Finite-difference lattice-Boltzmann methods for binary fluids.
Xu, Aiguo
2005-06-01
We investigate two-fluid Bhatnagar-Gross-Krook (BGK) kinetic methods for binary fluids. The developed theory works for asymmetric as well as symmetric systems. For symmetric systems it recovers Sirovich's theory and is summarized in models A and B. For asymmetric systems it contributes models C, D, and E which are especially useful when the total masses and/or local temperatures of the two components are greatly different. The kinetic models are discretized based on an octagonal discrete velocity model. The discrete-velocity kinetic models and the continuous ones are required to describe the same hydrodynamic equations. The combination of a discrete-velocity kinetic model and an appropriate finite-difference scheme composes a finite-difference lattice Boltzmann method. The validity of the formulated methods is verified by investigating (i) uniform relaxation processes, (ii) isothermal Couette flow, and (iii) diffusion behavior. PMID:16089910
Phase-field-based lattice Boltzmann finite-difference model for simulating thermocapillary flows.
Liu, Haihu; Valocchi, Albert J; Zhang, Yonghao; Kang, Qinjun
2013-01-01
A phase-field-based hybrid model that combines the lattice Boltzmann method with the finite difference method is proposed for simulating immiscible thermocapillary flows with variable fluid-property ratios. Using a phase field methodology, an interfacial force formula is analytically derived to model the interfacial tension force and the Marangoni stress. We present an improved lattice Boltzmann equation (LBE) method to capture the interface between different phases and solve the pressure and velocity fields, which can recover the correct Cahn-Hilliard equation (CHE) and Navier-Stokes equations. The LBE method allows not only use of variable mobility in the CHE, but also simulation of multiphase flows with high density ratio because a stable discretization scheme is used for calculating the derivative terms in forcing terms. An additional convection-diffusion equation is solved by the finite difference method for spatial discretization and the Runge-Kutta method for time marching to obtain the temperature field, which is coupled to the interfacial tension through an equation of state. The model is first validated against analytical solutions for the thermocapillary driven convection in two superimposed fluids at negligibly small Reynolds and Marangoni numbers. It is then used to simulate thermocapillary migration of a three-dimensional deformable droplet and bubble at various Marangoni numbers and density ratios, and satisfactory agreement is obtained between numerical results and theoretical predictions. PMID:23410429
Finite-difference lattice Boltzmann simulation on acoustics-induced particle deposition
NASA Astrophysics Data System (ADS)
Fu, Sau-Chung; Yuen, Wai-Tung; Wu, Chili; Chao, Christopher Yu-Hang
2015-10-01
Particle manipulation by acoustics has been investigated for many years. By a proper design, particle deposition can be induced by the same principle. The use of acoustics can potentially be developed into an energy-efficient technique for particle removal or filtration system as the pressure drop due to acoustic effects is low and the flow velocity is not necessary to be high. Two nonlinear acoustic effects, acoustic streaming and acoustic radiation pressure, are important. Acoustic streaming introduces vortices and stagnation points on the surface of an air duct and removes the particles by deposition. Acoustic radiation pressure causes particles to form agglomerates and enhances inertial impaction and/or gravitational sedimentation. The objective of this paper is to develop a numerical model to investigate the particle deposition induced by acoustic effects. A three-step approach is adopted and lattice Boltzamnn technique is employed as the numerical method. This is because the lattice Boltzmann equation is hyperbolic and can be solved locally, explicitly, and efficiently on parallel computers. In the first step, the acoustic field and its mean square fluctuation values are calculated. Due to the advantage of the lattice Boltzmann technique, a simple, stable and fast lattice Boltzmann method is proposed and verified. The result of the first step is input into the second step to solve for acoustic streaming. Another finite difference lattice Boltzmann method, which has been validated by a number of flows and benchmark cases in the literature, is used. The third step consists in tracking the particle's motion by a Lagrangian approach where the acoustic radiation pressure is considered. The influence of the acoustics effects on particle deposition is explained. The numerical result matches with an experiment. The model is a useful tool for optimizing the design and helps to further develop the technique.
Stochastic finite difference lattice Boltzmann method for steady incompressible viscous flows
Fu, S.C.; So, R.M.C.; Leung, W.W.F.
2010-08-20
With the advent of state-of-the-art computers and their rapid availability, the time is ripe for the development of efficient uncertainty quantification (UQ) methods to reduce the complexity of numerical models used to simulate complicated systems with incomplete knowledge and data. The spectral stochastic finite element method (SSFEM) which is one of the widely used UQ methods, regards uncertainty as generating a new dimension and the solution as dependent on this dimension. A convergent expansion along the new dimension is then sought in terms of the polynomial chaos system, and the coefficients in this representation are determined through a Galerkin approach. This approach provides an accurate representation even when only a small number of terms are used in the spectral expansion; consequently, saving in computational resource can be realized compared to the Monte Carlo (MC) scheme. Recent development of a finite difference lattice Boltzmann method (FDLBM) that provides a convenient algorithm for setting the boundary condition allows the flow of Newtonian and non-Newtonian fluids, with and without external body forces to be simulated with ease. Also, the inherent compressibility effect in the conventional lattice Boltzmann method, which might produce significant errors in some incompressible flow simulations, is eliminated. As such, the FDLBM together with an efficient UQ method can be used to treat incompressible flows with built in uncertainty, such as blood flow in stenosed arteries. The objective of this paper is to develop a stochastic numerical solver for steady incompressible viscous flows by combining the FDLBM with a SSFEM. Validation against MC solutions of channel/Couette, driven cavity, and sudden expansion flows are carried out.
NASA Astrophysics Data System (ADS)
Gupta, A.; Sbragaglia, M.; Scagliarini, A.
2015-06-01
We propose numerical simulations of viscoelastic fluids based on a hybrid algorithm combining Lattice-Boltzmann models (LBM) and Finite Differences (FD) schemes, the former used to model the macroscopic hydrodynamic equations, and the latter used to model the polymer dynamics. The kinetics of the polymers is introduced using constitutive equations for viscoelastic fluids with finitely extensible non-linear elastic dumbbells with Peterlin's closure (FENE-P). The numerical model is first benchmarked by characterizing the rheological behavior of dilute homogeneous solutions in various configurations, including steady shear, elongational flows, transient shear and oscillatory flows. As an upgrade of complexity, we study the model in presence of non-ideal multicomponent interfaces, where immiscibility is introduced in the LBM description using the "Shan-Chen" interaction model. The problem of a confined viscoelastic (Newtonian) droplet in a Newtonian (viscoelastic) matrix under simple shear is investigated and numerical results are compared with the predictions of various theoretical models. The proposed numerical simulations explore problems where the capabilities of LBM were never quantified before.
Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar
2014-01-01
We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils. PMID:24688360
Mattila, Keijo Kalervo; Hegele Júnior, Luiz Adolfo; Philippi, Paulo Cesar
2014-01-01
We propose isotropic finite differences for high-accuracy approximation of high-rank derivatives. These finite differences are based on direct application of lattice-Boltzmann stencils. The presented finite-difference expressions are valid in any dimension, particularly in two and three dimensions, and any lattice-Boltzmann stencil isotropic enough can be utilized. A theoretical basis for the proposed utilization of lattice-Boltzmann stencils in the approximation of high-rank derivatives is established. In particular, the isotropy and accuracy properties of the proposed approximations are derived directly from this basis. Furthermore, in this formal development, we extend the theory of Hermite polynomial tensors in the case of discrete spaces and present expressions for the discrete inner products between monomials and Hermite polynomial tensors. In addition, we prove an equivalency between two approaches for constructing lattice-Boltzmann stencils. For the numerical verification of the presented finite differences, we introduce 5th-, 6th-, and 8th-order two-dimensional lattice-Boltzmann stencils. PMID:24688360
Hybrid lattice-Boltzmann and finite-difference simulation of electroosmotic flow in a microchannel
NASA Astrophysics Data System (ADS)
Masilamani, Kannan; Ganguly, Suvankar; Feichtinger, Christian; Rüde, Ulrich
2011-04-01
A three-dimensional (3D) transient mathematical model is developed to simulate electroosmotic flows (EOFs) in a homogeneous, square cross-section microchannel, with and without considering the effects of axial pressure gradients. The general governing equations for electroosmotic transport are incompressible Navier-Stokes equations for fluid flow and the nonlinear Poisson-Boltzmann (PB) equation for electric potential distribution within the channel. In the present numerical approach, the hydrodynamic equations are solved using a lattice-Boltzmann (LB) algorithm and the PB equation is solved using a finite-difference (FD) method. The hybrid LB-FD numerical scheme is implemented on an iterative framework solving the system of coupled time-dependent partial differential equations subjected to the pertinent boundary conditions. Transient behavior of the EOF and effects due to the variations of different physicochemical parameters on the electroosmotic velocity profile are investigated. Transport characteristics for the case of combined electroosmotic- and pressure-driven microflows are also examined with the present model. For the sake of comparison, the cases of both favorable and adverse pressure gradients are considered. EOF behaviors of the non-Newtonian fluid are studied through implementation of the power-law model in the 3D LB algorithm devised for the fluid flow analysis. Numerical simulations reveal that the rheological characteristic of the fluid changes the EOF pattern to a considerable extent and can have significant consequences in the design of electroosmotically actuated bio-microfluidic systems. To improve the performance of the numerical solver, the proposed algorithm is implemented for parallel computing architectures and the overall parallel performance is found to improve with the number of processors.
LATTICE QCD AT FINITE DENSITY.
SCHMIDT, C.
2006-07-23
I discuss different approaches to finite density lattice QCD. In particular, I focus on the structure of the phase diagram and discuss attempts to determine the location of the critical end-point. Recent results on the transition line as function of the chemical potential (T{sub c}({mu}{sub q})) are reviewed. Along the transition line, hadronic fluctuations have been calculated; which can be used to characterize properties of the Quark Gluon plasma and eventually can also help to identify the location of the critical end-point in the QCD phase diagram on the lattice and in heavy ion experiments. Furthermore, I comment on the structure of the phase diagram at large {mu}{sub q}.
LATTICE QCD AT FINITE TEMPERATURE AND DENSITY.
BLUM,T.; CREUTZ,M.; PETRECZKY,P.
2004-02-24
With the operation of the RHIC heavy ion program, the theoretical understanding of QCD at finite temperature and density has become increasingly important. Though QCD at finite temperature has been extensively studied using lattice Monte-Carlo simulations over the past twenty years, most physical questions relevant for RHIC (and future) heavy ion experiments remain open. In lattice QCD at finite temperature and density there have been at least two major advances in recent years. First, for the first time calculations of real time quantities, like meson spectral functions have become available. Second, the lattice study of the QCD phase diagram and equation of state have been extended to finite baryon density by several groups. Both issues were extensively discussed in the course of the workshop. A real highlight was the study of the QCD phase diagram in (T, {mu})-plane by Z. Fodor and S. Katz and the determination of the critical end-point for the physical value of the pion mass. This was the first time such lattice calculations at, the physical pion mass have been performed. Results by Z Fodor and S. Katz were obtained using a multi-parameter re-weighting method. Other determinations of the critical end point were also presented, in particular using a Taylor expansion around {mu} = 0 (Bielefeld group, Ejiri et al.) and using analytic continuation from imaginary chemical potential (Ph. de Forcrand and O. Philipsen). The result based on Taylor expansion agrees within errors with the new prediction of Z. Fodor and S. Katz, while methods based on analytic continuation still predict a higher value for the critical baryon density. Most of the thermodynamics studies in full QCD (including those presented at this workshop) have been performed using quite coarse lattices, a = 0.2-0.3 fm. Therefore one may worry about cutoff effects in different thermodynamic quantities, like the transition temperature T{sub tr}. At the workshop U. Heller presented a study of the transition
Finite-Temperature Gauge Theory from the Transverse Lattice
Dalley, S.; Sande, B. van de
2005-10-14
Numerical computations are performed and analytic bounds are obtained on the excited spectrum of glueballs in SU({infinity}) gauge theory, by transverse lattice Hamiltonian methods. We find an exponential growth of the density of states, implying a finite critical (Hagedorn) temperature. It is argued that the Nambu-Goto string model lies in a different universality class.
Hejranfar, Kazem; Ezzatneshan, Eslam
2015-11-01
A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also
NASA Astrophysics Data System (ADS)
Hejranfar, Kazem; Ezzatneshan, Eslam
2015-11-01
A high-order compact finite-difference lattice Boltzmann method (CFDLBM) is extended and applied to accurately simulate two-phase liquid-vapor flows with high density ratios. Herein, the He-Shan-Doolen-type lattice Boltzmann multiphase model is used and the spatial derivatives in the resulting equations are discretized by using the fourth-order compact finite-difference scheme and the temporal term is discretized with the fourth-order Runge-Kutta scheme to provide an accurate and efficient two-phase flow solver. A high-order spectral-type low-pass compact nonlinear filter is used to regularize the numerical solution and remove spurious waves generated by flow nonlinearities in smooth regions and at the same time to remove the numerical oscillations in the interfacial region between the two phases. Three discontinuity-detecting sensors for properly switching between a second-order and a higher-order filter are applied and assessed. It is shown that the filtering technique used can be conveniently adopted to reduce the spurious numerical effects and improve the numerical stability of the CFDLBM implemented. A sensitivity study is also conducted to evaluate the effects of grid size and the filtering procedure implemented on the accuracy and performance of the solution. The accuracy and efficiency of the proposed solution procedure based on the compact finite-difference LBM are examined by solving different two-phase systems. Five test cases considered herein for validating the results of the two-phase flows are an equilibrium state of a planar interface in a liquid-vapor system, a droplet suspended in the gaseous phase, a liquid droplet located between two parallel wettable surfaces, the coalescence of two droplets, and a phase separation in a liquid-vapor system at different conditions. Numerical results are also presented for the coexistence curve and the verification of the Laplace law. Results obtained are in good agreement with the analytical solutions and also
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Recent progress in lattice QCD at finite temperature
Petreczky,P.
2009-02-01
I review recent progress in finite temperature lattice calculations,including the study of the nature of the deconfinement transition in QCD, equation of state, screening of static quarks and meson spectral functions.
Nonstandard finite difference schemes
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.
1995-01-01
The major research activities of this proposal center on the construction and analysis of nonstandard finite-difference schemes for ordinary and partial differential equations. In particular, we investigate schemes that either have zero truncation errors (exact schemes) or possess other significant features of importance for numerical integration. Our eventual goal is to bring these methods to bear on problems that arise in the modeling of various physical, engineering, and technological systems. At present, these efforts are extended in the direction of understanding the exact nature of these nonstandard procedures and extending their use to more complicated model equations. Our presentation will give a listing (obtained to date) of the nonstandard rules, their application to a number of linear and nonlinear, ordinary and partial differential equations. In certain cases, numerical results will be presented.
Finite-lattice form factors in free-fermion models
NASA Astrophysics Data System (ADS)
Iorgov, N.; Lisovyy, O.
2011-04-01
We consider the general {Z}_2 -symmetric free-fermion model on the finite periodic lattice, which includes as special cases the Ising model on the square and triangular lattices and the {Z}_n -symmetric BBS τ(2)-model with n = 2. Translating Kaufman's fermionic approach to diagonalization of Ising-like transfer matrices into the language of Grassmann integrals, we determine the transfer matrix eigenvectors and observe that they coincide with the eigenvectors of a square lattice Ising transfer matrix. This allows us to find exact finite-lattice form factors of spin operators for the statistical model and the associated finite-length quantum chains, of which the most general is equivalent to the XY chain in a transverse field.
Mimetic finite difference method
NASA Astrophysics Data System (ADS)
Lipnikov, Konstantin; Manzini, Gianmarco; Shashkov, Mikhail
2014-01-01
The mimetic finite difference (MFD) method mimics fundamental properties of mathematical and physical systems including conservation laws, symmetry and positivity of solutions, duality and self-adjointness of differential operators, and exact mathematical identities of the vector and tensor calculus. This article is the first comprehensive review of the 50-year long history of the mimetic methodology and describes in a systematic way the major mimetic ideas and their relevance to academic and real-life problems. The supporting applications include diffusion, electromagnetics, fluid flow, and Lagrangian hydrodynamics problems. The article provides enough details to build various discrete operators on unstructured polygonal and polyhedral meshes and summarizes the major convergence results for the mimetic approximations. Most of these theoretical results, which are presented here as lemmas, propositions and theorems, are either original or an extension of existing results to a more general formulation using polyhedral meshes. Finally, flexibility and extensibility of the mimetic methodology are shown by deriving higher-order approximations, enforcing discrete maximum principles for diffusion problems, and ensuring the numerical stability for saddle-point systems.
Phase transition in finite density and temperature lattice QCD
NASA Astrophysics Data System (ADS)
Wang, Rui; Chen, Ying; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Meng, Xiang-Fei; Zhang, Jian-Bo
2015-06-01
We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of β and ma at the lattice size 24 × 122 × 6. The calculation was done in the Taylor expansion formalism. We are able to calculate the first and second order derivatives of ≤ft< {\\bar{\\psi} \\psi } \\right> in both isoscalar and isovector channels. With the first derivatives being small, we find that the second derivatives are sizable close to the phase transition and that the magnitude of \\bar{\\psi} \\psi decreases under the influence of finite chemical potential in both channels. Supported by National Natural Science Foundation of China (11335001, 11105153, 11405178), Projects of International Cooperation and Exchanges NSFC (11261130311)
Tensor network algorithm by coarse-graining tensor renormalization on finite periodic lattices
NASA Astrophysics Data System (ADS)
Zhao, Hui-Hai; Xie, Zhi-Yuan; Xiang, Tao; Imada, Masatoshi
2016-03-01
We develop coarse-graining tensor renormalization group algorithms to compute physical properties of two-dimensional lattice models on finite periodic lattices. Two different coarse-graining strategies, one based on the tensor renormalization group and the other based on the higher-order tensor renormalization group, are introduced. In order to optimize the tensor network model globally, a sweeping scheme is proposed to account for the renormalization effect from the environment tensors under the framework of second renormalization group. We demonstrate the algorithms by the classical Ising model on the square lattice and the Kitaev model on the honeycomb lattice, and show that the finite-size algorithms achieve substantially more accurate results than the corresponding infinite-size ones.
Exponential Finite-Difference Technique
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1989-01-01
Report discusses use of explicit exponential finite-difference technique to solve various diffusion-type partial differential equations. Study extends technique to transient-heat-transfer problems in one dimensional cylindrical coordinates and two and three dimensional Cartesian coordinates and to some nonlinear problems in one or two Cartesian coordinates.
Reducing finite lattice spacing errors for staggered fermions
NASA Astrophysics Data System (ADS)
Luo, Yubing
1998-12-01
In this thesis we study on-shell-improved lattice QCD with staggered fermions using Symanzik's improvement program. We present a complete and detailed discussion of the finite lattice spacing corrections to staggered fermion matrix elements. Expanding upon arguments of Sharpe, we explicitly implement the Symanzik improvement program demonstrating the absence of order a terms in the on-shell-improved action. We propose a general program to improve fermion operators to remove all O(a) corrections from their matrix elements, and demonstrate this program for the examples of matrix elements of fermion bilinears and BK. We find the former does have O(a) corrections while the latter does not. Also, we give an explicit form of lattice currents which are accurate to order a2 at the tree-level. Furthermore, we find that there are as many as 15 independent lattice operators of dimension-6 (including both gauge and fermion operators) which must be added to the unimproved action to form an O(a2)-improved action. Among them, the total number of dimension-6 gauge operators and fermion bilinears is 5. The other ten terms are four- fermion operators. At the tree level and tadpole-improved tree level, all ten four-fermion operators are absent.
Finite element and finite difference methods in electromagnetic scattering
NASA Astrophysics Data System (ADS)
Morgan, Michael A.
Finite-difference and finite-element methods for the computational analysis of EM scattering phenomena are examined in chapters contributed by leading experts. Topics addressed include an FEM for composite scatterers, coupled finite- and boundary-element methods for EM scattering, absorbing boundary conditions for the direct solution PDEs arising in EM scattering problems, application of the control-region approximation to two-dimensional EM scattering, coupled potentials for EM fields in inhomogeneous media, the method of conforming boundary elements for transient electromagnetics, and the finite-difference time-domain method for numerical modeling of EM wave interactions with arbitrary structures. Extensive diagrams and graphs of typical results are provided.
Finite size effects on the helical edge states on the Lieb lattice
NASA Astrophysics Data System (ADS)
Rui, Chen; Bin, Zhou
2016-06-01
For a two-dimensional Lieb lattice, that is, a line-centered square lattice, the inclusion of the intrinsic spin–orbit (ISO) coupling opens a topologically nontrivial gap, and gives rise to the quantum spin Hall (QSH) effect characterized by two pairs of gapless helical edge states within the bulk gap. Generally, due to the finite size effect in QSH systems, the edge states on the two sides of a strip of finite width can couple together to open a gap in the spectrum. In this paper, we investigate the finite size effect of helical edge states on the Lieb lattice with ISO coupling under three different kinds of boundary conditions, i.e., the straight, bearded and asymmetry edges. The spectrum and wave function of edge modes are derived analytically for a tight-binding model on the Lieb lattice. For a strip Lieb lattice with two straight edges, the ISO coupling induces the Dirac-like bulk states to localize at the edges to become the helical edge states with the same Dirac-like spectrum. Moreover, it is found that in the case with two straight edges the gapless Dirac-like spectrum remains unchanged with decreasing the width of the strip Lieb lattice, and no gap is opened in the edge band. It is concluded that the finite size effect of QSH states is absent in the case with the straight edges. However, in the other two cases with the bearded and asymmetry edges, the energy gap induced by the finite size effect is still opened with decreasing the width of the strip. It is also proposed that the edge band dispersion can be controlled by applying an on-site potential energy on the outermost atoms. Project supported by the National Natural Science Foundation of China (Grant No. 11274102), the Program for New Century Excellent Talents in University of the Ministry of Education of China (Grant No. NCET-11-0960), and the Specialized Research Fund for the Doctoral Program of the Higher Education of China (Grant No. 20134208110001).
