Sample records for finite difference analogs

  1. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  2. Finite Volume Algorithms for Heat Conduction

    DTIC Science & Technology

    2010-05-01

    scalar quantity). Although (3) is relatively easy to discretize by using finite differences , its form in generalized coordinates is not. Later, we...familiar with the finite difference method for discretizing differential equations. In fact, the Newton divided difference is the numerical analog for a...expression (8) for the average derivative matches the Newton divided difference formula, so for uniform one-dimensional meshes, the finite volume and

  3. Navier-Stokes Solutions for Spin-Up from Rest in a Cylindrical Container

    DTIC Science & Technology

    1979-09-01

    CONDITIONS The calculations employ a finite - difference analog of the unsteady axisyimetric Navier-Stokes equations formulated in cylindrical coordinates...derivatives are approximated by second- order accurate one-sided difference formulae involving three time levels. * The following finite - difference ...equation are identical in form to Equations (13). The finite - difference representations for the ?-equation are: "(i)[aJ~lk " /i’,J-l2k] T (14a) •g I

  4. Group foliation of finite difference equations

    NASA Astrophysics Data System (ADS)

    Thompson, Robert; Valiquette, Francis

    2018-06-01

    Using the theory of equivariant moving frames, a group foliation method for invariant finite difference equations is developed. This method is analogous to the group foliation of differential equations and uses the symmetry group of the equation to decompose the solution process into two steps, called resolving and reconstruction. Our constructions are performed algorithmically and symbolically by making use of discrete recurrence relations among joint invariants. Applications to invariant finite difference equations that approximate differential equations are given.

  5. Slicing the vacuum: New accelerating mirror solutions of the dynamical Casimir effect

    NASA Astrophysics Data System (ADS)

    Good, Michael R. R.; Linder, Eric V.

    2017-12-01

    Radiation from accelerating mirrors in a Minkowski spacetime provides insights into the nature of horizons, black holes, and entanglement entropy. We introduce new, simple, symmetric and analytic moving mirror solutions and study their particle, energy, and entropy production. This includes an asymptotically static case with finite emission that is the black hole analog of complete evaporation. The total energy, total entropy, total particles, and spectrum are the same on both sides of the mirror. We also study its asymptotically inertial, drifting analog (which gives a black hole remnant) to explore differences in finite and infinite production.

  6. A Mechanical Power Flow Capability for the Finite Element Code NASTRAN

    DTIC Science & Technology

    1989-07-01

    perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An

  7. Insights into the Behavior of Potential Structural Failures Originating from Localized High Stress Regions in Configurations Relevant to Solid Rocket Motor Nozzles

    NASA Technical Reports Server (NTRS)

    McCutcheon, David Matthew

    2017-01-01

    During the structural certification effort for the Space Launch System solid rocket booster nozzle, it was identified that no consistent method for addressing local negative margins of safety in non-metallic materials had been developed. Relevant areas included bond-line terminations and geometric features in the composite nozzle liners. In order to gain understanding, analog test specimens were designed that very closely mimic the conditions in the actual full scale hardware. Different locations in the nozzle were represented by different analog specimen designs. This paper describes those tests and corresponding results. Finite element analysis results for the tests are presented. Strain gage correlation of the analysis to the test results is addressed. Furthermore, finite fracture mechanics (a coupled stress and energy failure criterion) is utilized to predict the observed crack pop-in loads for the different configurations. The finite fracture mechanics predictions are found to be within a 10% error relative to the average measured pop-in load for each of four configurations. Initiation locations, arrest behaviors, and resistances to further post-arrest crack propagation are also discussed.

  8. Transient electrokinetic transport in a finite length microchannel: currents, capacitance, and an electrical analogy.

    PubMed

    Mansouri, Ali; Bhattacharjee, Subir; Kostiuk, Larry W

    2007-11-08

    Numerical simulations with the fluid mechanics based on the unsteady Navier-Stokes equations and the Poisson-Nernst-Planck formulation of electrostatics and ion transport were used to explore the transient transport of charge through a finite length cylindrical microchannel that is driven by a pressure difference. The evolution of the transcapillary potential from a no-flow equilibrium to the steady-state-steady-flow streaming potential was analyzed by following the convection, migration, and net currents. Observations of the unsteady characteristics of the streaming current, electrical resistance, and capacitance led to an electrical analogy. This electrical analogy was made from a current source (to represent convection current), which was placed in parallel with a capacitor (to allow the accumulation of charge) and a resistor (to permit a migration current). A parametric study involving a range of geometries, fluid mechanics, electrostatics, and mass transfer states allowed predictive submodels for the current source, capacitor, and resistor to be developed based on a dimensional analysis.

  9. All-optical analog-to-digital converter based on Kerr effect in photonic crystal

    NASA Astrophysics Data System (ADS)

    Jafari, Dariush; Nurmohammadi, Tofiq; Asadi, Mohammad Javad; Abbasian, Karim

    2018-05-01

    In this paper, a novel all-optical analog-to-digital converter (AOADC) is proposed and simulated for proof of principle. This AOADC is designed to operate in the range of telecom wavelength (1550 nm). A cavity made of nonlinear Kerr material in photonic crystal (PhC), is designed to achieve an optical analog-to-digital conversion with 1 Tera sample per second (TS/s) and the total footprint of 42 μm2 . The simulation is done using finite-difference time domain (FDTD) method.

  10. Exploiting broad-area surface emitting lasers to manifest the path-length distributions of finite-potential quantum billiards.

    PubMed

    Yu, Y T; Tuan, P H; Chang, K C; Hsieh, Y H; Huang, K F; Chen, Y F

    2016-01-11

    Broad-area vertical-cavity surface-emitting lasers (VCSELs) with different cavity sizes are experimentally exploited to manifest the influence of the finite confinement strength on the path-length distribution of quantum billiards. The subthreshold emission spectra of VCSELs are measured to obtain the path-length distributions by using the Fourier transform. It is verified that the number of the resonant peaks in the path-length distribution decreases with decreasing the confinement strength. Theoretical analyses for finite-potential quantum billiards are numerically performed to confirm that the mesoscopic phenomena of quantum billiards with finite confinement strength can be analogously revealed by using broad-area VCSELs.

  11. Numerical solution of nonlinear partial differential equations of mixed type. [finite difference approximation

    NASA Technical Reports Server (NTRS)

    Jameson, A.

    1976-01-01

    A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.

  12. Associative memory in an analog iterated-map neural network

    NASA Astrophysics Data System (ADS)

    Marcus, C. M.; Waugh, F. R.; Westervelt, R. M.

    1990-03-01

    The behavior of an analog neural network with parallel dynamics is studied analytically and numerically for two associative-memory learning algorithms, the Hebb rule and the pseudoinverse rule. Phase diagrams in the parameter space of analog gain β and storage ratio α are presented. For both learning rules, the networks have large ``recall'' phases in which retrieval states exist and convergence to a fixed point is guaranteed by a global stability criterion. We also demonstrate numerically that using a reduced analog gain increases the probability of recall starting from a random initial state. This phenomenon is comparable to thermal annealing used to escape local minima but has the advantage of being deterministic, and therefore easily implemented in electronic hardware. Similarities and differences between analog neural networks and networks with two-state neurons at finite temperature are also discussed.

  13. Validation of High Displacement Piezoelectric Actuator Finite Element Models

    NASA Technical Reports Server (NTRS)

    Taleghani, B. K.

    2000-01-01

    The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.

  14. Maximum one-shot dissipated work from Rényi divergences

    NASA Astrophysics Data System (ADS)

    Yunger Halpern, Nicole; Garner, Andrew J. P.; Dahlsten, Oscar C. O.; Vedral, Vlatko

    2018-05-01

    Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.

  15. Maximum one-shot dissipated work from Rényi divergences.

    PubMed

    Yunger Halpern, Nicole; Garner, Andrew J P; Dahlsten, Oscar C O; Vedral, Vlatko

    2018-05-01

    Thermodynamics describes large-scale, slowly evolving systems. Two modern approaches generalize thermodynamics: fluctuation theorems, which concern finite-time nonequilibrium processes, and one-shot statistical mechanics, which concerns small scales and finite numbers of trials. Combining these approaches, we calculate a one-shot analog of the average dissipated work defined in fluctuation contexts: the cost of performing a protocol in finite time instead of quasistatically. The average dissipated work has been shown to be proportional to a relative entropy between phase-space densities, to a relative entropy between quantum states, and to a relative entropy between probability distributions over possible values of work. We derive one-shot analogs of all three equations, demonstrating that the order-infinity Rényi divergence is proportional to the maximum possible dissipated work in each case. These one-shot analogs of fluctuation-theorem results contribute to the unification of these two toolkits for small-scale, nonequilibrium statistical physics.

  16. Optimal mapping of irregular finite element domains to parallel processors

    NASA Technical Reports Server (NTRS)

    Flower, J.; Otto, S.; Salama, M.

    1987-01-01

    Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.

  17. Computation of three-dimensional nozzle-exhaust flow fields with the GIM code

    NASA Technical Reports Server (NTRS)

    Spradley, L. W.; Anderson, P. G.

    1978-01-01

    A methodology is introduced for constructing numerical analogs of the partial differential equations of continuum mechanics. A general formulation is provided which permits classical finite element and many of the finite difference methods to be derived directly. The approach, termed the General Interpolants Method (GIM), can combined the best features of finite element and finite difference methods. A quasi-variational procedure is used to formulate the element equations, to introduce boundary conditions into the method and to provide a natural assembly sequence. A derivation is given in terms of general interpolation functions from this procedure. Example computations for transonic and supersonic flows in two and three dimensions are given to illustrate the utility of GIM. A three-dimensional nozzle-exhaust flow field is solved including interaction with the freestream and a coupled treatment of the shear layer. Potential applications of the GIM code to a variety of computational fluid dynamics problems is then discussed in terms of existing capability or by extension of the methodology.

  18. Simplicial Palatini action

    NASA Astrophysics Data System (ADS)

    Khatsymovsky, V. M.

    2018-01-01

    We consider the piecewise flat spacetime and a simplicial analog of the Palatini form of the general relativity (GR) action where the discrete Christoffel symbols are given on the tetrahedra as variables that are independent of the metric. Excluding these variables with the help of the equations of motion gives exactly the Regge action. This paper continues our previous work. Now, we include the parity violation term and the analog of the Barbero-Immirzi parameter introduced in the orthogonal connection form of GR. We consider the path integral and the functional integration over the connection. The result of the latter (for certain limiting cases of some parameters) is compared with the earlier found result of the functional integration over the connection for the analogous orthogonal connection representation of Regge action. These results, mainly as some measures on the lengths/areas, are discussed for the possibility of the diagram technique where the perturbative diagrams for the Regge action calculated using the measure obtained are finite. This finiteness is due to these measures providing elementary lengths being mostly bounded and separated from zero, just as the finiteness of a theory on a lattice with an analogous probability distribution of spacings.

  19. An evaluation of analog and numerical techniques for unsteady heat transfer measurement with thin-film gauges in transient facilities

    NASA Technical Reports Server (NTRS)

    George, William K.; Rae, William J.; Woodward, Scott H.

    1991-01-01

    The importance of frequency response considerations in the use of thin-film gages for unsteady heat transfer measurements in transient facilities is considered, and methods for evaluating it are proposed. A departure frequency response function is introduced and illustrated by an existing analog circuit. A Fresnel integral temperature which possesses the essential features of the film temperature in transient facilities is introduced and is used to evaluate two numerical algorithms. Finally, criteria are proposed for the use of finite-difference algorithms for the calculation of the unsteady heat flux from a sampled temperature signal.

  20. Vortical susceptibility of finite-density QCD matter

    DOE PAGES

    Aristova, A.; Frenklakh, D.; Gorsky, A.; ...

    2016-10-07

    Here, the susceptibility of finite-density QCD matter to vorticity is introduced, as an analog of magnetic susceptibility. It describes the spin polarization of quarks and antiquarks in finite-density QCD matter induced by rotation. We estimate this quantity in the chirally broken phase using the mixed gauge-gravity anomaly at finite baryon density. It is proposed that the vortical susceptibility of QCD matter is responsible for the polarization of Λ and Λ¯ hyperons observed recently in heavy ion collisions at RHIC by the STAR collaboration.

  1. Design of integrated all optical digital to analog converter (DAC) using 2D photonic crystals

    NASA Astrophysics Data System (ADS)

    Moniem, Tamer A.; El-Din, Eman S.

    2017-11-01

    A novel design of all optical 3 bit digital to analog (DAC) converter will be presented in this paper based on 2 Dimension photonic crystals (PhC). The proposed structure is based on the photonic crystal ring resonators (PCRR) with combining the nonlinear Kerr effect on the PCRR. The total size of the proposed optical 3 bit DAC is equal to 44 μm × 37 μm of 2D square lattice photonic crystals of silicon rods with refractive index equal to 3.4. The finite different time domain (FDTD) and Plane Wave Expansion (PWE) methods are used to back the overall operation of the proposed optical DAC.

  2. Digital-computer normal shock position and restart control of a Mach 2.5 axisymmetric mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Neiner, G. H.; Cole, G. L.; Arpasi, D. J.

    1972-01-01

    Digital computer control of a mixed-compression inlet is discussed. The inlet was terminated with a choked orifice at the compressor face station to dynamically simulate a turbojet engine. Inlet diffuser exit airflow disturbances were used. A digital version of a previously tested analog control system was used for both normal shock and restart control. Digital computer algorithms were derived using z-transform and finite difference methods. Using a sample rate of 1000 samples per second, the digital normal shock and restart controls essentially duplicated the inlet analog computer control results. At a sample rate of 100 samples per second, the control system performed adequately but was less stable.

  3. Stochastic evolution in populations of ideas

    PubMed Central

    Nicole, Robin; Sollich, Peter; Galla, Tobias

    2017-01-01

    It is known that learning of players who interact in a repeated game can be interpreted as an evolutionary process in a population of ideas. These analogies have so far mostly been established in deterministic models, and memory loss in learning has been seen to act similarly to mutation in evolution. We here propose a representation of reinforcement learning as a stochastic process in finite ‘populations of ideas’. The resulting birth-death dynamics has absorbing states and allows for the extinction or fixation of ideas, marking a key difference to mutation-selection processes in finite populations. We characterize the outcome of evolution in populations of ideas for several classes of symmetric and asymmetric games. PMID:28098244

  4. Stochastic evolution in populations of ideas

    NASA Astrophysics Data System (ADS)

    Nicole, Robin; Sollich, Peter; Galla, Tobias

    2017-01-01

    It is known that learning of players who interact in a repeated game can be interpreted as an evolutionary process in a population of ideas. These analogies have so far mostly been established in deterministic models, and memory loss in learning has been seen to act similarly to mutation in evolution. We here propose a representation of reinforcement learning as a stochastic process in finite ‘populations of ideas’. The resulting birth-death dynamics has absorbing states and allows for the extinction or fixation of ideas, marking a key difference to mutation-selection processes in finite populations. We characterize the outcome of evolution in populations of ideas for several classes of symmetric and asymmetric games.

  5. A Natural Language for AdS/CFT Correlators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fitzpatrick, A.Liam; /Boston U.; Kaplan, Jared

    2012-02-14

    We provide dramatic evidence that 'Mellin space' is the natural home for correlation functions in CFTs with weakly coupled bulk duals. In Mellin space, CFT correlators have poles corresponding to an OPE decomposition into 'left' and 'right' sub-correlators, in direct analogy with the factorization channels of scattering amplitudes. In the regime where these correlators can be computed by tree level Witten diagrams in AdS, we derive an explicit formula for the residues of Mellin amplitudes at the corresponding factorization poles, and we use the conformal Casimir to show that these amplitudes obey algebraic finite difference equations. By analyzing the recursivemore » structure of our factorization formula we obtain simple diagrammatic rules for the construction of Mellin amplitudes corresponding to tree-level Witten diagrams in any bulk scalar theory. We prove the diagrammatic rules using our finite difference equations. Finally, we show that our factorization formula and our diagrammatic rules morph into the flat space S-Matrix of the bulk theory, reproducing the usual Feynman rules, when we take the flat space limit of AdS/CFT. Throughout we emphasize a deep analogy with the properties of flat space scattering amplitudes in momentum space, which suggests that the Mellin amplitude may provide a holographic definition of the flat space S-Matrix.« less

  6. A comparison of analog and digital modeling techniques for simulating three-dimensional ground-water flow on Long Island, New York

    USGS Publications Warehouse

    Reilly, Thomas E.; Harbaugh, Arlen W.

    1980-01-01

    A three-dimensional electric-analog model of the Long Island, NY , groundwater system constructed by the U.S. Geological Survey in the early 1970 's was used as the basis for developing a digital, three-dimensional finite-difference model. The digital model was needed to provide faster modifications and more rapid solutions to water-management questions. Results generated by the two models are depicted as potentiometric-surface maps of the upper glacial and Magothy aquifers. Results compare favorably for all parts of Long Island except the northwestern part, where hydrologic discontinuities are most prevalent and which the two models represent somewhat differently. The mathematical and hydrologic principles used in development of ground-water models, and the procedures for calibration and acceptance, are presented in nontechnical terms. (USGS)

  7. The morphological state space revisited: what do phylogenetic patterns in homoplasy tell us about the number of possible character states?

    PubMed Central

    Hoyal Cuthill, Jennifer F.

    2015-01-01

    Biological variety and major evolutionary transitions suggest that the space of possible morphologies may have varied among lineages and through time. However, most models of phylogenetic character evolution assume that the potential state space is finite. Here, I explore what the morphological state space might be like, by analysing trends in homoplasy (repeated derivation of the same character state). Analyses of ten published character matrices are compared against computer simulations with different state space models: infinite states, finite states, ordered states and an ‘inertial' model, simulating phylogenetic constraints. Of these, only the infinite states model results in evolution without homoplasy, a prediction which is not generally met by real phylogenies. Many authors have interpreted the ubiquity of homoplasy as evidence that the number of evolutionary alternatives is finite. However, homoplasy is also predicted by phylogenetic constraints on the morphological distance that can be traversed between ancestor and descendent. Phylogenetic rarefaction (sub-sampling) shows that finite and inertial state spaces do produce contrasting trends in the distribution of homoplasy. Two clades show trends characteristic of phylogenetic inertia, with decreasing homoplasy (increasing consistency index) as we sub-sample more distantly related taxa. One clade shows increasing homoplasy, suggesting exhaustion of finite states. Different clades may, therefore, show different patterns of character evolution. However, when parsimony uninformative characters are excluded (which may occur without documentation in cladistic studies), it may no longer be possible to distinguish inertial and finite state spaces. Interestingly, inertial models predict that homoplasy should be clustered among comparatively close relatives (parallel evolution), whereas finite state models do not. If morphological evolution is often inertial in nature, then homoplasy (false homology) may primarily occur between close relatives, perhaps being replaced by functional analogy at higher taxonomic scales. PMID:26640650

  8. Digital-Analog Hybrid Scheme and Its Application to Chaotic Random Number Generators

    NASA Astrophysics Data System (ADS)

    Yuan, Zeshi; Li, Hongtao; Miao, Yunchi; Hu, Wen; Zhu, Xiaohua

    2017-12-01

    Practical random number generation (RNG) circuits are typically achieved with analog devices or digital approaches. Digital-based techniques, which use field programmable gate array (FPGA) and graphics processing units (GPU) etc. usually have better performances than analog methods as they are programmable, efficient and robust. However, digital realizations suffer from the effect of finite precision. Accordingly, the generated random numbers (RNs) are actually periodic instead of being real random. To tackle this limitation, in this paper we propose a novel digital-analog hybrid scheme that employs the digital unit as the main body, and minimum analog devices to generate physical RNs. Moreover, the possibility of realizing the proposed scheme with only one memory element is discussed. Without loss of generality, we use the capacitor and the memristor along with FPGA to construct the proposed hybrid system, and a chaotic true random number generator (TRNG) circuit is realized, producing physical RNs at a throughput of Gbit/s scale. These RNs successfully pass all the tests in the NIST SP800-22 package, confirming the significance of the scheme in practical applications. In addition, the use of this new scheme is not restricted to RNGs, and it also provides a strategy to solve the effect of finite precision in other digital systems.

  9. Multimodal vibration damping of a plate by piezoelectric coupling to its analogous electrical network

    NASA Astrophysics Data System (ADS)

    Lossouarn, B.; Deü, J.-F.; Aucejo, M.; Cunefare, K. A.

    2016-11-01

    Multimodal damping can be achieved by coupling a mechanical structure to an electrical network exhibiting similar modal properties. Focusing on a plate, a new topology for such an electrical analogue is found from a finite difference approximation of the Kirchhoff-Love theory and the use of the direct electromechanical analogy. Discrete models based on element dynamic stiffness matrices are proposed to simulate square plate unit cells coupled to their electrical analogues through two-dimensional piezoelectric transducers. A setup made of a clamped plate covered with an array of piezoelectric patches is built in order to validate the control strategy and the numerical models. The analogous electrical network is implemented with passive components as inductors, transformers and the inherent capacitance of the piezoelectric patches. The effect of the piezoelectric coupling on the dynamics of the clamped plate is significant as it creates the equivalent of a multimodal tuned mass damping. An adequate tuning of the network then yields a broadband vibration reduction. In the end, the use of an analogous electrical network appears as an efficient solution for the multimodal control of a plate.

  10. A floating-point digital receiver for MRI.

    PubMed

    Hoenninger, John C; Crooks, Lawrence E; Arakawa, Mitsuaki

    2002-07-01

    A magnetic resonance imaging (MRI) system requires the highest possible signal fidelity and stability for clinical applications. Quadrature analog receivers have problems with channel matching, dc offset and analog-to-digital linearity. Fixed-point digital receivers (DRs) reduce all of these problems. We have demonstrated that a floating-point DR using large (order 124 to 512) FIR low-pass filters also overcomes these problems, automatically provides long word length and has low latency between signals. A preloaded table of finite impuls response (FIR) filter coefficients provides fast switching between one of 129 different one-stage and two-stage multrate FIR low-pass filters with bandwidths between 4 KHz and 125 KHz. This design has been implemented on a dual channel circuit board for a commercial MRI system.

  11. An electric-analog simulation of elliptic partial differential equations using finite element theory

    USGS Publications Warehouse

    Franke, O.L.; Pinder, G.F.; Patten, E.P.

    1982-01-01

    Elliptic partial differential equations can be solved using the Galerkin-finite element method to generate the approximating algebraic equations, and an electrical network to solve the resulting matrices. Some element configurations require the use of networks containing negative resistances which, while physically realizable, are more expensive and time-consuming to construct. ?? 1982.

  12. The arbitrary order mixed mimetic finite difference method for the diffusion equation

    DOE PAGES

    Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco

    2016-05-01

    Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less

  13. Modeling Sound Propagation Through Non-Axisymmetric Jets

    NASA Technical Reports Server (NTRS)

    Leib, Stewart J.

    2014-01-01

    A method for computing the far-field adjoint Green's function of the generalized acoustic analogy equations under a locally parallel mean flow approximation is presented. The method is based on expanding the mean-flow-dependent coefficients in the governing equation and the scalar Green's function in truncated Fourier series in the azimuthal direction and a finite difference approximation in the radial direction in circular cylindrical coordinates. The combined spectral/finite difference method yields a highly banded system of algebraic equations that can be efficiently solved using a standard sparse system solver. The method is applied to test cases, with mean flow specified by analytical functions, corresponding to two noise reduction concepts of current interest: the offset jet and the fluid shield. Sample results for the Green's function are given for these two test cases and recommendations made as to the use of the method as part of a RANS-based jet noise prediction code.

  14. Creation of lumped parameter thermal model by the use of finite elements

    NASA Technical Reports Server (NTRS)

    1978-01-01

    In the finite difference technique, the thermal network is represented by an analogous electrical network. The development of this network model, which is used to describe a physical system, often requires tedious and mental data preparation and checkout by the analyst which can be greatly reduced through the use of the computer programs to develop automatically the mathematical model and associated input data and graphically display the analytical model to facilitate model verification. Three separate programs are involved which are linked through common mass storage files and data card formats. These programs are SPAR, CINGEN and GEOMPLT, and are used to (1) develop thermal models for the MITAS II thermal analyzer program; (2) produce geometry plots of the thermal network; and (3) produce temperature distribution and time history plots.

  15. Verification and rectification of the physical analogy of simulated annealing for the solution of the traveling salesman problem.

    PubMed

    Hasegawa, M

    2011-03-01

    The aim of the present study is to elucidate how simulated annealing (SA) works in its finite-time implementation by starting from the verification of its conventional optimization scenario based on equilibrium statistical mechanics. Two and one supplementary experiments, the design of which is inspired by concepts and methods developed for studies on liquid and glass, are performed on two types of random traveling salesman problems. In the first experiment, a newly parameterized temperature schedule is introduced to simulate a quasistatic process along the scenario and a parametric study is conducted to investigate the optimization characteristics of this adaptive cooling. In the second experiment, the search trajectory of the Metropolis algorithm (constant-temperature SA) is analyzed in the landscape paradigm in the hope of drawing a precise physical analogy by comparison with the corresponding dynamics of glass-forming molecular systems. These two experiments indicate that the effectiveness of finite-time SA comes not from equilibrium sampling at low temperature but from downward interbasin dynamics occurring before equilibrium. These dynamics work most effectively at an intermediate temperature varying with the total search time and thus this effective temperature is identified using the Deborah number. To test directly the role of these relaxation dynamics in the process of cooling, a supplementary experiment is performed using another parameterized temperature schedule with a piecewise variable cooling rate and the effect of this biased cooling is examined systematically. The results show that the optimization performance is not only dependent on but also sensitive to cooling in the vicinity of the above effec-tive temperature and that this feature is interpreted as a consequence of the presence or absence of the workable interbasin dynamics. It is confirmed for the present instances that the effectiveness of finite-time SA derives from the glassy relaxation dynamics occurring in the "landscape-influenced" temperature regime and that its naive optimization scenario should be rectified by considering the analogy with vitrification phenomena. A comprehensive guideline for the design of finite-time SA and SA-related algorithms is discussed on the basis of this rectified analogy.

  16. Finite element model for MOI applications using A-V formulation

    NASA Astrophysics Data System (ADS)

    Xuan, L.; Shanker, B.; Udpa, L.; Shih, W.; Fitzpatrick, G.

    2001-04-01

    Magneto-optic imaging (MOI) is a relatively new sensor application of an extension of bubble memory technology to NDT and produce easy-to-interpret, real time analog images. MOI systems use a magneto-optic (MO) sensor to produce analog images of magnetic flux leakage from surface and subsurface defects. The instrument's capability in detecting the relatively weak magnetic fields associated with subsurface defects depends on the sensitivity of the magneto-optic sensor. The availability of a theoretical model that can simulate the MOI system performance is extremely important for optimization of the MOI sensor and hardware system. A nodal finite element model based on magnetic vector potential formulation has been developed for simulating MOI phenomenon. This model has been used for predicting the magnetic fields in simple test geometry with corrosion dome defects. In the case of test samples with multiple discontinuities, a more robust model using the magnetic vector potential Ā and electrical scalar potential V is required. In this paper, a finite element model based on A-V formulation is developed to model complex circumferential crack under aluminum rivets in dimpled countersink.

  17. Possible higher order phase transition in large-N gauge theory at finite temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Hiromichi

    2017-08-07

    We analyze the phase structure of SU(¥) gauge theory at finite temperature using matrix models. Our basic assumption is that the effective potential is dominated by double-trace terms for the Polyakov loops. As a function of the temperature, a background field for the Polyakov loop, and a quartic coupling, it exhibits a universal structure: in the large portion of the parameter space, there is a continuous phase transition analogous to the third-order phase transition of Gross,Witten and Wadia, but the order of phase transition can be higher than third. We show that different confining potentials give rise to drastically differentmore » behavior of the eigenvalue density and the free energy. Therefore lattice simulations at large N could probe the order of phase transition and test our results. Critical« less

  18. Regularity estimates up to the boundary for elliptic systems of difference equations

    NASA Technical Reports Server (NTRS)

    Strikwerda, J. C.; Wade, B. A.; Bube, K. P.

    1986-01-01

    Regularity estimates up to the boundary for solutions of elliptic systems of finite difference equations were proved. The regularity estimates, obtained for boundary fitted coordinate systems on domains with smooth boundary, involve discrete Sobolev norms and are proved using pseudo-difference operators to treat systems with variable coefficients. The elliptic systems of difference equations and the boundary conditions which are considered are very general in form. The regularity of a regular elliptic system of difference equations was proved equivalent to the nonexistence of eigensolutions. The regularity estimates obtained are analogous to those in the theory of elliptic systems of partial differential equations, and to the results of Gustafsson, Kreiss, and Sundstrom (1972) and others for hyperbolic difference equations.

  19. Double Photoionization of excited Lithium and Beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yip, Frank L.; McCurdy, C. William; Rescigno, Thomas N.

    2010-05-20

    We present total, energy-sharing and triple differential cross sections for one-photon, double ionization of lithium and beryllium starting from aligned, excited P states. We employ a recently developed hybrid atomic orbital/ numerical grid method based on the finite-element discrete-variable representation and exterior complex scaling. Comparisons with calculated results for the ground-state atoms, as well as analogous results for ground-state and excited helium, serve to highlight important selection rules and show some interesting effects that relate to differences between inter- and intra-shell electron correlation.

  20. Development of the general interpolants method for the CYBER 200 series of supercomputers

    NASA Technical Reports Server (NTRS)

    Stalnaker, J. F.; Robinson, M. A.; Spradley, L. W.; Kurzius, S. C.; Thoenes, J.

    1988-01-01

    The General Interpolants Method (GIM) is a 3-D, time-dependent, hybrid procedure for generating numerical analogs of the conservation laws. This study is directed toward the development and application of the GIM computer code for fluid dynamic research applications as implemented for the Cyber 200 series of supercomputers. An elliptic and quasi-parabolic version of the GIM code are discussed. Turbulence models, algebraic and differential equations, were added to the basic viscous code. An equilibrium reacting chemistry model and an implicit finite difference scheme are also included.

  1. Finite-momentum Bose-Einstein condensates in shaken two-dimensional square optical lattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Liberto, M.; Scuola Superiore di Catania, Universita di Catania, Via Valdisavoia 9, I-95123 Catania; Tieleman, O.

    2011-07-15

    We consider ultracold bosons in a two-dimensional square optical lattice described by the Bose-Hubbard model. In addition, an external time-dependent sinusoidal force is applied to the system, which shakes the lattice along one of the diagonals. The effect of the shaking is to renormalize the nearest-neighbor-hopping coefficients, which can be arbitrarily reduced, can vanish, or can even change sign, depending on the shaking parameter. Therefore, it is necessary to account for higher-order-hopping terms, which are renormalized differently by the shaking, and to introduce anisotropy into the problem. We show that the competition between these different hopping terms leads to finite-momentummore » condensates with a momentum that may be tuned via the strength of the shaking. We calculate the boundaries between the Mott insulator and the different superfluid phases and present the time-of-flight images expected to be observed experimentally. Our results open up possibilities for the realization of bosonic analogs of the Fulde, Ferrel, Larkin, and Ovchinnikov phase describing inhomogeneous superconductivity.« less

  2. Finite element modeling of electromagnetic fields and waves using NASTRAN

    NASA Technical Reports Server (NTRS)

    Moyer, E. Thomas, Jr.; Schroeder, Erwin

    1989-01-01

    The various formulations of Maxwell's equations are reviewed with emphasis on those formulations which most readily form analogies with Navier's equations. Analogies involving scalar and vector potentials and electric and magnetic field components are presented. Formulations allowing for media with dielectric and conducting properties are emphasized. It is demonstrated that many problems in electromagnetism can be solved using the NASTRAN finite element code. Several fundamental problems involving time harmonic solutions of Maxwell's equations with known analytic solutions are solved using NASTRAN to demonstrate convergence and mesh requirements. Mesh requirements are studied as a function of frequency, conductivity, and dielectric properties. Applications in both low frequency and high frequency are highlighted. The low frequency problems demonstrate the ability to solve problems involving media inhomogeneity and unbounded domains. The high frequency applications demonstrate the ability to handle problems with large boundary to wavelength ratios.

  3. Quantum weak turbulence with applications to semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lvov, Y. V.; Binder, R.; Newell, A. C.

    1998-10-01

    Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two-particle interaction potential equivalent to the static screening approximation. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy in momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers and show how they might be used to enhance laser performance.

  4. Quantum weak turbulence with applications to semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Lvov, Yuri Victorovich

    Based on a model Hamiltonian appropriate for the description of fermionic systems such as semiconductor lasers, we describe a natural asymptotic closure of the BBGKY hierarchy in complete analogy with that derived for classical weak turbulence. The main features of the interaction Hamiltonian are the inclusion of full Fermi statistics containing Pauli blocking and a simple, phenomenological, uniformly weak two particle interaction potential equivalent to the static screening approximation. The resulting asymytotic closure and quantum kinetic Boltzmann equation are derived in a self consistent manner without resorting to a priori statistical hypotheses or cumulant discard assumptions. We find a new class of solutions to the quantum kinetic equation which are analogous to the Kolmogorov spectra of hydrodynamics and classical weak turbulence. They involve finite fluxes of particles and energy across momentum space and are particularly relevant for describing the behavior of systems containing sources and sinks. We explore these solutions by using differential approximation to collision integral. We make a prima facie case that these finite flux solutions can be important in the context of semiconductor lasers. We show that semiconductor laser output efficiency can be improved by exciting these finite flux solutions. Numerical simulations of the semiconductor Maxwell Bloch equations support the claim.

  5. Microwave analog experiments on optically soft spheroidal scatterers with weak electromagnetic signature

    NASA Astrophysics Data System (ADS)

    Saleh, H.; Charon, J.; Dauchet, J.; Tortel, H.; Geffrin, J.-M.

    2017-07-01

    Light scattering by optically soft particles is being theoretically investigated in many radiative studies. An interest is growing up to develop approximate methods when the resolution of Maxwell's equations is impractical due to time and/or memory size problems with objects of complex geometries. The participation of experimental studies is important to assess novel approximations when no reference solution is available. The microwave analogy represents an efficient solution to perform such electromagnetic measurements in controlled conditions. In this paper, we take advantage of the particular features of our microwave device to present an extensive experimental study on the electromagnetic scattering by spheroidal particles analogs with low refractive indices, as a first step toward the assessment of micro-organisms with low refractive index and heterogeneities. The spheroidal analogs are machined from a low density material and they mimic soft particles of interest to the light scattering community. The measurements are confronted to simulations obtained with Finite Element Method and T-Matrix method. A good agreement is obtained even with refractive index as low as 1.13. Scattered signals of low intensities are correctly measured and the position of the targets is precisely controlled. The forward scattering measurements show high sensitivity to noise and require careful extraction. The configuration of the measurement device reveals different technical requirements between forward and backward scattering directions. The results open interesting perspectives about novel measurement procedures as well as about the use of high prototyping technologies to manufacture analogs of precise refractive indices and shapes.

  6. Traffic Surveillance Data Processing in Urban Freeway Corridors Using Kalman Filter Techniques

    DOT National Transportation Integrated Search

    1978-11-01

    Real-time surveillance of traffic conditions on urban freeway corridors using spatially discrete presence detectors is addressed. Using a finite-dimensional (macroscopic) fluid-analog model for freeway vehicular traffic flow, an extended Kalman filte...

  7. A Family of Finite-Dimensional Representations of Generalized Double Affine Hecke Algebras of Higher Rank

    NASA Astrophysics Data System (ADS)

    Fu, Yuchen; Shelley-Abrahamson, Seth

    2016-06-01

    We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.

  8. Computational fluid mechanics utilizing the variational principle of modeling damping seals

    NASA Technical Reports Server (NTRS)

    Abernathy, J. M.

    1986-01-01

    A computational fluid dynamics code for application to traditional incompressible flow problems has been developed. The method is actually a slight compressibility approach which takes advantage of the bulk modulus and finite sound speed of all real fluids. The finite element numerical analog uses a dynamic differencing scheme based, in part, on a variational principle for computational fluid dynamics. The code was developed in order to study the feasibility of damping seals for high speed turbomachinery. Preliminary seal analyses have been performed.

  9. Finite element solution of transient fluid-structure interaction problems

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.

    1991-01-01

    A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.

  10. Mechanics of microtubules: effects of protofilament orientation.

    PubMed

    Donhauser, Zachary J; Jobs, William B; Binka, Edem C

    2010-09-08

    Microtubules are hollow cylindrical polymers of the protein tubulin that play a number of important dynamic and structural roles in eukaryotic cells. Both in vivo and in vitro microtubules can exist in several possible configurations, differing in the number of protofilaments, helical rise of tubulin dimers, and protofilament skew angle with respect to the main tube axis. Here, finite element modeling is applied to examine the mechanical response of several known microtubule types when subjected to radial deformation. The data presented here provide an important insight into microtubule stiffness and reveal that protofilament orientation does not affect radial stiffness. Rather, stiffness is primarily dependent on the effective Young's modulus of the polymerized material and the effective radius of the microtubule. These results are also directly correlated to atomic force microscopy nanoindentation measurements to allow a more detailed interpretation of previous experiments. When combined with experimental data that show a significant difference between microtubules stabilized with a slowly hydrolyzable GTP analog and microtubules stabilized with paclitaxel, the finite element data suggest that paclitaxel increases the overall radial flexibility of the microtubule wall. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  11. Mechanics of Microtubules: Effects of Protofilament Orientation

    PubMed Central

    Donhauser, Zachary J.; Jobs, William B.; Binka, Edem C.

    2010-01-01

    Microtubules are hollow cylindrical polymers of the protein tubulin that play a number of important dynamic and structural roles in eukaryotic cells. Both in vivo and in vitro microtubules can exist in several possible configurations, differing in the number of protofilaments, helical rise of tubulin dimers, and protofilament skew angle with respect to the main tube axis. Here, finite element modeling is applied to examine the mechanical response of several known microtubule types when subjected to radial deformation. The data presented here provide an important insight into microtubule stiffness and reveal that protofilament orientation does not affect radial stiffness. Rather, stiffness is primarily dependent on the effective Young's modulus of the polymerized material and the effective radius of the microtubule. These results are also directly correlated to atomic force microscopy nanoindentation measurements to allow a more detailed interpretation of previous experiments. When combined with experimental data that show a significant difference between microtubules stabilized with a slowly hydrolyzable GTP analog and microtubules stabilized with paclitaxel, the finite element data suggest that paclitaxel increases the overall radial flexibility of the microtubule wall. PMID:20816081

  12. Analog of small Holstein polaron in hydrogen-bonded amide systems

    NASA Astrophysics Data System (ADS)

    Alexander, D. M.

    1985-01-01

    A class of amide-I (C = O stretch) related excitations and their contribution to the spectral function for infrared absorption is determined by use of the Davydov Hamiltonian. The treatment is a fully quantum, finite-temperature one. A consistent picture and a quantitative fit to the absorption data for crystalline acetanilide confirms that the model adequately explains the anomalous behavior cited by Careri et al. The localized excitation responsible for this behavior is the vibronic analog of the small Holstein polaron. The possible extension to other modes and biological relevance is examined.

  13. Micromechanical torsional digital-to-analog converter for open-loop angular positioning applications

    NASA Astrophysics Data System (ADS)

    Zhou, Guangya; Tay, Francis E. H.; Chau, Fook Siong; Zhao, Yi; Logeeswaran, VJ

    2004-05-01

    This paper reports a novel micromechanical torsional digital-to-analog converter (MTDAC), operated in open-loop with digitally controlled precise multi-level tilt angles. The MTDAC mechanism presented is analogous to that of an electrical binary-weighted-input digital-to-analog converter (DAC). It consists of a rigid tunable platform, an array of torsional microactuators, each operating in a two-state (on/off) mode, and a set of connection beams with binary-weighted torsional stiffnesses that connect the actuators to the platform. The feasibility of the proposed MTDAC mechanism was verified numerically by finite element simulations and experimentally with a commercial optical phase-shifting interferometric system. A prototype 2-bit MTDAC was implemented using the poly-MUMPS process achieving a full-scale output tilt angle of 1.92° with a rotation step of 0.64°. This mechanism can be configured for many promising applications, particularly in beam steering-based OXC switches.

  14. Experiments with explicit filtering for LES using a finite-difference method

    NASA Technical Reports Server (NTRS)

    Lund, T. S.; Kaltenbach, H. J.

    1995-01-01

    The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture most of the energy-containing eddies, and if explicit filtering is used, the mesh must be enlarged so that these motions are passed by the filter. Given the high cost of explicit filtering, the following interesting question arises. Since the mesh must be expanded in order to perform the explicit filter, might it be better to take advantage of the increased resolution and simply perform an unfiltered simulation on the larger mesh? The cost of the two approaches is roughly the same, but the philosophy is rather different. In the filtered simulation, resolution is sacrificed in order to minimize the various forms of numerical error. In the unfiltered simulation, the errors are left intact, but they are concentrated at very small scales that could be dynamically unimportant from a LES perspective. Very little is known about this tradeoff and the objective of this work is to study this relationship in high Reynolds number channel flow simulations using a second-order finite-difference method.

  15. Multiresolution molecular mechanics: Surface effects in nanoscale materials

    NASA Astrophysics Data System (ADS)

    Yang, Qingcheng; To, Albert C.

    2017-05-01

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), [57]) is applied to capture surface effect for nanosized structures by designing a surface summation rule SRS within the framework of MMM. Combined with previously proposed bulk summation rule SRB, the MMM summation rule SRMMM is completed. SRS and SRB are consistently formed within SRMMM for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SRMMM lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SRS and SRB are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SRMMM accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SRMMM with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SRMMM that is analogous to numerical integration error with quadrature rule in FEM is very small.

  16. Controlling the sign problem in finite-density quantum field theory

    NASA Astrophysics Data System (ADS)

    Garron, Nicolas; Langfeld, Kurt

    2017-07-01

    Quantum field theories at finite matter densities generically possess a partition function that is exponentially suppressed with the volume compared to that of the phase quenched analog. The smallness arises from an almost uniform distribution for the phase of the fermion determinant. Large cancellations upon integration is the origin of a poor signal to noise ratio. We study three alternatives for this integration: the Gaussian approximation, the "telegraphic" approximation, and a novel expansion in terms of theory-dependent moments and universal coefficients. We have tested the methods for QCD at finite densities of heavy quarks. We find that for two of the approximations the results are extremely close—if not identical—to the full answer in the strong sign-problem regime.

  17. Excitations in the Yang–Gaudin Bose gas

    DOE PAGES

    Robinson, Neil J.; Konik, Robert M.

    2017-06-01

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, Neil J.; Konik, Robert M.

    Here, we study the excitation spectrum of two-component delta-function interacting bosons confined to a single spatial dimension, the Yang–Gaudin Bose gas. We show that there are pronounced finite-size effects in the dispersion relations of excitations, perhaps best illustrated by the spinon single particle dispersion which exhibits a gap at 2k F and a finite-momentum roton-like minimum. Such features occur at energies far above the finite volume excitation gap, vanish slowly as 1/L for fixed spinon number, and can persist to the thermodynamic limit at fixed spinon density. Features such as the 2k F gap also persist to multi-particle excitation continua. Our results show that excitations in the finite system can behave in a qualitatively different manner to analogous excitations in the thermodynamic limit. The Yang–Gaudin Bose gas is also host to multi-spinon bound states, known asmore » $$\\Lambda$$ -strings. We study these excitations both in the thermodynamic limit under the string hypothesis and in finite size systems where string deviations are taken into account. In the zero-temperature limit we present a simple relation between the length n $$\\Lambda$$-string dressed energies $$\\epsilon_n(\\lambda)$$ and the dressed energy $$\\epsilon(k)$$. We solve the Yang–Yang–Takahashi equations numerically and compare to the analytical solution obtained under the strong couple expansion, revealing that the length n $$\\Lambda$$ -string dressed energy is Lorentzian over a wide range of real string centers λ in the vicinity of $$\\lambda = 0$$ . We then examine the finite size effects present in the dispersion of the two-spinon bound states by numerically solving the Bethe ansatz equations with string deviations.« less

  19. Probabilistic finite elements for transient analysis in nonlinear continua

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  20. CAPILLARY ELECTROPHORESIS IMMUNOASSAY FOR 2,4-DICHLOROPHENOXYACETIC ACID

    EPA Science Inventory

    A capillary electrophoresis (CE) immunoassay format for 2,4-dichlorophenoxyacetic acid (2,4-D) is demonstrated. A fluorescent labeled 2,4-D analog competes with the analyte of interest for a finite number of binding sites provided by anti-2,4-D monoclonal antibodies. CE then pr...

  1. Future evolution in a backreaction model and the analogous scalar field cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, Amna; Majumdar, A.S., E-mail: amnaalig@gmail.com, E-mail: archan@bose.res.in

    We investigate the future evolution of the universe using the Buchert framework for averaged backreaction in the context of a two-domain partition of the universe. We show that this approach allows for the possibility of the global acceleration vanishing at a finite future time, provided that none of the subdomains accelerate individually. The model at large scales is analogously described in terms of a homogeneous scalar field emerging with a potential that is fixed and free from phenomenological parametrization. The dynamics of this scalar field is explored in the analogous FLRW cosmology. We use observational data from Type Ia Supernovae,more » Baryon Acoustic Oscillations, and Cosmic Microwave Background to constrain the parameters of the model for a viable cosmology, providing the corresponding likelihood contours.« less

  2. Finite Trigonometry: A Resource for Teachers.

    ERIC Educational Resources Information Center

    Malcom, Paul Scott

    This investigation extends a 25-point geometric system for defining a 25-point trigonometry whose properties are analogous to those of the trigonometry of the Euclidean plane. These properties include definitions of trigonometric functions arising from ratios of sides of right triangles, the relations of elements of a given triangle through the…

  3. Behaviour of Rotating Bose Einstein Condensates Under Shrinking

    NASA Astrophysics Data System (ADS)

    Zhai, Hui; Zhou, Qi

    2005-01-01

    When the repulsive interaction strength between atoms decreases, the size of a rotating Bose-Einstein condensate will consequently shrink. We find that the rotational frequency will increase during the shrinking of condensate, which is a quantum mechanical analogy to ballet dancing. Compared to a non-rotating condensate, the size of a rotating BEC will eventually be saturated at a finite value when the interaction strength is gradually reduced. We also calculate the vortex dynamics induced by the atomic current, and discuss the difference of vortex dynamics in this case and that observed in a recent experiment carried out by the JILA group [Phys. Rev. Lett. 90 (2003) 170405].

  4. Optical-analog-to-digital conversion based on successive-like approximations in octagonal-shape photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Tavousi, A.; Mansouri-Birjandi, M. A.

    2018-02-01

    Implementing intensity-dependent Kerr-like nonlinearity in octagonal-shape photonic crystal ring resonators (OSPCRRs), a new class of optical analog-to-digital converters (ADCs) with low power consumption is presented. Due to its size dependent refractive index, Silicon (Si) nanocrystal is used as nonlinear medium in the proposed ADC. Coding system of optical ADC is based on successive-like approximations which requires only one quantization level to represent each single bit, despite of conventional ADCs that require at least two distinct levels for each bit. Each is representing bit of optical ADC is formed by vertically alignment of double rings of OSPCRRs (DR-OSPCRR) and cascading m number of DR-OSPCRR, forms an m bit ADC. Investigating different parameters of DR-OSPCRR such as refractive indices of rings, lattice refractive index, and coupling coefficients of waveguide-to-ring and ring-to-ring, the ADC's threshold power is tuned. Increasing the number of bits of ADC, increases the overall power consumption of ADC. One can arrange to have any number of bits for this ADC, as long as the power levels are treated carefully. Finite difference time domain (FDTD) in-house codes were used to evaluate the ADC's effectiveness.

  5. Counting spanning trees on fractal graphs and their asymptotic complexity

    NASA Astrophysics Data System (ADS)

    Anema, Jason A.; Tsougkas, Konstantinos

    2016-09-01

    Using the method of spectral decimation and a modified version of Kirchhoff's matrix-tree theorem, a closed form solution to the number of spanning trees on approximating graphs to a fully symmetric self-similar structure on a finitely ramified fractal is given in theorem 3.4. We show how spectral decimation implies the existence of the asymptotic complexity constant and obtain some bounds for it. Examples calculated include the Sierpiński gasket, a non-post critically finite analog of the Sierpiński gasket, the Diamond fractal, and the hexagasket. For each example, the asymptotic complexity constant is found.

  6. Finite element analysis of Mercury slosh in the solar electric propulsion stage

    NASA Technical Reports Server (NTRS)

    Singh, J. N.

    1975-01-01

    The static equilibrium shapes of the neoprene bladder have been established corresponding to various ullage and gravity configurations under specified boundary conditions. The hemispherical bladder is taken to be attached at the diametral plane of the sphere with zero relative slope. With these shapes, the spherical tank with bladder and mercury has been modeled as an assemblage of finite elements. The properties of these elements have then been calculated using a linear displacement field. The dynamic characteristics were obtained to be used to define a mechanical analog which will reproduce the sloshing phenomenon of the system.

  7. Exponential Thurston maps and limits of quadratic differentials

    NASA Astrophysics Data System (ADS)

    Hubbard, John; Schleicher, Dierk; Shishikura, Mitsuhiro

    2009-01-01

    We give a topological characterization of postsingularly finite topological exponential maps, i.e., universal covers g\\colon{C}to{C}setminus\\{0\\} such that 0 has a finite orbit. Such a map either is Thurston equivalent to a unique holomorphic exponential map λ e^z or it has a topological obstruction called a degenerate Levy cycle. This is the first analog of Thurston's topological characterization theorem of rational maps, as published by Douady and Hubbard, for the case of infinite degree. One main tool is a theorem about the distribution of mass of an integrable quadratic differential with a given number of poles, providing an almost compact space of models for the entire mass of quadratic differentials. This theorem is given for arbitrary Riemann surfaces of finite type in a uniform way.

  8. A general CFD framework for fault-resilient simulations based on multi-resolution information fusion

    NASA Astrophysics Data System (ADS)

    Lee, Seungjoon; Kevrekidis, Ioannis G.; Karniadakis, George Em

    2017-10-01

    We develop a general CFD framework for multi-resolution simulations to target multiscale problems but also resilience in exascale simulations, where faulty processors may lead to gappy, in space-time, simulated fields. We combine approximation theory and domain decomposition together with statistical learning techniques, e.g. coKriging, to estimate boundary conditions and minimize communications by performing independent parallel runs. To demonstrate this new simulation approach, we consider two benchmark problems. First, we solve the heat equation (a) on a small number of spatial "patches" distributed across the domain, simulated by finite differences at fine resolution and (b) on the entire domain simulated at very low resolution, thus fusing multi-resolution models to obtain the final answer. Second, we simulate the flow in a lid-driven cavity in an analogous fashion, by fusing finite difference solutions obtained with fine and low resolution assuming gappy data sets. We investigate the influence of various parameters for this framework, including the correlation kernel, the size of a buffer employed in estimating boundary conditions, the coarseness of the resolution of auxiliary data, and the communication frequency across different patches in fusing the information at different resolution levels. In addition to its robustness and resilience, the new framework can be employed to generalize previous multiscale approaches involving heterogeneous discretizations or even fundamentally different flow descriptions, e.g. in continuum-atomistic simulations.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rycroft, Chris H.; Bazant, Martin Z.

    An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-Analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape.more » This result is subsequently derived using residue calculus. The structure of the non-Analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton-Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). In conclusion, the model raises fundamental mathematical questions about broken symmetries in finite-Time singularities of both continuous and stochastic dynamical systems.« less

  10. Asymmetric collapse by dissolution or melting in a uniform flow

    PubMed Central

    Bazant, Martin Z.

    2016-01-01

    An advection–diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape. This result is subsequently derived using residue calculus. The structure of the non-analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton–Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). The model raises fundamental mathematical questions about broken symmetries in finite-time singularities of both continuous and stochastic dynamical systems. PMID:26997890

  11. Asymmetric collapse by dissolution or melting in a uniform flow

    DOE PAGES

    Rycroft, Chris H.; Bazant, Martin Z.

