for updating the gradient vector of the limit state function in reliability analysis using Broyden's rank one updating technique. In problems that use commercial code as a black box, the gradient calculations are usually done using a finite difference approach, which becomes very expensive for large system models. The proposed method replaces the finite difference gradient calculations in a standard first order reliability method (FORM) with Broyden's Quasi-Newton technique. The resulting algorithm of Broyden updates within a FORM framework (BFORM) is used to run several example problems, and the results compared to standard FORM results. It is found that BFORM typically requires fewer functional evaluations that FORM to converge to the same answer.
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.
2017-01-01
This research presents the new size-dependent models of piezoelectric materials oriented to finite element applications. The proposed models include the facilities of taking into account different mechanisms of damping for mechanical and electric fields. The coupled models also incorporate the equations of the theory of acoustics for viscous fluids. In particular cases, these models permit to use the mode superposition method with full separation of the finite element systems into independent equations for the independent modes for transient and harmonic problems. The main boundary conditions were supplemented with the facilities of taking into account the coupled surface effects, allowing to explore the nanoscale piezoelectric materials in the framework of theories of continuous media with surface stresses and their generalizations. For the considered problems we have implemented the finite element technologies and various numerical algorithms to maintain a symmetrical structure of the finite element quasi-definite matrices (matrix structure for the problems with a saddle point).
Finite time control for MIMO nonlinear system based on higher-order sliding mode.
Liu, Xiangjie; Han, Yaozhen
2014-11-01
Considering a class of MIMO uncertain nonlinear system, a novel finite time stable control algorithm is proposed based on higher-order sliding mode concept. The higher-order sliding mode control problem of MIMO nonlinear system is firstly transformed into finite time stability problem of multivariable system. Then continuous control law, which can guarantee finite time stabilization of nominal integral chain system, is employed. The second-order sliding mode is used to overcome the system uncertainties. High frequency chattering phenomenon of sliding mode is greatly weakened, and the arbitrarily fast convergence is reached. The finite time stability is proved based on the quadratic form Lyapunov function. Examples concerning the triple integral chain system with uncertainty and the hovercraft trajectory tracking are simulated respectively to verify the effectiveness and the robustness of the proposed algorithm. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Parallelized implicit propagators for the finite-difference Schrödinger equation
NASA Astrophysics Data System (ADS)
Parker, Jonathan; Taylor, K. T.
1995-08-01
We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.
Rheological Models in the Time-Domain Modeling of Seismic Motion
NASA Astrophysics Data System (ADS)
Moczo, P.; Kristek, J.
2004-12-01
The time-domain stress-strain relation in a viscoelastic medium has a form of the convolutory integral which is numerically intractable. This was the reason for the oversimplified models of attenuation in the time-domain seismic wave propagation and earthquake motion modeling. In their pioneering work, Day and Minster (1984) showed the way how to convert the integral into numerically tractable differential form in the case of a general viscoelastic modulus. In response to the work by Day and Minster, Emmerich and Korn (1987) suggested using the rheology of their generalized Maxwell body (GMB) while Carcione et al. (1988) suggested using the generalized Zener body (GZB). The viscoelastic moduli of both rheological models have a form of the rational function and thus the differential form of the stress-strain relation is rather easy to obtain. After the papers by Emmerich and Korn and Carcione et al. numerical modelers decided either for the GMB or GZB rheology and developed 'non-communicating' algorithms. In the many following papers the authors using the GMB never commented the GZB rheology and the corresponding algorithms, and the authors using the GZB never related their methods to the GMB rheology and algorithms. We analyze and compare both rheologies and the corresponding incorporations of the realistic attenuation into the time-domain computations. We then focus on the most recent staggered-grid finite-difference modeling, mainly on accounting for the material heterogeneity in the viscoelastic media, and the computational efficiency of the finite-difference algorithms.
Progress on a Taylor weak statement finite element algorithm for high-speed aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Freels, J. D.
1989-01-01
A new finite element numerical Computational Fluid Dynamics (CFD) algorithm has matured to the point of efficiently solving two-dimensional high speed real-gas compressible flow problems in generalized coordinates on modern vector computer systems. The algorithm employs a Taylor Weak Statement classical Galerkin formulation, a variably implicit Newton iteration, and a tensor matrix product factorization of the linear algebra Jacobian under a generalized coordinate transformation. Allowing for a general two-dimensional conservation law system, the algorithm has been exercised on the Euler and laminar forms of the Navier-Stokes equations. Real-gas fluid properties are admitted, and numerical results verify solution accuracy, efficiency, and stability over a range of test problem parameters.
Improving finite element results in modeling heart valve mechanics.
Earl, Emily; Mohammadi, Hadi
2018-06-01
Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.
Stoykov, Nikolay S; Kuiken, Todd A; Lowery, Madeleine M; Taflove, Allen
2003-09-01
We present what we believe to be the first algorithms that use a simple scalar-potential formulation to model linear Debye and Lorentz dielectric dispersions at low frequencies in the context of finite-element time-domain (FETD) numerical solutions of electric potential. The new algorithms, which permit treatment of multiple-pole dielectric relaxations, are based on the auxiliary differential equation method and are unconditionally stable. We validate the algorithms by comparison with the results of a previously reported method based on the Fourier transform. The new algorithms should be useful in calculating the transient response of biological materials subject to impulsive excitation. Potential applications include FETD modeling of electromyography, functional electrical stimulation, defibrillation, and effects of lightning and impulsive electric shock.
FDTD simulation of EM wave propagation in 3-D media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, T.; Tripp, A.C.
1996-01-01
A finite-difference, time-domain solution to Maxwell`s equations has been developed for simulating electromagnetic wave propagation in 3-D media. The algorithm allows arbitrary electrical conductivity and permittivity variations within a model. The staggered grid technique of Yee is used to sample the fields. A new optimized second-order difference scheme is designed to approximate the spatial derivatives. Like the conventional fourth-order difference scheme, the optimized second-order scheme needs four discrete values to calculate a single derivative. However, the optimized scheme is accurate over a wider wavenumber range. Compared to the fourth-order scheme, the optimized scheme imposes stricter limitations on the time stepmore » sizes but allows coarser grids. The net effect is that the optimized scheme is more efficient in terms of computation time and memory requirement than the fourth-order scheme. The temporal derivatives are approximated by second-order central differences throughout. The Liao transmitting boundary conditions are used to truncate an open problem. A reflection coefficient analysis shows that this transmitting boundary condition works very well. However, it is subject to instability. A method that can be easily implemented is proposed to stabilize the boundary condition. The finite-difference solution is compared to closed-form solutions for conducting and nonconducting whole spaces and to an integral-equation solution for a 3-D body in a homogeneous half-space. In all cases, the finite-difference solutions are in good agreement with the other solutions. Finally, the use of the algorithm is demonstrated with a 3-D model. Numerical results show that both the magnetic field response and electric field response can be useful for shallow-depth and small-scale investigations.« less
Surface sampling techniques for 3D object inspection
NASA Astrophysics Data System (ADS)
Shih, Chihhsiong S.; Gerhardt, Lester A.
1995-03-01
While the uniform sampling method is quite popular for pointwise measurement of manufactured parts, this paper proposes three novel sampling strategies which emphasize 3D non-uniform inspection capability. They are: (a) the adaptive sampling, (b) the local adjustment sampling, and (c) the finite element centroid sampling techniques. The adaptive sampling strategy is based on a recursive surface subdivision process. Two different approaches are described for this adaptive sampling strategy. One uses triangle patches while the other uses rectangle patches. Several real world objects were tested using these two algorithms. Preliminary results show that sample points are distributed more closely around edges, corners, and vertices as desired for many classes of objects. Adaptive sampling using triangle patches is shown to generally perform better than both uniform and adaptive sampling using rectangle patches. The local adjustment sampling strategy uses a set of predefined starting points and then finds the local optimum position of each nodal point. This method approximates the object by moving the points toward object edges and corners. In a hybrid approach, uniform points sets and non-uniform points sets, first preprocessed by the adaptive sampling algorithm on a real world object were then tested using the local adjustment sampling method. The results show that the initial point sets when preprocessed by adaptive sampling using triangle patches, are moved the least amount of distance by the subsequently applied local adjustment method, again showing the superiority of this method. The finite element sampling technique samples the centroids of the surface triangle meshes produced from the finite element method. The performance of this algorithm was compared to that of the adaptive sampling using triangular patches. The adaptive sampling with triangular patches was once again shown to be better on different classes of objects.
An efficient, explicit finite-rate algorithm to compute flows in chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
An explicit finite-rate code was developed to compute hypersonic viscous chemically reacting flows about three-dimensional bodies. Equations describing the finite-rate chemical reactions were fully coupled to the gas dynamic equations using a new coupling technique. The new technique maintains stability in the explicit finite-rate formulation while permitting relatively large global time steps.
Campbell, J Q; Coombs, D J; Rao, M; Rullkoetter, P J; Petrella, A J
2016-09-06
The purpose of this study was to seek broad verification and validation of human lumbar spine finite element models created using a previously published automated algorithm. The automated algorithm takes segmented CT scans of lumbar vertebrae, automatically identifies important landmarks and contact surfaces, and creates a finite element model. Mesh convergence was evaluated by examining changes in key output variables in response to mesh density. Semi-direct validation was performed by comparing experimental results for a single specimen to the automated finite element model results for that specimen with calibrated material properties from a prior study. Indirect validation was based on a comparison of results from automated finite element models of 18 individual specimens, all using one set of generalized material properties, to a range of data from the literature. A total of 216 simulations were run and compared to 186 experimental data ranges in all six primary bending modes up to 7.8Nm with follower loads up to 1000N. Mesh convergence results showed less than a 5% difference in key variables when the original mesh density was doubled. The semi-direct validation results showed that the automated method produced results comparable to manual finite element modeling methods. The indirect validation results showed a wide range of outcomes due to variations in the geometry alone. The studies showed that the automated models can be used to reliably evaluate lumbar spine biomechanics, specifically within our intended context of use: in pure bending modes, under relatively low non-injurious simulated in vivo loads, to predict torque rotation response, disc pressures, and facet forces. Copyright © 2016 Elsevier Ltd. All rights reserved.
Drawert, Brian; Lawson, Michael J; Petzold, Linda; Khammash, Mustafa
2010-02-21
We have developed a computational framework for accurate and efficient simulation of stochastic spatially inhomogeneous biochemical systems. The new computational method employs a fractional step hybrid strategy. A novel formulation of the finite state projection (FSP) method, called the diffusive FSP method, is introduced for the efficient and accurate simulation of diffusive transport. Reactions are handled by the stochastic simulation algorithm.
KAM Tori Construction Algorithms
NASA Astrophysics Data System (ADS)
Wiesel, W.
In this paper we evaluate and compare two algorithms for the calculation of KAM tori in Hamiltonian systems. The direct fitting of a torus Fourier series to a numerically integrated trajectory is the first method, while an accelerated finite Fourier transform is the second method. The finite Fourier transform, with Hanning window functions, is by far superior in both computational loading and numerical accuracy. Some thoughts on applications of KAM tori are offered.
Parallel eigenanalysis of finite element models in a completely connected architecture
NASA Technical Reports Server (NTRS)
Akl, F. A.; Morel, M. R.
1989-01-01
A parallel algorithm is presented for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi) = (M)(phi)(omega), where (K) and (M) are of order N, and (omega) is order of q. The concurrent solution of the eigenproblem is based on the multifrontal/modified subspace method and is achieved in a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm was successfully implemented on a tightly coupled multiple-instruction multiple-data parallel processing machine, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macrotasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. A parallel finite element dynamic analysis program, p-feda, is documented and the performance of its subroutines in parallel environment is analyzed.
Zhang, Ying; Wang, Jun; Hao, Guan
2018-01-08
With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.
Zhang, Ying; Wang, Jun; Hao, Guan
2018-01-01
With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702
A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method
NASA Technical Reports Server (NTRS)
Wilt, Thomas E.; Arnold, Steven M.
1994-01-01
A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.
Predictive Rate-Distortion for Infinite-Order Markov Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2016-06-01
Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.
MHOST version 4.2. Volume 1: Users' manual
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1989-01-01
This manual describes the user options available for running the MHOST finite element analysis package. MHOST is a solid and structural analysis program based on mixed finite element technology, and is specifically designed for three-dimensional inelastic analysis. A family of two- and three-dimensional continuum elements along with beam and shell structural elements can be utilized. Many options are available in the constitutive equation library, the solution algorithms and the analysis capabilities. An overview of the algorithms, a general description of the input data formats, and a discussion of input data for selecting solution algorithms are given.
The finite state projection algorithm for the solution of the chemical master equation.
Munsky, Brian; Khammash, Mustafa
2006-01-28
This article introduces the finite state projection (FSP) method for use in the stochastic analysis of chemically reacting systems. One can describe the chemical populations of such systems with probability density vectors that evolve according to a set of linear ordinary differential equations known as the chemical master equation (CME). Unlike Monte Carlo methods such as the stochastic simulation algorithm (SSA) or tau leaping, the FSP directly solves or approximates the solution of the CME. If the CME describes a system that has a finite number of distinct population vectors, the FSP method provides an exact analytical solution. When an infinite or extremely large number of population variations is possible, the state space can be truncated, and the FSP method provides a certificate of accuracy for how closely the truncated space approximation matches the true solution. The proposed FSP algorithm systematically increases the projection space in order to meet prespecified tolerance in the total probability density error. For any system in which a sufficiently accurate FSP exists, the FSP algorithm is shown to converge in a finite number of steps. The FSP is utilized to solve two examples taken from the field of systems biology, and comparisons are made between the FSP, the SSA, and tau leaping algorithms. In both examples, the FSP outperforms the SSA in terms of accuracy as well as computational efficiency. Furthermore, due to very small molecular counts in these particular examples, the FSP also performs far more effectively than tau leaping methods.
NASA Technical Reports Server (NTRS)
Lee, H. P.
1977-01-01
The NASTRAN Thermal Analyzer Manual describes the fundamental and theoretical treatment of the finite element method, with emphasis on the derivations of the constituent matrices of different elements and solution algorithms. Necessary information and data relating to the practical applications of engineering modeling are included.
Magnetotelluric inversion via reverse time migration algorithm of seismic data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Taeyoung; Shin, Changsoo
2007-07-01
We propose a new algorithm for two-dimensional magnetotelluric (MT) inversion. Our algorithm is an MT inversion based on the steepest descent method, borrowed from the backpropagation technique of seismic inversion or reverse time migration, introduced in the middle 1980s by Lailly and Tarantola. The steepest descent direction can be calculated efficiently by using the symmetry of numerical Green's function derived from a mixed finite element method proposed by Nedelec for Maxwell's equation, without calculating the Jacobian matrix explicitly. We construct three different objective functions by taking the logarithm of the complex apparent resistivity as introduced in the recent waveform inversionmore » algorithm by Shin and Min. These objective functions can be naturally separated into amplitude inversion, phase inversion and simultaneous inversion. We demonstrate our algorithm by showing three inversion results for synthetic data.« less
NASA Astrophysics Data System (ADS)
Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso
2017-09-01
This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.
Reconstruction of finite-valued sparse signals
NASA Astrophysics Data System (ADS)
Keiper, Sandra; Kutyniok, Gitta; Lee, Dae Gwan; Pfander, Götz
2017-08-01
The need of reconstructing discrete-valued sparse signals from few measurements, that is solving an undetermined system of linear equations, appears frequently in science and engineering. Those signals appear, for example, in error correcting codes as well as massive Multiple-Input Multiple-Output (MIMO) channel and wideband spectrum sensing. A particular example is given by wireless communications, where the transmitted signals are sequences of bits, i.e., with entries in f0; 1g. Whereas classical compressed sensing algorithms do not incorporate the additional knowledge of the discrete nature of the signal, classical lattice decoding approaches do not utilize sparsity constraints. In this talk, we present an approach that incorporates a discrete values prior into basis pursuit. In particular, we address finite-valued sparse signals, i.e., sparse signals with entries in a finite alphabet. We will introduce an equivalent null space characterization and show that phase transition takes place earlier than when using the classical basis pursuit approach. We will further discuss robustness of the algorithm and show that the nonnegative case is very different from the bipolar one. One of our findings is that the positioning of the zero in the alphabet - i.e., whether it is a boundary element or not - is crucial.
Methods for finding transition states on reduced potential energy surfaces
NASA Astrophysics Data System (ADS)
Burger, Steven K.; Ayers, Paul W.
2010-06-01
Three new algorithms are presented for determining transition state (TS) structures on the reduced potential energy surface, that is, for problems in which a few important degrees of freedom can be isolated. All three methods use constrained optimization to rapidly find the TS without an initial Hessian evaluation. The algorithms highlight how efficiently the TS can be located on a reduced surface, where the rest of the degrees of freedom are minimized. The first method uses a nonpositive definite quasi-Newton update for the reduced degrees of freedom. The second uses Shepard interpolation to fit the Hessian and starts from a set of points that bound the TS. The third directly uses a finite difference scheme to calculate the reduced degrees of freedom of the Hessian of the entire system, and searches for the TS on the full potential energy surface. All three methods are tested on an epoxide hydrolase cluster, and the ring formations of cyclohexane and cyclobutenone. The results indicate that all the methods are able to converge quite rapidly to the correct TS, but that the finite difference approach is the most efficient.
Methods for finding transition states on reduced potential energy surfaces.
Burger, Steven K; Ayers, Paul W
2010-06-21
Three new algorithms are presented for determining transition state (TS) structures on the reduced potential energy surface, that is, for problems in which a few important degrees of freedom can be isolated. All three methods use constrained optimization to rapidly find the TS without an initial Hessian evaluation. The algorithms highlight how efficiently the TS can be located on a reduced surface, where the rest of the degrees of freedom are minimized. The first method uses a nonpositive definite quasi-Newton update for the reduced degrees of freedom. The second uses Shepard interpolation to fit the Hessian and starts from a set of points that bound the TS. The third directly uses a finite difference scheme to calculate the reduced degrees of freedom of the Hessian of the entire system, and searches for the TS on the full potential energy surface. All three methods are tested on an epoxide hydrolase cluster, and the ring formations of cyclohexane and cyclobutenone. The results indicate that all the methods are able to converge quite rapidly to the correct TS, but that the finite difference approach is the most efficient.
3D brain tumor localization and parameter estimation using thermographic approach on GPU.
Bousselham, Abdelmajid; Bouattane, Omar; Youssfi, Mohamed; Raihani, Abdelhadi
2018-01-01
The aim of this paper is to present a GPU parallel algorithm for brain tumor detection to estimate its size and location from surface temperature distribution obtained by thermography. The normal brain tissue is modeled as a rectangular cube including spherical tumor. The temperature distribution is calculated using forward three dimensional Pennes bioheat transfer equation, it's solved using massively parallel Finite Difference Method (FDM) and implemented on Graphics Processing Unit (GPU). Genetic Algorithm (GA) was used to solve the inverse problem and estimate the tumor size and location by minimizing an objective function involving measured temperature on the surface to those obtained by numerical simulation. The parallel implementation of Finite Difference Method reduces significantly the time of bioheat transfer and greatly accelerates the inverse identification of brain tumor thermophysical and geometrical properties. Experimental results show significant gains in the computational speed on GPU and achieve a speedup of around 41 compared to the CPU. The analysis performance of the estimation based on tumor size inside brain tissue also presented. Copyright © 2017 Elsevier Ltd. All rights reserved.
Solving Fractional Programming Problems based on Swarm Intelligence
NASA Astrophysics Data System (ADS)
Raouf, Osama Abdel; Hezam, Ibrahim M.
2014-04-01
This paper presents a new approach to solve Fractional Programming Problems (FPPs) based on two different Swarm Intelligence (SI) algorithms. The two algorithms are: Particle Swarm Optimization, and Firefly Algorithm. The two algorithms are tested using several FPP benchmark examples and two selected industrial applications. The test aims to prove the capability of the SI algorithms to solve any type of FPPs. The solution results employing the SI algorithms are compared with a number of exact and metaheuristic solution methods used for handling FPPs. Swarm Intelligence can be denoted as an effective technique for solving linear or nonlinear, non-differentiable fractional objective functions. Problems with an optimal solution at a finite point and an unbounded constraint set, can be solved using the proposed approach. Numerical examples are given to show the feasibility, effectiveness, and robustness of the proposed algorithm. The results obtained using the two SI algorithms revealed the superiority of the proposed technique among others in computational time. A better accuracy was remarkably observed in the solution results of the industrial application problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharkey, Keeper L.; Pavanello, Michele; Bubin, Sergiy
2009-12-15
A new algorithm for calculating the Hamiltonian matrix elements with all-electron explicitly correlated Gaussian functions for quantum-mechanical calculations of atoms with two p electrons or a single d electron have been derived and implemented. The Hamiltonian used in the approach was obtained by rigorously separating the center-of-mass motion and it explicitly depends on the finite mass of the nucleus. The approach was employed to perform test calculations on the isotopes of the carbon atom in their ground electronic states and to determine the finite-nuclear-mass corrections for these states.
NASA Astrophysics Data System (ADS)
Ignatyev, A. V.; Ignatyev, V. A.; Onischenko, E. V.
2017-11-01
This article is the continuation of the work made bt the authors on the development of the algorithms that implement the finite element method in the form of a classical mixed method for the analysis of geometrically nonlinear bar systems [1-3]. The paper describes an improved algorithm of the formation of the nonlinear governing equations system for flexible plane frames and bars with large displacements of nodes based on the finite element method in a mixed classical form and the use of the procedure of step-by-step loading. An example of the analysis is given.
A Model-Free No-arbitrage Price Bound for Variance Options
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bonnans, J. Frederic, E-mail: frederic.bonnans@inria.fr; Tan Xiaolu, E-mail: xiaolu.tan@polytechnique.edu
2013-08-01
We suggest a numerical approximation for an optimization problem, motivated by its applications in finance to find the model-free no-arbitrage bound of variance options given the marginal distributions of the underlying asset. A first approximation restricts the computation to a bounded domain. Then we propose a gradient projection algorithm together with the finite difference scheme to solve the optimization problem. We prove the general convergence, and derive some convergence rate estimates. Finally, we give some numerical examples to test the efficiency of the algorithm.
NASA Astrophysics Data System (ADS)
Bu, Sunyoung; Huang, Jingfang; Boyer, Treavor H.; Miller, Cass T.
2010-07-01
The focus of this work is on the modeling of an ion exchange process that occurs in drinking water treatment applications. The model formulation consists of a two-scale model in which a set of microscale diffusion equations representing ion exchange resin particles that vary in size and age are coupled through a boundary condition with a macroscopic ordinary differential equation (ODE), which represents the concentration of a species in a well-mixed reactor. We introduce a new age-averaged model (AAM) that averages all ion exchange particle ages for a given size particle to avoid the expensive Monte-Carlo simulation associated with previous modeling applications. We discuss two different numerical schemes to approximate both the original Monte-Carlo algorithm and the new AAM for this two-scale problem. The first scheme is based on the finite element formulation in space coupled with an existing backward difference formula-based ODE solver in time. The second scheme uses an integral equation based Krylov deferred correction (KDC) method and a fast elliptic solver (FES) for the resulting elliptic equations. Numerical results are presented to validate the new AAM algorithm, which is also shown to be more computationally efficient than the original Monte-Carlo algorithm. We also demonstrate that the higher order KDC scheme is more efficient than the traditional finite element solution approach and this advantage becomes increasingly important as the desired accuracy of the solution increases. We also discuss issues of smoothness, which affect the efficiency of the KDC-FES approach, and outline additional algorithmic changes that would further improve the efficiency of these developing methods for a wide range of applications.
Thermodynamics of Gas Turbine Cycles with Analytic Derivatives in OpenMDAO
NASA Technical Reports Server (NTRS)
Gray, Justin; Chin, Jeffrey; Hearn, Tristan; Hendricks, Eric; Lavelle, Thomas; Martins, Joaquim R. R. A.
2016-01-01
A new equilibrium thermodynamics analysis tool was built based on the CEA method using the OpenMDAO framework. The new tool provides forward and adjoint analytic derivatives for use with gradient based optimization algorithms. The new tool was validated against the original CEA code to ensure an accurate analysis and the analytic derivatives were validated against finite-difference approximations. Performance comparisons between analytic and finite difference methods showed a significant speed advantage for the analytic methods. To further test the new analysis tool, a sample optimization was performed to find the optimal air-fuel equivalence ratio, , maximizing combustion temperature for a range of different pressures. Collectively, the results demonstrate the viability of the new tool to serve as the thermodynamic backbone for future work on a full propulsion modeling tool.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
NASA Technical Reports Server (NTRS)
Farhat, C.; Park, K. C.; Dubois-Pelerin, Y.