Magnetic susceptibility of QCD at zero and at finite temperature from the lattice
NASA Astrophysics Data System (ADS)
Bali, G. S.; Bruckmann, F.; Constantinou, M.; Costa, M.; Endrődi, G.; Katz, S. D.; Panagopoulos, H.; Schäfer, A.
2012-11-01
The response of the QCD vacuum to a constant external (electro)magnetic field is studied through the tensor polarization of the chiral condensate and the magnetic susceptibility at zero and at finite temperature. We determine these quantities using lattice configurations generated with the tree-level Symanzik improved gauge action and Nf=1+1+1 flavors of stout smeared staggered quarks with physical masses. We carry out the renormalization of the observables under study and perform the continuum limit both at T>0 and at T=0, using different lattice spacings. Finite size effects are studied by using various spatial lattice volumes. The magnetic susceptibilities χf reveal a spin-diamagnetic behavior; we obtain at zero temperature χu=-(2.08±0.08)GeV-2, χd=-(2.02±0.09)GeV-2 and χs=-(3.4±1.4)GeV-2 for the up, down and strange quarks, respectively, in the MS¯ scheme at a renormalization scale of 2 GeV. We also find the polarization to change smoothly with the temperature in the confinement phase and then to drastically reduce around the transition region.
REMARKS ON THE MAXIMUM ENTROPY METHOD APPLIED TO FINITE TEMPERATURE LATTICE QCD.
UMEDA, T.; MATSUFURU, H.
2005-07-25
We make remarks on the Maximum Entropy Method (MEM) for studies of the spectral function of hadronic correlators in finite temperature lattice QCD. We discuss the virtues and subtlety of MEM in the cases that one does not have enough number of data points such as at finite temperature. Taking these points into account, we suggest several tests which one should examine to keep the reliability for the results, and also apply them using mock and lattice QCD data.
Diquark mass differences from unquenched lattice QCD
NASA Astrophysics Data System (ADS)
Bi, Yujiang; Cai, Hao; Chen, Ying; Gong, Ming; Liu, Zhaofeng; Qiao, Hao-Xue; Yang, Yi-Bo
2016-07-01
We calculate diquark correlation functions in the Landau gauge on the lattice using overlap valence quarks and 2+1-flavor domain wall fermion configurations. Quark masses are extracted from the scalar part of quark propagators in the Landau gauge. The scalar diquark quark mass difference and axial vector scalar diquark mass difference are obtained for diquarks composed of two light quarks and of a strange and a light quark. The light sea quark mass dependence of the results is examined. Two lattice spacings are used to check the discretization effects. The coarse and fine lattices are of sizes 243 × 64 and 323 × 64 with inverse spacings 1/a = 1.75(4) GeV and 2.33(5) GeV, respectively. Supported by National Science Foundation of China (11575197, 10835002, 11405178, 11335001), joint funds of NSFC (U1232109), MG and ZL are partially supported by the Youth Innovation Promotion Association of CAS (2015013, 2011013), YC and ZL acknowledge support of NSFC and DFG (CRC110)
NASA Astrophysics Data System (ADS)
Zhang, Rui; Roberts, Tyler; de Pablo, Juan; dePablo Team
2014-11-01
Liquid crystals (LC) posses anisotropic viscoelastic properties, and, as such, LC flow can be incredibly complicated. Here we employ a hybrid lattice Boltzmann method (pioneered by Deniston, Yeomans and Cates) to systematically study the hydrodynamics of nematic liquid crystals (LCs) with and without solid particles. This method evolves the velocity field through lattice Boltzmann and the LC-order parameter via a finite-difference solver of the Beris-Edwards equation. The evolution equation of the boundary points with finite anchoring is obtained through Poisson bracket formulation. Our method has been validated by matching the Ericksen-Leslie theory. We demonstrate two applications in the flow alignment regime. We first investigate a hybrid channel flow in which the top and bottom walls have different anchoring directions. By measuring the apparent shear viscosity in terms of Couette flow, we achieve a viscosity inhomogeneous system which may be applicable to nano particle processing. In the other example, we introduce a homeotropic spherical particle to the channel, and focus on the deformations of the defect ring due to anchorings and flow. The results are then compared to the molecular dynamics simulations of a colloid particle in an LC modeled by a Gay-Berne potential.
Weighted Random Mixing and Exact Finite Lattice Descriptions of Molecular Aggregation Equilibria
NASA Astrophysics Data System (ADS)
Ben-Amotz, Dor
2014-03-01
Entropic and energetic contributions to a broad class of molecular aggregation and self-assembly processes are described by performing a mean field Boltzmann average over aggregate size distributions pertaining to an idealized random mixture. Predictions obtained using the resulting weighted random mixing (WRM) model are compared with exact finite lattice and fluid molecular dynamics simulation results for systems in which each aggregate resembles a central molecule with multiple ligand binding sites. Good agreement between the exact and WRM results is found for systems with interaction energies of various magnitudes (and signs), both in the large and small cohesive interaction energy regimes (or at low and high temperature, respectively). The latter two regimes are separated by a critical point on either side of which qualitatively different aggregation behavior is predicted and observed. More specifically, both the WRM model and exact finite lattice aggregation results reveal that when half the ligand binding sites are filled, the corresponding aggregate size distributions are bimodal below and unimodal above the corresponding critical temperature, whose value depends on the ligand-ligand interaction energy, but is independent of the binding energy of each ligand to the central molecule. This work was carried out in collaboration with Blake M. Rankin and B. Widom (at Cornell University), and was supported by NSF Grant Number CHE-1213338.
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
This paper demonstrates the current and future potential of finite-difference methods for solving real rotor problems which now rely largely on empiricism. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advance-ratio flight. Comparisons are made with experimental pressure data.
Finite-difference computations of rotor loads
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Tung, C.
1985-01-01
The current and future potential of finite difference methods for solving real rotor problems which now rely largely on empiricism are demonstrated. The demonstration consists of a simple means of combining existing finite-difference, integral, and comprehensive loads codes to predict real transonic rotor flows. These computations are performed for hover and high-advanced-ratio flight. Comparisons are made with experimental pressure data.
Finite Volume Dependence of Hadron Properties and Lattice QCD
Anthony W. Thomas; Jonathan D. Ashley; Derek B. Leinweber; Ross D. Young
2005-02-01
Because the time needed for a simulation in lattice QCD varies at a rate exceeding the fourth power of the lattice size, it is important to understand how small one can make a lattice without altering the physics beyond recognition. It is common to use a rule of thumb that the pion mass times the lattice size should be greater than (ideally much greater than) four (i.e., m{sub {pi}} L >> 4). By considering a relatively simple chiral quark model we are led to suggest that a more realistic constraint would be m{sub {pi}} (L - 2R) >> 4, where R is the radius of the confinement region, which for these purposes could be taken to be around 0.8-1.0 fm. Within the model we demonstrate that violating the second condition can lead to unphysical behavior of hadronic properties as a function of pion mass. In particular, the axial charge of the nucleon is found to decrease quite rapidly as the chiral limit is approached.
Exact dynamics of finite Glauber-Fock photonic lattices
Rodriguez-Lara, B. M.
2011-11-15
The dynamics of Glauber-Fock lattice of size N is given through exact diagonalization of the corresponding Hamiltonian; the spectra {l_brace}{lambda}{sub k}{r_brace} is given as the roots of the Nth Hermite polynomial, H{sub N}({lambda}{sub k}/{radical}(2))=0, and the eigenstates are given in terms of Hermite polynomials evaluated at these roots. The exact dynamics is used to study coherent phenomena in discrete lattices. Due to the symmetry and spacing of the eigenvalues {l_brace}{lambda}{sub k}{r_brace}, oscillatory behavior is predicted with highly localized spectra, that is, near complete revivals of the photon number and partial recovery of the initial state at given waveguides.
Infrared features of unquenched finite temperature lattice Landau gauge QCD
Furui, Sadataka; Nakajima, Hideo
2007-09-01
The color diagonal and color antisymmetric ghost propagators slightly above T{sub c} of N{sub f}=2 MILC 24{sup 3}x12 lattices are measured and compared with zero-temperature unquenched N{sub f}=2+1 MILC{sub c} 20{sup 3}x64 and MILC{sub f} 28{sup 3}x96 lattices and zero-temperature quenched 56{sup 4} {beta}=6.4 and 6.45 lattices. The expectation value of the color antisymmetric ghost propagator {phi}{sup c}(q) is zero, but its Binder cumulant, which is consistent with that of N{sub c}{sup 2}-1 dimensional Gaussian distribution below T{sub c}, decreases above T{sub c}. Although the color diagonal ghost propagator is temperature independent, the l{sup 1} norm of the color antisymmetric ghost propagator is temperature dependent. The expectation value of the ghost condensate observed at zero-temperature unquenched configuration is consistent with 0 in T>T{sub c}. We also measure transverse, magnetic, and electric gluon propagator and extract gluon screening masses. The running coupling measured from the product of the gluon dressing function and the ghost dressing function are almost temperature independent, but the effect of A{sup 2} condensate observed at zero temperature is consistent with 0 in T>T{sub c}. The transverse gluon dressing function at low temperature has a peak in the infrared at low temperature, but it becomes flatter at high temperature. The magnetic gluon propagator at high momentum depends on the temperature. These data imply that the magnetic gluon propagator and the color antisymmetric ghost propagator are affected by the presence of dynamical quarks, and there are strong nonperturbative effects through the temperature-dependent color antisymmetric ghost propagator.
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Finite-difference modelling of wavefield constituents
NASA Astrophysics Data System (ADS)
Robertsson, Johan O. A.; van Manen, Dirk-Jan; Schmelzbach, Cedric; Van Renterghem, Cederic; Amundsen, Lasse
2015-11-01
The finite-difference method is among the most popular methods for modelling seismic wave propagation. Although the method has enjoyed huge success for its ability to produce full wavefield seismograms in complex models, it has one major limitation which is of critical importance for many modelling applications; to naturally output up- and downgoing and P- and S-wave constituents of synthesized seismograms. In this paper, we show how such wavefield constituents can be isolated in finite-difference-computed synthetics in complex models with high numerical precision by means of a simple algorithm. The description focuses on up- and downgoing and P- and S-wave separation of data generated using an isotropic elastic finite-difference modelling method. However, the same principles can also be applied to acoustic, electromagnetic and other wave equations.
ROMERO,VICENTE J.; SWILER,LAURA PAINTON; GIUNTA,ANTHONY A.
2000-04-25
This paper examines the modeling accuracy of finite element interpolation, kriging, and polynomial regression used in conjunction with the Progressive Lattice Sampling (PLS) incremental design-of-experiments approach. PLS is a paradigm for sampling a deterministic hypercubic parameter space by placing and incrementally adding samples in a manner intended to maximally reduce lack of knowledge in the parameter space. When combined with suitable interpolation methods, PLS is a formulation for progressive construction of response surface approximations (RSA) in which the RSA are efficiently upgradable, and upon upgrading, offer convergence information essential in estimating error introduced by the use of RSA in the problem. The three interpolation methods tried here are examined for performance in replicating an analytic test function as measured by several different indicators. The process described here provides a framework for future studies using other interpolation schemes, test functions, and measures of approximation quality.
Applications of an exponential finite difference technique
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.; Keith, Theo G., Jr.
1988-01-01
An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.
NASA Astrophysics Data System (ADS)
Tsakiris, N.; Maragakis, M.; Kosmidis, K.; Argyrakis, P.
2010-10-01
We study the percolation properties of the growing clusters model on a 2D square lattice. In this model, a number of seeds placed on random locations on the lattice are allowed to grow with a constant velocity to form clusters. When two or more clusters eventually touch each other they immediately stop their growth. The model exhibits a discontinuous transition for very low values of the seed concentration p and a second, nontrivial continuous phase transition for intermediate p values. Here we study in detail this continuous transition that separates a phase of finite clusters from a phase characterized by the presence of a giant component. Using finite size scaling and large scale Monte Carlo simulations we determine the value of the percolation threshold where the giant component first appears, and the critical exponents that characterize the transition. We find that the transition belongs to a different universality class from the standard percolation transition.
On the wavelet optimized finite difference method
NASA Technical Reports Server (NTRS)
Jameson, Leland
1994-01-01
When one considers the effect in the physical space, Daubechies-based wavelet methods are equivalent to finite difference methods with grid refinement in regions of the domain where small scale structure exists. Adding a wavelet basis function at a given scale and location where one has a correspondingly large wavelet coefficient is, essentially, equivalent to adding a grid point, or two, at the same location and at a grid density which corresponds to the wavelet scale. This paper introduces a wavelet optimized finite difference method which is equivalent to a wavelet method in its multiresolution approach but which does not suffer from difficulties with nonlinear terms and boundary conditions, since all calculations are done in the physical space. With this method one can obtain an arbitrarily good approximation to a conservative difference method for solving nonlinear conservation laws.
Finite-difference migration to zero offset
Li, Jianchao
1992-07-01
Migration to zero offset (MZO), also called dip moveout (DMO) or prestack partial migration, transforms prestack offset seismic data into approximate zero-offset data so as to remove reflection point smear and obtain quality stacked results over a range of reflector dips. MZO has become an important step in standard seismic data processing, and a variety of frequency-wavenumber (f-k) and integral MZO algorithms have been used in practice to date. Here, I present a finite-difference MZO algorithm applied to normal-moveout (NMO)-corrected, common-offset sections. This algorithm employs a traditional poststack 15-degree finite-difference migration algorithm and a special velocity function rather than the true migration velocity. This paper shows results of implementation of this MZO algorithm when velocity varies with depth, and discusses the possibility of applying this algorithm to cases where velocity varies with both depth and horizontal distance.
Finite-difference migration to zero offset
Li, Jianchao.
1992-01-01
Migration to zero offset (MZO), also called dip moveout (DMO) or prestack partial migration, transforms prestack offset seismic data into approximate zero-offset data so as to remove reflection point smear and obtain quality stacked results over a range of reflector dips. MZO has become an important step in standard seismic data processing, and a variety of frequency-wavenumber (f-k) and integral MZO algorithms have been used in practice to date. Here, I present a finite-difference MZO algorithm applied to normal-moveout (NMO)-corrected, common-offset sections. This algorithm employs a traditional poststack 15-degree finite-difference migration algorithm and a special velocity function rather than the true migration velocity. This paper shows results of implementation of this MZO algorithm when velocity varies with depth, and discusses the possibility of applying this algorithm to cases where velocity varies with both depth and horizontal distance.
Alternative exact method for random walks on finite and periodic lattices with traps
NASA Astrophysics Data System (ADS)
Soler, Jose M.
1982-07-01
An alternative general method for random walks in finite or periodic lattices with traps is presented. The method gives, in a straightforward manner and in very little computing time, the exact probability that a random walker, starting from a given site, will undergo n steps before trapping. Another version gives the probability that the walker is at any other given position after n steps. The expected walk lengths calculated for simple lattices agree exactly with those given by a previous exact method by Walsh and Kozak.
Height probabilities in the Abelian sandpile model on the generalized finite Bethe lattice
NASA Astrophysics Data System (ADS)
Chen, Haiyan; Zhang, Fuji
2013-08-01
In this paper, we study the sandpile model on the generalized finite Bethe lattice with a particular boundary condition. Using a combinatorial method, we give the exact expressions for all single-site probabilities and some two-site joint probabilities. As a by-product, we prove that the height probabilities of bulk vertices are all the same for the Bethe lattice with certain given boundary condition, which was found from numerical evidence by Grassberger and Manna ["Some more sandpiles," J. Phys. (France) 51, 1077-1098 (1990)], 10.1051/jphys:0199000510110107700 but without a proof.
Exact results for the site-dilute antiferromagnetic Ising model on finite triangular lattices
NASA Astrophysics Data System (ADS)
Farach, H. A.; Creswick, R. J.; Poole, C. P., Jr.
1988-04-01
Exact analytical and numerical results for the site-diluted antiferromagnetic Ising model on the triangular lattice (AFIT) are presented. For infinitesimal dilution the change in the free energy of the system is related to the distribution of local fields, and it is shown that for a frustrated system such as the AFIT, dilution lowers the entropy per spin. For lattices of finite size and dilution the transfer matrix for the partition function is evaluated numerically. The entropy per spin shows a marked minimum near a concentration of spins x=0.70, in some disagreement with earlier transfer-matrix results.
Finite-volume effects in the muon anomalous magnetic moment on the lattice
NASA Astrophysics Data System (ADS)
Aubin, Christopher; Blum, Thomas; Chau, Peter; Golterman, Maarten; Peris, Santiago; Tu, Cheng
2016-03-01
We investigate finite-volume effects in the hadronic vacuum polarization, with an eye toward the corresponding systematic error in the muon anomalous magnetic moment. We consider both recent lattice data as well as lowest-order, finite-volume chiral perturbation theory, in order to get a quantitative understanding. Even though leading-order chiral perturbation theory does not provide a good description of the hadronic vacuum polarization, it turns out that it gives a good representation of finite-volume effects. We find that finite-volume effects cannot be ignored when the aim is a few percent level accuracy for the leading-order hadronic contribution to the muon anomalous magnetic moment, even when using ensembles with mπL ≳4 and mπ˜200 MeV .
Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice
NASA Astrophysics Data System (ADS)
Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo
2016-04-01
The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature TD. At TD, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near TD.
Emergence of a Fermionic Finite-Temperature Critical Point in a Kondo Lattice.
Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Mou, Chung-Yu; Lee, Ting-Kuo
2016-04-29
The underlying Dirac point is central to the profound physics manifested in a wide class of materials. However, it is often difficult to drive a system with Dirac points across the massless fermionic critical point. Here by exploiting screening of local moments under spin-orbit interactions in a Kondo lattice, we show that below the Kondo temperature, the Kondo lattice undergoes a topological transition from a strong topological insulator to a weak topological insulator at a finite temperature T_{D}. At T_{D}, massless Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our analysis indicates that the emergent relativistic symmetry dictates nontrivial thermal responses over large parameter and temperature regimes. In particular, it yields critical scaling behaviors both in magnetic and transport responses near T_{D}. PMID:27176534
Formation of Vortex Lattices in Superfluid Bose Gases at Finite Temperatures
NASA Astrophysics Data System (ADS)
Arahata, E.; Nikuni, T.
2016-05-01
We study the dynamics of a rotating trapped Bose-Einstein condensate (BEC) at finite temperatures. Using the Zaremba-Nikuni-Griffin formalism, based on a generalized Gross-Pitaevskii equation for the condensate coupled to a semiclassical kinetic equation for a thermal cloud, we numerically simulate vortex lattice formation in the presence of a time-dependent rotating trap potential. At low rotation frequency, the thermal cloud undergoes rigid body rotation, while the condensate exhibits irrotational flow. Above a certain threshold rotation frequency, vortices penetrate into the condensate and form a vortex lattice. Our simulation result clearly indicates a crucial role for the thermal cloud, which triggers vortex lattice formation in the rotating BEC.
Software suite for finite difference method models.
Arola, T; Hannula, M; Narra, N; Malmivuo, J; Hyttinen, J
2006-01-01
We have developed a software suite for finite difference method (FDM) model construction, visualization and quasi-static simulation to be used in bioelectric field modeling. The aim of the software is to provide a full path from medical image data to simulation of bioelectric phenomena and results visualization. It is written in Java and can be run on various platforms while still supporting all features included. The software can be distributed across a network utilizing dedicated servers for calculation intensive tasks. Supported visualization modes are both two- and three-dimensional modes. PMID:17946057
The Complex-Step-Finite-Difference method
NASA Astrophysics Data System (ADS)
Abreu, Rafael; Stich, Daniel; Morales, Jose
2015-07-01
We introduce the Complex-Step-Finite-Difference method (CSFDM) as a generalization of the well-known Finite-Difference method (FDM) for solving the acoustic and elastic wave equations. We have found a direct relationship between modelling the second-order wave equation by the FDM and the first-order wave equation by the CSFDM in 1-D, 2-D and 3-D acoustic media. We present the numerical methodology in order to apply the introduced CSFDM and show an example for wave propagation in simple homogeneous and heterogeneous models. The CSFDM may be implemented as an extension into pre-existing numerical techniques in order to obtain fourth- or sixth-order accurate results with compact three time-level stencils. We compare advantages of imposing various types of initial motion conditions of the CSFDM and demonstrate its higher-order accuracy under the same computational cost and dispersion-dissipation properties. The introduced method can be naturally extended to solve different partial differential equations arising in other fields of science and engineering.