    2016-01-06

    An advection-diffusion-limited dissolution model of an object being eroded by a two-dimensional potential flow is presented. By taking advantage of the conformal invariance of the model, a numerical method is introduced that tracks the evolution of the object boundary in terms of a time-dependent Laurent series. Simulations of a variety of dissolving objects are shown, which shrink and collapse to a single point in finite time. The simulations reveal a surprising exact relationship, whereby the collapse point is the root of a non-Analytic function given in terms of the flow velocity and the Laurent series coefficients describing the initial shape.more » This result is subsequently derived using residue calculus. The structure of the non-Analytic function is examined for three different test cases, and a practical approach to determine the collapse point using a generalized Newton-Raphson root-finding algorithm is outlined. These examples also illustrate the possibility that the model breaks down in finite time prior to complete collapse, due to a topological singularity, as the dissolving boundary overlaps itself rather than breaking up into multiple domains (analogous to droplet pinch-off in fluid mechanics). In conclusion, the model raises fundamental mathematical questions about broken symmetries in finite-Time singularities of both continuous and stochastic dynamical systems.« less

  12. Large-amplitude nonlinear normal modes of the discrete sine lattices.

    PubMed

    Smirnov, Valeri V; Manevitch, Leonid I

    2017-02-01

    We present an analytical description of the large-amplitude stationary oscillations of the finite discrete system of harmonically coupled pendulums without any restrictions on their amplitudes (excluding a vicinity of π). Although this model has numerous applications in different fields of physics, it was studied earlier in the infinite limit only. The discrete chain with a finite length can be considered as a well analytical analog of the coarse-grain models of flexible polymers in the molecular dynamics simulations. The developed approach allows to find the dispersion relations for arbitrary amplitudes of the nonlinear normal modes. We emphasize that the long-wavelength approximation, which is described by well-known sine-Gordon equation, leads to an inadequate zone structure for the amplitudes of about π/2 even if the chain is long enough. An extremely complex zone structure at the large amplitudes corresponds to multiple resonances between nonlinear normal modes even with strongly different wave numbers. Due to the complexity of the dispersion relations the modes with shorter wavelengths may have smaller frequencies. The stability of the nonlinear normal modes under condition of the resonant interaction are discussed. It is shown that this interaction of the modes in the vicinity of the long wavelength edge of the spectrum leads to the localization of the oscillations. The thresholds of instability and localization are determined explicitly. The numerical simulation of the dynamics of a finite-length chain is in a good agreement with obtained analytical predictions.

  13. Towards a molecular logic machine

    NASA Astrophysics Data System (ADS)

    Remacle, F.; Levine, R. D.

    2001-06-01

    Finite state logic machines can be realized by pump-probe spectroscopic experiments on an isolated molecule. The most elaborate setup, a Turing machine, can be programmed to carry out a specific computation. We argue that a molecule can be similarly programmed, and provide examples using two photon spectroscopies. The states of the molecule serve as the possible states of the head of the Turing machine and the physics of the problem determines the possible instructions of the program. The tape is written in an alphabet that allows the listing of the different pump and probe signals that are applied in a given experiment. Different experiments using the same set of molecular levels correspond to different tapes that can be read and processed by the same head and program. The analogy to a Turing machine is not a mechanical one and is not completely molecular because the tape is not part of the molecular machine. We therefore also discuss molecular finite state machines, such as sequential devices, for which the tape is not part of the machine. Nonmolecular tapes allow for quite long input sequences with a rich alphabet (at the level of 7 bits) and laser pulse shaping experiments provide concrete examples. Single molecule spectroscopies show that a single molecule can be repeatedly cycled through a logical operation.

  14. Gravitational instability of finite isothermal spheres in general relativity. Analogy with neutron stars

    NASA Astrophysics Data System (ADS)

    Chavanis, P. H.

    2002-01-01

    We investigate the effects of relativity on the gravitational instability of finite isothermal gaseous spheres. In the first part of the paper, we treat the gravitational field within the framework of Newtonian mechanics but we allow the speed of the particles to be close to the velocity of light so that special relativity must be taken into account. In the second part of the paper, we study the full general relativistic problem for a gas described by an equation of state p=qepsilon such that the pressure is proportional to the energy density (``isothermal'' distribution). For q=1/3, this equation of state describes the core of neutron stars. The mass-density diagram displays some damped oscillations and there exists a critical value of mass-energy above which no equilibrium state is possible. We show analytically that the mass peaks are associated with new modes of instability. These results are strikingly similar to those obtained by Antonov (1962) and Lynden-Bell & Wood (1968) for a classical isothermal gas. Our study completes the analogy between isothermal spheres and neutron stars investigated by Yabushita (1974).

  15. Total Mean Curvature, Scalar Curvature, and a Variational Analog of Brown-York Mass

    NASA Astrophysics Data System (ADS)

    Mantoulidis, Christos; Miao, Pengzi

    2017-06-01

    We study the supremum of the total mean curvature on the boundary of compact, mean-convex 3-manifolds with nonnegative scalar curvature, and a prescribed boundary metric. We establish an additivity property for this supremum and exhibit rigidity for maximizers assuming the supremum is attained. When the boundary consists of 2-spheres, we demonstrate that the finiteness of the supremum follows from the previous work of Shi-Tam and Wang-Yau on the quasi-local mass problem in general relativity. In turn, we define a variational analog of Brown-York quasi-local mass without assuming that the boundary 2-sphere has positive Gauss curvature.

  16. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-01-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  17. Variational approach to probabilistic finite elements

    NASA Astrophysics Data System (ADS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-08-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  18. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1987-01-01

    Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  19. Impact of finite temperatures on the transport properties of Gd from first principles

    NASA Astrophysics Data System (ADS)

    Chadova, K.; Mankovsky, S.; Minár, J.; Ebert, H.

    2017-03-01

    Finite-temperature effects have a pronounced impact on the transport properties of solids. In magnetic systems, besides the scattering of conduction electrons by impurities and phonons, an additional scattering source coming from the magnetic degrees of freedom must be taken into account. A first-principle scheme which treats all these scattering effects on equal footing was recently suggested within the framework of the multiple scattering formalism. Employing the alloy analogy model treated by means of the CPA, thermal lattice vibrations and spin fluctuations are effectively taken into account. In the present work the temperature dependence of the longitudinal resistivity and the anomalous Hall effect in the strongly correlated metal Gd is considered. The comparison with experiments demonstrates that the proposed numerical scheme does provide an adequate description of the electronic transport at finite temperatures.

  20. Effects of polymer stresses on analogy between momentum and heat transfer in drag-reduced turbulent channel flow

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungyoun; Sureshkumar, Radhakrishna

    2018-03-01

    The effects of polymer stresses on the analogy between momentum and heat transfer are examined by using a direct numerical simulation (DNS) of viscoelastic turbulent channel flows using a constant heat flux boundary condition. The Reynolds number based on the friction velocity and channel half height is 125, and the Prandtl number is 5. The polymer stress is modeled using the finitely extensible nonlinear elastic-Peterlin constitutive model, and low (15%), intermediate (34%), and high drag reduction (DR) (52%) cases are examined. The Colburn analogy is found to be inapplicable for viscoelastic turbulent flows, suggesting dissimilarity between the momentum and heat transfer at the macroscopic coefficient level. The mean temperature profile also shows behaviour different from the mean velocity profile in drag-reduced flows. In contrast to the dissimilarity in the mean profiles, the turbulent Prandtl number Prt predicted by the DNS is near unity. This implies that turbulent heat transfer is still analogous to turbulent momentum transfer in drag-reduced flows, as in Newtonian flow. An increase in DR is accompanied by an increase in the correlation coefficient ρuθ between the instantaneous fluctuations in the streamwise velocity u and temperature θ. The correlation coefficient between u' and wall-normal velocity fluctuations v', ρ-u v, exhibits a profile similar to that of ρ-θ v in drag-reduced and Newtonian flows. Finally, the budget analysis of the transport equations of turbulent heat flux shows a strong similarity between the turbulent momentum and heat transfer, which is consistent with the predictions of Prt near unity.

  1. Plasmonic Roche lobe in metal-dielectric-metal structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shiu, Ruei-Cheng; Lan, Yung-Chiang

    2013-07-15

    This study investigates a plasmonic Roche lobe that is based on a metal-dielectric-metal (MDM) structure using finite-difference time-domain simulations and theoretical analyses. The effective refractive index of the MDM structure has two centers and is inversely proportional to the distance from the position of interest to the centers, in a manner that is analogous to the gravitational potential in a two-star system. The motion of surface plasmons (SPs) strongly depends on the ratio of permittivities at the two centers. The Lagrange point is an unstable equilibrium point for SPs that propagate in the system. After the SPs have passed throughmore » the Lagrange point, their spread drastically increases.« less

  2. Magnetic control of dipolaritons in quantum dots.

    PubMed

    Rojas-Arias, J S; Rodríguez, B A; Vinck-Posada, H

    2016-12-21

    Dipolaritons are quasiparticles that arise in coupled quantum wells embedded in a microcavity, they are a superposition of a photon, a direct exciton and an indirect exciton. We propose the existence of dipolaritons in a system of two coupled quantum dots inside a microcavity in direct analogy with the quantum well case and find that, despite some similarities, dipolaritons in quantum dots have different properties and can lead to true dark polariton states. We use a finite system theory to study the effects of the magnetic field on the system, including the emission, and find that it can be used as a control parameter of the properties of excitons and dipolaritons, and the overall magnetic behaviour of the structure.

  3. Successive approximation-like 4-bit full-optical analog-to-digital converter based on Kerr-like nonlinear photonic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Tavousi, Alireza; Mansouri-Birjandi, Mohammad Ali; Saffari, Mehdi

    2016-09-01

    Implementing of photonic sampling and quantizing analog-to-digital converters (ADCs) enable us to extract a single binary word from optical signals without need for extra electronic assisting parts. This would enormously increase the sampling and quantizing time as well as decreasing the consumed power. To this end, based on the concept of successive approximation method, a 4-bit full-optical ADC that operates using the intensity-dependent Kerr-like nonlinearity in a two dimensional photonic crystal (2DPhC) platform is proposed. The Silicon (Si) nanocrystal is chosen because of the suitable nonlinear material characteristic. An optical limiter is used for the clamping and quantization of each successive levels that represent the ADC bits. In the proposal, an energy efficient optical ADC circuit is implemented by controlling the system parameters such as ring-to-waveguide coupling coefficients, the ring's nonlinear refractive index, and the ring's length. The performance of the ADC structure is verified by the simulation using finite difference time domain (FDTD) method.

  4. Conformal Nets II: Conformal Blocks

    NASA Astrophysics Data System (ADS)

    Bartels, Arthur; Douglas, Christopher L.; Henriques, André

    2017-08-01

    Conformal nets provide a mathematical formalism for conformal field theory. Associated to a conformal net with finite index, we give a construction of the `bundle of conformal blocks', a representation of the mapping class groupoid of closed topological surfaces into the category of finite-dimensional projective Hilbert spaces. We also construct infinite-dimensional spaces of conformal blocks for topological surfaces with smooth boundary. We prove that the conformal blocks satisfy a factorization formula for gluing surfaces along circles, and an analogous formula for gluing surfaces along intervals. We use this interval factorization property to give a new proof of the modularity of the category of representations of a conformal net.

  5. Quantum Kronecker sum-product low-density parity-check codes with finite rate

    NASA Astrophysics Data System (ADS)

    Kovalev, Alexey A.; Pryadko, Leonid P.

    2013-07-01

    We introduce an ansatz for quantum codes which gives the hypergraph-product (generalized toric) codes by Tillich and Zémor and generalized bicycle codes by MacKay as limiting cases. The construction allows for both the lower and the upper bounds on the minimum distance; they scale as a square root of the block length. Many thus defined codes have a finite rate and limited-weight stabilizer generators, an analog of classical low-density parity-check (LDPC) codes. Compared to the hypergraph-product codes, hyperbicycle codes generally have a wider range of parameters; in particular, they can have a higher rate while preserving the estimated error threshold.

  6. Investigation of detonation velocity in heterogeneous explosive system using the reactive Burgers' analog

    NASA Astrophysics Data System (ADS)

    Di Labbio, G.; Kiyanda, C. B.; Mi, X.; Higgins, A. J.; Nikiforakis, N.; Ng, H. D.

    2016-06-01

    In this study, the applicability of the Chapman-Jouguet (CJ) criterion is tested numerically for heterogeneous explosive media using a simple detonation analog. The analog system consists of a reactive Burgers' equation coupled with an Arrhenius type reaction wave, and the heterogeneity of the explosive media is mimicked using a discrete energy source approach. The governing equation is solved using a second order, finite-volume approach and the average propagation velocity of the discrete detonation is determined by tracking the leading shock front. Consistent with previous studies, the averaged velocity of the leading shock front from the unsteady numerical simulations is also found to be in good agreement with the velocity of a CJ detonation in a uniform medium wherein the energy source is spatially homogenized. These simulations have thus implications for whether the CJ criterion is valid to predict the detonation velocity in heterogeneous explosive media.

  7. Holographic constraints on Bjorken hydrodynamics at finite coupling

    NASA Astrophysics Data System (ADS)

    DiNunno, Brandon S.; Grozdanov, Sašo; Pedraza, Juan F.; Young, Steve

    2017-10-01

    In large- N c conformal field theories with classical holographic duals, inverse coupling constant corrections are obtained by considering higher-derivative terms in the corresponding gravity theory. In this work, we use type IIB supergravity and bottom-up Gauss-Bonnet gravity to study the dynamics of boost-invariant Bjorken hydrodynamics at finite coupling. We analyze the time-dependent decay properties of non-local observables (scalar two-point functions and Wilson loops) probing the different models of Bjorken flow and show that they can be expressed generically in terms of a few field theory parameters. In addition, our computations provide an analytically quantifiable probe of the coupling-dependent validity of hydrodynamics at early times in a simple model of heavy-ion collisions, which is an observable closely analogous to the hydrodynamization time of a quark-gluon plasma. We find that to third order in the hydrodynamic expansion, the convergence of hydrodynamics is improved and that generically, as expected from field theory considerations and recent holographic results, the applicability of hydrodynamics is delayed as the field theory coupling decreases.

  8. Band structures in a two-dimensional phononic crystal with rotational multiple scatterers

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Wang, Xiaopeng; Chen, Tianning; Wan, Lele

    2017-03-01

    In this paper, the acoustic wave propagation in a two-dimensional phononic crystal composed of rotational multiple scatterers is investigated. The dispersion relationships, the transmission spectra and the acoustic modes are calculated by using finite element method. In contrast to the system composed of square tubes, there exist a low-frequency resonant bandgap and two wide Bragg bandgaps in the proposed structure, and the transmission spectra coincide with band structures. Specially, the first bandgap is based on locally resonant mechanism, and the simulation results agree well with the results of electrical circuit analogy. Additionally, increasing the rotation angle can remarkably influence the band structures due to the transfer of sound pressure between the internal and external cavities in low-order modes, and the redistribution of sound pressure in high-order modes. Wider bandgaps are obtained in arrays composed of finite unit cells with different rotation angles. The analysis results provide a good reference for tuning and obtaining wide bandgaps, and hence exploring the potential applications of the proposed phononic crystal in low-frequency noise insulation.

  9. Scalable hybrid computation with spikes.

    PubMed

    Sarpeshkar, Rahul; O'Halloran, Micah

    2002-09-01

    We outline a hybrid analog-digital scheme for computing with three important features that enable it to scale to systems of large complexity: First, like digital computation, which uses several one-bit precise logical units to collectively compute a precise answer to a computation, the hybrid scheme uses several moderate-precision analog units to collectively compute a precise answer to a computation. Second, frequent discrete signal restoration of the analog information prevents analog noise and offset from degrading the computation. And, third, a state machine enables complex computations to be created using a sequence of elementary computations. A natural choice for implementing this hybrid scheme is one based on spikes because spike-count codes are digital, while spike-time codes are analog. We illustrate how spikes afford easy ways to implement all three components of scalable hybrid computation. First, as an important example of distributed analog computation, we show how spikes can create a distributed modular representation of an analog number by implementing digital carry interactions between spiking analog neurons. Second, we show how signal restoration may be performed by recursive spike-count quantization of spike-time codes. And, third, we use spikes from an analog dynamical system to trigger state transitions in a digital dynamical system, which reconfigures the analog dynamical system using a binary control vector; such feedback interactions between analog and digital dynamical systems create a hybrid state machine (HSM). The HSM extends and expands the concept of a digital finite-state-machine to the hybrid domain. We present experimental data from a two-neuron HSM on a chip that implements error-correcting analog-to-digital conversion with the concurrent use of spike-time and spike-count codes. We also present experimental data from silicon circuits that implement HSM-based pattern recognition using spike-time synchrony. We outline how HSMs may be used to perform learning, vector quantization, spike pattern recognition and generation, and how they may be reconfigured.

  10. Kalman filters for assimilating near-surface observations into the Richards equation - Part 1: Retrieving state profiles with linear and nonlinear numerical schemes

    NASA Astrophysics Data System (ADS)

    Chirico, G. B.; Medina, H.; Romano, N.

    2014-07-01

    This paper examines the potential of different algorithms, based on the Kalman filtering approach, for assimilating near-surface observations into a one-dimensional Richards equation governing soil water flow in soil. Our specific objectives are: (i) to compare the efficiency of different Kalman filter algorithms in retrieving matric pressure head profiles when they are implemented with different numerical schemes of the Richards equation; (ii) to evaluate the performance of these algorithms when nonlinearities arise from the nonlinearity of the observation equation, i.e. when surface soil water content observations are assimilated to retrieve matric pressure head values. The study is based on a synthetic simulation of an evaporation process from a homogeneous soil column. Our first objective is achieved by implementing a Standard Kalman Filter (SKF) algorithm with both an explicit finite difference scheme (EX) and a Crank-Nicolson (CN) linear finite difference scheme of the Richards equation. The Unscented (UKF) and Ensemble Kalman Filters (EnKF) are applied to handle the nonlinearity of a backward Euler finite difference scheme. To accomplish the second objective, an analogous framework is applied, with the exception of replacing SKF with the Extended Kalman Filter (EKF) in combination with a CN numerical scheme, so as to handle the nonlinearity of the observation equation. While the EX scheme is computationally too inefficient to be implemented in an operational assimilation scheme, the retrieval algorithm implemented with a CN scheme is found to be computationally more feasible and accurate than those implemented with the backward Euler scheme, at least for the examined one-dimensional problem. The UKF appears to be as feasible as the EnKF when one has to handle nonlinear numerical schemes or additional nonlinearities arising from the observation equation, at least for systems of small dimensionality as the one examined in this study.

  11. Influence of Joint Flexibility on Vibration Analysis of Free-Free Beams

    NASA Astrophysics Data System (ADS)

    Gunda, Jagadish Babu; Krishna, Y.

    2014-12-01

    In present work, joint flexibility (or looseness) of the free-free beam is investigated by using a two noded beam finite element formulation with transverse displacement and joint rotations as the degrees of freedom per node at joint location. Flexibility of the joint is primarily represented by means of a rotational spring analogy, where the stiffness of the rotational spring characterizes the looseness of the flexible joint for an applied bending moment. Influence of joint location as well as joint stiffness on modal behavior of first five modes of slender, uniform free-free beams are discussed for various values of non-dimensional rotational spring stiffness parameter. Numerical accuracy of the results obtained from the present finite element formulation are validated by using the commercially available finite element software which shows the confidence gained on the numerical results discussed in the present study.

  12. Practical continuous-variable quantum key distribution without finite sampling bandwidth effects.

    PubMed

    Li, Huasheng; Wang, Chao; Huang, Peng; Huang, Duan; Wang, Tao; Zeng, Guihua

    2016-09-05

    In a practical continuous-variable quantum key distribution system, finite sampling bandwidth of the employed analog-to-digital converter at the receiver's side may lead to inaccurate results of pulse peak sampling. Then, errors in the parameters estimation resulted. Subsequently, the system performance decreases and security loopholes are exposed to eavesdroppers. In this paper, we propose a novel data acquisition scheme which consists of two parts, i.e., a dynamic delay adjusting module and a statistical power feedback-control algorithm. The proposed scheme may improve dramatically the data acquisition precision of pulse peak sampling and remove the finite sampling bandwidth effects. Moreover, the optimal peak sampling position of a pulse signal can be dynamically calibrated through monitoring the change of the statistical power of the sampled data in the proposed scheme. This helps to resist against some practical attacks, such as the well-known local oscillator calibration attack.

  13. A communication channel model of the software process

    NASA Technical Reports Server (NTRS)

    Tausworthe, R. C.

    1988-01-01

    Reported here is beginning research into a noisy communication channel analogy of software development process productivity, in order to establish quantifiable behavior and theoretical bounds. The analogy leads to a fundamental mathematical relationship between human productivity and the amount of information supplied by the developers, the capacity of the human channel for processing and transmitting information, the software product yield (object size), the work effort, requirements efficiency, tool and process efficiency, and programming environment advantage. Also derived is an upper bound to productivity that shows that software reuse is the only means than can lead to unbounded productivity growth; practical considerations of size and cost of reusable components may reduce this to a finite bound.

  14. A communication channel model of the software process

    NASA Technical Reports Server (NTRS)

    Tausworthe, Robert C.

    1988-01-01

    Beginning research into a noisy communication channel analogy of software development process productivity, in order to establish quantifiable behavior and theoretical bounds is discussed. The analogy leads to a fundamental mathematical relationship between human productivity and the amount of information supplied by the developers, the capacity of the human channel for processing and transmitting information, the software product yield (object size) the work effort, requirements efficiency, tool and process efficiency, and programming environment advantage. An upper bound to productivity is derived that shows that software reuse is the only means that can lead to unbounded productivity growth; practical considerations of size and cost of reusable components may reduce this to a finite bound.

  15. Multi-channel spatialization systems for audio signals

    NASA Technical Reports Server (NTRS)

    Begault, Durand R. (Inventor)

    1993-01-01

    Synthetic head related transfer functions (HRTF's) for imposing reprogrammable spatial cues to a plurality of audio input signals included, for example, in multiple narrow-band audio communications signals received simultaneously are generated and stored in interchangeable programmable read only memories (PROM's) which store both head related transfer function impulse response data and source positional information for a plurality of desired virtual source locations. The analog inputs of the audio signals are filtered and converted to digital signals from which synthetic head related transfer functions are generated in the form of linear phase finite impulse response filters. The outputs of the impulse response filters are subsequently reconverted to analog signals, filtered, mixed, and fed to a pair of headphones.

  16. Multi-channel spatialization system for audio signals

    NASA Technical Reports Server (NTRS)

    Begault, Durand R. (Inventor)

    1995-01-01

    Synthetic head related transfer functions (HRTF's) for imposing reprogramable spatial cues to a plurality of audio input signals included, for example, in multiple narrow-band audio communications signals received simultaneously are generated and stored in interchangeable programmable read only memories (PROM's) which store both head related transfer function impulse response data and source positional information for a plurality of desired virtual source locations. The analog inputs of the audio signals are filtered and converted to digital signals from which synthetic head related transfer functions are generated in the form of linear phase finite impulse response filters. The outputs of the impulse response filters are subsequently reconverted to analog signals, filtered, mixed and fed to a pair of headphones.

  17. CrossSim

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plimpton, Steven J.; Agarwal, Sapan; Schiek, Richard

    2016-09-02

    CrossSim is a simulator for modeling neural-inspired machine learning algorithms on analog hardware, such as resistive memory crossbars. It includes noise models for reading and updating the resistances, which can be based on idealized equations or experimental data. It can also introduce noise and finite precision effects when converting values from digital to analog and vice versa. All of these effects can be turned on or off as an algorithm processes a data set and attempts to learn its salient attributes so that it can be categorized in the machine learning training/classification context. CrossSim thus allows the robustness, accuracy, andmore » energy usage of a machine learning algorithm to be tested on simulated hardware.« less

  18. Finite element meshing approached as a global minimization process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WITKOWSKI,WALTER R.; JUNG,JOSEPH; DOHRMANN,CLARK R.

    2000-03-01

    The ability to generate a suitable finite element mesh in an automatic fashion is becoming the key to being able to automate the entire engineering analysis process. However, placing an all-hexahedron mesh in a general three-dimensional body continues to be an elusive goal. The approach investigated in this research is fundamentally different from any other that is known of by the authors. A physical analogy viewpoint is used to formulate the actual meshing problem which constructs a global mathematical description of the problem. The analogy used was that of minimizing the electrical potential of a system charged particles within amore » charged domain. The particles in the presented analogy represent duals to mesh elements (i.e., quads or hexes). Particle movement is governed by a mathematical functional which accounts for inter-particles repulsive, attractive and alignment forces. This functional is minimized to find the optimal location and orientation of each particle. After the particles are connected a mesh can be easily resolved. The mathematical description for this problem is as easy to formulate in three-dimensions as it is in two- or one-dimensions. The meshing algorithm was developed within CoMeT. It can solve the two-dimensional meshing problem for convex and concave geometries in a purely automated fashion. Investigation of the robustness of the technique has shown a success rate of approximately 99% for the two-dimensional geometries tested. Run times to mesh a 100 element complex geometry were typically in the 10 minute range. Efficiency of the technique is still an issue that needs to be addressed. Performance is an issue that is critical for most engineers generating meshes. It was not for this project. The primary focus of this work was to investigate and evaluate a meshing algorithm/philosophy with efficiency issues being secondary. The algorithm was also extended to mesh three-dimensional geometries. Unfortunately, only simple geometries were tested before this project ended. The primary complexity in the extension was in the connectivity problem formulation. Defining all of the interparticle interactions that occur in three-dimensions and expressing them in mathematical relationships is very difficult.« less

  19. Low speed airfoil design and analysis

    NASA Technical Reports Server (NTRS)

    Eppler, R.; Somers, D. M.

    1979-01-01

    A low speed airfoil design and analysis program was developed which contains several unique features. In the design mode, the velocity distribution is not specified for one but many different angles of attack. Several iteration options are included which allow the trailing edge angle to be specified while other parameters are iterated. For airfoil analysis, a panel method is available which uses third-order panels having parabolic vorticity distributions. The flow condition is satisfied at the end points of the panels. Both sharp and blunt trailing edges can be analyzed. The integral boundary layer method with its laminar separation bubble analog, empirical transition criterion, and precise turbulent boundary layer equations compares very favorably with other methods, both integral and finite difference. Comparisons with experiment for several airfoils over a very wide Reynolds number range are discussed. Applications to high lift airfoil design are also demonstrated.

  20. NASTRAN application for the prediction of aircraft interior noise

    NASA Technical Reports Server (NTRS)

    Marulo, Francesco; Beyer, Todd B.

    1987-01-01

    The application of a structural-acoustic analogy within the NASTRAN finite element program for the prediction of aircraft interior noise is presented. Some refinements of the method, which reduce the amount of computation required for large, complex structures, are discussed. Also, further improvements are proposed and preliminary comparisons with structural and acoustic modal data obtained for a large, composite cylinder are presented.

  1. Emergent Complexity in Conway's Game of Life

    NASA Astrophysics Data System (ADS)

    Gotts, Nick

    It is shown that both small, finite patterns and random infinite very low density ("sparse") arrays of the Game of Life can produce emergent structures and processes of great complexity, through ramifying feedback networks and cross-scale interactions. The implications are discussed: it is proposed that analogous networks and interactions may have been precursors to natural selection in the real world.

  2. An adaptive approach to the physical annealing strategy for simulated annealing

    NASA Astrophysics Data System (ADS)

    Hasegawa, M.

    2013-02-01

    A new and reasonable method for adaptive implementation of simulated annealing (SA) is studied on two types of random traveling salesman problems. The idea is based on the previous finding on the search characteristics of the threshold algorithms, that is, the primary role of the relaxation dynamics in their finite-time optimization process. It is shown that the effective temperature for optimization can be predicted from the system's behavior analogous to the stabilization phenomenon occurring in the heating process starting from a quenched solution. The subsequent slow cooling near the predicted point draws out the inherent optimizing ability of finite-time SA in more straightforward manner than the conventional adaptive approach.

  3. Rogue-wave bullets in a composite (2+1)D nonlinear medium.

    PubMed

    Chen, Shihua; Soto-Crespo, Jose M; Baronio, Fabio; Grelu, Philippe; Mihalache, Dumitru

    2016-07-11

    We show that nonlinear wave packets localized in two dimensions with characteristic rogue wave profiles can propagate in a third dimension with significant stability. This unique behavior makes these waves analogous to light bullets, with the additional feature that they propagate on a finite background. Bulletlike rogue-wave singlet and triplet are derived analytically from a composite (2+1)D nonlinear wave equation. The latter can be interpreted as the combination of two integrable (1+1)D models expressed in different dimensions, namely, the Hirota equation and the complex modified Korteweg-de Vries equation. Numerical simulations confirm that the generation of rogue-wave bullets can be observed in the presence of spontaneous modulation instability activated by quantum noise.

  4. Analysis of steady-state salt-water upconing with application at Truro well field, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Reilly, T.E.; Frimpter, M.H.; LeBlanc, D.R.; Goodman, A.S.

    1987-01-01

    Sharp interface methods have been used successfully to describe the physics of upconing. A finite-element model is developed to simulate a sharp interface for determination of the steady-state position of the interface and maximum permissible well discharges. The model developed is compared to previous published electric-analog model results of Bennett and others (1968). -from Authors

  5. Ultrasonic Motors (USM) - an emerging actuation technology for planetary applications

    NASA Technical Reports Server (NTRS)

    Bao, X.; Das, H.

    2000-01-01

    A hybrid model that addressed a complete ultrasonic motor as a system was developed. The model allows using powerful commercial FE package to express dynamic characteristics of the stator and the rotor in engineering practice. An analog model couples the finite element models for the stator and rotor for the stator-interface layer-rotor syste. The model provides reasonably accurate results for CAD.

  6. Temporal waveguides for optical pulses

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2016-05-12

    Here we discuss, temporal total internal reflection (TIR), in analogy to the conventional TIR of an optical beam at a dielectric interface, is the total reflection of an optical pulse inside a dispersive medium at a temporal boundary across which the refractive index changes. A pair of such boundaries separated in time acts as the temporal analog of planar dielectric waveguides. We study the propagation of optical pulses inside such temporal waveguides, both analytically and numerically, and show that the waveguide supports a finite number of temporal modes. We also discuss how a single-mode temporal waveguide can be created inmore » practice. In contrast with the spatial case, the confinement can occur even when the central region has a lower refractive index.« less

  7. SOME DUALITY THEOREMS FOR CYCLOTOMIC \\Gamma-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS OF CM TYPE

    NASA Astrophysics Data System (ADS)

    Kuz'min, L. V.

    1980-06-01

    For an odd prime l and a cyclotomic \\Gamma{-}l-extension k_\\infty/k of a field k of CM type, a compact periodic \\Gamma-module A_l(k), analogous to the Tate module of a function field, is defined. The analog of the Weil scalar product is constructed on the module A_l(k). The properties of this scalar product are examined, and certain other duality relations are determined on A_l(k). It is proved that, in a finite l-extension k'/k of CM type, the \\mathbf{Z}_l-ranks of A_l(k) and A_l(k') are connected by a relation similar to the Hurwitz formula for the genus of a curve.Bibliography: 7 titles.

  8. Inelastic strain analogy for piecewise linear computation of creep residues in built-up structures

    NASA Technical Reports Server (NTRS)

    Jenkins, Jerald M.

    1987-01-01

    An analogy between inelastic strains caused by temperature and those caused by creep is presented in terms of isotropic elasticity. It is shown how the theoretical aspects can be blended with existing finite-element computer programs to exact a piecewise linear solution. The creep effect is determined by using the thermal stress computational approach, if appropriate alterations are made to the thermal expansion of the individual elements. The overall transient solution is achieved by consecutive piecewise linear iterations. The total residue caused by creep is obtained by accumulating creep residues for each iteration and then resubmitting the total residues for each element as an equivalent input. A typical creep law is tested for incremental time convergence. The results indicate that the approach is practical, with a valid indication of the extent of creep after approximately 20 hr of incremental time. The general analogy between body forces and inelastic strain gradients is discussed with respect to how an inelastic problem can be worked as an elastic problem.

  9. Robustness of a multimodal piezoelectric damping involving the electrical analogue of a plate

    NASA Astrophysics Data System (ADS)

    Lossouarn, Boris; Cunefare, Kenneth A.; Aucejo, Mathieu; Deü, Jean-François

    2016-04-01

    Multimodal passive damping of a mechanical structure can be implemented by a coupling to a secondary structure exhibiting similar modal properties. When considering a piezoelectric coupling, the secondary structure is an electrical network. A suitable topology for such a network can be obtained by a finite difference formulation of the mechanical equations, followed by a direct electromechanical analogy. This procedure is applied to the Kirchhoff-Love theory in order to find the electrical analogue of a clamped plate. The passive electrical network is implemented with inductors, transformers and the inherent capacitance of the piezoelectric patches. The electrical resonances are tuned to approach those of several mechanical modes simultaneously. This yields a broadband reduction of the plate vibrations through the array of interconnected piezoelectric patches. The robustness of the control strategy is evaluated by introducing perturbations in the mechanical or electrical designs. A non-optimal tuning is considered by way of a uniform variation of the network inductance. Then, the effect of local or boundary modifications of the electromechanical system is observed experimentally. In the end, the use of an analogous electrical network appears as an efficient and robust solution for the multimodal control of a plate.

  10. Does finite-temperature decoding deliver better optima for noisy Hamiltonians?

    NASA Astrophysics Data System (ADS)

    Ochoa, Andrew J.; Nishimura, Kohji; Nishimori, Hidetoshi; Katzgraber, Helmut G.

    The minimization of an Ising spin-glass Hamiltonian is an NP-hard problem. Because many problems across disciplines can be mapped onto this class of Hamiltonian, novel efficient computing techniques are highly sought after. The recent development of quantum annealing machines promises to minimize these difficult problems more efficiently. However, the inherent noise found in these analog devices makes the minimization procedure difficult. While the machine might be working correctly, it might be minimizing a different Hamiltonian due to the inherent noise. This means that, in general, the ground-state configuration that correctly minimizes a noisy Hamiltonian might not minimize the noise-less Hamiltonian. Inspired by rigorous results that the energy of the noise-less ground-state configuration is equal to the expectation value of the energy of the noisy Hamiltonian at the (nonzero) Nishimori temperature [J. Phys. Soc. Jpn., 62, 40132930 (1993)], we numerically study the decoding probability of the original noise-less ground state with noisy Hamiltonians in two space dimensions, as well as the D-Wave Inc. Chimera topology. Our results suggest that thermal fluctuations might be beneficial during the optimization process in analog quantum annealing machines.

  11. Phase-space finite elements in a least-squares solution of the transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less

  12. Generic finite size scaling for discontinuous nonequilibrium phase transitions into absorbing states

    NASA Astrophysics Data System (ADS)

    de Oliveira, M. M.; da Luz, M. G. E.; Fiore, C. E.

    2015-12-01

    Based on quasistationary distribution ideas, a general finite size scaling theory is proposed for discontinuous nonequilibrium phase transitions into absorbing states. Analogously to the equilibrium case, we show that quantities such as response functions, cumulants, and equal area probability distributions all scale with the volume, thus allowing proper estimates for the thermodynamic limit. To illustrate these results, five very distinct lattice models displaying nonequilibrium transitions—to single and infinitely many absorbing states—are investigated. The innate difficulties in analyzing absorbing phase transitions are circumvented through quasistationary simulation methods. Our findings (allied to numerical studies in the literature) strongly point to a unifying discontinuous phase transition scaling behavior for equilibrium and this important class of nonequilibrium systems.

  13. Wang-Landau method for calculating Rényi entropies in finite-temperature quantum Monte Carlo simulations.

    PubMed

    Inglis, Stephen; Melko, Roger G

    2013-01-01

    We implement a Wang-Landau sampling technique in quantum Monte Carlo (QMC) simulations for the purpose of calculating the Rényi entanglement entropies and associated mutual information. The algorithm converges an estimate for an analog to the density of states for stochastic series expansion QMC, allowing a direct calculation of Rényi entropies without explicit thermodynamic integration. We benchmark results for the mutual information on two-dimensional (2D) isotropic and anisotropic Heisenberg models, a 2D transverse field Ising model, and a three-dimensional Heisenberg model, confirming a critical scaling of the mutual information in cases with a finite-temperature transition. We discuss the benefits and limitations of broad sampling techniques compared to standard importance sampling methods.

  14. An embedding of the universal Askey-Wilson algebra into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2)

    NASA Astrophysics Data System (ADS)

    Huang, Hau-Wen

    2017-09-01

    The Askey-Wilson algebras were used to interpret the algebraic structure hidden in the Racah-Wigner coefficients of the quantum algebra Uq (sl2). In this paper, we display an injection of a universal analog △q of Askey-Wilson algebras into Uq (sl2) ⊗Uq (sl2) ⊗Uq (sl2) behind the application. Moreover we establish the decomposition rules for 3-fold tensor products of irreducible Verma Uq (sl2)-modules and of finite-dimensional irreducible Uq (sl2)-modules into the direct sums of finite-dimensional irreducible △q-modules. As an application, we derive a formula for the Racah-Wigner coefficients of Uq (sl2).

  15. A forward-advancing wave expansion method for numerical solution of large-scale sound propagation problems

    NASA Astrophysics Data System (ADS)

    Rolla, L. Barrera; Rice, H. J.

    2006-09-01

    In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.

  16. Hyperbolic heat conduction, effective temperature, and third law for nonequilibrium systems with heat flux

    NASA Astrophysics Data System (ADS)

    Sobolev, S. L.

    2018-02-01

    Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.

  17. A Finite Element Procedure for Calculating Fluid-Structure Interaction Using MSC/NASTRAN

    NASA Technical Reports Server (NTRS)

    Chargin, Mladen; Gartmeier, Otto

    1990-01-01

    This report is intended to serve two purposes. The first is to present a survey of the theoretical background of the dynamic interaction between a non-viscid, compressible fluid and an elastic structure is presented. Section one presents a short survey of the application of the finite element method (FEM) to the area of fluid-structure-interaction (FSI). Section two describes the mathematical foundation of the structure and fluid with special emphasis on the fluid. The main steps in establishing the finite element (FE) equations for the fluid structure coupling are discussed in section three. The second purpose is to demonstrate the application of MSC/NASTRAN to the solution of FSI problems. Some specific topics, such as fluid structure analogy, acoustic absorption, and acoustic contribution analysis are described in section four. Section five deals with the organization of the acoustic procedure flowchart. Section six includes the most important information that a user needs for applying the acoustic procedure to practical FSI problems. Beginning with some rules concerning the FE modeling of the coupled system, the NASTRAN USER DECKs for the different steps are described. The goal of section seven is to demonstrate the use of the acoustic procedure with some examples. This demonstration includes an analytic verification of selected FE results. The analytical description considers only some aspects of FSI and is not intended to be mathematically complete. Finally, section 8 presents an application of the acoustic procedure to vehicle interior acoustic analysis with selected results.

  18. Finite-Size Scaling Analysis of Binary Stochastic Processes and Universality Classes of Information Cascade Phase Transition

    NASA Astrophysics Data System (ADS)

    Mori, Shintaro; Hisakado, Masato

    2015-05-01

    We propose a finite-size scaling analysis method for binary stochastic processes X(t) in { 0,1} based on the second moment correlation length ξ for the autocorrelation function C(t). The purpose is to clarify the critical properties and provide a new data analysis method for information cascades. As a simple model to represent the different behaviors of subjects in information cascade experiments, we assume that X(t) is a mixture of an independent random variable that takes 1 with probability q and a random variable that depends on the ratio z of the variables taking 1 among recent r variables. We consider two types of the probability f(z) that the latter takes 1: (i) analog [f(z) = z] and (ii) digital [f(z) = θ(z - 1/2)]. We study the universal functions of scaling for ξ and the integrated correlation time τ. For finite r, C(t) decays exponentially as a function of t, and there is only one stable renormalization group (RG) fixed point. In the limit r to ∞ , where X(t) depends on all the previous variables, C(t) in model (i) obeys a power law, and the system becomes scale invariant. In model (ii) with q ≠ 1/2, there are two stable RG fixed points, which correspond to the ordered and disordered phases of the information cascade phase transition with the critical exponents β = 1 and ν|| = 2.

  19. Evaluation of crack-tip stress fields on microstructural-scale fracture in Al-Al2O3 interpenetrating network composites

    Treesearch

    Robert J. Moon; Mark Hoffman; Jurgen Rödel; Shigemi Tochino; Giuseppe Pezzotti

    2009-01-01

    The influence of local microstructure on the fracture process at the crack tip in a ceramic–metal composite was assessed by comparing the measured stress at a microstructural level and analogous finite element modelling (FEM). Fluorescence microprobe spectroscopy was used to investigate the influence of near-crack-tip stress fields on the resulting crack propagation at...

  20. Total Probability of Collision as a Metric for Finite Conjunction Assessment and Collision Risk Management

    NASA Technical Reports Server (NTRS)

    Frigm, Ryan C.; Hejduk, Matthew D.; Johnson, Lauren C.; Plakalovic, Dragan

    2015-01-01

    On-orbit collision risk is becoming an increasing mission risk to all operational satellites in Earth orbit. Managing this risk can be disruptive to mission and operations, present challenges for decision-makers, and is time-consuming for all parties involved. With the planned capability improvements to detecting and tracking smaller orbital debris and capacity improvements to routinely predict on-orbit conjunctions, this mission risk will continue to grow in terms of likelihood and effort. It is very real possibility that the future space environment will not allow collision risk management and mission operations to be conducted in the same manner as it is today. This paper presents the concept of a finite conjunction assessment-one where each discrete conjunction is not treated separately but, rather, as a continuous event that must be managed concurrently. The paper also introduces the Total Probability of Collision as an analogous metric for finite conjunction assessment operations and provides several options for its usage in a Concept of Operations.

  1. The theory of pseudo-differential operators on the noncommutative n-torus

    NASA Astrophysics Data System (ADS)

    Tao, J.

    2018-02-01

    The methods of spectral geometry are useful for investigating the metric aspects of noncommutative geometry and in these contexts require extensive use of pseudo-differential operators. In a foundational paper, Connes showed that, by direct analogy with the theory of pseudo-differential operators on finite-dimensional real vector spaces, one may derive a similar pseudo-differential calculus on noncommutative n-tori, and with the development of this calculus came many results concerning the local differential geometry of noncommutative tori for n=2,4, as shown in the groundbreaking paper in which the Gauss-Bonnet theorem on the noncommutative two-torus is proved and later papers. Certain details of the proofs in the original derivation of the calculus were omitted, such as the evaluation of oscillatory integrals, so we make it the objective of this paper to fill in all the details. After reproving in more detail the formula for the symbol of the adjoint of a pseudo-differential operator and the formula for the symbol of a product of two pseudo-differential operators, we extend these results to finitely generated projective right modules over the noncommutative n-torus. Then we define the corresponding analog of Sobolev spaces and prove equivalents of the Sobolev and Rellich lemmas.

  2. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  3. A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids

    NASA Astrophysics Data System (ADS)

    Feng, Wenqiang; Guo, Zhenlin; Lowengrub, John S.; Wise, Steven M.

    2018-01-01

    We present a mass-conservative full approximation storage (FAS) multigrid solver for cell-centered finite difference methods on block-structured, locally cartesian grids. The algorithm is essentially a standard adaptive FAS (AFAS) scheme, but with a simple modification that comes in the form of a mass-conservative correction to the coarse-level force. This correction is facilitated by the creation of a zombie variable, analogous to a ghost variable, but defined on the coarse grid and lying under the fine grid refinement patch. We show that a number of different types of fine-level ghost cell interpolation strategies could be used in our framework, including low-order linear interpolation. In our approach, the smoother, prolongation, and restriction operations need never be aware of the mass conservation conditions at the coarse-fine interface. To maintain global mass conservation, we need only modify the usual FAS algorithm by correcting the coarse-level force function at points adjacent to the coarse-fine interface. We demonstrate through simulations that the solver converges geometrically, at a rate that is h-independent, and we show the generality of the solver, applying it to several nonlinear, time-dependent, and multi-dimensional problems. In several tests, we show that second-order asymptotic (h → 0) convergence is observed for the discretizations, provided that (1) at least linear interpolation of the ghost variables is employed, and (2) the mass conservation corrections are applied to the coarse-level force term.

  4. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  5. Element sensitive reconstruction of nanostructured surfaces with finite elements and grazing incidence soft X-ray fluorescence.

    PubMed

    Soltwisch, Victor; Hönicke, Philipp; Kayser, Yves; Eilbracht, Janis; Probst, Jürgen; Scholze, Frank; Beckhoff, Burkhard

    2018-03-29

    The geometry of a Si3N4 lamellar grating was investigated experimentally with reference-free grazing-incidence X-ray fluorescence analysis. While simple layered systems are usually treated with the matrix formalism to determine the X-ray standing-wave field, this approach fails for laterally structured surfaces. Maxwell solvers based on finite elements are often used to model electrical field strengths for any 2D or 3D structures in the optical spectral range. We show that this approach can also be applied in the field of X-rays. The electrical field distribution obtained with the Maxwell solver can subsequently be used to calculate the fluorescence intensities in full analogy to the X-ray standing-wave field obtained by the matrix formalism. Only the effective 1D integration for the layer system has to be replaced by a 2D integration of the finite elements, taking into account the local excitation conditions. We will show that this approach is capable of reconstructing the geometric line shape of a structured surface with high elemental sensitivity. This combination of GIXRF and finite-element simulations paves the way for a versatile characterization of nanoscale-structured surfaces.

  6. Broadband Solar Energy Harvesting in Single Nanowire Resonators

    NASA Astrophysics Data System (ADS)

    Yang, Yiming; Peng, Xingyue; Hyatt, Steven; Yu, Dong

    2015-03-01

    Sub-wavelength semiconductor nanowires (NWs) can have optical absorption cross sections far beyond their physical sizes at resonance frequencies, offering a powerful method to simultaneously lower the material consumption and enhance photovoltaic performance. The degree of absorption enhancement is expected to substantially increase in materials with high refractive indices, but this has not yet been experimentally demonstrated. Here, we show that the absorption efficiency can be significantly improved in high-index NWs, by a direct observation of 350% external quantum efficiency (EQE) in lead sulfide (PbS) NWs. Broadband absorption enhancement is also realized in tapered NWs, where light of different wavelength is absorbed at segments with different diameters analogous to a tandem solar cell. Our results quantitatively agree with the finite-difference-time-domain (FDTD) simulations. Overall, our single PbS NW Schottky solar cells taking advantage of optical resonance, near bandgap open circuit voltage, and long minority carrier diffusion length exhibit power conversion efficiency comparable to single Si NW coaxial p-n junction cells, while the fabrication complexity is greatly reduced.

  7. Thermal modeling of high efficiency AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.; Crowley, C.J.

    1995-12-31

    Remotely condensed Alkali Metal Thermal to Electric Conversion (AMTEC) cells achieve high efficiency by thermally isolating the hot {beta} Alumina Solid Electrolyte (BASE) tube from the cold condensing region. In order to design high efficiency AMTEC cells the designer must understand the heat losses associated with the AMTEC process. The major parasitic heat losses are due to conduction and radiation, and significant coupling of the two mechanisms occurs. This paper describes an effort to characterize the thermal aspects of the model PL-6 AMTEC cell and apply this understanding to the design of a higher efficiency AMTEC cell, model PL-8. Twomore » parallel analyses were used to model the thermal characteristics of PL-6. The first was a lumped node model using the classical electric circuit analogy and the second was a detailed finite-difference model. The lumped node model provides high speed and reasonable accuracy, and the detailed finite-difference model provides a more accurate, as well as visual, description of the cell temperature profiles. The results of the two methods are compared to the as-measured PL-6 data. PL-6 was the first cell to use a micromachined condenser to lower the radiation losses to the condenser, and it achieved a conversion efficiency of 15% (3 W output/20 W Input) at a temperature of 1050 K.« less

  8. A Newton method for the magnetohydrodynamic equilibrium equations

    NASA Astrophysics Data System (ADS)

    Oliver, Hilary James

    We have developed and implemented a (J, B) space Newton method to solve the full nonlinear three dimensional magnetohydrodynamic equilibrium equations in toroidal geometry. Various cases have been run successfully, demonstrating significant improvement over Picard iteration, including a 3D stellarator equilibrium at β = 2%. The algorithm first solves the equilibrium force balance equation for the current density J, given a guess for the magnetic field B. This step is taken from the Picard-iterative PIES 3D equilibrium code. Next, we apply Newton's method to Ampere's Law by expansion of the functional J(B), which is defined by the first step. An analytic calculation in magnetic coordinates, of how the Pfirsch-Schlüter currents vary in the plasma in response to a small change in the magnetic field, yields the Newton gradient term (analogous to ∇f . δx in Newton's method for f(x) = 0). The algorithm is computationally feasible because we do this analytically, and because the gradient term is flux surface local when expressed in terms of a vector potential in an Ar=0 gauge. The equations are discretized by a hybrid spectral/offset grid finite difference technique, and leading order radial dependence is factored from Fourier coefficients to improve finite- difference accuracy near the polar-like origin. After calculating the Newton gradient term we transfer the equation from the magnetic grid to a fixed background grid, which greatly improves the code's performance.

  9. Application of 1 D Finite Element Method in Combination with Laminar Solution Method for Pipe Network Analysis

    NASA Astrophysics Data System (ADS)

    Dudar, O. I.; Dudar, E. S.

    2017-11-01

    The features of application of the 1D dimensional finite element method (FEM) in combination with the laminar solutions method (LSM) for the calculation of underground ventilating networks are considered. In this case the processes of heat and mass transfer change the properties of a fluid (binary vapour-air mix). Under the action of gravitational forces it leads to such phenomena as natural draft, local circulation, etc. The FEM relations considering the action of gravity, the mass conservation law, the dependence of vapour-air mix properties on the thermodynamic parameters are derived so that it allows one to model the mentioned phenomena. The analogy of the elastic and plastic rod deformation processes to the processes of laminar and turbulent flow in a pipe is described. Owing to this analogy, the guaranteed convergence of the elastic solutions method for the materials of plastic type means the guaranteed convergence of the LSM for any regime of a turbulent flow in a rough pipe. By means of numerical experiments the convergence rate of the FEM - LSM is investigated. This convergence rate appeared much higher than the convergence rate of the Cross - Andriyashev method. Data of other authors on the convergence rate comparison for the finite element method, the Newton method and the method of gradient are provided. These data allow one to conclude that the FEM in combination with the LSM is one of the most effective methods of calculation of hydraulic and ventilating networks. The FEM - LSM has been used for creation of the research application programme package “MineClimate” allowing to calculate the microclimate parameters in the underground ventilating networks.

  10. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duru, Kenneth, E-mail: kduru@stanford.edu; Dunham, Eric M.; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a)more » enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge–Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.« less

  11. Dynamic earthquake rupture simulations on nonplanar faults embedded in 3D geometrically complex, heterogeneous elastic solids

    NASA Astrophysics Data System (ADS)

    Duru, Kenneth; Dunham, Eric M.

    2016-01-01

    Dynamic propagation of shear ruptures on a frictional interface in an elastic solid is a useful idealization of natural earthquakes. The conditions relating discontinuities in particle velocities across fault zones and tractions acting on the fault are often expressed as nonlinear friction laws. The corresponding initial boundary value problems are both numerically and computationally challenging. In addition, seismic waves generated by earthquake ruptures must be propagated for many wavelengths away from the fault. Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods. We present a high order accurate finite difference method for: a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration; b) dynamic propagation of earthquake ruptures along nonplanar faults; and c) accurate propagation of seismic waves in heterogeneous media with free surface topography. We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts (SBP) finite difference operators in space. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. The finite difference stencils used in this paper are sixth order accurate in the interior and third order accurate close to the boundaries. However, the method is applicable to any spatial operator with a diagonal norm satisfying the SBP property. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme, thus yielding a globally fourth order accurate method in both space and time. We show numerical simulations on band limited self-similar fractal faults revealing the complexity of rupture dynamics on rough faults.