1991-01-01
An unconditionally stable second order accurate implicit-implicit staggered procedure for the finite element solution of fully coupled thermoelasticity transient problems is proposed. The procedure is stabilized with a semi-algebraic augmentation technique. A comparative cost analysis reveals the superiority of the proposed computational strategy to other conventional staggered procedures. Numerical examples of one and two-dimensional thermomechanical coupled problems demonstrate the accuracy of the proposed numerical solution algorithm.
NASA Technical Reports Server (NTRS)
Acikmese, Behcet A.; Carson, John M., III
2005-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees the resolvability of the associated finite-horizon optimal control problem in a receding-horizon implementation. The control consists of two components; (i) feedforward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives, and derivatives in polytopes. An illustrative numerical example is also provided.
NASA Technical Reports Server (NTRS)
Acikmese, Ahmet Behcet; Carson, John M., III
2006-01-01
A robustly stabilizing MPC (model predictive control) algorithm for uncertain nonlinear systems is developed that guarantees resolvability. With resolvability, initial feasibility of the finite-horizon optimal control problem implies future feasibility in a receding-horizon framework. The control consists of two components; (i) feed-forward, and (ii) feedback part. Feed-forward control is obtained by online solution of a finite-horizon optimal control problem for the nominal system dynamics. The feedback control policy is designed off-line based on a bound on the uncertainty in the system model. The entire controller is shown to be robustly stabilizing with a region of attraction composed of initial states for which the finite-horizon optimal control problem is feasible. The controller design for this algorithm is demonstrated on a class of systems with uncertain nonlinear terms that have norm-bounded derivatives and derivatives in polytopes. An illustrative numerical example is also provided.
A finite element solution algorithm for the Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1974-01-01
A finite element solution algorithm is established for the two-dimensional Navier-Stokes equations governing the steady-state kinematics and thermodynamics of a variable viscosity, compressible multiple-species fluid. For an incompressible fluid, the motion may be transient as well. The primitive dependent variables are replaced by a vorticity-streamfunction description valid in domains spanned by rectangular, cylindrical and spherical coordinate systems. Use of derived variables provides a uniformly elliptic partial differential equation description for the Navier-Stokes system, and for which the finite element algorithm is established. Explicit non-linearity is accepted by the theory, since no psuedo-variational principles are employed, and there is no requirement for either computational mesh or solution domain closure regularity. Boundary condition constraints on the normal flux and tangential distribution of all computational variables, as well as velocity, are routinely piecewise enforceable on domain closure segments arbitrarily oriented with respect to a global reference frame.
NASA Astrophysics Data System (ADS)
Yu, Miao; Li, Yan; Shu, Tong; Zhang, Yifan; Hong, Xiaobin; Qiu, Jifang; Zuo, Yong; Guo, Hongxiang; Li, Wei; Wu, Jian
2018-02-01
A method of recognizing 16QAM signal based on k-means clustering algorithm is proposed to mitigate the impact of transmitter finite extinction ratio. There are pilot symbols with 0.39% overhead assigned to be regarded as initial centroids of k-means clustering algorithm. Simulation result in 10 GBaud 16QAM system shows that the proposed method obtains higher precision of identification compared with traditional decision method for finite ER and IQ mismatch. Specially, the proposed method improves the required OSNR by 5.5 dB, 4.5 dB, 4 dB and 3 dB at FEC limit with ER= 12 dB, 16 dB, 20 dB and 24 dB, respectively, and the acceptable bias error and IQ mismatch range is widened by 767% and 360% with ER =16 dB, respectively.
Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying
2013-12-01
Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.
A Pseudo-Temporal Multi-Grid Relaxation Scheme for Solving the Parabolized Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
White, J. A.; Morrison, J. H.
1999-01-01
A multi-grid, flux-difference-split, finite-volume code, VULCAN, is presented for solving the elliptic and parabolized form of the equations governing three-dimensional, turbulent, calorically perfect and non-equilibrium chemically reacting flows. The space marching algorithms developed to improve convergence rate and or reduce computational cost are emphasized. The algorithms presented are extensions to the class of implicit pseudo-time iterative, upwind space-marching schemes. A full approximate storage, full multi-grid scheme is also described which is used to accelerate the convergence of a Gauss-Seidel relaxation method. The multi-grid algorithm is shown to significantly improve convergence on high aspect ratio grids.
Genetic algorithms and MCML program for recovery of optical properties of homogeneous turbid media
Morales Cruzado, Beatriz; y Montiel, Sergio Vázquez; Atencio, José Alberto Delgado
2013-01-01
In this paper, we present and validate a new method for optical properties recovery of turbid media with slab geometry. This method is an iterative method that compares diffuse reflectance and transmittance, measured using integrating spheres, with those obtained using the known algorithm MCML. The search procedure is based in the evolution of a population due to selection of the best individual, i.e., using a genetic algorithm. This new method includes several corrections such as non-linear effects in integrating spheres measurements and loss of light due to the finite size of the sample. As a potential application and proof-of-principle experiment of this new method, we use this new algorithm in the recovery of optical properties of blood samples at different degrees of coagulation. PMID:23504404
Development of an upwind, finite-volume code with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Molvik, Gregory A.
1995-01-01
Under this grant, two numerical algorithms were developed to predict the flow of viscous, hypersonic, chemically reacting gases over three-dimensional bodies. Both algorithms take advantage of the benefits of upwind differencing, total variation diminishing techniques and of a finite-volume framework, but obtain their solution in two separate manners. The first algorithm is a zonal, time-marching scheme, and is generally used to obtain solutions in the subsonic portions of the flow field. The second algorithm is a much less expensive, space-marching scheme and can be used for the computation of the larger, supersonic portion of the flow field. Both codes compute their interface fluxes with a temporal Riemann solver and the resulting schemes are made fully implicit including the chemical source terms and boundary conditions. Strong coupling is used between the fluid dynamic, chemical and turbulence equations. These codes have been validated on numerous hypersonic test cases and have provided excellent comparison with existing data. This report summarizes the research that took place from August 1,1994 to January 1, 1995.
Distributed Finite-Time Cooperative Control of Multiple High-Order Nonholonomic Mobile Robots.
Du, Haibo; Wen, Guanghui; Cheng, Yingying; He, Yigang; Jia, Ruting
2017-12-01
The consensus problem of multiple nonholonomic mobile robots in the form of high-order chained structure is considered in this paper. Based on the model features and the finite-time control technique, a finite-time cooperative controller is explicitly constructed which guarantees that the states consensus is achieved in a finite time. As an application of the proposed results, finite-time formation control of multiple wheeled mobile robots is studied and a finite-time formation control algorithm is proposed. To show effectiveness of the proposed approach, a simulation example is given.
NASA Technical Reports Server (NTRS)
Cacio, Emanuela; Cohn, Stephen E.; Spigler, Renato
2011-01-01
A numerical method is devised to solve a class of linear boundary-value problems for one-dimensional parabolic equations degenerate at the boundaries. Feller theory, which classifies the nature of the boundary points, is used to decide whether boundary conditions are needed to ensure uniqueness, and, if so, which ones they are. The algorithm is based on a suitable preconditioned implicit finite-difference scheme, grid, and treatment of the boundary data. Second-order accuracy, unconditional stability, and unconditional convergence of solutions of the finite-difference scheme to a constant as the time-step index tends to infinity are further properties of the method. Several examples, pertaining to financial mathematics, physics, and genetics, are presented for the purpose of illustration.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K.; Petersson, N. A.; Rodgers, A.
Acoustic waveform modeling is a computationally intensive task and full three-dimensional simulations are often impractical for some geophysical applications such as long-range wave propagation and high-frequency sound simulation. In this study, we develop a two-dimensional high-order accurate finite-difference code for acoustic wave modeling. We solve the linearized Euler equations by discretizing them with the sixth order accurate finite difference stencils away from the boundary and the third order summation-by-parts (SBP) closure near the boundary. Non-planar topographic boundary is resolved by formulating the governing equation in curvilinear coordinates following the interface. We verify the implementation of the algorithm by numerical examplesmore » and demonstrate the capability of the proposed method for practical acoustic wave propagation problems in the atmosphere.« less
Monte-Carlo simulation of a stochastic differential equation
NASA Astrophysics Data System (ADS)
Arif, ULLAH; Majid, KHAN; M, KAMRAN; R, KHAN; Zhengmao, SHENG
2017-12-01
For solving higher dimensional diffusion equations with an inhomogeneous diffusion coefficient, Monte Carlo (MC) techniques are considered to be more effective than other algorithms, such as finite element method or finite difference method. The inhomogeneity of diffusion coefficient strongly limits the use of different numerical techniques. For better convergence, methods with higher orders have been kept forward to allow MC codes with large step size. The main focus of this work is to look for operators that can produce converging results for large step sizes. As a first step, our comparative analysis has been applied to a general stochastic problem. Subsequently, our formulization is applied to the problem of pitch angle scattering resulting from Coulomb collisions of charge particles in the toroidal devices.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1998-01-01
This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.
NASA Astrophysics Data System (ADS)
Ahmadi, Masoud; Ansari, Reza; Rouhi, Saeed
2017-11-01
This paper aims to investigate the elastic modulus of the polypropylene matrix reinforced by carbon nanotubes at different temperatures. To this end, the finite element approach is employed. The nanotubes with different volume fractions and aspect ratios (the ratio of length to diameter) are embedded in the polymer matrix. Besides, random and regular algorithms are utilized to disperse carbon nanotubes in the matrix. It is seen that as the pure polypropylene, the elastic modulus of carbon nanotube reinforced polypropylene decreases by increasing the temperature. It is also observed that when the carbon nanotubes are dispersed parallelly and the load is applied along the nanotube directions, the largest improvement in the elastic modulus of the nanotube/polypropylene nanocomposites is obtained.
An inverse method to determine the mechanical properties of the iris in vivo
2014-01-01
Background Understanding the mechanical properties of the iris can help to have an insight into the eye diseases with abnormalities of the iris morphology. Material parameters of the iris were simply calculated relying on the ex vivo experiment. However, the mechanical response of the iris in vivo is different from that ex vivo, therefore, a method was put forward to determine the material parameters of the iris using the optimization method in combination with the finite element method based on the in vivo experiment. Material and methods Ocular hypertension was induced by rapid perfusion to the anterior chamber, during perfusion intraocular pressures in the anterior and posterior chamber were record by sensors, images of the anterior segment were captured by the ultrasonic system. The displacement of the characteristic points on the surface of the iris was calculated. A finite element model of the anterior chamber was developed using the ultrasonic image before perfusion, the multi-island genetic algorithm was employed to determine the material parameters of the iris by minimizing the difference between the finite element simulation and the experimental measurements. Results Material parameters of the iris in vivo were identified as the iris was taken as a nearly incompressible second-order Ogden solid. Values of the parameters μ1, α1, μ2 and α2 were 0.0861 ± 0.0080 MPa, 54.2546 ± 12.7180, 0.0754 ± 0.0200 MPa, and 48.0716 ± 15.7796 respectively. The stability of the inverse finite element method was verified, the sensitivity of the model parameters was investigated. Conclusion Material properties of the iris in vivo could be determined using the multi-island genetic algorithm coupled with the finite element method based on the experiment. PMID:24886660
Finite element analysis of low speed viscous and inviscid aerodynamic flows
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1977-01-01
A weak interaction solution algorithm was established for aerodynamic flow about an isolated airfoil. Finite element numerical methodology was applied to solution of each of differential equations governing potential flow, and viscous and turbulent boundary layer and wake flow downstream of the sharp trailing edge. The algorithm accounts for computed viscous displacement effects on the potential flow. Closure for turbulence was accomplished using both first and second order models. The COMOC finite element fluid mechanics computer program was modified to solve the identified equation systems for two dimensional flows. A numerical program was completed to determine factors affecting solution accuracy, convergence and stability for the combined potential, boundary layer, and parabolic Navier-Stokes equation systems. Good accuracy and convergence are demonstrated. Each solution is obtained within the identical finite element framework of COMOC.
NASA Technical Reports Server (NTRS)
Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.
1997-01-01
A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.
NASA Astrophysics Data System (ADS)
Burtyka, Filipp
2018-03-01
The paper firstly considers the problem of finding solvents for arbitrary unilateral polynomial matrix equations with second-order matrices over prime finite fields from the practical point of view: we implement the solver for this problem. The solver’s algorithm has two step: the first is finding solvents, having Jordan Normal Form (JNF), the second is finding solvents among the rest matrices. The first step reduces to the finding roots of usual polynomials over finite fields, the second is essentially exhaustive search. The first step’s algorithms essentially use the polynomial matrices theory. We estimate the practical duration of computations using our software implementation (for example that one can’t construct unilateral matrix polynomial over finite field, having any predefined number of solvents) and answer some theoretically-valued questions.
Metaheuristic Optimization and its Applications in Earth Sciences
NASA Astrophysics Data System (ADS)
Yang, Xin-She
2010-05-01
A common but challenging task in modelling geophysical and geological processes is to handle massive data and to minimize certain objectives. This can essentially be considered as an optimization problem, and thus many new efficient metaheuristic optimization algorithms can be used. In this paper, we will introduce some modern metaheuristic optimization algorithms such as genetic algorithms, harmony search, firefly algorithm, particle swarm optimization and simulated annealing. We will also discuss how these algorithms can be applied to various applications in earth sciences, including nonlinear least-squares, support vector machine, Kriging, inverse finite element analysis, and data-mining. We will present a few examples to show how different problems can be reformulated as optimization. Finally, we will make some recommendations for choosing various algorithms to suit various problems. References 1) D. H. Wolpert and W. G. Macready, No free lunch theorems for optimization, IEEE Trans. Evolutionary Computation, Vol. 1, 67-82 (1997). 2) X. S. Yang, Nature-Inspired Metaheuristic Algorithms, Luniver Press, (2008). 3) X. S. Yang, Mathematical Modelling for Earth Sciences, Dunedin Academic Press, (2008).
Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space.
Kalathil, Shaeen; Elias, Elizabeth
2015-11-01
This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB.
Non-uniform cosine modulated filter banks using meta-heuristic algorithms in CSD space
Kalathil, Shaeen; Elias, Elizabeth
2014-01-01
This paper presents an efficient design of non-uniform cosine modulated filter banks (CMFB) using canonic signed digit (CSD) coefficients. CMFB has got an easy and efficient design approach. Non-uniform decomposition can be easily obtained by merging the appropriate filters of a uniform filter bank. Only the prototype filter needs to be designed and optimized. In this paper, the prototype filter is designed using window method, weighted Chebyshev approximation and weighted constrained least square approximation. The coefficients are quantized into CSD, using a look-up-table. The finite precision CSD rounding, deteriorates the filter bank performances. The performances of the filter bank are improved using suitably modified meta-heuristic algorithms. The different meta-heuristic algorithms which are modified and used in this paper are Artificial Bee Colony algorithm, Gravitational Search algorithm, Harmony Search algorithm and Genetic algorithm and they result in filter banks with less implementation complexity, power consumption and area requirements when compared with those of the conventional continuous coefficient non-uniform CMFB. PMID:26644921
A VLSI pipeline design of a fast prime factor DFT on a finite field
NASA Technical Reports Server (NTRS)
Truong, T. K.; Hsu, I. S.; Shao, H. M.; Reed, I. S.; Shyu, H. C.
1986-01-01
A conventional prime factor discrete Fourier transform (DFT) algorithm is used to realize a discrete Fourier-like transform on the finite field, GF(q sub n). A pipeline structure is used to implement this prime factor DFT over GF(q sub n). This algorithm is developed to compute cyclic convolutions of complex numbers and to decode Reed-Solomon codes. Such a pipeline fast prime factor DFT algorithm over GF(q sub n) is regular, simple, expandable, and naturally suitable for VLSI implementation. An example illustrating the pipeline aspect of a 30-point transform over GF(q sub n) is presented.
A two-dimensional, finite-difference model simulating a highway has been developed which is able to handle linear and nonlinear chemical reactions. Transport of the pollutants is accomplished by use of an upstream-flux-corrected algorithm developed at the Naval Research Laborator...
An inverse moisture diffusion algorithm for the determination of diffusion coefficient
Jen Y. Liu; William T. Simpson; Steve P. Verrill
2000-01-01
The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...
An inverse moisture diffusion algorithm for the determination of diffusion coefficient
Jen Y. Liu; William T. Simpson; Steve P. Verrill
2001-01-01
The finite difference approximation is applied to estimate the moisture-dependent diffusion coefficient by utilizing test data of isothermal moisture desorption in northern red oak (Quercus rubra). The test data contain moisture distributions at discrete locations across the thickness of specimens, which coincides with the radial direction of northern red oak, and at...
Spray Combustion Modeling with VOF and Finite-Rate Chemistry
NASA Technical Reports Server (NTRS)
Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Wang, Ten-See
1996-01-01
A spray atomization and combustion model is developed based on the volume-of-fluid (VOF) transport equation with finite-rate chemistry model. The gas-liquid interface mass, momentum and energy conservation laws are modeled by continuum surface force mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed range flows. The objectives of the present study are: (1) to develop and verify the fractional volume-of-fluid (VOF) cell partitioning approach into a predictor-corrector algorithm to deal with multiphase (gas-liquid) free surface flow problems; (2) to implement the developed unified algorithm in a general purpose computational fluid dynamics (CFD) code, Finite Difference Navier-Stokes (FDNS), with droplet dynamics and finite-rate chemistry models; and (3) to demonstrate the effectiveness of the present approach by simulating benchmark problems of jet breakup/spray atomization and combustion. Modeling multiphase fluid flows poses a significant challenge because a required boundary must be applied to a transient, irregular surface that is discontinuous, and the flow regimes considered can range from incompressible to highspeed compressible flows. The flow-process modeling is further complicated by surface tension, interfacial heat and mass transfer, spray formation and turbulence, and their interactions. The major contribution of the present method is to combine the novel feature of the Volume of Fluid (VOF) method and the Eulerian/Lagrangian method into a unified algorithm for efficient noniterative, time-accurate calculations of multiphase free surface flows valid at all speeds. The proposed method reformulated the VOF equation to strongly couple two distinct phases (liquid and gas), and tracks droplets on a Lagrangian frame when spray model is required, using a unified predictor-corrector technique to account for the non-linear linkages through the convective contributions of VOF. The discontinuities within the sharp interface will be modeled as a volume force to avoid stiffness. Formations of droplets, tracking of droplet dynamics and modeling of the droplet breakup/evaporation, are handled through the same unified predictor-corrector procedure. Thus the new algorithm is non-iterative and is flexible for general geometries with arbitrarily complex topology in free surfaces. The FDNS finite-difference Navier-Stokes code is employed as the baseline of the current development. Benchmark test cases of shear coaxial LOX/H2 liquid jet with atomization/combustion and impinging jet test cases are investigated in the present work. Preliminary data comparisons show good qualitative agreement between data and the present analysis. It is indicative from these results that the present method has great potential to become a general engineering design analysis and diagnostics tool for problems involving spray combustion.
A parallel variable metric optimization algorithm
NASA Technical Reports Server (NTRS)
Straeter, T. A.
1973-01-01
An algorithm, designed to exploit the parallel computing or vector streaming (pipeline) capabilities of computers is presented. When p is the degree of parallelism, then one cycle of the parallel variable metric algorithm is defined as follows: first, the function and its gradient are computed in parallel at p different values of the independent variable; then the metric is modified by p rank-one corrections; and finally, a single univariant minimization is carried out in the Newton-like direction. Several properties of this algorithm are established. The convergence of the iterates to the solution is proved for a quadratic functional on a real separable Hilbert space. For a finite-dimensional space the convergence is in one cycle when p equals the dimension of the space. Results of numerical experiments indicate that the new algorithm will exploit parallel or pipeline computing capabilities to effect faster convergence than serial techniques.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacón, Luis; CoCoMans Team
2014-10-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.
Lorentz boosted frame simulation technique in Particle-in-cell methods
NASA Astrophysics Data System (ADS)
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT/Finite Difference solver. This scheme also requires a current correction and filtering which require FFTs. However, we show that in this case the FFTs can be done locally on each parallel partition. We also describe how the use of the hybrid FFT/Finite Difference or the hybrid higher order finite difference/second order finite difference methods permit combining the Lorentz boosted frame simulation technique with another "speed up" technique, called the quasi-3D algorithm, to gain unprecedented speed up for the LWFA simulations. In the quasi-3D algorithm the fields and currents are defined on an r--z PIC grid and expanded in azimuthal harmonics. The expansion is truncated with only a few modes so it has similar computational needs of a 2D r--z PIC code. We show that NCI has similar properties in r--z as in z-x slab geometry and show that the same strategies for eliminating the NCI in Cartesian geometry can be effective for the quasi-3D algorithm leading to the possibility of unprecedented speed up. We also describe a new code called UPIC-EMMA that is based on fully spectral (FFT) solver. The new code includes implementation of a moving antenna that can launch lasers in the boosted frame. We also describe how the new hybrid algorithms were implemented into OSIRIS. Examples of LWFA using the boosted frame using both UPIC-EMMA and OSIRIS are given, including the comparisons against the lab frame results. We also describe how to efficiently obtain the boosted frame simulations data that are needed to generate the transformed lab frame data, as well as how to use a moving window in the boosted frame. The NCI is also a major issue for modeling relativistic shocks with PIC algorithm. In relativistic shock simulations two counter-propagating plasmas drifting at relativistic speeds are colliding against each other. We show that the strategies for eliminating the NCI developed in this dissertation are enabling such simulations being run for much longer simulation times, which should open a path for major advances in relativistic shock research. (Abstract shortened by ProQuest.).
NASA Astrophysics Data System (ADS)
Roche-Lima, Abiel; Thulasiram, Ruppa K.
2012-02-01
Finite automata, in which each transition is augmented with an output label in addition to the familiar input label, are considered finite-state transducers. Transducers have been used to analyze some fundamental issues in bioinformatics. Weighted finite-state transducers have been proposed to pairwise alignments of DNA and protein sequences; as well as to develop kernels for computational biology. Machine learning algorithms for conditional transducers have been implemented and used for DNA sequence analysis. Transducer learning algorithms are based on conditional probability computation. It is calculated by using techniques, such as pair-database creation, normalization (with Maximum-Likelihood normalization) and parameters optimization (with Expectation-Maximization - EM). These techniques are intrinsically costly for computation, even worse when are applied to bioinformatics, because the databases sizes are large. In this work, we describe a parallel implementation of an algorithm to learn conditional transducers using these techniques. The algorithm is oriented to bioinformatics applications, such as alignments, phylogenetic trees, and other genome evolution studies. Indeed, several experiences were developed using the parallel and sequential algorithm on Westgrid (specifically, on the Breeze cluster). As results, we obtain that our parallel algorithm is scalable, because execution times are reduced considerably when the data size parameter is increased. Another experience is developed by changing precision parameter. In this case, we obtain smaller execution times using the parallel algorithm. Finally, number of threads used to execute the parallel algorithm on the Breezy cluster is changed. In this last experience, we obtain as result that speedup is considerably increased when more threads are used; however there is a convergence for number of threads equal to or greater than 16.
A particle finite element method for machining simulations
NASA Astrophysics Data System (ADS)
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
NASA Technical Reports Server (NTRS)
Rubin, S. G.
1982-01-01
Recent developments with finite-difference techniques are emphasized. The quotation marks reflect the fact that any finite discretization procedure can be included in this category. Many so-called finite element collocation and galerkin methods can be reproduced by appropriate forms of the differential equations and discretization formulas. Many of the difficulties encountered in early Navier-Stokes calculations were inherent not only in the choice of the different equations (accuracy), but also in the method of solution or choice of algorithm (convergence and stability, in the manner in which the dependent variables or discretized equations are related (coupling), in the manner that boundary conditions are applied, in the manner that the coordinate mesh is specified (grid generation), and finally, in recognizing that for many high Reynolds number flows not all contributions to the Navier-Stokes equations are necessarily of equal importance (parabolization, preferred direction, pressure interaction, asymptotic and mathematical character). It is these elements that are reviewed. Several Navier-Stokes and parabolized Navier-Stokes formulations are also presented.
NASA Astrophysics Data System (ADS)
Smith, D. E.; Felizardo, C.; Minson, S. E.; Boese, M.; Langbein, J. O.; Murray, J. R.