NASA Astrophysics Data System (ADS)
Beilina, Larisa
2016-08-01
We present domain decomposition finite element/finite difference method for the solution of hyperbolic equation. The domain decomposition is performed such that finite elements and finite differences are used in different subdomains of the computational domain: finite difference method is used on the structured part of the computational domain and finite elements on the unstructured part of the domain. Explicit discretizations for both methods are constructed such that the finite element and the finite difference schemes coincide on the common structured overlapping layer between computational subdomains. Then the resulting approach can be considered as a pure finite element scheme which avoids instabilities at the interfaces. We derive an energy estimate for the underlying hyperbolic equation with absorbing boundary conditions and illustrate efficiency of the domain decomposition method on the reconstruction of the conductivity function in three dimensions.
Efficient discretization in finite difference method
NASA Astrophysics Data System (ADS)
Rozos, Evangelos; Koussis, Antonis; Koutsoyiannis, Demetris
2015-04-01
Finite difference method (FDM) is a plausible and simple method for solving partial differential equations. The standard practice is to use an orthogonal discretization to form algebraic approximate formulations of the derivatives of the unknown function and a grid, much like raster maps, to represent the properties of the function domain. For example, for the solution of the groundwater flow equation, a raster map is required for the characterization of the discretization cells (flow cell, no-flow cell, boundary cell, etc.), and two raster maps are required for the hydraulic conductivity and the storage coefficient. Unfortunately, this simple approach to describe the topology comes along with the known disadvantages of the FDM (rough representation of the geometry of the boundaries, wasted computational resources in the unavoidable expansion of the grid refinement in all cells of the same column and row, etc.). To overcome these disadvantages, Hunt has suggested an alternative approach to describe the topology, the use of an array of neighbours. This limits the need for discretization nodes only for the representation of the boundary conditions and the flow domain. Furthermore, the geometry of the boundaries is described more accurately using a vector representation. Most importantly, graded meshes can be employed, which are capable of restricting grid refinement only in the areas of interest (e.g. regions where hydraulic head varies rapidly, locations of pumping wells, etc.). In this study, we test the Hunt approach against MODFLOW, a well established finite difference model, and the Finite Volume Method with Simplified Integration (FVMSI). The results of this comparison are examined and critically discussed.
Lattice QCD at finite temperature and density in the phase-quenched approximation.
Kogut, J. B.; Sinclair, D. K.; High Energy Physics; Univ Maryland
2008-06-01
QCD at a finite quark-number chemical potential {mu} has a complex fermion determinant, which precludes its study by standard lattice QCD simulations. We therefore simulate lattice QCD at finite {mu} in the phase-quenched approximation, replacing the fermion determinant with its magnitude. (The phase-quenched approximation can be considered as simulating at finite isospin chemical potential 2{mu} for N{sub f}/2 u-type and N{sub F}/2 d-type quark flavors.) These simulations are used to study the finite-temperature transition for small {mu}, where there is some evidence that the position (and possibly the nature) of this transition is unchanged by this approximation. We look for the expected critical endpoint for 3-flavor QCD. Here, it has been argued that the critical point at zero {mu} would become the critical endpoint at small {mu}, for quark masses just above the critical mass. Our simulations indicate that this does not happen, and there is no such critical endpoint for small {mu}. We discuss how we might adapt techniques used for imaginary {mu} to improve the signal/noise ratio and strengthen our conclusions, using results from relatively low statistics studies.
Lattice QCD at finite temperature and density in the phase-quenched approximation
Kogut, J. B.; Sinclair, D. K.
2008-06-01
QCD at a finite quark-number chemical potential {mu} has a complex fermion determinant, which precludes its study by standard lattice QCD simulations. We therefore simulate lattice QCD at finite {mu} in the phase-quenched approximation, replacing the fermion determinant with its magnitude. (The phase-quenched approximation can be considered as simulating at finite isospin chemical potential 2{mu} for N{sub f}/2 u-type and N{sub f}/2 d-type quark flavors.) These simulations are used to study the finite-temperature transition for small {mu}, where there is some evidence that the position (and possibly the nature) of this transition is unchanged by this approximation. We look for the expected critical endpoint for 3-flavor QCD. Here, it has been argued that the critical point at zero {mu} would become the critical endpoint at small {mu}, for quark masses just above the critical mass. Our simulations indicate that this does not happen, and there is no such critical endpoint for small {mu}. We discuss how we might adapt techniques used for imaginary {mu} to improve the signal/noise ratio and strengthen our conclusions, using results from relatively low statistics studies.
NASA Astrophysics Data System (ADS)
Bentz, Jonathan L.; Kozak, John J.; Nicolis, Gregoire
2005-08-01
The influence of non-nearest-neighbor displacements on the efficiency of diffusion-reaction processes involving one and two mobile diffusing reactants is studied. An exact analytic result is given for dimension d=1 from which, for large lattices, one can recover the asymptotic estimate reported 30 years ago by Lakatos-Lindenberg and Shuler. For dimensions d=2,3 we present numerically exact values for the mean time to reaction, as gauged by the mean walklength before reactive encounter, obtained via the theory of finite Markov processes and supported by Monte Carlo simulations. Qualitatively different results are found between processes occurring on d=1 versus d>1 lattices, and between results obtained assuming nearest-neighbor (only) versus non-nearest-neighbor displacements.
TUNED FINITE-DIFFERENCE DIFFUSION OPERATORS
Maron, Jason; Low, Mordecai-Mark Mac E-mail: mordecai@amnh.org
2009-05-15
Finite-difference simulations of fluid dynamics and magnetohydrodynamics generally require an explicit diffusion operator, either to maintain stability by attenuating grid-scale structure, or to implement physical diffusivities such as viscosity or resistivity. If the goal is stability only, the diffusion must act at the grid scale, but should affect structure at larger scales as little as possible. For physical diffusivities the diffusion scale depends on the problem, and diffusion may act at larger scales as well. Diffusivity can undesirably limit the computational time step in both cases. We construct tuned finite-difference diffusion operators that minimally limit the time step while acting as desired near the diffusion scale. Such operators reach peak values at the diffusion scale rather than at the grid scale, but behave as standard operators at larger scales. These operators will be useful for simulations with high magnetic diffusivity or kinematic viscosity such as in the simulation of astrophysical dynamos with magnetic Prandtl number far from unity, or for numerical stabilization using hyperdiffusivity.
NASA Technical Reports Server (NTRS)
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
Kim, S.
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Adaptive finite difference for seismic wavefield modelling in acoustic media.
Yao, Gang; Wu, Di; Debens, Henry Alexander
2016-01-01
Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang's optimised finite difference scheme. PMID:27491333
Adaptive finite difference for seismic wavefield modelling in acoustic media
NASA Astrophysics Data System (ADS)
Yao, Gang; Wu, Di; Debens, Henry Alexander
2016-08-01
Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme.
Adaptive finite difference for seismic wavefield modelling in acoustic media
Yao, Gang; Wu, Di; Debens, Henry Alexander
2016-01-01
Efficient numerical seismic wavefield modelling is a key component of modern seismic imaging techniques, such as reverse-time migration and full-waveform inversion. Finite difference methods are perhaps the most widely used numerical approach for forward modelling, and here we introduce a novel scheme for implementing finite difference by introducing a time-to-space wavelet mapping. Finite difference coefficients are then computed by minimising the difference between the spatial derivatives of the mapped wavelet and the finite difference operator over all propagation angles. Since the coefficients vary adaptively with different velocities and source wavelet bandwidths, the method is capable to maximise the accuracy of the finite difference operator. Numerical examples demonstrate that this method is superior to standard finite difference methods, while comparable to Zhang’s optimised finite difference scheme. PMID:27491333
NASA Technical Reports Server (NTRS)
Gayda, J.
1994-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, has been developed to simulate microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. Since many of the physical properties of materials are determined by microstructure, it is important to be able to predict and control microstructural development. MCFET uses a microstructural lattice model that can incorporate all relevant driving forces and kinetic considerations. Unlike molecular dynamics, this approach was developed specifically to predict macroscopic behavior, not atomistic behavior. In this approach, the microstructure is discretized into a fine lattice. Each element in the lattice is labeled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis has been validated by comparing this approach with a closed-form, analytical method for stress-assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analyses for multiparticle problems have also been run and, in general, the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperatures. This program is written in FORTRAN for use on a 370 series IBM mainframe. It has been implemented on an IBM 370 running VM/SP and an IBM 3084 running MVS. It requires the IMSL math library and 220K of RAM for execution. The standard distribution medium for this program is a 9-track 1600 BPI magnetic tape in EBCDIC format.
Complex spectrum of finite-density lattice QCD with static quarks at strong coupling
NASA Astrophysics Data System (ADS)
Nishimura, Hiromichi; Ogilvie, Michael C.; Pangeni, Kamal
2016-05-01
We calculate the spectrum of transfer matrix eigenvalues associated with Polyakov loops in finite-density lattice QCD with static quarks. These eigenvalues determine the spatial behavior of Polyakov loop correlation functions. Our results are valid for all values of the gauge coupling in 1 +1 dimensions and in the strong-coupling region for any number of dimensions. When the quark chemical potential μ is nonzero, the spatial transfer matrix Ts is non-Hermitian. The appearance of complex eigenvalues in Ts is a manifestation of the sign problem in finite-density QCD. The invariance of finite-density QCD under the combined action of charge conjugation C and complex conjugation K implies that the eigenvalues of Ts are either real or part of a complex pair. Calculation of the spectrum confirms the existence of complex pairs in much of the temperature-chemical potential plane. Many features of the spectrum for static quarks are determined by a particle-hole symmetry. For μ that is small compared to the quark mass M , we typically find real eigenvalues for the lowest-lying states. At somewhat larger values of μ , pairs of eigenvalues may form complex-conjugate pairs, leading to damped oscillatory behavior in Polyakov loop correlation functions. However, near μ =M , the low-lying spectrum becomes real again. This is a direct consequence of the approximate particle-hole symmetry at μ =M for heavy quarks. This behavior of the eigenvalues should be observable in lattice simulations and can be used as a test of lattice algorithms. Our results provide independent confirmation of results we have previously obtained in Polyakov-Nambu-Jona-Lasinio models using complex saddle points.
Finite-size scaling tests for SU(3) lattice gauge theory with color sextet fermions
DeGrand, Thomas
2009-12-01
The observed slow running of the gauge coupling in SU(3) lattice gauge theory with two flavors of color sextet fermions naturally suggests it is a theory with one relevant coupling, the fermion mass, and that at zero mass correlation functions decay algebraically. I perform a finite-size scaling study on simulation data at two values of the bare gauge coupling with this assumption and observe a common exponent for the scaling of the correlation length with the fermion mass, y{sub m}{approx}1.5. An analysis of the scaling of valence Dirac eigenvalues at one of these bare couplings produces a similar number.
Porous Substrate Effects on Thermal Flows Through a Rev-Scale Finite Volume Lattice Boltzmann Model
NASA Astrophysics Data System (ADS)
Zarghami, Ahad; Francesco, Silvia Di; Biscarini, Chiara
2014-09-01
In this paper, fluid flows with enhanced heat transfer in porous channels are investigated through a stable finite volume (FV) formulation of the thermal lattice Boltzmann method (LBM). Temperature field is tracked through a double distribution function (DDF) model, while the porous media is modeled using Brinkman-Forchheimer assumptions. The method is tested against flows in channels partially filled with porous media and parametric studies are conducted to evaluate the effects of various parameters, highlighting their influence on the thermo-hydrodynamic behavior.
Finite-temperature properties of strongly correlated fermions in the honeycomb lattice
NASA Astrophysics Data System (ADS)
Tang, Baoming; Paiva, Thereza; Khatami, Ehsan; Rigol, Marcos
2013-09-01
We study finite-temperature properties of strongly interacting fermions in the honeycomb lattice using numerical linked-cluster expansions and determinantal quantum Monte Carlo simulations. We analyze a number of thermodynamic quantities, including the entropy, the specific heat, uniform and staggered spin susceptibilities, short-range spin correlations, and the double occupancy at and away from half filling. We examine the viability of adiabatic cooling by increasing the interaction strength for homogeneous as well as for trapped systems. For the homogeneous case, this process is found to be more efficient at finite doping than at half filling. That, in turn, leads to an efficient adiabatic cooling in the presence of a trap, which, starting with even relatively high entropies, can drive the system to have a Mott insulating phase with substantial antiferromagnetic correlations.
Lattice fractional diffusion equation in terms of a Riesz-Caputo difference
NASA Astrophysics Data System (ADS)
Wu, Guo-Cheng; Baleanu, Dumitru; Deng, Zhen-Guo; Zeng, Sheng-Da
2015-11-01
A fractional difference is defined by the use of the right and the left Caputo fractional differences. The definition is a two-sided operator of Riesz type and introduces back and forward memory effects in space difference. Then, a fractional difference equation method is suggested for anomalous diffusion in discrete finite domains. A lattice fractional diffusion equation is proposed and the numerical simulation of the diffusion process is discussed for various difference orders. The result shows that the Riesz difference model is particularly suitable for modeling complicated dynamical behaviors on discrete media.
A conservative Dirichlet boundary treatment for the finite volume lattice Boltzmann method
NASA Astrophysics Data System (ADS)
Chen, Leitao; Schaefer, Laura
2014-11-01
The finite volume lattice Boltzmann method (FVLBM) enables the model to use the exact body-fitting mesh in the flow problems that involve the complex boundaries. However, the development of proper boundary treatment for the FVLBM has been outpaced. The boundary treatments designed for the conventional lattice Boltzmann method (LBM) framework are still heavily applied to the FVLBM. The largest defect of using the old boundary treatment is that, on the Dirichlet boundaries, the macroscopic variables cannot be conserved. In another word, there exist nontrivial discrepancies between the macroscopic variables defined by the boundary conditions and those yield by the numerical solutions. The errors on the boundaries will contaminate the internal solutions and even cause instability, especially on the complex boundaries. To overcome such a shortcoming, a conservative boundary treatment for the Dirichlet hydrodynamic boundary conditions is developed for the FVLBM. Through the benchmark tests, it is shown that the macroscopic conservations on the Direchlet boundaries are up to machine accuracy and completely independent of the size of relaxation time, the type of lattice model, the level of mesh resolution, the shape of boundaries and the type of internal scheme.
Lu Xiancong; Yu Yue; Li Jinbin
2006-04-15
By using slave particle (slave boson and slave fermion) techniques on the Bose-Hubbard model, we study the finite temperature properties of ultracold Bose gases in optical lattices. The phase diagrams at finite temperature are depicted by including different types of slave particles and the effect of the finite types of slave particles is estimated. The superfluid density is evaluated using the Landau second order phase transition theory. The atom density, excitation spectrum, and dispersion curve are also computed at various temperatures, and how the Mott-insulator evolves as the temperature increases is demonstrated. For most quantities to be calculated, we find that there are no qualitative differences in using the slave boson or the slave fermion approaches. However, when studying the stability of the mean field state, we find that in contrast to the slave fermion approach, the slave boson mean field state is not stable. Although the slave boson mean field theory gives a qualitatively correct phase boundary, it corresponds to a local maximum of Landau free energy and cannot describe the second order phase transition because the coefficient a{sub 4} of the fourth order term is always negative in the free energy expansion.
Stochastic finite-difference time-domain
NASA Astrophysics Data System (ADS)
Smith, Steven Michael
2011-12-01
This dissertation presents the derivation of an approximate method to determine the mean and the variance of electro-magnetic fields in the body using the Finite-Difference Time-Domain (FDTD) method. Unlike Monte Carlo analysis, which requires repeated FDTD simulations, this method directly computes the variance of the fields at every point in space at every sample of time in the simulation. This Stochastic FDTD simulation (S-FDTD) has at its root a new wave called the Variance wave, which is computed in the time domain along with the mean properties of the model space in the FDTD simulation. The Variance wave depends on the electro-magnetic fields, the reflections and transmission though the different dielectrics, and the variances of the electrical properties of the surrounding materials. Like the electro-magnetic fields, the Variance wave begins at zero (there is no variance before the source is turned on) and is computed in the time domain until all fields reach steady state. This process is performed in a fraction of the time of a Monte Carlo simulation and yields the first two statistical parameters (mean and variance). The mean of the field is computed using the traditional FDTD equations. Variance is computed by approximating the correlation coefficients between the constituitive properties and the use of the S-FDTD equations. The impetus for this work was the simulation time it takes to perform 3D Specific Absorption Rate (SAR) FDTD analysis of the human head model for cell phone power absorption in the human head due to the proximity of a cell phone being used. In many instances, Monte Carlo analysis is not performed due to the lengthy simulation times required. With the development of S-FDTD, these statistical analyses could be performed providing valuable statistical information with this information being provided in a small fraction of the time it would take to perform a Monte Carlo analysis.
Finite Mathematics and Discrete Mathematics: Is There a Difference?
ERIC Educational Resources Information Center
Johnson, Marvin L.
Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…
High-order entropy stable finite difference schemes for nonlinear conservation laws: Finite domains
NASA Astrophysics Data System (ADS)
Fisher, Travis C.; Carpenter, Mark H.
2013-11-01
Nonlinear entropy stability is used to derive provably stable high-order finite difference operators including boundary closure stencils, for the compressible Navier-Stokes equations. A comparison technique is used to derive a new Entropy Stable Weighted Essentially Non-Oscillatory (SSWENO) finite difference method, appropriate for simulations of problems with shocks. Viscous terms are approximated using conservative, entropy stable, narrow-stencil finite difference operators. The efficacy of the new discrete operators is demonstrated using both smooth and discontinuous test cases.
High-Order Entropy Stable Finite Difference Schemes for Nonlinear Conservation Laws: Finite Domains
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.
2013-01-01
Developing stable and robust high-order finite difference schemes requires mathematical formalism and appropriate methods of analysis. In this work, nonlinear entropy stability is used to derive provably stable high-order finite difference methods with formal boundary closures for conservation laws. Particular emphasis is placed on the entropy stability of the compressible Navier-Stokes equations. A newly derived entropy stable weighted essentially non-oscillatory finite difference method is used to simulate problems with shocks and a conservative, entropy stable, narrow-stencil finite difference approach is used to approximate viscous terms.
Comparison of finite-difference and analytic microwave calculation methods
Friedlander, F.I.; Jackson, H.W.; Barmatz, M.; Wagner, P.
1996-12-31
Normal modes and power absorption distributions in microwave cavities containing lossy dielectric samples were calculated for problems of interest in materials processing. The calculations were performed both using a commercially available finite-difference electromagnetic solver and by numerical evaluation of exact analytic expressions. Results obtained by the two methods applied to identical physical situations were compared. The studies validate the accuracy of the finite-difference electromagnetic solver. Relative advantages of the analytic and finite-difference methods are discussed.
Finite-size effects in lattice QCD with dynamical Wilson fermions
Orth, Boris; Lippert, Thomas; Schilling, Klaus
2005-07-01
As computing resources are limited, choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming to push unquenched simulations with the Wilson action towards the computationally expensive regime of small quark masses we address the question whether one can possibly save computing time by extrapolating results from small lattices to the infinite volume, prior to the usual chiral and continuum extrapolations. In the present work the systematic volume dependence of simulated pion and nucleon masses is investigated and compared with a long-standing analytic formula by Luescher and with results from chiral perturbation theory (ChPT). We analyze data from hybrid Monte Carlo simulations with the standard (unimproved) two-flavor Wilson action at two different lattice spacings of a{approx_equal}0.08 and 0.13 fm. The quark masses considered correspond to approximately 85% and 50% (at the smaller a) and 36% (at the larger a) of the strange quark mass. At each quark mass we study at least three different lattices with L/a=10 to 24 sites in the spatial directions (L=0.85-2.08 fm). We find that an exponential ansatz fits the volume dependence of the pion masses well, but with a coefficient about an order of magnitude larger than the theoretical leading-order prediction. In the case of the nucleon we observe a remarkably good agreement between our lattice data and a recent formula from relativistic baryon ChPT.
Continuum behavior of lattice QED, discretized with one-sided lattice differences, in one-loop order
Sadooghi, N.; Rothe, H.J.
1997-06-01
A lattice action for QED is considered, where the derivatives in the Dirac operator are replaced by one-sided lattice differences. A systematic expansion in the lattice spacing of the one-loop contribution to the fermion self-energy, vacuum polarization tensor, and vertex function is carried out for an arbitrary choice of one-sided lattice differences. It is shown that only the vacuum polarization tensor possesses the correct continuum limit, while the fermion self-energy and vertex function receive noncovariant contributions. A lattice action, discretized with a fixed choice of one-sided lattice differences, therefore, does not define a renormalizable field theory. The noncovariant contributions can, however, be eliminated by averaging the expression over all possible choices of one-sided lattice differences. {copyright} {ital 1997} {ital The American Physical Society}
A study on the optimization of finite volume effects of B K in lattice QCD by using the CUDA
NASA Astrophysics Data System (ADS)
Kim, Jangho; Cho, Kihyeon
2015-07-01
Lattice quantum chromodynamics (QCD) is the non-perturbative implementation of field theory to solve the QCD theory of quarks and gluons by using the Feynman path integral approach. We calculate the kaon CP (charge-parity) violation parameter B K generally arising in theories of physics beyond the Standard Model. Because lattice simulations are performed on finite volume lattices, the finite volume effects must be considered to exactly estimate the systematic error. The computational cost of numerical simulations may increase dramatically as the lattice spacing is decreased. Therefore, lattice QCD calculations must be optimized to account for the finite volume effects. The methodology used in this study was to develop an algorithm to parallelize the code by using a graphic processing unit (GPU) and to optimize the code to achieve as close to the theoretical peak performance as possible. The results revealed that the calculation speed of the newly-developed algorithm is significantly improved compared with that of the current algorithm for the finite volume effects.