  12. Investigation of High Linearity DFB Lasers for Analog Communications

    DTIC Science & Technology

    1998-02-01

    personal communication systems (PCS) service and phased array radar. In this thesis, we examine the dynamic range and distortion for a Fujitsu DFB laser. We...PCS) service and phased array radar. In this thesis, we examine the dynamic range and distortion for a Fujitsu DFB laser. We extract parameters from...is dependent upon the coupling coefficient, as discussed in Chapter 3. Spatial hole burning is more important at lower frequencies (owing to finite

  13. On the Nature of Oblique Instability Waves in Boundary Layer Transition.

    DTIC Science & Technology

    1986-05-23

    analogy with the starting vortex of a finite span airfoil , these vortices ." must also connect to some form of starting vortex system at the heater. The...quite suprising. %’ . .5 % *. % % .~%\\~, *-:. % % % % - 61 - For instance, a series of experiments involving forced oblique waves has shown that several...Morkovin, M. V. (1980). Dialog on Bridging Some Gaps in Stability and Transition Research. Laminar-Turbulent Transition (eds. R. Eppler and H. Fuel

  14. Vortex transmutation.

    PubMed

    Ferrando, Albert; Zacarés, Mario; García-March, Miguel-Angel; Monsoriu, Juan A; de Córdoba, Pedro Fernández

    2005-09-16

    Using group theory arguments and numerical simulations, we demonstrate the possibility of changing the vorticity or topological charge of an individual vortex by means of the action of a system possessing a discrete rotational symmetry of finite order. We establish on theoretical grounds a "transmutation pass" determining the conditions for this phenomenon to occur and numerically analyze it in the context of two-dimensional optical lattices. An analogous approach is applicable to the problems of Bose-Einstein condensates in periodic potentials.

  15. Finite element solution of torsion and other 2-D Poisson equations

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.

    1982-01-01

    The NASTRAN structural analysis computer program may be used, without modification, to solve two dimensional Poisson equations such as arise in the classical Saint Venant torsion problem. The nonhomogeneous term (the right-hand side) in the Poisson equation can be handled conveniently by specifying a gravitational load in a "structural" analysis. The use of an analogy between the equations of elasticity and those of classical mathematical physics is summarized in detail.

  16. Liftings and stresses for planar periodic frameworks

    PubMed Central

    Borcea, Ciprian; Streinu, Ileana

    2015-01-01

    We formulate and prove a periodic analog of Maxwell’s theorem relating stressed planar frameworks and their liftings to polyhedral surfaces with spherical topology. We use our lifting theorem to prove deformation and rigidity-theoretic properties for planar periodic pseudo-triangulations, generalizing features known for their finite counterparts. These properties are then applied to questions originating in mathematical crystallography and materials science, concerning planar periodic auxetic structures and ultrarigid periodic frameworks. PMID:26973370

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Qingcheng, E-mail: qiy9@pitt.edu; To, Albert C., E-mail: albertto@pitt.edu

    Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), ) is applied to capture surface effect for nanosized structures by designing a surface summation rule SR{sup S} within the framework of MMM. Combined with previously proposed bulk summation rule SR{sup B}, the MMM summation rule SR{sup MMM} is completed. SR{sup S} and SR{sup B} are consistently formed within SR{sup MMM} for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to themore » good performance of SR{sup MMM} lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SR{sup S} and SR{sup B} are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SR{sup MMM} accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SR{sup MMM} with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SR{sup MMM} that is analogous to numerical integration error with quadrature rule in FEM is very small. - Highlights: • Surface effect captured by Multiresolution Molecular Mechanics (MMM) is presented. • A novel surface summation rule within the framework of MMM is proposed. • Surface, corner and edges effects are accuterly captured in two and three dimension. • MMM with less 0.3% degrees of freedom of atomistics reproduces atomistic results.« less

  18. NESSUS/NASTRAN Interface

    NASA Technical Reports Server (NTRS)

    Millwater, Harry; Riha, David

    1996-01-01

    The NESSUS probabilistic analysis computer program has been developed with a built-in finite element analysis program NESSUS/FEM. However, the NESSUS/FEM program is specialized for engine structures and may not contain sufficient features for other applications. In addition, users often become well acquainted with a particular finite element code and want to use that code for probabilistic structural analysis. For these reasons, this work was undertaken to develop an interface between NESSUS and NASTRAN such that NASTRAN can be used for the finite element analysis and NESSUS can be used for the probabilistic analysis. In addition, NESSUS was restructured such that other finite element codes could be more easily coupled with NESSUS. NESSUS has been enhanced such that NESSUS will modify the NASTRAN input deck for a given set of random variables, run NASTRAN and read the NASTRAN result. The coordination between the two codes is handled automatically. The work described here was implemented within NESSUS 6.2 which was delivered to NASA in September 1995. The code runs on Unix machines: Cray, HP, Sun, SGI and IBM. The new capabilities have been implemented such that a user familiar with NESSUS using NESSUS/FEM and NASTRAN can immediately use NESSUS with NASTRAN. In other words, the interface with NASTRAN has been implemented in an analogous manner to the interface with NESSUS/FEM. Only finite element specific input has been changed. This manual is written as an addendum to the existing NESSUS 6.2 manuals. We assume users have access to NESSUS manuals and are familiar with the operation of NESSUS including probabilistic finite element analysis. Update pages to the NESSUS PFEM manual are contained in Appendix E. The finite element features of the code and the probalistic analysis capabilities are summarized.

  19. Flowing partially penetrating well: solution to a mixed-type boundary value problem

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Kabala, Z. J.; Medina, M. A.

    A new semi-analytic solution to the mixed-type boundary value problem for a flowing partially penetrating well with infinitesimal skin situated in an anisotropic aquifer is developed. The solution is suited to aquifers having a semi-infinite vertical extent or to packer tests with aquifer horizontal boundaries far enough from the tested area. The problem reduces to a system of dual integral equations (DE) and further to a deconvolution problem. Unlike the analogous Dagan's steady-state solution [Water Resour. Res. 1978; 14:929-34], our DE solution does not suffer from numerical oscillations. The new solution is validated by matching the corresponding finite-difference solution and is computationally much more efficient. An automated (Newton-Raphson) parameter identification algorithm is proposed for field test inversion, utilizing the DE solution for the forward model. The procedure is computationally efficient and converges to correct parameter values. A solution for the partially penetrating flowing well with no skin and a drawdown-drawdown discontinuous boundary condition, analogous to that by Novakowski [Can. Geotech. J. 1993; 30:600-6], is compared to the DE solution. The D-D solution leads to physically inconsistent infinite total flow rate to the well, when no skin effect is considered. The DE solution, on the other hand, produces accurate results.

  20. Eigenmodes of Ducted Flows With Radially-Dependent Axial and Swirl Velocity Components

    NASA Technical Reports Server (NTRS)

    Kousen, Kenneth A.

    1999-01-01

    This report characterizes the sets of small disturbances possible in cylindrical and annular ducts with mean flow whose axial and tangential components vary arbitrarily with radius. The linearized equations of motion are presented and discussed, and then exponential forms for the axial, circumferential, and time dependencies of any unsteady disturbances are assumed. The resultant equations form a generalized eigenvalue problem, the solution of which yields the axial wavenumbers and radial mode shapes of the unsteady disturbances. Two numerical discretizations are applied to the system of equations: (1) a spectral collocation technique based on Chebyshev polynomial expansions on the Gauss-Lobatto points, and (2) second and fourth order finite differences on uniform grids. The discretized equations are solved using a standard eigensystem package employing the QR algorithm. The eigenvalues fall into two primary categories: a discrete set (analogous to the acoustic modes found in uniform mean flows) and a continuous band (analogous to convected disturbances in uniform mean flows) where the phase velocities of the disturbances correspond to the local mean flow velocities. Sample mode shapes and eigensystem distributions are presented for both sheared axial and swirling flows. The physics of swirling flows is examined with reference to hydrodynamic stability and completeness of the eigensystem expansions. The effect of assuming exponential dependence in the axial direction is discussed.

  1. From particle condensation to polymer aggregation

    NASA Astrophysics Data System (ADS)

    Janke, Wolfhard; Zierenberg, Johannes

    2018-01-01

    We draw an analogy between droplet formation in dilute particle and polymer systems. Our arguments are based on finite-size scaling results from studies of a two-dimensional lattice gas to three-dimensional bead-spring polymers. To set the results in perspective, we compare with in part rigorous theoretical scaling laws for canonical condensation in a supersaturated gas at fixed temperature, and derive corresponding scaling predictions for an undercooled gas at fixed density. The latter allows one to efficiently employ parallel multicanonical simulations and to reach previously not accessible scaling regimes. While the asymptotic scaling can not be observed for the comparably small polymer system sizes, they demonstrate an intermediate scaling regime also observable for particle condensation. Altogether, our extensive results from computer simulations provide clear evidence for the close analogy between particle condensation and polymer aggregation in dilute systems.

  2. Magnetic properties of the ternary alloy with a structure of Prussian blue analogs

    NASA Astrophysics Data System (ADS)

    Dely, J.; Bobák, A.

    2007-01-01

    The magnetic properties (phase diagram, compensation temperature, magnetic susceptibility, and magnetization) of the ABpC1-p ternary alloy in the presence of a single-ion anisotropy on the B ions only are investigated by the use of a mean-field theory. Depending on the values of the parameters in the model Hamiltonian, the present system may exhibit one, two or even three compensation temperatures Tk. It is shown that the total magnetic susceptibility of the ferrimagnetic system can generally take a finite value at transition temperature Tc only if the relation Tc=Tk is exactly satisfied. Also, by using this model, some characteristics observed in the Prussian blue analog of the type (FepIIMn1-pII)1.5[CrIII(CN)6]·nH2O are quantitatively or qualitatively well reproduced.

  3. Structure theorems for game trees

    PubMed Central

    Govindan, Srihari; Wilson, Robert

    2002-01-01

    Kohlberg and Mertens [Kohlberg, E. & Mertens, J. (1986) Econometrica 54, 1003–1039] proved that the graph of the Nash equilibrium correspondence is homeomorphic to its domain when the domain is the space of payoffs in normal-form games. A counterexample disproves the analog for the equilibrium outcome correspondence over the space of payoffs in extensive-form games, but we prove an analog when the space of behavior strategies is perturbed so that every path in the game tree has nonzero probability. Without such perturbations, the graph is the closure of the union of a finite collection of its subsets, each diffeomorphic to a corresponding path-connected open subset of the space of payoffs. As an application, we construct an algorithm for computing equilibria of an extensive-form game with a perturbed strategy space, and thus approximate equilibria of the unperturbed game. PMID:12060702

  4. Structure theorems for game trees.

    PubMed

    Govindan, Srihari; Wilson, Robert

    2002-06-25

    Kohlberg and Mertens [Kohlberg, E. & Mertens, J. (1986) Econometrica 54, 1003-1039] proved that the graph of the Nash equilibrium correspondence is homeomorphic to its domain when the domain is the space of payoffs in normal-form games. A counterexample disproves the analog for the equilibrium outcome correspondence over the space of payoffs in extensive-form games, but we prove an analog when the space of behavior strategies is perturbed so that every path in the game tree has nonzero probability. Without such perturbations, the graph is the closure of the union of a finite collection of its subsets, each diffeomorphic to a corresponding path-connected open subset of the space of payoffs. As an application, we construct an algorithm for computing equilibria of an extensive-form game with a perturbed strategy space, and thus approximate equilibria of the unperturbed game.

  5. Direct CFD Predictions of Low Frequency Sounds Generated by a Helicopter Main Rotor

    NASA Technical Reports Server (NTRS)

    Sim, Ben W.; Potsdam, Mark A.; Conner, Dave A.; Conner, Dave A.; Watts, Michael E.

    2010-01-01

    The use of CFD to directly predict helicopter main rotor noise is shown to be quite promising as an alternative mean for low frequency source noise evaluation. Results using existing state-of-the-art grid structures and finite-difference schemes demonstrated that small perturbation pressures, associated with acoustics radiation, can be extracted with some degree of fidelity. Accuracy of the predictions are demonstrated via comparing to predictions from conventional acoustic analogy-based models, and with measurements obtained from wind tunnel and flight tests for the MD-902 helicopter at several operating conditions. Findings show that the direct CFD approach is quite successfully in yielding low frequency results due to thickness and steady loading noise mechanisms. Mid-to-high frequency contents, due to blade-vortex interactions, are not predicted due to CFD modeling and grid constraints.

  6. The Emergence of Dirac points in Photonic Crystals with Mirror Symmetry

    PubMed Central

    He, Wen-Yu; Chan, C. T.

    2015-01-01

    We show that Dirac points can emerge in photonic crystals possessing mirror symmetry when band gap closes. The mechanism of generating Dirac points is discussed in a two-dimensional photonic square lattice, in which four Dirac points split out naturally after the touching of two bands with different parity. The emergence of such nodal points, characterized by vortex structure in momentum space, is attributed to the unavoidable band crossing protected by mirror symmetry. The Dirac nodes can be unbuckled through breaking the mirror symmetry and a photonic analog of Chern insulator can be achieved through time reversal symmetry breaking. Breaking time reversal symmetry can lead to unidirectional helical edge states and breaking mirror symmetry can reduce the band gap to amplify the finite size effect, providing ways to engineer helical edge states. PMID:25640993

  7. A Build-Up Interior Method for Linear Programming: Affine Scaling Form

    DTIC Science & Technology

    1990-02-01

    initiating a major iteration imply convergence in a finite number of iterations. Each iteration t of the Dikin algorithm starts with an interior dual...this variant with the affine scaling method of Dikin [5] (in dual form). We have also looked into the analogous variant for the related Karmarkar’s...4] G. B. Dantzig, Linear Programming and Extensions (Princeton University Press, Princeton, NJ, 1963). [5] I. I. Dikin , "Iterative solution of

  8. Simulating the swelling and deformation behaviour in soft tissues using a convective thermal analogy

    PubMed Central

    Wu, John Z; Herzog, Walter

    2002-01-01

    Background It is generally accepted that cartilage adaptation and degeneration are mechanically mediated. Investigating the swelling behaviour of cartilage is important because the stress and strain state of cartilage is associated with the swelling and deformation behaviour. It is well accepted that the swelling of soft tissues is associated with mechanical, chemical, and electrical events. Method The purpose of the present study was to implement the triphasic theory into a commercial finite element tool (ABAQUS) to solve practical problems in cartilage mechanics. Because of the mathematical identity between thermal and mass diffusion processes, the triphasic model was transferred into a convective thermal diffusion process in the commercial finite element software. The problem was solved using an iterative procedure. Results The proposed approach was validated using the one-dimensional numerical solutions and the experimental results of confined compression of articular cartilage described in the literature. The time-history of the force response of a cartilage specimen in confined compression, which was subjected to swelling caused by a sudden change of saline concentration, was predicted using the proposed approach and compared with the published experimental data. Conclusion The advantage of the proposed thermal analogy technique over previous studies is that it accounts for the convective diffusion of ion concentrations and the Donnan osmotic pressure in the interstitial fluid. PMID:12685940

  9. Surface Micromachined Silicon Carbide Accelerometers for Gas Turbine Applications

    NASA Technical Reports Server (NTRS)

    DeAnna, Russell G.

    1998-01-01

    A finite-element analysis of possible silicon carbide (SIC) folded-beam, lateral-resonating accelerometers is presented. Results include stiffness coefficients, acceleration sensitivities, resonant frequency versus temperature, and proof-mass displacements due to centripetal acceleration of a blade-mounted sensor. The surface micromachined devices, which are similar to the Analog Devices Inc., (Norwood, MA) air-bag crash detector, are etched from 2-pm thick, 3C-SiC films grown at 1600 K using atmospheric pressure chemical vapor deposition (APCVD). The substrate is a 500 gm-thick, (100) silicon wafer. Polysilicon or silicon dioxide is used as a sacrificial layer. The finite element analysis includes temperature-dependent properties, shape change due to volume expansion, and thermal stress caused by differential thermal expansion of the materials. The finite-element results are compared to experimental results for a SiC device of similar, but not identical, geometry. Along with changes in mechanical design, blade-mounted sensors would require on-chip circuitry to cancel displacements due to centripetal acceleration and improve sensitivity and bandwidth. These findings may result in better accelerometer designs for this application.

  10. Cavity-coupled double-quantum dot at finite bias: Analogy with lasers and beyond

    NASA Astrophysics Data System (ADS)

    Kulkarni, Manas; Cotlet, Ovidiu; Türeci, Hakan E.

    2014-09-01

    We present a theoretical and experimental study of photonic and electronic transport properties of a voltage biased InAs semiconductor double quantum dot (DQD) that is dipole coupled to a superconducting transmission line resonator. We obtain the master equation for the reduced density matrix of the coupled system of cavity photons and DQD electrons accounting systematically for both the presence of phonons and the effect of leads at finite voltage bias. We subsequently derive analytical expressions for transmission, phase response, photon number, and the nonequilibrium steady-state electron current. We show that the coupled system under finite bias realizes an unconventional version of a single-atom laser and analyze the spectrum and the statistics of the photon flux leaving the cavity. In the transmission mode, the system behaves as a saturable single-atom amplifier for the incoming photon flux. Finally, we show that the back action of the photon emission on the steady-state current can be substantial. Our analytical results are compared to exact master equation results establishing regimes of validity of various analytical models. We compare our findings to available experimental measurements.

  11. A k-space method for large-scale models of wave propagation in tissue.

    PubMed

    Mast, T D; Souriau, L P; Liu, D L; Tabei, M; Nachman, A I; Waag, R C

    2001-03-01

    Large-scale simulation of ultrasonic pulse propagation in inhomogeneous tissue is important for the study of ultrasound-tissue interaction as well as for development of new imaging methods. Typical scales of interest span hundreds of wavelengths; most current two-dimensional methods, such as finite-difference and finite-element methods, are unable to compute propagation on this scale with the efficiency needed for imaging studies. Furthermore, for most available methods of simulating ultrasonic propagation, large-scale, three-dimensional computations of ultrasonic scattering are infeasible. Some of these difficulties have been overcome by previous pseudospectral and k-space methods, which allow substantial portions of the necessary computations to be executed using fast Fourier transforms. This paper presents a simplified derivation of the k-space method for a medium of variable sound speed and density; the derivation clearly shows the relationship of this k-space method to both past k-space methods and pseudospectral methods. In the present method, the spatial differential equations are solved by a simple Fourier transform method, and temporal iteration is performed using a k-t space propagator. The temporal iteration procedure is shown to be exact for homogeneous media, unconditionally stable for "slow" (c(x) < or = c0) media, and highly accurate for general weakly scattering media. The applicability of the k-space method to large-scale soft tissue modeling is shown by simulating two-dimensional propagation of an incident plane wave through several tissue-mimicking cylinders as well as a model chest wall cross section. A three-dimensional implementation of the k-space method is also employed for the example problem of propagation through a tissue-mimicking sphere. Numerical results indicate that the k-space method is accurate for large-scale soft tissue computations with much greater efficiency than that of an analogous leapfrog pseudospectral method or a 2-4 finite difference time-domain method. However, numerical results also indicate that the k-space method is less accurate than the finite-difference method for a high contrast scatterer with bone-like properties, although qualitative results can still be obtained by the k-space method with high efficiency. Possible extensions to the method, including representation of absorption effects, absorbing boundary conditions, elastic-wave propagation, and acoustic nonlinearity, are discussed.

  12. Entanglement spectrum as a generalization of entanglement entropy: identification of topological order in non-Abelian fractional quantum Hall effect states.

    PubMed

    Li, Hui; Haldane, F D M

    2008-07-04

    We study the "entanglement spectrum" (a presentation of the Schmidt decomposition analogous to a set of "energy levels") of a many-body state, and compare the Moore-Read model wave function for the nu=5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions. Their spectra share a common "gapless" structure, related to conformal field theory. In the model state, these are the only levels, while in the "generic" case, they are separated from the rest of the spectrum by a clear "entanglement gap", which appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order.

  13. Hydrodynamic ion sound instability in systems of a finite length

    NASA Astrophysics Data System (ADS)

    Koshkarov, O.; Chapurin, O.; Smolyakov, A.; Kaganovich, I.; Ilgisonis, V.

    2016-09-01

    Plasmas permeated by an energetic ion beam is prone to the kinetic ion-sound instability that occurs as a result of the inverse Landau damping for ion velocity. It is shown here that in a finite length system there exists another type of the ion sound instability which occurs for v02

  14. Phase order in superfluid helium films

    NASA Astrophysics Data System (ADS)

    Bramwell, Steven T.; Faulkner, Michael F.; Holdsworth, Peter C. W.; Taroni, Andrea

    2015-12-01

    Classic experimental data on helium films are transformed to estimate a finite-size phase order parameter that measures the thermal degradation of the condensate fraction in the two-dimensional superfluid. The order parameter is found to evolve thermally with the exponent β = 3 π^2/128 , a characteristic, in analogous magnetic systems, of the Berezinskii-Kosterlitz-Thouless (BKT) phase transition. Universal scaling near the BKT fixed point generates a collapse of experimental data on helium and ferromagnetic films, and implies new experiments and theoretical protocols to explore the phase order. These results give a striking example of experimental finite-size scaling in a critical system that is broadly relevant to two-dimensional Bose fluids. This paper is dedicated to the memory of our friend and colleague Maxime Clusel, with whom we enjoyed many stimulating discussions on related topics.

  15. The effects of finite mass, adiabaticity, and isothermality in nonlinear plasma wave studies

    NASA Astrophysics Data System (ADS)

    Hellberg, Manfred A.; Verheest, Frank; Mace, Richard L.

    2018-03-01

    The propagation of arbitrary amplitude ion-acoustic solitons is investigated in a plasma containing cool adiabatic positive ions and hot electrons or negative ions. The latter can be described by polytropic pressure-density relations, both with or without the retention of inertial effects. For analytical tractability, the resulting Sagdeev pseudopotential needs to be expressed in terms of the hot negative species density, rather than the electrostatic potential. The inclusion of inertia is found to have no qualitative effect, but yields quantitative differences that vary monotonically with the mass ratio and the polytropic index. This result contrasts with results for analogous problems involving three species, where it was found that inertia could yield significant qualitative differences. Attention is also drawn to the fact that in the literature there are numerous papers in which species are assumed to behave adiabatically, where the isothermal assumption would be more appropriate. Such an assumption leads to quantitative errors and, in some instances, even qualitative gaps for "reverse polarity" solitons.

  16. Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study.

    PubMed

    Theers, Mario; Winkler, Roland G

    2014-08-28

    We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number.

  17. Percolation and cooperation with mobile agents: geometric and strategy clusters.

    PubMed

    Vainstein, Mendeli H; Brito, Carolina; Arenzon, Jeferson J

    2014-08-01

    We study the conditions for persistent cooperation in an off-lattice model of mobile agents playing the Prisoner's Dilemma game with pure, unconditional strategies. Each agent has an exclusion radius r(P), which accounts for the population viscosity, and an interaction radius r(int), which defines the instantaneous contact network for the game dynamics. We show that, differently from the r(P)=0 case, the model with finite-sized agents presents a coexistence phase with both cooperators and defectors, besides the two absorbing phases, in which either cooperators or defectors dominate. We provide, in addition, a geometric interpretation of the transitions between phases. In analogy with lattice models, the geometric percolation of the contact network (i.e., irrespective of the strategy) enhances cooperation. More importantly, we show that the percolation of defectors is an essential condition for their survival. Differently from compact clusters of cooperators, isolated groups of defectors will eventually become extinct if not percolating, independently of their size.

  18. Emergent phases of fractonic matter

    NASA Astrophysics Data System (ADS)

    Prem, Abhinav; Pretko, Michael; Nandkishore, Rahul M.

    2018-02-01

    Fractons are emergent particles which are immobile in isolation, but which can move together in dipolar pairs or other small clusters. These exotic excitations naturally occur in certain quantum phases of matter described by tensor gauge theories. Previous research has focused on the properties of small numbers of fractons and their interactions, effectively mapping out the "standard model" of fractons. In the present work, however, we consider systems with a finite density of either fractons or their dipolar bound states, with a focus on the U (1 ) fracton models. We study some of the phases in which emergent fractonic matter can exist, thereby initiating the study of the "condensed matter" of fractons. We begin by considering a system with a finite density of fractons, which we show can exhibit microemulsion physics, in which fractons form small-scale clusters emulsed in a phase dominated by long-range repulsion. We then move on to study systems with a finite density of mobile dipoles, which have phases analogous to many conventional condensed matter phases. We focus on two major examples: Fermi liquids and quantum Hall phases. A finite density of fermionic dipoles will form a Fermi surface and enter a Fermi liquid phase. Interestingly, this dipolar Fermi liquid exhibits a finite-temperature phase transition, corresponding to an unbinding transition of fractons. Finally, we study chiral two-dimensional phases corresponding to dipoles in "quantum Hall" states of their emergent magnetic field. We study numerous aspects of these generalized quantum Hall systems, such as their edge theories and ground state degeneracies.

  19. Fractional Number Operator and Associated Fractional Diffusion Equations

    NASA Astrophysics Data System (ADS)

    Rguigui, Hafedh

    2018-03-01

    In this paper, we study the fractional number operator as an analog of the finite-dimensional fractional Laplacian. An important relation with the Ornstein-Uhlenbeck process is given. Using a semigroup approach, the solution of the Cauchy problem associated to the fractional number operator is presented. By means of the Mittag-Leffler function and the Laplace transform, we give the solution of the Caputo time fractional diffusion equation and Riemann-Liouville time fractional diffusion equation in infinite dimensions associated to the fractional number operator.

  20. Asymptotic Far Field Conditions for Unsteady Subsonic and Transonic Flows.

    DTIC Science & Technology

    1983-04-01

    3, 4, and 5). We shall use the form given by Randall. The conventional treatment of far field conditions for subsonic flows makes use of analytical...PERTURBATIONS IN A PLANE FLOW FIELD WITH A FREE STREAM MACH NUMBER ONE Figure 2 shows the wave patterns obtained in the linearized treatment of subsonic flows... treatment of the three-dimensional problem is entirely analogous to that of the plane problem. At great distances the flow field generated by a body of finite

  1. Not All Analogies Are Created Equal: Associative and Categorical Analogy Processing following Brain Damage

    ERIC Educational Resources Information Center

    Schmidt, Gwenda L.; Cardillo, Eileen R.; Kranjec, Alexander; Lehet, Matthew; Widick, Page; Chatterjee, Anjan

    2012-01-01

    Current research on analogy processing assumes that different conceptual relations are treated similarly. However, just as words and concepts are related in distinct ways, different kinds of analogies may employ distinct types of relationships. An important distinction in how words are related is the difference between associative (dog-bone) and…

  2. Analytic analysis of auxetic metamaterials through analogy with rigid link systems

    NASA Astrophysics Data System (ADS)

    Rayneau-Kirkhope, Daniel; Zhang, Chengzhao; Theran, Louis; Dias, Marcelo A.

    2018-02-01

    In recent years, many structural motifs have been designed with the aim of creating auxetic metamaterials. One area of particular interest in this subject is the creation of auxetic material properties through elastic instability. Such metamaterials switch from conventional behaviour to an auxetic response for loads greater than some threshold value. This paper develops a novel methodology in the analysis of auxetic metamaterials which exhibit elastic instability through analogy with rigid link lattice systems. The results of our analytic approach are confirmed by finite-element simulations for both the onset of elastic instability and post-buckling behaviour including Poisson's ratio. The method gives insight into the relationships between mechanisms within lattices and their mechanical behaviour; as such, it has the potential to allow existing knowledge of rigid link lattices with auxetic paths to be used in the design of future buckling-induced auxetic metamaterials.

  3. An Application of the Difference Potentials Method to Solving External Problems in CFD

    NASA Technical Reports Server (NTRS)

    Ryaben 'Kii, Victor S.; Tsynkov, Semyon V.

    1997-01-01

    Numerical solution of infinite-domain boundary-value problems requires some special techniques that would make the problem available for treatment on the computer. Indeed, the problem must be discretized in a way that the computer operates with only finite amount of information. Therefore, the original infinite-domain formulation must be altered and/or augmented so that on one hand the solution is not changed (or changed slightly) and on the other hand the finite discrete formulation becomes available. One widely used approach to constructing such discretizations consists of truncating the unbounded original domain and then setting the artificial boundary conditions (ABC's) at the newly formed external boundary. The role of the ABC's is to close the truncated problem and at the same time to ensure that the solution found inside the finite computational domain would be maximally close to (in the ideal case, exactly the same as) the corresponding fragment of the original infinite-domain solution. Let us emphasize that the proper treatment of artificial boundaries may have a profound impact on the overall quality and performance of numerical algorithms. The latter statement is corroborated by the numerous computational experiments and especially concerns the area of CFD, in which external problems present a wide class of practically important formulations. In this paper, we review some work that has been done over the recent years on constructing highly accurate nonlocal ABC's for calculation of compressible external flows. The approach is based on implementation of the generalized potentials and pseudodifferential boundary projection operators analogous to those proposed first by Calderon. The difference potentials method (DPM) by Ryaben'kii is used for the effective computation of the generalized potentials and projections. The resulting ABC's clearly outperform the existing methods from the standpoints of accuracy and robustness, in many cases noticeably speed up the multigrid convergence, and at the same time are quite comparable to other methods from the standpoints of geometric universality and simplicity of implementation.

  4. Improving a complex finite-difference ground water flow model through the use of an analytic element screening model

    USGS Publications Warehouse

    Hunt, R.J.; Anderson, M.P.; Kelson, V.A.

    1998-01-01

    This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.

  5. Qualitative Differences in Real-Time Solution of Standardized Figural Analogies.

    ERIC Educational Resources Information Center

    Schiano, Diane J.; And Others

    Performance on standardized figural analogy tests is considered highly predictive of academic success. While information-processing models of analogy solution attribute performance differences to quantitative differences in processing parameters, the problem-solving literature suggests that qualitative differences in problem representation and…

  6. High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains

    NASA Technical Reports Server (NTRS)

    Fisher, Travis C.; Carpenter, Mark H.

    2013-01-01

    Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.

  7. Protocol Analysis of Aptitude Differences in Figural Analogy Problem Representation.

    ERIC Educational Resources Information Center

    Schiano, Diane J.

    Individual differences in performance on figural analogy tests are usually attributed to quantitative differences in processing parameters rather than to qualitative differences in the formation and use of representations. Yet aptitude-related differences in categorizing standardized figural analogy problems between high and low scorers have been…

  8. Correlated states in β-Li 2IrO 3 driven by applied magnetic fields

    DOE PAGES

    Ruiz, Alejandro; Frano, Alex; Breznay, Nicholas P.; ...

    2017-10-16

    Magnetic honeycomb iridates are thought to show strongly spin-anisotropic exchange interactions which, when highly frustrated, lead to an exotic state of matter known as the Kitaev quantum spin liquid. However, in all known examples these materials magnetically order at finite temperatures, the scale of which may imply weak frustration. Here we show that the application of a relatively small magnetic field drives the three-dimensional magnet β-Li 2IrO 3 from its incommensurate ground state into a quantum correlated paramagnet. Interestingly, this paramagnetic state admixes a zig-zag spin mode analogous to the zig-zag order seen in other Mott-Kitaev compounds. The rapid onsetmore » of the field-induced correlated state implies the exchange interactions are delicately balanced, leading to strong frustration and a near degeneracy of different ground states.« less

  9. A Vortex Particle-Mesh method for subsonic compressible flows

    NASA Astrophysics Data System (ADS)

    Parmentier, Philippe; Winckelmans, Grégoire; Chatelain, Philippe

    2018-02-01

    This paper presents the implementation and validation of a remeshed Vortex Particle-Mesh (VPM) method capable of simulating complex compressible and viscous flows. It is supplemented with a radiation boundary condition in order for the method to accommodate the radiating quantities of the flow. The efficiency of the methodology relies on the use of an underlying grid; it allows the use of a FFT-based Poisson solver to calculate the velocity field, and the use of high-order isotropic finite differences to evaluate the non-advective terms in the Lagrangian form of the conservation equations. The Möhring analogy is then also used to further obtain the far-field sound produced by two co-rotating Gaussian vortices. It is demonstrated that the method is in excellent quantitative agreement with reference results that were obtained using a high-order Eulerian method and using a high-order remeshed Vortex Particle (VP) method.

  10. Information sharing and sorting in a community

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Biplab; Manna, S. S.; Mukherjee, Animesh

    2013-06-01

    We present the results of a detailed numerical study of a model for the sharing and sorting of information in a community consisting of a large number of agents. The information gathering takes place in a sequence of mutual bipartite interactions where randomly selected pairs of agents communicate with each other to enhance their knowledge and sort out the common information. Although our model is less restricted compared to the well-established naming game, the numerical results strongly indicate that the whole set of exponents characterizing this model are different from those of the naming game and they assume nontrivial values. Finally, it appears that in analogy to the emergence of clusters in the phenomenon of percolation, one can define clusters of agents here having the same information. We have studied in detail the growth of the largest cluster in this article and performed its finite-size scaling analysis.

  11. Scattering of sound waves by a compressible vortex

    NASA Technical Reports Server (NTRS)

    Colonius, Tim; Lele, Sanjiva K.; Moin, Parviz

    1991-01-01

    Scattering of plane sound waves by a compressible vortex is investigated by direct computation of the two-dimensional Navier-Stokes equations. Nonreflecting boundary conditions are utilized, and their accuracy is established by comparing results on different sized domains. Scattered waves are directly measured from the computations. The resulting amplitude and directivity pattern of the scattered waves is discussed, and compared to various theoretical predictions. For compact vortices (zero circulation), the scattered waves directly computed are in good agreement with predictions based on an acoustic analogy. Strong scattering at about + or - 30 degrees from the direction of incident wave propagation is observed. Back scattering is an order of magnitude smaller than forward scattering. For vortices with finite circulation refraction of the sound by the mean flow field outside the vortex core is found to be important in determining the amplitude and directivity of the scattered wave field.

  12. Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 1: Theory and application

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Deffenbaugh, F. D.

    1974-01-01

    A method is developed to determine the flow field of a body of revolution in separated flow. The technique employed is the use of the computer to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the required two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separation regions and wake vortex patterns are determined.

  13. Separated flow over bodies of revolution using an unsteady discrete-vorticity cross wake. Part 2: Computer program description

    NASA Technical Reports Server (NTRS)

    Marshall, F. J.; Deffenbaugh, F. D.

    1974-01-01

    A method is developed to determine the flow field of a body of revolution in separated flow. The computer was used to integrate various solutions and solution properties of the sub-flow fields which made up the entire flow field without resorting to a finite difference solution to the complete Navier-Stokes equations. The technique entails the use of the unsteady cross flow analogy and a new solution to the two-dimensional unsteady separated flow problem based upon an unsteady, discrete-vorticity wake. Data for the forces and moments on aerodynamic bodies at low speeds and high angle of attack (outside the range of linear inviscid theories) such that the flow is substantially separated are produced which compare well with experimental data. In addition, three dimensional steady separated regions and wake vortex patterns are determined. The computer program developed to perform the numerical calculations is described.

  14. Reaction front barriers in time aperiodic fluid flows

    NASA Astrophysics Data System (ADS)

    Locke, Rory; Mitchell, Kevin

    2016-11-01

    Many chemical and biological systems can be characterized by the propagation of a front that separates different phases or species. One approach to formalizing a general theory is to apply frameworks developed in nonlinear dynamics. It has been shown that invariant manifolds form barriers to passive transport in time-dependent or time-periodic fluid flows. More recently, analogous manifolds termed burning- invariant-manifolds (BIMs), have been shown to form one-sided barriers to reaction fronts in advection-reaction-diffusion (ARD) systems. To model more realistic time-aperiodic systems, recent theoretical work has suggested that similar one-sided barriers, termed burning Lagrangian coherent structures (bLCSs), exist for fluid velocity data prescribed over a finite time interval. In this presentation, we use a stochastic "wind" to generate time dependence in a double-vortex channel flow and demonstrate the (locally) most attracting or repelling curves are the bLCSs.

  15. Phase Transition in Protocols Minimizing Work Fluctuations

    NASA Astrophysics Data System (ADS)

    Solon, Alexandre P.; Horowitz, Jordan M.

    2018-05-01

    For two canonical examples of driven mesoscopic systems—a harmonically trapped Brownian particle and a quantum dot—we numerically determine the finite-time protocols that optimize the compromise between the standard deviation and the mean of the dissipated work. In the case of the oscillator, we observe a collection of protocols that smoothly trade off between average work and its fluctuations. However, for the quantum dot, we find that as we shift the weight of our optimization objective from average work to work standard deviation, there is an analog of a first-order phase transition in protocol space: two distinct protocols exchange global optimality with mixed protocols akin to phase coexistence. As a result, the two types of protocols possess qualitatively different properties and remain distinct even in the infinite duration limit: optimal-work-fluctuation protocols never coalesce with the minimal-work protocols, which therefore never become quasistatic.

  16. Pseudo-simple heteroclinic cycles in R4

    NASA Astrophysics Data System (ADS)

    Chossat, Pascal; Lohse, Alexander; Podvigina, Olga

    2018-06-01

    We study pseudo-simple heteroclinic cycles for a Γ-equivariant system in R4 with finite Γ ⊂ O(4) , and their nearby dynamics. In particular, in a first step towards a full classification - analogous to that which exists already for the class of simple cycles - we identify all finite subgroups of O(4) admitting pseudo-simple cycles. To this end we introduce a constructive method to build equivariant dynamical systems possessing a robust heteroclinic cycle. Extending a previous study we also investigate the existence of periodic orbits close to a pseudo-simple cycle, which depends on the symmetry groups of equilibria in the cycle. Moreover, we identify subgroups Γ ⊂ O(4) , Γ ⊄ SO(4) , admitting fragmentarily asymptotically stable pseudo-simple heteroclinic cycles. (It has been previously shown that for Γ ⊂ SO(4) pseudo-simple cycles generically are completely unstable.) Finally, we study a generalized heteroclinic cycle, which involves a pseudo-simple cycle as a subset.

  17. Landau damping of Bogoliubov excitations in two- and three-dimensional optical lattices at finite temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuchiya, Shunji; Department of Physics, Waseda University, 3-4-1 Okubo, Tokyo 169-8555; Griffin, Allan

    2005-11-15

    We study the Landau damping of Bogoliubov excitations in two- and three-dimensional optical lattices at finite temperatures, extending our recent work on one-dimensional (1D) optical lattices. We use a Bose-Hubbard tight-binding model and the Popov approximation to calculate the temperature dependence of the number of condensate atoms n{sup c0}(T) in each lattice well. As with 1D optical lattices, damping only occurs if the Bogoliubov excitations exhibit anomalous dispersion (i.e., the excitation energy bends upward at low momentum), analogous to the case of phonons in superfluid {sup 4}He. This leads to the disappearance of all damping processes in a D-dimensional simplemore » cubic optical lattice when Un{sup c0}{>=}6DJ, where U is the on-site interaction, and J is the hopping matrix element.« less

  18. Probabilistic boundary element method

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Raveendra, S. T.

    1989-01-01

    The purpose of the Probabilistic Structural Analysis Method (PSAM) project is to develop structural analysis capabilities for the design analysis of advanced space propulsion system hardware. The boundary element method (BEM) is used as the basis of the Probabilistic Advanced Analysis Methods (PADAM) which is discussed. The probabilistic BEM code (PBEM) is used to obtain the structural response and sensitivity results to a set of random variables. As such, PBEM performs analogous to other structural analysis codes such as finite elements in the PSAM system. For linear problems, unlike the finite element method (FEM), the BEM governing equations are written at the boundary of the body only, thus, the method eliminates the need to model the volume of the body. However, for general body force problems, a direct condensation of the governing equations to the boundary of the body is not possible and therefore volume modeling is generally required.

  19. An approximation theory for the identification of nonlinear distributed parameter systems

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Reich, Simeon; Rosen, I. G.

    1988-01-01

    An abstract approximation framework for the identification of nonlinear distributed parameter systems is developed. Inverse problems for nonlinear systems governed by strongly maximal monotone operators (satisfying a mild continuous dependence condition with respect to the unknown parameters to be identified) are treated. Convergence of Galerkin approximations and the corresponding solutions of finite dimensional approximating identification problems to a solution of the original finite dimensional identification problem is demonstrated using the theory of nonlinear evolution systems and a nonlinear analog of the Trotter-Kato approximation result for semigroups of bounded linear operators. The nonlinear theory developed here is shown to subsume an existing linear theory as a special case. It is also shown to be applicable to a broad class of nonlinear elliptic operators and the corresponding nonlinear parabolic partial differential equations to which they lead. An application of the theory to a quasilinear model for heat conduction or mass transfer is discussed.

  20. Tan's contact and the phase distribution of repulsive Fermi gases: Insights from quantum chromodynamics noise analyses

    NASA Astrophysics Data System (ADS)

    Porter, William J.; Drut, Joaquín E.

    2017-05-01

    Path-integral analyses originally pioneered in the study of the complex-phase problem afflicting lattice calculations of finite-density quantum chromodynamics are generalized to nonrelativistic Fermi gases with repulsive interactions. Using arguments similar to those previously applied to relativistic theories, we show that the analogous problem in nonrelativistic systems manifests itself naturally in Tan's contact as a nontrivial cancellation between terms with varied dependence on extensive thermodynamic quantities. We analyze that case under the assumption of a Gaussian phase distribution, which is supported by our Monte Carlo calculations and perturbative considerations. We further generalize these results to observables other than the contact, as well as to polarized systems and systems with fixed particle number. Our results are quite general in that they apply to repulsive multicomponent fermions, they are independent of dimensionality or trapping potential, and they hold in the ground state as well as at finite temperature.

  1. ICASE Semiannual Report, October 1, 1992 through March 31, 1993

    DTIC Science & Technology

    1993-06-01

    NUMERICAL MATHEMATICS Saul Abarbanel Further results have been obtained regarding long time integration of high order compact finite difference schemes...overall accuracy. These problems are common to all numerical methods: finite differences , finite elements and spectral methods. It should be noted that...fourth order finite difference scheme. * In the same case, the D6 wavelets provide a sixth order finite difference , noncompact formula. * The wavelets

  2. Artificial Boundary Conditions for Computation of Oscillating External Flows

    NASA Technical Reports Server (NTRS)

    Tsynkov, S. V.

    1996-01-01

    In this paper, we propose a new technique for the numerical treatment of external flow problems with oscillatory behavior of the solution in time. Specifically, we consider the case of unbounded compressible viscous plane flow past a finite body (airfoil). Oscillations of the flow in time may be caused by the time-periodic injection of fluid into the boundary layer, which in accordance with experimental data, may essentially increase the performance of the airfoil. To conduct the actual computations, we have to somehow restrict the original unbounded domain, that is, to introduce an artificial (external) boundary and to further consider only a finite computational domain. Consequently, we will need to formulate some artificial boundary conditions (ABC's) at the introduced external boundary. The ABC's we are aiming to obtain must meet a fundamental requirement. One should be able to uniquely complement the solution calculated inside the finite computational domain to its infinite exterior so that the original problem is solved within the desired accuracy. Our construction of such ABC's for oscillating flows is based on an essential assumption: the Navier-Stokes equations can be linearized in the far field against the free-stream back- ground. To actually compute the ABC's, we represent the far-field solution as a Fourier series in time and then apply the Difference Potentials Method (DPM) of V. S. Ryaben'kii. This paper contains a general theoretical description of the algorithm for setting the DPM-based ABC's for time-periodic external flows. Based on our experience in implementing analogous ABC's for steady-state problems (a simpler case), we expect that these boundary conditions will become an effective tool for constructing robust numerical methods to calculate oscillatory flows.

  3. From Large Deviations to Semidistances of Transport and Mixing: Coherence Analysis for Finite Lagrangian Data

    NASA Astrophysics Data System (ADS)

    Koltai, Péter; Renger, D. R. Michiel

    2018-06-01

    One way to analyze complicated non-autonomous flows is through trying to understand their transport behavior. In a quantitative, set-oriented approach to transport and mixing, finite time coherent sets play an important role. These are time-parametrized families of sets with unlikely transport to and from their surroundings under small or vanishing random perturbations of the dynamics. Here we propose, as a measure of transport and mixing for purely advective (i.e., deterministic) flows, (semi)distances that arise under vanishing perturbations in the sense of large deviations. Analogously, for given finite Lagrangian trajectory data we derive a discrete-time-and-space semidistance that comes from the "best" approximation of the randomly perturbed process conditioned on this limited information of the deterministic flow. It can be computed as shortest path in a graph with time-dependent weights. Furthermore, we argue that coherent sets are regions of maximal farness in terms of transport and mixing, and hence they occur as extremal regions on a spanning structure of the state space under this semidistance—in fact, under any distance measure arising from the physical notion of transport. Based on this notion, we develop a tool to analyze the state space (or the finite trajectory data at hand) and identify coherent regions. We validate our approach on idealized prototypical examples and well-studied standard cases.

  4. Resonating group method as applied to the spectroscopy of α-transfer reactions

    NASA Astrophysics Data System (ADS)

    Subbotin, V. B.; Semjonov, V. M.; Gridnev, K. A.; Hefter, E. F.

    1983-10-01

    In the conventional approach to α-transfer reactions the finite- and/or zero-range distorted-wave Born approximation is used in liaison with a macroscopic description of the captured α particle in the residual nucleus. Here the specific example of 16O(6Li,d)20Ne reactions at different projectile energies is taken to present a microscopic resonating group method analysis of the α particle in the final nucleus (for the reaction part the simple zero-range distorted-wave Born approximation is employed). In the discussion of suitable nucleon-nucleon interactions, force number one of the effective interactions presented by Volkov is shown to be most appropriate for the system considered. Application of the continuous analog of Newton's method to the evaluation of the resonating group method equations yields an increased accuracy with respect to traditional methods. The resonating group method description induces only minor changes in the structures of the angular distributions, but it does serve its purpose in yielding reliable and consistent spectroscopic information. NUCLEAR STRUCTURE 16O(6Li,d)20Ne; E=20 to 32 MeV; calculated B(E2); reduced widths, dσdΩ extracted α-spectroscopic factors. ZRDWBA with microscope RGM description of residual α particle in 20Ne; application of continuous analog of Newton's method; tested and applied Volkov force No. 1; direct mechanism.

  5. Differences in tsunami generation between the December 26, 2004 and March 28, 2005 Sumatra earthquakes

    USGS Publications Warehouse

    Geist, E.L.; Bilek, S.L.; Arcas, D.; Titov, V.V.

    2006-01-01

    Source parameters affecting tsunami generation and propagation for the Mw > 9.0 December 26, 2004 and the Mw = 8.6 March 28, 2005 earthquakes are examined to explain the dramatic difference in tsunami observations. We evaluate both scalar measures (seismic moment, maximum slip, potential energy) and finite-source repre-sentations (distributed slip and far-field beaming from finite source dimensions) of tsunami generation potential. There exists significant variability in local tsunami runup with respect to the most readily available measure, seismic moment. The local tsunami intensity for the December 2004 earthquake is similar to other tsunamigenic earthquakes of comparable magnitude. In contrast, the March 2005 local tsunami was deficient relative to its earthquake magnitude. Tsunami potential energy calculations more accurately reflect the difference in tsunami severity, although these calculations are dependent on knowledge of the slip distribution and therefore difficult to implement in a real-time system. A significant factor affecting tsunami generation unaccounted for in these scalar measures is the location of regions of seafloor displacement relative to the overlying water depth. The deficiency of the March 2005 tsunami seems to be related to concentration of slip in the down-dip part of the rupture zone and the fact that a substantial portion of the vertical displacement field occurred in shallow water or on land. The comparison of the December 2004 and March 2005 Sumatra earthquakes presented in this study is analogous to previous studies comparing the 1952 and 2003 Tokachi-Oki earthquakes and tsunamis, in terms of the effect slip distribution has on local tsunamis. Results from these studies indicate the difficulty in rapidly assessing local tsunami runup from magnitude and epicentral location information alone.

  6. On infinite-dimensional state spaces

    NASA Astrophysics Data System (ADS)

    Fritz, Tobias

    2013-05-01

    It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.

  7. Analog current mode analog/digital converter

    NASA Technical Reports Server (NTRS)

    Hadidi, Khayrollah (Inventor)

    1996-01-01

    An improved subranging or comparator circuit is provided for an analog-to-digital converter. As a subranging circuit, the circuit produces a residual signal representing the difference between an analog input signal and an analog of a digital representation. This is achieved by subdividing the digital representation into two or more parts and subtracting from the analog input signal analogs of each of the individual digital portions. In another aspect of the present invention, the subranging circuit comprises two sets of differential input pairs in which the transconductance of one differential input pair is scaled relative to the transconductance of the other differential input pair. As a consequence, the same resistor string may be used for two different digital-to-analog converters of the subranging circuit.

  8. Computer-Aided Engineering of Semiconductor Integrated Circuits

    DTIC Science & Technology

    1979-07-01

    equation using a five point finite difference approximation. Section 4.3.6 describes the numerical techniques and iterative algorithms which are used...neighbor points. This is generally referred to as a five point finite difference scheme on a rectangular grid, as described below. The finite difference ...problems in steady state have been analyzed by the finite difference method [4. 16 ] [4.17 3 or finite element method [4. 18 3, [4. 19 3 as reported last

  9. Effect of the insulation by the mud on the convection in building in the Sahara of Algeria - case of Bechar City

    NASA Astrophysics Data System (ADS)

    Benachour, Elhadj; Draoui, Belkacem; Imine, Baachir; Hasnat, Mohammed; Rahmani, Lakhdar

    2016-03-01

    The thermal behavior of the buildings is a current problem which arouses the interest of many researchers. Indeed, the control of the loads of air conditioning or heating requires a thorough knowledge. Since the thermal quality of the buildings in the Maghreb is there generally very insufficient in particular in the Sahara of Algeria, the insulation proved that it is a very important parameter to minimize the thermal diffusion process inside on all when the insulator is a local material as the Mud which is in our region with a significant amount and almost free quantity. This work presents a study of numerical simulation aiming at the role and the influence of the insulation by the mud Reduced like a local material to the town of Bechar located at the south west of Algeria, or one is interested in a comparative study for pursued these goals. In this context, an analogy was used for the functions which are discretized by the finite difference method and integrated in the Fluent code which is based on the finite volume method. The validation of this procedure was confirmed while comparing some results. The results are presented in the form of distributions of the isotherms, the streamlines, local and average Nusselt of which the goal to study the influence on comfort.

  10. Design and manufacture of customized dental implants by using reverse engineering and selective laser melting technology.

    PubMed

    Chen, Jianyu; Zhang, Zhiguang; Chen, Xianshuai; Zhang, Chunyu; Zhang, Gong; Xu, Zhewu

    2014-11-01

    Recently a new therapeutic concept of patient-specific implant dentistry has been advanced based on computer-aided design/computer-aided manufacturing technology. However, a comprehensive study of the design and 3-dimensional (3D) printing of the customized implants, their mechanical properties, and their biomechanical behavior is lacking. The purpose of this study was to evaluate the mechanical and biomechanical performance of a novel custom-made dental implant fabricated by the selective laser melting technique with simulation and in vitro experimental studies. Two types of customized implants were designed by using reverse engineering: a root-analog implant and a root-analog threaded implant. The titanium implants were printed layer by layer with the selective laser melting technique. The relative density, surface roughness, tensile properties, bend strength, and dimensional accuracy of the specimens were evaluated. Nonlinear and linear finite element analysis and experimental studies were used to investigate the stress distribution, micromotion, and primary stability of the implants. Selective laser melting 3D printing technology was able to reproduce the customized implant designs and produce high density and strength and adequate dimensional accuracy. Better stress distribution and lower maximum micromotions were observed for the root-analog threaded implant model than for the root-analog implant model. In the experimental tests, the implant stability quotient and pull-out strength of the 2 types of implants indicated that better primary stability can be obtained with a root-analog threaded implant design. Selective laser melting proved to be an efficient means of printing fully dense customized implants with high strength and sufficient dimensional accuracy. Adding the threaded characteristic to the customized root-analog threaded implant design maintained the approximate geometry of the natural root and exhibited better stress distribution and primary stability. Copyright © 2014 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  11. Two-dimensional conductors with interactions and disorder from particle-vortex duality

    NASA Astrophysics Data System (ADS)

    Goldman, H.; Mulligan, M.; Raghu, S.; Torroba, G.; Zimet, M.

    2017-12-01

    We study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U (1 ) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.