2016-12-01
Finite-fault source algorithms can greatly benefit earthquake early warning (EEW) systems. Estimates of finite-fault parameters provide spatial information, which can significantly improve real-time shaking calculations and help with disaster response. In this project, we have focused on integrating a finite-fault seismic-geodetic algorithm into the West Coast ShakeAlert framework. The seismic part is FinDer 2, a C++ version of the algorithm developed by Böse et al. (2012). It interpolates peak ground accelerations and calculates the best fault length and strike from template matching. The geodetic part is a C++ version of BEFORES, the algorithm developed by Minson et al. (2014) that uses a Bayesian methodology to search for the most probable slip distribution on a fault of unknown orientation. Ultimately, these two will be used together where FinDer generates a Bayesian prior for BEFORES via the methodology of Minson et al. (2015), and the joint solution will generate estimates of finite-fault extent, strike, dip, best slip distribution, and magnitude. We have created C++ versions of both FinDer and BEFORES using open source libraries and have developed a C++ Application Protocol Interface (API) for them both. Their APIs allow FinDer and BEFORES to contribute to the ShakeAlert system via an open source messaging system, ActiveMQ. FinDer has been receiving real-time data, detecting earthquakes, and reporting messages on the development system for several months. We are also testing FinDer extensively with Earthworm tankplayer files. BEFORES has been tested with ActiveMQ messaging in the ShakeAlert framework, and works off a FinDer trigger. We are finishing the FinDer-BEFORES connections in this framework, and testing this system via seismic-geodetic tankplayer files. This will include actual and simulated data.
Eigensolution of finite element problems in a completely connected parallel architecture
NASA Technical Reports Server (NTRS)
Akl, Fred A.; Morel, Michael R.
1989-01-01
A parallel algorithm for the solution of the generalized eigenproblem in linear elastic finite element analysis, (K)(phi)=(M)(phi)(omega), where (K) and (M) are of order N, and (omega) is of order q is presented. The parallel algorithm is based on a completely connected parallel architecture in which each processor is allowed to communicate with all other processors. The algorithm has been successfully implemented on a tightly coupled multiple-instruction-multiple-data (MIMD) parallel processing computer, Cray X-MP. A finite element model is divided into m domains each of which is assumed to process n elements. Each domain is then assigned to a processor, or to a logical processor (task) if the number of domains exceeds the number of physical processors. The macro-tasking library routines are used in mapping each domain to a user task. Computational speed-up and efficiency are used to determine the effectiveness of the algorithm. The effect of the number of domains, the number of degrees-of-freedom located along the global fronts and the dimension of the subspace on the performance of the algorithm are investigated. For a 64-element rectangular plate, speed-ups of 1.86, 3.13, 3.18 and 3.61 are achieved on two, four, six and eight processors, respectively.
Helicopter time-domain electromagnetic numerical simulation based on Leapfrog ADI-FDTD
NASA Astrophysics Data System (ADS)
Guan, S.; Ji, Y.; Li, D.; Wu, Y.; Wang, A.
2017-12-01
We present a three-dimension (3D) Alternative Direction Implicit Finite-Difference Time-Domain (Leapfrog ADI-FDTD) method for the simulation of helicopter time-domain electromagnetic (HTEM) detection. This method is different from the traditional explicit FDTD, or ADI-FDTD. Comparing with the explicit FDTD, leapfrog ADI-FDTD algorithm is no longer limited by Courant-Friedrichs-Lewy(CFL) condition. Thus, the time step is longer. Comparing with the ADI-FDTD, we reduce the equations from 12 to 6 and .the Leapfrog ADI-FDTD method will be easier for the general simulation. First, we determine initial conditions which are adopted from the existing method presented by Wang and Tripp(1993). Second, we derive Maxwell equation using a new finite difference equation by Leapfrog ADI-FDTD method. The purpose is to eliminate sub-time step and retain unconditional stability characteristics. Third, we add the convolution perfectly matched layer (CPML) absorbing boundary condition into the leapfrog ADI-FDTD simulation and study the absorbing effect of different parameters. Different absorbing parameters will affect the absorbing ability. We find the suitable parameters after many numerical experiments. Fourth, We compare the response with the 1-Dnumerical result method for a homogeneous half-space to verify the correctness of our algorithm.When the model contains 107*107*53 grid points, the conductivity is 0.05S/m. The results show that Leapfrog ADI-FDTD need less simulation time and computer storage space, compared with ADI-FDTD. The calculation speed decreases nearly four times, memory occupation decreases about 32.53%. Thus, this algorithm is more efficient than the conventional ADI-FDTD method for HTEM detection, and is more precise than that of explicit FDTD in the late time.
Geodetic Finite-Fault-based Earthquake Early Warning Performance for Great Earthquakes Worldwide
NASA Astrophysics Data System (ADS)
Ruhl, C. J.; Melgar, D.; Grapenthin, R.; Allen, R. M.
2017-12-01
GNSS-based earthquake early warning (EEW) algorithms estimate fault-finiteness and unsaturated moment magnitude for the largest, most damaging earthquakes. Because large events are infrequent, algorithms are not regularly exercised and insufficiently tested on few available datasets. The Geodetic Alarm System (G-larmS) is a GNSS-based finite-fault algorithm developed as part of the ShakeAlert EEW system in the western US. Performance evaluations using synthetic earthquakes offshore Cascadia showed that G-larmS satisfactorily recovers magnitude and fault length, providing useful alerts 30-40 s after origin time and timely warnings of ground motion for onshore urban areas. An end-to-end test of the ShakeAlert system demonstrated the need for GNSS data to accurately estimate ground motions in real-time. We replay real data from several subduction-zone earthquakes worldwide to demonstrate the value of GNSS-based EEW for the largest, most damaging events. We compare predicted ground acceleration (PGA) from first-alert-solutions with those recorded in major urban areas. In addition, where applicable, we compare observed tsunami heights to those predicted from the G-larmS solutions. We show that finite-fault inversion based on GNSS-data is essential to achieving the goals of EEW.
A finite element solver for 3-D compressible viscous flows
NASA Technical Reports Server (NTRS)
Reddy, K. C.; Reddy, J. N.; Nayani, S.
1990-01-01
Computation of the flow field inside a space shuttle main engine (SSME) requires the application of state of the art computational fluid dynamic (CFD) technology. Several computer codes are under development to solve 3-D flow through the hot gas manifold. Some algorithms were designed to solve the unsteady compressible Navier-Stokes equations, either by implicit or explicit factorization methods, using several hundred or thousands of time steps to reach a steady state solution. A new iterative algorithm is being developed for the solution of the implicit finite element equations without assembling global matrices. It is an efficient iteration scheme based on a modified nonlinear Gauss-Seidel iteration with symmetric sweeps. The algorithm is analyzed for a model equation and is shown to be unconditionally stable. Results from a series of test problems are presented. The finite element code was tested for couette flow, which is flow under a pressure gradient between two parallel plates in relative motion. Another problem that was solved is viscous laminar flow over a flat plate. The general 3-D finite element code was used to compute the flow in an axisymmetric turnaround duct at low Mach numbers.
Chawla, A; Mukherjee, S; Karthikeyan, B
2009-02-01
The objective of this study is to identify the dynamic material properties of human passive muscle tissues for the strain rates relevant to automobile crashes. A novel methodology involving genetic algorithm (GA) and finite element method is implemented to estimate the material parameters by inverse mapping the impact test data. Isolated unconfined impact tests for average strain rates ranging from 136 s(-1) to 262 s(-1) are performed on muscle tissues. Passive muscle tissues are modelled as isotropic, linear and viscoelastic material using three-element Zener model available in PAMCRASH(TM) explicit finite element software. In the GA based identification process, fitness values are calculated by comparing the estimated finite element forces with the measured experimental forces. Linear viscoelastic material parameters (bulk modulus, short term shear modulus and long term shear modulus) are thus identified at strain rates 136 s(-1), 183 s(-1) and 262 s(-1) for modelling muscles. Extracted optimal parameters from this study are comparable with reported parameters in literature. Bulk modulus and short term shear modulus are found to be more influential in predicting the stress-strain response than long term shear modulus for the considered strain rates. Variations within the set of parameters identified at different strain rates indicate the need for new or improved material model, which is capable of capturing the strain rate dependency of passive muscle response with single set of material parameters for wide range of strain rates.
Variational Trajectory Optimization Tool Set: Technical description and user's manual
NASA Technical Reports Server (NTRS)
Bless, Robert R.; Queen, Eric M.; Cavanaugh, Michael D.; Wetzel, Todd A.; Moerder, Daniel D.
1993-01-01
The algorithms that comprise the Variational Trajectory Optimization Tool Set (VTOTS) package are briefly described. The VTOTS is a software package for solving nonlinear constrained optimal control problems from a wide range of engineering and scientific disciplines. The VTOTS package was specifically designed to minimize the amount of user programming; in fact, for problems that may be expressed in terms of analytical functions, the user needs only to define the problem in terms of symbolic variables. This version of the VTOTS does not support tabular data; thus, problems must be expressed in terms of analytical functions. The VTOTS package consists of two methods for solving nonlinear optimal control problems: a time-domain finite-element algorithm and a multiple shooting algorithm. These two algorithms, under the VTOTS package, may be run independently or jointly. The finite-element algorithm generates approximate solutions, whereas the shooting algorithm provides a more accurate solution to the optimization problem. A user's manual, some examples with results, and a brief description of the individual subroutines are included.
Development of models of the magnetorheological fluid damper
NASA Astrophysics Data System (ADS)
Kazakov, Yu. B.; Morozov, N. A.; Nesterov, S. A.
2017-06-01
The algorithm for analytical calculation of a power characteristic of magnetorheological (MR) dampers taking into account the rheological properties of MR fluid is considered. The nonlinear magnetorheological characteristics are represented by piecewise linear approximation to MR fluid areas with different viscosities. The extended calculated power characteristics of a MR damper are received and they coincide with actual results. The finite element model of a MR damper is developed; it allows carrying out the analysis of a MR damper taking into account the mutual influence of electromagnetic, hydrodynamic and thermal fields. The results of finite element simulation coincide with analytical solutions that allows using them for design development of a MR damper.
Flexible architecture of data acquisition firmware based on multi-behaviors finite state machine
NASA Astrophysics Data System (ADS)
Arpaia, Pasquale; Cimmino, Pasquale
2016-11-01
A flexible firmware architecture for different kinds of data acquisition systems, ranging from high-precision bench instruments to low-cost wireless transducers networks, is presented. The key component is a multi-behaviors finite state machine, easily configurable to both low- and high-performance requirements, to diverse operating systems, as well as to on-line and batch measurement algorithms. The proposed solution was validated experimentally on three case studies with data acquisition architectures: (i) concentrated, in a high-precision instrument for magnetic measurements at CERN, (ii) decentralized, for telemedicine remote monitoring of patients at home, and (iii) distributed, for remote monitoring of building's energy loss.
Interpolation Hermite Polynomials For Finite Element Method
NASA Astrophysics Data System (ADS)
Gusev, Alexander; Vinitsky, Sergue; Chuluunbaatar, Ochbadrakh; Chuluunbaatar, Galmandakh; Gerdt, Vladimir; Derbov, Vladimir; Góźdź, Andrzej; Krassovitskiy, Pavel
2018-02-01
We describe a new algorithm for analytic calculation of high-order Hermite interpolation polynomials of the simplex and give their classification. A typical example of triangle element, to be built in high accuracy finite element schemes, is given.
Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel Kus; Pavel Solin; David Andrs
2014-11-01
In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.
NASA Astrophysics Data System (ADS)
Li, Zhong-sheng; Bai, Chao-ying; Sun, Yao-chong
2013-08-01
In this paper, we use the staggered grid, the auxiliary grid, the rotated staggered grid and the non-staggered grid finite-difference methods to simulate the wavefield propagation in 2D elastic tilted transversely isotropic (TTI) and viscoelastic TTI media, respectively. Under the stability conditions, we choose different spatial and temporal intervals to get wavefront snapshots and synthetic seismograms to compare the four algorithms in terms of computational accuracy, CPU time, phase shift, frequency dispersion and amplitude preservation. The numerical results show that: (1) the rotated staggered grid scheme has the least memory cost and the fastest running speed; (2) the non-staggered grid scheme has the highest computational accuracy and least phase shift; (3) the staggered grid has less frequency dispersion even when the spatial interval becomes larger.
An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems
NASA Technical Reports Server (NTRS)
Deng, Qingping
1996-01-01
A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
NASA Astrophysics Data System (ADS)
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-10-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Testing Linear Temporal Logic Formulae on Finite Execution Traces
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Rosu, Grigore; Norvig, Peter (Technical Monitor)
2001-01-01
We present an algorithm for efficiently testing Linear Temporal Logic (LTL) formulae on finite execution traces. The standard models of LTL are infinite traces, reflecting the behavior of reactive and concurrent systems which conceptually may be continuously alive. In most past applications of LTL. theorem provers and model checkers have been used to formally prove that down-scaled models satisfy such LTL specifications. Our goal is instead to use LTL for up-scaled testing of real software applications. Such tests correspond to analyzing the conformance of finite traces against LTL formulae. We first describe what it means for a finite trace to satisfy an LTL property. We then suggest an optimized algorithm based on transforming LTL formulae. The work is done using the Maude rewriting system. which turns out to provide a perfect notation and an efficient rewriting engine for performing these experiments.
A study of trends and techniques for space base electronics
NASA Technical Reports Server (NTRS)
Trotter, J. D.; Wade, T. E.; Gassaway, J. D.; Mahmood, Q.
1978-01-01
A sputtering system was developed to deposit aluminum and aluminum alloys by the dc sputtering technique. This system is designed for a high level of cleanliness and for monitoring the deposition parameters during film preparation. This system is now ready for studying the deposition and annealing parameters upon double-level metal preparation. A technique recently applied for semiconductor analysis, the finite element method, was studied for use in the computer modeling of two dimensional MOS transistor structures. It was concluded that the method has not been sufficiently well developed for confident use at this time. An algorithm was developed for confident use at this time. An algorithm was developed for implementing a computer study which is based upon the finite difference method. The program which was developed was modified and used to calculate redistribution data for boron and phosphorous which had been predeposited by ion implantation with range and straggle conditions. Data were generated for 111 oriented SOS films with redistribution in N2, dry O2 and steam ambients.
Control Theory based Shape Design for the Incompressible Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Cowles, G.; Martinelli, L.
2003-12-01
A design method for shape optimization in incompressible turbulent viscous flow has been developed and validated for inverse design. The gradient information is determined using a control theory based algorithm. With such an approach, the cost of computing the gradient is negligible. An additional adjoint system must be solved which requires the cost of a single steady state flow solution. Thus, this method has an enormous advantage over traditional finite-difference based algorithms. The method of artificial compressibility is utilized to solve both the flow and adjoint systems. An algebraic turbulence model is used to compute the eddy viscosity. The method is validated using several inverse wing design test cases. In each case, the program must modify the shape of the initial wing such that its pressure distribution matches that of the target wing. Results are shown for the inversion of both finite thickness wings as well as zero thickness wings which can be considered a model of yacht sails.
High performance computation of radiative transfer equation using the finite element method
NASA Astrophysics Data System (ADS)
Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.
2018-05-01
This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.
Computation of the shock-wave boundary layer interaction with flow separation
NASA Technical Reports Server (NTRS)
Ardonceau, P.; Alziary, T.; Aymer, D.
1980-01-01
The boundary layer concept is used to describe the flow near the wall. The external flow is approximated by a pressure displacement relationship (tangent wedge in linearized supersonic flow). The boundary layer equations are solved in finite difference form and the question of the presence and unicity of the solution is considered for the direct problem (assumed pressure) or converse problem (assumed displacement thickness, friction ratio). The coupling algorithm presented implicitly processes the downstream boundary condition necessary to correctly define the interacting boundary layer problem. The algorithm uses a Newton linearization technique to provide a fast convergence.
[Accurate 3D free-form registration between fan-beam CT and cone-beam CT].
Liang, Yueqiang; Xu, Hongbing; Li, Baosheng; Li, Hongsheng; Yang, Fujun
2012-06-01
Because the X-ray scatters, the CT numbers in cone-beam CT cannot exactly correspond to the electron densities. This, therefore, results in registration error when the intensity-based registration algorithm is used to register planning fan-beam CT and cone-beam CT. In order to reduce the registration error, we have developed an accurate gradient-based registration algorithm. The gradient-based deformable registration problem is described as a minimization of energy functional. Through the calculus of variations and Gauss-Seidel finite difference method, we derived the iterative formula of the deformable registration. The algorithm was implemented by GPU through OpenCL framework, with which the registration time was greatly reduced. Our experimental results showed that the proposed gradient-based registration algorithm could register more accurately the clinical cone-beam CT and fan-beam CT images compared with the intensity-based algorithm. The GPU-accelerated algorithm meets the real-time requirement in the online adaptive radiotherapy.
Nonlinear grid error effects on numerical solution of partial differential equations
NASA Technical Reports Server (NTRS)
Dey, S. K.
1980-01-01
Finite difference solutions of nonlinear partial differential equations require discretizations and consequently grid errors are generated. These errors strongly affect stability and convergence properties of difference models. Previously such errors were analyzed by linearizing the difference equations for solutions. Properties of mappings of decadence were used to analyze nonlinear instabilities. Such an analysis is directly affected by initial/boundary conditions. An algorithm was developed, applied to nonlinear Burgers equations, and verified computationally. A preliminary test shows that Navier-Stokes equations may be treated similarly.
A Maple package for computing Gröbner bases for linear recurrence relations
NASA Astrophysics Data System (ADS)
Gerdt, Vladimir P.; Robertz, Daniel
2006-04-01
A Maple package for computing Gröbner bases of linear difference ideals is described. The underlying algorithm is based on Janet and Janet-like monomial divisions associated with finite difference operators. The package can be used, for example, for automatic generation of difference schemes for linear partial differential equations and for reduction of multiloop Feynman integrals. These two possible applications are illustrated by simple examples of the Laplace equation and a one-loop scalar integral of propagator type.
Genetic Algorithm Design of a 3D Printed Heat Sink
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Tong; Ozpineci, Burak; Ayers, Curtis William
2016-01-01
In this paper, a genetic algorithm- (GA-) based approach is discussed for designing heat sinks based on total heat generation and dissipation for a pre-specified size andshape. This approach combines random iteration processesand genetic algorithms with finite element analysis (FEA) to design the optimized heat sink. With an approach that prefers survival of the fittest , a more powerful heat sink can bedesigned which can cool power electronics more efficiently. Some of the resulting designs can only be 3D printed due totheir complexity. In addition to describing the methodology, this paper also includes comparisons of different cases to evaluate themore » performance of the newly designed heat sinkcompared to commercially available heat sinks.« less
An efficient variable projection formulation for separable nonlinear least squares problems.
Gan, Min; Li, Han-Xiong
2014-05-01
We consider in this paper a class of nonlinear least squares problems in which the model can be represented as a linear combination of nonlinear functions. The variable projection algorithm projects the linear parameters out of the problem, leaving the nonlinear least squares problems involving only the nonlinear parameters. To implement the variable projection algorithm more efficiently, we propose a new variable projection functional based on matrix decomposition. The advantage of the proposed formulation is that the size of the decomposed matrix may be much smaller than those of previous ones. The Levenberg-Marquardt algorithm using finite difference method is then applied to minimize the new criterion. Numerical results show that the proposed approach achieves significant reduction in computing time.
A simple extension of Roe's scheme for real gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arabi, Sina, E-mail: sina.arabi@polymtl.ca; Trépanier, Jean-Yves; Camarero, Ricardo
The purpose of this paper is to develop a highly accurate numerical algorithm to model real gas flows in local thermodynamic equilibrium (LTE). The Euler equations are solved using a finite volume method based on Roe's flux difference splitting scheme including real gas effects. A novel algorithm is proposed to calculate the Jacobian matrix which satisfies the flux difference splitting exactly in the average state for a general equation of state. This algorithm increases the robustness and accuracy of the method, especially around the contact discontinuities and shock waves where the gas properties jump appreciably. The results are compared withmore » an exact solution of the Riemann problem for the shock tube which considers the real gas effects. In addition, the method is applied to a blunt cone to illustrate the capability of the proposed extension in solving two dimensional flows.« less
A numerical simulation of finite-length Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Streett, C. L.; Hussaini, M. Y.
1987-01-01
The processes leading to laminar-turbulent transition in finite-channel-length Taylor-Couette flow are investigated analytically, solving the unsteady incompressible Navier-Stokes equations by spectral-collocation methods. A time-split algorithm, implementable in both axisymmetric and fully three-dimensional time-accurate versions, and an algorithm based on the staggered-mesh discretization of Bernardi and Maday (1986) are described in detail, and results obtained by applying the axisymmetric version of the first algorithm and a steady-state version of the second are presented graphically and compared with published experimental data. The feasibility of full three-dimensional simulations of the progression through chaotic states to turbulence under the constraints of Taylor-Couette flow is demonstrated.
Pazos, Valérie; Mongrain, Rosaire; Tardif, Jean-Claude
2010-06-01
Clinical studies on lipid-lowering therapy have shown that changing the composition of lipid pools reduced significantly the risk of cardiac events associated with plaque rupture. It has been shown also that changing the composition of the lipid pool affects its mechanical properties. However, knowledge about the mechanical properties of human atherosclerotic lesions remains limited due to the difficulty of the experiments. This paper aims to assess the feasibility of characterizing a lipid pool embedded in the wall of a pressurized vessel using finite-element simulations and an optimization algorithm. Finite-element simulations of inflation experiments were used together with nonlinear least squares algorithm to estimate the material model parameters of the wall and of the inclusion. An optimal fit of the simulated experiment and the real experiment was sought with the parameter estimation algorithm. The method was first tested on a single-layer polyvinyl alcohol (PVA) cryogel stenotic vessel, and then, applied on a double-layered PVA cryogel stenotic vessel with a lipid inclusion.
A high order accurate finite element algorithm for high Reynolds number flow prediction
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.
Binary tree eigen solver in finite element analysis
NASA Technical Reports Server (NTRS)
Akl, F. A.; Janetzke, D. C.; Kiraly, L. J.
1993-01-01
This paper presents a transputer-based binary tree eigensolver for the solution of the generalized eigenproblem in linear elastic finite element analysis. The algorithm is based on the method of recursive doubling, which parallel implementation of a number of associative operations on an arbitrary set having N elements is of the order of o(log2N), compared to (N-1) steps if implemented sequentially. The hardware used in the implementation of the binary tree consists of 32 transputers. The algorithm is written in OCCAM which is a high-level language developed with the transputers to address parallel programming constructs and to provide the communications between processors. The algorithm can be replicated to match the size of the binary tree transputer network. Parallel and sequential finite element analysis programs have been developed to solve for the set of the least-order eigenpairs using the modified subspace method. The speed-up obtained for a typical analysis problem indicates close agreement with the theoretical prediction given by the method of recursive doubling.
Stochastic control approaches for sensor management in search and exploitation
NASA Astrophysics Data System (ADS)
Hitchings, Darin Chester
Recent improvements in the capabilities of autonomous vehicles have motivated their increased use in such applications as defense, homeland security, environmental monitoring, and surveillance. To enhance performance in these applications, new algorithms are required to control teams of robots autonomously and through limited interactions with human operators. In this dissertation we develop new algorithms for control of robots performing information-seeking missions in unknown environments. These missions require robots to control their sensors in order to discover the presence of objects, keep track of the objects, and learn what these objects are, given a fixed sensing budget. Initially, we investigate control of multiple sensors, with a finite set of sensing options and finite-valued measurements, to locate and classify objects given a limited resource budget. The control problem is formulated as a Partially Observed Markov Decision Problem (POMDP), but its exact solution requires excessive computation. Under the assumption that sensor error statistics are independent and time-invariant, we develop a class of algorithms using Lagrangian Relaxation techniques to obtain optimal mixed strategies using performance bounds developed in previous research. We investigate alternative Receding Horizon (RH) controllers to convert the mixed strategies to feasible adaptive-sensing strategies and evaluate the relative performance of these controllers in simulation. The resulting controllers provide superior performance to alternative algorithms proposed in the literature and obtain solutions to large-scale POMDP problems several orders of magnitude faster than optimal Dynamic Programming (DP) approaches with comparable performance quality. We extend our results for finite action, finite measurement sensor control to scenarios with moving objects. We use Hidden Markov Models (HMMs) for the evolution of objects, according to the dynamics of a birth-death process. We develop a new lower bound on the performance of adaptive controllers in these scenarios, develop algorithms for computing solutions to this lower bound, and use these algorithms as part of a RH controller for sensor allocation in the presence of moving objects We also consider an adaptive Search problem where sensing actions are continuous and the underlying measurement space is also continuous. We extend our previous hierarchical decomposition approach based on performance bounds to this problem and develop novel implementations of Stochastic Dynamic Programming (SDP) techniques to solve this problem. Our algorithms are nearly two orders of magnitude faster than previously proposed approaches and yield solutions of comparable quality. For supervisory control, we discuss how human operators can work with and augment robotic teams performing these tasks. Our focus is on how tasks are partitioned among teams of robots and how a human operator can make intelligent decisions for task partitioning. We explore these questions through the design of a game that involves robot automata controlled by our algorithms and a human supervisor that partitions tasks based on different levels of support information. This game can be used with human subject experiments to explore the effect of information on quality of supervisory control.
NASA Technical Reports Server (NTRS)
Endo, T.; Oden, J. T.; Becker, E. B.; Miller, T.