One-node coarse-mesh finite difference algorithm for fine-mesh finite difference operator
Shin, H.C.; Kim, Y.H.; Kim, Y.B.
1999-07-01
This paper is concerned with speeding up the convergence of the fine-mesh finite difference (FMFD) method for the neutron diffusion problem. The basic idea of the new algorithm originates from the two-node coarse-mesh finite difference (CMFD) schemes for nodal methods, where the low-order CMFD operator is iteratively corrected through a global-local iteration so that the final solution of the CMFD problem is equivalent to the high-order nodal solution. Unlike conventional CMFD methods, the new CMFD algorithm is based on one-node local problems, and the high-order solution over the local problem is determined by using the FMFD operator. Nonlinear coupling of CMFD and FMFD operators was previously studied by Aragones and Ahnert. But, in their work, the coarse-mesh operator is corrected by the so-called flux discontinuity factors, and the local problem is defined differently in the sense of boundary conditions and the core dissection scheme.
Lefschetz thimble structure in one-dimensional lattice Thirring model at finite density
NASA Astrophysics Data System (ADS)
Fujii, Hirotsugu; Kamata, Syo; Kikukawa, Yoshio
2015-11-01
We investigate Lefschetz thimble structure of the complexified path-integration in the one-dimensional lattice massive Thirring model with finite chemical potential. The lattice model is formulated with staggered fermions and a compact auxiliary vector boson (a link field), and the whole set of the critical points (the complex saddle points) are sorted out, where each critical point turns out to be in a one-to-one correspondence with a singular point of the effective action (or a zero point of the fermion determinant). For a subset of critical point solutions in the uniform-field subspace, we examine the upward and downward cycles and the Stokes phenomenon with varying the chemical potential, and we identify the intersection numbers to determine the thimbles contributing to the path-integration of the partition function. We show that the original integration path becomes equivalent to a single Lefschetz thimble at small and large chemical potentials, while in the crossover region multiple thimbles must contribute to the path integration. Finally, reducing the model to a uniform field space, we study the relative importance of multi-thimble contributions and their behavior toward continuum and low-temperature limits quantitatively, and see how the rapid crossover behavior is recovered by adding the multi-thimble contributions at low temperatures. Those findings will be useful for performing Monte-Carlo simulations on the Lefschetz thimbles.
Lattice gas and lattice Boltzmann computational physics
Chen, S.
1993-05-01
Recent developments of the lattice gas automata method and its extension to the lattice Boltzmann method have provided new computational schemes for solving a variety of partial differential equations and modeling different physics systems. The lattice gas method, regarded as the simplest microscopic and kinetic approach which generates meaningful macroscopic dynamics, is fully parallel and can be easily programmed on parallel machines. In this talk, the author will review basic principles of the lattice gas and lattice Boltzmann method, its mathematical foundation and its numerical implementation. A detailed comparison of the lattice Boltzmann method with the lattice gas technique and other traditional numerical schemes, including the finite-difference scheme and the pseudo-spectral method, for solving the Navier-Stokes hydrodynamic fluid flows, will be discussed. Recent achievements of the lattice gas and the the lattice Boltzmann method and their applications in surface phenomena, spinodal decomposition and pattern formation in chemical reaction-diffusion systems will be presented.
Least-squares finite-element scheme for the lattice Boltzmann method on an unstructured mesh.
Li, Yusong; LeBoeuf, Eugene J; Basu, P K
2005-10-01
A numerical model of the lattice Boltzmann method (LBM) utilizing least-squares finite-element method in space and the Crank-Nicolson method in time is developed. This method is able to solve fluid flow in domains that contain complex or irregular geometric boundaries by using the flexibility and numerical stability of a finite-element method, while employing accurate least-squares optimization. Fourth-order accuracy in space and second-order accuracy in time are derived for a pure advection equation on a uniform mesh; while high stability is implied from a von Neumann linearized stability analysis. Implemented on unstructured mesh through an innovative element-by-element approach, the proposed method requires fewer grid points and less memory compared to traditional LBM. Accurate numerical results are presented through two-dimensional incompressible Poiseuille flow, Couette flow, and flow past a circular cylinder. Finally, the proposed method is applied to estimate the permeability of a randomly generated porous media, which further demonstrates its inherent geometric flexibility. PMID:16383571
Praveen, E. Satyanarayana, S. V. M.
2014-04-24
Traditional definition of phase transition involves an infinitely large system in thermodynamic limit. Finite systems such as biological proteins exhibit cooperative behavior similar to phase transitions. We employ recently discovered analysis of inflection points of microcanonical entropy to estimate the transition temperature of the phase transition in q state Potts model on a finite two dimensional square lattice for q=3 (second order) and q=8 (first order). The difference of energy density of states (DOS) Δ ln g(E) = ln g(E+ ΔE) −ln g(E) exhibits a point of inflexion at a value corresponding to inverse transition temperature. This feature is common to systems exhibiting both first as well as second order transitions. While the difference of DOS registers a monotonic variation around the point of inflexion for systems exhibiting second order transition, it has an S-shape with a minimum and maximum around the point of inflexion for the case of first order transition.
Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong
2016-02-01
Based on the Darcy-Brinkman-Forchheimer equation, a finite-volume computational model with lattice Boltzmann flux scheme is proposed for incompressible porous media flow in this paper. The fluxes across the cell interface are calculated by reconstructing the local solution of the generalized lattice Boltzmann equation for porous media flow. The time-scaled midpoint integration rule is adopted to discretize the governing equation, which makes the time step become limited by the Courant-Friedricks-Lewy condition. The force term which evaluates the effect of the porous medium is added to the discretized governing equation directly. The numerical simulations of the steady Poiseuille flow, the unsteady Womersley flow, the circular Couette flow, and the lid-driven flow are carried out to verify the present computational model. The obtained results show good agreement with the analytical, finite-difference, and/or previously published solutions. PMID:26986440
NASA Astrophysics Data System (ADS)
Hu, Yang; Li, Decai; Shu, Shi; Niu, Xiaodong
2016-02-01
Based on the Darcy-Brinkman-Forchheimer equation, a finite-volume computational model with lattice Boltzmann flux scheme is proposed for incompressible porous media flow in this paper. The fluxes across the cell interface are calculated by reconstructing the local solution of the generalized lattice Boltzmann equation for porous media flow. The time-scaled midpoint integration rule is adopted to discretize the governing equation, which makes the time step become limited by the Courant-Friedricks-Lewy condition. The force term which evaluates the effect of the porous medium is added to the discretized governing equation directly. The numerical simulations of the steady Poiseuille flow, the unsteady Womersley flow, the circular Couette flow, and the lid-driven flow are carried out to verify the present computational model. The obtained results show good agreement with the analytical, finite-difference, and/or previously published solutions.
NASA Technical Reports Server (NTRS)
Leonard, B. P.
1992-01-01
Judging by errors in the computational-fluid-dynamics literature in recent years, it is not generally well understood that (above first-order) there are significant differences in spatial truncation error between formulations of convection involving a finite-difference approximation of the first derivative, on the one hand, and a finite-volume model of flux differences across a control-volume cell, on the other. The difference between the two formulations involves a second-order truncation-error term (proportional to the third-derivative of the convected variable). Hence, for example, a third (or higher) order finite-difference approximation for the first-derivative convection term is only second-order accurate when written in conservative control-volume form as a finite-volume formulation, and vice versa.
Computer-Oriented Calculus Courses Using Finite Differences.
ERIC Educational Resources Information Center
Gordon, Sheldon P.
The so-called discrete approach in calculus instruction involves introducing topics from the calculus of finite differences and finite sums, both for motivation and as useful tools for applications of the calculus. In particular, it provides an ideal setting in which to incorporate computers into calculus courses. This approach has been…
Hybrid finite element-finite difference method for thermal analysis of blood vessels.
Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B
2000-01-01
A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems. PMID:10949130
Coupled finite-difference/finite-element approach for wing-body aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
1992-01-01
Computational methods using finite-difference approaches for fluids and finite-element approaches for structures have individually advanced to solve almost full-aircraft configurations. However, coupled approaches to solve fluid/structural interaction problems are still in their early stages of development, particularly for complex geometries using complete equations such as the Euler/Navier-Stokes equations. Earlier work demonstrated the success of coupling finite-difference and finite-element methods for simple wing configurations using the Euler/Navier-Stokes equations. In this paper, the same approach is extended for general wing-body configurations. The structural properties are represented by beam-type finite elements. The flow is modeled using the Euler/Navier-Stokes equations. A general procedure to fully couple structural finite-element boundary conditions with fluid finite-difference boundary conditions is developed for wing-body configurations. Computations are made using moving grids that adapt to wing-body structural deformations. Results are illustrated for a typical wing-body configuration.
Conservative properties of finite difference schemes for incompressible flow
NASA Technical Reports Server (NTRS)
Morinishi, Youhei
1995-01-01
The purpose of this research is to construct accurate finite difference schemes for incompressible unsteady flow simulations such as LES (large-eddy simulation) or DNS (direct numerical simulation). In this report, conservation properties of the continuity, momentum, and kinetic energy equations for incompressible flow are specified as analytical requirements for a proper set of discretized equations. Existing finite difference schemes in staggered grid systems are checked for satisfaction of the requirements. Proper higher order accurate finite difference schemes in a staggered grid system are then proposed. Plane channel flow is simulated using the proposed fourth order accurate finite difference scheme and the results compared with those of the second order accurate Harlow and Welch algorithm.
Techniques for correcting approximate finite difference solutions. [considering transonic flow
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
A method of correcting finite-difference solutions for the effect of truncation error or the use of an approximate basic equation is presented. Applications to transonic flow problems are described and examples are given.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Finite-difference solutions of the 3-D eikonal equation
Fei, Tong; Fehler, M.C.; Hildebrand, S.T.
1995-12-31
Prestack Kirchhoff depth migration requires the computation of traveltimes from surface source and receiver locations to subsurface image locations. In 3-D problems, computational efficiency becomes important. Finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference solutions of the eikonal equation provide computationally efficient methods for generating the traveltime information. Here, a novel finite-difference method for computing the first arrival traveltime by solving the eikonal equation has been developed in Cartesian coordinates. The method, which is unconditionally stable and computationally efficient, can handle instabilities due to caustics and provide information about head waves. The comparison of finite-difference solutions of the acoustic wave equation with the traveltime solutions from the eikonal equation in various structure models demonstrate that the method developed here can provide correct first arrival traveltime information even in areas of complex velocity structure.
High-order lattice Boltzmann models for wall-bounded flows at finite Knudsen numbers
NASA Astrophysics Data System (ADS)
Feuchter, C.; Schleifenbaum, W.
2016-07-01
We analyze a large number of high-order discrete velocity models for solving the Boltzmann-Bhatnagar-Gross-Krook equation for finite Knudsen number flows. Using the Chapman-Enskog formalism, we prove for isothermal flows a relation identifying the resolved flow regimes for low Mach numbers. Although high-order lattice Boltzmann models recover flow regimes beyond the Navier-Stokes level, we observe for several models significant deviations from reference results. We found this to be caused by their inability to recover the Maxwell boundary condition exactly. By using supplementary conditions for the gas-surface interaction it is shown how to systematically generate discrete velocity models of any order with the inherent ability to fulfill the diffuse Maxwell boundary condition accurately. Both high-order quadratures and an exact representation of the boundary condition turn out to be crucial for achieving reliable results. For Poiseuille flow, we can reproduce the mass flow and slip velocity up to the Knudsen number of 1. Moreover, for small Knudsen numbers, the Knudsen layer behavior is recovered.
NASA Astrophysics Data System (ADS)
Gonzalez-Mancera, Andres; Gonzalez Cardenas, Diego
2014-11-01
Flow in the microcirculation is highly dependent on the mechanical properties of the cells suspended in the plasma. Red blood cells have to deform in order to pass through the smaller sections in the microcirculation. Certain deceases change the mechanical properties of red blood cells affecting its ability to deform and the rheological behaviour of blood. We developed a hybrid algorithm based on the Lattice-Boltzmann and Finite Element methods to simulate blood flow in small capillaries. Plasma was modeled as a Newtonian fluid and the red blood cells' membrane as a hyperelastic solid. The fluid-structure interaction was handled using the immersed boundary method. We simulated the flow of plasma with suspended red blood cells through cylindrical capillaries and measured the pressure drop as a function of the membrane's rigidity. We also simulated the flow through capillaries with a restriction and identify critical properties for which the suspended particles are unable to flow. The algorithm output was verified by reproducing certain common features of flow int he microcirculation such as the Fahraeus-Lindqvist effect.
Micro Blowing Simulations Using a Coupled Finite-Volume Lattice-Boltzman n L ES Approach
NASA Technical Reports Server (NTRS)
Menon, S.; Feiz, H.
1990-01-01
Three dimensional large-eddy simulations (LES) of single and multiple jet-in-cross-flow (JICF) are conducted using the 19-bit Lattice Boltzmann Equation (LBE) method coupled with a conventional finite-volume (FV) scheme. In this coupled LBE-FV approach, the LBE-LES is employed to simulate the flow inside the jet nozzles while the FV-LES is used to simulate the crossflow. The key application area is the use of this technique is to study the micro blowing technique (MBT) for drag control similar to the recent experiments at NASA/GRC. It is necessary to resolve the flow inside the micro-blowing and suction holes with high resolution without being restricted by the FV time-step restriction. The coupled LBE-FV-LES approach achieves this objectives in a computationally efficient manner. A single jet in crossflow case is used for validation purpose and the results are compared with experimental data and full LBE-LES simulation. Good agreement with data is obtained. Subsequently, MBT over a flat plate with porosity of 25% is simulated using 9 jets in a compressible cross flow at a Mach number of 0.4. It is shown that MBT suppresses the near-wall vortices and reduces the skin friction by up to 50 percent. This is in good agreement with experimental data.
Numerical techniques in linear duct acoustics. [finite difference and finite element analyses
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1980-01-01
Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.
Practical aspects of prestack depth migration with finite differences
Ober, C.C.; Oldfield, R.A.; Womble, D.E.; Romero, L.A.; Burch, C.C.
1997-07-01
Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatial parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.
Effects of finite volume on the KL – KS mass difference
Christ, N. H.; Feng, X.; Martinelli, G.; Sachrajda, C. T.
2015-06-24
Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the KLmore » – KS mass difference ΔMK and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.« less
Improved finite-difference vibration analysis of pretwisted, tapered beams
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1984-01-01
An improved finite difference procedure based upon second order central differences is developed. Several difficulties encountered in earlier works with fictitious stations that arise in using second order central differences, are eliminated by developing certain recursive relations. The need for forward or backward differences at the beam boundaries or other similar procedures is eliminated in the present theory. By using this improved theory, the vibration characteristics of pretwisted and tapered blades are calculated. Results of the second order theory are compared with published theoretical and experimental results and are found to be in good agreement. The present method generally produces close lower bound solutions and shows fast convergence. Thus, extrapolation procedures that are customary with first order finite-difference methods are unnecessary. Furthermore, the computational time and effort needed for this improved method are almost the same as required for the conventional first order finite-difference approach.
Finite difference discretization of semiconductor drift-diffusion equations for nanowire solar cells
NASA Astrophysics Data System (ADS)
Deinega, Alexei; John, Sajeev
2012-10-01
We introduce a finite difference discretization of semiconductor drift-diffusion equations using cylindrical partial waves. It can be applied to describe the photo-generated current in radial pn-junction nanowire solar cells. We demonstrate that the cylindrically symmetric (l=0) partial wave accurately describes the electronic response of a square lattice of silicon nanowires at normal incidence. We investigate the accuracy of our discretization scheme by using different mesh resolution along the radial direction r and compare with 3D (x, y, z) discretization. We consider both straight nanowires and nanowires with radius modulation along the vertical axis. The charge carrier generation profile inside each nanowire is calculated using an independent finite-difference time-domain simulation.
Finite-temperature properties of the triangular lattice t-J model and applications to NaxCoO2
NASA Astrophysics Data System (ADS)
Haerter, Jan O.; Peterson, Michael R.; Shastry, B. Sriram
2006-12-01
We present a finite temperature (T) study of the t-J model on the two-dimensional triangular lattice for the negative hopping t , as relevant for the electron-doped NaxCoO2 (NCO). We study several thermodynamic and transport properties in this study: the T -dependent chemical potential, specific heat, magnetic susceptibility, and the dynamic Hall coefficient across the entire doping range. We show systematically how this simplest model for strongly correlated electrons describes a crossover as function of doping (x) from a Pauli-like weakly spin-correlated metal close to the band limit (density n=2 ) to the Curie-Weiss metallic phase (1.5
Finite-difference schemes for anisotropic diffusion
Es, Bram van; Koren, Barry; Blank, Hugo J. de
2014-09-01
In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.
Khali, S; Nebbali, R; Ameziani, D E; Bouhadef, K
2013-05-01
In this work the instability of the Taylor-Couette flow for Newtonian and non-Newtonian fluids (dilatant and pseudoplastic fluids) is investigated for cases of finite aspect ratios. The study is conducted numerically using the lattice Boltzmann method (LBM). In many industrial applications, the apparatuses and installations drift away from the idealized case of an annulus of infinite length, and thus the end caps effect can no longer be ignored. The inner cylinder is rotating while the outer one and the end walls are maintained at rest. The lattice two-dimensional nine-velocity (D2Q9) Boltzmann model developed from the Bhatnagar-Gross-Krook approximation is used to obtain the flow field for fluids obeying the power-law model. The combined effects of the Reynolds number, the radius ratio, and the power-law index n on the flow characteristics are analyzed for an annular space of finite aspect ratio. Two flow modes are obtained: a primary Couette flow (CF) mode and a secondary Taylor vortex flow (TVF) mode. The flow structures so obtained are different from one mode to another. The critical Reynolds number Re(c) for the passage from the primary to the secondary mode exhibits the lowest value for the pseudoplastic fluids and the highest value for the dilatant fluids. The findings are useful for studies of the swirling flow of non-Newtonians fluids in axisymmetric geometries using LBM. The flow changes from the CF to TVF and its structure switches from the two-cells to four-cells regime for both Newtonian and dilatant fluids. Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2 structure passing from two-cells to four cells and switches again to the two-cells configuration. Furthermore, the critical Reynolds number presents a monotonic increase with the power-law index n of the non-Newtonian fluid, and as the radius ratio grows, the transition flow regimes tend to appear for higher critical Reynolds numbers. PMID:23767615
NASA Astrophysics Data System (ADS)
Khali, S.; Nebbali, R.; Ameziani, D. E.; Bouhadef, K.
2013-05-01
In this work the instability of the Taylor-Couette flow for Newtonian and non-Newtonian fluids (dilatant and pseudoplastic fluids) is investigated for cases of finite aspect ratios. The study is conducted numerically using the lattice Boltzmann method (LBM). In many industrial applications, the apparatuses and installations drift away from the idealized case of an annulus of infinite length, and thus the end caps effect can no longer be ignored. The inner cylinder is rotating while the outer one and the end walls are maintained at rest. The lattice two-dimensional nine-velocity (D2Q9) Boltzmann model developed from the Bhatnagar-Gross-Krook approximation is used to obtain the flow field for fluids obeying the power-law model. The combined effects of the Reynolds number, the radius ratio, and the power-law index n on the flow characteristics are analyzed for an annular space of finite aspect ratio. Two flow modes are obtained: a primary Couette flow (CF) mode and a secondary Taylor vortex flow (TVF) mode. The flow structures so obtained are different from one mode to another. The critical Reynolds number Rec for the passage from the primary to the secondary mode exhibits the lowest value for the pseudoplastic fluids and the highest value for the dilatant fluids. The findings are useful for studies of the swirling flow of non-Newtonians fluids in axisymmetric geometries using LBM. The flow changes from the CF to TVF and its structure switches from the two-cells to four-cells regime for both Newtonian and dilatant fluids. Contrariwise for pseudoplastic fluids, the flow exhibits 2-4-2 structure passing from two-cells to four cells and switches again to the two-cells configuration. Furthermore, the critical Reynolds number presents a monotonic increase with the power-law index n of the non-Newtonian fluid, and as the radius ratio grows, the transition flow regimes tend to appear for higher critical Reynolds numbers.
Compact finite difference method for American option pricing
NASA Astrophysics Data System (ADS)
Zhao, Jichao; Davison, Matt; Corless, Robert M.