  12. Moisture Transport in Composites during Repair Work,

    DTIC Science & Technology

    1983-09-01

    4 * FINITE DIFFERENCE EQUATIONS. .. . . .. . .. .. .. .. .. 6 INI I A ANBOUNAAYYCONDITIONS................ 7 REASONABLE FIRST...DURING DRYING AND CURING . . . ........ 9 5 CONVERGENCE OF FINITE DIFFERENCE METHOD USING DIFFERENT At . . .. 12 6 CONVERGENCE OF FDA METHOD FOR SAME At...transport we will use a finite difference approach, changing the Fickian equation to a finite number of linear algebraic equations that can be solved by

  13. Experimental and model-based analysis of differences in perception of cutaneous electrical stimulation across the sole of the foot.

    PubMed

    Frahm, Ken Steffen; Mørch, Carsten Dahl; Grill, Warren M; Andersen, Ole Kæseler

    2013-09-01

    During electrocutaneous stimulations, variation in skin properties across locations can lead to differences in neural activation. However, little focus has been given to the effect of different skin thicknesses on neural activation. Electrical stimulation was applied to six sites across the sole of the foot. The intensities used were two and four times perception threshold. The subjects (n = 8) rated the perception quality and intensity using the McGill Pain Questionnaire and a visual analog scale (VAS). A finite element model was developed and combined with the activation function (AF) to estimate neural activation. Electrical stimulation was perceived as significantly less sharp at the heel compared to all other sites, except one site in the forefoot (logistic regression, p < 0.05). The VAS scores were significantly higher in the arch than at the heel (RM ANOVA, p < 0.05). The model showed that the AF was between 91 and 231 % higher at the five other sites than at the heel. The differences in perception across the sole of the foot indicated that the CNS received different inputs depending on the stimulus site. The lower AF at the heel indicated that the skin thicknesses could contribute to the perceived differences.

  14. Comparison of finite-difference schemes for analysis of shells of revolution. [stress and free vibration analysis

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Stephens, W. B.

    1973-01-01

    Several finite difference schemes are applied to the stress and free vibration analysis of homogeneous isotropic and layered orthotropic shells of revolution. The study is based on a form of the Sanders-Budiansky first-approximation linear shell theory modified such that the effects of shear deformation and rotary inertia are included. A Fourier approach is used in which all the shell stress resultants and displacements are expanded in a Fourier series in the circumferential direction, and the governing equations reduce to ordinary differential equations in the meridional direction. While primary attention is given to finite difference schemes used in conjunction with first order differential equation formulation, comparison is made with finite difference schemes used with other formulations. These finite difference discretization models are compared with respect to simplicity of application, convergence characteristics, and computational efficiency. Numerical studies are presented for the effects of variations in shell geometry and lamination parameters on the accuracy and convergence of the solutions obtained by the different finite difference schemes. On the basis of the present study it is shown that the mixed finite difference scheme based on the first order differential equation formulation and two interlacing grids for the different fundamental unknowns combines a number of advantages over other finite difference schemes previously reported in the literature.

  15. Numerical Investigation of Shock Wave Propagation in Bone-Like Tissue

    NASA Astrophysics Data System (ADS)

    Nelms, Matt; Rajendran, Arunachalam

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The penetration resistant fish scale was modeled by simulating a plate impact test configuration using ABAQUS®finite element (FE) software. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile bone. The geometry and variation of elastic modulus were determined from high-resolution scanning electron microscopy and dynamic nanoindentation experimentation to develop an idealized computational model for RVE-based FE simulations. The numerical analysis shows the effects of different functional material property variations on the stress histories and energy dissipation generated by wave propagation. Given the constitutive behaviors of the two layers are distinctly different, a brittle tensile damage model was employed to describe the ganoine and Drucker-Prager plasticity was used for the nonlinear response of the bone.

  16. The structure and stability of Si60 and Ge60 cages: a computational study.

    PubMed

    Chen, Zhongfang; Jiao, Haijun; Seifert, Gotthard; Horn, Anselm H C; Yu, Dengke; Clark, Tim; Thiel, Walter; von Ragué Schleyer, Paul

    2003-06-01

    Structural studies of fullerene-like Si(60) and Ge(60) cages using ab initio methods were augmented by density functional tight-binding molecular dynamics (DFTB-MD) simulations of finite temperature effects. Neither the perfect I(h) symmetry nor the distorted T(h) structures are true minima. The energies of both are high relative to distorted, lower symmetry minima, C(i) and T, respectively, which still preserve C(60)-type connectivity. Both Si(60) and Ge(60) favor C(i) symmetry cages in which Si and Ge vertexes exhibit either near-trigonal or pyramidal geometries. These structural variations imply significant reactivity differences between different positions. The small magnetic shielding effects (NICS) indicate that aromaticity is not important in these systems. The inorganic fullerene cages have lower stabilities compared with their carbon analogs. Si(60) is stable towards spontaneous disintegration up to 700 K according to DFTB-MD simulations, and thus has potential for experimental observation. In contrast, Ge(60) preserves its cage structure only up to 200 K. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 948-953, 2003

  17. A 1D-2D Shallow Water Equations solver for discontinuous porosity field based on a Generalized Riemann Problem

    NASA Astrophysics Data System (ADS)

    Ferrari, Alessia; Vacondio, Renato; Dazzi, Susanna; Mignosa, Paolo

    2017-09-01

    A novel augmented Riemann Solver capable of handling porosity discontinuities in 1D and 2D Shallow Water Equation (SWE) models is presented. With the aim of accurately approximating the porosity source term, a Generalized Riemann Problem is derived by adding an additional fictitious equation to the SWEs system and imposing mass and momentum conservation across the porosity discontinuity. The modified Shallow Water Equations are theoretically investigated, and the implementation of an augmented Roe Solver in a 1D Godunov-type finite volume scheme is presented. Robust treatment of transonic flows is ensured by introducing an entropy fix based on the wave pattern of the Generalized Riemann Problem. An Exact Riemann Solver is also derived in order to validate the numerical model. As an extension of the 1D scheme, an analogous 2D numerical model is also derived and validated through test cases with radial symmetry. The capability of the 1D and 2D numerical models to capture different wave patterns is assessed against several Riemann Problems with different wave patterns.

  18. A total variation diminishing finite difference algorithm for sonic boom propagation models

    NASA Technical Reports Server (NTRS)

    Sparrow, Victor W.

    1993-01-01

    It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.

  19. Abstract analogical reasoning in high-functioning children with autism spectrum disorders.

    PubMed

    Green, Adam E; Kenworthy, Lauren; Mosner, Maya G; Gallagher, Natalie M; Fearon, Edward W; Balhana, Carlos D; Yerys, Benjamin E

    2014-12-01

    Children with autism spectrum disorders (ASD) exhibit a deficit in spontaneously recognizing abstract similarities that are crucial for generalizing learning to new situations. This may contribute to deficits in the development of appropriate schemas for navigating novel situations, including social interactions. Analogical reasoning is the central cognitive mechanism that enables typically developing children to understand abstract similarities between different situations. Intriguingly, studies of high-functioning children with ASD point to a relative cognitive strength in basic, nonabstract forms of analogical reasoning. If this analogical reasoning ability extends to abstract analogical reasoning (i.e., between superficially dissimilar situations), it may provide a bridge between a cognitive capability and core ASD deficits in areas such as generalization and categorization. This study tested whether preserved analogical reasoning abilities in ASD can be extended to abstract analogical reasoning, using photographs of real-world items and situations. Abstractness of the analogies was determined via a quantitative measure of semantic distance derived from latent semantic analysis. Children with ASD performed as well as typically developing children at identifying abstract analogical similarities when explicitly instructed to apply analogical reasoning. Individual differences in abstract analogical reasoning ability predicted individual differences in a measure of social function in the ASD group. Preliminary analyses indicated that children with ASD, but not typically developing children, showed an effect of age on abstract analogical reasoning. These results provide new evidence that children with ASD are capable of identifying abstract similarities through analogical reasoning, pointing to abstract analogical reasoning as a potential lever for improving generalization skills and social function in ASD. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.

  20. A Kirchhoff Approach to Seismic Modeling and Prestack Depth Migration

    DTIC Science & Technology

    1993-05-01

    continuation of sources and geophones by finite difference (S-G finite - difference migration ), are relatively slow and dip-limited. Compared to S-G... finite - difference migration , the Kirchhoff integral implements prestack migration relatively efficiently and has no dip limitation. Liu .Mlodeling and...for modeling and migration . In this paper, a finite - difference algorithm is used to calculate traveltimes and amplitudes. With the help of

  1. Evaluation of finite difference and FFT-based solutions of the transport of intensity equation.

    PubMed

    Zhang, Hongbo; Zhou, Wen-Jing; Liu, Ying; Leber, Donald; Banerjee, Partha; Basunia, Mahmudunnabi; Poon, Ting-Chung

    2018-01-01

    A finite difference method is proposed for solving the transport of intensity equation. Simulation results show that although slower than fast Fourier transform (FFT)-based methods, finite difference methods are able to reconstruct the phase with better accuracy due to relaxed assumptions for solving the transport of intensity equation relative to FFT methods. Finite difference methods are also more flexible than FFT methods in dealing with different boundary conditions.

  2. Finite elements and finite differences for transonic flow calculations

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C.

    1978-01-01

    The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.

  3. Finite Geometries in Quantum Theory:. from Galois (fields) to Hjelmslev (rings)

    NASA Astrophysics Data System (ADS)

    Saniga, Metod; Planat, Michel

    Geometries over Galois fields (and related finite combinatorial structures/algebras) have recently been recognized to play an ever-increasing role in quantum theory, especially when addressing properties of mutually unbiased bases (MUBs). The purpose of this contribution is to show that completely new vistas open up if we consider a generalized class of finite (projective) geometries, viz. those defined over Galois rings and/or other finite Hjelmslev rings. The case is illustrated by demonstrating that the basic combinatorial properties of a complete set of MUBs of a q-dimensional Hilbert space { H}q, q = pr with p being a prime and r a positive integer, are qualitatively mimicked by the configuration of points lying on a proper conic in a projective Hjelmslev plane defined over a Galois ring of characteristic p2 and rank r. The q vectors of a basis of { H}q correspond to the q points of a (so-called) neighbour class and the q + 1 MUBs answer to the total number of (pairwise disjoint) neighbour classes on the conic. Although this remarkable analogy is still established at the level of cardinalities only, we currently work on constructing an explicit mapping by associating a MUB to each neighbour class of the points of the conic and a state vector of this MUB to a particular point of the class. Further research in this direction may prove to be of great relevance for many areas of quantum information theory, in particular for quantum information processing.

  4. A comparative study of finite element and finite difference methods for Cauchy-Riemann type equations

    NASA Technical Reports Server (NTRS)

    Fix, G. J.; Rose, M. E.

    1983-01-01

    A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.

  5. Acoustic intensity calculations for axisymmetrically modeled fluid regions

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen A.; Everstine, Gordon C.

    1992-01-01

    An algorithm for calculating acoustic intensities from a time harmonic pressure field in an axisymmetric fluid region is presented. Acoustic pressures are computed in a mesh of NASTRAN triangular finite elements of revolution (TRIAAX) using an analogy between the scalar wave equation and elasticity equations. Acoustic intensities are then calculated from pressures and pressure derivatives taken over the mesh of TRIAAX elements. Intensities are displayed as vectors indicating the directions and magnitudes of energy flow at all mesh points in the acoustic field. A prolate spheroidal shell is modeled with axisymmetric shell elements (CONEAX) and submerged in a fluid region of TRIAAX elements. The model is analyzed to illustrate the acoustic intensity method and the usefulness of energy flow paths in the understanding of the response of fluid-structure interaction problems. The structural-acoustic analogy used is summarized for completeness. This study uncovered a NASTRAN limitation involving numerical precision issues in the CONEAX stiffness calculation causing large errors in the system matrices for nearly cylindrical cones.

  6. Digital off-axis holographic interferometry with simulated wavefront.

    PubMed

    Belashov, A V; Petrov, N V; Semenova, I V

    2014-11-17

    The paper presents a novel algorithm based on digital holographic interferometry and being promising for evaluation of phase variations from highly noisy or modulated by speckle-structures digital holograms. The suggested algorithm simulates an interferogram in finite width fringes, by analogy with classical double exposure holographic interferometry. Thus obtained interferogram is then processed as a digital hologram. The advantages of the suggested approach are demonstrated in numerical experiments on calculations of differences in phase distributions of wave fronts modulated by speckle structure, as well as in a physical experiment on the analysis of laser-induced heating dynamics of an aqueous solution of a photosensitizer. It is shown that owing to the inherent capability of the approach to perform adjustable smoothing of compared wave fronts, the resulting difference undergoes noise filtering. This capability of adjustable smoothing may be used to minimize losses in spatial resolution. Since the method allows to vary an observation angle of compared wave fields, an opportunity to compensate misalignment of optical axes of these wave fronts arises. This feature can be required, for example, when using two different setups in comparative digital holography or for compensation of recording system displacements during a set of exposures in studies of dynamic processes.

  7. A staggered-grid finite-difference scheme optimized in the time–space domain for modeling scalar-wave propagation in geophysical problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Sirui, E-mail: siruitan@hotmail.com; Huang, Lianjie, E-mail: ljh@lanl.gov

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within amore » given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.« less

  8. Application of a trigonometric finite difference procedure to numerical analysis of compressive and shear buckling of orthotropic panels

    NASA Technical Reports Server (NTRS)

    Stein, M.; Housner, J. D.

    1978-01-01

    A numerical analysis developed for the buckling of rectangular orthotropic layered panels under combined shear and compression is described. This analysis uses a central finite difference procedure based on trigonometric functions instead of using the conventional finite differences which are based on polynomial functions. Inasmuch as the buckle mode shape is usually trigonometric in nature, the analysis using trigonometric finite differences can be made to exhibit a much faster convergence rate than that using conventional differences. Also, the trigonometric finite difference procedure leads to difference equations having the same form as conventional finite differences; thereby allowing available conventional finite difference formulations to be converted readily to trigonometric form. For two-dimensional problems, the procedure introduces two numerical parameters into the analysis. Engineering approaches for the selection of these parameters are presented and the analysis procedure is demonstrated by application to several isotropic and orthotropic panel buckling problems. Among these problems is the shear buckling of stiffened isotropic and filamentary composite panels in which the stiffener is broken. Results indicate that a break may degrade the effect of the stiffener to the extent that the panel will not carry much more load than if the stiffener were absent.

  9. Efficiency trade-offs of steady-state methods using FEM and FDM. [iterative solutions for nonlinear flow equations

    NASA Technical Reports Server (NTRS)

    Gartling, D. K.; Roache, P. J.

    1978-01-01

    The efficiency characteristics of finite element and finite difference approximations for the steady-state solution of the Navier-Stokes equations are examined. The finite element method discussed is a standard Galerkin formulation of the incompressible, steady-state Navier-Stokes equations. The finite difference formulation uses simple centered differences that are O(delta x-squared). Operation counts indicate that a rapidly converging Newton-Raphson-Kantorovitch iteration scheme is generally preferable over a Picard method. A split NOS Picard iterative algorithm for the finite difference method was most efficient.

  10. The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions

    NASA Technical Reports Server (NTRS)

    Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan

    1995-01-01

    The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.

  11. Sanov and central limit theorems for output statistics of quantum Markov chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horssen, Merlijn van, E-mail: merlijn.vanhorssen@nottingham.ac.uk; Guţă, Mădălin, E-mail: madalin.guta@nottingham.ac.uk

    2015-02-15

    In this paper, we consider the statistics of repeated measurements on the output of a quantum Markov chain. We establish a large deviations result analogous to Sanov’s theorem for the multi-site empirical measure associated to finite sequences of consecutive outcomes of a classical stochastic process. Our result relies on the construction of an extended quantum transition operator (which keeps track of previous outcomes) in terms of which we compute moment generating functions, and whose spectral radius is related to the large deviations rate function. As a corollary to this, we obtain a central limit theorem for the empirical measure. Suchmore » higher level statistics may be used to uncover critical behaviour such as dynamical phase transitions, which are not captured by lower level statistics such as the sample mean. As a step in this direction, we give an example of a finite system whose level-1 (empirical mean) rate function is independent of a model parameter while the level-2 (empirical measure) rate is not.« less

  12. Infinite matter properties and zero-range limit of non-relativistic finite-range interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davesne, D.; Becker, P., E-mail: pbecker@ipnl.in2p3.fr; Pastore, A.

    2016-12-15

    We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin–orbit terms from the spin–isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin–orbit ofmore » the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.« less

  13. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Johnson, Natasha M.; Nuth, Joseph A., III

    2015-01-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the high-resolution transmission molecular absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  14. On the Use of Fourier Transform Infrared (FT-IR) Spectroscopy and Synthetic Calibration Spectra to Quantify Gas Concentrations in a Fischer-Tropsch Catalyst System.

    PubMed

    Ferguson, Frank T; Johnson, Natasha M; Nuth, Joseph A

    2015-10-01

    One possible origin of prebiotic organic material is that these compounds were formed via Fischer-Tropsch-type (FTT) reactions of carbon monoxide and hydrogen on silicate and oxide grains in the warm, inner-solar nebula. To investigate this possibility, an experimental system has been built in which the catalytic efficiency of different grain-analog materials can be tested. During such runs, the gas phase above these grain analogs is sampled using Fourier transform infrared (FT-IR) spectroscopy. To provide quantitative estimates of the concentration of these gases, a technique in which high-resolution spectra of the gases are calculated using the High-Resolution Transmission Molecular Absorption (HITRAN) database is used. Next, these spectra are processed via a method that mimics the processes giving rise to the instrumental line shape of the FT-IR spectrometer, including apodization, self-apodization, and broadening due to the finite resolution. The result is a very close match between the measured and computed spectra. This technique was tested using four major gases found in the FTT reactions: carbon monoxide, methane, carbon dioxide, and water. For the ranges typical of the FTT reactions, the carbon monoxide results were found to be accurate to within 5% and the remaining gases accurate to within 10%. These spectra can then be used to generate synthetic calibration data, allowing the rapid computation of the gas concentrations in the FTT experiments.

  15. On infinite-dimensional state spaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritz, Tobias

    It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context frommore » which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V{sup -1}U{sup 2}V=U{sup 3}, then finite-dimensionality entails the relation UV{sup -1}UV=V{sup -1}UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V{sup -1}U{sup 2}V=U{sup 3} holds only up to {epsilon} and then yields a lower bound on the dimension.« less

  16. Patterns of brittle deformation under extension on Venus

    NASA Technical Reports Server (NTRS)

    Neumann, G. A.; Zuber, M. T.

    1994-01-01

    The development of fractures at regular length scales is a widespread feature of Venusian tectonics. Models of lithospheric deformation under extension based on non-Newtonian viscous flow and brittle-plastic flow develop localized failure at preferred wavelengths that depend on lithospheric thickness and stratification. The characteristic wavelengths seen in rift zones and tessera can therefore provide constraints on crustal and thermal structure. Analytic solutions were obtained for growth rates in infinitesimal perturbations imposed on a one-dimensional, layered rheology. Brittle layers were approximated by perfectly-plastic, uniform strength, overlying ductile layers exhibiting thermally-activated power-law creep. This study investigates the formation of faults under finite amounts of extension, employing a finite-element approach. Our model incorporates non-linear viscous rheology and a Coulomb failure envelope. An initial perturbation in crustal thickness gives rise to necking instabilities. A small amount of velocity weakening serves to localize deformation into planar regions of high strain rate. Such planes are analogous to normal faults seen in terrestrial rift zones. These 'faults' evolve to low angle under finite extension. Fault spacing, orientation and location, and the depth to the brittle-ductile transition, depend in a complex way on lateral variations in crustal thickness. In general, we find that multiple wavelengths of deformation can arise from the interaction of crustal and mantle lithosphere.

  17. Symmetry Energy and Its Components in Finite Nuclei

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Kadrev, D. N.; Sarriguren, P.; Moya de Guerra, E.

    2018-05-01

    We derive the volume and surface components of the nuclear symmetry energy (NSE) and their ratio within the coherent density fluctuation model. The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner and Skyrme energy-density functionals for nuclear matter. The obtained values of the volume and surface contributions to the NSE and their ratio for the Ni, Sn, and Pb isotopic chains are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, and excitation energies to isobaric analog states (IAS). Apart from the density dependence investigated in our previous works, we study also the temperature dependence of the symmetry energy in finite nuclei in the framework of the local density approximation combining it with the self-consistent Skyrme-HFB method using the cylindrical transformed deformed harmonic-oscillator basis. The results for the thermal evolution of the NSE in the interval T = 0–4 MeV show that its values decrease with temperature. The investigations of the T-dependence of the neutron and proton root-mean-square radii and the corresponding neutron skin thickness point out that the effect of temperature leads mainly to a substantial increase of the neutron radii and skins, especially in nuclei which are more rich of neutrons.

  18. Conservative properties of finite difference schemes for incompressible flow

    NASA Technical Reports Server (NTRS)

    Morinishi, Youhei

    1995-01-01

    The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.

  19. Numerical Simulation of Two-Fluid Mingling Using the Particle Finite Element Method with Applications to Magmatic and Volcanic Processes

    NASA Astrophysics Data System (ADS)

    de Mier, M.; Costa, F.; Idelsohn, S.

    2008-12-01

    Many magmatic and volcanic processes (e.g., magma differentiation, mingling, transport in the volcanic conduit) are controlled by the physical properties and flow styles of high-temperature silicate melts. Such processes can be experimentally investigated using analog systems and scaling methods, but it is difficult to find the suitable material and it is generally not possible to quantitatively extrapolate the results to the natural system. An alternative means of studying fluid dynamics in volcanic systems is with numerical models. We have chosen the Particle Finite Element Method (PFEM), which is based on a Delaunay mesh that moves with the fluid velocity, the Navier-Stokes equations in Lagrangian formulation, and linear elements for velocity, pressure, and temperature. Remeshing is performed when the grid becomes too distorted [E. Oñate et al., 2004. The Particle Finite Element Method: An Overview. Int. J. Comput. Meth. 1, 267-307]. The method is ideal for tracking material interfaces between different fluids or media. Methods based on Eulerian reference frames need special techniques, such as level-set or volume-of-fluid, to capture the interface position, and these techniques add a significant numerical diffusion at the interface. We have performed a series of two-dimensional simulations of a classical problem of fluid dynamics in magmatic and volcanic systems: intrusion of a basaltic melt in a silica-rich magma reservoir. We have used realistic physical properties and equations of state for the silicate melts (e.g., temperature, viscosity, and density) and tracked the changes in the system for geologically relevant time scales (up to 100 years). The problem is modeled by the low-Mach-number equations derived from an asymptotic analysis of the compressible Navier-Stokes equations that removes shock waves from the flow but allows however large variations of density due to temperature variations. Non-constant viscosity and volume changes are taken into account in the momentum conservation equation through the full shear-stress tensor. The implications of different magma intrusion rates, volumes, and times will be discussed in the context of mafic-silicic magma mixing and eruption triggers.

  20. Spontaneous generation of singularities in paraxial optical fields.

    PubMed

    Aiello, Andrea

    2016-04-01

    In nonrelativistic quantum mechanics, the spontaneous generation of singularities in smooth and finite wave functions is a well understood phenomenon also occurring for free particles. We use the familiar analogy between the two-dimensional Schrödinger equation and the optical paraxial wave equation to define a new class of square-integrable paraxial optical fields that develop a spatial singularity in the focal point of a weakly focusing thin lens. These fields are characterized by a single real parameter whose value determines the nature of the singularity. This novel field enhancement mechanism may stimulate fruitful research for diverse technological and scientific applications.

  1. Residual-based Methods for Controlling Discretization Error in CFD

    DTIC Science & Technology

    2015-08-24

    discrete equations uh into Equation (3), then subtracting the original (continuous) governing equation 0)~( uL gives 0)()~()(  hhh uuLuL  . If...error from Equation (1) results in )()( hhh uL   (4) which for Burgers’ equation becomes  4 2 4 42 3 3 2 2 126 xO x dx udx dx ud u dx d dx d u...GTEE given in Equation (3) gives the continuous residual )()( hhh uuL  (8) which is analogous to the finite element residual (Ainsworth and

  2. Bogoliubov theory of acoustic Hawking radiation in Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recati, A.; Physik-Department, Technische Universitaet Muenchen, D-85748 Garching; Pavloff, N.

    2009-10-15

    We apply the microscopic Bogoliubov theory of dilute Bose-Einstein condensates to analyze quantum and thermal fluctuations in a flowing atomic condensate in the presence of a sonic horizon. For the simplest case of a step-like horizon, closed-form analytical expressions are found for the spectral distribution of the analog Hawking radiation and for the density correlation function. The peculiar long-distance density correlations that appear as a consequence of the Hawking emission features turns out to be reinforced by a finite initial temperature of the condensate. The analytical results are in good quantitative agreement with first principle numerical calculations.

  3. Two-dimensional conductors with interactions and disorder from particle-vortex duality

    DOE PAGES

    Goldman, H.; Mulligan, M.; Raghu, S.; ...

    2017-12-27

    Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.

  4. Non-Fermi Liquid Behavior in the Single-Impurity Mixed Valence Problem

    NASA Astrophysics Data System (ADS)

    Zhang, Guang-Ming; Su, Zhao-Bin; Yu, Lu

    An effective Hamiltonian of the Anderson single-impurity model with finite-range Coulomb interactions is derived near a particular limit, which is analogous to the Toulouse limit of the ordinary Kondo problem, and the physical properties around the mixed valence quantum critical point are calculated. At this quantum critical point, the local moment is only partially quenched and X-ray edge singularities are exhibited. Around this point, a new type of non-Fermi liquid behavior is predicted with an extra specific heat Cimp ~ T1/4 + AT ln T and spin-susceptibility χimp ~T-3/4 + B ln T.

  5. Mutual-friction induced instability of normal-fluid vortex tubes in superfluid helium-4

    NASA Astrophysics Data System (ADS)

    Kivotides, Demosthenes

    2018-06-01

    It is shown that, as a result of its interactions with superfluid vorticity, a normal-fluid vortex tube in helium-4 becomes unstable and disintegrates. The superfluid vorticity acquires only a small (few percents of normal-fluid tube strength) polarization, whilst expanding in a front-like manner in the intervortex space of the normal-fluid, forming a dense, unstructured tangle in the process. The accompanied energy spectra scalings offer a structural explanation of analogous scalings in fully developed finite-temperature superfluid turbulence. A macroscopic mutual-friction model incorporating these findings is proposed.

  6. Orthogonal bases of invariants in tensor models

    NASA Astrophysics Data System (ADS)

    Diaz, Pablo; Rey, Soo-Jong

    2018-02-01

    Representation theory provides an efficient framework to count and classify invariants in tensor models of (gauge) symmetry G d = U( N 1) ⊗ · · · ⊗ U( N d ) . We show that there are two natural ways of counting invariants, one for arbitrary G d and another valid for large rank of G d . We construct basis of invariant operators based on the counting, and compute correlators of their elements. The basis associated with finite rank of G d diagonalizes two-point function. It is analogous to the restricted Schur basis used in matrix models. We comment on future directions for investigation.

  7. Analysis of Bonded Joints Between the Facesheet and Flange of Corrugated Composite Panels

    NASA Technical Reports Server (NTRS)

    Yarrington, Phillip W.; Collier, Craig S.; Bednarcyk, Brett A.

    2008-01-01

    This paper outlines a method for the stress analysis of bonded composite corrugated panel facesheet to flange joints. The method relies on the existing HyperSizer Joints software, which analyzes the bonded joint, along with a beam analogy model that provides the necessary boundary loading conditions to the joint analysis. The method is capable of predicting the full multiaxial stress and strain fields within the flange to facesheet joint and thus can determine ply-level margins and evaluate delamination. Results comparing the method to NASTRAN finite element model stress fields are provided illustrating the accuracy of the method.

  8. Two-dimensional conductors with interactions and disorder from particle-vortex duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, H.; Mulligan, M.; Raghu, S.

    Here, we study Dirac fermions in two spatial dimensions (2D) coupled to strongly fluctuating U(1) gauge fields in the presence of quenched disorder. Such systems are dual to theories of free Dirac fermions, which are vortices of the original theory. In analogy to superconductivity, when these fermionic vortices localize, the original system becomes a perfect conductor, and when the vortices possess a finite conductivity, the original fermions do as well. We provide several realizations of this principle and thereby introduce examples of strongly interacting 2D metals that evade Anderson localization.

  9. The Use of Source-Sink and Doublet Distributions Extended to the Solution of Boundary-Value Problems in Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Heaslet, Max A; Lomax, Harvard

    1948-01-01

    A direct analogy is established between the use of source-sink and doublet distributions in the solution of specific boundary-value problems in subsonic wing theory and the corresponding problems in supersonic theory. The correct concept of the "finite part" of an integral is introduced and used in the calculation of the improper integrals associated with supersonic doublet distributions. The general equations developed are shown to include several previously published results and particular examples are given for the loading on rolling and pitching triangular wings with supersonic leading edges.

  10. Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes

    NASA Technical Reports Server (NTRS)

    Linehard, J. H.; Dhir, V. K.

    1973-01-01

    The hydrodynamic theory of the extreme pool boiling heat fluxes is expanded to embrace a variety of problems that have not previously been analyzed. These problems include the prediction of the peak heat flux on a variety of finite heaters, the influence of viscosity on the Taylor and Helmoltz instability mechanisms with application to film boiling and to the peak heat flux in viscous liquids, the formalization of the analogy between high-current-density electrolysis and boiling, and the description of boiling in the low-gravity limit. The predictions are verified with a large number of new data.

  11. Capelli bitableaux and Z-forms of general linear Lie superalgebras.

    PubMed Central

    Brini, A; Teolis, A G

    1990-01-01

    The combinatorics of the enveloping algebra UQ(pl(L)) of the general linear Lie superalgebra of a finite dimensional Z2-graded Q-vector space is studied. Three non-equivalent Z-forms of UQ(pl(L)) are introduced: one of these Z-forms is a version of the Kostant Z-form and the others are Lie algebra analogs of Rota and Stein's straightening formulae for the supersymmetric algebra Super[L P] and for its dual Super[L* P*]. The method is based on an extension of Capelli's technique of variabili ausiliarie to algebras containing positively and negatively signed elements. PMID:11607048

  12. Quantum heat engine with coupled superconducting resonators

    NASA Astrophysics Data System (ADS)

    Hardal, Ali Ü. C.; Aslan, Nur; Wilson, C. M.; Müstecaplıoǧlu, Özgür E.

    2017-12-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.

  13. Quantum heat engine with coupled superconducting resonators.

    PubMed

    Hardal, Ali Ü C; Aslan, Nur; Wilson, C M; Müstecaplıoğlu, Özgür E

    2017-12-01

    We propose a quantum heat engine composed of two superconducting transmission line resonators interacting with each other via an optomechanical-like coupling. One resonator is periodically excited by a thermal pump. The incoherently driven resonator induces coherent oscillations in the other one due to the coupling. A limit cycle, indicating finite power output, emerges in the thermodynamical phase space. The system implements an all-electrical analog of a photonic piston. Instead of mechanical motion, the power output is obtained as a coherent electrical charging in our case. We explore the differences between the quantum and classical descriptions of our system by solving the quantum master equation and classical Langevin equations. Specifically, we calculate the mean number of excitations, second-order coherence, as well as the entropy, temperature, power, and mean energy to reveal the signatures of quantum behavior in the statistical and thermodynamic properties of the system. We find evidence of a quantum enhancement in the power output of the engine at low temperatures.

  14. Is paramecium swimming autonomic?

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Promode R.; Toplosky, Norman; Hansen, Joshua

    2010-11-01

    We seek to explore if the swimming of paramecium has an underlying autonomic mechanism. Such robotic elements may be useful in capturing the disturbance field in an environment in real time. Experimental evidence is emerging that motion control neurons of other animals may be present in paramecium as well. The limit cycle determined using analog simulation of the coupled nonlinear oscillators of olivo-cerebellar dynamics (ieee joe 33, 563-578, 2008) agrees with the tracks of the cilium of a biological paramecium. A 4-motor apparatus has been built that reproduces the kinematics of the cilium motion. The motion of the biological cilium has been analyzed and compared with the results of the finite element modeling of forces on a cilium. The modeling equates applied torque at the base of the cilium with drag, the cilium stiffness being phase dependent. A low friction pendulum apparatus with a multiplicity of electromagnetic actuators is being built for verifying the maps of the attractor basin computed using the olivo-cerebellar dynamics for different initial conditions. Sponsored by ONR 33.

  15. The NCOREL computer program for 3D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1983-01-01

    An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.

  16. Fundamental frequencies and resonances from eccentric and precessing binary black hole inspirals

    NASA Astrophysics Data System (ADS)

    Lewis, Adam G. M.; Zimmerman, Aaron; Pfeiffer, Harald P.

    2017-06-01

    Binary black holes which are both eccentric and undergo precession remain unexplored in numerical simulations. We present simulations of such systems which cover about 50 orbits at comparatively high mass ratios 5 and 7. The configurations correspond to the generic motion of a nonspinning body in a Kerr spacetime, and are chosen to study the transition from finite mass-ratio inspirals to point particle motion in Kerr. We develop techniques to extract analogs of the three fundamental frequencies of Kerr geodesics, compare our frequencies to those of Kerr, and show that the differences are consistent with self-force corrections entering at first order in mass ratio. This analysis also locates orbital resonances where the ratios of our frequencies take rational values. At the considered mass ratios, the binaries pass through resonances in one to two resonant cycles, and we find no discernible effects on the orbital evolution. We also compute the decay of eccentricity during the inspiral and find good agreement with the leading order post-Newtonian prediction.

  17. Multicritical points in the mixed ferromagnetic-ferrimagnetic ternary alloy with a single-ion anisotropy

    NASA Astrophysics Data System (ADS)

    Bobák, A.; Abubrig, F. O.; Balcerzak, T.

    2003-12-01

    The phase diagram of the ABpC1-p ternary alloy consisting of Ising spins SA=3/2, SB=1, and SC=5/2 in the presence of a single-ion anisotropy is investigated by the use of a mean-field theory based on the Bogoliubov inequality for the Gibbs free energy. To simulate the structure of the ternary metal Prussian blue analog such as (NiIIpMnII1-p)1.5[CrIII(CN)6]ṡzH2O, we assume that the A and X (either B or C) ions are alternately connected and the couplings between the A and X ions include both ferromagnetic (JAB>0) and antiferromagnetic (JAC<0) interactions. At the finite temperatures by changing values of the parameters of the model many different types of phase diagrams are obtained, including a variety of multicritical points such as tricritical points, fourth-order point, critical end points, isolated critical points, and triple points.

  18. Optomechanical transistor with mechanical gain

    NASA Astrophysics Data System (ADS)

    Zhang, X. Z.; Tian, Lin; Li, Yong

    2018-04-01

    We study an optomechanical transistor, where an input field can be transferred and amplified unidirectionally in a cyclic three-mode optomechanical system. In this system, the mechanical resonator is coupled simultaneously to two cavity modes. We show that it only requires a finite mechanical gain to achieve the nonreciprocal amplification. Here the nonreciprocity is caused by the phase difference between the linearized optomechanical couplings that breaks the time-reversal symmetry of this system. The amplification arises from the mechanical gain, which provides an effective phonon bath that pumps the mechanical mode coherently. This effect is analogous to the stimulated emission of atoms, where the probe field can be amplified when its frequency is in resonance with that of the anti-Stokes transition. We show that by choosing optimal parameters, this optomechanical transistor can reach perfect unidirectionality accompanied with strong amplification. In addition, the presence of the mechanical gain can result in ultralong delay in the phase of the probe field, which provides an alternative to controlling light transport in optomechanical systems.

  19. A dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled with a waveguide system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Boyun; Wang, Tao, E-mail: wangtao@hust.edu.cn; Tang, Jian

    2014-10-07

    We theoretically propose a dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled to a waveguide system through external optical pump beams. The optical Kerr effect modulation method is applied to improve tuning rate with response time of subpicoseconds or even femtoseconds. The group delay of an all-optical analog to electromagnetically induced transparency effect can be controlled by tuning either the frequency of photonic crystal microcavities or the propagation phase of line waveguide. Group delay is controlled between 5.88 and 70.98 ps by dynamically tuning resonant frequencies of the microcavities. Alternatively, the group delay is controlled between 1.86more » and 12.08 ps by dynamically tuning the propagation phase of line waveguide. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Results show a new direction toward microstructure integration optical pulse trapping and all-optical dynamical storage of light devices in optical communication and quantum information processing.« less

  20. Strength determination of brittle materials as curved monolithic structures.

    PubMed

    Hooi, P; Addison, O; Fleming, G J P

    2014-04-01

    The dental literature is replete with "crunch the crown" monotonic load-to-failure studies of all-ceramic materials despite fracture behavior being dominated by the indenter contact surface. Load-to-failure data provide no information on stress patterns, and comparisons among studies are impossible owing to variable testing protocols. We investigated the influence of nonplanar geometries on the maximum principal stress of curved discs tested in biaxial flexure in the absence of analytical solutions. Radii of curvature analogous to elements of complex dental geometries and a finite element analysis method were integrated with experimental testing as a surrogate solution to calculate the maximum principal stress at failure. We employed soda-lime glass discs, a planar control (group P, n = 20), with curvature applied to the remaining discs by slump forming to different radii of curvature (30, 20, 15, and 10 mm; groups R30-R10). The mean deflection (group P) and radii of curvature obtained on slumping (groups R30-R10) were determined by profilometry before and after annealing and surface treatment protocols. Finite element analysis used the biaxial flexure load-to-failure data to determine the maximum principal stress at failure. Mean maximum principal stresses and load to failure were analyzed with one-way analyses of variance and post hoc Tukey tests (α = 0.05). The measured radii of curvature differed significantly among groups, and the radii of curvature were not influenced by annealing. Significant increases in the mean load to failure were observed as the radius of curvature was reduced. The maximum principal stress did not demonstrate sensitivity to radius of curvature. The findings highlight the sensitivity of failure load to specimen shape. The data also support the synergistic use of bespoke computational analysis with conventional mechanical testing and highlight a solution to complications with complex specimen geometries.

  1. On the mechanics of continua with boundary energies and growing surfaces

    NASA Astrophysics Data System (ADS)

    Papastavrou, Areti; Steinmann, Paul; Kuhl, Ellen

    2013-06-01

    Many biological systems are coated by thin films for protection, selective absorption, or transmembrane transport. A typical example is the mucous membrane covering the airways, the esophagus, and the intestine. Biological surfaces typically display a distinct mechanical behavior from the bulk; in particular, they may grow at different rates. Growth, morphological instabilities, and buckling of biological surfaces have been studied intensely by approximating the surface as a layer of finite thickness; however, growth has never been attributed to the surface itself. Here, we establish a theory of continua with boundary energies and growing surfaces of zero thickness in which the surface is equipped with its own potential energy and is allowed to grow independently of the bulk. In complete analogy to the kinematic equations, the balance equations, and the constitutive equations of a growing solid body, we derive the governing equations for a growing surface. We illustrate their spatial discretization using the finite element method, and discuss their consistent algorithmic linearization. To demonstrate the conceptual differences between volume and surface growth, we simulate the constrained growth of the inner layer of a cylindrical tube. Our novel approach toward continua with growing surfaces is capable of predicting extreme growth of the inner cylindrical surface, which more than doubles its initial area. The underlying algorithmic framework is robust and stable; it allows to predict morphological changes due to surface growth during the onset of buckling and beyond. The modeling of surface growth has immediate biomedical applications in the diagnosis and treatment of asthma, gastritis, obstructive sleep apnoea, and tumor invasion. Beyond biomedical applications, the scientific understanding of growth-induced morphological instabilities and surface wrinkling has important implications in material sciences, manufacturing, and microfabrication, with applications in soft lithography, metrology, and flexible electronics.

  2. Computer-assisted design and finite element simulation of braces for the treatment of adolescent idiopathic scoliosis using a coronal plane radiograph and surface topography.

    PubMed

    Pea, Rany; Dansereau, Jean; Caouette, Christiane; Cobetto, Nikita; Aubin, Carl-Éric

    2018-05-01

    Orthopedic braces made by Computer-Aided Design and Manufacturing and numerical simulation were shown to improve spinal deformities correction in adolescent idiopathic scoliosis while using less material. Simulations with BraceSim (Rodin4D, Groupe Lagarrigue, Bordeaux, France) require a sagittal radiograph, not always available. The objective was to develop an innovative modeling method based on a single coronal radiograph and surface topography, and assess the effectiveness of braces designed with this approach. With a patient coronal radiograph and a surface topography, the developed method allowed the 3D reconstruction of the spine, rib cage and pelvis using geometric models from a database and a free form deformation technique. The resulting 3D reconstruction converted into a finite element model was used to design and simulate the correction of a brace. The developed method was tested with data from ten scoliosis cases. The simulated correction was compared to analogous simulations performed with a 3D reconstruction built using two radiographs and surface topography (validated gold standard reference). There was an average difference of 1.4°/1.7° for the thoracic/lumbar Cobb angle, and 2.6°/5.5° for the kyphosis/lordosis between the developed reconstruction method and the reference. The average difference of the simulated correction was 2.8°/2.4° for the thoracic/lumbar Cobb angles and 3.5°/5.4° the kyphosis/lordosis. This study showed the feasibility to design and simulate brace corrections based on a new modeling method with a single coronal radiograph and surface topography. This innovative method could be used to improve brace designs, at a lesser radiation dose for the patient. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Dynamic earthquake rupture simulation on nonplanar faults embedded in 3D geometrically complex, heterogeneous Earth models

    NASA Astrophysics Data System (ADS)

    Duru, K.; Dunham, E. M.; Bydlon, S. A.; Radhakrishnan, H.

    2014-12-01

    Dynamic propagation of shear ruptures on a frictional interface is a useful idealization of a natural earthquake.The conditions relating slip rate and fault shear strength are often expressed as nonlinear friction laws.The corresponding initial boundary value problems are both numerically and computationally challenging.In addition, seismic waves generated by earthquake ruptures must be propagated, far away from fault zones, to seismic stations and remote areas.Therefore, reliable and efficient numerical simulations require both provably stable and high order accurate numerical methods.We present a numerical method for:a) enforcing nonlinear friction laws, in a consistent and provably stable manner, suitable for efficient explicit time integration;b) dynamic propagation of earthquake ruptures along rough faults; c) accurate propagation of seismic waves in heterogeneous media with free surface topography.We solve the first order form of the 3D elastic wave equation on a boundary-conforming curvilinear mesh, in terms of particle velocities and stresses that are collocated in space and time, using summation-by-parts finite differences in space. The finite difference stencils are 6th order accurate in the interior and 3rd order accurate close to the boundaries. Boundary and interface conditions are imposed weakly using penalties. By deriving semi-discrete energy estimates analogous to the continuous energy estimates we prove numerical stability. Time stepping is performed with a 4th order accurate explicit low storage Runge-Kutta scheme. We have performed extensive numerical experiments using a slip-weakening friction law on non-planar faults, including recent SCEC benchmark problems. We also show simulations on fractal faults revealing the complexity of rupture dynamics on rough faults. We are presently extending our method to rate-and-state friction laws and off-fault plasticity.

  4. What Meaning Means for Same and Different: Analogical Reasoning in Humans (Homo sapiens), Chimpanzees (Pan troglodytes), and Rhesus Monkeys (Macaca mulatta)

    PubMed Central

    Flemming, Timothy M.; Beran, Michael J.; Thompson, Roger K. R.; Kleider, Heather M.; Washburn, David A.

    2013-01-01

    Thus far, language- and token-trained apes (e.g., D. Premack, 1976; R. K. R. Thompson, D. L. Oden, & S. T. Boysen, 1997) have provided the best evidence that nonhuman animals can solve, complete, and construct analogies, thus implicating symbolic representation as the mechanism enabling the phenomenon. In this study, the authors examined the role of stimulus meaning in the analogical reasoning abilities of three different primate species. Humans (Homo sapiens), chimpanzees (Pan troglodytes), and rhesus monkeys (Macaca mulatta) completed the same relational matching-to-sample (RMTS) tasks with both meaningful and nonmeaningful stimuli. This discrimination of relations-between-relations serves as the basis for analogical reasoning. Meaningfulness facilitated the acquisition of analogical matching for human participants, whereas individual differences among the chimpanzees suggest that meaning can either enable or hinder their ability to complete analogies. Rhesus monkeys did not succeed in the RMTS task regardless of stimulus meaning, suggesting that their ability to reason analogically, if present at all, may be dependent on a dimension other than the representational value of stimuli. PMID:18489233

  5. Scanning of Adsorption Hysteresis In Situ with Small Angle X-Ray Scattering

    PubMed Central

    Mitropoulos, Athanasios Ch.; Favvas, Evangelos P.; Stefanopoulos, Konstantinos L.; Vansant, Etienne F.

    2016-01-01

    Everett’s theorem-6 of the domain theory was examined by conducting adsorption in situ with small angle x-ray scattering (SAXS) supplemented by the contrast matching technique. The study focuses on the spectrum differences of a point to which the system arrives from different scanning paths. It is noted that according to this theorem at a common point the system has similar macroscopic properties. Furthermore it was examined the memory string of the system. We concluded that opposite to theorem-6: a) at a common point the system can reach in a finite (not an infinite) number of ways, b) a correction for the thickness of the adsorbed film prior to capillary condensation is necessary, and c) the scattering curves although at high-Q values coincide, at low-Q values are different indicating different microscopic states. That is, at a common point the system holds different metastable states sustained by hysteresis effects. These metastable states are the ones which highlight the way of a system back to a return point memory (RPM). Entering the hysteresis loop from different RPMs different histories are implanted to the paths toward the common point. Although in general the memory points refer to relaxation phenomena, they also constitute a characteristic feature of capillary condensation. Analogies of the no-passing rule and the adiabaticity assumption in the frame of adsorption hysteresis are discussed. PMID:27741263

  6. Practical aspects of prestack depth migration with finite differences

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ober, C.C.; Oldfield, R.A.; Womble, D.E.

    1997-07-01

    Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less

  7. Implementation of a novel efficient low cost method in structural health monitoring

    NASA Astrophysics Data System (ADS)

    Asadi, S.; Sepehry, N.; Shamshirsaz, M.; Vaghasloo, Y. A.

    2017-05-01

    In active structural health monitoring (SHM) methods, it is necessary to excite the structure with a preselected signal. More studies in the field of active SHM are focused on applying SHM on higher frequency ranges since it is possible to detect smaller damages, using higher excitation frequency. Also, to increase spatial domain of measurements and enhance signal to noise ratio (SNR), the amplitude of excitation signal is usually amplified. These issues become substantial where piezoelectric transducers with relatively high capacitance are used and consequently, need to utilize high power amplifiers becomes predominant. In this paper, a novel method named Step Excitation Method (SEM) is proposed and implemented for Lamb wave and transfer impedance-based SHM for damage detection in structures. Three different types of structure are studied: beam, plate and pipe. The related hardware is designed and fabricated which eliminates high power analog amplifiers and decreases complexity of driver significantly. Spectral Finite Element Method (SFEM) is applied to examine performance of proposed SEM. In proposed method, by determination of impulse response of the system, any input could be applied to the system by both finite element simulations and experiments without need for multiple measurements. The experimental results using SEM are compared with those obtained by conventional direct excitation method for healthy and damaged structures. The results show an improvement of amplitude resolution in damage detection comparing to conventional method which is due to achieving an SNR improvement up to 50%.

  8. Finite-Difference Solutions for Compressible Laminar Boundary-Layer Flows of a Dusty Gas over a Semi-Infinite Flat Plate.

    DTIC Science & Technology

    1986-08-01

    AD-A174 952 FINITE - DIFFERENCE SOLUTIONS FOR CONPRESSIBLE LANINAR 1/2 BOUNDARY-LAYER FLOUS (U) TORONTO UNIV DOWNSVIEW (ONTARIO) INST FOR AEROSPACE...dilute dusty gas over a semi-infinite flat plate. Details are given of the impliit finite , difference schemes as well as the boundary conditions... FINITE - DIFFERENCE SOLUTIONS FOR COMPRESSIBLE LAMINAR BOUNDARY-LAYER FLOWS OF A DUSTY GAS OVER A SEMI-INFINITE FLAT PLATE by B. Y. Wang and I. I

  9. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    ERIC Educational Resources Information Center

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  10. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1997-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  11. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, Charles L.

    1996-01-01

    A method and apparatus for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits.

  12. Improved methods of vibration analysis of pretwisted, airfoil blades

    NASA Technical Reports Server (NTRS)

    Subrahmanyam, K. B.; Kaza, K. R. V.

    1984-01-01

    Vibration analysis of pretwisted blades of asymmetric airfoil cross section is performed by using two mixed variational approaches. Numerical results obtained from these two methods are compared to those obtained from an improved finite difference method and also to those given by the ordinary finite difference method. The relative merits, convergence properties and accuracies of all four methods are studied and discussed. The effects of asymmetry and pretwist on natural frequencies and mode shapes are investigated. The improved finite difference method is shown to be far superior to the conventional finite difference method in several respects. Close lower bound solutions are provided by the improved finite difference method for untwisted blades with a relatively coarse mesh while the mixed methods have not indicated any specific bound.

  13. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    PubMed Central

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar–similar (e.g., “apple is to orange as dog is to cat”) versus different–different (e.g., “he is to his brother as chalk is to cheese”) derived relational responding, in both speed-contingent and speed-noncontingent conditions. Experiment 2 examined the event-related potentials (ERPs) associated with these two response patterns. Both experiments showed similar–similar responding to be significantly faster than different–different responding. Experiment 2 revealed significant differences between the waveforms of the two response patterns in the left-hemispheric prefrontal regions; different–different waveforms were significantly more negative than similar–similar waveforms. The behavioral and neurophysiological data support the RFT prediction that, all things being equal, similar–similar responding is relationally “simpler” than, and functionally distinct from, different–different analogical responding. The ERP data were fully consistent with findings in the neurocognitive literature on analogy. These findings strengthen the validity of the RFT model of analogical reasoning and supplement the behavior-analytic approach to analogy based on the relating of derived relations. PMID:16596974

  14. Improving sub-grid scale accuracy of boundary features in regional finite-difference models

    USGS Publications Warehouse

    Panday, Sorab; Langevin, Christian D.

    2012-01-01

    As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.

  15. Plasma Theory and Simulation

    DTIC Science & Technology

    1988-06-30

    equation using finite difference methods. The distribution function is represented by a large number of particles. The particle’s velocities change as a...Small angle Coulomb collisions The FP equation for describing small angle Coulomb collisions can be solved numerically using finite difference techniques...A finite Fourrier transform (FT) is made in z, then we can solve for each k using the following finite difference scheme [5]: 2{r 1 +l1 2 (,,+ 1 - fj

  16. Application of 'steady' state finite element and transient finite difference theory to sound propagation in a variable duct - A comparison with experiment

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.

    1981-01-01

    Experimental data are presented for sound propagation in a simulated infinite hard wall duct with a large change in duct cross sectional area. The data are conveniently tabulated for further use. The 'steady' state finite element theory of Astley and Eversman (1981) and the transient finite difference theory of White (1981) are in good agreement with the data for both the axial and transverse pressure profiles and the axial phase angle. Therefore, numerical finite difference and finite element theories appear to be ideally suited for handling duct propagation problems which encounter large axial gradients in acoustic parameters. The measured energy reflection coefficient agrees with the values from the Astley-Eversman modal coupling model.

  17. Plasmon resonance hybridization in self-assembled copper nanoparticle clusters: efficient and precise localization of surface plasmon resonance (LSPR) sensing based on Fano resonances.