1984-01-01
Finite element methods for the analysis of bifurcations, limit-point behavior, and unilateral frictionless contact of elastic bodies undergoing finite deformation are presented. Particular attention is given to the development and application of Riks-type algorithms for the analysis of limit points and exterior penalty methods for handling the unilateral constraints. Applications focus on the problem of finite axisymmetric deformations, snap-through, and inflation of thick rubber spherical shells.
Comparison of Gap Elements and Contact Algorithm for 3D Contact Analysis of Spiral Bevel Gears
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Tiku, K.; Kumar, A.; Handschuh, R.
1994-01-01
Three dimensional stress analysis of spiral bevel gears in mesh using the finite element method is presented. A finite element model is generated by solving equations that identify tooth surface coordinates. Contact is simulated by the automatic generation of nonpenetration constraints. This method is compared to a finite element contact analysis conducted with gap elements.
Numerical Analysis of Solids at Failure
2011-08-20
failure analyses include the formulation of invariant finite elements for thin Kirchhoff rods, and preliminary initial studies of growth in...analysis of the failure of other structural/mechanical systems, including the finite element modeling of thin Kirchhoff rods and the constitutive...algorithm based on the connectivity graph of the underlying finite element mesh. In this setting, the discontinuities are defined by fronts propagating
NASA Technical Reports Server (NTRS)
Chen, Y. S.
1986-01-01
In this report, a numerical method for solving the equations of motion of three-dimensional incompressible flows in nonorthogonal body-fitted coordinate (BFC) systems has been developed. The equations of motion are transformed to a generalized curvilinear coordinate system from which the transformed equations are discretized using finite difference approximations in the transformed domain. The hybrid scheme is used to approximate the convection terms in the governing equations. Solutions of the finite difference equations are obtained iteratively by using a pressure-velocity correction algorithm (SIMPLE-C). Numerical examples of two- and three-dimensional, laminar and turbulent flow problems are employed to evaluate the accuracy and efficiency of the present computer code. The user's guide and computer program listing of the present code are also included.
The finite element method in low speed aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1975-01-01
The finite element procedure is shown to be of significant impact in design of the 'computational wind tunnel' for low speed aerodynamics. The uniformity of the mathematical differential equation description, for viscous and/or inviscid, multi-dimensional subsonic flows about practical aerodynamic system configurations, is utilized to establish the general form of the finite element algorithm. Numerical results for inviscid flow analysis, as well as viscous boundary layer, parabolic, and full Navier Stokes flow descriptions verify the capabilities and overall versatility of the fundamental algorithm for aerodynamics. The proven mathematical basis, coupled with the distinct user-orientation features of the computer program embodiment, indicate near-term evolution of a highly useful analytical design tool to support computational configuration studies in low speed aerodynamics.
NASA Astrophysics Data System (ADS)
Bercea, Gheorghe-Teodor; McRae, Andrew T. T.; Ham, David A.; Mitchell, Lawrence; Rathgeber, Florian; Nardi, Luigi; Luporini, Fabio; Kelly, Paul H. J.
2016-10-01
We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of three-dimensional high aspect ratio domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The algorithm presented here exploits this structure to avoid the performance penalty traditionally associated with unstructured meshes. We evaluate the implementation of this algorithm in the Firedrake finite element system on a range of low compute intensity operations which constitute worst cases for data layout performance exploration. The experiments show that having structure along the extruded direction enables the cost of the indirect data accesses to be amortized after 10-20 layers as long as the underlying mesh is well ordered. We characterize the resulting spatial and temporal reuse in a representative set of both continuous-Galerkin and discontinuous-Galerkin discretizations. On meshes with realistic numbers of layers the performance achieved is between 70 and 90 % of a theoretical hardware-specific limit.
A Rewriting-Based Approach to Trace Analysis
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Rosu, Grigore; Clancy, Daniel (Technical Monitor)
2002-01-01
We present a rewriting-based algorithm for efficiently evaluating future time Linear Temporal Logic (LTL) formulae on finite execution traces online. While the standard models of LTL are infinite traces, finite traces appear naturally when testing and/or monitoring red applications that only run for limited time periods. The presented algorithm is implemented in the Maude executable specification language and essentially consists of a set of equations establishing an executable semantics of LTL using a simple formula transforming approach. The algorithm is further improved to build automata on-the-fly from formulae, using memoization. The result is a very efficient and small Maude program that can be used to monitor program executions. We furthermore present an alternative algorithm for synthesizing probably minimal observer finite state machines (or automata) from LTL formulae, which can be used to analyze execution traces without the need for a rewriting system, and can hence be used by observers written in conventional programming languages. The presented work is part of an ambitious runtime verification and monitoring project at NASA Ames, called PATHEXPLORER, and demonstrates that rewriting can be a tractable and attractive means for experimenting and implementing program monitoring logics.
Iterative methods for 3D implicit finite-difference migration using the complex Padé approximation
NASA Astrophysics Data System (ADS)
Costa, Carlos A. N.; Campos, Itamara S.; Costa, Jessé C.; Neto, Francisco A.; Schleicher, Jörg; Novais, Amélia
2013-08-01
Conventional implementations of 3D finite-difference (FD) migration use splitting techniques to accelerate performance and save computational cost. However, such techniques are plagued with numerical anisotropy that jeopardises the correct positioning of dipping reflectors in the directions not used for the operator splitting. We implement 3D downward continuation FD migration without splitting using a complex Padé approximation. In this way, the numerical anisotropy is eliminated at the expense of a computationally more intensive solution of a large-band linear system. We compare the performance of the iterative stabilized biconjugate gradient (BICGSTAB) and that of the multifrontal massively parallel direct solver (MUMPS). It turns out that the use of the complex Padé approximation not only stabilizes the solution, but also acts as an effective preconditioner for the BICGSTAB algorithm, reducing the number of iterations as compared to the implementation using the real Padé expansion. As a consequence, the iterative BICGSTAB method is more efficient than the direct MUMPS method when solving a single term in the Padé expansion. The results of both algorithms, here evaluated by computing the migration impulse response in the SEG/EAGE salt model, are of comparable quality.
Finite Element Analysis of Tube Hydroforming in Non-Symmetrical Dies
NASA Astrophysics Data System (ADS)
Nulkar, Abhishek V.; Gu, Randy; Murty, Pilaka
2011-08-01
Tube hydroforming has been studied intensively using commercial finite element programs. A great deal of the investigations dealt with models with symmetric cross-sections. It is known that additional constraints due to symmetry may be imposed on the model so that it is properly supported. For a non-symmetric model, these constraints become invalid and the model does not have sufficient support resulting in a singular finite element system. Majority of commercial codes have a limited capability in solving models with insufficient supports. Recently, new algorithms using penalty variable and air-like contact element (ALCE) have been developed to solve positive semi-definite finite element systems such as those in contact mechanics. In this study the ALCE algorithm is first validated by comparing its result against a commercial code using a symmetric model in which a circular tube is formed to polygonal dies with symmetric shapes. Then, the study investigates the accuracy and efficiency of using ALCE in analyzing hydroforming of tubes with various cross-sections in non-symmetrical dies in 2-D finite element settings.
Meshless Method for Simulation of Compressible Flow
NASA Astrophysics Data System (ADS)
Nabizadeh Shahrebabak, Ebrahim
In the present age, rapid development in computing technology and high speed supercomputers has made numerical analysis and computational simulation more practical than ever before for large and complex cases. Numerical simulations have also become an essential means for analyzing the engineering problems and the cases that experimental analysis is not practical. There are so many sophisticated and accurate numerical schemes, which do these simulations. The finite difference method (FDM) has been used to solve differential equation systems for decades. Additional numerical methods based on finite volume and finite element techniques are widely used in solving problems with complex geometry. All of these methods are mesh-based techniques. Mesh generation is an essential preprocessing part to discretize the computation domain for these conventional methods. However, when dealing with mesh-based complex geometries these conventional mesh-based techniques can become troublesome, difficult to implement, and prone to inaccuracies. In this study, a more robust, yet simple numerical approach is used to simulate problems in an easier manner for even complex problem. The meshless, or meshfree, method is one such development that is becoming the focus of much research in the recent years. The biggest advantage of meshfree methods is to circumvent mesh generation. Many algorithms have now been developed to help make this method more popular and understandable for everyone. These algorithms have been employed over a wide range of problems in computational analysis with various levels of success. Since there is no connectivity between the nodes in this method, the challenge was considerable. The most fundamental issue is lack of conservation, which can be a source of unpredictable errors in the solution process. This problem is particularly evident in the presence of steep gradient regions and discontinuities, such as shocks that frequently occur in high speed compressible flow problems. To solve this discontinuity problem, this research study deals with the implementation of a conservative meshless method and its applications in computational fluid dynamics (CFD). One of the most common types of collocating meshless method the RBF-DQ, is used to approximate the spatial derivatives. The issue with meshless methods when dealing with highly convective cases is that they cannot distinguish the influence of fluid flow from upstream or downstream and some methodology is needed to make the scheme stable. Therefore, an upwinding scheme similar to one used in the finite volume method is added to capture steep gradient or shocks. This scheme creates a flexible algorithm within which a wide range of numerical flux schemes, such as those commonly used in the finite volume method, can be employed. In addition, a blended RBF is used to decrease the dissipation ensuing from the use of a low shape parameter. All of these steps are formulated for the Euler equation and a series of test problems used to confirm convergence of the algorithm. The present scheme was first employed on several incompressible benchmarks to validate the framework. The application of this algorithm is illustrated by solving a set of incompressible Navier-Stokes problems. Results from the compressible problem are compared with the exact solution for the flow over a ramp and compared with solutions of finite volume discretization and the discontinuous Galerkin method, both requiring a mesh. The applicability of the algorithm and its robustness are shown to be applied to complex problems.
NASA Astrophysics Data System (ADS)
Han, Byeongho; Seol, Soon Jee; Byun, Joongmoo
2012-04-01
To simulate wave propagation in a tilted transversely isotropic (TTI) medium with a tilting symmetry-axis of anisotropy, we develop a 2D elastic forward modelling algorithm. In this algorithm, we use the staggered-grid finite-difference method which has fourth-order accuracy in space and second-order accuracy in time. Since velocity-stress formulations are defined for staggered grids, we include auxiliary grid points in the z-direction to meet the free surface boundary conditions for shear stress. Through comparisons of displacements obtained from our algorithm, not only with analytical solutions but also with finite element solutions, we are able to validate that the free surface conditions operate appropriately and elastic waves propagate correctly. In order to handle the artificial boundary reflections efficiently, we also implement convolutional perfectly matched layer (CPML) absorbing boundaries in our algorithm. The CPML sufficiently attenuates energy at the grazing incidence by modifying the damping profile of the PML boundary. Numerical experiments indicate that the algorithm accurately expresses elastic wave propagation in the TTI medium. At the free surface, the numerical results show good agreement with analytical solutions not only for body waves but also for the Rayleigh wave which has strong amplitude along the surface. In addition, we demonstrate the efficiency of CPML for a homogeneous TI medium and a dipping layered model. Only using 10 grid points to the CPML regions, the artificial reflections are successfully suppressed and the energy of the boundary reflection back into the effective modelling area is significantly decayed.
Numerical Simulation of the Interaction of a Vortex with Stationary Airfoil in Transonic Flow,
1984-01-12
Goorjian, P. M., "Implicit Vortex Wakes ," AIAA Journal, Vol. 15, No. 4, April Finite- Difference Computations of Unsteady Transonic 1977, pp. 581-590... Difference Simulations of Three- tion of Wing- Vortex Interaction in Transonic Flow Dimensional Flow," AIAA Journal, Vol. 18, No. 2, Using Implicit...assumptions are made in p = density modeling the nonlinear vortex wake structure. Numerical algorithms based on the Euler equations p_ = free stream density
Comparison of Several Dissipation Algorithms for Central Difference Schemes
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Radespiel, R.; Turkel, E.
1997-01-01
Several algorithms for introducing artificial dissipation into a central difference approximation to the Euler and Navier Stokes equations are considered. The focus of the paper is on the convective upwind and split pressure (CUSP) scheme, which is designed to support single interior point discrete shock waves. This scheme is analyzed and compared in detail with scalar and matrix dissipation (MATD) schemes. Resolution capability is determined by solving subsonic, transonic, and hypersonic flow problems. A finite-volume discretization and a multistage time-stepping scheme with multigrid are used to compute solutions to the flow equations. Numerical results are also compared with either theoretical solutions or experimental data. For transonic airfoil flows the best accuracy on coarse meshes for aerodynamic coefficients is obtained with a simple MATD scheme.
Vibration suppression in flexible structures via the sliding-mode control approach
NASA Technical Reports Server (NTRS)
Drakunov, S.; Oezguener, Uemit
1994-01-01
Sliding mode control became very popular recently because it makes the closed loop system highly insensitive to external disturbances and parameter variations. Sliding algorithms for flexible structures have been used previously, but these were based on finite-dimensional models. An extension of this approach for differential-difference systems is obtained. That makes if possible to apply sliding-mode control algorithms to the variety of nondispersive flexible structures which can be described as differential-difference systems. The main idea of using this technique for dispersive structures is to reduce the order of the controlled part of the system by applying an integral transformation. We can say that transformation 'absorbs' the dispersive properties of the flexible structure as the controlled part becomes dispersive.
Li, Fei; Yu, Peicheng; Xu, Xinlu; ...
2017-01-12
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less
NASA Astrophysics Data System (ADS)
Li, Fei; Yu, Peicheng; Xu, Xinlu; Fiuza, Frederico; Decyk, Viktor K.; Dalichaouch, Thamine; Davidson, Asher; Tableman, Adam; An, Weiming; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Mori, Warren B.
2017-05-01
In this paper we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1 ˆ direction). We show that this eliminates the main NCI modes with moderate |k1 | , while keeps additional main NCI modes well outside the range of physical interest with higher |k1 | . These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1 ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss' Law is satisfied. We present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Fei; Yu, Peicheng; Xu, Xinlu
In this study we present a customized finite-difference-time-domain (FDTD) Maxwell solver for the particle-in-cell (PIC) algorithm. The solver is customized to effectively eliminate the numerical Cerenkov instability (NCI) which arises when a plasma (neutral or non-neutral) relativistically drifts on a grid when using the PIC algorithm. We control the EM dispersion curve in the direction of the plasma drift of a FDTD Maxwell solver by using a customized higher order finite difference operator for the spatial derivative along the direction of the drift (1ˆ direction). We show that this eliminates the main NCI modes with moderate |k 1|, while keepsmore » additional main NCI modes well outside the range of physical interest with higher |k 1|. These main NCI modes can be easily filtered out along with first spatial aliasing NCI modes which are also at the edge of the fundamental Brillouin zone. The customized solver has the possible advantage of improved parallel scalability because it can be easily partitioned along 1ˆ which typically has many more cells than other directions for the problems of interest. We show that FFTs can be performed locally to current on each partition to filter out the main and first spatial aliasing NCI modes, and to correct the current so that it satisfies the continuity equation for the customized spatial derivative. This ensures that Gauss’ Law is satisfied. Lastly, we present simulation examples of one relativistically drifting plasma, of two colliding relativistically drifting plasmas, and of nonlinear laser wakefield acceleration (LWFA) in a Lorentz boosted frame that show no evidence of the NCI can be observed when using this customized Maxwell solver together with its NCI elimination scheme.« less
Complexity multiscale asynchrony measure and behavior for interacting financial dynamics
NASA Astrophysics Data System (ADS)
Yang, Ge; Wang, Jun; Niu, Hongli
2016-08-01
A stochastic financial price process is proposed and investigated by the finite-range multitype contact dynamical system, in an attempt to study the nonlinear behaviors of real asset markets. The viruses spreading process in a finite-range multitype system is used to imitate the interacting behaviors of diverse investment attitudes in a financial market, and the empirical research on descriptive statistics and autocorrelation behaviors of return time series is performed for different values of propagation rates. Then the multiscale entropy analysis is adopted to study several different shuffled return series, including the original return series, the corresponding reversal series, the random shuffled series, the volatility shuffled series and the Zipf-type shuffled series. Furthermore, we propose and compare the multiscale cross-sample entropy and its modification algorithm called composite multiscale cross-sample entropy. We apply them to study the asynchrony of pairs of time series under different time scales.
Improved finite-difference computation of the van der Waals force: One-dimensional case
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pinto, Fabrizio
2009-10-15
We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate themore » difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.« less
Finite elements and the method of conjugate gradients on a concurrent processor
NASA Technical Reports Server (NTRS)
Lyzenga, G. A.; Raefsky, A.; Hager, G. H.
1985-01-01
An algorithm for the iterative solution of finite element problems on a concurrent processor is presented. The method of conjugate gradients is used to solve the system of matrix equations, which is distributed among the processors of a MIMD computer according to an element-based spatial decomposition. This algorithm is implemented in a two-dimensional elastostatics program on the Caltech Hypercube concurrent processor. The results of tests on up to 32 processors show nearly linear concurrent speedup, with efficiencies over 90 percent for sufficiently large problems.
NASA Technical Reports Server (NTRS)
Baker, A. J.; Iannelli, G. S.; Manhardt, Paul D.; Orzechowski, J. A.
1993-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
A novel adaptive algorithm for 3D finite element analysis to model extracortical bone growth.
Cheong, Vee San; Blunn, Gordon W; Coathup, Melanie J; Fromme, Paul
2018-02-01
Extracortical bone growth with osseointegration of bone onto the shaft of massive bone tumour implants is an important clinical outcome for long-term implant survival. A new computational algorithm combining geometrical shape changes and bone adaptation in 3D Finite Element simulations has been developed, using a soft tissue envelope mesh, a novel concept of osteoconnectivity, and bone remodelling theory. The effects of varying the initial tissue density, spatial influence function and time step were investigated. The methodology demonstrated good correspondence to radiological results for a segmental prosthesis.
Finite elements and the method of conjugate gradients on a concurrent processor
NASA Technical Reports Server (NTRS)
Lyzenga, G. A.; Raefsky, A.; Hager, B. H.
1984-01-01
An algorithm for the iterative solution of finite element problems on a concurrent processor is presented. The method of conjugate gradients is used to solve the system of matrix equations, which is distributed among the processors of a MIMD computer according to an element-based spatial decomposition. This algorithm is implemented in a two-dimensional elastostatics program on the Caltech Hypercube concurrent processor. The results of tests on up to 32 processors show nearly linear concurrent speedup, with efficiencies over 90% for sufficiently large problems.
An integrated algorithm for hypersonic fluid-thermal-structural numerical simulation
NASA Astrophysics Data System (ADS)
Li, Jia-Wei; Wang, Jiang-Feng
2018-05-01
In this paper, a fluid-structural-thermal integrated method is presented based on finite volume method. A unified integral equations system is developed as the control equations for physical process of aero-heating and structural heat transfer. The whole physical field is discretized by using an up-wind finite volume method. To demonstrate its capability, the numerical simulation of Mach 6.47 flow over stainless steel cylinder shows a good agreement with measured values, and this method dynamically simulates the objective physical processes. Thus, the integrated algorithm proves to be efficient and reliable.
An arbitrary grid CFD algorithm for configuration aerodynamics analysis. Volume 2: FEMNAS user guide
NASA Technical Reports Server (NTRS)
Manhardt, Paul D.; Orzechowski, J. A.; Baker, A. J.
1992-01-01
This report documents the user input and output data requirements for the FEMNAS finite element Navier-Stokes code for real-gas simulations of external aerodynamics flowfields. This code was developed for the configuration aerodynamics branch of NASA ARC, under SBIR Phase 2 contract NAS2-124568 by Computational Mechanics Corporation (COMCO). This report is in two volumes. Volume 1 contains the theory for the derived finite element algorithm and describes the test cases used to validate the computer program described in the Volume 2 user guide.
NASA Technical Reports Server (NTRS)
Nguyen, D. T.; Watson, Willie R. (Technical Monitor)
2005-01-01
The overall objectives of this research work are to formulate and validate efficient parallel algorithms, and to efficiently design/implement computer software for solving large-scale acoustic problems, arised from the unified frameworks of the finite element procedures. The adopted parallel Finite Element (FE) Domain Decomposition (DD) procedures should fully take advantages of multiple processing capabilities offered by most modern high performance computing platforms for efficient parallel computation. To achieve this objective. the formulation needs to integrate efficient sparse (and dense) assembly techniques, hybrid (or mixed) direct and iterative equation solvers, proper pre-conditioned strategies, unrolling strategies, and effective processors' communicating schemes. Finally, the numerical performance of the developed parallel finite element procedures will be evaluated by solving series of structural, and acoustic (symmetrical and un-symmetrical) problems (in different computing platforms). Comparisons with existing "commercialized" and/or "public domain" software are also included, whenever possible.
Exact simulation of max-stable processes.
Dombry, Clément; Engelke, Sebastian; Oesting, Marco
2016-06-01
Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.
Complexity transitions in global algorithms for sparse linear systems over finite fields
NASA Astrophysics Data System (ADS)
Braunstein, A.; Leone, M.; Ricci-Tersenghi, F.; Zecchina, R.
2002-09-01
We study the computational complexity of a very basic problem, namely that of finding solutions to a very large set of random linear equations in a finite Galois field modulo q. Using tools from statistical mechanics we are able to identify phase transitions in the structure of the solution space and to connect them to the changes in the performance of a global algorithm, namely Gaussian elimination. Crossing phase boundaries produces a dramatic increase in memory and CPU requirements necessary for the algorithms. In turn, this causes the saturation of the upper bounds for the running time. We illustrate the results on the specific problem of integer factorization, which is of central interest for deciphering messages encrypted with the RSA cryptosystem.
NASA Technical Reports Server (NTRS)
Winget, J. M.; Hughes, T. J. R.
1985-01-01
The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.
Learning Extended Finite State Machines
NASA Technical Reports Server (NTRS)
Cassel, Sofia; Howar, Falk; Jonsson, Bengt; Steffen, Bernhard
2014-01-01
We present an active learning algorithm for inferring extended finite state machines (EFSM)s, combining data flow and control behavior. Key to our learning technique is a novel learning model based on so-called tree queries. The learning algorithm uses the tree queries to infer symbolic data constraints on parameters, e.g., sequence numbers, time stamps, identifiers, or even simple arithmetic. We describe sufficient conditions for the properties that the symbolic constraints provided by a tree query in general must have to be usable in our learning model. We have evaluated our algorithm in a black-box scenario, where tree queries are realized through (black-box) testing. Our case studies include connection establishment in TCP and a priority queue from the Java Class Library.
Characterization of Meta-Materials Using Computational Electromagnetic Methods
NASA Technical Reports Server (NTRS)
Deshpande, Manohar; Shin, Joon
2005-01-01
An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.
Hypermatrix scheme for finite element systems on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Voigt, S. J.
1975-01-01
A study is made of the adaptation of the hypermatrix (block matrix) scheme for solving large systems of finite element equations to the CDC STAR-100 computer. Discussion is focused on the organization of the hypermatrix computation using Cholesky decomposition and the mode of storage of the different submatrices to take advantage of the STAR pipeline (streaming) capability. Consideration is also given to the associated data handling problems and the means of balancing the I/Q and cpu times in the solution process. Numerical examples are presented showing anticipated gain in cpu speed over the CDC 6600 to be obtained by using the proposed algorithms on the STAR computer.
NASA Technical Reports Server (NTRS)
Tag, I. A.; Lumsdaine, E.
1978-01-01
The general non-linear three-dimensional equation for acoustic potential is derived by using a perturbation technique. The linearized axisymmetric equation is then solved by using a finite element algorithm based on the Galerkin formulation for a harmonic time dependence. The solution is carried out in complex number notation for the acoustic velocity potential. Linear, isoparametric, quadrilateral elements with non-uniform distribution across the duct section are implemented. The resultant global matrix is stored in banded form and solved by using a modified Gauss elimination technique. Sound pressure levels and acoustic velocities are calculated from post element solutions. Different duct geometries are analyzed and compared with experimental results.
An optical flow-based state-space model of the vocal folds.
Granados, Alba; Brunskog, Jonas
2017-06-01
High-speed movies of the vocal fold vibration are valuable data to reveal vocal fold features for voice pathology diagnosis. This work presents a suitable Bayesian model and a purely theoretical discussion for further development of a framework for continuum biomechanical features estimation. A linear and Gaussian nonstationary state-space model is proposed and thoroughly discussed. The evolution model is based on a self-sustained three-dimensional finite element model of the vocal folds, and the observation model involves a dense optical flow algorithm. The results show that the method is able to capture different deformation patterns between the computed optical flow and the finite element deformation, controlled by the choice of the model tissue parameters.
Image-Data Compression Using Edge-Optimizing Algorithm for WFA Inference.