2007-09-01
A compact finite difference method is designed to obtain quick and accurate solutions to partial differential equation problems. The problem of pricing an American option can be cast as a partial differential equation. Using the compact finite difference method this problem can be recast as an ordinary differential equation initial value problem. The complicating factor for American options is the existence of an optimal exercise boundary which is jointly determined with the value of the option. In this article we develop three ways of combining compact finite difference methods for American option price on a single asset with methods for dealing with this optimal exercise boundary. Compact finite difference method one uses the implicit condition that solutions of the transformed partial differential equation be nonnegative to detect the optimal exercise value. This method is very fast and accurate even when the spatial step size h is large (h[greater-or-equal, slanted]0.1). Compact difference method two must solve an algebraic nonlinear equation obtained by Pantazopoulos (1998) at every time step. This method can obtain second order accuracy for space x and requires a moderate amount of time comparable with that required by the Crank Nicolson projected successive over relaxation method. Compact finite difference method three refines the free boundary value by a method developed by Barone-Adesi and Lugano [The saga of the American put, 2003], and this method can obtain high accuracy for space x. The last two of these three methods are convergent, moreover all the three methods work for both short term and long term options. Through comparison with existing popular methods by numerical experiments, our work shows that compact finite difference methods provide an exciting new tool for American option pricing.
A comparison of the finite difference and finite element methods for heat transfer calculations
NASA Technical Reports Server (NTRS)
Emery, A. F.; Mortazavi, H. R.
1982-01-01
The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.
Finite-Difference Algorithms For Computing Sound Waves
NASA Technical Reports Server (NTRS)
Davis, Sanford
1993-01-01
Governing equations considered as matrix system. Method variant of method described in "Scheme for Finite-Difference Computations of Waves" (ARC-12970). Present method begins with matrix-vector formulation of fundamental equations, involving first-order partial derivatives of primitive variables with respect to space and time. Particular matrix formulation places time and spatial coordinates on equal footing, so governing equations considered as matrix system and treated as unit. Spatial and temporal discretizations not treated separately as in other finite-difference methods, instead treated together by linking spatial-grid interval and time step via common scale factor related to speed of sound.
Finite difference modeling of rotor flows including wake effects
NASA Technical Reports Server (NTRS)
Caradonna, F. X.; Desopper, A.; Tung, C.
1982-01-01
Rotary wing finite difference methods are investigated. The main concern is the specification of boundary conditions to properly account for the effect of the wake on the blade. Examples are given of an approach where wake effects are introduced by specifying an equivalent angle of attack. An alternate approach is also given where discrete vortices are introduced into the finite difference grid. The resulting computations of hovering and high advance ratio cases compare well with experiment. Some consideration is also given to the modeling of low to moderate advance ratio flows.
NASA Technical Reports Server (NTRS)
Strong, Stuart L.; Meade, Andrew J., Jr.
1992-01-01
Preliminary results are presented of a finite element/finite difference method (semidiscrete Galerkin method) used to calculate compressible boundary layer flow about airfoils, in which the group finite element scheme is applied to the Dorodnitsyn formulation of the boundary layer equations. The semidiscrete Galerkin (SDG) method promises to be fast, accurate and computationally efficient. The SDG method can also be applied to any smoothly connected airfoil shape without modification and possesses the potential capability of calculating boundary layer solutions beyond flow separation. Results are presented for low speed laminar flow past a circular cylinder and past a NACA 0012 airfoil at zero angle of attack at a Mach number of 0.5. Also shown are results for compressible flow past a flat plate for a Mach number range of 0 to 10 and results for incompressible turbulent flow past a flat plate. All numerical solutions assume an attached boundary layer.
Generating meshes for finite-difference analysis using a solid modeler
NASA Astrophysics Data System (ADS)
Laguna, G. W.; White, W. T.; Cabral, B. K.
1987-09-01
One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or mesh, that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.
Generating meshes for finite-difference analysis using a solid modeler
Laguna, G.W.; White, W.T.; Cabral, B.K.
1987-09-01
One tool used by the Engineering Research Division of LLNL to help analyze the behavior of electronic systems in hostile environments is 3D finite-difference time-domain (FDTD) computation. FDTD codes solve Maxwell's equations,the differential equations of electromagnetism, on a uniform lattice of points. It is this uniform lattice, or ''mesh,'' that distinguishes finite-difference codes from other codes. The simple mesh makes FDTD codes computationally more efficient than other codes, which enables them to run larger problems and to run faster (up to thirty times faster than finite-element codes, for example). Therefore, within the Engineering Department at LLNL, Electronics Engineering (EE) has initiated a project to develop a mesh generator that will provide meshes suitable for FDTD analysis. This report describes the results of the first year of EE's FDTD Mesh Generation Project. During this year a preliminary version of an automated mesh generator was built and used to create a mesh of an object of interest to the High-Power Microwave Program, namely an electrically detonatable land mine. The code was verified by meshing basic solids such as spheres and cylinders. Because of the design of the code, there is no software limitation to the size of meshes that can be accommodated. The algorithm with a mesh space of approximately 500,000 cells has been demonstrated. The mesh generator can detect certain objects with walls that are thinner than the width of a cell. The code has internal graphics for viewing objects as they appear prior to being converted to a finite-difference representation. Additionally, via data files, the code is coupled to two external graphics packages for visually checking the meshes, namely TAURUS on the Cray and a new code, IMAGE, on the Silicon Graphics IRIS workstation.
Selecting step sizes in sensitivity analysis by finite differences
NASA Technical Reports Server (NTRS)
Iott, J.; Haftka, R. T.; Adelman, H. M.
1985-01-01
This paper deals with methods for obtaining near-optimum step sizes for finite difference approximations to first derivatives with particular application to sensitivity analysis. A technique denoted the finite difference (FD) algorithm, previously described in the literature and applicable to one derivative at a time, is extended to the calculation of several simultaneously. Both the original and extended FD algorithms are applied to sensitivity analysis for a data-fitting problem in which derivatives of the coefficients of an interpolation polynomial are calculated with respect to uncertainties in the data. The methods are also applied to sensitivity analysis of the structural response of a finite-element-modeled swept wing. In a previous study, this sensitivity analysis of the swept wing required a time-consuming trial-and-error effort to obtain a suitable step size, but it proved to be a routine application for the extended FD algorithm herein.
NASA Astrophysics Data System (ADS)
Ying, Jinyong; Xie, Dexuan
2015-10-01
The Poisson-Boltzmann equation (PBE) is one widely-used implicit solvent continuum model for calculating electrostatics of ionic solvated biomolecule. In this paper, a new finite element and finite difference hybrid method is presented to solve PBE efficiently based on a special seven-overlapped box partition with one central box containing the solute region and surrounded by six neighboring boxes. In particular, an efficient finite element solver is applied to the central box while a fast preconditioned conjugate gradient method using a multigrid V-cycle preconditioning is constructed for solving a system of finite difference equations defined on a uniform mesh of each neighboring box. Moreover, the PBE domain, the box partition, and an interface fitted tetrahedral mesh of the central box can be generated adaptively for a given PQR file of a biomolecule. This new hybrid PBE solver is programmed in C, Fortran, and Python as a software tool for predicting electrostatics of a biomolecule in a symmetric 1:1 ionic solvent. Numerical results on two test models with analytical solutions and 12 proteins validate this new software tool, and demonstrate its high performance in terms of CPU time and memory usage.
Modelling the core convection using finite element and finite difference methods
NASA Astrophysics Data System (ADS)
Chan, K. H.; Li, Ligang; Liao, Xinhao
2006-08-01
Applications of both parallel finite element and finite difference methods to thermal convection in a rotating spherical shell modelling the fluid dynamics of the Earth's outer core are presented. The numerical schemes are verified by reproducing the convection benchmark test by Christensen et al. [Christensen, U.R., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G.A., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wilcht, J., Zhang, K., 2001. A numerical dynamo benchmark. Phys. Earth Planet. Interiors 128, 25-34.]. Both global average and local characteristics agree satisfactorily with the benchmark solution. With the element-by-element (EBE) parallelization technique, the finite element code demonstrates nearly optimal linear scalability in computational speed. The finite difference code is also efficient and scalable by utilizing a parallel library Aztec [Tuminaro, R.S., Heroux, M., Hutchinson, S.A., Shadid, J.N., 1999. Official AZTEC User's Guide: Version 2.1.].
Comparison of finite difference and finite element solutions to the variably saturated flow equation
NASA Astrophysics Data System (ADS)
Simpson, M. J.; Clement, T. P.
2003-01-01
Numerical solutions to the equation governing variably saturated flow are usually obtained using either the finite difference (FD) method or the finite element (FE) method. A detailed comparison of these methods shows that the main difference between them is in how the numerical schemes spatially average the variation of material properties. Further differences are also observed in the way that flux boundaries are represented in FE and FD methods. A modified finite element (MFE) algorithm is used to explore the significance of these differences. The MFE algorithm enables a direct comparison with a typical FD solution scheme, and explicitly demonstrates the differences between FE and FD methods. The MFE algorithm provides an improved approximation to the partial differential equation over the usual FD approach while being computationally simpler to implement than the standard FE solution. One of the main limitations of the MFE algorithm is that the algorithm was developed by imposing several restrictions upon the more general FE solution; however, the MFE is shown to be preferable over the usual FE and FD solutions for some of the test problems considered in this study. The comparison results show that the FE (or MFE) solution can avoid the erroneous results encountered in the FD solution for coarsely discretized problems. The improvement in the FE solution is attributed to the broader hydraulic conductivity averaging and differences in the representation of flux type boundaries.
Using the Finite Difference Calculus to Sum Powers of Integers.
ERIC Educational Resources Information Center
Zia, Lee
1991-01-01
Summing powers of integers is presented as an example of finite differences and antidifferences in discrete mathematics. The interrelation between these concepts and their analogues in differential calculus, the derivative and integral, is illustrated and can form the groundwork for students' understanding of differential and integral calculus.…
Scheme For Finite-Difference Computations Of Waves
NASA Technical Reports Server (NTRS)
Davis, Sanford
1992-01-01
Compact algorithms generating and solving finite-difference approximations of partial differential equations for propagation of waves obtained by new method. Based on concept of discrete dispersion relation. Used in wave propagation to relate frequency to wavelength and is key measure of wave fidelity.
Direct Finite-Difference Simulations Of Turbulent Flow
NASA Technical Reports Server (NTRS)
Rai, Man Mohan; Moin, Parviz
1991-01-01
Report discusses use of upwind-biased finite-difference numerical-integration scheme to simulate evolution of small disturbances and fully developed turbulence in three-dimensional flow of viscous, incompressible fluid in channel. Involves use of computational grid sufficiently fine to resolve motion of fluid at all relevant length scales.
Finite difference methods for the solution of unsteady potential flows
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1982-01-01
Various problems which are confronted in the development of an unsteady finite difference potential code are reviewed mainly in the context of what is done for a typical small disturbance and full potential method. The issues discussed include choice of equations, linearization and conservation, differencing schemes, and algorithm development. A number of applications, including unsteady three dimensional rotor calculations, are demonstrated.
NASA Astrophysics Data System (ADS)
Wong, T.; Sun, W.
2012-12-01
Microcomputed tomography can be used to characterize the geometry of the pore space of a sedimentary rock, with resolution that is sufficiently refined for the realistic simulation of physical properties based on the 3D image. Significant advances have been made on the characterization of pore size distribution and connectivity, development of techniques such as lattice Boltzmann method to simulate permeability, and its upscaling. Sun, Andrade and Rudnicki (2011) recently introduced a multiscale method that dynamically links these three aspects, which were often treated separately in previous computational schemes. In this study, we improve the efficiency of this multiscale method by introducing a flood-fill algorithm to determine connectivity of the pores, followed by a multiscale lattice Boltzmann/finite element calculation to obtain homogenized effective anisotropic permeability. The improved multiscale method also includes new capacity to consistently determine electrical conductivity and formation factor from CT images. Furthermore, we also introduce a level set based method that transforms pore geometry to finite element mesh and thus enables direct simulation of pore-scale flow with finite element method. When applied to the microCT data acquired by Lindquist et al. (2000) for four Fontainebleau sandstone samples with porosities ranging from 7.5% to 22%, this multiscale method has proved to be computationally efficient and our simulations has provided new insights into the relation among permeability, pore geometry and connectivity.
NASA Astrophysics Data System (ADS)
Arahata, Emiko; Nikuni, Tetsuro
2008-03-01
We study damping of the dipole oscillation in a Bose-condensed gas in a combined cigar-shaped harmonic trap and one-dimensional (1D) optical lattice potential at finite temperatures. In order to include the effect of thermal excitations in the radial direction, we derive a quasi-1D model of the Gross-Pitaevskii equation and the Bogoliubov equations. We use the Popov approximation to calculate the temperature dependence of the condensate fraction with varying lattice depth. We then calculate the Landau damping rate of the dipole oscillation as a function of the lattice depth and temperature. The damping rate increases with increasing lattice depth, which is consistent with experimental observations. The magnitude of the damping rate is in reasonable agreement with experimental data. We also find that the damping rate has a strong temperature dependence, showing a sharp increase with increasing temperature. Finally, we emphasize the importance of the radial thermal excitations in both equilibrium properties and the Landau damping.
NASA Astrophysics Data System (ADS)
Chou, Po-Hao; Zhai, Liang-Jun; Chung, Chung-Hou; Lee, Ting-Kuo; Mou, Chung-Yu
The energy gap in Dirac materials controls the topology and critical behaviors of the quantum phase transition associated with the critical point when the gap vanishes. However, it is often difficult to access the critical point as it requires tunablity of electronic structures. Here by exploiting the many-body screening interaction of localized spins and conduction electrons in a Kondo lattice, we demonstrate that the electronic band structures in a Kondo lattice are tunable in temperature. When spin-orbit interactions are included, we find that below the Kondo temperature, the Kondo lattice is a strong topological insulator at low temperature and undergoes a topological transition to a weak topological insulator at a higher temperature TD. At TD, Dirac points emerge and the Kondo lattice becomes a Dirac semimetal. Our results indicate that the topological phase transition though a Dirac semi-metallic phase at finite temperatures also manifests profound physics and results in critical-like behavior both in magnetic and transport properties near TD. We acknowledge support from NCTS and Ministry of Science and Technology (MoST), Taiwan.
Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring
NASA Astrophysics Data System (ADS)
Zhang, Rui; Roberts, Tyler; Aranson, Igor S.; de Pablo, Juan J.
2016-02-01
Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices.
Lattice Boltzmann simulation of asymmetric flow in nematic liquid crystals with finite anchoring.
Zhang, Rui; Roberts, Tyler; Aranson, Igor S; de Pablo, Juan J
2016-02-28
Liquid crystals (LCs) display many of the flow characteristics of liquids but exhibit long range orientational order. In the nematic phase, the coupling of structure and flow leads to complex hydrodynamic effects that remain to be fully elucidated. Here, we consider the hydrodynamics of a nematic LC in a hybrid cell, where opposite walls have conflicting anchoring boundary conditions, and we employ a 3D lattice Boltzmann method to simulate the time-dependent flow patterns that can arise. Due to the symmetry breaking of the director field within the hybrid cell, we observe that at low to moderate shear rates, the volumetric flow rate under Couette and Poiseuille flows is different for opposite flow directions. At high shear rates, the director field may undergo a topological transition which leads to symmetric flows. By applying an oscillatory pressure gradient to the channel, a net volumetric flow rate is found to depend on the magnitude and frequency of the oscillation, as well as the anchoring strength. Taken together, our findings suggest several intriguing new applications for LCs in microfluidic devices. PMID:26931724
NASA Astrophysics Data System (ADS)
De Rosis, Alessandro
2014-03-01
In this paper, a numerical method for the modeling of shallow waters interacting with slender elastic structures is presented. The fluid domain is modeled through the lattice Boltzmann method, while the solid domain is idealized by corotational beam finite elements undergoing large displacements. Structure dynamics is predicted by using the time discontinuous Galerkin method and the fluid-structure interface conditions are handled by the Immersed Boundary method. An explicit coupling strategy to combine the adopted numerical methods is proposed and its effectiveness is tested by computing the error in terms of the energy that is artificially introduced at the fluid-solid interface.
Time dependent wave envelope finite difference analysis of sound propagation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1984-01-01
A transient finite difference wave envelope formulation is presented for sound propagation, without steady flow. Before the finite difference equations are formulated, the governing wave equation is first transformed to a form whose solution tends not to oscillate along the propagation direction. This transformation reduces the required number of grid points by an order of magnitude. Physically, the transformed pressure represents the amplitude of the conventional sound wave. The derivation for the wave envelope transient wave equation and appropriate boundary conditions are presented as well as the difference equations and stability requirements. To illustrate the method, example solutions are presented for sound propagation in a straight hard wall duct and in a two dimensional straight soft wall duct. The numerical results are in good agreement with exact analytical results.
Experimentally constructing finite difference algorithms in numerical relativity
NASA Astrophysics Data System (ADS)
Anderson, Matthew; Neilsen, David; Matzner, Richard
2002-04-01
Computational studies of gravitational waves require numerical algorithms with long-term stability (necessary for convergence). However, constructing stable finite difference algorithms (FDA) for the ADM formulation of the Einstein equations, especially in multiple dimensions, has proven difficult. Most FDA's are constructed using rules of thumb gained from experience with simple model equations. To search for FDA's with improved stability, we adopt a brute-force approach, where we systematically test thousands of numerical schemes. We sort the spatial derivatives of the Einstein equations into groups, and parameterize each group by finite difference type (centered or upwind) and order. Furthermore, terms proportional to the constraints are added to the evolution equations with additional parameters. A spherically symmetric, excised Schwarzschild black hole (one dimension) and linearized waves in multiple dimensions are used as model systems to evaluate the different numerical schemes.
Finite element-finite difference thermal/structural analysis of large space truss structures
NASA Technical Reports Server (NTRS)
Warren, Andrew H.; Arelt, Joseph E.; Eskew, William F.; Rogers, Karen M.
1992-01-01
A technique of automated and efficient thermal-structural processing of truss structures that interfaces the finite element and finite difference method was developed. The thermal-structural analysis tasks include development of the thermal and structural math models, thermal analysis, development of an interface and data transfer between the models, and finally an evaluation of the thermal stresses and displacements in the structure. Consequently, the objective of the developed technique was to minimize the model development time, in order to assure an automatic transfer of data between the thermal and structural models as well as to minimize the computer resources needed for the analysis itself. The method and techniques described are illustrated on the thermal/structural analysis of the Space Station Freedom main truss.
Algorithmic vs. finite difference Jacobians for infrared atmospheric radiative transfer
NASA Astrophysics Data System (ADS)
Schreier, Franz; Gimeno García, Sebastián; Vasquez, Mayte; Xu, Jian
2015-10-01
Jacobians, i.e. partial derivatives of the radiance and transmission spectrum with respect to the atmospheric state parameters to be retrieved from remote sensing observations, are important for the iterative solution of the nonlinear inverse problem. Finite difference Jacobians are easy to implement, but computationally expensive and possibly of dubious quality; on the other hand, analytical Jacobians are accurate and efficient, but the implementation can be quite demanding. GARLIC, our "Generic Atmospheric Radiation Line-by-line Infrared Code", utilizes algorithmic differentiation (AD) techniques to implement derivatives w.r.t. atmospheric temperature and molecular concentrations. In this paper, we describe our approach for differentiation of the high resolution infrared and microwave spectra and provide an in-depth assessment of finite difference approximations using "exact" AD Jacobians as a reference. The results indicate that the "standard" two-point finite differences with 1 K and 1% perturbation for temperature and volume mixing ratio, respectively, can exhibit substantial errors, and central differences are significantly better. However, these deviations do not transfer into the truncated singular value decomposition solution of a least squares problem. Nevertheless, AD Jacobians are clearly recommended because of the superior speed and accuracy.
Finite difference seismic modeling of axial magma chambers
Swift, S.A.; Dougherty, M.E.; Stephen, R.A. )
1990-11-01
The authors tested the feasibility of using finite difference methods to model seismic propagation at {approximately}10 Hx through a two-dimensional representation of an axial magma chamber with a thin, liquid lid. This technique produces time series of displacement or pressure at seafloor receivers to mimic a seismic refraction experiment and snapshots of P and S energy propagation. The results indicate that the implementation is stable for models with sharp velocity contrasts and complex geometries. The authors observe a high-energy, downward-traveling shear phase, observable only with borehole receivers, that would be useful in studying the nature and shape of magma chambers. The ability of finite difference methods to model high-order wave phenomena makes this method ideal for testing velocity models of spreading axes and for planning near-axis drilling of the East Pacific Rise in order to optimize the benefits from shear wave imaging of sub-axis structure.
Calculation of sensitivity derivatives in thermal problems by finite differences
NASA Technical Reports Server (NTRS)
Haftka, R. T.; Malkus, D. S.
1981-01-01
The optimum design of a structure subject to temperature constraints is considered. When mathematical optimization techniques are used, derivatives of the temperature constraints with respect to the design variables are usually required. In the case of large aerospace structures, such as the Space Shuttle, the computation of these derivatives can become prohibitively expensive. Analytical methods and a finite difference approach have been considered in studies conducted to improve the efficiency of the calculation of the derivatives. The present investigation explores two possibilities for enhancing the effectiveness of the finite difference approach. One procedure involves the simultaneous solution of temperatures and derivatives. The second procedure makes use of the optimum selection of the magnitude of the perturbations of the design variables to achieve maximum accuracy.