    PubMed

    Ahmadivand, Arash; Pala, Nezih

    2015-01-01

    In this work, we have investigated the hybridization of plasmon resonance modes in completely copper (Cu)-based subwavelength nanoparticle clusters from simple symmetric dimers to complex asymmetric self-assembled structures. The quality of apparent bonding and antibonding plasmon resonance modes for all of the clusters has been studied, and we examined the spectral response of each one of the proposed configurations numerically using the finite-difference time domain (FDTD) method. The effect of the geometric sizes of nanoparticles used and substrate refractive index on the cross-sectional profiles of each of the studied structures has been calculated and drawn. We proved that Fano-like resonance can be formed in Cu-based heptamer clusters as in analogous noble metallic particles (e.g., Au and Ag) by determining the coupling strength and interference between sub-radiant and super-radiant resonance modes. Employing certain Cu nanodiscs in designing an octamer structure, we measured the quality of the Fano dip formation along the scattering diagram. Accurate tuning of the geometric sizes for the Cu-based octamer yields an opportunity to observe isotropic, deep, and narrow Fano minima along the scattering profile that are in comparable condition with the response of other plasmonic metallic substances. Immersing investigated final Cu-based octamer in various liquids with different refractive indices, we determined the sensing accuracy of the cluster based on the performance of the Fano dip. Plotting a linear diagram of plasmon energy differences over the refractive index variations as a figure of merit (FoM), which we have quantified as 13.25. With this method, the precision of the completely Cu-based octamer is verified numerically using the FDTD tool. This study paves the way toward the use of Cu as an efficient, low-cost, and complementary metal-oxide semiconductor (CMOS)-compatible plasmonic material with optical properties that are similar to analogous plasmonic substances.

  18. Static and dynamic response of a sandwich structure under axial compression

    NASA Astrophysics Data System (ADS)

    Ji, Wooseok

    This thesis is concerned with a combined experimental and theoretical investigation of the static and dynamic response of an axially compressed sandwich structure. For the static response problem of sandwich structures, a two-dimensional mechanical model is developed to predict the global and local buckling of a sandwich beam, using classical elasticity. The face sheet and the core are assumed as linear elastic orthotropic continua in a state of planar deformation. General buckling deformation modes (periodic and non-periodic) of the sandwich beam are considered. On the basis of the model developed here, validation and accuracy of several previous theories are discussed for different geometric and material properties of a sandwich beam. The appropriate incremental stress and conjugate incremental finite strain measure for the instability problem of the sandwich beam, and the corresponding constitutive model are addressed. The formulation used in the commercial finite element package is discussed in relation to the formulation adopted in the theoretical derivation. The Dynamic response problem of a sandwich structure subjected to axial impact by a falling mass is also investigated. The dynamic counterpart of the celebrated Euler buckling problem is formulated first and solved by considering the case of a slender column that is impacted by a falling mass. A new notion, that of the time to buckle, "t*" is introduced, which is the corresponding critical quantity analogous to the critical load in static Euler buckling. The dynamic bifurcation buckling analysis is extended to thick sandwich structures using an elastic foundation model. A comprehensive set of impact test results of sandwich columns with various configurations are presented. Failure mechanisms and the temporal history of how a sandwich column responds to axial impact are discussed through the experimental results. The experimental results are compared against analytical dynamic buckling studies and finite element based simulation of the impact event.

  19. Characteristics of chiral anomaly in view of various applications

    NASA Astrophysics Data System (ADS)

    Fujikawa, Kazuo

    2018-01-01

    In view of the recent applications of chiral anomaly to various fields beyond particle physics, we discuss some basic aspects of chiral anomaly which may help deepen our understanding of chiral anomaly in particle physics also. It is first shown that Berry's phase (and its generalization) for the Weyl model H =vFσ →.p →(t ) assumes a monopole form at the exact adiabatic limit but deviates from it off the adiabatic limit and vanishes in the high frequency limit of the Fourier transform of p →(t ) for bounded |p →(t )|. An effective action, which is consistent with the nonadiabatic limit of Berry's phase, combined with the Bjorken-Johnson-Low prescription, gives normal equal-time space-time commutators and no chiral anomaly. In contrast, an effective action with a monopole at the origin of the momentum space, which describes Berry's phase in the precise adiabatic limit but fails off the adiabatic limit, gives anomalous space-time commutators and a covariant anomaly to the gauge current. We regard this anomaly as an artifact of the postulated monopole and not a consequence of Berry's phase. As for the recent application of the chiral anomaly to the description of effective Weyl fermions in condensed matter and nuclear physics, which is closely related to the formulation of lattice chiral fermions, we point out that the chiral anomaly for each species doubler separately vanishes for a finite lattice spacing, contrary to the common assumption. Instead, a general form of pair creation associated with the spectral flow for the Dirac sea with finite depth takes place. This view is supported by the Ginsparg-Wilson fermion, which defines a single Weyl fermion without doublers on the lattice and gives a well-defined index (anomaly) even for a finite lattice spacing. A different use of anomaly in analogy to the partially conserved axial-vector current is also mentioned and could lead to an effect without fermion number nonconservation.

  20. Recent Developments in Computational Techniques for Applied Hydrodynamics.

    DTIC Science & Technology

    1979-12-07

    by block number) Numerical Method Fluids Incompressible Flow Finite Difference Methods Poisson Equation Convective Equations -MABSTRACT (Continue on...weaknesses of the different approaches are analyzed. Finite - difference techniques have particularly attractive properties in this framework. Hence it will...be worthwhile to correct, at least partially, the difficulties from which Eulerian and Lagrangian finite - difference techniques suffer, discussed in

  1. Mixed finite-difference scheme for free vibration analysis of noncircular cylinders

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Stephens, W. B.

    1973-01-01

    A mixed finite-difference scheme is presented for the free-vibration analysis of simply supported closed noncircular cylindrical shells. The problem is formulated in terms of eight first-order differential equations in the circumferential coordinate which possess a symmetric coefficient matrix and are free of the derivatives of the elastic and geometric characteristics of the shell. In the finite-difference discretization, two interlacing grids are used for the different fundamental unknowns in such a way as to avoid averaging in the difference-quotient expressions used for the first derivative. The resulting finite-difference equations are symmetric. The inverse-power method is used for obtaining the eigenvalues and eigenvectors.

  2. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1997-09-23

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential dement is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  3. Method of pedestal and common-mode noise correction for switched-capacitor analog memories

    DOEpatents

    Britton, C.L.

    1996-12-31

    A method and apparatus are disclosed for correcting common-mode noise and pedestal noise in a multichannel array of switched-capacitor analog memories wherein each analog memory is connected to an associated analog-to-digital converter. The apparatus comprises a single differential element in two different embodiments. In a first embodiment, the differential element is a reference analog memory connected to a buffer. In the second embodiment, the differential element is a reference analog memory connected to a reference analog-to-digital connected to an array of digital summing circuits. 4 figs.

  4. Two analogy strategies: the cases of mind metaphors and introspection

    NASA Astrophysics Data System (ADS)

    Fischer, Eugen

    2018-04-01

    Analogical reasoning is often employed in problem-solving and metaphor interpretation. This paper submits that, as a default, analogical reasoning addressing these different tasks employs different mapping strategies. In problem-solving, it employs analogy-maximising strategies (like structure mapping, Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52, 45-56); in metaphor interpretation, analogy-minimising strategies (like ATT-Meta, Barnden, J. A. (2015). Open-ended elaborations in creative metaphor. In T. R. Besold, M. Schorlemmer, & A. Smaill (Eds.), Computational creativity research: Towards creative machines (pp. 217-242). Berlin: Springer). The two strategies interact in analogical reasoning with conceptual metaphors. This interaction leads to predictable fallacies. The paper supports these hypotheses through case-studies on "mind" metaphors from ordinary discourse, and abstract problem-solving in the philosophy of mind, respectively. It shows that (1) default metaphorical interpretations for vision- and space-cognition metaphors can be derived with a variant of the analogy-minimising ATT-Meta approach, (2) philosophically influential introspective conceptions of the mind can be derived with conceptual metaphors only through an analogy-maximising strategy, and (3) the interaction of these strategies leads to hitherto unrecognised fallacies in analogical reasoning with metaphors. This yields a debunking explanation of introspective conceptions.

  5. Impact of Self-Explanation and Analogical Comparison Support on Learning Processes, Motivation, Metacognition, and Transfer

    NASA Astrophysics Data System (ADS)

    Richey, J. Elizabeth

    Research examining analogical comparison and self-explanation has produced a robust set of findings about learning and transfer supported by each instructional technique. However, it is unclear how the types of knowledge generated through each technique differ, which has important implications for cognitive theory as well as instructional practice. I conducted a pair of experiments to directly compare the effects of instructional prompts supporting self-explanation, analogical comparison, and the study of instructional explanations across a number of fine-grained learning process, motivation, metacognition, and transfer measures. Experiment 1 explored these questions using sequence extrapolation problems, and results showed no differences between self-explanation and analogical comparison support conditions on any measure. Experiment 2 explored the same questions in a science domain. I evaluated condition effects on transfer outcomes; self-reported self-explanation, analogical comparison, and metacognitive processes; and achievement goals. I also examined relations between transfer and self-reported processes and goals. Receiving materials with analogical comparison support and reporting greater levels of analogical comparison were both associated with worse transfer performance, while reporting greater levels of self-explanation was associated with better performance. Learners' self-reports of self-explanation and analogical comparison were not related to condition assignment, suggesting that the questionnaires did not measure the same processes promoted by the intervention, or that individual differences in processing are robust even when learners are instructed to engage in self-explanation or analogical comparison.

  6. The Role of Prior Knowledge in Learning from Analogies in Science Texts

    ERIC Educational Resources Information Center

    Braasch, Jason L. G.; Goldman, Susan R.

    2010-01-01

    Two experiments examined whether inconsistent effects of analogies in promoting new content learning from text are related to prior knowledge of the analogy "per se." In Experiment 1, college students who demonstrated little understanding of weather systems and different levels of prior knowledge (more vs. less) of an analogous everyday…

  7. A Digitally Programmable Cytomorphic Chip for Simulation of Arbitrary Biochemical Reaction Networks.

    PubMed

    Woo, Sung Sik; Kim, Jaewook; Sarpeshkar, Rahul

    2018-04-01

    Prior work has shown that compact analog circuits can faithfully represent and model fundamental biomolecular circuits via efficient log-domain cytomorphic transistor equivalents. Such circuits have emphasized basis functions that are dominant in genetic transcription and translation networks and deoxyribonucleic acid (DNA)-protein binding. Here, we report a system featuring digitally programmable 0.35 μm BiCMOS analog cytomorphic chips that enable arbitrary biochemical reaction networks to be exactly represented thus enabling compact and easy composition of protein networks as well. Since all biomolecular networks can be represented as chemical reaction networks, our protein networks also include the former genetic network circuits as a special case. The cytomorphic analog protein circuits use one fundamental association-dissociation-degradation building-block circuit that can be configured digitally to exactly represent any zeroth-, first-, and second-order reaction including loading, dynamics, nonlinearity, and interactions with other building-block circuits. To address a divergence issue caused by random variations in chip fabrication processes, we propose a unique way of performing computation based on total variables and conservation laws, which we instantiate at both the circuit and network levels. Thus, scalable systems that operate with finite error over infinite time can be built. We show how the building-block circuits can be composed to form various network topologies, such as cascade, fan-out, fan-in, loop, dimerization, or arbitrary networks using total variables. We demonstrate results from a system that combines interacting cytomorphic chips to simulate a cancer pathway and a glycolysis pathway. Both simulations are consistent with conventional software simulations. Our highly parallel digitally programmable analog cytomorphic systems can lead to a useful design, analysis, and simulation tool for studying arbitrary large-scale biological networks in systems and synthetic biology.

  8. Life experience of sixth-grade students in analog domains of sixth-grade science textbooks

    NASA Astrophysics Data System (ADS)

    Wagamon, Barbara J.

    This study was conducted to determine if analog domains in sixth grade science textbooks were common to the life experience of sixth grade students and if experience differed according to moderating variables. The researcher reviewed three sixth grade general science textbooks and selected analogies that were unsupported by extended text, photos, or diagrams. Analogies were limited to ones which were unsupported because the intent was to identify students who were ready by virtue of life experience to confront analogies unaided by contextual clues. The researcher designed the Life Experiences in Analog Domains (LEAD) Questionnaire to survey students in 50 analog domains. Subjects of the study were 331 sixth grade students from an urban school district. Thirty were tested with the instrument one year later. Data on age, gender, ethnicity and income were analyzed for variance. Standardized achievement test scores were correlated to the LEAD Questionnaire. Results revealed sharp contrasts of experience by analog domain. Experience in analog domains was indicated 52% of the time overall. There were significant differences in the experience of students grouped by moderating variables. Younger students reported more experience than older students. The higher income group reported more experience than the lower income group. Caucasian students reported more experience overall than African American students. Chi-square tests revealed that differences in scores by ethnicity were not controlled by income. of three skills, reading comprehension, mathematics, and science, reading comprehension was most closely correlated to questionnaire score. Results suggest that many of the sixth grade students in the study may be without experience in analog domains when they encounter analogies in a textbook. Assuming subsequent implementations of the Questionnaire confirm these results, teachers should survey life experience of students and help them develop experiences that complement their science text. Textbook authors should explain all but the simplest analogies.

  9. Working memory predicts children's analogical reasoning.

    PubMed

    Simms, Nina K; Frausel, Rebecca R; Richland, Lindsey E

    2018-02-01

    Analogical reasoning is the cognitive skill of drawing relationships between representations, often between prior knowledge and new representations, that allows for bootstrapping cognitive and language development. Analogical reasoning proficiency develops substantially during childhood, although the mechanisms underlying this development have been debated, with developing cognitive resources as one proposed mechanism. We explored the role of executive function (EF) in supporting children's analogical reasoning development, with the goal of determining whether predicted aspects of EF were related to analogical development at the level of individual differences. We assessed 5- to 11-year-old children's working memory, inhibitory control, and cognitive flexibility using measures from the National Institutes of Health Toolbox Cognition battery. Individual differences in children's working memory best predicted performance on an analogical mapping task, even when controlling for age, suggesting a fundamental interrelationship between analogical reasoning and working memory development. These findings underscore the need to consider cognitive capacities in comprehensive theories of children's reasoning development. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The Robustness of Acoustic Analogies

    NASA Technical Reports Server (NTRS)

    Freund, J. B.; Lele, S. K.; Wei, M.

    2004-01-01

    Acoustic analogies for the prediction of flow noise are exact rearrangements of the flow equations N(right arrow q) = 0 into a nominal sound source S(right arrow q) and sound propagation operator L such that L(right arrow q) = S(right arrow q). In practice, the sound source is typically modeled and the propagation operator inverted to make predictions. Since the rearrangement is exact, any sufficiently accurate model of the source will yield the correct sound, so other factors must determine the merits of any particular formulation. Using data from a two-dimensional mixing layer direct numerical simulation (DNS), we evaluate the robustness of two analogy formulations to different errors intentionally introduced into the source. The motivation is that since S can not be perfectly modeled, analogies that are less sensitive to errors in S are preferable. Our assessment is made within the framework of Goldstein's generalized acoustic analogy, in which different choices of a base flow used in constructing L give different sources S and thus different analogies. A uniform base flow yields a Lighthill-like analogy, which we evaluate against a formulation in which the base flow is the actual mean flow of the DNS. The more complex mean flow formulation is found to be significantly more robust to errors in the energetic turbulent fluctuations, but its advantage is less pronounced when errors are made in the smaller scales.

  11. Finite difference and Runge-Kutta methods for solving vibration problems

    NASA Astrophysics Data System (ADS)

    Lintang Renganis Radityani, Scolastika; Mungkasi, Sudi

    2017-11-01

    The vibration of a storey building can be modelled into a system of second order ordinary differential equations. If the number of floors of a building is large, then the result is a large scale system of second order ordinary differential equations. The large scale system is difficult to solve, and if it can be solved, the solution may not be accurate. Therefore, in this paper, we seek for accurate methods for solving vibration problems. We compare the performance of numerical finite difference and Runge-Kutta methods for solving large scale systems of second order ordinary differential equations. The finite difference methods include the forward and central differences. The Runge-Kutta methods include the Euler and Heun methods. Our research results show that the central finite difference and the Heun methods produce more accurate solutions than the forward finite difference and the Euler methods do.

  12. Finite-Difference Numerical Simulation of Seismic Gradiometry

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Symons, N. P.; Haney, M. M.

    2006-12-01

    We use the phrase seismic gradiometry to refer to the developing research area involving measurement, modeling, analysis, and interpretation of spatial derivatives (or differences) of a seismic wavefield. In analogy with gradiometric methods used in gravity and magnetic exploration, seismic gradiometry offers the potential for enhancing resolution, and revealing new (or hitherto obscure) information about the subsurface. For example, measurement of pressure and rotation enables the decomposition of recorded seismic data into compressional (P) and shear (S) components. Additionally, a complete observation of the total seismic wavefield at a single receiver (including both rectilinear and rotational motions) offers the possibility of inferring the type, speed, and direction of an incident seismic wave. Spatially extended receiver arrays, conventionally used for such directional and phase speed determinations, may be dispensed with. Seismic wave propagation algorithms based on the explicit, time-domain, finite-difference (FD) numerical method are well-suited for investigating gradiometric effects. We have implemented in our acoustic, elastic, and poroelastic algorithms a point receiver that records the 9 components of the particle velocity gradient tensor. Pressure and particle rotation are obtained by forming particular linear combinations of these tensor components, and integrating with respect to time. All algorithms entail 3D O(2,4) FD solutions of coupled, first- order systems of partial differential equations on uniformly-spaced staggered spatial and temporal grids. Numerical tests with a 1D model composed of homogeneous and isotropic elastic layers show isolation of P, SV, and SH phases recorded in a multiple borehole configuration, even in the case of interfering events. Synthetic traces recorded by geophones and rotation receivers in a shallow crosswell geometry with randomly heterogeneous poroelastic models also illustrate clear P (fast and slow) and S separation. Finally, numerical tests of the "point seismic array" concept are oriented toward understanding its potential and limitations. Sandia National Laboratories is a multiprogram science and engineering facility operated by Sandia Corporation, a Lockheed-Martin company, for the United States Department of Energy under contract DE- AC04-94AL85000.

  13. Model of directed lines for square ice with second-neighbor and third-neighbor interactions

    NASA Astrophysics Data System (ADS)

    Kirov, Mikhail V.

    2018-02-01

    The investigation of the properties of nanoconfined systems is one of the most rapidly developing scientific fields. Recently it has been established that water monolayer between two graphene sheets forms square ice. Because of the energetic disadvantage, in the structure of the square ice there are no longitudinally arranged molecules. The result is that the structure is formed by unidirectional straight-lines of hydrogen bonds only. A simple but accurate discrete model of square ice with second-neighbor and third-neighbor interactions is proposed. According to this model, the ground state includes all configurations which do not contain three neighboring unidirectional chains of hydrogen bonds. Each triplet increases the energy by the same value. This new model differs from an analogous model with long-range interactions where in the ground state all neighboring chains are antiparallel. The new model is suitable for the corresponding system of point electric (and magnetic) dipoles on the square lattice. It allows separately estimating the different contributions to the total binding energy and helps to understand the properties of infinite monolayers and finite nanostructures. Calculations of the binding energy for square ice and for point dipole system are performed using the packages TINKER and LAMMPS.

  14. Deformation of two-phase aggregates using standard numerical methods

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.

    2013-04-01

    Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.

  15. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  16. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.

    PubMed

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-10-16

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation.

  17. Complete integrability of information processing by biochemical reactions

    PubMed Central

    Agliari, Elena; Barra, Adriano; Dello Schiavo, Lorenzo; Moro, Antonio

    2016-01-01

    Statistical mechanics provides an effective framework to investigate information processing in biochemical reactions. Within such framework far-reaching analogies are established among (anti-) cooperative collective behaviors in chemical kinetics, (anti-)ferromagnetic spin models in statistical mechanics and operational amplifiers/flip-flops in cybernetics. The underlying modeling – based on spin systems – has been proved to be accurate for a wide class of systems matching classical (e.g. Michaelis–Menten, Hill, Adair) scenarios in the infinite-size approximation. However, the current research in biochemical information processing has been focusing on systems involving a relatively small number of units, where this approximation is no longer valid. Here we show that the whole statistical mechanical description of reaction kinetics can be re-formulated via a mechanical analogy – based on completely integrable hydrodynamic-type systems of PDEs – which provides explicit finite-size solutions, matching recently investigated phenomena (e.g. noise-induced cooperativity, stochastic bi-stability, quorum sensing). The resulting picture, successfully tested against a broad spectrum of data, constitutes a neat rationale for a numerically effective and theoretically consistent description of collective behaviors in biochemical reactions. PMID:27812018

  18. Complete integrability of information processing by biochemical reactions

    NASA Astrophysics Data System (ADS)

    Agliari, Elena; Barra, Adriano; Dello Schiavo, Lorenzo; Moro, Antonio

    2016-11-01

    Statistical mechanics provides an effective framework to investigate information processing in biochemical reactions. Within such framework far-reaching analogies are established among (anti-) cooperative collective behaviors in chemical kinetics, (anti-)ferromagnetic spin models in statistical mechanics and operational amplifiers/flip-flops in cybernetics. The underlying modeling - based on spin systems - has been proved to be accurate for a wide class of systems matching classical (e.g. Michaelis-Menten, Hill, Adair) scenarios in the infinite-size approximation. However, the current research in biochemical information processing has been focusing on systems involving a relatively small number of units, where this approximation is no longer valid. Here we show that the whole statistical mechanical description of reaction kinetics can be re-formulated via a mechanical analogy - based on completely integrable hydrodynamic-type systems of PDEs - which provides explicit finite-size solutions, matching recently investigated phenomena (e.g. noise-induced cooperativity, stochastic bi-stability, quorum sensing). The resulting picture, successfully tested against a broad spectrum of data, constitutes a neat rationale for a numerically effective and theoretically consistent description of collective behaviors in biochemical reactions.

  19. Shock Wave Propagation in Functionally Graded Mineralized Tissue

    NASA Astrophysics Data System (ADS)

    Nelms, Matthew; Hodo, Wayne; Livi, Ken; Browning, Alyssa; Crawford, Bryan; Rajendran, A. M.

    2017-06-01

    In this investigation, the effects of shock wave propagation in bone-like biomineralized tissue was investigated. The Alligator gar (Atractosteus spatula) exoskeleton is comprised of many disparate scales that provide a biological analog for potential design of flexible protective material systems. The gar scale is identified as a two-phase, (1) hydroxyapatite mineral and (2) collagen protein, biological composite with two distinct layers where a stiff, ceramic-like ganoine overlays a soft, highly ductile ganoid bone. Previous experimentations has shown significant softening under compressive loading and an asymmetrical stress-strain response for analogous mineralized tissues. The structural features, porosity, and elastic modulus were determined from high-resolution scanning electron microscopy, 3D micro-tomography, and dynamic nanoindentation experiments to develop an idealized computational model for FE simulations. The numerical analysis employed Gurson's yield criterion to determine the influence of porosity and pressure on material strength. Functional gradation of elastic moduli and certain structural features, such as the sawtooth interface, are explicitly modeled to study the plate impact shock profile for a full 3-D analysis using ABAQUS finite element software.

  20. Complete integrability of information processing by biochemical reactions.

    PubMed

    Agliari, Elena; Barra, Adriano; Dello Schiavo, Lorenzo; Moro, Antonio

    2016-11-04

    Statistical mechanics provides an effective framework to investigate information processing in biochemical reactions. Within such framework far-reaching analogies are established among (anti-) cooperative collective behaviors in chemical kinetics, (anti-)ferromagnetic spin models in statistical mechanics and operational amplifiers/flip-flops in cybernetics. The underlying modeling - based on spin systems - has been proved to be accurate for a wide class of systems matching classical (e.g. Michaelis-Menten, Hill, Adair) scenarios in the infinite-size approximation. However, the current research in biochemical information processing has been focusing on systems involving a relatively small number of units, where this approximation is no longer valid. Here we show that the whole statistical mechanical description of reaction kinetics can be re-formulated via a mechanical analogy - based on completely integrable hydrodynamic-type systems of PDEs - which provides explicit finite-size solutions, matching recently investigated phenomena (e.g. noise-induced cooperativity, stochastic bi-stability, quorum sensing). The resulting picture, successfully tested against a broad spectrum of data, constitutes a neat rationale for a numerically effective and theoretically consistent description of collective behaviors in biochemical reactions.

  1. Technical Feasibility of Centrifugal Techniques for Evaluating Hazardous Waste Migration

    DTIC Science & Technology

    1987-12-01

    direct evaluation of the -influence of acceleration on soil moisture movement. A fully implicit finite difference solution scheme was used. The...using the finite difference scheme mentioned earlier. 2. The soil test apparatus for the centrifuge tests was designed and constructed. 110 3...npcr3 f~nJPX 115 S.. 0i U 4 I3 u cc/ U) C~j tC LL~~*- Lý u ’ uiu ’ 4-’ Uju x~j~r3np~~r~tj~jpU W3= 116 Finite Difference Model The finite difference

  2. Adsorption of flexible polymer chains on a surface: Effects of different solvent conditions

    NASA Astrophysics Data System (ADS)

    Martins, P. H. L.; Plascak, J. A.; Bachmann, M.

    2018-05-01

    Polymer chains undergoing a continuous adsorption-desorption transition are studied through extensive computer simulations. A three-dimensional self-avoiding walk lattice model of a polymer chain grafted onto a surface has been treated for different solvent conditions. We have used an advanced contact-density chain-growth algorithm, in which the density of contacts can be directly obtained. From this quantity, the order parameter and its fourth-order Binder cumulant are computed, as well as the corresponding critical exponents and the adsorption-desorption transition temperature. As the number of configurations with a given number of surface contacts and monomer-monomer contacts is independent of the temperature and solvent conditions, it can be easily applied to get results for different solvent parameter values without the need of any extra simulations. In analogy to continuous magnetic phase transitions, finite-size-scaling methods have been employed. Quite good results for the critical properties and phase diagram of very long single polymer chains have been obtained by properly taking into account the effects of corrections to scaling. The study covers all solvent effects, going from the limit of super-self-avoiding walks, characterized by effective monomer-monomer repulsion, to poor solvent conditions that enable the formation of compact polymer structures.

  3. A study of the response of nonlinear springs

    NASA Technical Reports Server (NTRS)

    Hyer, M. W.; Knott, T. W.; Johnson, E. R.

    1991-01-01

    The various phases to developing a methodology for studying the response of a spring-reinforced arch subjected to a point load are discussed. The arch is simply supported at its ends with both the spring and the point load assumed to be at midspan. The spring is present to off-set the typical snap through behavior normally associated with arches, and to provide a structure that responds with constant resistance over a finite displacement. The various phases discussed consist of the following: (1) development of the closed-form solution for the shallow arch case; (2) development of a finite difference analysis to study (shallow) arches; and (3) development of a finite element analysis for studying more general shallow and nonshallow arches. The two numerical analyses rely on a continuation scheme to move the solution past limit points, and to move onto bifurcated paths, both characteristics being common to the arch problem. An eigenvalue method is used for a continuation scheme. The finite difference analysis is based on a mixed formulation (force and displacement variables) of the governing equations. The governing equations for the mixed formulation are in first order form, making the finite difference implementation convenient. However, the mixed formulation is not well-suited for the eigenvalue continuation scheme. This provided the motivation for the displacement based finite element analysis. Both the finite difference and the finite element analyses are compared with the closed form shallow arch solution. Agreement is excellent, except for the potential problems with the finite difference analysis and the continuation scheme. Agreement between the finite element analysis and another investigator's numerical analysis for deep arches is also good.

  4. Bound states for magic state distillation in fault-tolerant quantum computation.

    PubMed

    Campbell, Earl T; Browne, Dan E

    2010-01-22

    Magic state distillation is an important primitive in fault-tolerant quantum computation. The magic states are pure nonstabilizer states which can be distilled from certain mixed nonstabilizer states via Clifford group operations alone. Because of the Gottesman-Knill theorem, mixtures of Pauli eigenstates are not expected to be magic state distillable, but it has been an open question whether all mixed states outside this set may be distilled. In this Letter we show that, when resources are finitely limited, nondistillable states exist outside the stabilizer octahedron. In analogy with the bound entangled states, which arise in entanglement theory, we call such states bound states for magic state distillation.

  5. Quantum synchronization of a driven self-sustained oscillator.

    PubMed

    Walter, Stefan; Nunnenkamp, Andreas; Bruder, Christoph

    2014-03-07

    Synchronization is a universal phenomenon that is important both in fundamental studies and in technical applications. Here we investigate synchronization in the simplest quantum-mechanical scenario possible, i.e., a quantum-mechanical self-sustained oscillator coupled to an external harmonic drive. Using the power spectrum we analyze synchronization in terms of frequency entrainment and frequency locking in close analogy to the classical case. We show that there is a steplike crossover to a synchronized state as a function of the driving strength. In contrast to the classical case, there is a finite threshold value in driving. Quantum noise reduces the synchronized region and leads to a deviation from strict frequency locking.

  6. Electromagnetic Propagation in Multimode Optical Fibers, Excited by Sources of Finite Bandwidth.

    DTIC Science & Technology

    1980-08-15

    21 + w’-itb + o(T2 - T2)/2 + wT2/2 exp(-4(T - T2)/21, (45) with tb - t - Z/h. After performing the two integrals over The expression of ( JaJ ) ,, and...53) r3 - T - 2 - T T/(2Tp + T2), (49) The other contribution can be put in a quantitative form by introducing the time delay Td between the centers of...mass o- =TI+ T1- (2T + TT)/(2T 2 + T1). (0) of the two pulses at a distance z; that is, An.analogous expression holds true for (JJ:),, which Td () - z

  7. Exploring the piezoelectric performance of PZT particulate-epoxy composites loaded in shear

    NASA Astrophysics Data System (ADS)

    Van Loock, F.; Deutz, D. B.; van der Zwaag, S.; Groen, W. A.

    2016-08-01

    The active and passive piezoelectric response of lead zirconium titanate (PZT)-epoxy particulate composites loaded in shear is studied using analytical models, a finite element model and by experiments. The response is compared to that of the same composites when loaded in simple tension. Analogously to bulk PZT, particulate PZT-polymer composites loaded in shear show higher piezoelectric charge coefficient (d 15) and energy density figure of merit (FOM15) values compared to simple tension (d 33) and (FOM33). This outcome demonstrates the as-yet barely explored potential of piezoelectric particulate composites for optimal strain energy harvesting when activated in shear.

  8. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Yau, J. F.; Malik, S. N.; Kim, K. S.; Vanstone, R. H.; Laflen, J. H.

    1985-01-01

    The objective of the Elevated Temperature Crack Growth Project is to evaluate proposed nonlinear fracture mechanics methods for application to combustor liners of aircraft gas turbine engines. During the first year of this program, proposed path-independent (P-I) integrals were reviewed for such applications. Several P-I integrals were implemented into a finite-element postprocessor which was developed and verified as part of the work. Alloy 718 was selected as the analog material for use in the forthcoming experimental work. A buttonhead, single-edge notch specimen was designed and verified for use in elevated-temperature strain control testing with significant inelastic strains. A crack mouth opening displacement measurement device was developed for further use.

  9. Quantifying Complexity in Quantum Phase Transitions via Mutual Information Complex Networks

    NASA Astrophysics Data System (ADS)

    Valdez, Marc Andrew; Jaschke, Daniel; Vargas, David L.; Carr, Lincoln D.

    2017-12-01

    We quantify the emergent complexity of quantum states near quantum critical points on regular 1D lattices, via complex network measures based on quantum mutual information as the adjacency matrix, in direct analogy to quantifying the complexity of electroencephalogram or functional magnetic resonance imaging measurements of the brain. Using matrix product state methods, we show that network density, clustering, disparity, and Pearson's correlation obtain the critical point for both quantum Ising and Bose-Hubbard models to a high degree of accuracy in finite-size scaling for three classes of quantum phase transitions, Z2, mean field superfluid to Mott insulator, and a Berzinskii-Kosterlitz-Thouless crossover.

  10. Nuclear Symmetry Energy and the Breaking of the Isospin Symmetry: How Do They Reconcile with Each Other?

    NASA Astrophysics Data System (ADS)

    Roca-Maza, X.; Colò, G.; Sagawa, H.

    2018-05-01

    We analyze and propose a solution to the apparent inconsistency between our current knowledge of the equation of state of asymmetric nuclear matter, the energy of the isobaric analog state (IAS) in a heavy nucleus such as 208Pb, and the isospin symmetry breaking forces in the nuclear medium. This is achieved by performing state-of-the-art Hartree-Fock plus random phase approximation calculations of the IAS that include all isospin symmetry breaking contributions. To this aim, we propose a new effective interaction that is successful in reproducing the IAS excitation energy without compromising other properties of finite nuclei.

  11. The FEM-R-Matrix Approach: Use of Mixed Finite Element and Gaussian Basis Sets for Electron Molecule Collisions

    NASA Technical Reports Server (NTRS)

    Thuemmel, Helmar T.; Huo, Winifred M.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    For the calculation of electron molecule collision cross sections R-matrix methods automatically take advantage of the division of configuration space into an inner region (I) bounded by radius tau b, where the scattered electron is within the molecular charge cloud and the system is described by an correlated Configuration Interaction (CI) treatment in close analogy to bound state calculations, and an outer region (II) where the scattered electron moves in the long-range multipole potential of the target and efficient analytic methods can be used for solving the asymptotic Schroedinger equation plus boundary conditions.

  12. Nuclear Symmetry Energy and the Breaking of the Isospin Symmetry: How Do They Reconcile with Each Other?

    PubMed

    Roca-Maza, X; Colò, G; Sagawa, H

    2018-05-18

    We analyze and propose a solution to the apparent inconsistency between our current knowledge of the equation of state of asymmetric nuclear matter, the energy of the isobaric analog state (IAS) in a heavy nucleus such as ^{208}Pb, and the isospin symmetry breaking forces in the nuclear medium. This is achieved by performing state-of-the-art Hartree-Fock plus random phase approximation calculations of the IAS that include all isospin symmetry breaking contributions. To this aim, we propose a new effective interaction that is successful in reproducing the IAS excitation energy without compromising other properties of finite nuclei.

  13. Lidar Luminance Quantizer

    NASA Technical Reports Server (NTRS)

    Quilligan, Gerard; DeMonthier, Jeffrey; Suarez, George

    2011-01-01

    This innovation addresses challenges in lidar imaging, particularly with the detection scheme and the shapes of the detected signals. Ideally, the echoed pulse widths should be extremely narrow to resolve fine detail at high event rates. However, narrow pulses require wideband detection circuitry with increased power dissipation to minimize thermal noise. Filtering is also required to shape each received signal into a form suitable for processing by a constant fraction discriminator (CFD) followed by a time-to-digital converter (TDC). As the intervals between the echoes decrease, the finite bandwidth of the shaping circuits blends the pulses into an analog signal (luminance) with multiple modes, reducing the ability of the CFD to discriminate individual events

  14. Kinetic theory of coupled oscillators.

    PubMed

    Hildebrand, Eric J; Buice, Michael A; Chow, Carson C

    2007-02-02

    We present an approach for the description of fluctuations that are due to finite system size induced correlations in the Kuramoto model of coupled oscillators. We construct a hierarchy for the moments of the density of oscillators that is analogous to the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy in the kinetic theory of plasmas and gases. To calculate the lowest order system size effect, we truncate this hierarchy at second order and solve the resulting closed equations for the two-oscillator correlation function around the incoherent state. We use this correlation function to compute the fluctuations of the order parameter, including the effect of transients, and compare this computation with numerical simulations.

  15. Optimization of finite difference forward modeling for elastic waves based on optimum combined window functions

    NASA Astrophysics Data System (ADS)

    Jian, Wang; Xiaohong, Meng; Hong, Liu; Wanqiu, Zheng; Yaning, Liu; Sheng, Gui; Zhiyang, Wang

    2017-03-01

    Full waveform inversion and reverse time migration are active research areas for seismic exploration. Forward modeling in the time domain determines the precision of the results, and numerical solutions of finite difference have been widely adopted as an important mathematical tool for forward modeling. In this article, the optimum combined of window functions was designed based on the finite difference operator using a truncated approximation of the spatial convolution series in pseudo-spectrum space, to normalize the outcomes of existing window functions for different orders. The proposed combined window functions not only inherit the characteristics of the various window functions, to provide better truncation results, but also control the truncation error of the finite difference operator manually and visually by adjusting the combinations and analyzing the characteristics of the main and side lobes of the amplitude response. Error level and elastic forward modeling under the proposed combined system were compared with outcomes from conventional window functions and modified binomial windows. Numerical dispersion is significantly suppressed, which is compared with modified binomial window function finite-difference and conventional finite-difference. Numerical simulation verifies the reliability of the proposed method.

  16. Evaluation of an alternative to feeding whole frozen fish in belugas (Delphinapterus leucas).

    PubMed

    Mazzaro, Lisa M; Richmond, Julie P; Morgan, Jessica N; Kluever, Michaela E; Dunn, J Lawrence; Romano, Tracy A; Zinn, Steven A; Koutsos, Elizabeth A

    2011-01-01

    Feeding fish to captive piscivores can be challenging owing to cost, availability, variability in nutrient, and caloric composition, as well as handling and storage concerns. This trial evaluated the response of three belugas to being fed Fish Analog, an alternative to frozen fish. Body condition, gut transit time, serum chemistry and metabolic hormone analytes, immune function, and behavioral motivation were the dependent variables. Belugas (n=3) were fed various levels of Fish Analog (0-50%) over a 6-month period, and follow-up studies were conducted to further examine several dependent variables. When provided in gradually increasing amounts, belugas consumed the Fish Analog, with only minor fecal consistency changes and without behavioral responses indicative of gastric discomfort. Axillary girth and blubber thickness were positively correlated, and did not differ significantly with changes in the percentage of Fish Analog fed. Individual animal variation in initial passage time, some serum chemistry analytes, and immune function differences were noted following feeding of Fish Analog. Feeding Fish Analog reduced blood n9 fatty acids compared with captive belugas fed no Fish Analog. Feeding a DHA-enriched Fish Analog increased several n3 fatty acids, including eicosapentaenoic acid, but not DHA, compared with whales fed no Fish Analog or non-DHA-enriched Fish Analog. Fish Analog was shown to be a viable alternative to feeding fish at up to 50% of the dietary caloric density. © 2010 Wiley-Liss, Inc.

  17. Full Wave Analysis of Passive Microwave Monolithic Integrated Circuit Devices Using a Generalized Finite Difference Time Domain (GFDTD) Algorithm

    NASA Technical Reports Server (NTRS)

    Lansing, Faiza S.; Rascoe, Daniel L.

    1993-01-01

    This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.

  18. Validated linear dynamic model of electrically-shunted magnetostrictive transducers with application to structural vibration control

    NASA Astrophysics Data System (ADS)

    Scheidler, Justin J.; Asnani, Vivake M.

    2017-03-01

    This paper presents a linear model of the fully-coupled electromechanical behavior of a generally-shunted magnetostrictive transducer. The impedance and admittance representations of the model are reported. The model is used to derive the effect of the shunt’s electrical impedance on the storage modulus and loss factor of the transducer without neglecting the inherent resistance of the transducer’s coil. The expressions are normalized and then shown to also represent generally-shunted piezoelectric materials that have a finite leakage resistance. The generalized expressions are simplified for three shunts: resistive, series resistive-capacitive, and inductive, which are considered for shunt damping, resonant shunt damping, and stiffness tuning, respectively. For each shunt, the storage modulus and loss factor are plotted for a wide range of the normalized parameters. Then, important trends and their impact on different applications are discussed. An experimental validation of the transducer model is presented for the case of resistive and resonant shunts. The model closely predicts the measured response for a variety of operating conditions. This paper also introduces a model for the dynamic compliance of a vibrating structure that is coupled to a magnetostrictive transducer for shunt damping and resonant shunt damping applications. This compliance is normalized and then shown to be analogous to that of a structure that is coupled to a piezoelectric material. The derived analogies allow for the observations and equations in the existing literature on structural vibration control using shunted piezoelectric materials to be directly applied to the case of shunted magnetostrictive transducers.

  19. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messaris, Gerasimos A. T., E-mail: messaris@upatras.gr; School of Science and Technology, Hellenic Open University, 11 Sahtouri Street, GR 262 22 Patras; Hadjinicolaou, Maria

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient inmore » a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the arterial system and the possible malfunction of the aorta.« less

  20. Unsteady fluid flow in a slightly curved pipe: A comparative study of a matched asymptotic expansions solution with a single analytical solution

    NASA Astrophysics Data System (ADS)

    Messaris, Gerasimos A. T.; Hadjinicolaou, Maria; Karahalios, George T.

    2016-08-01

    The present work is motivated by the fact that blood flow in the aorta and the main arteries is governed by large finite values of the Womersley number α and for such values of α there is not any analytical solution in the literature. The existing numerical solutions, although accurate, give limited information about the factors that affect the flow, whereas an analytical approach has an advantage in that it can provide physical insight to the flow mechanism. Having this in mind, we seek analytical solution to the equations of the fluid flow driven by a sinusoidal pressure gradient in a slightly curved pipe of circular cross section when the Womersley number varies from small finite to infinite values. Initially the equations of motion are expanded in terms of the curvature ratio δ and the resulting linearized equations are solved analytically in two ways. In the first, we match the solution for the main core to that for the Stokes boundary layer. This solution is valid for very large values of α. In the second, we derive a straightforward single solution valid to the entire flow region and for 8 ≤ α < ∞, a range which includes the values of α that refer to the physiological flows. Each solution contains expressions for the axial velocity, the stream function, and the wall stresses and is compared to the analogous forms presented in other studies. The two solutions give identical results to each other regarding the axial flow but differ in the secondary flow and the circumferential wall stress, due to the approximations employed in the matched asymptotic expansion process. The results on the stream function from the second solution are in agreement with analogous results from other numerical solutions. The second solution predicts that the atherosclerotic plaques may develop in any location around the cross section of the aortic wall unlike to the prescribed locations predicted by the first solution. In addition, it gives circumferential wall stresses augmented by approximately 100% with respect to the matched asymptotic expansions, a factor that may contribute jointly with other pathological factors to the faster aging of the arterial system and the possible malfunction of the aorta.

  1. The interplay of conflict and analogy in multidisciplinary teams.

    PubMed

    Paletz, Susannah B F; Schunn, Christian D; Kim, Kevin H

    2013-01-01

    Creative teamwork in multidisciplinary teams is a topic of interest to cognitive psychologists on the one hand, and to both social and organizational psychologists on the other. However, the interconnections between cognitive and social layers have been rarely explored. Drawing on mental models and dissonance theories, the current study takes a central variable studied by cognitive psychologists-analogy-and examines its relationship to a central variable examined by social psychologists-conflict. In an observational, field study, over 11h of audio-video data from conversations of the Mars Exploration Rover scientists were coded for different types of analogy and micro-conflicts that reveal the character of underlying psychological mechanisms. Two different types of time-lagged logistic models applied to these data revealed asymmetric patterns of associations between analogy and conflict. Within-domain analogies, but not within-discipline or outside-discipline analogies, preceded science and work process conflicts, suggesting that in multidisciplinary teams, representational gaps in very close domains will be more likely to spark conflict. But analogies also occurred in reaction to conflict: Process and negative conflicts, but not task conflicts, preceded within-discipline analogies, but not to within-domain or outside-discipline analogies. This study demonstrates ways in which cognition can be bidirectionally tied to social processes and discourse. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Combination of the discontinuous Galerkin method with finite differences for simulation of seismic wave propagation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisitsa, Vadim, E-mail: lisitsavv@ipgg.sbras.ru; Novosibirsk State University, Novosibirsk; Tcheverda, Vladimir

    We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. Inmore » this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.« less

  3. Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources

    PubMed Central

    Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue

    2015-01-01

    In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947

  4. Automatic Generation of Analogy Questions for Student Assessment: An Ontology-Based Approach

    ERIC Educational Resources Information Center

    Alsubait, Tahani; Parsia, Bijan; Sattler, Uli

    2012-01-01

    Different computational models for generating analogies of the form "A is to B as C is to D" have been proposed over the past 35 years. However, analogy generation is a challenging problem that requires further research. In this article, we present a new approach for generating analogies in Multiple Choice Question (MCQ) format that can be used…

  5. Determination of the Shear Stress Distribution in a Laminate from the Applied Shear Resultant--A Simplified Shear Solution

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Yarrington, Phillip W.

    2007-01-01

    The simplified shear solution method is presented for approximating the through-thickness shear stress distribution within a composite laminate based on laminated beam theory. The method does not consider the solution of a particular boundary value problem, rather it requires only knowledge of the global shear loading, geometry, and material properties of the laminate or panel. It is thus analogous to lamination theory in that ply level stresses can be efficiently determined from global load resultants (as determined, for instance, by finite element analysis) at a given location in a structure and used to evaluate the margin of safety on a ply by ply basis. The simplified shear solution stress distribution is zero at free surfaces, continuous at ply boundaries, and integrates to the applied shear load. Comparisons to existing theories are made for a variety of laminates, and design examples are provided illustrating the use of the method for determining through-thickness shear stress margins in several types of composite panels and in the context of a finite element structural analysis.

  6. Finite-time barriers to front propagation in two-dimensional fluid flows

    NASA Astrophysics Data System (ADS)

    Mahoney, John R.; Mitchell, Kevin A.

    2015-08-01

    Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."

  7. Skin friction enhancement in a model problem of undulatory swimming

    NASA Astrophysics Data System (ADS)

    Ehrenstein, Uwe; Eloy, Christophe

    2013-10-01

    To calculate the energy costs of swimming, it is crucial to evaluate the drag force originating from skin friction. In this paper we examine the assumption, known as the 'Bone-Lighthill boundary-layer thinning hypothesis', that undulatory swimming motions induce a drag increase because of the compression of the boundary layer. Studying analytically an incoming flow along a flat plate moving at a normal velocity as a limit case of a yawed cylinder in uniform flow under the laminar boundary layer assumption, we demonstrate that the longitudinal drag scales as the square root of the normal velocity component. This analytical prediction is interpreted in the light of a three-dimensional numerical simulation result for a plate of finite length and width. An analogous two-dimensional Navier-Stokes problem by artificially accelerating the flow in a channel of finite height is proposed and solved numerically, showing the robustness of the analytical results. Solving the problem for an undulatory plate motion similar to fish swimming, we find a drag enhancement which can be estimated to be of the order of 20 %.

  8. Fast transient digitizer

    DOEpatents

    Villa, Francesco

    1982-01-01

    Method and apparatus for sequentially scanning a plurality of target elements with an electron scanning beam modulated in accordance with variations in a high-frequency analog signal to provide discrete analog signal samples representative of successive portions of the analog signal; coupling the discrete analog signal samples from each of the target elements to a different one of a plurality of high speed storage devices; converting the discrete analog signal samples to equivalent digital signals; and storing the digital signals in a digital memory unit for subsequent measurement or display.

  9. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.

  10. Finite-difference computations of rotor loads

    NASA Technical Reports Server (NTRS)

    Caradonna, F. X.; Tung, C.

    1985-01-01

    The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.

  11. On the thermomechanical coupling in dissipative materials: A variational approach for generalized standard materials

    NASA Astrophysics Data System (ADS)

    Bartels, A.; Bartel, T.; Canadija, M.; Mosler, J.

    2015-09-01

    This paper deals with the thermomechanical coupling in dissipative materials. The focus lies on finite strain plasticity theory and the temperature increase resulting from plastic deformation. For this type of problem, two fundamentally different modeling approaches can be found in the literature: (a) models based on thermodynamical considerations and (b) models based on the so-called Taylor-Quinney factor. While a naive straightforward implementation of thermodynamically consistent approaches usually leads to an over-prediction of the temperature increase due to plastic deformation, models relying on the Taylor-Quinney factor often violate fundamental physical principles such as the first and the second law of thermodynamics. In this paper, a thermodynamically consistent framework is elaborated which indeed allows the realistic prediction of the temperature evolution. In contrast to previously proposed frameworks, it is based on a fully three-dimensional, finite strain setting and it naturally covers coupled isotropic and kinematic hardening - also based on non-associative evolution equations. Considering a variationally consistent description based on incremental energy minimization, it is shown that the aforementioned problem (thermodynamical consistency and a realistic temperature prediction) is essentially equivalent to correctly defining the decomposition of the total energy into stored and dissipative parts. Interestingly, this decomposition shows strong analogies to the Taylor-Quinney factor. In this respect, the Taylor-Quinney factor can be well motivated from a physical point of view. Furthermore, certain intervals for this factor can be derived in order to guarantee that fundamental physically principles are fulfilled a priori. Representative examples demonstrate the predictive capabilities of the final constitutive modeling framework.

  12. Shedding light into the function of the earliest vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Martinez-Perez, Carlos; Purnell, Mark; Rayfield, Emily; Donoghue, Philip

    2016-04-01

    Conodonts are an extinct group of jawless vertebrates, the first in our evolutionary lineage to develop a biomineralized skeleton. As such, the conodont skeleton is of great significance because of the insights it provides concerning the biology and function of the primitive vertebrate skeleton. Conodont function has been debated for a century and a half on the basis of its paleocological importance in the Palaezoic ecosystems. However, due to the lack of extanct close representatives and the small size of the conodont element (under a milimiter in length) strongly limited their functional analysis, traditional restricted to analogy. More recently, qualitative approaches have been developed, facilitating tests of element function based on occlusal performance and analysis of microwear and microstructure. In this work we extend these approaches using novel quantitative experimental methods including Synchrotron Radiation X-ray Tomographic Microscopy or Finite Element Analysis to test hypotheses of conodont function. The development of high resolution virtual models of conodont elements, together with biomechanical approaches using Finite Element analysis, informed by occlusal and microwear analyses, provided conclusive support to test hypothesis of structural adaptation within the crown tissue microstructure, showing a close topological co-variation patterns of compressive and tensile stress distribution with different crystallite orientation. In addition, our computational analyses strongly support a tooth-like function for many conodont species. Above all, our study establishes a framework (experimental approach) in which the functional ecology of conodonts can be read from their rich taxonomy and phylogeny, representing an important attempt to understand the role of this abundant and diverse clade in the Phanerozoic marine ecosystems.

  13. Computer-Oriented Calculus Courses Using Finite Differences.

    ERIC Educational Resources Information Center

    Gordon, Sheldon P.

    The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…

  14. Gyroscopic analogy of a rotating stratified flow confined in a tilted spheroid and its implication to stability of a heavy symmetrical top

    NASA Astrophysics Data System (ADS)

    Fukumoto, Yasuhide; Miyachi, Yuki

    2017-11-01

    We address the suppression of the gravitational instability of rotating stratified flows in a confined geometry in two ways, continuous and discontinuous stratification. A rotating flow of a stratified fluid confined in an ellipsoid, subject to gravity force, whose velocity and density fields are linear in coordinates, bears an analogy with a mechanical system of finite degrees of freedom, that is, a heavy rigid body. An insight is gained into the mechanism of system rotation for the ability of a lighter fluid of sustaining, on top of it, a heavier fluid when the angular velocity is greater than a critical value. The sleeping top corresponds to such a state. First we show that a rotating stratified flow confined in a tilted spheroid is equivalent to a heavy symmetrical top with the symmetric axis tilted from the top axis. This tilting effect of the symmetric axis on the linear stability of the sleeping top and its bifurcation is investigated in some detail. Second, we explore the incompressible two-layer RTI of a discontinuously stratified fluid confined in the lower-half of an upright spheroid rotating about the axis of symmetry oriented parallel to the vertical direction. The gyroscopic analogy accounts for decrease of the critical rotation rate with oblateness. This work was supported in part by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant No. 16K05476).

  15. Fluorinated analogs of malachite green: synthesis and toxicity.

    PubMed

    Kraus, George A; Jeon, Insik; Nilsen-Hamilton, Marit; Awad, Ahmed M; Banerjee, Jayeeta; Parvin, Bahram

    2008-04-27

    A series of fluorinated analogs of malachite green (MG) have been synthesized and their toxicity to Saccharomyces cerevisiae and a human ovarian epithelial cell line examined. The toxicity profiles were found to be different for these two species. Two analogs, one with 2,4-difluoro substitution and the other with 2-fluoro substitution seem to be the most promising analogs because they showed the lowest toxicity to the human cells.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Birn, J.; Battaglia, M.; Fletcher, L.