ERIC Educational Resources Information Center
Culik, Karel II; Kari, Jarkko
1994-01-01
Presents an inference algorithm that produces a weighted finite automata (WFA), in particular, the grayness functions of graytone images. Image-data compression results based on the new inference algorithm produces a WFA with a relatively small number of edges. Image-data compression results alone and in combination with wavelets are discussed.…
Self-adaptive Solution Strategies
NASA Technical Reports Server (NTRS)
Padovan, J.
1984-01-01
The development of enhancements to current generation nonlinear finite element algorithms of the incremental Newton-Raphson type was overviewed. Work was introduced on alternative formulations which lead to improve algorithms that avoid the need for global level updating and inversion. To quantify the enhanced Newton-Raphson scheme and the new alternative algorithm, the results of several benchmarks are presented.
Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information.
Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing
2016-01-01
Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft's algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms.
Algorithms for Maneuvering Spacecraft Around Small Bodies
NASA Technical Reports Server (NTRS)
Acikmese, A. Bechet; Bayard, David
2006-01-01
A document describes mathematical derivations and applications of autonomous guidance algorithms for maneuvering spacecraft in the vicinities of small astronomical bodies like comets or asteroids. These algorithms compute fuel- or energy-optimal trajectories for typical maneuvers by solving the associated optimal-control problems with relevant control and state constraints. In the derivations, these problems are converted from their original continuous (infinite-dimensional) forms to finite-dimensional forms through (1) discretization of the time axis and (2) spectral discretization of control inputs via a finite number of Chebyshev basis functions. In these doubly discretized problems, the Chebyshev coefficients are the variables. These problems are, variously, either convex programming problems or programming problems that can be convexified. The resulting discrete problems are convex parameter-optimization problems; this is desirable because one can take advantage of very efficient and robust algorithms that have been developed previously and are well established for solving such problems. These algorithms are fast, do not require initial guesses, and always converge to global optima. Following the derivations, the algorithms are demonstrated by applying them to numerical examples of flyby, descent-to-hover, and ascent-from-hover maneuvers.
Efficient Geometric Sound Propagation Using Visibility Culling
NASA Astrophysics Data System (ADS)
Chandak, Anish
2011-07-01
Simulating propagation of sound can improve the sense of realism in interactive applications such as video games and can lead to better designs in engineering applications such as architectural acoustics. In this thesis, we present geometric sound propagation techniques which are faster than prior methods and map well to upcoming parallel multi-core CPUs. We model specular reflections by using the image-source method and model finite-edge diffraction by using the well-known Biot-Tolstoy-Medwin (BTM) model. We accelerate the computation of specular reflections by applying novel visibility algorithms, FastV and AD-Frustum, which compute visibility from a point. We accelerate finite-edge diffraction modeling by applying a novel visibility algorithm which computes visibility from a region. Our visibility algorithms are based on frustum tracing and exploit recent advances in fast ray-hierarchy intersections, data-parallel computations, and scalable, multi-core algorithms. The AD-Frustum algorithm adapts its computation to the scene complexity and allows small errors in computing specular reflection paths for higher computational efficiency. FastV and our visibility algorithm from a region are general, object-space, conservative visibility algorithms that together significantly reduce the number of image sources compared to other techniques while preserving the same accuracy. Our geometric propagation algorithms are an order of magnitude faster than prior approaches for modeling specular reflections and two to ten times faster for modeling finite-edge diffraction. Our algorithms are interactive, scale almost linearly on multi-core CPUs, and can handle large, complex, and dynamic scenes. We also compare the accuracy of our sound propagation algorithms with other methods. Once sound propagation is performed, it is desirable to listen to the propagated sound in interactive and engineering applications. We can generate smooth, artifact-free output audio signals by applying efficient audio-processing algorithms. We also present the first efficient audio-processing algorithm for scenarios with simultaneously moving source and moving receiver (MS-MR) which incurs less than 25% overhead compared to static source and moving receiver (SS-MR) or moving source and static receiver (MS-SR) scenario.
NASA Astrophysics Data System (ADS)
Lee, Yang-Sub
A time-domain numerical algorithm for solving the KZK (Khokhlov-Zabolotskaya-Kuznetsov) nonlinear parabolic wave equation is developed for pulsed, axisymmetric, finite amplitude sound beams in thermoviscous fluids. The KZK equation accounts for the combined effects of diffraction, absorption, and nonlinearity at the same order of approximation. The accuracy of the algorithm is established via comparison with analytical solutions for several limiting cases, and with numerical results obtained from a widely used algorithm for solving the KZK equation in the frequency domain. The time domain algorithm is used to investigate waveform distortion and shock formation in directive sound beams radiated by pulsed circular piston sources. New results include predictions for the entire process of self-demodulation, and for the effect of frequency modulation on pulse envelope distortion. Numerical results are compared with measurements, and focused sources are investigated briefly.
NASA Astrophysics Data System (ADS)
Huang, Maosong; Qu, Xie; Lü, Xilin
2017-11-01
By solving a nonlinear complementarity problem for the consistency condition, an improved implicit stress return iterative algorithm for a generalized over-nonlocal strain softening plasticity was proposed, and the consistent tangent matrix was obtained. The proposed algorithm was embodied into existing finite element codes, and it enables the nonlocal regularization of ill-posed boundary value problem caused by the pressure independent and dependent strain softening plasticity. The algorithm was verified by the numerical modeling of strain localization in a plane strain compression test. The results showed that a fast convergence can be achieved and the mesh-dependency caused by strain softening can be effectively eliminated. The influences of hardening modulus and material characteristic length on the simulation were obtained. The proposed algorithm was further used in the simulations of the bearing capacity of a strip footing; the results are mesh-independent, and the progressive failure process of the soil was well captured.
Wang, Fei-Yue; Jin, Ning; Liu, Derong; Wei, Qinglai
2011-01-01
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the optimal control law which makes the performance index function close to the greatest lower bound of all performance indices within an ε-error bound. The optimal number of control steps can also be obtained by the proposed ADP algorithms. A convergence analysis of the proposed ADP algorithms in terms of performance index function and control policy is made. In order to facilitate the implementation of the iterative ADP algorithms, neural networks are used for approximating the performance index function, computing the optimal control policy, and modeling the nonlinear system. Finally, two simulation examples are employed to illustrate the applicability of the proposed method.
A Double Perturbation Method for Reducing Dynamical Degradation of the Digital Baker Map
NASA Astrophysics Data System (ADS)
Liu, Lingfeng; Lin, Jun; Miao, Suoxia; Liu, Bocheng
2017-06-01
The digital Baker map is widely used in different kinds of cryptosystems, especially for image encryption. However, any chaotic map which is realized on the finite precision device (e.g. computer) will suffer from dynamical degradation, which refers to short cycle lengths, low complexity and strong correlations. In this paper, a novel double perturbation method is proposed for reducing the dynamical degradation of the digital Baker map. Both state variables and system parameters are perturbed by the digital logistic map. Numerical experiments show that the perturbed Baker map can achieve good statistical and cryptographic properties. Furthermore, a new image encryption algorithm is provided as a simple application. With a rather simple algorithm, the encrypted image can achieve high security, which is competitive to the recently proposed image encryption algorithms.
Numerical Conformal Mapping Using Cross-Ratios and Delaunay Triangulation
NASA Technical Reports Server (NTRS)
Driscoll, Tobin A.; Vavasis, Stephen A.
1996-01-01
We propose a new algorithm for computing the Riemann mapping of the unit disk to a polygon, also known as the Schwarz-Christoffel transformation. The new algorithm, CRDT, is based on cross-ratios of the prevertices, and also on cross-ratios of quadrilaterals in a Delaunay triangulation of the polygon. The CRDT algorithm produces an accurate representation of the Riemann mapping even in the presence of arbitrary long, thin regions in the polygon, unlike any previous conformal mapping algorithm. We believe that CRDT can never fail to converge to the correct Riemann mapping, but the correctness and convergence proof depend on conjectures that we have so far not been able to prove. We demonstrate convergence with computational experiments. The Riemann mapping has applications to problems in two-dimensional potential theory and to finite-difference mesh generation. We use CRDT to produce a mapping and solve a boundary value problem on long, thin regions for which no other algorithm can solve these problems.
Multichannel blind iterative image restoration.
Sroubek, Filip; Flusser, Jan
2003-01-01
Blind image deconvolution is required in many applications of microscopy imaging, remote sensing, and astronomical imaging. Unfortunately in a single-channel framework, serious conceptual and numerical problems are often encountered. Very recently, an eigenvector-based method (EVAM) was proposed for a multichannel framework which determines perfectly convolution masks in a noise-free environment if channel disparity, called co-primeness, is satisfied. We propose a novel iterative algorithm based on recent anisotropic denoising techniques of total variation and a Mumford-Shah functional with the EVAM restoration condition included. A linearization scheme of half-quadratic regularization together with a cell-centered finite difference discretization scheme is used in the algorithm and provides a unified approach to the solution of total variation or Mumford-Shah. The algorithm performs well even on very noisy images and does not require an exact estimation of mask orders. We demonstrate capabilities of the algorithm on synthetic data. Finally, the algorithm is applied to defocused images taken with a digital camera and to data from astronomical ground-based observations of the Sun.
NASA Technical Reports Server (NTRS)
George, William K.; Rae, William J.; Woodward, Scott H.
1991-01-01
The importance of frequency response considerations in the use of thin-film gages for unsteady heat transfer measurements in transient facilities is considered, and methods for evaluating it are proposed. A departure frequency response function is introduced and illustrated by an existing analog circuit. A Fresnel integral temperature which possesses the essential features of the film temperature in transient facilities is introduced and is used to evaluate two numerical algorithms. Finally, criteria are proposed for the use of finite-difference algorithms for the calculation of the unsteady heat flux from a sampled temperature signal.
A modified dodge algorithm for the parabolized Navier-Stokes equations and compressible duct flows
NASA Technical Reports Server (NTRS)
Cooke, C. H.
1981-01-01
A revised version of a split-velocity method for numerical calculation of compressible duct flow was developed. The revision incorporates balancing of mass flow rates on each marching step in order to maintain front-to-back continuity during the calculation. The (checkerboard) zebra algorithm is applied to solution of the three-dimensional continuity equation in conservative form. A second-order A-stable linear multistep method is employed in effecting a marching solution of the parabolized momentum equations. A checkerboard successive overrelaxation iteration is used to solve the resulting implicit nonlinear systems of finite-difference equations which govern stepwise transition.
NASA Astrophysics Data System (ADS)
Alpers, Andreas; Gritzmann, Peter
2018-03-01
We consider the problem of reconstructing the paths of a set of points over time, where, at each of a finite set of moments in time the current positions of points in space are only accessible through some small number of their x-rays. This particular particle tracking problem, with applications, e.g. in plasma physics, is the basic problem in dynamic discrete tomography. We introduce and analyze various different algorithmic models. In particular, we determine the computational complexity of the problem (and various of its relatives) and derive algorithms that can be used in practice. As a byproduct we provide new results on constrained variants of min-cost flow and matching problems.
Three-dimensional zonal grids about arbitrary shapes by Poisson's equation
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.
1988-01-01
A method for generating 3-D finite difference grids about or within arbitrary shapes is presented. The 3-D Poisson equations are solved numerically, with values for the inhomogeneous terms found automatically by the algorithm. Those inhomogeneous terms have the effect near boundaries of reducing cell skewness and imposing arbitrary cell height. The method allows the region of interest to be divided into zones (blocks), allowing the method to be applicable to almost any physical domain. A FORTRAN program called 3DGRAPE has been written to implement the algorithm. Lastly, a method for redistributing grid points along lines normal to boundaries will be described.
Eliminating the zero spectrum in Fourier transform profilometry using empirical mode decomposition.
Li, Sikun; Su, Xianyu; Chen, Wenjing; Xiang, Liqun
2009-05-01
Empirical mode decomposition is introduced into Fourier transform profilometry to extract the zero spectrum included in the deformed fringe pattern without the need for capturing two fringe patterns with pi phase difference. The fringe pattern is subsequently demodulated using a standard Fourier transform profilometry algorithm. With this method, the deformed fringe pattern is adaptively decomposed into a finite number of intrinsic mode functions that vary from high frequency to low frequency by means of an algorithm referred to as a sifting process. Then the zero spectrum is separated from the high-frequency components effectively. Experiments validate the feasibility of this method.
NASA Technical Reports Server (NTRS)
Brislawn, Kristi D.; Brown, David L.; Chesshire, Geoffrey S.; Saltzman, Jeffrey S.
1995-01-01
Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference methods have been used effectively on a variety of problems in two and three dimensions. In this paper we introduce an approach for resolving problems that involve complex geometries in which resolution of boundary geometry is important. The complex geometry is represented by using the method of overlapping grids, while local resolution is obtained by refining each component grid with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid structure for the underlying mesh.
SU-F-T-428: An Optimization-Based Commissioning Tool for Finite Size Pencil Beam Dose Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y; Tian, Z; Song, T
Purpose: Finite size pencil beam (FSPB) algorithms are commonly used to pre-calculate the beamlet dose distribution for IMRT treatment planning. FSPB commissioning, which usually requires fine tuning of the FSPB kernel parameters, is crucial to the dose calculation accuracy and hence the plan quality. Yet due to the large number of beamlets, FSPB commissioning could be very tedious. This abstract reports an optimization-based FSPB commissioning tool we have developed in MatLab to facilitate the commissioning. Methods: A FSPB dose kernel generally contains two types of parameters: the profile parameters determining the dose kernel shape, and a 2D scaling factors accountingmore » for the longitudinal and off-axis corrections. The former were fitted using the penumbra of a reference broad beam’s dose profile with Levenberg-Marquardt algorithm. Since the dose distribution of a broad beam is simply a linear superposition of the dose kernel of each beamlet calculated with the fitted profile parameters and scaled using the scaling factors, these factors could be determined by solving an optimization problem which minimizes the discrepancies between the calculated dose of broad beams and the reference dose. Results: We have commissioned a FSPB algorithm for three linac photon beams (6MV, 15MV and 6MVFFF). Dose of four field sizes (6*6cm2, 10*10cm2, 15*15cm2 and 20*20cm2) were calculated and compared with the reference dose exported from Eclipse TPS system. For depth dose curves, the differences are less than 1% of maximum dose after maximum dose depth for most cases. For lateral dose profiles, the differences are less than 2% of central dose at inner-beam regions. The differences of the output factors are within 1% for all the three beams. Conclusion: We have developed an optimization-based commissioning tool for FSPB algorithms to facilitate the commissioning, providing sufficient accuracy of beamlet dose calculation for IMRT optimization.« less
3D Staggered-Grid Finite-Difference Simulation of Acoustic Waves in Turbulent Moving Media
NASA Astrophysics Data System (ADS)
Symons, N. P.; Aldridge, D. F.; Marlin, D.; Wilson, D. K.; Sullivan, P.; Ostashev, V.
2003-12-01
Acoustic wave propagation in a three-dimensional heterogeneous moving atmosphere is accurately simulated with a numerical algorithm recently developed under the DOD Common High Performance Computing Software Support Initiative (CHSSI). Sound waves within such a dynamic environment are mathematically described by a set of four, coupled, first-order partial differential equations governing small-amplitude fluctuations in pressure and particle velocity. The system is rigorously derived from fundamental principles of continuum mechanics, ideal-fluid constitutive relations, and reasonable assumptions that the ambient atmospheric motion is adiabatic and divergence-free. An explicit, time-domain, finite-difference (FD) numerical scheme is used to solve the system for both pressure and particle velocity wavefields. The atmosphere is characterized by 3D gridded models of sound speed, mass density, and the three components of the wind velocity vector. Dependent variables are stored on staggered spatial and temporal grids, and centered FD operators possess 2nd-order and 4th-order space/time accuracy. Accurate sound wave simulation is achieved provided grid intervals are chosen appropriately. The gridding must be fine enough to reduce numerical dispersion artifacts to an acceptable level and maintain stability. The algorithm is designed to execute on parallel computational platforms by utilizing a spatial domain-decomposition strategy. Currently, the algorithm has been validated on four different computational platforms, and parallel scalability of approximately 85% has been demonstrated. Comparisons with analytic solutions for uniform and vertically stratified wind models indicate that the FD algorithm generates accurate results with either a vanishing pressure or vanishing vertical-particle velocity boundary condition. Simulations are performed using a kinematic turbulence wind profile developed with the quasi-wavelet method. In addition, preliminary results are presented using high-resolution 3D dynamic turbulent flowfields generated by a large-eddy simulation model of a stably stratified planetary boundary layer. Sandia National Laboratories is a operated by Sandia Corporation, a Lockheed Martin Company, for the USDOE under contract 94-AL85000.
TRIM—3D: a three-dimensional model for accurate simulation of shallow water flow
Casulli, Vincenzo; Bertolazzi, Enrico; Cheng, Ralph T.
1993-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is discussed. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that the resulting algorithm permits the use of large time steps at a minimal computational cost. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers. The high computational efficiency of this method has made it possible to provide the fine details of circulation structure in complex regions that previous studies were unable to obtain. For proper interpretation of the model results suitable interactive graphics is also an essential tool.
Xu, Z N; Wang, S Y
2015-02-01
To improve the accuracy in the calculation of dynamic contact angle for drops on the inclined surface, a significant number of numerical drop profiles on the inclined surface with different inclination angles, drop volumes, and contact angles are generated based on the finite difference method, a least-squares ellipse-fitting algorithm is used to calculate the dynamic contact angle. The influences of the above three factors are systematically investigated. The results reveal that the dynamic contact angle errors, including the errors of the left and right contact angles, evaluated by the ellipse-fitting algorithm tend to increase with inclination angle/drop volume/contact angle. If the drop volume and the solid substrate are fixed, the errors of the left and right contact angles increase with inclination angle. After performing a tremendous amount of computation, the critical dimensionless drop volumes corresponding to the critical contact angle error are obtained. Based on the values of the critical volumes, a highly accurate dynamic contact angle algorithm is proposed and fully validated. Within nearly the whole hydrophobicity range, it can decrease the dynamic contact angle error in the inclined plane method to less than a certain value even for different types of liquids.
The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.
Carson, Cantwell G; Levine, Jonathan S
2016-09-01
The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
An RBF-FD closest point method for solving PDEs on surfaces
NASA Astrophysics Data System (ADS)
Petras, A.; Ling, L.; Ruuth, S. J.
2018-10-01
Partial differential equations (PDEs) on surfaces appear in many applications throughout the natural and applied sciences. The classical closest point method (Ruuth and Merriman (2008) [17]) is an embedding method for solving PDEs on surfaces using standard finite difference schemes. In this paper, we formulate an explicit closest point method using finite difference schemes derived from radial basis functions (RBF-FD). Unlike the orthogonal gradients method (Piret (2012) [22]), our proposed method uses RBF centers on regular grid nodes. This formulation not only reduces the computational cost but also avoids the ill-conditioning from point clustering on the surface and is more natural to couple with a grid based manifold evolution algorithm (Leung and Zhao (2009) [26]). When compared to the standard finite difference discretization of the closest point method, the proposed method requires a smaller computational domain surrounding the surface, resulting in a decrease in the number of sampling points on the surface. In addition, higher-order schemes can easily be constructed by increasing the number of points in the RBF-FD stencil. Applications to a variety of examples are provided to illustrate the numerical convergence of the method.
Acceleration of FDTD mode solver by high-performance computing techniques.
Han, Lin; Xi, Yanping; Huang, Wei-Ping
2010-06-21
A two-dimensional (2D) compact finite-difference time-domain (FDTD) mode solver is developed based on wave equation formalism in combination with the matrix pencil method (MPM). The method is validated for calculation of both real guided and complex leaky modes of typical optical waveguides against the bench-mark finite-difference (FD) eigen mode solver. By taking advantage of the inherent parallel nature of the FDTD algorithm, the mode solver is implemented on graphics processing units (GPUs) using the compute unified device architecture (CUDA). It is demonstrated that the high-performance computing technique leads to significant acceleration of the FDTD mode solver with more than 30 times improvement in computational efficiency in comparison with the conventional FDTD mode solver running on CPU of a standard desktop computer. The computational efficiency of the accelerated FDTD method is in the same order of magnitude of the standard finite-difference eigen mode solver and yet require much less memory (e.g., less than 10%). Therefore, the new method may serve as an efficient, accurate and robust tool for mode calculation of optical waveguides even when the conventional eigen value mode solvers are no longer applicable due to memory limitation.
Two variants of minimum discarded fill ordering
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Azevedo, E.F.; Forsyth, P.A.; Tang, Wei-Pai
1991-01-01
It is well known that the ordering of the unknowns can have a significant effect on the convergence of Preconditioned Conjugate Gradient (PCG) methods. There has been considerable experimental work on the effects of ordering for regular finite difference problems. In many cases, good results have been obtained with preconditioners based on diagonal, spiral or natural row orderings. However, for finite element problems having unstructured grids or grids generated by a local refinement approach, it is difficult to define many of the orderings for more regular problems. A recently proposed Minimum Discarded Fill (MDF) ordering technique is effective in findingmore » high quality Incomplete LU (ILU) preconditioners, especially for problems arising from unstructured finite element grids. Testing indicates this algorithm can identify a rather complicated physical structure in an anisotropic problem and orders the unknowns in the preferred'' direction. The MDF technique may be viewed as the numerical analogue of the minimum deficiency algorithm in sparse matrix technology. At any stage of the partial elimination, the MDF technique chooses the next pivot node so as to minimize the amount of discarded fill. In this work, two efficient variants of the MDF technique are explored to produce cost-effective high-order ILU preconditioners. The Threshold MDF orderings combine MDF ideas with drop tolerance techniques to identify the sparsity pattern in the ILU preconditioners. These techniques identify an ordering that encourages fast decay of the entries in the ILU factorization. The Minimum Update Matrix (MUM) ordering technique is a simplification of the MDF ordering and is closely related to the minimum degree algorithm. The MUM ordering is especially for large problems arising from Navier-Stokes problems. Some interesting pictures of the orderings are presented using a visualization tool. 22 refs., 4 figs., 7 tabs.« less
1982-04-01
R.M. and Warming, R.F.: An Implicit Finite - Difference Algorithm for Hyperbolic Systems in Conservation Law Form. Journal of Computational Physics...Quincy Street C-40) Arlington, VA 22217 D 82 05-.10 I0, S4CURITY CLASSIFICATION OF THIS ’E(Wha, Doae Entotwed) Slength scale. Six different flow cases...forces upstream have produced a non-zero velocity gradient normal to the plane of curvature. Fluid with above (/below) average nioiiiei.tuili migrates
Chowdhury, Amor; Sarjaš, Andrej
2016-01-01
The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation. PMID:27649197
Chowdhury, Amor; Sarjaš, Andrej
2016-09-15
The presented paper describes accurate distance measurement for a field-sensed magnetic suspension system. The proximity measurement is based on a Hall effect sensor. The proximity sensor is installed directly on the lower surface of the electro-magnet, which means that it is very sensitive to external magnetic influences and disturbances. External disturbances interfere with the information signal and reduce the usability and reliability of the proximity measurements and, consequently, the whole application operation. A sensor fusion algorithm is deployed for the aforementioned reasons. The sensor fusion algorithm is based on the Unscented Kalman Filter, where a nonlinear dynamic model was derived with the Finite Element Modelling approach. The advantage of such modelling is a more accurate dynamic model parameter estimation, especially in the case when the real structure, materials and dimensions of the real-time application are known. The novelty of the paper is the design of a compact electro-magnetic actuator with a built-in low cost proximity sensor for accurate proximity measurement of the magnetic object. The paper successively presents a modelling procedure with the finite element method, design and parameter settings of a sensor fusion algorithm with Unscented Kalman Filter and, finally, the implementation procedure and results of real-time operation.
NASA Astrophysics Data System (ADS)
Aravena, J.; Dussaillant, A. R.
2006-12-01
Source control is the fundamental principle behind sustainable management of stormwater. Rain gardens are an infiltration practice that provides volume and water quality control, recharge, and multiple landscape, ecological and economic potential benefits. The fulfillment of these objectives requires understanding their behavior during events as well as long term, and tools for their design. We have developed a model based on Richards equation coupled to a surface water balance, solved with a 2D finite volume Fortran code which allows alternating upper boundary conditions, including ponding, which is not present in available 2D models. Also, it can simulate non homogeneous water input, heterogeneous soil (layered or more complex geometries), and surface irregularities -e.g. terracing-, so as to estimate infiltration and recharge. The algorithm is conservative; being an advantage compared to available finite difference and finite element methods. We will present performance comparisons to known models, to experimental data from a bioretention cell, which receives roof water to its surface depression planted with native species in an organic-rich root zone soil layer (underlain by a high conductivity lower layer that, while providing inter-event storage, percolates water readily), as well as long term simulations for different rain garden configurations. Recharge predictions for different climates show significant increases from natural recharge, and that the optimal area ratio (raingarden vs. contributing impervious area) reduces from 20% (humid) to 5% (dry).
A modified 3D algorithm for road traffic noise attenuation calculations in large urban areas.