Semianalytical computation of path lines for finite-difference models
Pollock, D.W.
1988-01-01
A semianalytical particle tracking method was developed for use with velocities generated from block-centered finite-difference ground-water flow models. Based on the assumption that each directional velocity component varies linearly within a grid cell in its own coordinate directions, the method allows an analytical expression to be obtained describing the flow path within an individual grid cell. Given the intitial position of a particle anywhere in a cell, the coordinates of any other point along its path line within the cell, and the time of travel between them, can be computed directly. For steady-state systems, the exit point for a particle entering a cell at any arbitrary location can be computed in a single step. By following the particle as it moves from cell to cell, this method can be used to trace the path of a particle through any multidimensional flow field generated from a block-centered finite-difference flow model. -Author
Finite difference discretisation of a model for biological nerve conduction
NASA Astrophysics Data System (ADS)
Aderogba, A. A.; Chapwanya, M.; Jejeniwa, O. A.
2016-06-01
A nonstandard finite difference method is proposed for the discretisation of the semilinear FitzHugh-Nagumo reaction diffusion equation. The equation has been useful in describing, for example, population models, biological models, heat and mass transfer models, and many other applications. The proposed approach involves splitting the equation into the space independent and the time independent sub equation. Numerical simulations for the full equation are presented.
Optimized Finite-Difference Coefficients for Hydroacoustic Modeling
NASA Astrophysics Data System (ADS)
Preston, L. A.
2014-12-01
Responsible utilization of marine renewable energy sources through the use of current energy converter (CEC) and wave energy converter (WEC) devices requires an understanding of the noise generation and propagation from these systems in the marine environment. Acoustic noise produced by rotating turbines, for example, could adversely affect marine animals and human-related marine activities if not properly understood and mitigated. We are utilizing a 3-D finite-difference acoustic simulation code developed at Sandia that can accurately propagate noise in the complex bathymetry in the near-shore to open ocean environment. As part of our efforts to improve computation efficiency in the large, high-resolution domains required in this project, we investigate the effects of using optimized finite-difference coefficients on the accuracy of the simulations. We compare accuracy and runtime of various finite-difference coefficients optimized via criteria such as maximum numerical phase speed error, maximum numerical group speed error, and L-1 and L-2 norms of weighted numerical group and phase speed errors over a given spectral bandwidth. We find that those coefficients optimized for L-1 and L-2 norms are superior in accuracy to those based on maximal error and can produce runtimes of 10% of the baseline case, which uses Taylor Series finite-difference coefficients at the Courant time step limit. We will present comparisons of the results for the various cases evaluated as well as recommendations for utilization of the cases studied. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
Calculating rotordynamic coefficients of seals by finite-difference techniques
NASA Technical Reports Server (NTRS)
Dietzen, F. J.; Nordmann, R.
1987-01-01
For modelling the turbulent flow in a seal the Navier-Stokes equations in connection with a turbulence (kappa-epsilon) model are solved by a finite-difference method. A motion of the shaft round the centered position is assumed. After calculating the corresponding flow field and the pressure distribution, the rotor-dynamic coefficients of the seal can be determined. These coefficients are compared with results obtained by using the bulk flow theory of Childs and with experimental results.
Finite difference time domain grid generation from AMC helicopter models
NASA Technical Reports Server (NTRS)
Cravey, Robin L.
1992-01-01
A simple technique is presented which forms a cubic grid model of a helicopter from an Aircraft Modeling Code (AMC) input file. The AMC input file defines the helicopter fuselage as a series of polygonal cross sections. The cubic grid model is used as an input to a Finite Difference Time Domain (FDTD) code to obtain predictions of antenna performance on a generic helicopter model. The predictions compare reasonably well with measured data.
Finite difference time domain calculations of antenna mutual coupling
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Finite Difference Time Domain (FDTD) technique was applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been exclusively applied to antennas. Here, calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained during the method of moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.
Finite difference time domain calculations of antenna mutual coupling
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Kunz, Karl S.
1991-01-01
The Finite Difference Time Domain (FDTD) technique has been applied to a wide variety of electromagnetic analysis problems, including shielding and scattering. However, the method has not been extensively applied to antennas. In this short paper calculations of self and mutual admittances between wire antennas are made using FDTD and compared with results obtained using the Method of Moments. The agreement is quite good, indicating the possibilities for FDTD application to antenna impedance and coupling.
Finite difference methods for the solution of unsteady potential flows
NASA Technical Reports Server (NTRS)
Caradonna, F. X.
1985-01-01
A brief review is presented of various problems which are confronted in the development of an unsteady finite difference potential code. This review is conducted mainly in the context of what is done for a typical small disturbance and full potential methods. The issues discussed include choice of equation, linearization and conservation, differencing schemes, and algorithm development. A number of applications including unsteady three-dimensional rotor calculation, are demonstrated.
Finite difference schemes for long-time integration
NASA Technical Reports Server (NTRS)
Haras, Zigo; Taasan, Shlomo
1993-01-01
Finite difference schemes for the evaluation of first and second derivatives are presented. These second order compact schemes were designed for long-time integration of evolution equations by solving a quadratic constrained minimization problem. The quadratic cost function measures the global truncation error while taking into account the initial data. The resulting schemes are applicable for integration times fourfold, or more, longer than similar previously studied schemes. A similar approach was used to obtain improved integration schemes.
Dispersion-relation-preserving finite difference schemes for computational acoustics
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1993-01-01
Time-marching dispersion-relation-preserving (DRP) schemes can be constructed by optimizing the finite difference approximations of the space and time derivatives in wave number and frequency space. A set of radiation and outflow boundary conditions compatible with the DRP schemes is constructed, and a sequence of numerical simulations is conducted to test the effectiveness of the DRP schemes and the radiation and outflow boundary conditions. Close agreement with the exact solutions is obtained.
High Order Finite Difference Methods for Multiscale Complex Compressible Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.
2002-01-01
The classical way of analyzing finite difference schemes for hyperbolic problems is to investigate as many as possible of the following points: (1) Linear stability for constant coefficients; (2) Linear stability for variable coefficients; (3) Non-linear stability; and (4) Stability at discontinuities. We will build a new numerical method, which satisfies all types of stability, by dealing with each of the points above step by step.
Introduction to finite-difference methods for numerical fluid dynamics
Scannapieco, E.; Harlow, F.H.
1995-09-01
This work is intended to be a beginner`s exercise book for the study of basic finite-difference techniques in computational fluid dynamics. It is written for a student level ranging from high-school senior to university senior. Equations are derived from basic principles using algebra. Some discussion of partial-differential equations is included, but knowledge of calculus is not essential. The student is expected, however, to have some familiarity with the FORTRAN computer language, as the syntax of the computer codes themselves is not discussed. Topics examined in this work include: one-dimensional heat flow, one-dimensional compressible fluid flow, two-dimensional compressible fluid flow, and two-dimensional incompressible fluid flow with additions of the equations of heat flow and the {Kappa}-{epsilon} model for turbulence transport. Emphasis is placed on numerical instabilities and methods by which they can be avoided, techniques that can be used to evaluate the accuracy of finite-difference approximations, and the writing of the finite-difference codes themselves. Concepts introduced in this work include: flux and conservation, implicit and explicit methods, Lagrangian and Eulerian methods, shocks and rarefactions, donor-cell and cell-centered advective fluxes, compressible and incompressible fluids, the Boussinesq approximation for heat flow, Cartesian tensor notation, the Boussinesq approximation for the Reynolds stress tensor, and the modeling of transport equations. A glossary is provided which defines these and other terms.
Chen, Li; He, Ya-Ling; Kang, Qinjun; Tao, Wen-Quan
2013-12-15
A coupled (hybrid) simulation strategy spatially combining the finite volume method (FVM) and the lattice Boltzmann method (LBM), called CFVLBM, is developed to simulate coupled multi-scale multi-physicochemical processes. In the CFVLBM, computational domain of multi-scale problems is divided into two sub-domains, i.e., an open, free fluid region and a region filled with porous materials. The FVM and LBM are used for these two regions, respectively, with information exchanged at the interface between the two sub-domains. A general reconstruction operator (RO) is proposed to derive the distribution functions in the LBM from the corresponding macro scalar, the governing equation of which obeys the convection–diffusion equation. The CFVLBM and the RO are validated in several typical physicochemical problems and then are applied to simulate complex multi-scale coupled fluid flow, heat transfer, mass transport, and chemical reaction in a wall-coated micro reactor. The maximum ratio of the grid size between the FVM and LBM regions is explored and discussed. -- Highlights: •A coupled simulation strategy for simulating multi-scale phenomena is developed. •Finite volume method and lattice Boltzmann method are coupled. •A reconstruction operator is derived to transfer information at the sub-domains interface. •Coupled multi-scale multiple physicochemical processes in micro reactor are simulated. •Techniques to save computational resources and improve the efficiency are discussed.
Finite difference program for calculating hydride bed wall temperature profiles
Klein, J.E.
1992-10-29
A QuickBASIC finite difference program was written for calculating one dimensional temperature profiles in up to two media with flat, cylindrical, or spherical geometries. The development of the program was motivated by the need to calculate maximum temperature differences across the walls of the Tritium metal hydrides beds for thermal fatigue analysis. The purpose of this report is to document the equations and the computer program used to calculate transient wall temperatures in stainless steel hydride vessels. The development of the computer code was motivated by the need to calculate maximum temperature differences across the walls of the hydrides beds in the Tritium Facility for thermal fatigue analysis.
Fuzzy logic to improve efficiency of finite element and finite difference schemes
Garcia, M.D.; Heger, A.S.
1994-05-01
This paper explores possible applications of logic in the areas of finite element and finite difference methods applied to engineering design problems. The application of fuzzy logic to both front-end selection of computational options and within the numerical computation itself are proposed. Further, possible methods of overcoming these limitations through the application of methods are explored. Decision strategy is a fundamental limitation in performing finite element calculations, such as selecting the optimum coarseness of the grid, numerical integration algorithm, element type, implicit versus explicit schemes, and the like. This is particularly true of novice analysts who are confronted with a myriad of choices in performing a calculation. The advantage of having the myriad of options available to the analyst is, however, that it improves and optimizes the design process if the appropriate ones are selected. Unfortunately, the optimum choices are not always apparent and only through the process of elimination or prior extensive experience can the optimum choices or combination of choices be selected. The knowledge of expert analysts could be integrated into a fuzzy ``front-end`` rule-based package to optimize the design process. The use of logic to capture the heuristic and human knowledge for selecting optimum solution strategies sets the framework for these proposed strategies.
An Analysis of Finite-Difference and Finite-Volume Formulations of Convervation Laws
NASA Astrophysics Data System (ADS)
Vinokur, Marcel
1989-03-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations-potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Astrophysics Data System (ADS)
Vinokur, Marcel
1986-06-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1986-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations--potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomeclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
An analysis of finite-difference and finite-volume formulations of conservation laws
NASA Technical Reports Server (NTRS)
Vinokur, Marcel
1989-01-01
Finite-difference and finite-volume formulations are analyzed in order to clear up the confusion concerning their application to the numerical solution of conservation laws. A new coordinate-free formulation of systems of conservation laws is developed, which clearly distinguishes the role of physical vectors from that of algebraic vectors which characterize the system. The analysis considers general types of equations: potential, Euler, and Navier-Stokes. Three-dimensional unsteady flows with time-varying grids are described using a single, consistent nomenclature for both formulations. Grid motion due to a non-inertial reference frame as well as flow adaptation is covered. In comparing the two formulations, it is found useful to distinguish between differences in numerical methods and differences in grid definition. The former plays a role for non-Cartesian grids, and results in only cosmetic differences in the manner in which geometric terms are handled. The differences in grid definition for the two formulations is found to be more important, since it affects the manner in which boundary conditions, zonal procedures, and grid singularities are handled at computational boundaries. The proper interpretation of strong and weak conservation-law forms for quasi-one-dimensional and axisymmetric flows is brought out.
Fractional-order difference equations for physical lattices and some applications
Tarasov, Vasily E.
2015-10-15
Fractional-order operators for physical lattice models based on the Grünwald-Letnikov fractional differences are suggested. We use an approach based on the models of lattices with long-range particle interactions. The fractional-order operators of differentiation and integration on physical lattices are represented by kernels of lattice long-range interactions. In continuum limit, these discrete operators of non-integer orders give the fractional-order derivatives and integrals with respect to coordinates of the Grünwald-Letnikov types. As examples of the fractional-order difference equations for physical lattices, we give difference analogs of the fractional nonlocal Navier-Stokes equations and the fractional nonlocal Maxwell equations for lattices with long-range interactions. Continuum limits of these fractional-order difference equations are also suggested.
Explicit Finite Difference Methods for the Delay Pseudoparabolic Equations
Amirali, I.; Amiraliyev, G. M.; Cakir, M.; Cimen, E.
2014-01-01
Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown. PMID:24688392
Explicit finite difference methods for the delay pseudoparabolic equations.
Amirali, I; Amiraliyev, G M; Cakir, M; Cimen, E
2014-01-01
Finite difference technique is applied to numerical solution of the initial-boundary value problem for the semilinear delay Sobolev or pseudoparabolic equation. By the method of integral identities two-level difference scheme is constructed. For the time integration the implicit rule is being used. Based on the method of energy estimates the fully discrete scheme is shown to be absolutely stable and convergent of order two in space and of order one in time. The error estimates are obtained in the discrete norm. Some numerical results confirming the expected behavior of the method are shown. PMID:24688392
Macroscopic traffic modeling with the finite difference method
Mughabghab, S.; Azarm, A.; Stock, D.
1996-03-15
A traffic congestion forecasting model (ATOP), developed in the present investigation, is described briefly. Several macroscopic models, based on the solution of the partial differential equation of conservation of vehicles by the finite difference method, were tested using actual traffic data. The functional form, as well as the parameters, of the equation of state which describes the relation between traffic speed and traffic density, were determined for a section of the Long Island Expressway. The Lax method and the forward difference technique were applied. The results of extensive tests showed that the Lax method, in addition to giving very good agreement with the traffic data, produces stable solutions.
Exact finite-size corrections for the spanning-tree model under different boundary conditions
NASA Astrophysics Data System (ADS)
Izmailian, N. Sh.; Kenna, R.
2015-02-01
We express the partition functions of the spanning tree on finite square lattices under five different sets of boundary conditions in terms of a principal partition function with twisted-boundary conditions. Based on these expressions, we derive the exact asymptotic expansions of the logarithm of the partition function for each case. We have also established several groups of identities relating spanning-tree partition functions for the different boundary conditions. We also explain an apparent discrepancy between logarithmic correction terms in the free energy for a two-dimensional spanning-tree model with periodic and free-boundary conditions and conformal field theory predictions. We have obtained corner free energy for the spanning tree under free-boundary conditions in full agreement with conformal field theory predictions.
RECENT LATTICE RESULTS ON FINITE TEMPERATURE AND DENSITY QCD, PART 1.
KARSCH,F.
2007-07-09
We discuss recent progress made studies of bulk thermodynamics of strongly interacting matter through lattice simulations of QCD with an almost physical light and strange quark mass spectrum. We present results on the QCD equation of state at vanishing and non-vanishing quark chemical potential and show first results on baryon number and strangeness fluctuations, which might be measured in event-by-event fluctuations in low energy runs at RHIC as well as at FAIR.
Visibility of cold atomic gases in optical lattices for finite temperatures
Hoffmann, Alexander; Pelster, Axel
2009-05-15
In nearly all experiments with ultracold atoms time-of-flight pictures are the only data available. In this paper we present an analytical strong-coupling calculation for those time-of-flight pictures of bosons in a three-dimensional optical lattice in the Mott phase. This allows us to determine the visibility, which quantifies the contrast of peaks in the time-of-flight pictures, and we suggest how to use it as a thermometer.
Ising antiferromagnet on a finite triangular lattice with free boundary conditions
NASA Astrophysics Data System (ADS)
Kim, Seung-Yeon
2015-11-01
The exact integer values for the density of states of the Ising model on an equilateral triangular lattice with free boundary conditions are evaluated up to L = 24 spins on a side for the first time by using the microcanonical transfer matrix. The total number of states is 2 N s = 2300 ≈ 2.037 × 1090 for L = 24, where N s = L( L+1)/2 is the number of spins. Classifying all 2300 spin states according to their energy values is an enormous work. From the density of states, the exact partition function zeros in the complex temperature plane of the triangular-lattice Ising model are evaluated. Using the density of states and the partition function zeros, we investigate the properties of the triangularlattice Ising antiferromagnet. The scaling behavior of the ground-state entropy and the form of the correlation length at T = 0 are studied for the triangular-lattice Ising antiferromagnet with free boundary conditions. Also, the scaling behavior of the Fisher edge singularity is investigated.
Seismic imaging using finite-differences and parallel computers
Ober, C.C.
1997-12-31
A key to reducing the risks and costs of associated with oil and gas exploration is the fast, accurate imaging of complex geologies, such as salt domes in the Gulf of Mexico and overthrust regions in US onshore regions. Prestack depth migration generally yields the most accurate images, and one approach to this is to solve the scalar wave equation using finite differences. As part of an ongoing ACTI project funded by the US Department of Energy, a finite difference, 3-D prestack, depth migration code has been developed. The goal of this work is to demonstrate that massively parallel computers can be used efficiently for seismic imaging, and that sufficient computing power exists (or soon will exist) to make finite difference, prestack, depth migration practical for oil and gas exploration. Several problems had to be addressed to get an efficient code for the Intel Paragon. These include efficient I/O, efficient parallel tridiagonal solves, and high single-node performance. Furthermore, to provide portable code the author has been restricted to the use of high-level programming languages (C and Fortran) and interprocessor communications using MPI. He has been using the SUNMOS operating system, which has affected many of his programming decisions. He will present images created from two verification datasets (the Marmousi Model and the SEG/EAEG 3D Salt Model). Also, he will show recent images from real datasets, and point out locations of improved imaging. Finally, he will discuss areas of current research which will hopefully improve the image quality and reduce computational costs.
Application of a finite difference technique to thermal wave propagation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1975-01-01
A finite difference formulation is presented for thermal wave propagation resulting from periodic heat sources. The numerical technique can handle complex problems that might result from variable thermal diffusivity, such as heat flow in the earth with ice and snow layers. In the numerical analysis, the continuous temperature field is represented by a series of grid points at which the temperature is separated into real and imaginary terms. Next, computer routines previously developed for acoustic wave propagation are utilized in the solution for the temperatures. The calculation procedure is illustrated for the case of thermal wave propagation in a uniform property semi-infinite medium.
Application of a finite difference technique to thermal wave propagation
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1975-01-01
A finite difference formulation is presented for thermal wave propagation resulting from periodic heat sources. The numerical technique can handle complex problems that might result from variable thermal diffusivity, such as heat flow in the earth with ice and snow layers. In the numerical analysis, the continuous temperature field is represented by a series of grid points at which the temperature is separated into real and imaginary terms. Computer routines previously developed for acoustic wave propagation are utilized in the solution for the temperatures. The calculation procedure is illustrated for the case of thermal wave propagation in a uniform property semi-infinite medium.
FDIPS: Finite Difference Iterative Potential-field Solver
NASA Astrophysics Data System (ADS)
Toth, Gabor; van der Holst, Bartholomeus; Huang, Zhenguang
2016-06-01
FDIPS is a finite difference iterative potential-field solver that can generate the 3D potential magnetic field solution based on a magnetogram. It is offered as an alternative to the spherical harmonics approach, as when the number of spherical harmonics is increased, using the raw magnetogram data given on a grid that is uniform in the sine of the latitude coordinate can result in inaccurate and unreliable results, especially in the polar regions close to the Sun. FDIPS is written in Fortran 90 and uses the MPI library for parallel execution.
Compact finite difference schemes with spectral-like resolution
NASA Technical Reports Server (NTRS)
Lele, Sanjiva K.
1992-01-01
The present finite-difference schemes for the evaluation of first-order, second-order, and higher-order derivatives yield improved representation of a range of scales and may be used on nonuniform meshes. Various boundary conditions may be invoked, and both accurate interpolation and spectral-like filtering can be accomplished by means of schemes for derivatives at mid-cell locations. This family of schemes reduces to the Pade schemes when the maximal formal accuracy constraint is imposed with a specific computational stencil. Attention is given to illustrative applications of these schemes in fluid dynamics.
A finite difference approach to microstrip antenna design
Barth, M.J.; Bevensee, R.M.; Pennock, S.T.
1986-12-01
Microstrip antennas have received increased attention in recent years, due to their size and cost advantages. Analysis of the microstrip structure has proved difficult due to the presence of the dielectric substrate, particularly for complex geometries. One possible approach to a solution is the use of a finite difference computer code to model a proposed microstrip antenna design. The models are easily constructed and altered, and code versions are available which allow input impedance or far-field patterns to be calculated. Results for some simple antenna geometries will be presented.
Finite difference time domain modeling of spiral antennas
NASA Technical Reports Server (NTRS)
Penney, Christopher W.; Beggs, John H.; Luebbers, Raymond J.