    Using test particle studies in the electromagnetic fields of three-dimensional magnetohydrodynamic (MHD) simulations of magnetic reconnection, we study the energization of charged particles in the context of the standard two-ribbon flare picture in analogy to the standard magnetospheric substorm paradigm. In particular, we investigate the effects of the collapsing field (“collapsing magnetic trap”) below a reconnection site, which has been demonstrated to be the major acceleration mechanism that causes energetic particle acceleration and injections observed in Earth’s magnetotail associated with substorms and other impulsive events. We contrast an initially force-free, high-shear field (low beta) with low and moderate shear, finite-pressuremore » (high-beta) arcade structures, where beta represents the ratio between gas (plasma) and magnetic pressure. We demonstrate that the energization affects large numbers of particles, but the acceleration is modest in the presence of a significant shear field. Without incorporating loss mechanisms, the effect on particles at different energies is similar, akin to adiabatic heating, and thus is not a likely mechanism to generate a power-law tail onto a (heated or not heated) Maxwellian velocity distribution.« less

  17. The numerical-analytical implementation of the cross-sections method to the open waveguide transition of the "horn" type

    NASA Astrophysics Data System (ADS)

    Divakov, Dmitriy; Malykh, Mikhail; Sevastianov, Leonid; Sevastianov, Anton; Tiutiunnik, Anastasiia

    2017-04-01

    In the paper we construct a method for approximate solution of the waveguide problem for guided modes of an open irregular waveguide transition. The method is based on straightening of the curved waveguide boundaries by introducing new variables and applying the Kantorovich method to the problem formulated in the new variables to get a system of ordinary second-order differential equations. In the method, the boundary conditions are formulated by analogy with the partial radiation conditions in the similar problem for closed waveguide transitions. The method is implemented in the symbolic-numeric form using the Maple computer algebra system. The coefficient matrices of the system of differential equations and boundary conditions are calculated symbolically, and then the obtained boundary-value problem is solved numerically using the finite difference method. The chosen coordinate functions of Kantorovich expansions provide good conditionality of the coefficient matrices. The numerical experiment simulating the propagation of guided modes in the open waveguide transition confirms the validity of the method proposed to solve the problem.

  18. Transport phenomena in helical edge state interferometers: A Green's function approach

    NASA Astrophysics Data System (ADS)

    Rizzo, Bruno; Arrachea, Liliana; Moskalets, Michael

    2013-10-01

    We analyze the current and the shot noise of an electron interferometer made of the helical edge states of a two-dimensional topological insulator within the framework of nonequilibrium Green's functions formalism. We study, in detail, setups with a single and with two quantum point contacts inducing scattering between the different edge states. We consider processes preserving the spin as well as the effect of spin-flip scattering. In the case of a single quantum point contact, a simple test based on the shot-noise measurement is proposed to quantify the strength of the spin-flip scattering. In the case of two single point contacts with the additional ingredient of gate voltages applied within a finite-size region at the top and bottom edges of the sample, we identify two types of interference processes in the behavior of the currents and the noise. One such process is analogous to that taking place in a Fabry-Pérot interferometer, while the second one corresponds to a configuration similar to a Mach-Zehnder interferometer. In the helical interferometer, these two processes compete.

  19. Electroacoustic analysis, design, and implementation of a small balanced armature speaker.

    PubMed

    Bai, Mingsian R; You, Bo-Cheng; Lo, Yi-Yang

    2014-11-01

    This paper presents a new design and implementation of a balanced armature speaker (BAS), which is composed of permanent magnetic circuits, a moving armature, and a coil. The armature rocks about a pivot with the coil at one end and the permanent magnet on another. A magnetic circuit analysis is conducted for the designed BAS to formulate the force factor, which is required for modeling the coupling between the electrical and mechanical systems. In addition, an electromechanoacoustical analogous circuit is established for the BAS, which bears the same structure as the moving coil loudspeaker, except that the force factor is different. A hybrid model, which combines the lumped parameter model in the electrical and acoustical domains with a finite element model in the mechanical domain, is developed to model the high-frequency response because of the high-order modes of the membrane, the drive rod, and the armature. The electroacoustic analysis is experimentally verified. The results indicate that the sound pressure response that is simulated using the hybrid model is in superior agreement with the measured response to that simulated using the lumped parameter model.

  20. Heat flux viscosity in collisional magnetized plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, C., E-mail: cliu@pppl.gov; Fox, W.; Bhattacharjee, A.

    2015-05-15

    Momentum transport in collisional magnetized plasmas due to gradients in the heat flux, a “heat flux viscosity,” is demonstrated. Even though no net particle flux is associated with a heat flux, in a plasma there can still be momentum transport owing to the velocity dependence of the Coulomb collision frequency, analogous to the thermal force. This heat-flux viscosity may play an important role in numerous plasma environments, in particular, in strongly driven high-energy-density plasma, where strong heat flux can dominate over ordinary plasma flows. The heat flux viscosity can influence the dynamics of the magnetic field in plasmas through themore » generalized Ohm's law and may therefore play an important role as a dissipation mechanism allowing magnetic field line reconnection. The heat flux viscosity is calculated directly using the finite-difference method of Epperlein and Haines [Phys. Fluids 29, 1029 (1986)], which is shown to be more accurate than Braginskii's method [S. I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)], and confirmed with one-dimensional collisional particle-in-cell simulations. The resulting transport coefficients are tabulated for ease of application.« less

  1. Reprint of : Hanbury-Brown Twiss noise correlation with time controlled quasi-particles in ballistic quantum conductors

    NASA Astrophysics Data System (ADS)

    Glattli, D. C.; Roulleau, P.

    2016-08-01

    We study the Hanbury Brown and Twiss correlation of electronic quasi-particles injected in a quantum conductor using current noise correlations and we experimentally address the effect of finite temperature. By controlling the relative time of injection of two streams of electrons it is possible to probe the fermionic antibunching, performing the electron analog of the optical Hong Ou Mandel (HOM) experiment. The electrons are injected using voltage pulses with either sine-wave or Lorentzian shape. In the latter case, we propose a set of orthogonal wavefunctions, describing periodic trains of multiply charged electron pulses, which give a simple interpretation to the HOM shot noise. The effect of temperature is then discussed and experimentally investigated. We observe a perfect electron anti-bunching for a large range of temperature, showing that, as recently predicted, thermal mixing of the states does not affect anti-bunching properties, a feature qualitatively different from dephasing. For single charge Lorentzian pulses, we provide experimental evidence of the prediction that the HOM shot noise variation versus the emission time delay is remarkably independent of the temperature.

  2. Toward a computational model of hemostasis

    NASA Astrophysics Data System (ADS)

    Leiderman, Karin; Danes, Nicholas; Schoeman, Rogier; Neeves, Keith

    2017-11-01

    Hemostasis is the process by which a blood clot forms to prevent bleeding at a site of injury. The formation time, size and structure of a clot depends on the local hemodynamics and the nature of the injury. Our group has previously developed computational models to study intravascular clot formation, a process confined to the interior of a single vessel. Here we present the first stage of an experimentally-validated, computational model of extravascular clot formation (hemostasis) in which blood through a single vessel initially escapes through a hole in the vessel wall and out a separate injury channel. This stage of the model consists of a system of partial differential equations that describe platelet aggregation and hemodynamics, solved via the finite element method. We also present results from the analogous, in vitro, microfluidic model. In both models, formation of a blood clot occludes the injury channel and stops flow from escaping while blood in the main vessel retains its fluidity. We discuss the different biochemical and hemodynamic effects on clot formation using distinct geometries representing intra- and extravascular injuries.

  3. Spaceflight Sensorimotor Analogs: Simulating Acute and Adaptive Effects

    NASA Technical Reports Server (NTRS)

    Taylor, Laura C.; Harm, Deborah L.; Kozlovskaya, Inessa; Reschke, Millard F.; Wood, Scott J.

    2009-01-01

    Adaptive changes in sensorimotor function during spaceflight are reflected by spatial disorientation, motion sickness, gaze destabilization and decrements in balance, locomotion and eye-hand coordination that occur during and following transitions between different gravitational states. The purpose of this study was to conduct a meta-synthesis of data from spaceflight analogs to evaluate their effectiveness in simulating adaptive changes in sensorimotor function. METHODS. The analogs under review were categorized as either acute analogs used to simulate performance decrements accompanied with transient changes, or adaptive analogs used to drive sensorimotor learning to altered sensory feedback. The effectiveness of each analog was evaluated in terms of mechanisms of action, magnitude and time course of observed deficits compared to spaceflight data, and the effects of amplitude and exposure duration. RESULTS. Parabolic flight has been used extensively to examine effects of acute variation in gravitational loads, ranging from hypergravity to microgravity. More recently, galvanic vestibular stimulation has been used to elicit acute postural, locomotor and gaze dysfunction by disrupting vestibular afferents. Patient populations, e.g., with bilateral vestibular loss or cerebellar dysfunction, have been proposed to model acute sensorimotor dysfunction. Early research sponsored by NASA involved living onboard rotating rooms, which appeared to approximate the time course of adaptation and post-exposure recovery observed in astronauts following spaceflight. Exposure to different bed-rest paradigms (6 deg head down, dry immersion) result in similar motor deficits to that observed following spaceflight. Shorter adaptive analogs have incorporated virtual reality environments, visual distortion paradigms, exposure to conflicting tilt-translation cues, and exposure to 3Gx centrifugation. As with spaceflight, there is considerable variability in responses to most of the analogs reviewed. DISCUSSION. A true ground-based flight analog for sensorimotor function is not feasible. A combination of flight analogs; however, can be used to selectively mimic different aspects of the spaceflight-induced sensorimotor performance decrements.

  4. An Exponential Finite Difference Technique for Solving Partial Differential Equations. M.S. Thesis - Toledo Univ., Ohio

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.

  5. exponential finite difference technique for solving partial differential equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.

    1987-01-01

    An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less

  6. Chemistry of isoflavone heteroanalogs. 11. Benzodioxane analogs of chalcone, flavone, and isoflavone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khilya, V.P.; Aitmambetov, A.; Turov, A.V.

    1986-08-01

    Benzodioxane analogs of chalcones and their epoxides have been prepared. Different types of analogs of natural flavonolignan - silibin - have been synthesized from these compounds. The PMR spectra of the new compounds and the results of the preliminary biological testings are reported and discussed.

  7. Diversity of actions of GnRHs mediated by ligand-induced selective signaling

    PubMed Central

    Millar, Robert P.; Pawson, Adam J.; Morgan, Kevin; Rissman, Emilie F.; Lu, Zhi-Liang

    2009-01-01

    Geoffrey Wingfield Harris’ demonstration of hypothalamic hormones regulating pituitary function led to their structural identification and therapeutic utilization in a wide spectrum of diseases. Amongst these, Gonadotropin Releasing Hormone (GnRH) and its analogs are widely employed in modulating gonadotropin and sex steroid secretion to treat infertility, precocious puberty and many hormone-dependent diseases including endometriosis, uterine fibroids and prostatic cancer. While these effects are all mediated via modulation of the pituitary gonadotrope GnRH receptor and the Gq signaling pathway, it has become increasingly apparent that GnRH regulates many extrapituitary cells in the nervous system and periphery. This review focuses on two such examples, namely GnRH analog effects on reproductive behaviors and GnRH analog effects on the inhibition of cancer cell growth. For both effects the relative activities of a range of GnRH analogs is distinctly different from their effects on the pituitary gonadotrope and different signaling pathways are utilized. As there is only a single functional GnRH receptor type in man we have proposed that the GnRH receptor can assume different conformations which have different selectivity for GnRH analogs and intracellular signaling proteins complexes. This ligand-induced selective-signaling recruits certain pathways while by-passing others and has implications in developing more selective GnRH analogs for highly specific therapeutic intervention. PMID:17976709

  8. 3D Gaussian Beam Modeling

    DTIC Science & Technology

    2011-09-01

    optimized building blocks such as a parallelized tri-diagonal linear solver (used in the “implicit finite differences ” and split-step Pade PE models...and Ding Lee. “A finite - difference treatment of interface conditions for the parabolic wave equation: The horizontal interface.” The Journal of the...Acoustical Society of America, 71(4):855, 1982. 3. Ding Lee and Suzanne T. McDaniel. “A finite - difference treatment of interface conditions for

  9. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES

    PubMed Central

    Wan, Xiaohai; Li, Zhilin

    2012-01-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346

  10. SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.

    PubMed

    Wan, Xiaohai; Li, Zhilin

    2012-06-01

    Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size.

  11. A Finite Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces

    DTIC Science & Technology

    1991-09-01

    Difference Numerical Model for the Propagation of Finite Amplitude Acoustical Blast Waves Outdoors Over Hard and Porous Surfaces by Victor W. Sparrow...The nonlinear acoustic propagation effects require a numerical solution in the time domain. To model a porous ground surface, which in the frequency...incident on the hard and porous surfaces were produced. The model predicted that near grazing finite amplitude acoustic blast waves decay with distance

  12. A progress report on estuary modeling by the finite-element method

    USGS Publications Warehouse

    Gray, William G.

    1978-01-01

    Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)

  13. Asymptotic analysis of numerical wave propagation in finite difference equations

    NASA Technical Reports Server (NTRS)

    Giles, M.; Thompkins, W. T., Jr.

    1983-01-01

    An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.

  14. Mixed finite-difference scheme for analysis of simply supported thick plates.

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1973-01-01

    A mixed finite-difference scheme is presented for the stress and free vibration analysis of simply supported nonhomogeneous and layered orthotropic thick plates. The analytical formulation is based on the linear, three-dimensional theory of orthotropic elasticity and a Fourier approach is used to reduce the governing equations to six first-order ordinary differential equations in the thickness coordinate. The governing equations possess a symmetric coefficient matrix and are free of derivatives of the elastic characteristics of the plate. In the finite difference discretization two interlacing grids are used for the different fundamental unknowns in such a way as to reduce both the local discretization error and the bandwidth of the resulting finite-difference field equations. Numerical studies are presented for the effects of reducing the interior and boundary discretization errors and of mesh refinement on the accuracy and convergence of solutions. It is shown that the proposed scheme, in addition to a number of other advantages, leads to highly accurate results, even when a small number of finite difference intervals is used.

  15. Analogy-Integrated e-Learning Module: Facilitating Students' Conceptual Understanding

    ERIC Educational Resources Information Center

    Florida, Jennifer

    2012-01-01

    The study deals with the development of an analogy-integrated e-learning module on Cellular Respiration, which is intended to facilitate conceptual understanding of students with different brain hemisphere dominance and learning styles. The module includes eight analogies originally conceptualized following the specific steps used to prepare…

  16. Holographic superconductors in the presence of dark matter

    NASA Astrophysics Data System (ADS)

    Rogatko, Marek; Wysokiński, Karol I.

    2017-10-01

    The application of the gauge-gravity duality, also known as anti-de Sitter/conformal field theory (AdS/CFT) correspondence to study condensed matter systems has resulted in a number of important findings. Using the analogy, we have studied the phase transitions between a holographic insulator and a metal at zero temperature as well as finite temperature transition between a metal and a holographic superconductor of s- and p-wave symmetry. The main aim of this note is to look in which way the dark matter might affect the properties of superconductors. The hope is that some of the observed modifications could be used to detect this ubiquitous but still elusive component of matter in the Universe.

  17. Superfocusing terahertz waves below lambda/250 using plasmonic parallel-plate waveguides.

    PubMed

    Zhan, Hui; Mendis, Rajind; Mittleman, Daniel M

    2010-04-26

    We experimentally demonstrate complete two-dimensional (2-D) confinement of terahertz (THz) energy in finite-width parallel-plate waveguides, defying conventional wisdom in the century-old field of microwave waveguide technology. We find that the degree of energy confinement increases exponentially with decreasing plate separation. We propose that this 2-D confinement is mediated by the mutual coupling of plasmonic edge modes, analogous to that observed in slot waveguides at optical wavelengths. By adiabatically tapering the width and the separation, we focus THz waves down to a size of 10 microm (approximately lambda/260) by 18 microm ( approximately lambda/145), which corresponds to a mode area of only 2.6 x 10(-5) lambda(2).

  18. Rayleigh convective instability in a cloud medium

    NASA Astrophysics Data System (ADS)

    Shmerlin, B. Ya.; Shmerlin, M. B.

    2017-09-01

    The problem of convective instability of an atmospheric layer containing a horizontally finite region filled with a cloud medium is considered. Solutions exponentially growing with time, i.e., solitary cloud rolls or spatially localized systems of cloud rolls, have been constructed. In the case of axial symmetry, their analogs are convective vortices with both ascending and descending motions on the axis and cloud clusters with ring-shaped convective structures. Depending on the anisotropy of turbulent exchange, the scale of vortices changes from the tornado scale to the scale of tropical cyclones. The solutions with descending motions on the axis can correspond to the formation of a tornado funnel or a hurricane eye in tropical cyclones.

  19. FAST TRACK COMMUNICATION: Exact and simple results for the XYZ and strongly interacting fermion chains

    NASA Astrophysics Data System (ADS)

    Fendley, Paul; Hagendorf, Christian

    2010-10-01

    We conjecture exact and simple formulas for some physical quantities in two quantum chains. A classic result of this type is Onsager, Kaufman and Yang's formula for the spontaneous magnetization in the Ising model, subsequently generalized to the chiral Potts models. We conjecture that analogous results occur in the XYZ chain when the couplings obey JxJy + JyJz + JxJz = 0, and in a related fermion chain with strong interactions and supersymmetry. We find exact formulas for the magnetization and gap in the former, and the staggered density in the latter, by exploiting the fact that certain quantities are independent of finite-size effects.

  20. Gravity on-shell diagrams

    DOE PAGES

    Herrmann, Enrico; Trnka, Jaroslav

    2016-11-22

    Here, we study on-shell diagrams for gravity theories with any number of super-symmetries and find a compact Grassmannian formula in terms of edge variables of the graphs. Unlike in gauge theory where the analogous form involves only d log-factors, in gravity there is a non-trivial numerator as well as higher degree poles in the edge variables. Based on the structure of the Grassmannian formula for N = 8 supergravity we conjecture that gravity loop amplitudes also possess similar properties. In particular, we find that there are only logarithmic singularities on cuts with finite loop momentum and that poles at infinitymore » are present, in complete agreement with the conjecture presented in.« less

  1. Simulation and Analysis of One-time Forming Process of Automobile Steering Ball Head

    NASA Astrophysics Data System (ADS)

    Shi, Peicheng; Zhang, Xujun; Xu, Zengwei; Zhang, Rongyun

    2018-03-01

    Aiming at the problems such as large machining allowance, low production efficiency and material waste during die forging of ball pin, the cold extrusion process of ball head was studied and the analog simulation of the forming process was carried out by using the finite element analysis software DEFORM-3D. Through the analysis of the equivalent stress strain, velocity vector field and load-displacement curve, the flow regularity of the metal during the cold extrusion process of ball pin was clarified, and possible defects during the molding were predicted. The results showed that this process could solve the forming problem of ball pin and provide theoretical basis for actual production of enterprises.

  2. Quantum gap and spin-wave excitations in the Kitaev model on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Avella, Adolfo; Di Ciolo, Andrea; Jackeli, George

    2018-05-01

    We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.

  3. The Screening and Evaluation of Experimental Antiparasitic Drugs

    DTIC Science & Technology

    1990-03-01

    exhibited better activity than 5 analogs of artemisinin and only 2 of the 4 different 5-fluoropyrimidine analogs were active. Neither verapamil, diltiazem...Dietary Studies 17 Table III Artemisinin , Artelinic Acid, and Arteether in a 6-Day Suppressive Test 18 Table IV Artemisinin and Related Analogs in a 3...indicate antagnism. 3-DOSE MODIFIED MM TEST A series of artemisinin analogs were administered on days 3, 4 and 5 after inoculation with a regular MM

  4. Exact finite difference schemes for the non-linear unidirectional wave equation

    NASA Technical Reports Server (NTRS)

    Mickens, R. E.

    1985-01-01

    Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.

  5. Application of finite element approach to transonic flow problems

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Murman, E. M.; Wellford, L. C., Jr.

    1976-01-01

    A variational finite element model for transonic small disturbance calculations is described. Different strategy is adopted in subsonic and supersonic regions, and blending elements are introduced between different regions. In the supersonic region, no upstream effect is allowed. If rectangular elements with linear shape functions are used, the model is similar to Murman's finite difference operators. Higher order shape functions, nonrectangular elements, and discontinuous approximation of shock waves are also discussed.

  6. [The function of analogies in natural sciences, also in contrast to metaphors and models].

    PubMed

    Hentschel, Klaus

    2010-01-01

    This introduction surveys the various functions of analogies in science, medicine and technology. The focus is on their heuristic importance. The productiveness of analogies is linked to the systematic depth and breadth of the established connections. Various examples are presented from different periods in the history of science, most notably Galileo; such late-Victorian Maxwellians as George Francis FitzGerald and Oliver Lodge; and Heinrich HERTZ and Niels BOHR. These examples are examined in terms of the specific differing temporal ranges of their claimed validities. They serve as evidence or counterevidence for various systematic analyses of analogies as put forward by various philosophers of science, most notably Francis Bacon, John Stuart Mill, Ernst Mach, Harald Høffding, Ernest Nagel, Mary Hesse and Peter Achinstein. The analytic framework for analogies supported here is what the cognitive scientist Dedre Gentner has termed structure-mapping.

  7. Going through a quantum phase

    NASA Technical Reports Server (NTRS)

    Shapiro, Jeffrey H.

    1992-01-01

    Phase measurements on a single-mode radiation field are examined from a system-theoretic viewpoint. Quantum estimation theory is used to establish the primacy of the Susskind-Glogower (SG) phase operator; its phase eigenkets generate the probability operator measure (POM) for maximum likelihood phase estimation. A commuting observables description for the SG-POM on a signal x apparatus state space is derived. It is analogous to the signal-band x image-band formulation for optical heterodyne detection. Because heterodyning realizes the annihilation operator POM, this analogy may help realize the SG-POM. The wave function representation associated with the SG POM is then used to prove the duality between the phase measurement and the number operator measurement, from which a number-phase uncertainty principle is obtained, via Fourier theory, without recourse to linearization. Fourier theory is also employed to establish the principle of number-ket causality, leading to a Paley-Wiener condition that must be satisfied by the phase-measurement probability density function (PDF) for a single-mode field in an arbitrary quantum state. Finally, a two-mode phase measurement is shown to afford phase-conjugate quantum communication at zero error probability with finite average photon number. Application of this construct to interferometric precision measurements is briefly discussed.

  8. A fast combination calibration of foreground and background for pipelined ADCs

    NASA Astrophysics Data System (ADS)

    Kexu, Sun; Lenian, He

    2012-06-01

    This paper describes a fast digital calibration scheme for pipelined analog-to-digital converters (ADCs). The proposed method corrects the nonlinearity caused by finite opamp gain and capacitor mismatch in multiplying digital-to-analog converters (MDACs). The considered calibration technique takes the advantages of both foreground and background calibration schemes. In this combination calibration algorithm, a novel parallel background calibration with signal-shifted correlation is proposed, and its calibration cycle is very short. The details of this technique are described in the example of a 14-bit 100 Msample/s pipelined ADC. The high convergence speed of this background calibration is achieved by three means. First, a modified 1.5-bit stage is proposed in order to allow the injection of a large pseudo-random dithering without missing code. Second, before correlating the signal, it is shifted according to the input signal so that the correlation error converges quickly. Finally, the front pipeline stages are calibrated simultaneously rather than stage by stage to reduce the calibration tracking constants. Simulation results confirm that the combination calibration has a fast startup process and a short background calibration cycle of 2 × 221 conversions.

  9. Model Checking Techniques for Assessing Functional Form Specifications in Censored Linear Regression Models.

    PubMed

    León, Larry F; Cai, Tianxi

    2012-04-01

    In this paper we develop model checking techniques for assessing functional form specifications of covariates in censored linear regression models. These procedures are based on a censored data analog to taking cumulative sums of "robust" residuals over the space of the covariate under investigation. These cumulative sums are formed by integrating certain Kaplan-Meier estimators and may be viewed as "robust" censored data analogs to the processes considered by Lin, Wei & Ying (2002). The null distributions of these stochastic processes can be approximated by the distributions of certain zero-mean Gaussian processes whose realizations can be generated by computer simulation. Each observed process can then be graphically compared with a few realizations from the Gaussian process. We also develop formal test statistics for numerical comparison. Such comparisons enable one to assess objectively whether an apparent trend seen in a residual plot reects model misspecification or natural variation. We illustrate the methods with a well known dataset. In addition, we examine the finite sample performance of the proposed test statistics in simulation experiments. In our simulation experiments, the proposed test statistics have good power of detecting misspecification while at the same time controlling the size of the test.

  10. Continuous and discontinuous phase transitions in the evolution of a polygenic trait under stabilizing selective pressure

    NASA Astrophysics Data System (ADS)

    Fierro, Annalisa; Cocozza, Sergio; Monticelli, Antonella; Scala, Giovanni; Miele, Gennaro

    2017-06-01

    The presence of phenomena analogous to phase transition in Statistical Mechanics has been suggested in the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. By using numerical simulations of a model system, we analyze the evolution of a population of N diploid hermaphrodites in random mating regime. The population evolves under the effect of drift, selective pressure in form of viability on an additive polygenic trait, and mutation. The analysis allows to determine a phase diagram in the plane of mutation rate and strength of selection. The involved pattern of phase transitions is characterized by a line of critical points for weak selective pressure (smaller than a threshold), whereas discontinuous phase transitions, characterized by metastable hysteresis, are observed for strong selective pressure. A finite-size scaling analysis suggests the analogy between our system and the mean-field Ising model for selective pressure approaching the threshold from weaker values. In this framework, the mutation rate, which allows the system to explore the accessible microscopic states, is the parameter controlling the transition from large heterozygosity ( disordered phase) to small heterozygosity ( ordered one).

  11. The embedding problem in topological dynamics and Takens’ theorem

    NASA Astrophysics Data System (ADS)

    Gutman, Yonatan; Qiao, Yixiao; Szabó, Gábor

    2018-02-01

    We prove that every {Z}k -action (X, {Z}k, T) of mean dimension less than D/2 admitting a factor (Y, {Z}k, S) of Rokhlin dimension not greater than L embeds in (([0, 1](L+1)D){\\hspace{0pt}}{Zk}× Y, σ× S) , where D\\in{N} , L\\in{N}\\cup\\{0\\} and σ is the shift on the Hilbert cube ([0, 1](L+1)D){\\hspace{0pt}}{Zk} ; in particular, when (Y, {Z}k, S) is an irrational {Z}k -rotation on the k-torus, (X, {Z}k, T) embeds in (([0, 1]2^kD+1){\\hspace{0pt}}{Z^k}, σ) , which is compared to a previous result in Gutman, Lindenstrauss and Tsukamoto (2016 Geom. Funct. Anal. 3 778-817). Moreover, we give a complete and detailed proof of Takens’ embedding theorem with a continuous observable for {Z} -actions and deduce the analogous result for {Z}k -actions. Lastly, we show that the Lindenstrauss-Tsukamoto conjecture for {Z} -actions holds generically, discuss an analogous conjecture for {Z}k -actions in Gutman, Qiao and Tsukamoto (2017 arXiv:1709.00125) and verify it for {Z}k -actions on finite dimensional spaces.

  12. Determination of the Interaction Position of Gamma Photons in Monolithic Scintillators Using Neural Network Fitting

    NASA Astrophysics Data System (ADS)

    Conde, P.; Iborra, A.; González, A. J.; Hernández, L.; Bellido, P.; Moliner, L.; Rigla, J. P.; Rodríguez-Álvarez, M. J.; Sánchez, F.; Seimetz, M.; Soriano, A.; Vidal, L. F.; Benlloch, J. M.

    2016-02-01

    In Positron Emission Tomography (PET) detectors based on monolithic scintillators, the photon interaction position needs to be estimated from the light distribution (LD) on the photodetector pixels. Due to the finite size of the scintillator volume, the symmetry of the LD is truncated everywhere except for the crystal center. This effect produces a poor estimation of the interaction positions towards the edges, an especially critical situation when linear algorithms, such as Center of Gravity (CoG), are used. When all the crystal faces are painted black, except the one in contact with the photodetector, the LD can be assumed to behave as the inverse square law, providing a simple theoretical model. Using this LD model, the interaction coordinates can be determined by means of fitting each event to a theoretical distribution. In that sense, the use of neural networks (NNs) has been shown to be an effective alternative to more traditional fitting techniques as nonlinear least squares (LS). The multilayer perceptron is one type of NN which can model non-linear functions well and can be trained to accurately generalize when presented with new data. In this work we have shown the capability of NNs to approximate the LD and provide the interaction coordinates of γ-photons with two different photodetector setups. One experimental setup was based on analog Silicon Photomultipliers (SiPMs) and a charge division diode network, whereas the second setup was based on digital SiPMs (dSiPMs). In both experiments NNs minimized border effects. Average spatial resolutions of 1.9 ±0.2 mm and 1.7 ±0.2 mm for the entire crystal surface were obtained for the analog and dSiPMs approaches, respectively.

  13. Estimation of the whole-body averaged SAR of grounded human models for plane wave exposure at respective resonance frequencies.

    PubMed

    Hirata, Akimasa; Yanase, Kazuya; Laakso, Ilkka; Chan, Kwok Hung; Fujiwara, Osamu; Nagaoka, Tomoaki; Watanabe, Soichi; Conil, Emmanuelle; Wiart, Joe

    2012-12-21

    According to the international guidelines, the whole-body averaged specific absorption rate (WBA-SAR) is used as a metric of basic restriction for radio-frequency whole-body exposure. It is well known that the WBA-SAR largely depends on the frequency of the incident wave for a given incident power density. The frequency at which the WBA-SAR becomes maximal is called the 'resonance frequency'. Our previous study proposed a scheme for estimating the WBA-SAR at this resonance frequency based on an analogy between the power absorption characteristic of human models in free space and that of a dipole antenna. However, a scheme for estimating the WBA-SAR in a grounded human has not been discussed sufficiently, even though the WBA-SAR in a grounded human is larger than that in an ungrounded human. In this study, with the use of the finite-difference time-domain method, the grounded condition is confirmed to be the worst-case exposure for human body models in a standing posture. Then, WBA-SARs in grounded human models are calculated at their respective resonant frequencies. A formula for estimating the WBA-SAR of a human standing on the ground is proposed based on an analogy with a quarter-wavelength monopole antenna. First, homogenized human body models are shown to provide the conservative WBA-SAR as compared with anatomically based models. Based on the formula proposed here, the WBA-SARs in grounded human models are approximately 10% larger than those in free space. The variability of the WBA-SAR was shown to be ±30% even for humans of the same age, which is caused by the body shape.

  14. A comparison of the finite difference and finite element methods for heat transfer calculations

    NASA Technical Reports Server (NTRS)

    Emery, A. F.; Mortazavi, H. R.

    1982-01-01

    The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.

  15. Electron-phonon coupling from finite differences

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2018-02-01

    The interaction between electrons and phonons underlies multiple phenomena in physics, chemistry, and materials science. Examples include superconductivity, electronic transport, and the temperature dependence of optical spectra. A first-principles description of electron-phonon coupling enables the study of the above phenomena with accuracy and material specificity, which can be used to understand experiments and to predict novel effects and functionality. In this topical review, we describe the first-principles calculation of electron-phonon coupling from finite differences. The finite differences approach provides several advantages compared to alternative methods, in particular (i) any underlying electronic structure method can be used, and (ii) terms beyond the lowest order in the electron-phonon interaction can be readily incorporated. But these advantages are associated with a large computational cost that has until recently prevented the widespread adoption of this method. We describe some recent advances, including nondiagonal supercells and thermal lines, that resolve these difficulties, and make the calculation of electron-phonon coupling from finite differences a powerful tool. We review multiple applications of the calculation of electron-phonon coupling from finite differences, including the temperature dependence of optical spectra, superconductivity, charge transport, and the role of defects in semiconductors. These examples illustrate the advantages of finite differences, with cases where semilocal density functional theory is not appropriate for the calculation of electron-phonon coupling and many-body methods such as the GW approximation are required, as well as examples in which higher-order terms in the electron-phonon interaction are essential for an accurate description of the relevant phenomena. We expect that the finite difference approach will play a central role in future studies of the electron-phonon interaction.

  16. Accuracy of finite-difference modeling of seismic waves : Simulation versus laboratory measurements

    NASA Astrophysics Data System (ADS)

    Arntsen, B.

    2017-12-01

    The finite-difference technique for numerical modeling of seismic waves is still important and for some areas extensively used.For exploration purposes is finite-difference simulation at the core of both traditional imaging techniques such as reverse-time migration and more elaborate Full-Waveform Inversion techniques.The accuracy and fidelity of finite-difference simulation of seismic waves are hard to quantify and meaningfully error analysis is really onlyeasily available for simplistic media. A possible alternative to theoretical error analysis is provided by comparing finite-difference simulated data with laboratory data created using a scale model. The advantage of this approach is the accurate knowledge of the model, within measurement precision, and the location of sources and receivers.We use a model made of PVC immersed in water and containing horizontal and tilted interfaces together with several spherical objects to generateultrasonic pressure reflection measurements. The physical dimensions of the model is of the order of a meter, which after scaling represents a model with dimensions of the order of 10 kilometer and frequencies in the range of one to thirty hertz.We find that for plane horizontal interfaces the laboratory data can be reproduced by the finite-difference scheme with relatively small error, but for steeply tilted interfaces the error increases. For spherical interfaces the discrepancy between laboratory data and simulated data is sometimes much more severe, to the extent that it is not possible to simulate reflections from parts of highly curved bodies. The results are important in view of the fact that finite-difference modeling is often at the core of imaging and inversion algorithms tackling complicatedgeological areas with highly curved interfaces.

  17. The Effect of Contrasting Analogies on Understanding of and Reasoning about Natural Selection

    ERIC Educational Resources Information Center

    Sota, Melinda

    2012-01-01

    Analogies play significant roles in communication as well as in problem solving and model building in science domains. Analogies have also been incorporated into several different instructional strategies--most notably in science domains where the concepts and principles to be learned are abstract or complex. Although several instructional models…

  18. Young Children's Analogical Reasoning across Cultures: Similarities and Differences

    ERIC Educational Resources Information Center

    Richland, Lindsey Engle; Chan, Tsz-Kit; Morrison, Robert G.; Au, Terry Kit-Fong

    2010-01-01

    A cross-cultural comparison between U.S. and Hong Kong preschoolers examined factors responsible for young children's analogical reasoning errors. On a scene analogy task, both groups had adequate prerequisite knowledge of the key relations, were the same age, and showed similar baseline performance, yet Chinese children outperformed U.S. children…

  19. Organization of fluorescent cholesterol analogs in lipid bilayers - lessons from cyclodextrin extraction.

    PubMed

    Milles, Sigrid; Meyer, Thomas; Scheidt, Holger A; Schwarzer, Roland; Thomas, Lars; Marek, Magdalena; Szente, Lajos; Bittman, Robert; Herrmann, Andreas; Günther Pomorski, Thomas; Huster, Daniel; Müller, Peter

    2013-08-01

    To characterize the structure and dynamics of cholesterol in membranes, fluorescent analogs of the native molecule have widely been employed. The cholesterol content in membranes is in general manipulated by using water-soluble cyclodextrins. Since the interactions between cyclodextrins and fluorescent-labeled cholesterol have not been investigated in detail so far, we have compared the cyclodextrin-mediated membrane extraction of three different fluorescent cholesterol analogs (one bearing a NBD and two bearing BODIPY moieties). Extraction of these analogs was followed by measuring the Förster resonance energy transfer between a rhodamine moiety linked to phosphatidylethanolamine and the labeled cholesterol. The extraction kinetics revealed that the analogs are differently extracted from membranes. We examined the orientation of the analogs within the membrane and their influence on lipid condensation using NMR and EPR spectroscopies. Our data indicate that the extraction of fluorescent sterols from membranes is determined by several parameters, including their impact on lipid order, their hydrophobicity, their intermolecular interactions with surrounding lipids, their orientation within the bilayer, and their affinity with the exogenous acceptor. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Effect of curcumin analogs onα-synuclein aggregation and cytotoxicity

    PubMed Central

    Jha, Narendra Nath; Ghosh, Dhiman; Das, Subhadeep; Anoop, Arunagiri; Jacob, Reeba S.; Singh, Pradeep K.; Ayyagari, Narasimham; Namboothiri, Irishi N. N.; Maji, Samir K.

    2016-01-01

    Alpha-synuclein (α-Syn) aggregation into oligomers and fibrils is associated with dopaminergic neuron loss occurring in Parkinson’s disease (PD) pathogenesis. Compounds that modulate α-Syn aggregation and interact with preformed fibrils/oligomers and convert them to less toxic species could have promising applications in the drug development efforts against PD. Curcumin is one of the Asian food ingredient which showed promising role as therapeutic agent against many neurological disorders including PD. However, the instability and low solubility makes it less attractive for the drug development. In this work, we selected various curcumin analogs and studied their toxicity, stability and efficacy to interact with different α-Syn species and modulation of their toxicity. We found a subset of curcumin analogs with higher stability and showed that curcumin and its various analogs interact with preformed fibrils and oligomers and accelerate α-Syn aggregation to produce morphologically different amyloid fibrils in vitro. Furthermore, these curcumin analogs showed differential binding with the preformed α-Syn aggregates. The present data suggest the potential role of curcumin analogs in modulating α-Syn aggregation. PMID:27338805

  1. Convergence Rates of Finite Difference Stochastic Approximation Algorithms

    DTIC Science & Technology

    2016-06-01

    dfferences as gradient approximations. It is shown that the convergence of these algorithms can be accelerated by controlling the implementation of the...descent algorithm, under various updating schemes using finite dfferences as gradient approximations. It is shown that the convergence of these...the Kiefer-Wolfowitz algorithm and the mirror descent algorithm, under various updating schemes using finite differences as gradient approximations. It

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, J.C.

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  3. A block iterative finite element algorithm for numerical solution of the steady-state, compressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Cooke, C. H.

    1976-01-01

    An iterative method for numerically solving the time independent Navier-Stokes equations for viscous compressible flows is presented. The method is based upon partial application of the Gauss-Seidel principle in block form to the systems of nonlinear algebraic equations which arise in construction of finite element (Galerkin) models approximating solutions of fluid dynamic problems. The C deg-cubic element on triangles is employed for function approximation. Computational results for a free shear flow at Re = 1,000 indicate significant achievement of economy in iterative convergence rate over finite element and finite difference models which employ the customary time dependent equations and asymptotic time marching procedure to steady solution. Numerical results are in excellent agreement with those obtained for the same test problem employing time marching finite element and finite difference solution techniques.

  4. Boundary and Interface Conditions for High Order Finite Difference Methods Applied to the Euler and Navier-Strokes Equations

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1998-01-01

    Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.

  5. A Numerical Model for Predicting Shoreline Changes.

    DTIC Science & Technology

    1980-07-01

    minimal shorelines for finite - difference scheme of time lAt (B) . . . 27 11 Transport function Q(ao) = cos ao sin za o for selected values of z . 28 12...generate the preceding examples was based on the use of implicit finite differences . Such schemes, whether implicit or ex- plicit (or both), are...10(A) shows an initially straight shoreline. In any finite - difference scheme, after one time increment At, the shoreline is bounded below by the solid

  6. Experimental Investigation of Hydrodynamic Self-Acting Gas Bearings at High Knudsen Numbers.

    DTIC Science & Technology

    1980-07-01

    Reynolds equation. Two finite - difference algorithms were used to solve the equation. Numerical results - the predicted load and pitch angle - from the two...that should be used. The majority of the numerical solution are still based on the finite difference approximation of the governing equation. But in... finite difference method. Reddi and Chu [26) also noted that it is very difficult to compare the two techniques on the same level since the solution

  7. Numerical Methods for Analysis of Charged Vacancy Diffusion in Dielectric Solids

    DTIC Science & Technology

    2006-12-01

    theory for charged vacancy diffusion in elastic dielectric materials is formulated and implemented numerically in a finite difference code. The...one of the co-authors on neutral vacancy kinetics (Grinfeld and Hazzledine, 1997). The theory is implemented numerically in a finite difference code...accuracy of order ( )2x∆ , using a finite difference approximation (Hoffman, 1992) for the second spatial derivative of φ : ( )21 1 0ˆ2 /i i i i Rxφ

  8. Impacts of Ocean Waves on the Atmospheric Surface Layer: Simulations and Observations

    DTIC Science & Technology

    2008-06-06

    energy and pressure described in § 4 are solved using a mixed finite - difference pseudospectral scheme with a third-order Runge-Kutta time stepping with a...to that in our DNS code (Sullivan and McWilliams 2002; Sullivan et al. 2000). For our mixed finite - difference pseudospec- tral differencing scheme a...Poisson equation. The spatial discretization is pseu- dospectral along lines of constant or and second- order finite difference in the vertical

  9. A Calculation Method for Convective Heat and Mass Transfer in Multiply-Slotted Film-Cooling Applications.

    DTIC Science & Technology

    1980-01-01

    Transport of Heat ..... .......... 8 3. THE SOLUTION PROCEDURE ..... .. ................. 8 3.1 The Finite-Difference Grid Network ... .......... 8 3.2...The Finite-Difference Grid Network. Figure 4: The Iterative Solution Procedure used at each Streamwise Station. Figure 5: Velocity Profiles in the...the finite-difference grid in the y-direction. I is the mixing length. L is the distance in the x-direction from the injection slot entrance to the

  10. The influence of an intramolecular hydrogen bond in differential recognition of inhibitory acceptor analogs by human ABO(H) blood group A and B glycosyltransferases.

    PubMed

    Nguyen, Hoa P; Seto, Nina O L; Cai, Ye; Leinala, Eeva K; Borisova, Svetlana N; Palcic, Monica M; Evans, Stephen V

    2003-12-05

    Human ABO(H) blood group glycosyltransferases GTA and GTB catalyze the final monosaccharide addition in the biosynthesis of the human A and B blood group antigens. GTA and GTB utilize a common acceptor, the H antigen disaccharide alpha-l-Fucp-(1-->2)-beta-d-Galp-OR, but different donors, where GTA transfers GalNAc from UDP-GalNAc and GTB transfers Gal from UDP-Gal. GTA and GTB are two of the most homologous enzymes known to transfer different donors and differ in only 4 amino acid residues, but one in particular (Leu/Met-266) has been shown to dominate the selection between donor sugars. The structures of the A and B glycosyltransferases have been determined to high resolution in complex with two inhibitory acceptor analogs alpha-l-Fucp(1-->2)-beta-d-(3-deoxy)-Galp-OR and alpha-l-Fucp-(1-->2)-beta-d-(3-amino)-Galp-OR, in which the 3-hydroxyl moiety of the Gal ring has been replaced by hydrogen or an amino group, respectively. Remarkably, although the 3-deoxy inhibitor occupies the same conformation and position observed for the native H antigen in GTA and GTB, the 3-amino analog is recognized differently by the two enzymes. The 3-amino substitution introduces a novel intramolecular hydrogen bond between O2' on Fuc and N3' on Gal, which alters the minimum-energy conformation of the inhibitor. In the absence of UDP, the 3-amino analog can be accommodated by either GTA or GTB with the l-Fuc residue partially occupying the vacant UDP binding site. However, in the presence of UDP, the analog is forced to abandon the intramolecular hydrogen bond, and the l-Fuc residue is shifted to a less ordered conformation. Further, the residue Leu/Met-266 that was thought important only in distinguishing between donor substrates is observed to interact differently with the 3-amino acceptor analog in GTA and GTB. These observations explain why the 3-deoxy analog acts as a competitive inhibitor of the glycosyltransferase reaction, whereas the 3-amino analog displays complex modes of inhibition.

  11. Structure and coherence of reasoning ability in Down Syndrome adults and typically developing children.

    PubMed

    Natsopoulo, D; Christou, C; Koutselini, M; Raftopoulos, A; Karefillidou, C

    2002-01-01

    The present study investigates the ability of Down Syndrome (DS) adults to reason: (a) deductively with transitivity (linear and reverse relations) and categorical syllogisms (all-some relations); (b) inductively with classical verbal analogies and non-verbal analogical reasoning (Raven's Coloured Progressive Matrices); and (c) to retain information in short-term memory. The results have shown that: (i) The Down Syndrome adults did not differ from typically developing children, matched on expressive and verbal ability, in transitivity and non-verbal analogical thinking; (ii) they differed in categorical reasoning, classical verbal analogies and short-term memory. Application of a structural model demonstrated that, despite differences in slope means in the three measures, the structure of functioning within-and-across all domains of cognition tests and its growth pattern, equally reliable and coherent, goes in parallel for the Down Syndrome adults and the typically developing children. The results are discussed within the context of the two-group developmental and difference approach.

  12. Error analysis of finite difference schemes applied to hyperbolic initial boundary value problems

    NASA Technical Reports Server (NTRS)

    Skollermo, G.

    1979-01-01

    Finite difference methods for the numerical solution of mixed initial boundary value problems for hyperbolic equations are studied. The reported investigation has the objective to develop a technique for the total error analysis of a finite difference scheme, taking into account initial approximations, boundary conditions, and interior approximation. Attention is given to the Cauchy problem and the initial approximation, the homogeneous problem in an infinite strip with inhomogeneous boundary data, the reflection of errors in the boundaries, and two different boundary approximations for the leapfrog scheme with a fourth order accurate difference operator in space.

  13. Signal Digitizer and Cross-Correlation Application Specific Integrated Circuit

    NASA Technical Reports Server (NTRS)

    Baranauskas, Gytis (Inventor); Lim, Boon H. (Inventor); Baranauskas, Dalius (Inventor); Zelenin, Denis (Inventor); Kangaslahti, Pekka (Inventor); Tanner, Alan B. (Inventor)

    2017-01-01

    According to one embodiment, a cross-correlator comprises a plurality of analog front ends (AFEs), a cross-correlation circuit and a data serializer. Each of the AFEs comprises a variable gain amplifier (VGA) and a corresponding analog-to-digital converter (ADC) in which the VGA receives and modifies a unique analog signal associates with a measured analog radio frequency (RF) signal and the ADC produces digital data associated with the modified analog signal. Communicatively coupled to the AFEs, the cross-correlation circuit performs a cross-correlation operation on the digital data produced from different measured analog RF signals. The data serializer is communicatively coupled to the summing and cross-correlating matrix and continuously outputs a prescribed amount of the correlated digital data.

  14. Pion properties at finite isospin chemical potential with isospin symmetry breaking

    NASA Astrophysics Data System (ADS)

    Wu, Zuqing; Ping, Jialun; Zong, Hongshi

    2017-12-01

    Pion properties at finite temperature, finite isospin and baryon chemical potentials are investigated within the SU(2) NJL model. In the mean field approximation for quarks and random phase approximation fpr mesons, we calculate the pion mass, the decay constant and the phase diagram with different quark masses for the u quark and d quark, related to QCD corrections, for the first time. Our results show an asymmetry between μI <0 and μI >0 in the phase diagram, and different values for the charged pion mass (or decay constant) and neutral pion mass (or decay constant) at finite temperature and finite isospin chemical potential. This is caused by the effect of isospin symmetry breaking, which is from different quark masses. Supported by National Natural Science Foundation of China (11175088, 11475085, 11535005, 11690030) and the Fundamental Research Funds for the Central Universities (020414380074)

  15. Convergence of finite difference transient response computations for thin shells.

    NASA Technical Reports Server (NTRS)

    Sobel, L. H.; Geers, T. L.

    1973-01-01

    Numerical studies pertaining to the limits of applicability of the finite difference method in the solution of linear transient shell response problems are performed, and a computational procedure for the use of the method is recommended. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. This is not a serious limitation in view of natural constraints imposed by the extension of Saint Venant's principle to transient response problems. It is also found that the short wavelength limitations of thin shell (Bernoulli-Euler) theory create significant convergence difficulties in computed response to certain types of transverse excitations. These difficulties may be overcome, however, through proper selection of finite difference mesh dimensions and temporal smoothing of the excitation.

  16. Analysis of transient, linear wave propagation in shells by the finite difference method

    NASA Technical Reports Server (NTRS)

    Geers, T. L.; Sobel, L. H.

    1971-01-01

    The applicability of the finite difference method to propagation problems in shells, and the response of a cylindrical shell with cutouts to both longitudinal and radial transient excitations are investigated. It is found that the only inherent limitation of the finite difference method is its inability to reproduce accurately response discontinuities. The short wave length limitations of thin shell theory create significant convergence difficulties may often be overcome through proper selection of finite difference mesh dimensions and temporal or spatial smoothing of the excitation. Cutouts produce moderate changes in early and intermediate time response of a cylindrical shell to axisymmetric pulse loads applied at one end. The cutouts may facilitate the undesirable late-time transfer of load-injected extensional energy into nonaxisymmetric flexural response.

  17. Variational finite-difference methods in linear and nonlinear problems of the deformation of metallic and composite shells (review)

    NASA Astrophysics Data System (ADS)

    Maksimyuk, V. A.; Storozhuk, E. A.; Chernyshenko, I. S.

    2012-11-01

    Variational finite-difference methods of solving linear and nonlinear problems for thin and nonthin shells (plates) made of homogeneous isotropic (metallic) and orthotropic (composite) materials are analyzed and their classification principles and structure are discussed. Scalar and vector variational finite-difference methods that implement the Kirchhoff-Love hypotheses analytically or algorithmically using Lagrange multipliers are outlined. The Timoshenko hypotheses are implemented in a traditional way, i.e., analytically. The stress-strain state of metallic and composite shells of complex geometry is analyzed numerically. The numerical results are presented in the form of graphs and tables and used to assess the efficiency of using the variational finite-difference methods to solve linear and nonlinear problems of the statics of shells (plates)

  18. Development of low-frequency kernel-function aerodynamics for comparison with time-dependent finite-difference methods

    NASA Technical Reports Server (NTRS)

    Bland, S. R.

    1982-01-01

    Finite difference methods for unsteady transonic flow frequency use simplified equations in which certain of the time dependent terms are omitted from the governing equations. Kernel functions are derived for two dimensional subsonic flow, and provide accurate solutions of the linearized potential equation with the same time dependent terms omitted. These solutions make possible a direct evaluation of the finite difference codes for the linear problem. Calculations with two of these low frequency kernel functions verify the accuracy of the LTRAN2 and HYTRAN2 finite difference codes. Comparisons of the low frequency kernel function results with the Possio kernel function solution of the complete linear equations indicate the adequacy of the HYTRAN approximation for frequencies in the range of interest for flutter calculations.

  19. Effects of finite volume on the K L – K S mass difference

    DOE PAGES

    Christ, N.  H.; Feng, X.; Martinelli, G.; ...

    2015-06-24

    Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the Kmore » L – K S mass difference ΔM K and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less

  20. Analogical scaffolding: Making meaning in physics through representation and analogy

    NASA Astrophysics Data System (ADS)

    Podolefsky, Noah Solomon

    This work reviews the literature on analogy, introduces a new model of analogy, and presents a series of experiments that test and confirm the utility of this model to describe and predict student learning in physics with analogy. Pilot studies demonstrate that representations (e.g., diagrams) can play a key role in students' use of analogy. A new model of analogy, Analogical Scaffolding, is developed to explain these initial empirical results. This model will be described in detail, and then applied to describe and predict the outcomes of further experiments. Two large-scale (N>100) studies will demonstrate that: (1) students taught with analogies, according to the Analogical Scaffolding model, outperform students taught without analogies on pre-post assessments focused on electromagnetic waves; (2) the representational forms used to teach with analogy can play a significant role in student learning, with students in one treatment group outperforming students in other treatment groups by factors of two or three. It will be demonstrated that Analogical Scaffolding can be used to predict these results, as well as finer-grained results such as the types of distracters students choose in different treatment groups, and to describe and analyze student reasoning in interviews. Abstraction in physics is reconsidered using Analogical Scaffolding. An operational definition of abstraction is developed within the Analogical Scaffolding framework and employed to explain (a) why physicists consider some ideas more abstract than others in physics, and (b) how students conceptions of these ideas can be modeled. This new approach to abstraction suggests novel approaches to curriculum design in physics using Analogical Scaffolding.