Wang, Haibo; Cai, Ming; Yao, Yifan
2017-07-01
The primary objective of this study is the development and application of a 3D road traffic noise attenuation calculation algorithm. First, the traditional empirical method does not address problems caused by non-direct occlusion by buildings and the different building heights. In contrast, this study considers the volume ratio of the buildings and the area ratio of the projection of buildings adjacent to the road. The influence of the ground affection is analyzed. The insertion loss due to barriers (infinite length and finite barriers) is also synthesized in the algorithm. Second, the impact of different road segmentation is analyzed. Through the case of Pearl River New Town, it is recommended that 5° is the most appropriate scanning angle as the computational time is acceptable and the average error is approximately 3.1 dB. In addition, the algorithm requires only 1/17 of the time that the beam tracking method requires at the cost of more imprecise calculation results. Finally, the noise calculation for a large urban area with a high density of buildings shows the feasibility of the 3D noise attenuation calculation algorithm. The algorithm is expected to be applied in projects requiring large area noise simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Sadovsky, Alexander V.; Davis, Damek; Isaacson, Douglas R.
2012-01-01
A class of problems in air traffic management asks for a scheduling algorithm that supplies the air traffic services authority not only with a schedule of arrivals and departures, but also with speed advisories. Since advisories must be finite, a scheduling algorithm must ultimately produce a finite data set, hence must either start with a purely discrete model or involve a discretization of a continuous one. The former choice, often preferred for intuitive clarity, naturally leads to mixed-integer programs, hindering proofs of correctness and computational cost bounds (crucial for real-time operations). In this paper, a hybrid control system is used to model air traffic scheduling, capturing both the discrete and continuous aspects. This framework is applied to a class of problems, called the Fully Routed Nominal Problem. We prove a number of geometric results on feasible schedules and use these results to formulate an algorithm that attempts to compute a collective speed advisory, effectively finite, and has computational cost polynomial in the number of aircraft. This work is a first step toward optimization and models refined with more realistic detail.
Functional validation and comparison framework for EIT lung imaging.
Grychtol, Bartłomiej; Elke, Gunnar; Meybohm, Patrick; Weiler, Norbert; Frerichs, Inéz; Adler, Andy
2014-01-01
Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited. We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT.
Conservative multizonal interface algorithm for the 3-D Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Klopfer, G. H.; Molvik, G. A.
1991-01-01
A conservative zonal interface algorithm using features of both structured and unstructured mesh CFD technology is presented. The flow solver within each of the zones is based on structured mesh CFD technology. The interface algorithm was implemented into two three-dimensional Navier-Stokes finite volume codes and was found to yield good results.
Belciug, Smaranda; Gorunescu, Florin
2016-03-01
Explore how efficient intelligent decision support systems, both easily understandable and straightforwardly implemented, can help modern hospital managers to optimize both bed occupancy and utilization costs. This paper proposes a hybrid genetic algorithm-queuing multi-compartment model for the patient flow in hospitals. A finite capacity queuing model with phase-type service distribution is combined with a compartmental model, and an associated cost model is set up. An evolutionary-based approach is used for enhancing the ability to optimize both bed management and associated costs. In addition, a "What-if analysis" shows how changing the model parameters could improve performance while controlling costs. The study uses bed-occupancy data collected at the Department of Geriatric Medicine - St. George's Hospital, London, period 1969-1984, and January 2000. The hybrid model revealed that a bed-occupancy exceeding 91%, implying a patient rejection rate around 1.1%, can be carried out with 159 beds plus 8 unstaffed beds. The same holding and penalty costs, but significantly different bed allocations (156 vs. 184 staffed beds, and 8 vs. 9 unstaffed beds, respectively) will result in significantly different costs (£755 vs. £1172). Moreover, once the arrival rate exceeds 7 patient/day, the costs associated to the finite capacity system become significantly smaller than those associated to an Erlang B queuing model (£134 vs. £947). Encoding the whole information provided by both the queuing system and the cost model through chromosomes, the genetic algorithm represents an efficient tool in optimizing the bed allocation and associated costs. The methodology can be extended to different medical departments with minor modifications in structure and parameterization. Copyright © 2016 Elsevier B.V. All rights reserved.
Algorithm and code development for unsteady three-dimensional Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Obayashi, Shigeru
1991-01-01
A streamwise upwind algorithm for solving the unsteady 3-D Navier-Stokes equations was extended to handle the moving grid system. It is noted that the finite volume concept is essential to extend the algorithm. The resulting algorithm is conservative for any motion of the coordinate system. Two extensions to an implicit method were considered and the implicit extension that makes the algorithm computationally efficient is implemented into Ames's aeroelasticity code, ENSAERO. The new flow solver has been validated through the solution of test problems. Test cases include three-dimensional problems with fixed and moving grids. The first test case shown is an unsteady viscous flow over an F-5 wing, while the second test considers the motion of the leading edge vortex as well as the motion of the shock wave for a clipped delta wing. The resulting algorithm has been implemented into ENSAERO. The upwind version leads to higher accuracy in both steady and unsteady computations than the previously used central-difference method does, while the increase in the computational time is small.
A new numerical algorithm for the analytic continuation of Green`s functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Natoli, V.D.; Cohen, M.H.; Fornberg, B.
1996-06-01
The need to calculate the spectral properties of a Hermitian operation H frequently arises in the technical sciences. A common approach to its solution involves the construction of the Green`s function operator G(z) = [z - H]{sup -1} in the complex z plane. For example, the energy spectrum and other physical properties of condensed matter systems can often be elegantly and naturally expressed in terms of the Kohn-Sham Green`s functions. However, the nonanalyticity of resolvents on the real axis makes them difficult to compute and manipulate. The Herglotz property of a Green`s function allows one to calculate it along anmore » arc with a small but finite imaginary part, i.e., G(x + iy), and then to continue it to the real axis to determine quantities of physical interest. In the past, finite-difference techniques have been used for this continuation. We present here a fundamentally new algorithm based on the fast Fourier transform which is both simpler and more effective. 14 refs., 9 figs.« less
A new weak Galerkin finite element method for elliptic interface problems
Mu, Lin; Wang, Junping; Ye, Xiu; ...
2016-08-26
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
A new weak Galerkin finite element method for elliptic interface problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Wang, Junping; Ye, Xiu
We introduce and analyze a new weak Galerkin (WG) finite element method in this paper for solving second order elliptic equations with discontinuous coefficients and interfaces. Comparing with the existing WG algorithm for solving the same type problems, the present WG method has a simpler variational formulation and fewer unknowns. Moreover, the new WG algorithm allows the use of finite element partitions consisting of general polytopal meshes and can be easily generalized to high orders. Optimal order error estimates in both H1 and L2 norms are established for the present WG finite element solutions. We conducted extensive numerical experiments inmore » order to examine the accuracy, flexibility, and robustness of the proposed WG interface approach. In solving regular elliptic interface problems, high order convergences are numerically confirmed by using piecewise polynomial basis functions of high degrees. Moreover, the WG method is shown to be able to accommodate very complicated interfaces, due to its flexibility in choosing finite element partitions. Finally, in dealing with challenging problems with low regularities, the piecewise linear WG method is capable of delivering a second order of accuracy in L∞ norm for both C1 and H2 continuous solutions.« less
NASA Astrophysics Data System (ADS)
Shiuly, Amit; Kumar, Vinay; Narayan, Jay
2014-06-01
This paper presents the ground motion amplification scenario along with fundamental frequency (F 0) of sedimentary deposit for the seismic microzonation of Kolkata City, situated on the world's largest delta island with very soft soil deposit. A 4th order accurate SH-wave viscoelastic finite-difference algorithm is used for computation of response of 1D model for each borehole location. Different maps, such as for F 0, amplification at F 0, average spectral amplification (ASA) in the different frequency bandwidth of earthquake engineering interest are developed for a variety of end-users communities. The obtained ASA of the order of 3-6 at most of the borehole locations in a frequency range of 0.25-10.0 Hz reveals that Kolkata City may suffer severe damage even during a moderate earthquake. Further, unexpected severe damage to collapse of multi-storey buildings may occur in localities near Hoogly River and Salt Lake area due to double resonance effects during distant large earthquakes.
On conforming mixed finite element methods for incompressible viscous flow problems
NASA Technical Reports Server (NTRS)
Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.
1982-01-01
The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.
Gacs quantum algorithmic entropy in infinite dimensional Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benatti, Fabio, E-mail: benatti@ts.infn.it; Oskouei, Samad Khabbazi, E-mail: kh.oskuei@ut.ac.ir; Deh Abad, Ahmad Shafiei, E-mail: shafiei@khayam.ut.ac.ir
We extend the notion of Gacs quantum algorithmic entropy, originally formulated for finitely many qubits, to infinite dimensional quantum spin chains and investigate the relation of this extension with two quantum dynamical entropies that have been proposed in recent years.
An algorithm for targeting finite burn maneuvers
NASA Technical Reports Server (NTRS)
Barbieri, R. W.; Wyatt, G. H.
1972-01-01
An algorithm was developed to solve the following problem: given the characteristics of the engine to be used to make a finite burn maneuver and given the desired orbit, when must the engine be ignited and what must be the orientation of the thrust vector so as to obtain the desired orbit? The desired orbit is characterized by classical elements and functions of these elements whereas the control parameters are characterized by the time to initiate the maneuver and three direction cosines which locate the thrust vector. The algorithm was built with a Monte Carlo capability whereby samples are taken from the distribution of errors associated with the estimate of the state and from the distribution of errors associated with the engine to be used to make the maneuver.
VLSI architectures for computing multiplications and inverses in GF(2m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.
1985-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
VLSI architectures for computing multiplications and inverses in GF(2-m)
NASA Technical Reports Server (NTRS)
Wang, C. C.; Truong, T. K.; Shao, H. M.; Deutsch, L. J.; Omura, J. K.; Reed, I. S.
1983-01-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that are easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. A pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal-basis representation used together with this multiplier, a pipeline architecture is also developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable and, therefore, naturally suitable for VLSI implementation.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok
2012-01-01
This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.
A globally well-posed finite element algorithm for aerodynamics applications
NASA Technical Reports Server (NTRS)
Iannelli, G. S.; Baker, A. J.
1991-01-01
A finite element CFD algorithm is developed for Euler and Navier-Stokes aerodynamic applications. For the linear basis, the resultant approximation is at least second-order-accurate in time and space for synergistic use of three procedures: (1) a Taylor weak statement, which provides for derivation of companion conservation law systems with embedded dispersion-error control mechanisms; (2) a stiffly stable second-order-accurate implicit Rosenbrock-Runge-Kutta temporal algorithm; and (3) a matrix tensor product factorization that permits efficient numerical linear algebra handling of the terminal large-matrix statement. Thorough analyses are presented regarding well-posed boundary conditions for inviscid and viscous flow specifications. Numerical solutions are generated and compared for critical evaluation of quasi-one- and two-dimensional Euler and Navier-Stokes benchmark test problems.
VLSI architectures for computing multiplications and inverses in GF(2m).
Wang, C C; Truong, T K; Shao, H M; Deutsch, L J; Omura, J K; Reed, I S
1985-08-01
Finite field arithmetic logic is central in the implementation of Reed-Solomon coders and in some cryptographic algorithms. There is a need for good multiplication and inversion algorithms that can be easily realized on VLSI chips. Massey and Omura recently developed a new multiplication algorithm for Galois fields based on a normal basis representation. In this paper, a pipeline structure is developed to realize the Massey-Omura multiplier in the finite field GF(2m). With the simple squaring property of the normal basis representation used together with this multiplier, a pipeline architecture is developed for computing inverse elements in GF(2m). The designs developed for the Massey-Omura multiplier and the computation of inverse elements are regular, simple, expandable, and therefore, naturally suitable for VLSI implementation.
Runtime Analysis of Linear Temporal Logic Specifications
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Havelund, Klaus
2001-01-01
This report presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to B chi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.
Automata-Based Verification of Temporal Properties on Running Programs
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Havelund, Klaus; Lan, Sonie (Technical Monitor)
2001-01-01
This paper presents an approach to checking a running program against its Linear Temporal Logic (LTL) specifications. LTL is a widely used logic for expressing properties of programs viewed as sets of executions. Our approach consists of translating LTL formulae to finite-state automata, which are used as observers of the program behavior. The translation algorithm we propose modifies standard LTL to Buchi automata conversion techniques to generate automata that check finite program traces. The algorithm has been implemented in a tool, which has been integrated with the generic JPaX framework for runtime analysis of Java programs.
Multisource passive acoustic tracking: an application of random finite set data fusion
NASA Astrophysics Data System (ADS)
Ali, Andreas M.; Hudson, Ralph E.; Lorenzelli, Flavio; Yao, Kung
2010-04-01
Multisource passive acoustic tracking is useful in animal bio-behavioral study by replacing or enhancing human involvement during and after field data collection. Multiple simultaneous vocalizations are a common occurrence in a forest or a jungle, where many species are encountered. Given a set of nodes that are capable of producing multiple direction-of-arrivals (DOAs), such data needs to be combined into meaningful estimates. Random Finite Set provides the mathematical probabilistic model, which is suitable for analysis and optimal estimation algorithm synthesis. Then the proposed algorithm has been verified using a simulation and a controlled test experiment.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Editor)
1986-01-01
The papers contained in this volume provide an overview of the advances made in a number of aspects of computational mechanics, identify some of the anticipated industry needs in this area, discuss the opportunities provided by new hardware and parallel algorithms, and outline some of the current government programs in computational mechanics. Papers are included on advances and trends in parallel algorithms, supercomputers for engineering analysis, material modeling in nonlinear finite-element analysis, the Navier-Stokes computer, and future finite-element software systems.
A diagonal implicit scheme for computing flows with finite-rate chemistry
NASA Technical Reports Server (NTRS)
Eberhardt, Scott; Imlay, Scott
1990-01-01
A new algorithm for solving steady, finite-rate chemistry, flow problems is presented. The new scheme eliminates the expense of inverting large block matrices that arise when species conservation equations are introduced. The source Jacobian matrix is replaced by a diagonal matrix which is tailored to account for the fastest reactions in the chemical system. A point-implicit procedure is discussed and then the algorithm is included into the LU-SGS scheme. Solutions are presented for hypervelocity reentry and Hydrogen-Oxygen combustion. For the LU-SGS scheme a CFL number in excess of 10,000 has been achieved.
Model checking for linear temporal logic: An efficient implementation
NASA Technical Reports Server (NTRS)
Sherman, Rivi; Pnueli, Amir
1990-01-01
This report provides evidence to support the claim that model checking for linear temporal logic (LTL) is practically efficient. Two implementations of a linear temporal logic model checker is described. One is based on transforming the model checking problem into a satisfiability problem; the other checks an LTL formula for a finite model by computing the cross-product of the finite state transition graph of the program with a structure containing all possible models for the property. An experiment was done with a set of mutual exclusion algorithms and tested safety and liveness under fairness for these algorithms.
Bioinspired Concepts: Unified Theory for Complex Biological and Engineering Systems
2006-01-01
i.e., data flows of finite size arrive at the system randomly. For such a system , we propose a modified dual scheduling algorithm that stabilizes ...demon. We compute the efficiency of the controller over finite and infinite time intervals, and since the controller is optimal, this yields hard limits...and highly optimized tolerance. PNAS, 102, 2005. 51. G. N. Nair and R. J. Evans. Stabilizability of stochastic linear systems with finite feedback
NASA Technical Reports Server (NTRS)
Towner, Robert L.; Band, Jonathan L.
2012-01-01
An analysis technique was developed to compare and track mode shapes for different Finite Element Models. The technique may be applied to a variety of structural dynamics analyses, including model reduction validation (comparing unreduced and reduced models), mode tracking for various parametric analyses (e.g., launch vehicle model dispersion analysis to identify sensitivities to modal gain for Guidance, Navigation, and Control), comparing models of different mesh fidelity (e.g., a coarse model for a preliminary analysis compared to a higher-fidelity model for a detailed analysis) and mode tracking for a structure with properties that change over time (e.g., a launch vehicle from liftoff through end-of-burn, with propellant being expended during the flight). Mode shapes for different models are compared and tracked using several numerical indicators, including traditional Cross-Orthogonality and Modal Assurance Criteria approaches, as well as numerical indicators obtained by comparing modal strain energy and kinetic energy distributions. This analysis technique has been used to reliably identify correlated mode shapes for complex Finite Element Models that would otherwise be difficult to compare using traditional techniques. This improved approach also utilizes an adaptive mode tracking algorithm that allows for automated tracking when working with complex models and/or comparing a large group of models.
AN ACCURATE AND EFFICIENT ALGORITHM FOR NUMERICAL SIMULATION OF CONDUCTION-TYPE PROBLEMS. (R824801)
A modification of the finite analytic numerical method for conduction-type (diffusion) problems is presented. The finite analytic discretization scheme is derived by means of the Fourier series expansion for the most general case of nonuniform grid and variabl...
Finite Difference Methods for the Solution of Unsteady Potential Flows.
1982-06-01
prediction of loads on helicopter rotors in forward flight. Although aeroelastic effects are important, in this case the main source of unsteadiness is in the...and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three-dimensional rotor calculations...concerning tunnel turbulence, wall and scaling effects , and sepa- ration. We now know that many of these problems are magnified by the inherent susceptibility
Spurious Solutions Of Nonlinear Differential Equations
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sweby, P. K.; Griffiths, D. F.
1992-01-01
Report utilizes nonlinear-dynamics approach to investigate possible sources of errors and slow convergence and non-convergence of steady-state numerical solutions when using time-dependent approach for problems containing nonlinear source terms. Emphasizes implications for development of algorithms in CFD and computational sciences in general. Main fundamental conclusion of study is that qualitative features of nonlinear differential equations cannot be adequately represented by finite-difference method and vice versa.
Involution and Difference Schemes for the Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Gerdt, Vladimir P.; Blinkov, Yuri A.
In the present paper we consider the Navier-Stokes equations for the two-dimensional viscous incompressible fluid flows and apply to these equations our earlier designed general algorithmic approach to generation of finite-difference schemes. In doing so, we complete first the Navier-Stokes equations to involution by computing their Janet basis and discretize this basis by its conversion into the integral conservation law form. Then we again complete the obtained difference system to involution with eliminating the partial derivatives and extracting the minimal Gröbner basis from the Janet basis. The elements in the obtained difference Gröbner basis that do not contain partial derivatives of the dependent variables compose a conservative difference scheme. By exploiting arbitrariness in the numerical integration approximation we derive two finite-difference schemes that are similar to the classical scheme by Harlow and Welch. Each of the two schemes is characterized by a 5×5 stencil on an orthogonal and uniform grid. We also demonstrate how an inconsistent difference scheme with a 3×3 stencil is generated by an inappropriate numerical approximation of the underlying integrals.
The Least-Squares Calibration on the Micro-Arcsecond Metrology Test Bed
NASA Technical Reports Server (NTRS)
Zhai, Chengxing; Milman, Mark H.; Regehr, Martin W.
2006-01-01
The Space Interferometry Mission (S1M) will measure optical path differences (OPDs) with an accuracy of tens of picometers, requiring precise calibration of the instrument. In this article, we present a calibration approach based on fitting star light interference fringes in the interferometer using a least-squares algorithm. The algorithm is first analyzed for the case of a monochromatic light source with a monochromatic fringe model. Using fringe data measured on the Micro-Arcsecond Metrology (MAM) testbed with a laser source, the error in the determination of the wavelength is shown to be less than 10pm. By using a quasi-monochromatic fringe model, the algorithm can be extended to the case of a white light source with a narrow detection bandwidth. In SIM, because of the finite bandwidth of each CCD pixel, the effect of the fringe envelope can not be neglected, especially for the larger optical path difference range favored for the wavelength calibration.
Computing border bases using mutant strategies
NASA Astrophysics Data System (ADS)
Ullah, E.; Abbas Khan, S.
2014-01-01
Border bases, a generalization of Gröbner bases, have actively been addressed during recent years due to their applicability to industrial problems. In cryptography and coding theory a useful application of border based is to solve zero-dimensional systems of polynomial equations over finite fields, which motivates us for developing optimizations of the algorithms that compute border bases. In 2006, Kehrein and Kreuzer formulated the Border Basis Algorithm (BBA), an algorithm which allows the computation of border bases that relate to a degree compatible term ordering. In 2007, J. Ding et al. introduced mutant strategies bases on finding special lower degree polynomials in the ideal. The mutant strategies aim to distinguish special lower degree polynomials (mutants) from the other polynomials and give them priority in the process of generating new polynomials in the ideal. In this paper we develop hybrid algorithms that use the ideas of J. Ding et al. involving the concept of mutants to optimize the Border Basis Algorithm for solving systems of polynomial equations over finite fields. In particular, we recall a version of the Border Basis Algorithm which is actually called the Improved Border Basis Algorithm and propose two hybrid algorithms, called MBBA and IMBBA. The new mutants variants provide us space efficiency as well as time efficiency. The efficiency of these newly developed hybrid algorithms is discussed using standard cryptographic examples.
Computational mechanics analysis tools for parallel-vector supercomputers
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Nguyen, D. T.; Baddourah, M. A.; Qin, J.
1993-01-01
Computational algorithms for structural analysis on parallel-vector supercomputers are reviewed. These parallel algorithms, developed by the authors, are for the assembly of structural equations, 'out-of-core' strategies for linear equation solution, massively distributed-memory equation solution, unsymmetric equation solution, general eigen-solution, geometrically nonlinear finite element analysis, design sensitivity analysis for structural dynamics, optimization algorithm and domain decomposition. The source code for many of these algorithms is available from NASA Langley.
Magnetic field generated by lightning protection system
NASA Astrophysics Data System (ADS)
Geri, A.; Veca, G. M.
1988-04-01
A lightning protection system for today's civil buildings must be electromagnetically compatible with the electronic equipment present in the building. This paper highlights a mathematic model which analyzes the electromagnetic effects in the environment in which the lightning protection system is. This model is developed by means of finite elements of an electrical circuit where each element is represented by a double pole circuit according to the trapezoidal algorithm developed using the finite difference method. It is thus possible to analyze the electromagnetic phenomena associated with the transient effects created by the lightning stroke even for a high-intensity current. Referring to an elementary system comprised of an air terminal, a down conductor, and a ground terminal, numerical results are here laid out.
Advances and trends in the development of computational models for tires
NASA Technical Reports Server (NTRS)
Noor, A. K.; Tanner, J. A.
1985-01-01
Status and some recent developments of computational models for tires are summarized. Discussion focuses on a number of aspects of tire modeling and analysis including: tire materials and their characterization; evolution of tire models; characteristics of effective finite element models for analyzing tires; analysis needs for tires; and impact of the advances made in finite element technology, computational algorithms, and new computing systems on tire modeling and analysis. An initial set of benchmark problems has been proposed in concert with the U.S. tire industry. Extensive sets of experimental data will be collected for these problems and used for evaluating and validating different tire models. Also, the new Aircraft Landing Dynamics Facility (ALDF) at NASA Langley Research Center is described.
Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1990-01-01
A new computer code was developed for predicting the turbulent and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, three-dimensional Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.
Analysis of rotary engine combustion processes based on unsteady, three-dimensional computations
NASA Technical Reports Server (NTRS)
Raju, M. S.; Willis, E. A.
1989-01-01
A new computer code was developed for predicting the turbulent, and chemically reacting flows with sprays occurring inside of a stratified charge rotary engine. The solution procedure is based on an Eulerian Lagrangian approach where the unsteady, 3-D Navier-Stokes equations for a perfect gas mixture with variable properties are solved in generalized, Eulerian coordinates on a moving grid by making use of an implicit finite volume, Steger-Warming flux vector splitting scheme, and the liquid phase equations are solved in Lagrangian coordinates. Both the details of the numerical algorithm and the finite difference predictions of the combustor flow field during the opening of exhaust and/or intake, and also during fuel vaporization and combustion, are presented.
Mass preserving registration for heart MR images.
Zhu, Lei; Haker, Steven; Tannenbaum, Allen
2005-01-01
This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm.