1992-01-01
The objectives outlined in the original proposal for this project were to create a well-documented computer analysis model based on the finite-difference, time-domain (FDTD) method that would be capable of computing antenna impedance, far-zone radiation patterns, and radar cross-section (RCS). The ability to model a variety of penetrable materials in addition to conductors is also desired. The spiral antennas under study by this project meet these requirements since they are constructed of slots cut into conducting surfaces which are backed by dielectric materials.
Pencil: Finite-difference Code for Compressible Hydrodynamic Flows
NASA Astrophysics Data System (ADS)
Brandenburg, Axel; Dobler, Wolfgang
2010-10-01
The Pencil code is a high-order finite-difference code for compressible hydrodynamic flows with magnetic fields. It is highly modular and can easily be adapted to different types of problems. The code runs efficiently under MPI on massively parallel shared- or distributed-memory computers, like e.g. large Beowulf clusters. The Pencil code is primarily designed to deal with weakly compressible turbulent flows. To achieve good parallelization, explicit (as opposed to compact) finite differences are used. Typical scientific targets include driven MHD turbulence in a periodic box, convection in a slab with non-periodic upper and lower boundaries, a convective star embedded in a fully nonperiodic box, accretion disc turbulence in the shearing sheet approximation, self-gravity, non-local radiation transfer, dust particle evolution with feedback on the gas, etc. A range of artificial viscosity and diffusion schemes can be invoked to deal with supersonic flows. For direct simulations regular viscosity and diffusion is being used. The code is written in well-commented Fortran90.
Electromagnetic Scattering of Finite and Infinite 3D Lattices in Polarizable Backgrounds
Gallinet, Benjamin; Martin, Olivier J. F.
2009-10-07
A novel method is elaborated for the electromagnetic scattering from periodical arrays of scatterers embedded in a polarizable background. A dyadic periodic Green's function is introduced to calculate the scattered electric field in a lattice of dielectric or metallic objects. The method exhibits strong advantages: discretization and computation of the field are restricted to the volume of the scatterers in the unit cell, open and periodic boundary conditions for the electric field are included in the Green's tensor, and finally both near and far-fields physics are directly revealed, without any additional computational effort. Promising applications include the design of periodic structures such as frequency-selective surfaces, photonic crystals and metamaterials.
Correlation versus commensurability effects for finite bosonic systems in one-dimensional lattices
Brouzos, Ioannis; Schmelcher, Peter; Zoellner, Sascha
2010-05-15
We investigate few-boson systems in finite one-dimensional multiwell traps covering the full interaction crossover from uncorrelated to fermionized particles. Our treatment of the ground-state properties is based on the numerically exact multiconfigurational time-dependent Hartree method. For commensurate filling, we trace the fingerprints of localization as the interaction strength increases, in several observables like reduced-density matrices, fluctuations, and momentum distribution. For a filling factor larger than 1 we observe on-site repulsion effects in the densities and fragmentation of particles beyond the validity of the Bose-Hubbard model upon approaching the Tonks-Girardeau limit. The presence of an incommensurate fraction of particles induces incomplete localization and spatial modulations of the density profiles, taking into account the finite size of the system.
NASA Astrophysics Data System (ADS)
Kajzer, A.; Pozorski, J.; Szewc, K.
2014-08-01
In the paper we present Large-eddy simulation (LES) results of 3D Taylor- Green vortex obtained by the three different computational approaches: Smoothed Particle Hydrodynamics (SPH), Lattice Boltzmann Method (LBM) and Finite Volume Method (FVM). The Smagorinsky model was chosen as a subgrid-scale closure in LES for all considered methods and a selection of spatial resolutions have been investigated. The SPH and LBM computations have been carried out with the use of the in-house codes executed on GPU and compared, for validation purposes, with the FVM results obtained using the open-source CFD software OpenFOAM. A comparative study in terms of one-point statistics and turbulent energy spectra shows a good agreement of LES results for all methods. An analysis of the GPU code efficiency and implementation difficulties has been made. It is shown that both SPH and LBM may offer a significant advantage over mesh-based CFD methods.
Finite Temperature Properties of Three-Component Fermion Systems in Optical Lattice
NASA Astrophysics Data System (ADS)
Yanatori, Hiromasa; Koga, Akihisa
2016-01-01
We investigate finite temperature properties in the half-filled three-component (colors) fermion systems. It is clarified that a color density-wave (CDW) state is more stable than a color-selective "antiferromagnetic" (CSAF) state against thermal fluctuations. The reentrant behavior in the phase boundary for the CSAF state is found. We also address the maximum critical temperature of the translational symmetry breaking states in the multicomponent fermionic systems.
Finite Difference Elastic Wave Field Simulation On GPU
NASA Astrophysics Data System (ADS)
Hu, Y.; Zhang, W.
2011-12-01
Numerical modeling of seismic wave propagation is considered as a basic and important aspect in investigation of the Earth's structure, and earthquake phenomenon. Among various numerical methods, the finite-difference method is considered one of the most efficient tools for the wave field simulation. However, with the increment of computing scale, the power of computing has becoming a bottleneck. With the development of hardware, in recent years, GPU shows powerful computational ability and bright application prospects in scientific computing. Many works using GPU demonstrate that GPU is powerful . Recently, GPU has not be used widely in the simulation of wave field. In this work, we present forward finite difference simulation of acoustic and elastic seismic wave propagation in heterogeneous media on NVIDIA graphics cards with the CUDA programming language. We also implement perfectly matched layers on the graphics cards to efficiently absorb outgoing waves on the fictitious edges of the grid Simulations compared with the results on CPU platform shows reliable accuracy and remarkable efficiency. This work proves that GPU can be an effective platform for wave field simulation, and it can also be used as a practical tool for real-time strong ground motion simulation.
Arrayed waveguide grating using the finite difference beam propagation method
NASA Astrophysics Data System (ADS)
Toledo, M. C. F.; Alayo, M. I.
2013-03-01
The purpose of this work is to analyze by simulation the coupling effects occurring in Arrayed Waveguide Grating (AWG) using the finite difference beam propagation method (FD-BPM). Conventional FD-BPM techniques do not immediately lend themselves to the analysis of large structures such as AWG. Cooper et al.1 introduced a description of the coupling between the interface of arrayed waveguides and star couplers using the numerically-assisted coupled-mode theory. However, when the arrayed waveguides are spatially close, such that, there is strong coupling between them, and coupled-mode theory is not adequate. On the other hand, Payne2 developed an exact eigenvalue equation for the super modes of a straight arrayed waveguide which involve a computational overhead. In this work, an integration of both methods is accomplished in order to describe the behavior of the propagation of light in guided curves. This new method is expected to reduce the necessary effort for simulation while also enabling the simulation of large and curved arrayed waveguides using a fully vectorial finite difference technique.
Viscoelastic Finite Difference Modeling Using Graphics Processing Units
NASA Astrophysics Data System (ADS)
Fabien-Ouellet, G.; Gloaguen, E.; Giroux, B.
2014-12-01
Full waveform seismic modeling requires a huge amount of computing power that still challenges today's technology. This limits the applicability of powerful processing approaches in seismic exploration like full-waveform inversion. This paper explores the use of Graphics Processing Units (GPU) to compute a time based finite-difference solution to the viscoelastic wave equation. The aim is to investigate whether the adoption of the GPU technology is susceptible to reduce significantly the computing time of simulations. The code presented herein is based on the freely accessible software of Bohlen (2002) in 2D provided under a General Public License (GNU) licence. This implementation is based on a second order centred differences scheme to approximate time differences and staggered grid schemes with centred difference of order 2, 4, 6, 8, and 12 for spatial derivatives. The code is fully parallel and is written using the Message Passing Interface (MPI), and it thus supports simulations of vast seismic models on a cluster of CPUs. To port the code from Bohlen (2002) on GPUs, the OpenCl framework was chosen for its ability to work on both CPUs and GPUs and its adoption by most of GPU manufacturers. In our implementation, OpenCL works in conjunction with MPI, which allows computations on a cluster of GPU for large-scale model simulations. We tested our code for model sizes between 1002 and 60002 elements. Comparison shows a decrease in computation time of more than two orders of magnitude between the GPU implementation run on a AMD Radeon HD 7950 and the CPU implementation run on a 2.26 GHz Intel Xeon Quad-Core. The speed-up varies depending on the order of the finite difference approximation and generally increases for higher orders. Increasing speed-ups are also obtained for increasing model size, which can be explained by kernel overheads and delays introduced by memory transfers to and from the GPU through the PCI-E bus. Those tests indicate that the GPU memory size
Effects of finite volume on the K_{L} – K_{S} mass difference
Christ, N. H.; Feng, X.; Martinelli, G.; Sachrajda, C. T.
2015-06-24
Phenomena that involve two or more on-shell particles are particularly sensitive to the effects of finite volume and require special treatment when computed using lattice QCD. In this paper we generalize the results of Lüscher and Lellouch and Lüscher, which determine the leading-order effects of finite volume on the two-particle spectrum and two-particle decay amplitudes to determine the finite-volume effects in the second-order mixing of the K⁰ and K⁰⁻ states. We extend the methods of Kim, Sachrajda, and Sharpe to provide a direct, uniform treatment of these three, related, finite-volume corrections. In particular, the leading, finite-volume corrections to the K_{L} – K_{S} mass difference ΔM_{K} and the CP-violating parameter εK are determined, including the potentially large effects which can arise from the near degeneracy of the kaon mass and the energy of a finite-volume, two-pion state.
Elastic finite-difference method for irregular grids
Oprsal, I.; Zahradnik, J.
1999-01-01
Finite-difference (FD) modeling of complicated structures requires simple algorithms. This paper presents a new elastic FD method for spatially irregular grids that is simple and, at the same time, saves considerable memory and computing time. Features like faults, low-velocity layers, cavities, and/or nonplanar surfaces are treated on a fine grid, while the remaining parts of the model are, with equal accuracy, represented on a coarse grid. No interpolation is needed between the fine and coarse parts due to the rectangular grid cells. Relatively abrupt transitions between the small and large grid steps produce no numerical artifacts in the present method. Planar or nonplanar free surfaces, including underground cavities, are treated in a way similar to internal grid points but with consideration of the zero-valued elastic parameters and density outside the free surface (vacuum formalism). A theoretical proof that vacuum formalism fulfills the free-surface conditions is given. Numerical validation is performed through comparison with independent methods, comparing FD with explicitly prescribed boundary conditions and finite elements. Memory and computing time needed in the studied models was only about 10 to 40% of that employing regular square grids of equal accuracy. A practical example of a synthetic seismic section, showing clear signatures of a coal seam and cavity, is presented. The method can be extended to three dimensions.
Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method
Gan, Z. L.; Ishak, M. H. H.; Abdullah, M. Z.; Khor, Soon Fuat
2016-01-01
This paper studies the three dimensional (3D) simulation of fluid flows through the ball grid array (BGA) to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM) code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM) code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced. PMID:27454872
Lattice Boltzmann Method of Different BGA Orientations on I-Type Dispensing Method.
Abas, Aizat; Gan, Z L; Ishak, M H H; Abdullah, M Z; Khor, Soon Fuat
2016-01-01
This paper studies the three dimensional (3D) simulation of fluid flows through the ball grid array (BGA) to replicate the real underfill encapsulation process. The effect of different solder bump arrangements of BGA on the flow front, pressure and velocity of the fluid is investigated. The flow front, pressure and velocity for different time intervals are determined and analyzed for potential problems relating to solder bump damage. The simulation results from Lattice Boltzmann Method (LBM) code will be validated with experimental findings as well as the conventional Finite Volume Method (FVM) code to ensure highly accurate simulation setup. Based on the findings, good agreement can be seen between LBM and FVM simulations as well as the experimental observations. It was shown that only LBM is capable of capturing the micro-voids formation. This study also shows an increasing trend in fluid filling time for BGA with perimeter, middle empty and full orientations. The perimeter orientation has a higher pressure fluid at the middle region of BGA surface compared to middle empty and full orientation. This research would shed new light for a highly accurate simulation of encapsulation process using LBM and help to further increase the reliability of the package produced. PMID:27454872
3D finite-difference seismic migration with parallel computers
Ober, C.C.; Gjertsen, R.; Minkoff, S.; Womble, D.E.
1998-11-01
The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is essential for reducing the risk associated with oil exploration. Imaging these structures, however, is computationally expensive as datasets can be terabytes in size. Traditional ray-tracing migration methods cannot handle complex velocity variations commonly found near such salt structures. Instead the authors use the full 3D acoustic wave equation, discretized via a finite difference algorithm. They reduce the cost of solving the apraxial wave equation by a number of numerical techniques including the method of fractional steps and pipelining the tridiagonal solves. The imaging code, Salvo, uses both frequency parallelism (generally 90% efficient) and spatial parallelism (65% efficient). Salvo has been tested on synthetic and real data and produces clear images of the subsurface even beneath complicated salt structures.
Finite difference modeling of Biot's poroelastic equations atseismic frequencies
Masson, Y.J.; Pride, S.R.; Nihei, K.T.
2006-02-24
Across the seismic band of frequencies (loosely defined as<10 kHz), a seismic wave propagating through a porous material willcreate flow in the pore space that is laminar; that is, in thislow-frequency "seismic limit," the development of viscous boundary layersin the pores need not be modeled. An explicit time steppingstaggered-grid finite difference scheme is presented for solving Biot'sequations of poroelasticity in this low-frequency limit. A key part ofthis work is the establishment of rigorous stability conditions. It isdemonstrated that over a wide range of porous material properties typicalof sedimentary rock and despite the presenceof fluid pressure diffusion(Biot slow waves), the usual Courant condition governs the stability asif the problem involved purely elastic waves. The accuracy of the methodis demonstrated by comparing to exact analytical solutions for both fastcompressional waves and slow waves. Additional numerical modelingexamples are also presented.
A finite-difference method for transonic airfoil design.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Klineberg, J. M.
1972-01-01
This paper describes an inverse method for designing transonic airfoil sections or for modifying existing profiles. Mixed finite-difference procedures are applied to the equations of transonic small disturbance theory to determine the airfoil shape corresponding to a given surface pressure distribution. The equations are solved for the velocity components in the physical domain and flows with embedded shock waves can be calculated. To facilitate airfoil design, the method allows alternating between inverse and direct calculations to obtain a profile shape that satisfies given geometric constraints. Examples are shown of the application of the technique to improve the performance of several lifting airfoil sections. The extension of the method to three dimensions for designing supercritical wings is also indicated.
Accurate finite difference methods for time-harmonic wave propagation
NASA Technical Reports Server (NTRS)
Harari, Isaac; Turkel, Eli
1994-01-01
Finite difference methods for solving problems of time-harmonic acoustics are developed and analyzed. Multidimensional inhomogeneous problems with variable, possibly discontinuous, coefficients are considered, accounting for the effects of employing nonuniform grids. A weighted-average representation is less sensitive to transition in wave resolution (due to variable wave numbers or nonuniform grids) than the standard pointwise representation. Further enhancement in method performance is obtained by basing the stencils on generalizations of Pade approximation, or generalized definitions of the derivative, reducing spurious dispersion, anisotropy and reflection, and by improving the representation of source terms. The resulting schemes have fourth-order accurate local truncation error on uniform grids and third order in the nonuniform case. Guidelines for discretization pertaining to grid orientation and resolution are presented.
Effects of sources on time-domain finite difference models.
Botts, Jonathan; Savioja, Lauri
2014-07-01
Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed. PMID:24993210
Finite-difference modeling of commercial aircraft using TSAR
Pennock, S.T.; Poggio, A.J.
1994-11-15
Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.
Visualization of elastic wavefields computed with a finite difference code
Larsen, S.; Harris, D.
1994-11-15
The authors have developed a finite difference elastic propagation model to simulate seismic wave propagation through geophysically complex regions. To facilitate debugging and to assist seismologists in interpreting the seismograms generated by the code, they have developed an X Windows interface that permits viewing of successive temporal snapshots of the (2D) wavefield as they are calculated. The authors present a brief video displaying the generation of seismic waves by an explosive source on a continent, which propagate to the edge of the continent then convert to two types of acoustic waves. This sample calculation was part of an effort to study the potential of offshore hydroacoustic systems to monitor seismic events occurring onshore.
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
Finite difference time domain implementation of surface impedance boundary conditions
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Yee, Kane S.; Kunz, Karl S.
1991-01-01
Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In the finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media throughout the solution volume. The standard approach is to approximate the surface impedance over a very small bandwidth by its value at the center frequency, and then use that result in the boundary condition. Here, two implementations of the surface impedance boundary condition are presented. One implementation is a constant surface impedance boundary condition and the other is a dispersive surface impedance boundary condition that is applicable over a very large frequency bandwidth and over a large range of conductivities. Frequency domain results are presented in one dimension for two conductivity values and are compared with exact results. Scattering width results from an infinite square cylinder are presented as a two dimensional demonstration. Extensions to three dimensions should be straightforward.
An optimized finite-difference scheme for wave propagation problems
NASA Technical Reports Server (NTRS)
Zingg, D. W.; Lomax, H.; Jurgens, H.
1993-01-01
Two fully-discrete finite-difference schemes for wave propagation problems are presented, a maximum-order scheme and an optimized (or spectral-like) scheme. Both combine a seven-point spatial operator and an explicit six-stage time-march method. The maximum-order operator is fifth-order in space and is sixth-order in time for a linear problem with periodic boundary conditions. The phase and amplitude errors of the schemes obtained using Fourier analysis are given and compared with a second-order and a fourth-order method. Numerical experiments are presented which demonstrate the usefulness of the schemes for a range of problems. For some problems, the optimized scheme leads to a reduction in global error compared to the maximum-order scheme with no additional computational expense.
Application of a new finite difference algorithm for computational aeroacoustics
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1995-01-01
Acoustic problems have become extremely important in recent years because of research efforts such as the High Speed Civil Transport program. Computational aeroacoustics (CAA) requires a faithful representation of wave propagation over long distances, and needs algorithms that are accurate and boundary conditions that are unobtrusive. This paper applies a new finite difference method and boundary algorithm to the Linearized Euler Equations (LEE). The results demonstrate the ability of a new fourth order propagation algorithm to accurately simulate the genuinely multidimensional wave dynamics of acoustic propagation in two space dimensions with the LEE. The results also show the ability of a new outflow boundary condition and fourth order algorithm to pass the evolving solution from the computational domain with no perceptible degradation of the solution remaining within the domain.
Improved finite difference schemes for transonic potential calculations
NASA Technical Reports Server (NTRS)
Hafez, M.; Osher, S.; Whitlow, W., Jr.
1984-01-01
Engquist and Osher (1980) have introduced a finite difference scheme for solving the transonic small disturbance equation, taking into account cases in which only compression shocks are admitted. Osher et al. (1983) studied a class of schemes for the full potential equation. It is proved that these schemes satisfy a new discrete 'entropy inequality' which rules out expansion shocks. However, the conducted analysis is restricted to steady two-dimensional flows. The present investigation is concerned with the adoption of a heuristic approach. The full potential equation in conservation form is solved with the aid of a modified artificial density method, based on flux biasing. It is shown that, with the current scheme, expansion shocks are not possible.
Optimizations on Designing High-Resolution Finite-Difference Schemes
NASA Technical Reports Server (NTRS)
Liu, Yen; Koomullil, George; Kwak, Dochan (Technical Monitor)
1994-01-01
We describe a general optimization procedure for both maximizing the resolution characteristics of existing finite differencing schemes as well as designing finite difference schemes that will meet the error tolerance requirements of numerical solutions. The procedure is based on an optimization process. This is a generalization of the compact scheme introduced by Lele in which the resolution is improved for single, one-dimensional spatial derivative, whereas in the present approach the complete scheme, after spatial and temporal discretizations, is optimized on a range of parameters of the scheme and the governing equations. The approach is to linearize and Fourier analyze the discretized equations to check the resolving power of the scheme for various wave number ranges in the solution and optimize the resolution to satisfy the requirements of the problem. This represents a constrained nonlinear optimization problem which can be solved to obtain the nodal weights of discretization. An objective function is defined in the parametric space of wave numbers, Courant number, Mach number and other quantities of interest. Typical criterion for defining the objective function include the maximization of the resolution of high wave numbers for acoustic and electromagnetic wave propagations and turbulence calculations. The procedure is being tested on off-design conditions of non-uniform mesh, non-periodic boundary conditions, and non-constant wave speeds for scalar and system of equations. This includes the solution of wave equations and Euler equations using a conventional scheme with and without optimization and the design of an optimum scheme for the specified error tolerance.
NASA Technical Reports Server (NTRS)
Bauld, N. R., Jr.; Goree, J. G.; Tzeng, L.-S.
1985-01-01
It is pointed out that edge delamination is a serious failure mechanism for laminated composite materials. Various numerical methods have been utilized in attempts to calculate the interlaminar stress components which precede delamination in a laminate. There are, however, discrepancies regarding the results provided by different methods, taking into account a finite-difference procedure, a perturbation procedure, and finite element approaches. The present investigation has the objective to assess the capacity of a finite difference method to predict the character and magnitude of the interlaminar stress distributions near an interface corner. A second purpose of the investigation is to determine if predictions by finite element method in-plane, interlaminar stress components near an interface corner represent actual laminate behavior.
Nonlinear wave propagation using three different finite difference schemes (category 2 application)
NASA Technical Reports Server (NTRS)
Pope, D. Stuart; Hardin, J. C.