  1. Morphometry of Left Frontal and Temporal Poles Predicts Analogical Reasoning Abilities.

    PubMed

    Aichelburg, Clarisse; Urbanski, Marika; Thiebaut de Schotten, Michel; Humbert, Frederic; Levy, Richard; Volle, Emmanuelle

    2016-03-01

    Analogical reasoning is critical for making inferences and adapting to novelty. It can be studied experimentally using tasks that require creating similarities between situations or concepts, i.e., when their constituent elements share a similar organization or structure. Brain correlates of analogical reasoning have mostly been explored using functional imaging that has highlighted the involvement of the left rostrolateral prefrontal cortex (rlPFC) in healthy subjects. However, whether inter-individual variability in analogical reasoning ability in a healthy adult population is related to differences in brain architecture is unknown. We investigated this question by employing linear regression models of performance in analogy tasks and voxel-based morphometry in 54 healthy subjects. Our results revealed that the ability to reason by analogy was associated with structural variability in the left rlPFC and the anterior part of the inferolateral temporal cortex. Tractography of diffusion-weighted images suggested that these 2 regions have a different set of connections but may exchange information via the arcuate fasciculus. These results suggest that enhanced integrative and semantic abilities supported by structural variation in these areas (or their connectivity) may lead to more efficient analogical reasoning. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  2. Plan for the uniform mapping of earth resources and environmental complexes from Skylab imagery. [vegetation of Colorado Plateau and rice crops in California

    NASA Technical Reports Server (NTRS)

    Poulton, C. E. (Principal Investigator)

    1973-01-01

    The author has identified the following significant results. Below approximately 25% cover visual photointerpretation of vegetation analogs of Skylab 2 Sl9OA color infrared imagery is poor. Correct identifications of vegetation analogs in this category range from 28 to 57%. Good photointerpretation results (64 to 96%) were obtained on vegetation analogs with higher cover values. The four semidesert vegetation analogs (greasewood, saltbush, big sagebrush, and pinyon-juniper) are consistently distinguishable as a group. Photointerpretation accuracy equals 90.1%. When these same types are broken into two sub-groups (salt desert vegetation and shrub steppe/sparse pinyon-juniper vegetation) interpretation success drops to 76% and 85%, respectively. Band ratioing and transmittance differences between two forested analogs as imaged on Skylab 2 S19OA film shows significant differences. In the infrared wavelength both analogs have very similar transmittance characteristics while the visible wavelength shows separation between the two. Relative transmittance values for stands of ponderosa pine forestland and pinyon-juniper woodland are 719.3 + or - 65.9 and 223.6 + or - 48.1, respectively on negative transparencies. In image interpretation along the low-elevation fringe of forested regions these are the two forest analogs most frequently requiring separation.

  3. Immunomodulatory effects of thalidomide analogs on LPS-induced plasma and hepatic cytokines in the rat.

    PubMed

    Fernández-Martínez, Eduardo; Morales-Ríos, Martha S; Pérez-Alvarez, Víctor; Muriel, Pablo

    2004-10-01

    Thalidomide has shown to inhibit, selectively and mainly the cytokine tumor necrosis factor-alpha (TNF-alpha), thus, thalidomide has inhibitory consequences on other cytokines; this is ascribed as an immunomodulatory effect. Novel thalidomide analogs are reported with immunomodulatory activity. The aim of this work was to synthesize some of these analogs and to assess them as immunomodulatory agents in an acute model of LPS-induced septic challenge in rat. Animal groups received orally twice a day vehicle carboxymethylcellulose (0.9%), or thalidomide in suspension (100mg/kg), or analogs in an equimolar dose. Two hours after last dose, rats were injected with saline (NaCl, 0.9%, i.p.) or LPS (5mg/kg, i.p.). Groups were sacrificed 2h after injection and samples of blood and liver were obtained. TNF-alpha, interleukin-6, -1beta, and -10 (IL-6, IL-1beta, IL-10) were quantified by enzyme linked immunosorbent assay (ELISA) and studied in plasma and liver. After 2h of LPS-induction, different patterns of measured cytokines were observed with thalidomide analogs administration evidencing their immunomodulatory effects. Interestingly, some analogs decreased significantly plasma and hepatic levels of LPS-induced proinflammatory TNF-alpha and others increased plasma concentration of anti-inflammatory IL-10. Thalidomide analogs also showed slight effects on the remaining proinflammatory cytokines. Differences among immunomodulatory effects of analogs can be related to potency, mechanism of action, and half lives. Thalidomide analogs could be used as a pharmacological tool and in therapeutics in the future.

  4. Coordinated Research Program in Pulsed Power Physics.

    DTIC Science & Technology

    1981-12-01

    Ref. C11, this problem may be elimi- nated by factoring the tridiagonal , 2nd order, finite difference equation, Eq. (1), into two ist order finite ...13)Ti,o where 1h 2 /2 h2 = 2 - g + / -h g (1- - g) (14) 1+ h This solution to the finite difference equations consists of expo- nentially growing...December 1, 1981fl j,/,,- //,CJ’ .* ., .) - 13. NUMBEROF PAGES - A.)6 2 /’ij250 14. MONITORING AGENCY NAME & ADDRESS(iI different from Controlling

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Although using standard Taylor series coefficients for finite-difference operators is optimal in the sense that in the limit of infinitesimal space and time discretization, the solution approaches the correct analytic solution to the acousto-dynamic system of differential equations, other finite-difference operators may provide optimal computational run time given certain error bounds or source bandwidth constraints. This report describes the results of investigation of alternative optimal finite-difference coefficients based on several optimization/accuracy scenarios and provides recommendations for minimizing run time while retaining error within given error bounds.

  6. ɛ-connectedness, finite approximations, shape theory and coarse graining in hyperspaces

    NASA Astrophysics Data System (ADS)

    Alonso-Morón, Manuel; Cuchillo-Ibanez, Eduardo; Luzón, Ana

    2008-12-01

    We use upper semifinite hyperspaces of compacta to describe ε-connectedness and to compute homology from finite approximations. We find a new connection between ε-connectedness and the so-called Shape Theory. We construct a geodesically complete R-tree, by means of ε-components at different resolutions, whose behavior at infinite captures the topological structure of the space of components of a given compact metric space. We also construct inverse sequences of finite spaces using internal finite approximations of compact metric spaces. These sequences can be converted into inverse sequences of polyhedra and simplicial maps by means of what we call the Alexandroff-McCord correspondence. This correspondence allows us to relate upper semifinite hyperspaces of finite approximation with the Vietoris-Rips complexes of such approximations at different resolutions. Two motivating examples are included in the introduction. We propose this procedure as a different mathematical foundation for problems on data analysis. This process is intrinsically related to the methodology of shape theory. This paper reinforces Robins’s idea of using methods from shape theory to compute homology from finite approximations.

  7. Self-consistent elastic continuum theory of degenerate, equilibrium aperiodic solids.

    PubMed

    Bevzenko, Dmytro; Lubchenko, Vassiliy

    2014-11-07

    We show that the vibrational response of a glassy liquid at finite frequencies can be described by continuum mechanics despite the vast degeneracy of the vibrational ground state; standard continuum elasticity assumes a unique ground state. The effective elastic constants are determined by the bare elastic constants of individual free energy minima of the liquid, the magnitude of built-in stress, and temperature, analogously to how the dielectric response of a polar liquid is determined by the dipole moment of the constituent molecules and temperature. In contrast with the dielectric constant--which is enhanced by adding polar molecules to the system--the elastic constants are down-renormalized by the relaxation of the built-in stress. The renormalization flow of the elastic constants has three fixed points, two of which are trivial and correspond to the uniform liquid state and an infinitely compressible solid, respectively. There is also a nontrivial fixed point at the Poisson ratio equal to 1/5, which corresponds to an isospin-like degeneracy between shear and uniform deformation. The present description predicts a discontinuous jump in the (finite frequency) shear modulus at the crossover from collisional to activated transport, consistent with the random first order transition theory.

  8. Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martins, R. A.

    The recent extension of the standard model to include massive neutrinos in the framework of noncommutative geometry and the spectral action principle involves new scalar fields and their interactions with the usual complex scalar doublet. After ensuring that they bring no unphysical consequences, we address the question of how these fields affect the physics predicted in the Weinberg-Salam theory, particularly in the context of the electroweak phase transition. Applying the Dolan-Jackiw procedure, we calculate the finite temperature corrections, and find that the phase transition is first order. The new scalar interactions significantly improve the stability of the electroweak Z string,more » through the 'bag' phenomenon described by Vachaspati and Watkins ['Bound states can stabilize electroweak strings', Phys. Lett. B 318, 163-168 (1993)]. (Recently, cosmic strings have climbed back into interest due to a new evidence.) Sourced by static embedded strings, an internal space analogy of Cartan's torsion is drawn, and a possible Higgs-force-like 'gravitational' effect of this nonpropagating torsion on the fermion masses is described. We also check that the field generating the Majorana mass for the {nu}{sub R} is nonzero in the physical vacuum.« less

  9. Simulation and optimization of a dc SQUID with finite capacitance

    NASA Astrophysics Data System (ADS)

    de Waal, V. J.; Schrijner, P.; Llurba, R.

    1984-02-01

    This paper deals with the calculations of the noise and the optimization of the energy resolution of a dc SQUID with finite junction capacitance. Up to now noise calculations of dc SQUIDs were performed using a model without parasitic capacitances across the Josephson junctions. As the capacitances limit the performance of the SQUID, for a good optimization one must take them into account. The model consists of two coupled nonlinear second-order differential equations. The equations are very suitable for simulation with an analog circuit. We implemented the model on a hybrid computer. The noise spectrum from the model is calculated with a fast Fourier transform. A calculation of the energy resolution for one set of parameters takes about 6 min of computer time. Detailed results of the optimization are given for products of inductance and temperature of LT=1.2 and 5 nH K. Within a range of β and β c between 1 and 2, which is optimum, the energy resolution is nearly independent of these variables. In this region the energy resolution is near the value calculated without parasitic capacitances. Results of the optimized energy resolution are given as a function of LT between 1.2 and 10 mH K.

  10. Estimating Aquifer Properties Using Sinusoidal Pumping Tests

    NASA Astrophysics Data System (ADS)

    Rasmussen, T. C.; Haborak, K. G.; Young, M. H.

    2001-12-01

    We develop the theoretical and applied framework for using sinusoidal pumping tests to estimate aquifer properties for confined, leaky, and partially penetrating conditions. The framework 1) derives analytical solutions for three boundary conditions suitable for many practical applications, 2) validates the analytical solutions against a finite element model, 3) establishes a protocol for conducting sinusoidal pumping tests, and 4) estimates aquifer hydraulic parameters based on the analytical solutions. The analytical solutions to sinusoidal stimuli in radial coordinates are derived for boundary value problems that are analogous to the Theis (1935) confined aquifer solution, the Hantush and Jacob (1955) leaky aquifer solution, and the Hantush (1964) partially penetrated confined aquifer solution. The analytical solutions compare favorably to a finite-element solution of a simulated flow domain, except in the region immediately adjacent to the pumping well where the implicit assumption of zero borehole radius is violated. The procedure is demonstrated in one unconfined and two confined aquifer units near the General Separations Area at the Savannah River Site, a federal nuclear facility located in South Carolina. Aquifer hydraulic parameters estimated using this framework provide independent confirmation of parameters obtained from conventional aquifer tests. The sinusoidal approach also resulted in the elimination of investigation-derived wastes.

  11. Characterization of Perovskite Oxide/Semiconductor Heterostructures

    NASA Astrophysics Data System (ADS)

    Walker, Phillip

    The tools developed for the use of investigating dynamical systems have provided critical understanding to a wide range of physical phenomena. Here these tools are used to gain further insight into scalar transport, and how it is affected by mixing. The aim of this research is to investigate the efficiency of several different partitioning methods which demarcate flow fields into dynamically distinct regions, and the correlation of finite-time statistics from the advection-diffusion equation to these regions. For autonomous systems, invariant manifold theory can be used to separate the system into dynamically distinct regions. Despite there being no equivalent method for nonautonomous systems, a similar analysis can be done. Systems with general time dependencies must resort to using finite-time transport barriers for partitioning; these barriers are the edges of Lagrangian coherent structures (LCS), the analog to the stable and unstable manifolds of invariant manifold theory. Using the coherent structures of a flow to analyze the statistics of trapping, flight, and residence times, the signature of anomalous diffusion are obtained. This research also investigates the use of linear models for approximating the elements of the covariance matrix of nonlinear flows, and then applying the covariance matrix approximation over coherent regions. The first and second-order moments can be used to fully describe an ensemble evolution in linear systems, however there is no direct method for nonlinear systems. The problem is only compounded by the fact that the moments for nonlinear flows typically don't have analytic representations, therefore direct numerical simulations would be needed to obtain the moments throughout the domain. To circumvent these many computations, the nonlinear system is approximated as many linear systems for which analytic expressions for the moments exist. The parameters introduced in the linear models are obtained locally from the nonlinear deformation tensor.

  12. The Creative Power of Formal Analogies in Physics: The Case of Albert Einstein

    ERIC Educational Resources Information Center

    Gingras, Yves

    2015-01-01

    In order to show how formal analogies between different physical systems play an important conceptual work in physics, this paper analyzes the evolution of Einstein's thoughts on the structure of radiation from the point of view of the formal analogies he used as "lenses" to "see" through the "black box" of Planck's…

  13. A Novel Analog Integrated Circuit Design Course Covering Design, Layout, and Resulting Chip Measurement

    ERIC Educational Resources Information Center

    Lin, Wei-Liang; Cheng, Wang-Chuan; Wu, Chen-Hao; Wu, Hai-Ming; Wu, Chang-Yu; Ho, Kuan-Hsuan; Chan, Chueh-An

    2010-01-01

    This work describes a novel, first-year graduate-level analog integrated circuit (IC) design course. The course teaches students analog circuit design; an external manufacturer then produces their designs in three different silicon chips. The students, working in pairs, then test these chips to verify their success. All work is completed within…

  14. A Proposed Model of Self-Generated Analogical Reasoning for the Concept of Translation in Protein Synthesis

    ERIC Educational Resources Information Center

    Salih, Maria

    2008-01-01

    This paper explored and described the analogical reasoning occurring in the minds of different science achievement groups for the concept of translation in protein synthesis. "What is the process of self-generated analogical reasoning?", "What types of matching was involved?" and "What are the consequences of the matching…

  15. Influence of Analogy Instruction for Pitch Variation on Perceptual Ratings of Other Speech Parameters

    ERIC Educational Resources Information Center

    Tse, Andy C. Y.; Wong, Andus W-K.; Ma, Estella P-M.; Whitehill, Tara L.; Masters, Rich S. W.

    2013-01-01

    Purpose: "Analogy" is the similarity of different concepts on which a comparison can be based. Recently, an analogy of "waves at sea" was shown to be effective in modulating fundamental frequency (F[subscript 0]) variation. Perceptions of intonation were not examined, as the primary aim of the work was to determine whether…

  16. The use of Galerkin finite-element methods to solve mass-transport equations

    USGS Publications Warehouse

    Grove, David B.

    1977-01-01

    The partial differential equation that describes the transport and reaction of chemical solutes in porous media was solved using the Galerkin finite-element technique. These finite elements were superimposed over finite-difference cells used to solve the flow equation. Both convection and flow due to hydraulic dispersion were considered. Linear and Hermite cubic approximations (basis functions) provided satisfactory results: however, the linear functions were computationally more efficient for two-dimensional problems. Successive over relaxation (SOR) and iteration techniques using Tchebyschef polynomials were used to solve the sparce matrices generated using the linear and Hermite cubic functions, respectively. Comparisons of the finite-element methods to the finite-difference methods, and to analytical results, indicated that a high degree of accuracy may be obtained using the method outlined. The technique was applied to a field problem involving an aquifer contaminated with chloride, tritium, and strontium-90. (Woodard-USGS)

  17. Finite-difference modeling with variable grid-size and adaptive time-step in porous media

    NASA Astrophysics Data System (ADS)

    Liu, Xinxin; Yin, Xingyao; Wu, Guochen

    2014-04-01

    Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.

  18. Reynolds analogy for the Rayleigh problem at various flow modes.

    PubMed

    Abramov, A A; Butkovskii, A V

    2016-07-01

    The Reynolds analogy and the extended Reynolds analogy for the Rayleigh problem are considered. For a viscous incompressible fluid we derive the Reynolds analogy as a function of the Prandtl number and the Eckert number. We show that for any positive Eckert number, the Reynolds analogy as a function of the Prandtl number has a maximum. For a monatomic gas in the transitional flow regime, using the direct simulation Monte Carlo method, we investigate the extended Reynolds analogy, i.e., the relation between the shear stress and the energy flux transferred to the boundary surface, at different velocities and temperatures. We find that the extended Reynolds analogy for a rarefied monatomic gas flow with the temperature of the undisturbed gas equal to the surface temperature depends weakly on time and is close to 0.5. We show that at any fixed dimensionless time the extended Reynolds analogy depends on the plate velocity and temperature and undisturbed gas temperature mainly via the Eckert number. For Eckert numbers of the order of unity or less we generalize an extended Reynolds analogy. The generalized Reynolds analogy depends mainly only on dimensionless time for all considered Eckert numbers of the order of unity or less.

  19. Order of accuracy of QUICK and related convection-diffusion schemes

    NASA Technical Reports Server (NTRS)

    Leonard, B. P.

    1993-01-01

    This report attempts to correct some misunderstandings that have appeared in the literature concerning the order of accuracy of the QUICK scheme for steady-state convective modeling. Other related convection-diffusion schemes are also considered. The original one-dimensional QUICK scheme written in terms of nodal-point values of the convected variable (with a 1/8-factor multiplying the 'curvature' term) is indeed a third-order representation of the finite volume formulation of the convection operator average across the control volume, written naturally in flux-difference form. An alternative single-point upwind difference scheme (SPUDS) using node values (with a 1/6-factor) is a third-order representation of the finite difference single-point formulation; this can be written in a pseudo-flux difference form. These are both third-order convection schemes; however, the QUICK finite volume convection operator is 33 percent more accurate than the single-point implementation of SPUDS. Another finite volume scheme, writing convective fluxes in terms of cell-average values, requires a 1/6-factor for third-order accuracy. For completeness, one can also write a single-point formulation of the convective derivative in terms of cell averages, and then express this in pseudo-flux difference form; for third-order accuracy, this requires a curvature factor of 5/24. Diffusion operators are also considered in both single-point and finite volume formulations. Finite volume formulations are found to be significantly more accurate. For example, classical second-order central differencing for the second derivative is exactly twice as accurate in a finite volume formulation as it is in single-point.

  20. How the creative use of analogies can shape medical practice.

    PubMed

    Prasad, G V Ramesh

    2015-06-01

    Analogical reasoning is central to medical progress, and is either creative or conservative. According to Hofmann et al., conservative analogy relates concepts from old technology to new technologies with emphasis on preservation of comprehension and conduct. Creative analogy however brings new understanding to new technology, brings similarities existing in the source domain to a target domain where they previously had no bearing, and imports something entirely different from the content of the analogy itself. I defend the claim that while conservative analogies are useful by virtue of being comfortable to use from familiarity and experience, and are more easily accepted by society, they only lead to incremental advances in medicine. However, creative analogies are more exciting and productive because they generate previously unexpected associations across widely separated domains, emphasize relations over physical similarities, and structure over superficiality. I use kidney transplantation and anti-rejection medication development as an exemplar of analogical reasoning used to improve medical practice. Anti-rejection medication has not helped highly sensitized patients because of their propensity to rejecting most organs. I outline how conservative analogical reasoning led to anti-rejection medication development, but creative analogical reasoning helped highly sensitized and blood type incompatible patients through domino transplants, by which they obtain a kidney to which they are not sensitized. Creative analogical reasoning is more likely than conservative analogical reasoning to lead to revolutionary progress. While these analogies overlap and creative analogies eventually become conservative, progress is best facilitated by combining conservative and creative analogical reasoning. © 2015 John Wiley & Sons, Ltd.

  1. Synthesis and use of (perfluoroaryl) fluoro-aluminate anion

    DOEpatents

    Marks, Tobin J.; Chen, You-Xian

    2001-01-01

    A trityl perfluorophenyl alumninate such as tris(2,2',2"-nonafluorobiphenyl)-fluoroaluminate (PBA.sup..crclbar.) and its role as a cocatalyst in metallocene-mediated olefin polymerization is disclosed. Gallium and indium analogs are also disclosed, as are analogs with different anyl groups or different numbers of flourine atoms thereon.

  2. Synthesis, Characterization, Biological Evaluation and Docking Study of Heterocyclic-Based Synthetic Sulfonamides as Potential Pesticide Against G. mellonella.

    PubMed

    Sharma, Priyanka; Thakur, Sunil; Awasthi, Pamita

    2015-05-01

    Juvenile hormone is an important hormone which controls the developmental process in the lepidopteran insects, hence, referred as insect growth regulator. Juvenile hormone binding proteins are the carrier of juvenile hormone from the site of secretion to the site of action and play vital role in juvenile hormone action. We have designed four different juvenile hormone analogs incorporating sulfonamide and heterocyclic moieties using computer-aided tools. All analogs (T3-T6) gave comparative energy profile in comparison to in use insect growth regulators like fenoxycarb (T2) and pyriproxyfen (T1). Further, theses analogs have been screened on biological model Galleria mellonella (wax moth) for their mortality rate. All analogs were evaluated using three different concentrations (1000, 1500, and 2000 ppm) and five different exposure periods (2, 4, 6, 8, and 10 h). In vivo study showed that analog N-(1-isopropyl-2-oxo-2-morpholino-ethyl) toluene sulfonamide (T6) and N-(1-isopropyl-2-oxo-2-piperidino-ethyl) toluene sulfonamide (T4) exhibit the good larval mortality at lower concentration (1000 ppm) after 8 h exposure in comparison to pyriproxyfen (T1) and fenoxycarb (T2). The findings demonstrate the effectiveness and validity of the virtual screening approach (docking) and provide a starting point for the development of novel juvenile hormone analogs to counter G. mellonella.

  3. Stability Analysis of Finite Difference Schemes for Hyperbolic Systems, and Problems in Applied and Computational Linear Algebra.

    DTIC Science & Technology

    FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.

  4. Radiation boundary condition and anisotropy correction for finite difference solutions of the Helmholtz equation

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Webb, Jay C.

    1994-01-01

    In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The effectiveness of the correction factor in providing improvements to the computed solution is demonstrated in this paper.

  5. Time-domain finite-difference based analysis of induced crosstalk in multiwall carbon nanotube interconnects

    NASA Astrophysics Data System (ADS)

    Kumar, Amit; Nehra, Vikas; Kaushik, Brajesh Kumar

    2017-08-01

    Graphene rolled-up cylindrical sheets i.e. carbon nanotubes (CNTs) is one of the finest and emerging research area. This paper presents the investigation of induced crosstalk in coupled on-chip multiwalled carbon nanotube (MWCNT) interconnects using finite-difference analysis (FDA) in time-domain i.e. the finite-difference time-domain (FDTD) method. The exceptional properties of versatile MWCNTs profess their candidacy to replace conventional on-chip copper interconnects. Time delay and crosstalk noise have been evaluated for coupled on-chip MWCNT interconnects. With a decrease in CNT length, the obtained results for an MWCNT shows that transmission performance improves as the number of shells increases. It has been observed that the obtained results using the finite-difference time domain (FDTD) technique shows a very close match with the HSPICE simulated results.

  6. A highly accurate finite-difference method with minimum dispersion error for solving the Helmholtz equation

    NASA Astrophysics Data System (ADS)

    Wu, Zedong; Alkhalifah, Tariq

    2018-07-01

    Numerical simulation of the acoustic wave equation in either isotropic or anisotropic media is crucial to seismic modeling, imaging and inversion. Actually, it represents the core computation cost of these highly advanced seismic processing methods. However, the conventional finite-difference method suffers from severe numerical dispersion errors and S-wave artifacts when solving the acoustic wave equation for anisotropic media. We propose a method to obtain the finite-difference coefficients by comparing its numerical dispersion with the exact form. We find the optimal finite difference coefficients that share the dispersion characteristics of the exact equation with minimal dispersion error. The method is extended to solve the acoustic wave equation in transversely isotropic (TI) media without S-wave artifacts. Numerical examples show that the method is highly accurate and efficient.

  7. Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications.

    PubMed

    Wang, Changhong; He, Wei; Tong, Yi; Zhao, Rong

    2016-03-14

    Low-power and high-density electronic synapse is an important building block of brain-inspired systems. The recent advancement in memristor has provided an opportunity to advance electronic synapse design. However, a guideline on designing and manipulating the memristor's analog behaviors is still lacking. In this work, we reveal that compliance current (Icomp) of electroforming process played an important role in realizing a stable analog behavior, which is attributed to the generation of conical-type conductive filament. A proper Icomp could result in a large conductance window, good stability, and low voltage analog switching. We further reveal that different pulse conditions can lead to three analog behaviors, where the conductance changes in monotonic increase, plateau after initial jump, and impulse-like shape, respectively. These behaviors could benefit the design of electronic synapse with enriched learning capabilities. This work will provide a useful guideline for designing and manipulating memristor as electronic synapses for brain-inspired systems.

  8. Investigation and Manipulation of Different Analog Behaviors of Memristor as Electronic Synapse for Neuromorphic Applications

    NASA Astrophysics Data System (ADS)

    Wang, Changhong; He, Wei; Tong, Yi; Zhao, Rong

    2016-03-01

    Low-power and high-density electronic synapse is an important building block of brain-inspired systems. The recent advancement in memristor has provided an opportunity to advance electronic synapse design. However, a guideline on designing and manipulating the memristor’s analog behaviors is still lacking. In this work, we reveal that compliance current (Icomp) of electroforming process played an important role in realizing a stable analog behavior, which is attributed to the generation of conical-type conductive filament. A proper Icomp could result in a large conductance window, good stability, and low voltage analog switching. We further reveal that different pulse conditions can lead to three analog behaviors, where the conductance changes in monotonic increase, plateau after initial jump, and impulse-like shape, respectively. These behaviors could benefit the design of electronic synapse with enriched learning capabilities. This work will provide a useful guideline for designing and manipulating memristor as electronic synapses for brain-inspired systems.

  9. Differences in the incorporation of bromodeoxyuridine by human lymphoblastoid cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henderson, E.E.; Strauss, B.

    1975-08-01

    Long term human lymphoblastoid lines differ in their ability to grow in medium containing bromodeoxyuridine (BrdU) and to incorporate analog into their DNA. Eight Burkitts' lymphoma cell lines divided at least twice in BrdU-containing medium and made DNA in which over 90 percent of the thymidine residues were substituted with analog in both strands. Three infectious mononucleosis-derived lines and 24 lines transformed in vitro were inhibited by BrdU after one cell division and made only hybrid DNA in which one strand was substituted with analog. One out of eight normal individuals from whom long term lines were prepared gave cellmore » lines which divided at least twice in BrdU and gave DNA in which both strands were substituted with analog. It would appear that intrinsic cellular factors regulate the response to BrdU and that Burkitt's tumor lines are characterized by their ability to make stable doubly substituted DNA containing a high proportion of halogenated analog.« less

  10. Varieties of noise: analogical reasoning in synthetic biology.

    PubMed

    Knuuttila, Tarja; Loettgers, Andrea

    2014-12-01

    The picture of synthetic biology as a kind of engineering science has largely created the public understanding of this novel field, covering both its promises and risks. In this paper, we will argue that the actual situation is more nuanced and complex. Synthetic biology is a highly interdisciplinary field of research located at the interface of physics, chemistry, biology, and computational science. All of these fields provide concepts, metaphors, mathematical tools, and models, which are typically utilized by synthetic biologists by drawing analogies between the different fields of inquiry. We will study analogical reasoning in synthetic biology through the emergence of the functional meaning of noise, which marks an important shift in how engineering concepts are employed in this field. The notion of noise serves also to highlight the differences between the two branches of synthetic biology: the basic science-oriented branch and the engineering-oriented branch, which differ from each other in the way they draw analogies to various other fields of study. Moreover, we show that fixing the mapping between a source domain and the target domain seems not to be the goal of analogical reasoning in actual scientific practice.

  11. Biomechanical Evaluation of Different Fixation Methods for Mandibular Anterior Segmental Osteotomy Using Finite Element Analysis, Part Two: Superior Repositioning Surgery With Bone Allograft.

    PubMed

    Kilinç, Yeliz; Erkmen, Erkan; Kurt, Ahmet

    2016-01-01

    In this study, the biomechanical behavior of different fixation methods used to fix the mandibular anterior segment following various amounts of superior repositioning was evaluated by using Finite Element Analysis (FEA). The three-dimensional finite element models representing 3 and 5 mm superior repositioning were generated. The gap in between segments was assumed to be filled by block bone allograft and resignated to be in perfect contact with the mandible and segmented bone. Six different finite element models with 2 distinct mobilization rate including 3 different fixation configurations, double right L (DRL), double left L (DLL), or double I (DI) miniplates with monocortical screws, correspondingly were created. A comparative evaluation has been made under vertical, horizontal and oblique loads. The von Mises and principal maximum stress (Pmax) values were calculated by finite element solver programme. The first part of our ongoing Finite Element Analysis research has been addressed to the mechanical behavior of the same fixation configurations in nongrafted models. In comparison with the findings of the first part of the study, it was concluded that bone graft offers superior mechanical stability without any limitation of mobilization and less stress on the fixative appliances as well as in the bone.

  12. Effects of Verb Familiarity on Finiteness Marking in Children With Specific Language Impairment

    PubMed Central

    Rice, Mabel L.; Bontempo, Daniel E.

    2015-01-01

    Purpose Children with specific language impairment (SLI) have known deficits in the verb lexicon and finiteness marking. This study investigated a potential relationship between these 2 variables in children with SLI and 2 control groups considering predictions from 2 different theoretical perspectives, morphosyntactic versus morphophonological. Method Children with SLI, age-equivalent, and language-equivalent (LE) control children (n = 59) completed an experimental sentence imitation task that generated estimates of children's finiteness accuracy under 2 levels of verb familiarity—familiar real verbs versus unfamiliar real verbs—in clausal sites marked for finiteness. Imitations were coded and analyzed for overall accuracy as well as finiteness marking and verb root imitation accuracy. Results Statistical comparisons revealed that children with SLI did not differ from LE children and were less accurate than age-equivalent children on all dependent variables: overall imitation, finiteness marking imitation, and verb root imitation accuracy. A significant Group × Condition interaction for finiteness marking revealed lower levels of accuracy on unfamiliar verbs for the SLI and LE groups only. Conclusions Findings indicate a relationship between verb familiarity and finiteness marking in children with SLI and younger controls and help clarify the roles of morphosyntax, verb lexicon, and morphophonology. PMID:25611349

  13. Semithiobambus[6]uril is a transmembrane anion transporter.

    PubMed

    Lang, Chao; Mohite, Amar; Deng, Xiaoli; Yang, Feihu; Dong, Zeyuan; Xu, Jiayun; Liu, Junqiu; Keinan, Ehud; Reany, Ofer

    2017-07-04

    Semithiobambus[6]uril is shown to be an efficient transmembrane anion transporter. Although all bambusuril analogs (having either O, S or N atoms in their portals) are excellent anion binders, only the sulfur analog is also an effective anion transporter capable of polarizing lipid membranes through selective anion uniport. This notable divergence reflects significant differences in the lipophilic character of the bambusuril analogs.

  14. Reproducing impact ionization mass spectra of E and F ring ice grains at different impact speeds

    NASA Astrophysics Data System (ADS)

    Klenner, F.; Reviol, R.; Postberg, F.

    2017-09-01

    As impact speeds of E and F ring ice grains impinging onto the target of impact ionization mass spectrometers in space can vary greatly, the resulting cationic or anionic mass spectra can have very different appearances. The mass spectra can be accurately reproduced with an analog experimental setup IR-FL-MALDI-ToF-MS (Infrared Free Liquid Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry). We compare mass spectra of E and F ring ice grains taken by the Cosmic Dust Analyzer (CDA) onboard Cassini recorded at different impact speeds with our analog spectra and prove the capability of the analog experiment.

  15. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.

  16. Sudden death of effective entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roszak, K.; Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw; Horodecki, P.

    2010-04-15

    Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyze the effective entanglement (i.e., entanglement minimized over the output data). We show that in the well-defined system of two quantum dots monitored by single-electron transistors, one may observe a sudden death of effective entanglement when real, physical entanglement is still alive. For certain measurement setups, this occurs even for initial states for which sudden death of physical entanglement is not possible at all. The principles of the analysis may bemore » applied to other analogous scenarios, such as estimation of the parameters arising from quantum process tomography.« less

  17. On the possible operation of natural laws in ecosystems.

    PubMed

    Woodley, Michael A

    2007-01-01

    In this manuscript, after a brief review of the history of typological thinking in the biological sciences from Transcendentalism to Structuralism, it is argued that natural Platonic laws may operate in ecosystems. This claim is based on two observations of law-like behaviour. Firstly, that adaptation towards specialization can be considered as a form of typological lineage degeneration, where specialized species are more vulnerable to environmental perturbation. And secondly, that the convergent recurrence of biological forms indicates that there exists a finite number of niches which in the abstract could be considered as ecological analogies to Denton's molecular Platonic moulds, operating as attractors and restricting the range of possible organismal body plans based on the physical and chemical gradients that partly define their hyper-structure.

  18. Statistical mechanics of the Huxley-Simmons model

    NASA Astrophysics Data System (ADS)

    Caruel, M.; Truskinovsky, L.

    2016-06-01

    The chemomechanical model of Huxley and Simmons (HS) [A. F. Huxley and R. M. Simmons, Nature 233, 533 (1971), 10.1038/233533a0] provides a paradigmatic description of mechanically induced collective conformational changes relevant in a variety of biological contexts, from muscles power stroke and hair cell gating to integrin binding and hairpin unzipping. We develop a statistical mechanical perspective on the HS model by exploiting a formal analogy with a paramagnetic Ising model. We first study the equilibrium HS model with a finite number of elements and compute explicitly its mechanical and thermal properties. To model kinetics, we derive a master equation and solve it for several loading protocols. The developed formalism is applicable to a broad range of allosteric systems with mean-field interactions.

  19. Dynamic gas temperature measurement system

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 KHz and capability to operate in the exhaust of a gas turbine combustor was developed. Environmental guidelines for this measurement are presented, followed by a preliminary design of the selected measurement method. Transient thermal conduction effects were identified as important; a preliminary finite-element conduction model quantified the errors expected by neglecting conduction. A compensation method was developed to account for effects of conduction and convection. This method was verified in analog electrical simulations, and used to compensate dynamic temperature data from a laboratory combustor and a gas turbine engine. Detailed data compensations are presented. Analysis of error sources in the method were done to derive confidence levels for the compensated data.

  20. Adaptive frequency-domain equalization in digital coherent optical receivers.

    PubMed

    Faruk, Md Saifuddin; Kikuchi, Kazuro

    2011-06-20

    We propose a novel frequency-domain adaptive equalizer in digital coherent optical receivers, which can reduce computational complexity of the conventional time-domain adaptive equalizer based on finite-impulse-response (FIR) filters. The proposed equalizer can operate on the input sequence sampled by free-running analog-to-digital converters (ADCs) at the rate of two samples per symbol; therefore, the arbitrary initial sampling phase of ADCs can be adjusted so that the best symbol-spaced sequence is produced. The equalizer can also be configured in the butterfly structure, which enables demultiplexing of polarization tributaries apart from equalization of linear transmission impairments. The performance of the proposed equalization scheme is verified by 40-Gbits/s dual-polarization quadrature phase-shift keying (QPSK) transmission experiments.

  1. Surface wave and linear operating mode of a plasma antenna

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogachev, N. N., E-mail: bgniknik@yandex.ru; Bogdankevich, I. L.; Gusein-zade, N. G.

    The relation between the propagation conditions of a surface electromagnetic wave along a finiteradius plasma cylinder and the linear operating mode of a plasma antenna is investigated. The solution to the dispersion relation for a surface wave propagating along a finite-radius plasma cylinder is analyzed for weakly and strongly collisional plasmas. Computer simulations of an asymmetrical plasma dipole antenna are performed using the KARAT code, wherein the dielectric properties of plasma are described in terms of the Drude model. The plasma parameters corresponding to the linear operating mode of a plasma antenna are determined. It is demonstrated that the characteristicsmore » of the plasma antenna in this mode are close to those of an analogous metal antenna.« less

  2. A dynamic jamming point for shear thickening suspensions

    NASA Astrophysics Data System (ADS)

    Brown, Eric; Jaeger, Heinrich

    2008-11-01

    Densely packed suspensions can shear thicken, in which the viscosity increases with shear rate. We performed rheometry measurements on two model systems: corn starch in water and glass spheres in oils. In both systems we observed shear thickening up to a critical packing fraction φc (=0.55 for spherical grains) above which the flow abruptly transitions to shear thinning. The viscosity and yield stress diverge as power laws at φc. Extrapolating the dynamic ranges of shear rate and stress in the shear thickening regime up to φc suggests a finite change in shear stress with zero change in shear rate. This is a dynamic analog to the jamming point with a yield stress at zero shear rate.

  3. 3D Global Fluid Simulations of Turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Rogers, Barrett; Ricci, Paolo; Li, Bo

    2009-05-01

    We present 3D global fluid simulations of the UCLA upgraded Large Plasma Device (LAPD). This device confines an 18-m-long, cylindrically symmetric plasma with a uniform magnetic field. The plasma in the simulations is generated by density and temperature sources inside the computational domain, and sheath boundary conditions are applied at the ends of the plasma column. In 3D simulations of the entire plasma, we observe strong, rotating intermittent density and temperature fluctuations driven by resistive driftwave turbulence with finite parallel wavenumbers. Analogous simulations carried out in the 2D limit (that is, assuming that the motions are purely interchange-like) display much weaker mode activity driven a Kelvin-Helmholtz instability. The properties and scaling of the turbulence and transport will be discussed.

  4. Restoration of isospin symmetry in highly excited nuclei

    NASA Astrophysics Data System (ADS)

    Sagawa, H.; Bortignon, P. F.; Colò, G.

    1998-12-01

    Explicit relations between the isospin mixing probability, the spreading width ΓIAS↓ of the Isobaric Analog State (IAS) and the statistical decay width Γc of the compound nucleus at finite excitation energy, are derived by using the Feshbach projection formalism. The temperature dependence of the isospin mixing probability is discussed quantitatively for the first time by using the values of ΓIAS↓ and of Γc calculated by means of microscopic models. It is shown that the mixing probability remains essentially constant up to a temperature of the order of 1 MeV and then decreases to about 1/4 of its zero temperature value, at higher temperature than ~3 MeV, due to the short decay time of the compound system.

  5. Factorization and the synthesis of optimal feedback kernels for differential-delay systems

    NASA Technical Reports Server (NTRS)

    Milman, Mark M.; Scheid, Robert E.

    1987-01-01

    A combination of ideas from the theories of operator Riccati equations and Volterra factorizations leads to the derivation of a novel, relatively simple set of hyperbolic equations which characterize the optimal feedback kernel for the finite-time regulator problem for autonomous differential-delay systems. Analysis of these equations elucidates the underlying structure of the feedback kernel and leads to the development of fast and accurate numerical methods for its computation. Unlike traditional formulations based on the operator Riccati equation, the gain is characterized by means of classical solutions of the derived set of equations. This leads to the development of approximation schemes which are analogous to what has been accomplished for systems of ordinary differential equations with given initial conditions.

  6. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit

    PubMed Central

    Hayden, Luke; Liu, Jintao; Wiggins, Chris H.; Süel, Gürol M.; Walczak, Aleksandra M.

    2016-01-01

    Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit. PMID:27003682

  7. Broadband locally resonant metamaterials with graded hierarchical architecture

    NASA Astrophysics Data System (ADS)

    Liu, Chenchen; Reina, Celia

    2018-03-01

    We investigate the effect of hierarchical designs on the bandgap structure of periodic lattice systems with inner resonators. A detailed parameter study reveals various interesting features of structures with two levels of hierarchy as compared with one level systems with identical static mass. In particular: (i) their overall bandwidth is approximately equal, yet bounded above by the bandwidth of the single-resonator system; (ii) the number of bandgaps increases with the level of hierarchy; and (iii) the spectrum of bandgap frequencies is also enlarged. Taking advantage of these features, we propose graded hierarchical structures with ultra-broadband properties. These designs are validated over analogous continuum models via finite element simulations, demonstrating their capability to overcome the bandwidth narrowness that is typical of resonant metamaterials.

  8. Atom-field dressed states in slow-light waveguide QED

    NASA Astrophysics Data System (ADS)

    Calajó, Giuseppe; Ciccarello, Francesco; Chang, Darrick; Rabl, Peter

    2016-03-01

    We discuss the properties of atom-photon bound states in waveguide QED systems consisting of single or multiple atoms coupled strongly to a finite-bandwidth photonic channel. Such bound states are formed by an atom and a localized photonic excitation and represent the continuum analog of the familiar dressed states in single-mode cavity QED. Here we present a detailed analysis of the linear and nonlinear spectral features associated with single- and multiphoton dressed states and show how the formation of bound states affects the waveguide-mediated dipole-dipole interactions between separated atoms. Our results provide both a qualitative and quantitative description of the essential strong-coupling processes in waveguide QED systems, which are currently being developed in the optical and microwave regimes.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Khoi T.; Lilly, Michael P.; Nielsen, Erik

    We report Pauli blockade in a multielectron silicon metal–oxide–semiconductor double quantum dot with an integrated charge sensor. The current is rectified up to a blockade energy of 0.18 ± 0.03 meV. The blockade energy is analogous to singlet–triplet splitting in a two electron double quantum dot. Built-in imbalances of tunnel rates in the MOS DQD obfuscate some edges of the bias triangles. A method to extract the bias triangles is described, and a numeric rate-equation simulation is used to understand the effect of tunneling imbalances and finite temperature on charge stability (honeycomb) diagram, in particular the identification of missing andmore » shifting edges. A bound on relaxation time of the triplet-like state is also obtained from this measurement.« less

  10. Elevated temperature crack growth

    NASA Technical Reports Server (NTRS)

    Malik, S. N.; Vanstone, R. H.; Kim, K. S.; Laflen, J. H.

    1985-01-01

    The purpose is to determine the ability of currently available P-I integrals to correlate fatigue crack propagation under conditions that simulate the turbojet engine combustor liner environment. The utility of advanced fracture mechanics measurements will also be evaluated during the course of the program. To date, an appropriate specimen design, a crack displacement measurement method, and boundary condition simulation in the computational model of the specimen were achieved. Alloy 718 was selected as an analog material based on its ability to simulate high temperature behavior at lower temperatures. Tensile and cyclic tests were run at several strain rates so that an appropriate constitutive model could be developed. Suitable P-I integrals were programmed into a finite element post-processor for eventual comparison with experimental data.

  11. Applications of an exponential finite difference technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Handschuh, R.F.; Keith, T.G. Jr.

    1988-07-01

    An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.

  12. Pharmacokinetics and Bioavailability of the GnRH Analogs in the Form of Solution and Zn2+-Suspension After Single Subcutaneous Injection in Female Rats.

    PubMed

    Suszka-Świtek, Aleksandra; Ryszka, Florian; Dolińska, Barbara; Dec, Renata; Danch, Alojzy; Filipczyk, Łukasz; Wiaderkiewicz, Ryszard

    2017-04-01

    Although many synthetic gonadoliberin analogs have been developed, only a few of them, including buserelin, were introduced into clinical practice. Dalarelin, which differs from buserelin by just one aminoacid in the position 6 (D-Ala), is not widely used so far. Gonadotropin-releasing hormone (GnRH) analogs are used to treat many different illnesses and are available in different forms like solution for injection, nasal spray, microspheres, etc. Unfortunately, none of the above drug formulations can release the hormones for 24 h. We assumed that classical suspension could solve this problem. Two sets of experiments were performed. In the first one, buserelin and dalarelin were injected into mature female rats in two forms: suspension, in which the analogs are bounded by Zn 2+ ions and solution. The pharmacokinetic parameters and bioavailability of the analogs were calculated, based on their concentration in the plasma measured by high-performance liquid chromatography method (HPLC). In the second experiment, the hormones in two different forms were injected into superovulated immature female rats and then the concentration of Luteinizing hormone (LH), Follicle-stimulating hormone (FSH) and 17β-estradiol in the serum was measured by radioimmunological method. The Extent of Biological Availability (EBA), calculated on the base of AUC 0-∞ , showed that in the form of solution buserelin and dalarelin display, respectively, only 13 and 8 % of biological availability of their suspension counterparts. Comparing both analogs, the EBA of dalarelin was half (53 %) that of buserelin delivered in the form of solution and 83 % when they were delivered in the form of suspension. The injection of buserelin or dalarelin, in the form of solution or suspension, into superovulated female rats increased LH, FSH and estradiol concentration in the serum. However, after injection of the analogs in the form of suspension, the high concentration of LH and FSH in the serum persisted longer. Performed studies indicate that GnRH analogs in the form of suspension have higher bioavailability than their solution counterparts. It influences the effects of their action, especially in relation to LH and FSH.

  13. Relating Derived Relations as a Model of Analogical Reasoning: Reaction Times and Event-Related Potentials

    ERIC Educational Resources Information Center

    Barnes-Holmes, Dermot; Regan, Donal; Barnes-Holmes, Yvonne; Commins, Sean; Walsh, Derek; Stewart, Ian; Smeets, Paul M.; Whelan, Robert; Dymond, Simon

    2005-01-01

    The current study aimed to test a Relational Frame Theory (RFT) model of analogical reasoning based on the relating of derived same and derived difference relations. Experiment 1 recorded reaction time measures of similar-similar (e.g., "apple is to orange as dog is to cat") versus different-different (e.g., "he is to his brother as…

  14. Computational Aspects of Sensitivity Calculations in Linear Transient Structural Analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Greene, William H.

    1989-01-01

    A study has been performed focusing on the calculation of sensitivities of displacements, velocities, accelerations, and stresses in linear, structural, transient response problems. One significant goal was to develop and evaluate sensitivity calculation techniques suitable for large-order finite element analyses. Accordingly, approximation vectors such as vibration mode shapes are used to reduce the dimensionality of the finite element model. Much of the research focused on the accuracy of both response quantities and sensitivities as a function of number of vectors used. Two types of sensitivity calculation techniques were developed and evaluated. The first type of technique is an overall finite difference method where the analysis is repeated for perturbed designs. The second type of technique is termed semianalytical because it involves direct, analytical differentiation of the equations of motion with finite difference approximation of the coefficient matrices. To be computationally practical in large-order problems, the overall finite difference methods must use the approximation vectors from the original design in the analyses of the perturbed models.

  15. Dielectric properties and Raman spectra of ZnO from a first principles finite-differences/finite-fields approach

    PubMed Central

    Calzolari, Arrigo; Nardelli, Marco Buongiorno

    2013-01-01

    Using first principles calculations based on density functional theory and a coupled finite-fields/finite-differences approach, we study the dielectric properties, phonon dispersions and Raman spectra of ZnO, a material whose internal polarization fields require special treatment to correctly reproduce the ground state electronic structure and the coupling with external fields. Our results are in excellent agreement with existing experimental measurements and provide an essential reference for the characterization of crystallinity, composition, piezo- and thermo-electricity of the plethora of ZnO-derived nanostructured materials used in optoelectronics and sensor devices. PMID:24141391

  16. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  17. Stable Artificial Dissipation Operators for Finite Volume Schemes on Unstructured Grids

    NASA Technical Reports Server (NTRS)

    Svard, Magnus; Gong, Jing; Nordstrom, Jan

    2006-01-01

    Our objective is to derive stable first-, second- and fourth-order artificial dissipation operators for node based finite volume schemes. Of particular interest are general unstructured grids where the strength of the finite volume method is fully utilized. A commonly used finite volume approximation of the Laplacian will be the basis in the construction of the artificial dissipation. Both a homogeneous dissipation acting in all directions with equal strength and a modification that allows different amount of dissipation in different directions are derived. Stability and accuracy of the new operators are proved and the theoretical results are supported by numerical computations.

  18. A new finite element and finite difference hybrid method for computing electrostatics of ionic solvated biomolecule

    NASA Astrophysics Data System (ADS)

    Ying, Jinyong; Xie, Dexuan

    2015-10-01

    The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.

  19. European corn borer sex pheromone : Inhibition and elicitation of behavioral response by analogs.

    PubMed

    Schwarz, M; Klun, J A; Uebel, E C

    1990-05-01

    The male sexual behavior-stimulating and inhibiting properties of a series of analogs of the European corn borer sex pheromone were determined in a flight tunnel. The structural requirements for inhibition of pheromonal response were far less restrictive than those for elicitation of that response. Analogs that by themselves elicited upwind flight response from males at a low dose were generally less inhibitory to male response than many of the analogs that had no pheromonal activity. These findings suggest that many pheromone analogs bind to pheromone receptors without provoking behavioral response and possibly undergo slower degradation on the antenna than pheromonally active compounds. The disparity of response to analogs by two pheromonal types of the European corn borer indicates that the pheromone receptor and pheromone catabolic systems are biochemically very different in the two types.

  20. A comparative study of computational solutions to flow over a backward-facing step

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Georgiadis, N. J.; Cannon, M. R.

    1993-01-01

    A comparative study was conducted for computational fluid dynamic solutions to flow over a backward-facing step. This flow is a benchmark problem, with a simple geometry, but involves complicated flow physics such as free shear layers, reattaching flow, recirculation, and high turbulence intensities. Three Reynolds-averaged Navier-Stokes flow solvers with k-epsilon turbulence models were used, each using a different solution algorithm: finite difference, finite element, and hybrid finite element - finite difference. Comparisons were made with existing experimental data. Results showed that velocity profiles and reattachment lengths were predicted reasonably well by all three methods, while the skin friction coefficients were more difficult to predict accurately. It was noted that, in general, selecting an appropriate solver for each problem to be considered is important.

  1. Examining the cognitive demands of analogy instructions compared to explicit instructions.

    PubMed

    Tse, Choi Yeung Andy; Wong, Andus; Whitehill, Tara; Ma, Estella; Masters, Rich

    2016-10-01

    In many learning domains, instructions are presented explicitly despite high cognitive demands associated with their processing. This study examined cognitive demands imposed on working memory by different types of instruction to speak with maximum pitch variation: visual analogy, verbal analogy and explicit verbal instruction. Forty participants were asked to memorise a set of 16 visual and verbal stimuli while reading aloud a Cantonese paragraph with maximum pitch variation. Instructions about how to achieve maximum pitch variation were presented via visual analogy, verbal analogy, explicit rules or no instruction. Pitch variation was assessed off-line, using standard deviation of fundamental frequency. Immediately after reading, participants recalled as many stimuli as possible. Analogy instructions resulted in significantly increased pitch variation compared to explicit instructions or no instructions. Explicit instructions resulted in poorest recall of stimuli. Visual analogy instructions resulted in significantly poorer recall of visual stimuli than verbal stimuli. The findings suggest that non-propositional instructions presented via analogy may be less cognitively demanding than instructions that are presented explicitly. Processing analogy instructions that are presented as a visual representation is likely to load primarily visuospatial components of working memory rather than phonological components. The findings are discussed with reference to speech therapy and human cognition.

  2. Estimating finite-population reproductive numbers in heterogeneous populations.

    PubMed

    Keegan, Lindsay T; Dushoff, Jonathan

    2016-05-21

    The basic reproductive number, R0, is one of the most important epidemiological quantities. R0 provides a threshold for elimination and determines when a disease can spread or when a disease will die out. Classically, R0 is calculated assuming an infinite population of identical hosts. Previous work has shown that heterogeneity in the host mixing rate increases R0 in an infinite population. However, it has been suggested that in a finite population, heterogeneity in the mixing rate may actually decrease the finite-population reproductive numbers. Here, we outline a framework for discussing different types of heterogeneity in disease parameters, and how these affect disease spread and control. We calculate "finite-population reproductive numbers" with different types of heterogeneity, and show that in a finite population, heterogeneity has complicated effects on the reproductive number. We find that simple heterogeneity decreases the finite-population reproductive number, whereas heterogeneity in the intrinsic mixing rate (which affects both infectiousness and susceptibility) increases the finite-population reproductive number when R0 is small relative to the size of the population and decreases the finite-population reproductive number when R0 is large relative to the size of the population. Although heterogeneity has complicated effects on the finite-population reproductive numbers, its implications for control are straightforward: when R0 is large relative to the size of the population, heterogeneity decreases the finite-population reproductive numbers, making disease control or elimination easier than predicted by R0. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Analogy for Drude's Free Electron Model to Promote Students' Understanding of Electric Circuits in Lower Secondary School

    ERIC Educational Resources Information Center

    de Almeida, Maria José B. M.; Salvador, Andreia; Costa, Maria Margarida R. R.