Mass Preserving Registration for Heart MR Images
Zhu, Lei; Haker, Steven; Tannenbaum, Allen
2013-01-01
This paper presents a new algorithm for non-rigid registration between two doubly-connected regions. Our algorithm is based on harmonic analysis and the theory of optimal mass transport. It assumes an underlining continuum model, in which the total amount of mass is exactly preserved during the transformation of tissues. We use a finite element approach to numerically implement the algorithm. PMID:16685954
Efficient Deterministic Finite Automata Minimization Based on Backward Depth Information
Liu, Desheng; Huang, Zhiping; Zhang, Yimeng; Guo, Xiaojun; Su, Shaojing
2016-01-01
Obtaining a minimal automaton is a fundamental issue in the theory and practical implementation of deterministic finite automatons (DFAs). A minimization algorithm is presented in this paper that consists of two main phases. In the first phase, the backward depth information is built, and the state set of the DFA is partitioned into many blocks. In the second phase, the state set is refined using a hash table. The minimization algorithm has a lower time complexity O(n) than a naive comparison of transitions O(n2). Few states need to be refined by the hash table, because most states have been partitioned by the backward depth information in the coarse partition. This method achieves greater generality than previous methods because building the backward depth information is independent of the topological complexity of the DFA. The proposed algorithm can be applied not only to the minimization of acyclic automata or simple cyclic automata, but also to automata with high topological complexity. Overall, the proposal has three advantages: lower time complexity, greater generality, and scalability. A comparison to Hopcroft’s algorithm demonstrates experimentally that the algorithm runs faster than traditional algorithms. PMID:27806102
Enhancements on the Convex Programming Based Powered Descent Guidance Algorithm for Mars Landing
NASA Technical Reports Server (NTRS)
Acikmese, Behcet; Blackmore, Lars; Scharf, Daniel P.; Wolf, Aron
2008-01-01
In this paper, we present enhancements on the powered descent guidance algorithm developed for Mars pinpoint landing. The guidance algorithm solves the powered descent minimum fuel trajectory optimization problem via a direct numerical method. Our main contribution is to formulate the trajectory optimization problem, which has nonconvex control constraints, as a finite dimensional convex optimization problem, specifically as a finite dimensional second order cone programming (SOCP) problem. SOCP is a subclass of convex programming, and there are efficient SOCP solvers with deterministic convergence properties. Hence, the resulting guidance algorithm can potentially be implemented onboard a spacecraft for real-time applications. Particularly, this paper discusses the algorithmic improvements obtained by: (i) Using an efficient approach to choose the optimal time-of-flight; (ii) Using a computationally inexpensive way to detect the feasibility/ infeasibility of the problem due to the thrust-to-weight constraint; (iii) Incorporating the rotation rate of the planet into the problem formulation; (iv) Developing additional constraints on the position and velocity to guarantee no-subsurface flight between the time samples of the temporal discretization; (v) Developing a fuel-limited targeting algorithm; (vi) Initial result on developing an onboard table lookup method to obtain almost fuel optimal solutions in real-time.
NASA Astrophysics Data System (ADS)
Doha, Eid H.; Bhrawy, Ali H.; Abdelkawy, Mohammed A.
2014-09-01
In this paper, we propose an efficient spectral collocation algorithm to solve numerically wave type equations subject to initial, boundary and non-local conservation conditions. The shifted Jacobi pseudospectral approximation is investigated for the discretization of the spatial variable of such equations. It possesses spectral accuracy in the spatial variable. The shifted Jacobi-Gauss-Lobatto (SJ-GL) quadrature rule is established for treating the non-local conservation conditions, and then the problem with its initial and non-local boundary conditions are reduced to a system of second-order ordinary differential equations in temporal variable. This system is solved by two-stage forth-order A-stable implicit RK scheme. Five numerical examples with comparisons are given. The computational results demonstrate that the proposed algorithm is more accurate than finite difference method, method of lines and spline collocation approach
Application of the implicit MacCormack scheme to the PNS equations
NASA Technical Reports Server (NTRS)
Lawrence, S. L.; Tannehill, J. C.; Chaussee, D. S.
1983-01-01
The two-dimensional parabolized Navier-Stokes equations are solved using MacCormack's (1981) implicit finite-difference scheme. It is shown that this method for solving the parabolized Navier-Stokes equations does not require the inversion of block tridiagonal systems of algebraic equations and allows the original explicit scheme to be employed in those regions where implicit treatment is not needed. The finite-difference algorithm is discussed and the computational results for two laminar test cases are presented. Results obtained using this method for the case of a flat plate boundary layer are compared with those obtained using the conventional Beam-Warming scheme, as well as those obtained from a boundary layer code. The computed results for a more severe test of the method, the hypersonic flow past a 15 deg compression corner, are found to compare favorably with experiment and a numerical solution of the complete Navier-Stokes equations.
An Artificial Neural Networks Method for Solving Partial Differential Equations
NASA Astrophysics Data System (ADS)
Alharbi, Abir
2010-09-01
While there already exists many analytical and numerical techniques for solving PDEs, this paper introduces an approach using artificial neural networks. The approach consists of a technique developed by combining the standard numerical method, finite-difference, with the Hopfield neural network. The method is denoted Hopfield-finite-difference (HFD). The architecture of the nets, energy function, updating equations, and algorithms are developed for the method. The HFD method has been used successfully to approximate the solution of classical PDEs, such as the Wave, Heat, Poisson and the Diffusion equations, and on a system of PDEs. The software Matlab is used to obtain the results in both tabular and graphical form. The results are similar in terms of accuracy to those obtained by standard numerical methods. In terms of speed, the parallel nature of the Hopfield nets methods makes them easier to implement on fast parallel computers while some numerical methods need extra effort for parallelization.
Numerical simulations of electrohydrodynamic evolution of thin polymer films
NASA Astrophysics Data System (ADS)
Borglum, Joshua Christopher
Recently developed needleless electrospinning and electrolithography are two successful techniques that have been utilized extensively for low-cost, scalable, and continuous nano-fabrication. Rational understanding of the electrohydrodynamic principles underneath these nano-manufacturing methods is crucial to fabrication of continuous nanofibers and patterned thin films. This research project is to formulate robust, high-efficiency finite-difference Fourier spectral methods to simulate the electrohydrodynamic evolution of thin polymer films. Two thin-film models were considered and refined. The first was based on reduced lubrication theory; the second further took into account the effect of solvent drying and dewetting of the substrate. Fast Fourier Transform (FFT) based spectral method was integrated into the finite-difference algorithms for fast, accurately solving the governing nonlinear partial differential equations. The present methods have been used to examine the dependencies of the evolving surface features of the thin films upon the model parameters. The present study can be used for fast, controllable nanofabrication.
Flexible Automatic Discretization for Finite Differences: Eliminating the Human Factor
NASA Astrophysics Data System (ADS)
Pranger, Casper
2017-04-01
In the geophysical numerical modelling community, finite differences are (in part due to their small footprint) a popular spatial discretization method for PDEs in the regular-shaped continuum that is the earth. However, they rapidly become prone to programming mistakes when physics increase in complexity. To eliminate opportunities for human error, we have designed an automatic discretization algorithm using Wolfram Mathematica, in which the user supplies symbolic PDEs, the number of spatial dimensions, and a choice of symbolic boundary conditions, and the script transforms this information into matrix- and right-hand-side rules ready for use in a C++ code that will accept them. The symbolic PDEs are further used to automatically develop and perform manufactured solution benchmarks, ensuring at all stages physical fidelity while providing pragmatic targets for numerical accuracy. We find that this procedure greatly accelerates code development and provides a great deal of flexibility in ones choice of physics.
NASA Technical Reports Server (NTRS)
Kaul, Upender K. (Inventor)
2009-01-01
Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.
Evaluation of Demons- and FEM-Based Registration Algorithms for Lung Cancer.
Yang, Juan; Li, Dengwang; Yin, Yong; Zhao, Fen; Wang, Hongjun
2016-04-01
We evaluated and compared the accuracy of 2 deformable image registration algorithms in 4-dimensional computed tomography images for patients with lung cancer. Ten patients with non-small cell lung cancer or small cell lung cancer were enrolled in this institutional review board-approved study. The displacement vector fields relative to a specific reference image were calculated by using the diffeomorphic demons (DD) algorithm and the finite element method (FEM)-based algorithm. The registration accuracy was evaluated by using normalized mutual information (NMI), the sum of squared intensity difference (SSD), modified Hausdorff distance (dH_M), and ratio of gross tumor volume (rGTV) difference between reference image and deformed phase image. We also compared the registration speed of the 2 algorithms. Of all patients, the FEM-based algorithm showed stronger ability in aligning 2 images than the DD algorithm. The means (±standard deviation) of NMI were 0.86 (±0.05) and 0.90 (±0.05) using the DD algorithm and the FEM-based algorithm, respectively. The means of SSD were 0.006 (±0.003) and 0.003 (±0.002) using the DD algorithm and the FEM-based algorithm, respectively. The means of dH_M were 0.04 (±0.02) and 0.03 (±0.03) using the DD algorithm and the FEM-based algorithm, respectively. The means of rGTV were 3.9% (±1.01%) and 2.9% (±1.1%) using the DD algorithm and the FEM-based algorithm, respectively. However, the FEM-based algorithm costs a longer time than the DD algorithm, with the average running time of 31.4 minutes compared to 21.9 minutes for all patients. The preliminary results showed that the FEM-based algorithm was more accurate than the DD algorithm while compromised with the registration speed. © The Author(s) 2015.
NASA Technical Reports Server (NTRS)
Nakazawa, Shohei
1991-01-01
Formulations and algorithms implemented in the MHOST finite element program are discussed. The code uses a novel concept of the mixed iterative solution technique for the efficient 3-D computations of turbine engine hot section components. The general framework of variational formulation and solution algorithms are discussed which were derived from the mixed three field Hu-Washizu principle. This formulation enables the use of nodal interpolation for coordinates, displacements, strains, and stresses. Algorithmic description of the mixed iterative method includes variations for the quasi static, transient dynamic and buckling analyses. The global-local analysis procedure referred to as the subelement refinement is developed in the framework of the mixed iterative solution, of which the detail is presented. The numerically integrated isoparametric elements implemented in the framework is discussed. Methods to filter certain parts of strain and project the element discontinuous quantities to the nodes are developed for a family of linear elements. Integration algorithms are described for linear and nonlinear equations included in MHOST program.
NASA Technical Reports Server (NTRS)
Baker, A. J.
1982-01-01
An order-of-magnitude analysis of the subsonic three dimensional steady time averaged Navier-Stokes equations, for semibounded aerodynamic juncture geometries, yields the parabolic Navier-Stokes simplification. The numerical solution of the resultant pressure Poisson equation is cast into complementary and particular parts, yielding an iterative interaction algorithm with an exterior three dimensional potential flow solution. A parabolic transverse momentum equation set is constructed, wherein robust enforcement of first order continuity effects is accomplished using a penalty differential constraint concept within a finite element solution algorithm. A Reynolds stress constitutive equation, with low turbulence Reynolds number wall functions, is employed for closure, using parabolic forms of the two-equation turbulent kinetic energy-dissipation equation system. Numerical results document accuracy, convergence, and utility of the developed finite element algorithm, and the CMC:3DPNS computer code applied to an idealized wing-body juncture region. Additional results document accuracy aspects of the algorithm turbulence closure model.
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Volakis, John L.; Jin, Jian-Ming
1990-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary-integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principal advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Volakis, John L.
1989-01-01
A new technique is presented for computing the scattering by 2-D structures of arbitrary composition. The proposed solution approach combines the usual finite element method with the boundary integral equation to formulate a discrete system. This is subsequently solved via the conjugate gradient (CG) algorithm. A particular characteristic of the method is the use of rectangular boundaries to enclose the scatterer. Several of the resulting boundary integrals are therefore convolutions and may be evaluated via the fast Fourier transform (FFT) in the implementation of the CG algorithm. The solution approach offers the principle advantage of having O(N) memory demand and employs a 1-D FFT versus a 2-D FFT as required with a traditional implementation of the CGFFT algorithm. The speed of the proposed solution method is compared with that of the traditional CGFFT algorithm, and results for rectangular bodies are given and shown to be in excellent agreement with the moment method.
Prototype Mixed Finite Element Hydrodynamics Capability in ARES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieben, R N
This document describes work on a prototype Mixed Finite Element Method (MFEM) hydrodynamics algorithm in the ARES code, and its application to a set of standard test problems. This work is motivated by the need for improvements to the algorithms used in the Lagrange hydrodynamics step to make them more robust. We begin by identifying the outstanding issues with traditional numerical hydrodynamics algorithms followed by a description of the proposed method and how it may address several of these longstanding issues. We give a theoretical overview of the proposed MFEM algorithm as well as a summary of the coding additionsmore » and modifications that were made to add this capability to the ARES code. We present results obtained with the new method on a set of canonical hydrodynamics test problems and demonstrate significant improvement in comparison to results obtained with traditional methods. We conclude with a summary of the issues still at hand and motivate the need for continued research to develop the proposed method into maturity.« less
An efficient three-dimensional Poisson solver for SIMD high-performance-computing architectures
NASA Technical Reports Server (NTRS)
Cohl, H.
1994-01-01
We present an algorithm that solves the three-dimensional Poisson equation on a cylindrical grid. The technique uses a finite-difference scheme with operator splitting. This splitting maps the banded structure of the operator matrix into a two-dimensional set of tridiagonal matrices, which are then solved in parallel. Our algorithm couples FFT techniques with the well-known ADI (Alternating Direction Implicit) method for solving Elliptic PDE's, and the implementation is extremely well suited for a massively parallel environment like the SIMD architecture of the MasPar MP-1. Due to the highly recursive nature of our problem, we believe that our method is highly efficient, as it avoids excessive interprocessor communication.
Split-field FDTD method for oblique incidence study of periodic dispersive metallic structures.
Baida, F I; Belkhir, A
2009-08-15
The study of periodic structures illuminated by a normally incident plane wave is a simple task that can be numerically simulated by the finite-difference time-domain (FDTD) method. On the contrary, for off-normal incidence, a widely modified algorithm must be developed in order to bypass the frequency dependence appearing in the periodic boundary conditions. After recently implementing this FDTD algorithm for pure dielectric materials, we here extend it to the study of metallic structures where dispersion can be described by analytical models. The accuracy of our code is demonstrated through comparisons with already-published results in the case of 1D and 3D structures.
Bindu, G; Semenov, S
2013-01-01
This paper describes an efficient two-dimensional fused image reconstruction approach for Microwave Tomography (MWT). Finite Difference Time Domain (FDTD) models were created for a viable MWT experimental system having the transceivers modelled using thin wire approximation with resistive voltage sources. Born Iterative and Distorted Born Iterative methods have been employed for image reconstruction with the extremity imaging being done using a differential imaging technique. The forward solver in the imaging algorithm employs the FDTD method of solving the time domain Maxwell's equations with the regularisation parameter computed using a stochastic approach. The algorithm is tested with 10% noise inclusion and successful image reconstruction has been shown implying its robustness.
SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)
Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...
Recursive Inversion By Finite-Impulse-Response Filters
NASA Technical Reports Server (NTRS)
Bach, Ralph E., Jr.; Baram, Yoram
1991-01-01
Recursive approximation gives least-squares best fit to exact response. Algorithm yields finite-impulse-response approximation of unknown single-input/single-output, causal, time-invariant, linear, real system, response of which is sequence of impulses. Applicable to such system-inversion problems as suppression of echoes and identification of target from its scatter response to incident impulse.
Ciaccio, Edward J; Micheli-Tzanakou, Evangelia
2007-07-01
Common-mode noise degrades cardiovascular signal quality and diminishes measurement accuracy. Filtering to remove noise components in the frequency domain often distorts the signal. Two adaptive noise canceling (ANC) algorithms were tested to adjust weighted reference signals for optimal subtraction from a primary signal. Update of weight w was based upon the gradient term of the steepest descent equation: [see text], where the error epsilon is the difference between primary and weighted reference signals. nabla was estimated from Deltaepsilon(2) and Deltaw without using a variable Deltaw in the denominator which can cause instability. The Parallel Comparison (PC) algorithm computed Deltaepsilon(2) using fixed finite differences +/- Deltaw in parallel during each discrete time k. The ALOPEX algorithm computed Deltaepsilon(2)x Deltaw from time k to k + 1 to estimate nabla, with a random number added to account for Deltaepsilon(2) . Deltaw--> 0 near the optimal weighting. Using simulated data, both algorithms stably converged to the optimal weighting within 50-2000 discrete sample points k even with a SNR = 1:8 and weights which were initialized far from the optimal. Using a sharply pulsatile cardiac electrogram signal with added noise so that the SNR = 1:5, both algorithms exhibited stable convergence within 100 ms (100 sample points). Fourier spectral analysis revealed minimal distortion when comparing the signal without added noise to the ANC restored signal. ANC algorithms based upon difference calculations can rapidly and stably converge to the optimal weighting in simulated and real cardiovascular data. Signal quality is restored with minimal distortion, increasing the accuracy of biophysical measurement.
NASA Astrophysics Data System (ADS)
Alfonso, Lester; Zamora, Jose; Cruz, Pedro
2015-04-01
The stochastic approach to coagulation considers the coalescence process going in a system of a finite number of particles enclosed in a finite volume. Within this approach, the full description of the system can be obtained from the solution of the multivariate master equation, which models the evolution of the probability distribution of the state vector for the number of particles of a given mass. Unfortunately, due to its complexity, only limited results were obtained for certain type of kernels and monodisperse initial conditions. In this work, a novel numerical algorithm for the solution of the multivariate master equation for stochastic coalescence that works for any type of kernels and initial conditions is introduced. The performance of the method was checked by comparing the numerically calculated particle mass spectrum with analytical solutions obtained for the constant and sum kernels, with an excellent correspondence between the analytical and numerical solutions. In order to increase the speedup of the algorithm, software parallelization techniques with OpenMP standard were used, along with an implementation in order to take advantage of new accelerator technologies. Simulations results show an important speedup of the parallelized algorithms. This study was funded by a grant from Consejo Nacional de Ciencia y Tecnologia de Mexico SEP-CONACYT CB-131879. The authors also thanks LUFAC® Computacion SA de CV for CPU time and all the support provided.
NASA Astrophysics Data System (ADS)
Papagiannis, P.; Azariadis, P.; Papanikos, P.
2017-10-01
Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.
NASA Astrophysics Data System (ADS)
Lin, Zhi; Zhang, Qinghai
2017-09-01
We propose high-order finite-volume schemes for numerically solving the steady-state advection-diffusion equation with nonlinear Robin boundary conditions. Although the original motivation comes from a mathematical model of blood clotting, the nonlinear boundary conditions may also apply to other scientific problems. The main contribution of this work is a generic algorithm for generating third-order, fourth-order, and even higher-order explicit ghost-filling formulas to enforce nonlinear Robin boundary conditions in multiple dimensions. Under the framework of finite volume methods, this appears to be the first algorithm of its kind. Numerical experiments on boundary value problems show that the proposed fourth-order formula can be much more accurate and efficient than a simple second-order formula. Furthermore, the proposed ghost-filling formulas may also be useful for solving other partial differential equations.
Finite element computation on nearest neighbor connected machines
NASA Technical Reports Server (NTRS)
Mcaulay, A. D.
1984-01-01
Research aimed at faster, more cost effective parallel machines and algorithms for improving designer productivity with finite element computations is discussed. A set of 8 boards, containing 4 nearest neighbor connected arrays of commercially available floating point chips and substantial memory, are inserted into a commercially available machine. One-tenth Mflop (64 bit operation) processors provide an 89% efficiency when solving the equations arising in a finite element problem for a single variable regular grid of size 40 by 40 by 40. This is approximately 15 to 20 times faster than a much more expensive machine such as a VAX 11/780 used in double precision. The efficiency falls off as faster or more processors are envisaged because communication times become dominant. A novel successive overrelaxation algorithm which uses cyclic reduction in order to permit data transfer and computation to overlap in time is proposed.
Updating finite element dynamic models using an element-by-element sensitivity methodology
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Hemez, Francois M.
1993-01-01
A sensitivity-based methodology for improving the finite element model of a given structure using test modal data and a few sensors is presented. The proposed method searches for both the location and sources of the mass and stiffness errors and does not interfere with the theory behind the finite element model while correcting these errors. The updating algorithm is derived from the unconstrained minimization of the squared L sub 2 norms of the modal dynamic residuals via an iterative two-step staggered procedure. At each iteration, the measured mode shapes are first expanded assuming that the model is error free, then the model parameters are corrected assuming that the expanded mode shapes are exact. The numerical algorithm is implemented in an element-by-element fashion and is capable of 'zooming' on the detected error locations. Several simulation examples which demonstate the potential of the proposed methodology are discussed.
Finite-density effects in the Fredrickson-Andersen and Kob-Andersen kinetically-constrained models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teomy, Eial, E-mail: eialteom@post.tau.ac.il; Shokef, Yair, E-mail: shokef@tau.ac.il
2014-08-14
We calculate the corrections to the thermodynamic limit of the critical density for jamming in the Kob-Andersen and Fredrickson-Andersen kinetically-constrained models, and find them to be finite-density corrections, and not finite-size corrections. We do this by introducing a new numerical algorithm, which requires negligible computer memory since contrary to alternative approaches, it generates at each point only the necessary data. The algorithm starts from a single unfrozen site and at each step randomly generates the neighbors of the unfrozen region and checks whether they are frozen or not. Our results correspond to systems of size greater than 10{sup 7} ×more » 10{sup 7}, much larger than any simulated before, and are consistent with the rigorous bounds on the asymptotic corrections. We also find that the average number of sites that seed a critical droplet is greater than 1.« less
NASA Astrophysics Data System (ADS)
Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.
2018-01-01
Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.
Progress on Complex Langevin simulations of a finite density matrix model for QCD
NASA Astrophysics Data System (ADS)
Bloch, Jacques; Glesaaen, Jonas; Verbaarschot, Jacobus; Zafeiropoulos, Savvas
2018-03-01
We study the Stephanov model, which is an RMT model for QCD at finite density, using the Complex Langevin algorithm. Naive implementation of the algorithm shows convergence towards the phase quenched or quenched theory rather than to intended theory with dynamical quarks. A detailed analysis of this issue and a potential resolution of the failure of this algorithm are discussed. We study the effect of gauge cooling on the Dirac eigenvalue distribution and time evolution of the norm for various cooling norms, which were specifically designed to remove the pathologies of the complex Langevin evolution. The cooling is further supplemented with a shifted representation for the random matrices. Unfortunately, none of these modifications generate a substantial improvement on the complex Langevin evolution and the final results still do not agree with the analytical predictions.
Parallel deterministic neutronics with AMR in 3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clouse, C.; Ferguson, J.; Hendrickson, C.
1997-12-31
AMTRAN, a three dimensional Sn neutronics code with adaptive mesh refinement (AMR) has been parallelized over spatial domains and energy groups and runs on the Meiko CS-2 with MPI message passing. Block refined AMR is used with linear finite element representations for the fluxes, which allows for a straight forward interpretation of fluxes at block interfaces with zoning differences. The load balancing algorithm assumes 8 spatial domains, which minimizes idle time among processors.
Thermal analysis of combinatorial solid geometry models using SINDA
NASA Technical Reports Server (NTRS)
Gerencser, Diane; Radke, George; Introne, Rob; Klosterman, John; Miklosovic, Dave
1993-01-01
Algorithms have been developed using Monte Carlo techniques to determine the thermal network parameters necessary to perform a finite difference analysis on Combinatorial Solid Geometry (CSG) models. Orbital and laser fluxes as well as internal heat generation are modeled to facilitate satellite modeling. The results of the thermal calculations are used to model the infrared (IR) images of targets and assess target vulnerability. Sample analyses and validation are presented which demonstrate code products.
Graphics applications utilizing parallel processing
NASA Technical Reports Server (NTRS)
Rice, John R.
1990-01-01
The results are presented of research conducted to develop a parallel graphic application algorithm to depict the numerical solution of the 1-D wave equation, the vibrating string. The research was conducted on a Flexible Flex/32 multiprocessor and a Sequent Balance 21000 multiprocessor. The wave equation is implemented using the finite difference method. The synchronization issues that arose from the parallel implementation and the strategies used to alleviate the effects of the synchronization overhead are discussed.
NASA Astrophysics Data System (ADS)
Nikolskiy, V. P.; Stegailov, V. V.
2018-01-01
Metal nanoparticles (NPs) serve as important tools for many modern technologies. However, the proper microscopic models of the interaction between ultrashort laser pulses and metal NPs are currently not very well developed in many cases. One part of the problem is the description of the warm dense matter that is formed in NPs after intense irradiation. Another part of the problem is the description of the electromagnetic waves around NPs. Description of wave propagation requires the solution of Maxwell’s equations and the finite-difference time-domain (FDTD) method is the classic approach for solving them. There are many commercial and free implementations of FDTD, including the open source software that supports graphics processing unit (GPU) acceleration. In this report we present the results on the FDTD calculations for different cases of the interaction between ultrashort laser pulses and metal nanoparticles. Following our previous results, we analyze the efficiency of the GPU acceleration of the FDTD algorithm.
A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations
NASA Technical Reports Server (NTRS)
Gerritsen, Margot; Olsson, Pelle
1996-01-01
We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.
Recent Improvements to the Finite-Fault Rupture Detector Algorithm: FinDer II
NASA Astrophysics Data System (ADS)
Smith, D.; Boese, M.; Heaton, T. H.