    2014-01-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first…

  4. A Visual Analog Scale to assess anxiety in children during anesthesia induction (VAS-I): Results supporting its validity in a sample of day care surgery patients.

    PubMed

    Berghmans, Johan M; Poley, Marten J; van der Ende, Jan; Weber, Frank; Van de Velde, Marc; Adriaenssens, Peter; Himpe, Dirk; Verhulst, Frank C; Utens, Elisabeth

    2017-09-01

    The modified Yale Preoperative Anxiety Scale is widely used to assess children's anxiety during induction of anesthesia, but requires training and its administration is time-consuming. A Visual Analog Scale, in contrast, requires no training, is easy-to-use and quickly completed. The aim of this study was to evaluate a Visual Analog Scale as a tool to assess anxiety during induction of anesthesia and to determine cut-offs to distinguish between anxious and nonanxious children. Four hundred and one children (1.5-16 years) scheduled for daytime surgery were included. Children's anxiety during induction was rated by parents and anesthesiologists on a Visual Analog Scale and by a trained observer on the modified Yale Preoperative Anxiety Scale. Psychometric properties assessed were: (i) concurrent validity (correlations between parents' and anesthesiologists' Visual Analog Scale and modified Yale Preoperative Anxiety Scale scores); (ii) construct validity (differences between subgroups according to the children's age and the parents' anxiety as assessed by the State-Trait Anxiety Inventory); (iii) cross-informant agreement using Bland-Altman analysis; (iv) cut-offs to distinguish between anxious and nonanxious children (reference: modified Yale Preoperative Anxiety Scale ≥30). Correlations between parents' and anesthesiologists' Visual Analog Scale and modified Yale Preoperative Anxiety Scale scores were strong (0.68 and 0.73, respectively). Visual Analog Scale scores were higher for children ≤5 years compared to children aged ≥6. Visual Analog Scale scores of children of high-anxious parents were higher than those of low-anxious parents. The mean difference between parents' and anesthesiologists' Visual Analog Scale scores was 3.6, with 95% limits of agreement (-56.1 to 63.3). To classify anxious children, cut-offs for parents (≥37 mm) and anesthesiologists (≥30 mm) were established. The present data provide preliminary data for the validity of a Visual Analog Scale to assess children's anxiety during induction. © 2017 John Wiley & Sons Ltd.

  5. An investigation of reasoning by analogy in schizophrenia and autism spectrum disorder

    PubMed Central

    Krawczyk, Daniel C.; Kandalaft, Michelle R.; Didehbani, Nyaz; Allen, Tandra T.; McClelland, M. Michelle; Tamminga, Carol A.; Chapman, Sandra B.

    2014-01-01

    Relational reasoning ability relies upon by both cognitive and social factors. We compared analogical reasoning performance in healthy controls (HC) to performance in individuals with Autism Spectrum Disorder (ASD), and individuals with schizophrenia (SZ). The experimental task required participants to find correspondences between drawings of scenes. Participants were asked to infer which item within one scene best matched a relational item within the second scene. We varied relational complexity, presence of distraction, and type of objects in the analogies (living or non-living items). We hypothesized that the cognitive differences present in SZ would reduce relational inferences relative to ASD and HC. We also hypothesized that both SZ and ASD would show lower performance on living item problems relative to HC due to lower social function scores. Overall accuracy was higher for HC relative to SZ, consistent with prior research. Across groups, higher relational complexity reduced analogical responding, as did the presence of non-living items. Separate group analyses revealed that the ASD group was less accurate at making relational inferences in problems that involved mainly non-living items and when distractors were present. The SZ group showed differences in problem type similar to the ASD group. Additionally, we found significant correlations between social cognitive ability and analogical reasoning, particularly for the SZ group. These results indicate that differences in cognitive and social abilities impact the ability to infer analogical correspondences along with numbers of relational elements and types of objects present in the problems. PMID:25191240

  6. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation

    PubMed Central

    Wang, Runchun M.; Hamilton, Tara J.; Tapson, Jonathan C.; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits. PMID:24672422

  7. A mixed-signal implementation of a polychronous spiking neural network with delay adaptation.

    PubMed

    Wang, Runchun M; Hamilton, Tara J; Tapson, Jonathan C; van Schaik, André

    2014-01-01

    We present a mixed-signal implementation of a re-configurable polychronous spiking neural network capable of storing and recalling spatio-temporal patterns. The proposed neural network contains one neuron array and one axon array. Spike Timing Dependent Delay Plasticity is used to fine-tune delays and add dynamics to the network. In our mixed-signal implementation, the neurons and axons have been implemented as both analog and digital circuits. The system thus consists of one FPGA, containing the digital neuron array and the digital axon array, and one analog IC containing the analog neuron array and the analog axon array. The system can be easily configured to use different combinations of each. We present and discuss the experimental results of all combinations of the analog and digital axon arrays and the analog and digital neuron arrays. The test results show that the proposed neural network is capable of successfully recalling more than 85% of stored patterns using both analog and digital circuits.

  8. Tools for Modeling & Simulation of Molecular and Nanoelectronics Devices

    DTIC Science & Technology

    2012-06-14

    implemented a prototype DFT simulation software using two different open source Finite Element (FE) libraries: DEALII and FENICS . These two libraries have been...ATK. In the first part of this Phase I project we investigated two different candidate finite element libraries, DEAL II and FENICS . Although both...element libraries, Deal.II and FEniCS /dolfin, for use as back-ends to a finite element DFT in ATK, Quantum Insight and QuantumWise A/S, October 2011.

  9. Explanatory Item Response Modeling of Children's Change on a Dynamic Test of Analogical Reasoning

    ERIC Educational Resources Information Center

    Stevenson, Claire E.; Hickendorff, Marian; Resing, Wilma C. M.; Heiser, Willem J.; de Boeck, Paul A. L.

    2013-01-01

    Dynamic testing is an assessment method in which training is incorporated into the procedure with the aim of gauging cognitive potential. Large individual differences are present in children's ability to profit from training in analogical reasoning. The aim of this experiment was to investigate sources of these differences on a dynamic test of…

  10. A Combined Time Domain Impedance Probe And Plasma Wave Receiver System For Small Satellite Applications.

    NASA Astrophysics Data System (ADS)

    Spencer, E. A.; Clark, D. C.; Vadepu, S. K.; Patra, S.

    2017-12-01

    A Time Domain Impedance Probe (TDIP) measures electron density and electron neutral collision frequencies in the ionosphere. This instrument has been tested on a sounding rocket flight and is now being further developed to fly on a NASA Undergraduate Student Instrument Program (USIP) cubesat to be launched out of the ISS in 2019. Here we report on the development of a new combined TDIP and plasma wave instrument that can be used on cubesat platforms to measure local electron parameters, and also to receive or transmit electron scale waves. This combined instrument can be used to study short time and space scale phenomena in the upper ionosphere using only RF signals. The front end analog circuitry is dual-purposed to perform active or passive probing of the ambient plasma. Two dipole antennas are used, one is optimzed for impedance measurements, while the other is optimized for transmitter-receiver performance. We show our circuit realization, and initial results from laboratory measurements using the TDIP prototype modified for receiver function. We also show Finite Difference Time Domain (FDTD) simulations of an electrically long antenna immersed in a magnetized plasma used to optimize the transmitter receiver performance.

  11. Numerical method to optimize the polar-azimuthal orientation of infrared superconducting-nanowire single-photon detectors.

    PubMed

    Csete, Mária; Sipos, Áron; Najafi, Faraz; Hu, Xiaolong; Berggren, Karl K

    2011-11-01

    A finite-element method for calculating the illumination-dependence of absorption in three-dimensional nanostructures is presented based on the radio frequency module of the Comsol Multiphysics software package (Comsol AB). This method is capable of numerically determining the optical response and near-field distribution of subwavelength periodic structures as a function of illumination orientations specified by polar angle, φ, and azimuthal angle, γ. The method was applied to determine the illumination-angle-dependent absorptance in cavity-based superconducting-nanowire single-photon detector (SNSPD) designs. Niobium-nitride stripes based on dimensions of conventional SNSPDs and integrated with ~ quarter-wavelength hydrogen-silsesquioxane-filled nano-optical cavity and covered by a thin gold film acting as a reflector were illuminated from below by p-polarized light in this study. The numerical results were compared to results from complementary transfer-matrix-method calculations on composite layers made of analogous film-stacks. This comparison helped to uncover the optical phenomena contributing to the appearance of extrema in the optical response. This paper presents an approach to optimizing the absorptance of different sensing and detecting devices via simultaneous numerical optimization of the polar and azimuthal illumination angles. © 2011 Optical Society of America

  12. On the modeling and characterization of an interlocked flexible electronic skin

    NASA Astrophysics Data System (ADS)

    Khalili, Nazanin; Shen, Xuechen; Naguib, Hani E.

    2017-04-01

    Development of an electronic skin with ultra-high pressure sensitivity is now of critical importance due its broad range of applications including prosthetic skins and biomimetic robotics. Microstructured conductive composite elastomers can acquire mechanical and electrical properties analogous to those of natural skin. One of the most prominent features of human skin is its tactile sensing property which can be mimicked in an electronic skin. Herein, an electrically conductive composite comprising polydimethylsiloxane and conductive fillers is used as a flexible and stretchable piezoresistive sensor. The electrical conductivity is induced within the elastomer matrix via carbon nanotubes whereas the piezoresistivity is obtained by means of microstructuring the surface of the substrate. An interlocked array of pyramids in micro-scale allows the change in the contact resistance between two thin layers of the composite upon application of an external load. Deformation of the interlocked arrays endows the sensor with an ultra-high sensitivity to the external pressures within the range of human skin perception. Moreover, using finite element analysis, the change in the contact are between the two layers was captured for different geometries. The structure of the sensor can be optimized through an optimization model in order to acquire maximum sensitivity.

  13. Wall Driven Cavity Approach to Slug Flow Modeling In a Micro channel

    NASA Astrophysics Data System (ADS)

    Sahu, Avinash; Kulkarni, Shekhar; Pushpavanam, Subramaniam; Pushpavanam Research League Team, Prof.

    2014-03-01

    Slug flow is a commonly observed stable regime and occurs at relatively low flow rates of the fluids. Wettability of channel decides continuous and discrete phases. In these types of biphasic flows, the fluid - fluid interface acts as a barrier that prohibits species movement across the interface. The flow inside a slug is qualitatively similar to the well known shallow cavity flow. In shallow cavities the flow mimics the ``fully developed'' internal circulation in slug flows. Another approach to slug flow modeling can be in a moving reference frame. Here the wall boundary moves in the direction opposite to that of the flow, hence induces circulations within the phases which is analogous to the well known Lid Driven Cavity. The two parallel walls are moved in the opposite directions which generate circulation patterns, equivalent to the ones regularly observed in slug flow in micro channels. A fourth order stream function equation is solved using finite difference approach. The flow field obtained using the two approaches will be used to analyze the effect on mass transfer and chemical reactions in the micro channel. The internal circulations and the performance of these systems will be validated experimentally.

  14. Topological domain walls in helimagnets

    NASA Astrophysics Data System (ADS)

    Schoenherr, P.; Müller, J.; Köhler, L.; Rosch, A.; Kanazawa, N.; Tokura, Y.; Garst, M.; Meier, D.

    2018-05-01

    Domain walls naturally arise whenever a symmetry is spontaneously broken. They interconnect regions with different realizations of the broken symmetry, promoting structure formation from cosmological length scales to the atomic level1,2. In ferroelectric and ferromagnetic materials, domain walls with unique functionalities emerge, holding great promise for nanoelectronics and spintronics applications3-5. These walls are usually of Ising, Bloch or Néel type and separate homogeneously ordered domains. Here we demonstrate that a wide variety of new domain walls occurs in the presence of spatially modulated domain states. Using magnetic force microscopy and micromagnetic simulations, we show three fundamental classes of domain walls to arise in the near-room-temperature helimagnet iron germanium. In contrast to conventional ferroics, the domain walls exhibit a well-defined inner structure, which—analogous to cholesteric liquid crystals—consists of topological disclination and dislocation defects. Similar to the magnetic skyrmions that form in the same material6,7, the domain walls can carry a finite topological charge, permitting an efficient coupling to spin currents and contributions to a topological Hall effect. Our study establishes a new family of magnetic nano-objects with non-trivial topology, opening the door to innovative device concepts based on helimagnetic domain walls.

  15. Projector Augmented-Wave formulation of response to strain and electric field perturbation within the density-functional perturbation theory

    NASA Astrophysics Data System (ADS)

    Martin, Alexandre; Torrent, Marc; Caracas, Razvan

    2015-03-01

    A formulation of the response of a system to strain and electric field perturbations in the pseudopotential-based density functional perturbation theory (DFPT) has been proposed by D.R Hamman and co-workers. It uses an elegant formalism based on the expression of DFT total energy in reduced coordinates, the key quantity being the metric tensor and its first and second derivatives. We propose to extend this formulation to the Projector Augmented-Wave approach (PAW). In this context, we express the full elastic tensor including the clamped-atom tensor, the atomic-relaxation contributions (internal stresses) and the response to electric field change (piezoelectric tensor and effective charges). With this we are able to compute the elastic tensor for all materials (metals and insulators) within a fully analytical formulation. The comparison with finite differences calculations on simple systems shows an excellent agreement. This formalism has been implemented in the plane-wave based DFT ABINIT code. We apply it to the computation of elastic properties and seismic-wave velocities of iron with impurity elements. By analogy with the materials contained in meteorites, tested impurities are light elements (H, O, C, S, Si).

  16. Enhanced storage capacity with errors in scale-free Hopfield neural networks: An analytical study.

    PubMed

    Kim, Do-Hyun; Park, Jinha; Kahng, Byungnam

    2017-01-01

    The Hopfield model is a pioneering neural network model with associative memory retrieval. The analytical solution of the model in mean field limit revealed that memories can be retrieved without any error up to a finite storage capacity of O(N), where N is the system size. Beyond the threshold, they are completely lost. Since the introduction of the Hopfield model, the theory of neural networks has been further developed toward realistic neural networks using analog neurons, spiking neurons, etc. Nevertheless, those advances are based on fully connected networks, which are inconsistent with recent experimental discovery that the number of connections of each neuron seems to be heterogeneous, following a heavy-tailed distribution. Motivated by this observation, we consider the Hopfield model on scale-free networks and obtain a different pattern of associative memory retrieval from that obtained on the fully connected network: the storage capacity becomes tremendously enhanced but with some error in the memory retrieval, which appears as the heterogeneity of the connections is increased. Moreover, the error rates are also obtained on several real neural networks and are indeed similar to that on scale-free model networks.

  17. Professional diversity and the productivity of cities.

    PubMed

    Bettencourt, Luís M A; Samaniego, Horacio; Youn, Hyejin

    2014-06-23

    Attempts to understand the relationship between diversity, productivity and scale have remained limited due to the scheme-dependent nature of the taxonomies describing complex systems. We analyze the diversity of US metropolitan areas in terms of profession diversity and employment to show how this frequency distribution takes a universal scale-invariant form, common to all cities, in the limit of infinite resolution of occupational taxonomies. We show that this limit is obtained under general conditions that follow from the analysis of the variation of the occupational frequency across taxonomies at different resolutions in a way analogous to finite-size scaling in statistical physical systems. We propose a theoretical framework that derives the form and parameters of the limiting distribution of professions based on the appearance, in urban social networks, of new occupations as the result of specialization and coordination of labor. By deriving classification scheme-independent measures of functional diversity and modeling cities as social networks embedded in infrastructural space, these results show how standard economic arguments of division and coordination of labor can be articulated in detail in cities and provide a microscopic basis for explaining increasing returns to population scale observed at the level of entire metropolitan areas.

  18. Interfacial contact stiffness of fractal rough surfaces.

    PubMed

    Zhang, Dayi; Xia, Ying; Scarpa, Fabrizio; Hong, Jie; Ma, Yanhong

    2017-10-09

    In this work we describe a theoretical model that predicts the interfacial contact stiffness of fractal rough surfaces by considering the effects of elastic and plastic deformations of the fractal asperities. We also develop an original test rig that simulates dovetail joints for turbo machinery blades, which can fine tune the normal contact load existing between the contacting surfaces of the blade root. The interfacial contact stiffness is obtained through an inverse identification method in which finite element simulations are fitted to the experimental results. Excellent agreement is observed between the contact stiffness predicted by the theoretical model and by the analogous experimental results. We demonstrate that the contact stiffness is a power law function of the normal contact load with an exponent α within the whole range of fractal dimension D(1 < D < 2). We also show that for 1 < D < 1.5 the Pohrt-Popov behavior (α = 1/(3 - D)) is valid, however for 1.5 < D < 2, the exponent α is different and equal to 2(D - 1)/D. The diversity between the model developed in the work and the Pohrt-Popov one is explained in detail.

  19. Low-power low-noise mixed-mode VLSI ASIC for infinite dynamic range imaging applications

    NASA Astrophysics Data System (ADS)

    Turchetta, Renato; Hu, Y.; Zinzius, Y.; Colledani, C.; Loge, A.

    1998-11-01

    Solid state solutions for imaging are mainly represented by CCDs and, more recently, by CMOS imagers. Both devices are based on the integration of the total charge generated by the impinging radiation, with no processing of the single photon information. The dynamic range of these devices is intrinsically limited by the finite value of noise. Here we present the design of an architecture which allows efficient, in-pixel, noise reduction to a practically zero level, thus allowing infinite dynamic range imaging. A detailed calculation of the dynamic range is worked out, showing that noise is efficiently suppressed. This architecture is based on the concept of single-photon counting. In each pixel, we integrate both the front-end, low-noise, low-power analog part and the digital part. The former consists of a charge preamplifier, an active filter for optimal noise bandwidth reduction, a buffer and a threshold comparator, and the latter is simply a counter, which can be programmed to act as a normal shift register for the readout of the counters' contents. Two different ASIC's based on this concept have been designed for different applications. The first one has been optimized for silicon edge-on microstrips detectors, used in a digital mammography R and D project. It is a 32-channel circuit, with a 16-bit binary static counter.It has been optimized for a relatively large detector capacitance of 5 pF. Noise has been measured to be equal to 100 + 7*Cd (pF) electron rms with the digital part, showing no degradation of the noise performances with respect to the design values. The power consumption is 3.8mW/channel for a peaking time of about 1 microsecond(s) . The second circuit is a prototype for pixel imaging. The total active area is about (250 micrometers )**2. The main differences of the electronic architecture with respect to the first prototype are: i) different optimization of the analog front-end part for low-capacitance detectors, ii) in- pixel 4-bit comparator-offset compensation, iii) 15-bit pseudo-random counter. The power consumption is 255 (mu) W/channel for a peaking time of 300 ns and an equivalent noise charge of 185 + 97*Cd electrons rms. Simulation and experimental result as well as imaging results will be presented.

  20. Applications of discrete element method in modeling of grain postharvest operations

    USDA-ARS?s Scientific Manuscript database

    Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...

  1. A case study analysing the process of analogy-based learning in a teaching unit about simple electric circuits

    NASA Astrophysics Data System (ADS)

    Paatz, Roland; Ryder, James; Schwedes, Hannelore; Scott, Philip

    2004-09-01

    The purpose of this case study is to analyse the learning processes of a 16-year-old student as she learns about simple electric circuits in response to an analogy-based teaching sequence. Analogical thinking processes are modelled by a sequence of four steps according to Gentner's structure mapping theory (activate base domain, postulate local matches, connect them to a global match, draw candidate inferences). We consider whether Gentner's theory can be used to account for the details of this specific teaching/learning context. The case study involved video-taping teaching and learning activities in a 10th-grade high school course in Germany. Teaching used water flow through pipes as an analogy for electrical circuits. Using Gentner's theory, relational nets were created from the student's statements at different stages of her learning. Overall, these nets reflect the four steps outlined earlier. We also consider to what extent the learning processes revealed by this case study are different from previous analyses of contexts in which no analogical knowledge is available.

  2. Maxwell's contrived analogy: An early version of the methodology of modeling

    NASA Astrophysics Data System (ADS)

    Hon, Giora; Goldstein, Bernard R.

    2012-11-01

    The term "analogy" stands for a variety of methodological practices all related in one way or another to the idea of proportionality. We claim that in his first substantial contribution to electromagnetism James Clerk Maxwell developed a methodology of analogy which was completely new at the time or, to borrow John North's expression, Maxwell's methodology was a "newly contrived analogue". In his initial response to Michael Faraday's experimental researches in electromagnetism, Maxwell did not seek an analogy with some physical system in a domain different from electromagnetism as advocated by William Thomson; rather, he constructed an entirely artificial one to suit his needs. Following North, we claim that the modification which Maxwell introduced to the methodology of analogy has not been properly appreciated. In view of our examination of the evidence, we argue that Maxwell gave a new meaning to analogy; in fact, it comes close to modeling in current usage.

  3. Developing Analogy Cost Estimates for Space Missions

    NASA Technical Reports Server (NTRS)

    Shishko, Robert

    2004-01-01

    The analogy approach in cost estimation combines actual cost data from similar existing systems, activities, or items with adjustments for a new project's technical, physical or programmatic differences to derive a cost estimate for the new system. This method is normally used early in a project cycle when there is insufficient design/cost data to use as a basis for (or insufficient time to perform) a detailed engineering cost estimate. The major limitation of this method is that it relies on the judgment and experience of the analyst/estimator. The analyst must ensure that the best analogy or analogies have been selected, and that appropriate adjustments have been made. While analogy costing is common, there is a dearth of advice in the literature on the 'adjustment methodology', especially for hardware projects. This paper discusses some potential approaches that can improve rigor and repeatability in the analogy costing process.

  4. Reliable absolute analog code retrieval approach for 3D measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun

    2017-11-01

    The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.

  5. An investigation of several factors involved in a finite difference procedure for analyzing the transonic flow about harmonically oscillating airfoils and wings

    NASA Technical Reports Server (NTRS)

    Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.

    1979-01-01

    Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.

  6. Synthesis and in vitro study of benzofuran hydrazone derivatives as novel alpha-amylase inhibitor.

    PubMed

    Taha, Muhammad; Shah, Syed Adnan Ali; Imran, Syahrul; Afifi, Muhammad; Chigurupati, Sridevi; Selvaraj, Manikandan; Rahim, Fazal; Ullah, Hayat; Zaman, Khalid; Vijayabalan, Shantini

    2017-12-01

    The α-amylase acts as attractive target to treat type-2 diabetes mellitus. Therefore in discovering a small molecule as α-amylase inhibitor, we have synthesized benzofuran carbohydrazide analogs (1-25), characterized through different spectroscopic techniques such as 1 HNMR and EI-MS. All screened analog shows good α-amylase inhibitory potentials with IC 50 value ranging between 1.078±0.19 and 2.926±0.05µM when compared with acarbose having IC 50 =0.62±0.22µM. Only nine analogs among the series such as analogs 3, 5, 7, 8, 10, 12, 21, 23 and 24 exhibit good inhibitory potential with IC 50 values 1.644±0.128, 1.078±0.19, 1.245±0.25, 1.843±0.19, 1.350±0.24, 1.629±0.015, 1.353±0.232, 1.359±0.119 and 1.488±0.07µM when compare with standard drug acarbose. All other analogs showed good to moderate α-amylase inhibitory potentials. The SAR study was conducted on the basis of substituent difference at the phenyl ring. The binding interaction between analogs and active site of enzyme was confirmed by docking studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A comparative study on fluorescent cholesterol analogs as versatile cellular reporters[S

    PubMed Central

    Sezgin, Erdinc; Can, Fatma Betul; Schneider, Falk; Clausen, Mathias P.; Galiani, Silvia; Stanly, Tess A.; Waithe, Dominic; Colaco, Alexandria; Honigmann, Alf; Wüstner, Daniel; Platt, Frances; Eggeling, Christian

    2016-01-01

    Cholesterol (Chol) is a crucial component of cellular membranes, but knowledge of its intracellular dynamics is scarce. Thus, it is of utmost interest to develop tools for visualization of Chol organization and dynamics in cells and tissues. For this purpose, many studies make use of fluorescently labeled Chol analogs. Unfortunately, the introduction of the label may influence the characteristics of the analog, such as its localization, interaction, and trafficking in cells; hence, it is important to get knowledge of such bias. In this report, we compared different fluorescent lipid analogs for their performance in cellular assays: 1) plasma membrane incorporation, specifically the preference for more ordered membrane environments in phase-separated giant unilamellar vesicles and giant plasma membrane vesicles; 2) cellular trafficking, specifically subcellular localization in Niemann-Pick type C disease cells; and 3) applicability in fluorescence correlation spectroscopy (FCS)-based and super-resolution stimulated emission depletion-FCS-based measurements of membrane diffusion dynamics. The analogs exhibited strong differences, with some indicating positive performance in the membrane-based experiments and others in the intracellular trafficking assay. However, none showed positive performance in all assays. Our results constitute a concise guide for the careful use of fluorescent Chol analogs in visualizing cellular Chol dynamics. PMID:26701325

  8. Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas

    In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less

  9. A Parametric Finite-Element Model for Evaluating Segmented Mirrors with Discrete, Edgewise Connectivity

    NASA Technical Reports Server (NTRS)

    Gersh-Range, Jessica A.; Arnold, William R.; Peck, Mason A.; Stahl, H. Philip

    2011-01-01

    Since future astrophysics missions require space telescopes with apertures of at least 10 meters, there is a need for on-orbit assembly methods that decouple the size of the primary mirror from the choice of launch vehicle. One option is to connect the segments edgewise using mechanisms analogous to damped springs. To evaluate the feasibility of this approach, a parametric ANSYS model that calculates the mode shapes, natural frequencies, and disturbance response of such a mirror, as well as of the equivalent monolithic mirror, has been developed. This model constructs a mirror using rings of hexagonal segments that are either connected continuously along the edges (to form a monolith) or at discrete locations corresponding to the mechanism locations (to form a segmented mirror). As an example, this paper presents the case of a mirror whose segments are connected edgewise by mechanisms analogous to a set of four collocated single-degree-of-freedom damped springs. The results of a set of parameter studies suggest that such mechanisms can be used to create a 15-m segmented mirror that behaves similarly to a monolith, although fully predicting the segmented mirror performance would require incorporating measured mechanism properties into the model. Keywords: segmented mirror, edgewise connectivity, space telescope

  10. Phase transitions in community detection: A solvable toy model

    NASA Astrophysics Data System (ADS)

    Ver Steeg, Greg; Moore, Cristopher; Galstyan, Aram; Allahverdyan, Armen

    2014-05-01

    Recently, it was shown that there is a phase transition in the community detection problem. This transition was first computed using the cavity method, and has been proved rigorously in the case of q = 2 groups. However, analytic calculations using the cavity method are challenging since they require us to understand probability distributions of messages. We study analogous transitions in the so-called “zero-temperature inference” model, where this distribution is supported only on the most likely messages. Furthermore, whenever several messages are equally likely, we break the tie by choosing among them with equal probability, corresponding to an infinitesimal random external field. While the resulting analysis overestimates the thresholds, it reproduces some of the qualitative features of the system. It predicts a first-order detectability transition whenever q > 2 (as opposed to q > 4 according to the finite-temperature cavity method). It also has a regime analogous to the “hard but detectable” phase, where the community structure can be recovered, but only when the initial messages are sufficiently accurate. Finally, we study a semisupervised setting where we are given the correct labels for a fraction ρ of the nodes. For q > 2, we find a regime where the accuracy jumps discontinuously at a critical value of ρ.

  11. Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding

    DOE PAGES

    Agarwal, Sapan; Quach, Tu -Thach; Parekh, Ojas; ...

    2016-01-06

    In this study, the exponential increase in data over the last decade presents a significant challenge to analytics efforts that seek to process and interpret such data for various applications. Neural-inspired computing approaches are being developed in order to leverage the computational properties of the analog, low-power data processing observed in biological systems. Analog resistive memory crossbars can perform a parallel read or a vector-matrix multiplication as well as a parallel write or a rank-1 update with high computational efficiency. For an N × N crossbar, these two kernels can be O(N) more energy efficient than a conventional digital memory-basedmore » architecture. If the read operation is noise limited, the energy to read a column can be independent of the crossbar size (O(1)). These two kernels form the basis of many neuromorphic algorithms such as image, text, and speech recognition. For instance, these kernels can be applied to a neural sparse coding algorithm to give an O(N) reduction in energy for the entire algorithm when run with finite precision. Sparse coding is a rich problem with a host of applications including computer vision, object tracking, and more generally unsupervised learning.« less

  12. In-line polarization rotator based on the quantum-optical analogy.

    PubMed

    Chen, Lei; Qu, Ke-Nan; Shen, Heng; Zhang, Wei-Gang; Chou, Keng C; Liu, Qian; Yan, Tie-Yi; Wang, Biao; Wang, Song

    2016-05-01

    An in-line polarization rotator (PR) is proposed based on the quantum-optical analogy (QOA). The proposed PR possesses an auxiliary E7 liquid crystal (LC) waveguide in the vicinity of the single-mode fiber (SMF) core. Because of the matched core size, the PR demonstrates good compatibility with the established backbone networks which are composed of conventional SMFs. With optimized parameters for the auxiliary waveguide, the PR offers a near 100% polarization conversion efficiency at the 1550 nm band with a bandwidth of ∼30  nm, a length of ∼4625.9  μm with a large tolerance of ∼550  μm, and a tolerance of the input light polarization angle and rotation angle of the E7 LC of ∼π/30 and ∼π/36  rad, respectively. The performance was verified by the full-vector finite-element method. The proposed PR can be easily fabricated based on the existing photonics crystal fiber manufacturing process, making it a potentially inexpensive device for applications in modern communication systems. Moreover, the QOA, compared with the previous supermode-theory design method, allows a designer to consider several waveguides separately. Therefore, various unique characteristics can be met simultaneously which is consistent with the trend of modern fiber design.

  13. Parallel processing in finite element structural analysis

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.

    1987-01-01

    A brief review is made of the fundamental concepts and basic issues of parallel processing. Discussion focuses on parallel numerical algorithms, performance evaluation of machines and algorithms, and parallelism in finite element computations. A computational strategy is proposed for maximizing the degree of parallelism at different levels of the finite element analysis process including: 1) formulation level (through the use of mixed finite element models); 2) analysis level (through additive decomposition of the different arrays in the governing equations into the contributions to a symmetrized response plus correction terms); 3) numerical algorithm level (through the use of operator splitting techniques and application of iterative processes); and 4) implementation level (through the effective combination of vectorization, multitasking and microtasking, whenever available).

  14. THREE-POINT BACKWARD FINITE DIFFERENCE METHOD FOR SOLVING A SYSTEM OF MIXED HYPERBOLIC-PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS. (R825549C019)

    EPA Science Inventory

    A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...

  15. Finite Difference Schemes as Algebraic Correspondences between Layers

    NASA Astrophysics Data System (ADS)

    Malykh, Mikhail; Sevastianov, Leonid

    2018-02-01

    For some differential equations, especially for Riccati equation, new finite difference schemes are suggested. These schemes define protective correspondences between the layers. Calculation using these schemes can be extended to the area beyond movable singularities of exact solution without any error accumulation.

  16. Construction of stable explicit finite-difference schemes for Schroedinger type differential equations

    NASA Technical Reports Server (NTRS)

    Mickens, Ronald E.

    1989-01-01

    A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.

  17. Calculation of compressible boundary layer flow about airfoils by a finite element/finite difference method

    NASA Technical Reports Server (NTRS)

    Strong, Stuart L.; Meade, Andrew J., Jr.

    1992-01-01

    Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.

  18. Dynamical phase transitions at finite temperature from fidelity and interferometric Loschmidt echo induced metrics

    NASA Astrophysics Data System (ADS)

    Mera, Bruno; Vlachou, Chrysoula; Paunković, Nikola; Vieira, Vítor R.; Viyuela, Oscar

    2018-03-01

    We study finite-temperature dynamical quantum phase transitions (DQPTs) by means of the fidelity and the interferometric Loschmidt echo (LE) induced metrics. We analyze the associated dynamical susceptibilities (Riemannian metrics), and derive analytic expressions for the case of two-band Hamiltonians. At zero temperature, the two quantities are identical, nevertheless, at finite temperatures they behave very differently. Using the fidelity LE, the zero-temperature DQPTs are gradually washed away with temperature, while the interferometric counterpart exhibits finite-temperature phase transitions. We analyze the physical differences between the two finite-temperature LE generalizations, and argue that, while the interferometric one is more sensitive and can therefore provide more information when applied to genuine quantum (microscopic) systems, when analyzing many-body macroscopic systems, the fidelity-based counterpart is a more suitable quantity to study. Finally, we apply the previous results to two representative models of topological insulators in one and two dimensions.

  19. The finite element method for micro-scale modeling of ultrasound propagation in cancellous bone.

    PubMed

    Vafaeian, B; El-Rich, M; El-Bialy, T; Adeeb, S

    2014-08-01

    Quantitative ultrasound for bone assessment is based on the correlations between ultrasonic parameters and the properties (mechanical and physical) of cancellous bone. To elucidate the correlations, understanding the physics of ultrasound in cancellous bone is demanded. Micro-scale modeling of ultrasound propagation in cancellous bone using the finite-difference time-domain (FDTD) method has been so far utilized as one of the approaches in this regard. However, the FDTD method accompanies two disadvantages: staircase sampling of cancellous bone by finite difference grids leads to generation of wave artifacts at the solid-fluid interface inside the bone; additionally, this method cannot explicitly satisfy the needed perfect-slip conditions at the interface. To overcome these disadvantages, the finite element method (FEM) is proposed in this study. Three-dimensional finite element models of six water-saturated cancellous bone samples with different bone volume were created. The values of speed of sound (SOS) and broadband ultrasound attenuation (BUA) were calculated through the finite element simulations of ultrasound propagation in each sample. Comparing the results with other experimental and simulation studies demonstrated the capabilities of the FEM for micro-scale modeling of ultrasound in water-saturated cancellous bone. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Role of Working Memory and Strategy-Use in Feedback Effects on Children's Progression in Analogy Solving:an Explanatory Item Response Theory Account

    ERIC Educational Resources Information Center

    Stevenson, Claire E.

    2017-01-01

    This study contrasted the effects of tutoring, multiple try and no feedback on children's progression in analogy solving and examined individual differences herein. Feedback that includes additional hints or explanations leads to the greatest learning gains in adults. However, children process feedback differently from adults and effective…

  1. The State-of-the-Art Parabolic Equation Approximation as Applied to Underwater Acoustic Propagation with Discussions on Intensive Computations: An Invited Paper Presented at the Meeting of the Acoustical Society of America (108th) Held in Minneapolis, Minnesota on 8-12 October 1984

    DTIC Science & Technology

    1984-10-12

    MCYwWWm M& de4 l 8.id iW d by N1wk "wt Finite Difference Reference Wavenumber Interface Split-Step Ordinary Difference Equation Wide Angle Parabolic...Problems D. Lee and S. Praiser J. Comp. & Math. with Appls., 7(2), pp. 195-202 (1981) Finite - Difference Solution to the Parabolic Wave Equation D. Lee, G...was incorporated into the ODE and finite difference models. At that time, we did not have a better implementation of the ODE solution, but we

  2. Numerical stability of an explicit finite difference scheme for the solution of transient conduction in composite media

    NASA Technical Reports Server (NTRS)

    Campbell, W.

    1981-01-01

    A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.

  3. Chiral anomaly and anomalous finite-size conductivity in graphene

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing; Li, Chang-An; Niu, Qian

    2017-09-01

    Graphene is a monolayer of carbon atoms packed into a hexagon lattice to host two spin degenerate pairs of massless two-dimensional Dirac fermions with different chirality. It is known that the existence of non-zero electric polarization in reduced momentum space which is associated with a hidden chiral symmetry will lead to the zero-energy flat band of a zigzag nanoribbon and some anomalous transport properties. Here it is proposed that the Adler-Bell-Jackiw chiral anomaly or non-conservation of chiral charges of Dirac fermions at different valleys can be realized in a confined ribbon of finite width, even in the absence of a magnetic field. In the laterally diffusive regime, the finite-size correction to conductivity is always positive and is inversely proportional to the square of the lateral dimension W, which is different from the finite-size correction inversely proportional to W from the boundary modes. This anomalous finite-size conductivity reveals the signature of the chiral anomaly in graphene, and it is measurable experimentally. This finding provides an alternative platform to explore the purely quantum mechanical effect in graphene.

  4. ROC Analysis of Chest Radiographs Using Computed Radiography and Conventional Analog Films

    NASA Astrophysics Data System (ADS)

    Morioka, Craig A.; Brown, Kathy; Hayrapetian, Alek S.; Kangarloo, Hooshang; Balter, Stephen; Huang, H. K.

    1989-05-01

    Receiver operating characteristic is used to compare the image quality of films obtained digitally using computed radiography (CR) and conventionally using analog film following fluoroscopic examination. Similar radiological views were obtained by both modalities. Twenty-four cases, some with a solitary noncalcified nodule and/or pneumothorax, were collected. Ten radiologists have been tested viewing analog and CR digital films separately. Final results indicate that there is no statistically significant difference in the ability to detect either a pneumothorax or a solitary noncalcified nodule when comparing CR digital film with conventional analog film. However, there is a trend that indicated the area under the ROC curves for detection of either a pneumothorax or solitary noncalcified nodule were greater for the analog film than for the digital film.

  5. APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM

    EPA Science Inventory

    A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the ca...

  6. A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES

    EPA Science Inventory

    A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromagnetic properties of the model are symmetric with respect ...

  7. High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates

    NASA Technical Reports Server (NTRS)

    Nordstrom, Jan; Carpenter, Mark H.

    1999-01-01

    Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.

  8. A mixed pseudospectral/finite difference method for the axisymmetric flow in a heated, rotating spherical shell. [for experimental atmospheric simulation

    NASA Technical Reports Server (NTRS)

    Macaraeg, M. G.

    1986-01-01

    For a Spacelab flight, a model experiment of the earth's atmospheric circulation has been proposed. This experiment is known as the Atmospheric General Circulation Experiment (AGCE). In the experiment concentric spheres will rotate as a solid body, while a dielectric fluid is confined in a portion of the gap between the spheres. A zero gravity environment will be required in the context of the simulation of the gravitational body force on the atmosphere. The present study is concerned with the development of pseudospectral/finite difference (PS/FD) model and its subsequent application to physical cases relevant to the AGCE. The model is based on a hybrid scheme involving a pseudospectral latitudinal formulation, and finite difference radial and time discretization. The advantages of the use of the hybrid PS/FD method compared to a pure second-order accurate finite difference (FD) method are discussed, taking into account the higher accuracy and efficiency of the PS/FD method.

  9. Finite-Difference Lattice Boltzmann Scheme for High-Speed Compressible Flow: Two-Dimensional Case

    NASA Astrophysics Data System (ADS)

    Gan, Yan-Biao; Xu, Ai-Guo; Zhang, Guang-Cai; Zhang, Ping; Zhang, Lei; Li, Ying-Jun

    2008-07-01

    Lattice Boltzmann (LB) modeling of high-speed compressible flows has long been attempted by various authors. One common weakness of most of previous models is the instability problem when the Mach number of the flow is large. In this paper we present a finite-difference LB model, which works for flows with flexible ratios of specific heats and a wide range of Mach number, from 0 to 30 or higher. Besides the discrete-velocity-model by Watari [Physica A 382 (2007) 502], a modified Lax Wendroff finite difference scheme and an artificial viscosity are introduced. The combination of the finite-difference scheme and the adding of artificial viscosity must find a balance of numerical stability versus accuracy. The proposed model is validated by recovering results of some well-known benchmark tests: shock tubes and shock reflections. The new model may be used to track shock waves and/or to study the non-equilibrium procedure in the transition between the regular and Mach reflections of shock waves, etc.

  10. The use of spectral methods in bidomain studies.

    PubMed

    Trayanova, N; Pilkington, T

    1992-01-01

    A Fourier transform method is developed for solving the bidomain coupled differential equations governing the intracellular and extracellular potentials on a finite sheet of cardiac cells undergoing stimulation. The spectral formulation converts the system of differential equations into a "diagonal" system of algebraic equations. Solving the algebraic equations directly and taking the inverse transform of the potentials proved numerically less expensive than solving the coupled differential equations by means of traditional numerical techniques, such as finite differences; the comparison between the computer execution times showed that the Fourier transform method was about 40 times faster than the finite difference method. By application of the Fourier transform method, transmembrane potential distributions in the two-dimensional myocardial slice were calculated. For a tissue characterized by a ratio of the intra- to extracellular conductivities that is different in all principal directions, the transmembrane potential distribution exhibits a rather complicated geometrical pattern. The influence of the different anisotropy ratios, the finite tissue size, and the stimuli configuration on the pattern of membrane polarization is investigated.

  11. Unstructured Finite Elements and Dynamic Meshing for Explicit Phase Tracking in Multiphase Problems

    NASA Astrophysics Data System (ADS)

    Chandra, Anirban; Yang, Fan; Zhang, Yu; Shams, Ehsan; Sahni, Onkar; Oberai, Assad; Shephard, Mark

    2017-11-01

    Multi-phase processes involving phase change at interfaces, such as evaporation of a liquid or combustion of a solid, represent an interesting class of problems with varied applications. Large density ratio across phases, discontinuous fields at the interface and rapidly evolving geometries are some of the inherent challenges which influence the numerical modeling of multi-phase phase change problems. In this work, a mathematically consistent and robust computational approach to address these issues is presented. We use stabilized finite element methods on mixed topology unstructured grids for solving the compressible Navier-Stokes equations. Appropriate jump conditions derived from conservations laws across the interface are handled by using discontinuous interpolations, while the continuity of temperature and tangential velocity is enforced using a penalty parameter. The arbitrary Lagrangian-Eulerian (ALE) technique is utilized to explicitly track the interface motion. Mesh at the interface is constrained to move with the interface while elsewhere it is moved using the linear elasticity analogy. Repositioning is applied to the layered mesh that maintains its structure and normal resolution. In addition, mesh modification is used to preserve the quality of the volumetric mesh. This work is supported by the U.S. Army Grants W911NF1410301 and W911NF16C0117.

  12. Calibration approach for fluorescence lifetime determination for applications using time-gated detection and finite pulse width excitation.

    PubMed

    Keller, Scott B; Dudley, Jonathan A; Binzel, Katherine; Jasensky, Joshua; de Pedro, Hector Michael; Frey, Eric W; Urayama, Paul

    2008-10-15

    Time-gated techniques are useful for the rapid sampling of excited-state (fluorescence) emission decays in the time domain. Gated detectors coupled with bright, economical, nanosecond-pulsed light sources like flashlamps and nitrogen lasers are an attractive combination for bioanalytical and biomedical applications. Here we present a calibration approach for lifetime determination that is noniterative and that does not assume a negligible instrument response function (i.e., a negligible excitation pulse width) as does most current rapid lifetime determination approaches. Analogous to a transducer-based sensor, signals from fluorophores of known lifetime (0.5-12 ns) serve as calibration references. A fast avalanche photodiode and a GHz-bandwidth digital oscilloscope is used to detect transient emission from reference samples excited using a nitrogen laser. We find that the normalized time-integrated emission signal is proportional to the lifetime, which can be determined with good reproducibility (typically <100 ps) even for data with poor signal-to-noise ratios ( approximately 20). Results are in good agreement with simulations. Additionally, a new time-gating scheme for fluorescence lifetime imaging applications is proposed. In conclusion, a calibration-based approach is a valuable analysis tool for the rapid determination of lifetime in applications using time-gated detection and finite pulse width excitation.

  13. Fast vortex oscillations in a ferrimagnetic disk near the angular momentum compensation point

    NASA Astrophysics Data System (ADS)

    Kim, Se Kwon; Tserkovnyak, Yaroslav

    2017-07-01

    We theoretically study the oscillatory dynamics of a vortex core in a ferrimagnetic disk near its angular momentum compensation point, where the spin density vanishes but the magnetization is finite. Due to the finite magnetostatic energy, a ferrimagnetic disk of suitable geometry can support a vortex as a ground state similar to a ferromagnetic disk. In the vicinity of the angular momentum compensation point, the dynamics of the vortex resemble those of an antiferromagnetic vortex, which is described by equations of motion analogous to Newton's second law for the motion of particles. Owing to the antiferromagnetic nature of the dynamics, the vortex oscillation frequency can be an order of magnitude larger than the frequency of a ferromagnetic vortex, amounting to tens of GHz in common transition-metal based alloys. We show that the frequency can be controlled either by applying an external field or by changing the temperature. In particular, the latter property allows us to detect the angular momentum compensation temperature, at which the lowest eigenfrequency attains its maximum, by performing ferromagnetic resonance measurements on the vortex disk. Our work proposes a ferrimagnetic vortex disk as a tunable source of fast magnetic oscillations and a useful platform to study the properties of ferrimagnets.

  14. A normal tissue dose response model of dynamic repair processes.

    PubMed

    Alber, Markus; Belka, Claus

    2006-01-07

    A model is presented for serial, critical element complication mechanisms for irradiated volumes from length scales of a few millimetres up to the entire organ. The central element of the model is the description of radiation complication as the failure of a dynamic repair process. The nature of the repair process is seen as reestablishing the structural organization of the tissue, rather than mere replenishment of lost cells. The interactions between the cells, such as migration, involved in the repair process are assumed to have finite ranges, which limits the repair capacity and is the defining property of a finite-sized reconstruction unit. Since the details of the repair processes are largely unknown, the development aims to make the most general assumptions about them. The model employs analogies and methods from thermodynamics and statistical physics. An explicit analytical form of the dose response of the reconstruction unit for total, partial and inhomogeneous irradiation is derived. The use of the model is demonstrated with data from animal spinal cord experiments and clinical data about heart, lung and rectum. The three-parameter model lends a new perspective to the equivalent uniform dose formalism and the established serial and parallel complication models. Its implications for dose optimization are discussed.

  15. Analogy for Drude's free electron model to promote students' understanding of electric circuits in lower secondary school

    NASA Astrophysics Data System (ADS)

    de Almeida, Maria José BM; Salvador, Andreia; Costa, Maria Margarida RR

    2014-12-01

    Aiming at a deep understanding of some basic concepts of electric circuits in lower secondary schools, this work introduces an analogy between the behavior of children playing in a school yard with a central lake, subject to different conditions, rules, and stimuli, and Drude's free electron model of metals. Using this analogy from the first school contacts with electric phenomena, one can promote students' understanding of concepts such as electric current, the role of generators, potential difference effects, energy transfer, open and closed circuits, resistances, and their combinations in series and parallel. One believes that through this analogy well-known previous misconceptions of young students about electric circuit behaviors can be overcome. Furthermore, students' understanding will enable them to predict, and justify with self-constructed arguments, the behavior of different elementary circuits. The students' predictions can be verified—as a challenge of self-produced understanding schemes—using laboratory experiments. At a preliminary stage, our previsions were confirmed through a pilot study with three classrooms of 9th level Portuguese students.

  16. Utilizing multiple state variables to improve the dynamic range of analog switching in a memristor

    NASA Astrophysics Data System (ADS)

    Jeong, YeonJoo; Kim, Sungho; Lu, Wei D.

    2015-10-01

    Memristors and memristive systems have been extensively studied for data storage and computing applications such as neuromorphic systems. To act as synapses in neuromorphic systems, the memristor needs to exhibit analog resistive switching (RS) behavior with incremental conductance change. In this study, we show that the dynamic range of the analog RS behavior can be significantly enhanced in a tantalum-oxide-based memristor. By controlling different state variables enabled by different physical effects during the RS process, the gradual filament expansion stage can be selectively enhanced without strongly affecting the abrupt filament length growth stage. Detailed physics-based modeling further verified the observed experimental effects and revealed the roles of oxygen vacancy drift and diffusion processes, and how the diffusion process can be selectively enhanced during the filament expansion stage. These findings lead to more desirable and reliable memristor behaviors for analog computing applications. Additionally, the ability to selectively control different internal physical processes demonstrated in the current study provides guidance for continued device optimization of memristor devices in general.

  17. Experimental validation of finite element modelling of a modular metal-on-polyethylene total hip replacement.

    PubMed

    Hua, Xijin; Wang, Ling; Al-Hajjar, Mazen; Jin, Zhongmin; Wilcox, Ruth K; Fisher, John

    2014-07-01

    Finite element models are becoming increasingly useful tools to conduct parametric analysis, design optimisation and pre-clinical testing for hip joint replacements. However, the verification of the finite element model is critically important. The purposes of this study were to develop a three-dimensional anatomic finite element model for a modular metal-on-polyethylene total hip replacement for predicting its contact mechanics and to conduct experimental validation for a simple finite element model which was simplified from the anatomic finite element model. An anatomic modular metal-on-polyethylene total hip replacement model (anatomic model) was first developed and then simplified with reasonable accuracy to a simple modular total hip replacement model (simplified model) for validation. The contact areas on the articulating surface of three polyethylene liners of modular metal-on-polyethylene total hip replacement bearings with different clearances were measured experimentally in the Leeds ProSim hip joint simulator under a series of loading conditions and different cup inclination angles. The contact areas predicted from the simplified model were then compared with that measured experimentally under the same conditions. The results showed that the simplification made for the anatomic model did not change the predictions of contact mechanics of the modular metal-on-polyethylene total hip replacement substantially (less than 12% for contact stresses and contact areas). Good agreements of contact areas between the finite element predictions from the simplified model and experimental measurements were obtained, with maximum difference of 14% across all conditions considered. This indicated that the simplification and assumptions made in the anatomic model were reasonable and the finite element predictions from the simplified model were valid. © IMechE 2014.

  18. Central Charges and the Sign of Entanglement in 4D Conformal Field Theories.

    PubMed

    Perlmutter, Eric; Rangamani, Mukund; Rota, Massimiliano

    2015-10-23

    We explore properties of the universal terms in the entanglement entropy and logarithmic negativity in 4D conformal field theories, aiming to clarify the ways in which they behave like the analogous entanglement measures in quantum mechanics. We show that, unlike entanglement entropy in finite-dimensional systems, the sign of the universal part of entanglement entropy is indeterminate. In particular, if and only if the central charges obey a>c, the entanglement across certain classes of entangling surfaces can become arbitrarily negative, depending on the geometry and topology of the surface. The negative contribution is proportional to the product of a-c and the genus of the surface. Similarly, we show that in a>c theories, the logarithmic negativity does not always exceed the entanglement entropy.

  19. A reconfigurable continuous-flow fluidic routing fabric using a modular, scalable primitive.

    PubMed

    Silva, Ryan; Bhatia, Swapnil; Densmore, Douglas

    2016-07-05

    Microfluidic devices, by definition, are required to move liquids from one physical location to another. Given a finite and frequently fixed set of physical channels to route fluids, a primitive design element that allows reconfigurable routing of that fluid from any of n input ports to any n output ports will dramatically change the paradigms by which these chips are designed and applied. Furthermore, if these elements are "regular" regarding their design, the programming and fabrication of these elements becomes scalable. This paper presents such a design element called a transposer. We illustrate the design, fabrication and operation of a single transposer. We then scale this design to create a programmable fabric towards a general-purpose, reconfigurable microfluidic platform analogous to the Field Programmable Gate Array (FPGA) found in digital electronics.

  20. The fine structure of the Saturnian ring system

    NASA Technical Reports Server (NTRS)

    Houpis, H. L. F.; Mendis, D. A.

    1983-01-01

    A dust disk within a planetary magnetosphere constitutes a novel type of dust-ring current. Such an azimuthal current carrying dust disk is subject to the dusty plasma analog of the well known finite-resistivity 'tearing' mode instability in regular plasma current sheets, at long wavelengths. It is proposed that the presently observed fine ringlet of the Saturnian ring system is a relic of this process operating at cosmogonic times and breaking up the initial proto-ring (which may be regarded as an admixture of fine dust and plasma) into an ensemble of thin ringlets. It is shown that this instability develops at a rate that is many orders of magnitude faster than any other known instability, when the disk thickness reaches a value that is comparable to its present observed value.

Top