2015-12-01
Constraining the finite-fault rupture extent and azimuth is crucial for accurately estimating ground-motion in large earthquakes. Detecting and modeling finite-fault ruptures in real-time is thus essential to both earthquake early warning (EEW) and rapid emergency response. Following extensive real-time and offline testing, the finite-fault rupture detector algorithm, FinDer (Böse et al., 2012 & 2015), was successfully integrated into the California-wide ShakeAlert EEW demonstration system. Since April 2015, FinDer has been scanning real-time waveform data from approximately 420 strong-motion stations in California for peak ground acceleration (PGA) patterns indicative of earthquakes. FinDer analyzes strong-motion data by comparing spatial images of observed PGA with theoretical templates modeled from empirical ground-motion prediction equations (GMPEs). If the correlation between the observed and theoretical PGA is sufficiently high, a report is sent to ShakeAlert including the estimated centroid position, length, and strike, and their uncertainties, of an ongoing fault rupture. Rupture estimates are continuously updated as new data arrives. As part of a joint effort between USGS Menlo Park, ETH Zurich, and Caltech, we have rewritten FinDer in C++ to obtain a faster and more flexible implementation. One new feature of FinDer II is that multiple contour lines of high-frequency PGA are computed and correlated with templates, allowing the detection of both large earthquakes and much smaller (~ M3.5) events shortly after their nucleation. Unlike previous EEW algorithms, FinDer II thus provides a modeling approach for both small-magnitude point-source and larger-magnitude finite-fault ruptures with consistent error estimates for the entire event magnitude range.
Zhang, Yao; Tang, Shengjing; Guo, Jie
2017-11-01
In this paper, a novel adaptive-gain fast super-twisting (AGFST) sliding mode attitude control synthesis is carried out for a reusable launch vehicle subject to actuator faults and unknown disturbances. According to the fast nonsingular terminal sliding mode surface (FNTSMS) and adaptive-gain fast super-twisting algorithm, an adaptive fault tolerant control law for the attitude stabilization is derived to protect against the actuator faults and unknown uncertainties. Firstly, a second-order nonlinear control-oriented model for the RLV is established by feedback linearization method. And on the basis a fast nonsingular terminal sliding mode (FNTSM) manifold is designed, which provides fast finite-time global convergence and avoids singularity problem as well as chattering phenomenon. Based on the merits of the standard super-twisting (ST) algorithm and fast reaching law with adaption, a novel adaptive-gain fast super-twisting (AGFST) algorithm is proposed for the finite-time fault tolerant attitude control problem of the RLV without any knowledge of the bounds of uncertainties and actuator faults. The important feature of the AGFST algorithm includes non-overestimating the values of the control gains and faster convergence speed than the standard ST algorithm. A formal proof of the finite-time stability of the closed-loop system is derived using the Lyapunov function technique. An estimation of the convergence time and accurate expression of convergence region are also provided. Finally, simulations are presented to illustrate the effectiveness and superiority of the proposed control scheme. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
Quadratic Finite Element Method for 1D Deterministic Transport
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tolar, Jr., D R; Ferguson, J M
2004-01-06
In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.
Analysis of Streamline Separation at Infinity Using Time-Discrete Markov Chains.
Reich, W; Scheuermann, G
2012-12-01
Existing methods for analyzing separation of streamlines are often restricted to a finite time or a local area. In our paper we introduce a new method that complements them by allowing an infinite-time-evaluation of steady planar vector fields. Our algorithm unifies combinatorial and probabilistic methods and introduces the concept of separation in time-discrete Markov-Chains. We compute particle distributions instead of the streamlines of single particles. We encode the flow into a map and then into a transition matrix for each time direction. Finally, we compare the results of our grid-independent algorithm to the popular Finite-Time-Lyapunov-Exponents and discuss the discrepancies.
Functional Validation and Comparison Framework for EIT Lung Imaging
Meybohm, Patrick; Weiler, Norbert; Frerichs, Inéz; Adler, Andy
2014-01-01
Introduction Electrical impedance tomography (EIT) is an emerging clinical tool for monitoring ventilation distribution in mechanically ventilated patients, for which many image reconstruction algorithms have been suggested. We propose an experimental framework to assess such algorithms with respect to their ability to correctly represent well-defined physiological changes. We defined a set of clinically relevant ventilation conditions and induced them experimentally in 8 pigs by controlling three ventilator settings (tidal volume, positive end-expiratory pressure and the fraction of inspired oxygen). In this way, large and discrete shifts in global and regional lung air content were elicited. Methods We use the framework to compare twelve 2D EIT reconstruction algorithms, including backprojection (the original and still most frequently used algorithm), GREIT (a more recent consensus algorithm for lung imaging), truncated singular value decomposition (TSVD), several variants of the one-step Gauss-Newton approach and two iterative algorithms. We consider the effects of using a 3D finite element model, assuming non-uniform background conductivity, noise modeling, reconstructing for electrode movement, total variation (TV) reconstruction, robust error norms, smoothing priors, and using difference vs. normalized difference data. Results and Conclusions Our results indicate that, while variation in appearance of images reconstructed from the same data is not negligible, clinically relevant parameters do not vary considerably among the advanced algorithms. Among the analysed algorithms, several advanced algorithms perform well, while some others are significantly worse. Given its vintage and ad-hoc formulation backprojection works surprisingly well, supporting the validity of previous studies in lung EIT. PMID:25110887
NASA Astrophysics Data System (ADS)
Voznyuk, I.; Litman, A.; Tortel, H.
2015-08-01
A Quasi-Newton method for reconstructing the constitutive parameters of three-dimensional (3D) penetrable scatterers from scattered field measurements is presented. This method is adapted for handling large-scale electromagnetic problems while keeping the memory requirement and the time flexibility as low as possible. The forward scattering problem is solved by applying the finite-element tearing and interconnecting full-dual-primal (FETI-FDP2) method which shares the same spirit as the domain decomposition methods for finite element methods. The idea is to split the computational domain into smaller non-overlapping sub-domains in order to simultaneously solve local sub-problems. Various strategies are proposed in order to efficiently couple the inversion algorithm with the FETI-FDP2 method: a separation into permanent and non-permanent subdomains is performed, iterative solvers are favorized for resolving the interface problem and a marching-on-in-anything initial guess selection further accelerates the process. The computational burden is also reduced by applying the adjoint state vector methodology. Finally, the inversion algorithm is confronted to measurements extracted from the 3D Fresnel database.
NASA Astrophysics Data System (ADS)
Islam, Muhammad Rabiul; Sakib-Ul-Alam, Md.; Nazat, Kazi Kaarima; Hassan, M. Munir
2017-12-01
FEA results greatly depend on analysis parameters. MSC NASTRAN nonlinear implicit analysis code has been used in large deformation finite element analysis of pitted marine SM490A steel rectangular plate. The effect of two types actual pit shape on parameters of integrity of structure has been analyzed. For 3-D modeling, a proposed method for simulation of pitted surface by probabilistic corrosion model has been used. The result has been verified with the empirical formula proposed by finite element analysis of steel surface generated with different pitted data where analyses have been carried out by the code of LS-DYNA 971. In the both solver, an elasto-plastic material has been used where an arbitrary stress versus strain curve can be defined. In the later one, the material model is based on the J2 flow theory with isotropic hardening where a radial return algorithm is used. The comparison shows good agreement between the two results which ensures successful simulation with comparatively less energy and time.
Windowed time-reversal music technique for super-resolution ultrasound imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Lianjie; Labyed, Yassin
Systems and methods for super-resolution ultrasound imaging using a windowed and generalized TR-MUSIC algorithm that divides the imaging region into overlapping sub-regions and applies the TR-MUSIC algorithm to the windowed backscattered ultrasound signals corresponding to each sub-region. The algorithm is also structured to account for the ultrasound attenuation in the medium and the finite-size effects of ultrasound transducer elements.
Efficient design of nanoplasmonic waveguide devices using the space mapping algorithm.
Dastmalchi, Pouya; Veronis, Georgios
2013-12-30
We show that the space mapping algorithm, originally developed for microwave circuit optimization, can enable the efficient design of nanoplasmonic waveguide devices which satisfy a set of desired specifications. Space mapping utilizes a physics-based coarse model to approximate a fine model accurately describing a device. Here the fine model is a full-wave finite-difference frequency-domain (FDFD) simulation of the device, while the coarse model is based on transmission line theory. We demonstrate that simply optimizing the transmission line model of the device is not enough to obtain a device which satisfies all the required design specifications. On the other hand, when the iterative space mapping algorithm is used, it converges fast to a design which meets all the specifications. In addition, full-wave FDFD simulations of only a few candidate structures are required before the iterative process is terminated. Use of the space mapping algorithm therefore results in large reductions in the required computation time when compared to any direct optimization method of the fine FDFD model.
A Two-Dimensional Linear Bicharacteristic Scheme for Electromagnetics
NASA Technical Reports Server (NTRS)
Beggs, John H.
2002-01-01
The upwind leapfrog or Linear Bicharacteristic Scheme (LBS) has previously been implemented and demonstrated on one-dimensional electromagnetic wave propagation problems. This memorandum extends the Linear Bicharacteristic Scheme for computational electromagnetics to model lossy dielectric and magnetic materials and perfect electrical conductors in two dimensions. This is accomplished by proper implementation of the LBS for homogeneous lossy dielectric and magnetic media and for perfect electrical conductors. Both the Transverse Electric and Transverse Magnetic polarizations are considered. Computational requirements and a Fourier analysis are also discussed. Heterogeneous media are modeled through implementation of surface boundary conditions and no special extrapolations or interpolations at dielectric material boundaries are required. Results are presented for two-dimensional model problems on uniform grids, and the Finite Difference Time Domain (FDTD) algorithm is chosen as a convenient reference algorithm for comparison. The results demonstrate that the two-dimensional explicit LBS is a dissipation-free, second-order accurate algorithm which uses a smaller stencil than the FDTD algorithm, yet it has less phase velocity error.
Distributed weighted least-squares estimation with fast convergence for large-scale systems.
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods.
Distributed weighted least-squares estimation with fast convergence for large-scale systems☆
Marelli, Damián Edgardo; Fu, Minyue
2015-01-01
In this paper we study a distributed weighted least-squares estimation problem for a large-scale system consisting of a network of interconnected sub-systems. Each sub-system is concerned with a subset of the unknown parameters and has a measurement linear in the unknown parameters with additive noise. The distributed estimation task is for each sub-system to compute the globally optimal estimate of its own parameters using its own measurement and information shared with the network through neighborhood communication. We first provide a fully distributed iterative algorithm to asymptotically compute the global optimal estimate. The convergence rate of the algorithm will be maximized using a scaling parameter and a preconditioning method. This algorithm works for a general network. For a network without loops, we also provide a different iterative algorithm to compute the global optimal estimate which converges in a finite number of steps. We include numerical experiments to illustrate the performances of the proposed methods. PMID:25641976
NASA Astrophysics Data System (ADS)
Farmann, Alexander; Waag, Wladislaw; Sauer, Dirk Uwe
2015-12-01
Robust algorithms using reduced order equivalent circuit model (ECM) for an accurate and reliable estimation of battery states in various applications become more popular. In this study, a novel adaptive, self-learning heuristic algorithm for on-board impedance parameters and voltage estimation of lithium-ion batteries (LIBs) in electric vehicles is introduced. The presented approach is verified using LIBs with different composition of chemistries (NMC/C, NMC/LTO, LFP/C) at different aging states. An impedance-based reduced order ECM incorporating ohmic resistance and a combination of a constant phase element and a resistance (so-called ZARC-element) is employed. Existing algorithms in vehicles are much more limited in the complexity of the ECMs. The algorithm is validated using seven day real vehicle data with high temperature variation including very low temperatures (from -20 °C to +30 °C) at different Depth-of-Discharges (DoDs). Two possibilities to approximate both ZARC-elements with finite number of RC-elements on-board are shown and the results of the voltage estimation are compared. Moreover, the current dependence of the charge-transfer resistance is considered by employing Butler-Volmer equation. Achieved results indicate that both models yield almost the same grade of accuracy.
NASA Workshop on Computational Structural Mechanics 1987, part 3
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Computational Structural Mechanics (CSM) topics are explored. Algorithms and software for nonlinear structural dynamics, concurrent algorithms for transient finite element analysis, computational methods and software systems for dynamics and control of large space structures, and the use of multi-grid for structural analysis are discussed.
NASA Astrophysics Data System (ADS)
Prawin, J.; Rama Mohan Rao, A.
2018-01-01
The knowledge of dynamic loads acting on a structure is always required for many practical engineering problems, such as structural strength analysis, health monitoring and fault diagnosis, and vibration isolation. In this paper, we present an online input force time history reconstruction algorithm using Dynamic Principal Component Analysis (DPCA) from the acceleration time history response measurements using moving windows. We also present an optimal sensor placement algorithm to place limited sensors at dynamically sensitive spatial locations. The major advantage of the proposed input force identification algorithm is that it does not require finite element idealization of structure unlike the earlier formulations and therefore free from physical modelling errors. We have considered three numerical examples to validate the accuracy of the proposed DPCA based method. Effects of measurement noise, multiple force identification, different kinds of loading, incomplete measurements, and high noise levels are investigated in detail. Parametric studies have been carried out to arrive at optimal window size and also the percentage of window overlap. Studies presented in this paper clearly establish the merits of the proposed algorithm for online load identification.
Computation of canonical correlation and best predictable aspect of future for time series
NASA Technical Reports Server (NTRS)
Pourahmadi, Mohsen; Miamee, A. G.
1989-01-01
The canonical correlation between the (infinite) past and future of a stationary time series is shown to be the limit of the canonical correlation between the (infinite) past and (finite) future, and computation of the latter is reduced to a (generalized) eigenvalue problem involving (finite) matrices. This provides a convenient and essentially, finite-dimensional algorithm for computing canonical correlations and components of a time series. An upper bound is conjectured for the largest canonical correlation.
Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.
Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks.
Rathinam, Muruhan; Sheppard, Patrick W; Khammash, Mustafa
2010-01-21
Parametric sensitivity of biochemical networks is an indispensable tool for studying system robustness properties, estimating network parameters, and identifying targets for drug therapy. For discrete stochastic representations of biochemical networks where Monte Carlo methods are commonly used, sensitivity analysis can be particularly challenging, as accurate finite difference computations of sensitivity require a large number of simulations for both nominal and perturbed values of the parameters. In this paper we introduce the common random number (CRN) method in conjunction with Gillespie's stochastic simulation algorithm, which exploits positive correlations obtained by using CRNs for nominal and perturbed parameters. We also propose a new method called the common reaction path (CRP) method, which uses CRNs together with the random time change representation of discrete state Markov processes due to Kurtz to estimate the sensitivity via a finite difference approximation applied to coupled reaction paths that emerge naturally in this representation. While both methods reduce the variance of the estimator significantly compared to independent random number finite difference implementations, numerical evidence suggests that the CRP method achieves a greater variance reduction. We also provide some theoretical basis for the superior performance of CRP. The improved accuracy of these methods allows for much more efficient sensitivity estimation. In two example systems reported in this work, speedup factors greater than 300 and 10,000 are demonstrated.
Uniqueness and reconstruction in magnetic resonance-electrical impedance tomography (MR-EIT).
Ider, Y Ziya; Onart, Serkan; Lionheart, William R B
2003-05-01
Magnetic resonance-electrical impedance tomography (MR-EIT) was first proposed in 1992. Since then various reconstruction algorithms have been suggested and applied. These algorithms use peripheral voltage measurements and internal current density measurements in different combinations. In this study the problem of MR-EIT is treated as a hyperbolic system of first-order partial differential equations, and three numerical methods are proposed for its solution. This approach is not utilized in any of the algorithms proposed earlier. The numerical solution methods are integration along equipotential surfaces (method of characteristics), integration on a Cartesian grid, and inversion of a system matrix derived by a finite difference formulation. It is shown that if some uniqueness conditions are satisfied, then using at least two injected current patterns, resistivity can be reconstructed apart from a multiplicative constant. This constant can then be identified using a single voltage measurement. The methods proposed are direct, non-iterative, and valid and feasible for 3D reconstructions. They can also be used to easily obtain slice and field-of-view images from a 3D object. 2D simulations are made to illustrate the performance of the algorithms.
Design and Optimization Method of a Two-Disk Rotor System
NASA Astrophysics Data System (ADS)
Huang, Jingjing; Zheng, Longxi; Mei, Qing
2016-04-01
An integrated analytical method based on multidisciplinary optimization software Isight and general finite element software ANSYS was proposed in this paper. Firstly, a two-disk rotor system was established and the mode, humorous response and transient response at acceleration condition were analyzed with ANSYS. The dynamic characteristics of the two-disk rotor system were achieved. On this basis, the two-disk rotor model was integrated to the multidisciplinary design optimization software Isight. According to the design of experiment (DOE) and the dynamic characteristics, the optimization variables, optimization objectives and constraints were confirmed. After that, the multi-objective design optimization of the transient process was carried out with three different global optimization algorithms including Evolutionary Optimization Algorithm, Multi-Island Genetic Algorithm and Pointer Automatic Optimizer. The optimum position of the two-disk rotor system was obtained at the specified constraints. Meanwhile, the accuracy and calculation numbers of different optimization algorithms were compared. The optimization results indicated that the rotor vibration reached the minimum value and the design efficiency and quality were improved by the multidisciplinary design optimization in the case of meeting the design requirements, which provided the reference to improve the design efficiency and reliability of the aero-engine rotor.
Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation
Zhang, Jie; Zhang, Wen; Yang, Hui-Lin
2017-01-01
We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20–3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science. PMID:28116309
Analysis of the Osteogenic Effects of Biomaterials Using Numerical Simulation.
Wang, Lan; Zhang, Jie; Zhang, Wen; Yang, Hui-Lin; Luo, Zong-Ping
2017-01-01
We describe the development of an optimization algorithm for determining the effects of different properties of implanted biomaterials on bone growth, based on the finite element method and bone self-optimization theory. The rate of osteogenesis and the bone density distribution of the implanted biomaterials were quantitatively analyzed. Using the proposed algorithm, a femur with implanted biodegradable biomaterials was simulated, and the osteogenic effects of different materials were measured. Simulation experiments mainly considered variations in the elastic modulus (20-3000 MPa) and degradation period (10, 20, and 30 days) for the implanted biodegradable biomaterials. Based on our algorithm, the osteogenic effects of the materials were optimal when the elastic modulus was 1000 MPa and the degradation period was 20 days. The simulation results for the metaphyseal bone of the left femur were compared with micro-CT images from rats with defective femurs, which demonstrated the effectiveness of the algorithm. The proposed method was effective for optimization of the bone structure and is expected to have applications in matching appropriate bones and biomaterials. These results provide important insights into the development of implanted biomaterials for both clinical medicine and materials science.
NASA Astrophysics Data System (ADS)
Kumar, Vivek; Raghurama Rao, S. V.
2008-04-01
Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.
NASA Astrophysics Data System (ADS)
Matiatos, Ioannis; Varouhakis, Emmanouil A.; Papadopoulou, Maria P.
2015-04-01
As the sustainable use of groundwater resources is a great challenge for many countries in the world, groundwater modeling has become a very useful and well established tool for studying groundwater management problems. Based on various methods used to numerically solve algebraic equations representing groundwater flow and contaminant mass transport, numerical models are mainly divided into Finite Difference-based and Finite Element-based models. The present study aims at evaluating the performance of a finite difference-based (MODFLOW-MT3DMS), a finite element-based (FEFLOW) and a hybrid finite element and finite difference (Princeton Transport Code-PTC) groundwater numerical models simulating groundwater flow and nitrate mass transport in the alluvial aquifer of Trizina region in NE Peloponnese, Greece. The calibration of groundwater flow in all models was performed using groundwater hydraulic head data from seven stress periods and the validation was based on a series of hydraulic head data for two stress periods in sufficient numbers of observation locations. The same periods were used for the calibration of nitrate mass transport. The calibration and validation of the three models revealed that the simulated values of hydraulic heads and nitrate mass concentrations coincide well with the observed ones. The models' performance was assessed by performing a statistical analysis of these different types of numerical algorithms. A number of metrics, such as Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Bias, Nash Sutcliffe Model Efficiency (NSE) and Reliability Index (RI) were used allowing the direct comparison of models' performance. Spatiotemporal Kriging (STRK) was also applied using separable and non-separable spatiotemporal variograms to predict water table level and nitrate concentration at each sampling station for two selected hydrological stress periods. The predictions were validated using the respective measured values. Maps of water table level and nitrate concentrations were produced and compared with those obtained from groundwater and mass transport numerical models. Preliminary results showed similar efficiency of the spatiotemporal geostatistical method with the numerical models. However data requirements of the former model were significantly less. Advantages and disadvantages of the methods performance were analysed and discussed indicating the characteristics of the different approaches.
Semi-Analytic Reconstruction of Flux in Finite Volume Formulations
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.
2006-01-01
Semi-analytic reconstruction uses the analytic solution to a second-order, steady, ordinary differential equation (ODE) to simultaneously evaluate the convective and diffusive flux at all interfaces of a finite volume formulation. The second-order ODE is itself a linearized approximation to the governing first- and second- order partial differential equation conservation laws. Thus, semi-analytic reconstruction defines a family of formulations for finite volume interface fluxes using analytic solutions to approximating equations. Limiters are not applied in a conventional sense; rather, diffusivity is adjusted in the vicinity of changes in sign of eigenvalues in order to achieve a sufficiently small cell Reynolds number in the analytic formulation across critical points. Several approaches for application of semi-analytic reconstruction for the solution of one-dimensional scalar equations are introduced. Results are compared with exact analytic solutions to Burger s Equation as well as a conventional, upwind discretization using Roe s method. One approach, the end-point wave speed (EPWS) approximation, is further developed for more complex applications. One-dimensional vector equations are tested on a quasi one-dimensional nozzle application. The EPWS algorithm has a more compact difference stencil than Roe s algorithm but reconstruction time is approximately a factor of four larger than for Roe. Though both are second-order accurate schemes, Roe s method approaches a grid converged solution with fewer grid points. Reconstruction of flux in the context of multi-dimensional, vector conservation laws including effects of thermochemical nonequilibrium in the Navier-Stokes equations is developed.
NASA Astrophysics Data System (ADS)
Luo, Li; Wang, Xiao-Ping; Cai, Xiao-Chuan
2017-11-01
We study numerically the dynamics of a three-dimensional droplet spreading on a rough solid surface using a phase-field model consisting of the coupled Cahn-Hilliard and Navier-Stokes equations with a generalized Navier boundary condition (GNBC). An efficient finite element method on unstructured meshes is introduced to cope with the complex geometry of the solid surfaces. We extend the GNBC to surfaces with complex geometry by including its weak form along different normal and tangential directions in the finite element formulation. The semi-implicit time discretization scheme results in a decoupled system for the phase function, the velocity, and the pressure. In addition, a mass compensation algorithm is introduced to preserve the mass of the droplet. To efficiently solve the decoupled systems, we present a highly parallel solution strategy based on domain decomposition techniques. We validate the newly developed solution method through extensive numerical experiments, particularly for those phenomena that can not be achieved by two-dimensional simulations. On a surface with circular posts, we study how wettability of the rough surface depends on the geometry of the posts. The contact line motion for a droplet spreading over some periodic rough surfaces are also efficiently computed. Moreover, we study the spreading process of an impacting droplet on a microstructured surface, a qualitative agreement is achieved between the numerical and experimental results. The parallel performance suggests that the proposed solution algorithm is scalable with over 4,000 processors cores with tens of millions of unknowns.
NASA Astrophysics Data System (ADS)
Šprlák, M.; Han, S.-C.; Featherstone, W. E.
2017-12-01
Rigorous modelling of the spherical gravitational potential spectra from the volumetric density and geometry of an attracting body is discussed. Firstly, we derive mathematical formulas for the spatial analysis of spherical harmonic coefficients. Secondly, we present a numerically efficient algorithm for rigorous forward modelling. We consider the finite-amplitude topographic modelling methods as special cases, with additional postulates on the volumetric density and geometry. Thirdly, we implement our algorithm in the form of computer programs and test their correctness with respect to the finite-amplitude topography routines. For this purpose, synthetic and realistic numerical experiments, applied to the gravitational field and geometry of the Moon, are performed. We also investigate the optimal choice of input parameters for the finite-amplitude modelling methods. Fourth, we exploit the rigorous forward modelling for the determination of the spherical gravitational potential spectra inferred by lunar crustal models with uniform, laterally variable, radially variable, and spatially (3D) variable bulk density. Also, we analyse these four different crustal models in terms of their spectral characteristics and band-limited radial gravitation. We demonstrate applicability of the rigorous forward modelling using currently available computational resources up to degree and order 2519 of the spherical harmonic expansion, which corresponds to a resolution of 2.2 km on the surface of the Moon. Computer codes, a user manual and scripts developed for the purposes of this study are publicly available to potential users.