1995-01-01
Three common finite difference schemes are used to examine the computation of one-dimensional nonlinear wave propagation. The schemes are studied for their responses to numerical parameters such as time step selection, boundary condition implementation, and discretization of governing equations. The performance of the schemes is compared and various numerical phenomena peculiar to each is discussed.
A finite difference model for free surface gravity drainage
Couri, F.R.; Ramey, H.J. Jr.
1993-09-01
The unconfined gravity flow of liquid with a free surface into a well is a classical well test problem which has not been well understood by either hydrologists or petroleum engineers. Paradigms have led many authors to treat an incompressible flow as compressible flow to justify the delayed yield behavior of a time-drawdown test. A finite-difference model has been developed to simulate the free surface gravity flow of an unconfined single phase, infinitely large reservoir into a well. The model was verified with experimental results in sandbox models in the literature and with classical methods applied to observation wells in the Groundwater literature. The simulator response was also compared with analytical Theis (1935) and Ramey et al. (1989) approaches for wellbore pressure at late producing times. The seepage face in the sandface and the delayed yield behavior were reproduced by the model considering a small liquid compressibility and incompressible porous medium. The potential buildup (recovery) simulated by the model evidenced a different- phenomenon from the drawdown, contrary to statements found in the Groundwater literature. Graphs of buildup potential vs time, buildup seepage face length vs time, and free surface head and sand bottom head radial profiles evidenced that the liquid refills the desaturating cone as a flat moving surface. The late time pseudo radial behavior was only approached after exaggerated long times.
Finite difference time domain analysis of chirped dielectric gratings
NASA Technical Reports Server (NTRS)
Hochmuth, Diane H.; Johnson, Eric G.
1993-01-01
The finite difference time domain (FDTD) method for solving Maxwell's time-dependent curl equations is accurate, computationally efficient, and straight-forward to implement. Since both time and space derivatives are employed, the propagation of an electromagnetic wave can be treated as an initial-value problem. Second-order central-difference approximations are applied to the space and time derivatives of the electric and magnetic fields providing a discretization of the fields in a volume of space, for a period of time. The solution to this system of equations is stepped through time, thus, simulating the propagation of the incident wave. If the simulation is continued until a steady-state is reached, an appropriate far-field transformation can be applied to the time-domain scattered fields to obtain reflected and transmitted powers. From this information diffraction efficiencies can also be determined. In analyzing the chirped structure, a mesh is applied only to the area immediately around the grating. The size of the mesh is then proportional to the electric size of the grating. Doing this, however, imposes an artificial boundary around the area of interest. An absorbing boundary condition must be applied along the artificial boundary so that the outgoing waves are absorbed as if the boundary were absent. Many such boundary conditions have been developed that give near-perfect absorption. In this analysis, the Mur absorbing boundary conditions are employed. Several grating structures were analyzed using the FDTD method.
NASA Technical Reports Server (NTRS)
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
Nonlinear triggered lightning models for use in finite difference calculations
NASA Technical Reports Server (NTRS)
Rudolph, Terence; Perala, Rodney A.; Ng, Poh H.
1989-01-01
Two nonlinear triggered lightning models have been developed for use in finite difference calculations. Both are based on three species of air chemistry physics and couple nonlinearly calculated air conductivity to Maxwell's equations. The first model is suitable for use in three-dimensional modeling and has been applied to the analysis of triggered lightning on the NASA F106B Thunderstorm Research Aircraft. The model calculates number densities of positive ions, negative ions, and electrons as a function of time and space through continuity equations, including convective derivative terms. The set of equations is closed by using experimentally determined mobilities, and the mobilities are also used to determine the air conductivity. Results from the model's application to the F106B are shown. The second model is two-dimensional and incorporates an enhanced air chemistry formulation. Momentum conservation equations replace the mobility assumption of the first model. Energy conservation equations for neutrals, heavy ions, and electrons are also used. Energy transfer into molecular vibrational modes is accounted for. The purpose for the enhanced model is to include the effects of temperature into the air breakdown, a necessary step if the model is to simulate more than the very earliest stages of breakdown. Therefore, the model also incorporates a temperature-dependent electron avalanche rate. Results from the model's application to breakdown around a conducting ellipsoid placed in an electric field are shown.
Contraction pre-conditioner in finite-difference electromagnetic modelling
NASA Astrophysics Data System (ADS)
Yavich, Nikolay; Zhdanov, Michael S.
2016-09-01
This paper introduces a novel approach to constructing an effective pre-conditioner for finite-difference (FD) electromagnetic modelling in geophysical applications. This approach is based on introducing an FD contraction operator, similar to one developed for integral equation formulation of Maxwell's equation. The properties of the FD contraction operator were established using an FD analogue of the energy equality for the anomalous electromagnetic field. A new pre-conditioner uses a discrete Green's function of a 1-D layered background conductivity. We also developed the formulae for an estimation of the condition number of the system of FD equations pre-conditioned with the introduced FD contraction operator. Based on this estimation, we have established that the condition number is bounded by the maximum conductivity contrast between the background conductivity and actual conductivity. When there are both resistive and conductive anomalies relative to the background, the new pre-conditioner is advantageous over using the 1-D discrete Green's function directly. In our numerical experiments with both resistive and conductive anomalies, for a land geoelectrical model with 1:10 contrast, the method accelerates convergence of an iterative method (BiCGStab) by factors of 2-2.5, and in a marine example with 1:50 contrast, by a factor of 4.6, compared to direct use of the discrete 1-D Green's function as a pre-conditioner.
Assessment of Linear Finite-Difference Poisson-Boltzmann Solvers
Wang, Jun; Luo, Ray
2009-01-01
CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271
A hybrid finite-difference and analytic element groundwater model.
Haitjema, H M; Feinstein, D T; Hunt, R J; Gusyev, M A
2010-01-01
Regional finite-difference models tend to have large cell sizes, often on the order of 1-2 km on a side. Although the regional flow patterns in deeper formations may be adequately represented by such a model, the intricate surface water and groundwater interactions in the shallower layers are not. Several stream reaches and nearby wells may occur in a single cell, precluding any meaningful modeling of the surface water and groundwater interactions between the individual features. We propose to replace the upper MODFLOW layer or layers, in which the surface water and groundwater interactions occur, by an analytic element model (GFLOW) that does not employ a model grid; instead, it represents wells and surface waters directly by the use of point-sinks and line-sinks. For many practical cases it suffices to provide GFLOW with the vertical leakage rates calculated in the original coarse MODFLOW model in order to obtain a good representation of surface water and groundwater interactions. However, when the combined transmissivities in the deeper (MODFLOW) layers dominate, the accuracy of the GFLOW solution diminishes. For those cases, an iterative coupling procedure, whereby the leakages between the GFLOW and MODFLOW model are updated, appreciably improves the overall solution, albeit at considerable computational cost. The coupled GFLOW-MODFLOW model is applicable to relatively large areas, in many cases to the entire model domain, thus forming an attractive alternative to local grid refinement or inset models. PMID:20132324
Assessment of linear finite-difference Poisson-Boltzmann solvers.
Wang, Jun; Luo, Ray
2010-06-01
CPU time and memory usage are two vital issues that any numerical solvers for the Poisson-Boltzmann equation have to face in biomolecular applications. In this study, we systematically analyzed the CPU time and memory usage of five commonly used finite-difference solvers with a large and diversified set of biomolecular structures. Our comparative analysis shows that modified incomplete Cholesky conjugate gradient and geometric multigrid are the most efficient in the diversified test set. For the two efficient solvers, our test shows that their CPU times increase approximately linearly with the numbers of grids. Their CPU times also increase almost linearly with the negative logarithm of the convergence criterion at very similar rate. Our comparison further shows that geometric multigrid performs better in the large set of tested biomolecules. However, modified incomplete Cholesky conjugate gradient is superior to geometric multigrid in molecular dynamics simulations of tested molecules. We also investigated other significant components in numerical solutions of the Poisson-Boltzmann equation. It turns out that the time-limiting step is the free boundary condition setup for the linear systems for the selected proteins if the electrostatic focusing is not used. Thus, development of future numerical solvers for the Poisson-Boltzmann equation should balance all aspects of the numerical procedures in realistic biomolecular applications. PMID:20063271
Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers.
Cai, Qin; Hsieh, Meng-Juei; Wang, Jun; Luo, Ray
2010-01-12
We implemented and optimized seven finite-difference solvers for the full nonlinear Poisson-Boltzmann equation in biomolecular applications, including four relaxation methods, one conjugate gradient method, and two inexact Newton methods. The performance of the seven solvers was extensively evaluated with a large number of nucleic acids and proteins. Worth noting is the inexact Newton method in our analysis. We investigated the role of linear solvers in its performance by incorporating the incomplete Cholesky conjugate gradient and the geometric multigrid into its inner linear loop. We tailored and optimized both linear solvers for faster convergence rate. In addition, we explored strategies to optimize the successive over-relaxation method to reduce its convergence failures without too much sacrifice in its convergence rate. Specifically we attempted to adaptively change the relaxation parameter and to utilize the damping strategy from the inexact Newton method to improve the successive over-relaxation method. Our analysis shows that the nonlinear methods accompanied with a functional-assisted strategy, such as the conjugate gradient method and the inexact Newton method, can guarantee convergence in the tested molecules. Especially the inexact Newton method exhibits impressive performance when it is combined with highly efficient linear solvers that are tailored for its special requirement. PMID:24723843
Asymptotically Correct Finite Difference Schemes for Highly Oscillatory ODEs
Arnold, Anton; Geier, Jens
2010-09-30
We are concerned with the numerical integration of ODE-initial value problems of the form {epsilon}{sup 2{phi}}{sub xx}+a(x){phi} = 0 with given a(x){>=}a{sub 0}>0 in the highly oscillatory regime 0<{epsilon}(appearing as a stationary Schroedinger equation, e.g.). In two steps we derive an accurate finite difference scheme that does not need to resolve each oscillation: With a WKB-ansatz the dominant oscillations are ''transformed out'', yielding a much smoother ODE. For the resulting oscillatory integrals we devise an asymptotic expansion both in {epsilon} and h. The resulting scheme typically has a step size restriction of h = o({radical}({epsilon})). If the phase of the WKB-transformation can be computed explicitly, then the scheme is asymptotically correct with an error bound of the order o({epsilon}{sup 3}h{sup 2}). As an application we present simulations of a 1D-model for ballistic quantum transport in a MOSFET (metal oxide semiconductor field-effect transistor).
Mishra, Subhash C. . E-mail: scm_iitg@yahoo.com; Roy, Hillol K.
2007-04-10
The lattice Boltzmann method (LBM) was used to solve the energy equation of a transient conduction-radiation heat transfer problem. The finite volume method (FVM) was used to compute the radiative information. To study the compatibility of the LBM for the energy equation and the FVM for the radiative transfer equation, transient conduction and radiation heat transfer problems in 1-D planar and 2-D rectangular geometries were considered. In order to establish the suitability of the LBM, the energy equations of the two problems were also solved using the FVM of the computational fluid dynamics. The FVM used in the radiative heat transfer was employed to compute the radiative information required for the solution of the energy equation using the LBM or the FVM (of the CFD). To study the compatibility and suitability of the LBM for the solution of energy equation and the FVM for the radiative information, results were analyzed for the effects of various parameters such as the scattering albedo, the conduction-radiation parameter and the boundary emissivity. The results of the LBM-FVM combination were found to be in excellent agreement with the FVM-FVM combination. The number of iterations and CPU times in both the combinations were found comparable.
NASA Technical Reports Server (NTRS)
Ting, Eric; Nguyen, Nhan; Trinh, Khanh
2014-01-01
This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.
NASA Astrophysics Data System (ADS)
Duarte, Anthony G.; Oliveira, Orlando; Silva, Paulo J.
2016-07-01
The dependence of the Landau gauge two-point gluon and ghost correlation functions on the lattice spacing and on the physical volume are investigated for pure SU(3) Yang-Mills theory in four dimensions using lattice simulations. We present data from very large lattices up to 1284 and for two lattice spacings 0.10 fm and 0.06 fm corresponding to volumes of ˜(13 fm )4 and ˜(8 fm )4 , respectively. Our results show that, for sufficiently large physical volumes, both propagators have a mild dependence on the lattice volume. On the other hand, the gluon and ghost propagators change with the lattice spacing a in the infrared region, with the gluon propagator having a stronger dependence on a compared to the ghost propagator. In what concerns the strong coupling constant αs(p2), as defined from gluon and ghost two-point functions, the simulations show a sizeable dependence on the lattice spacing for the infrared region and for momenta up to ˜1 GeV .
NASA Astrophysics Data System (ADS)
Snyder, Chad R.; Guttman, Charles M.; Di Marzio, Edmund A.
2014-01-01
We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.
Snyder, Chad R. Guttman, Charles M.; Di Marzio, Edmund A.
2014-01-21
We extend the exact solutions of the Di Marzio-Rubin matrix method for the thermodynamic properties, including chain density, of a linear polymer molecule confined to walk on a lattice of finite size. Our extensions enable (a) the use of higher dimensions (explicit 2D and 3D lattices), (b) lattice boundaries of arbitrary shape, and (c) the flexibility to allow each monomer to have its own energy of attraction for each lattice site. In the case of the large chain limit, we demonstrate how periodic boundary conditions can also be employed to reduce computation time. Advantages to this method include easy definition of chemical and physical structure (or surface roughness) of the lattice and site-specific monomer-specific energetics, and straightforward relatively fast computations. We show the usefulness and ease of implementation of this extension by examining the effect of energy variation along the lattice walls of an infinite rectangular cylinder with the idea of studying the changes in properties caused by chemical inhomogeneities on the surface of the box. Herein, we look particularly at the polymer density profile as a function of temperature in the confined region for very long polymers. One particularly striking result is the shift in the critical condition for adsorption due to surface energy inhomogeneities and the length scale of the inhomogeneities; an observation that could have important implications for polymer chromatography. Our method should have applications to both copolymers and biopolymers of arbitrary molar mass.
Finite-difference-based dynamic modeling of MEMS bridge
NASA Astrophysics Data System (ADS)
Michael, Aron; Yu, Kevin; Kwok, Chee Yee
2005-02-01
In this paper, we present a finite difference based one-dimensional dynamic modeling, which includes electro-thermal coupled with thermo-mechanical behavior of a multi-layered micro-bridge. The electro-thermal model includes the heat transfer from the joule-heated layer to the other layers, and establishes the transient temperature gradient through the thickness of the bridge. The thermal moment and axial load resulting from the transient temperature gradient are used to couple electro-thermal with thermo-mechanical behavior. The dynamic modeling takes into account buckling, and damping effects, asymmetry residual stresses in the layers, and lateral movement at the support ends. The proposed model is applied to a tri-layer micro-bridge of 1000μm length, made of 2μm silicon dioxide sandwiched in between 2μm thick epi-silicon, and 2μm thick poly silicon, with four 400μm long legs, and springs at the four corners the bridge. The beam, and legs are 40μm, and 10μm wide respectively. Results demonstrate the bi-stability of the structure, and a large movement of 40μm between the up and down stable states can easily be obtained. Application of only 21mA electrical current for 15μs to the legs is required to switch buckled-up position to buckled-down position. An additional trapezoidal waveform electrical current of 100mA amplitude for 4μs, and 100μs falling time needs to be applied for the reverse actuation. The switching speed in both cases is less than 500μs.
3D Finite Difference Modelling of Basaltic Region
NASA Astrophysics Data System (ADS)
Engell-Sørensen, L.
2003-04-01
The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.
A finite-difference contrast source inversion method
NASA Astrophysics Data System (ADS)
Abubakar, A.; Hu, W.; van den Berg, P. M.; Habashy, T. M.
2008-12-01
We present a contrast source inversion (CSI) algorithm using a finite-difference (FD) approach as its backbone for reconstructing the unknown material properties of inhomogeneous objects embedded in a known inhomogeneous background medium. Unlike the CSI method using the integral equation (IE) approach, the FD-CSI method can readily employ an arbitrary inhomogeneous medium as its background. The ability to use an inhomogeneous background medium has made this algorithm very suitable to be used in through-wall imaging and time-lapse inversion applications. Similar to the IE-CSI algorithm the unknown contrast sources and contrast function are updated alternately to reconstruct the unknown objects without requiring the solution of the full forward problem at each iteration step in the optimization process. The FD solver is formulated in the frequency domain and it is equipped with a perfectly matched layer (PML) absorbing boundary condition. The FD operator used in the FD-CSI method is only dependent on the background medium and the frequency of operation, thus it does not change throughout the inversion process. Therefore, at least for the two-dimensional (2D) configurations, where the size of the stiffness matrix is manageable, the FD stiffness matrix can be inverted using a non-iterative inversion matrix approach such as a Gauss elimination method for the sparse matrix. In this case, an LU decomposition needs to be done only once and can then be reused for multiple source positions and in successive iterations of the inversion. Numerical experiments show that this FD-CSI algorithm has an excellent performance for inverting inhomogeneous objects embedded in an inhomogeneous background medium.
Exact ground state for the four-electron problem in a 2D finite honeycomb lattice
NASA Astrophysics Data System (ADS)
Trencsényi, Réka; Glukhov, Konstantin; Gulácsi, Zsolt
2014-07-01
Working in a subspace with dimensionality much smaller than the dimension of the full Hilbert space, we deduce exact four-particle ground states in 2D samples containing hexagonal repeat units and described by Hubbard type of models. The procedure identifies first a small subspace ? in which the ground state ? is placed, than deduces ? by exact diagonalization in ?. The small subspace is obtained by the repeated application of the Hamiltonian ? on a carefully chosen starting wave vector describing the most interacting particle configuration, and the wave vectors resulting from the application of ?, till the obtained system of equations closes in itself. The procedure which can be applied in principle at fixed but arbitrary system size and number of particles is interesting on its own since it provides exact information for the numerical approximation techniques which use a similar strategy, but apply non-complete basis for ?. The diagonalization inside ? provides an incomplete image of the low lying part of the excitation spectrum, but provides the exact ?. Once the exact ground state is obtained, its properties can be easily analysed. The ? is found always as a singlet state whose energy, interestingly, saturates in the ? limit. The unapproximated results show that the emergence probabilities of different particle configurations in the ground state presents 'Zittern' (trembling) characteristics which are absent in 2D square Hubbard systems. Consequently, the manifestation of the local Coulomb repulsion in 2D square and honeycomb types of systems presents differences, which can be a real source in the differences in the many-body behaviour.
Shrestha, Kalyan; Mompean, Gilmar; Calzavarini, Enrico
2016-02-01
A finite-volume (FV) discretization method for the lattice Boltzmann (LB) equation, which combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streaming lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. For this reason the comparative analysis is further extended to the case of realistic flows, in particular thermally driven flows in turbulent conditions. We report the successful simulation of high-Rayleigh number convective flow performed by a lattice Boltzmann FV-based algorithm with wall grid refinement. PMID:26986438
NASA Astrophysics Data System (ADS)
Shrestha, Kalyan; Mompean, Gilmar; Calzavarini, Enrico
2016-02-01
A finite-volume (FV) discretization method for the lattice Boltzmann (LB) equation, which combines high accuracy with limited computational cost is presented. In order to assess the performance of the FV method we carry out a systematic comparison, focused on accuracy and computational performances, with the standard streaming lattice Boltzmann equation algorithm. In particular we aim at clarifying whether and in which conditions the proposed algorithm, and more generally any FV algorithm, can be taken as the method of choice in fluid-dynamics LB simulations. For this reason the comparative analysis is further extended to the case of realistic flows, in particular thermally driven flows in turbulent conditions. We report the successful simulation of high-Rayleigh number convective flow performed by a lattice Boltzmann FV-based algorithm with wall grid refinement.
Physical symmetry and lattice symmetry in the lattice Boltzmann method
Cao, N.; Chen, S.; Jin, S.; Martinez, D.
1997-01-01
The lattice Boltzmann method (LBM) is regarded as a specific finite difference discretization for the kinetic equation of the discrete velocity distribution function. We argue that for finite sets of discrete velocity models, such as LBM, the physical symmetry is necessary for obtaining the correct macroscopic Navier-Stokes equations. In contrast, the lattice symmetry and the Lagrangian nature of the scheme, which is often used in the lattice gas automaton method and the existing lattice Boltzmann methods and directly associated with the property of particle dynamics, is not necessary for recovering the correct macroscopic dynamics. By relaxing the lattice symmetry constraint and introducing other numerical discretization, one can also obtain correct hydrodynamics. In addition, numerical simulations for applications, such as nonuniform meshes and thermohydrodynamics can be easily carried out and numerical stability can be ensured by the Courant-Friedricks-Lewey condition and using the semi-implicit collision scheme. {copyright} {ital 1997} {ital The American Physical Society}
A total variation diminishing finite difference algorithm for sonic boom propagation models
NASA Technical Reports Server (NTRS)
Sparrow, Victor W.
1993-01-01
It is difficult to accurately model the rise phases of sonic boom waveforms with traditional finite difference algorithms because of finite difference phase dispersion. This paper introduces the concept of a total variation diminishing (TVD) finite difference method as a tool for accurately modeling the rise phases of sonic booms. A standard second order finite difference algorithm and its TVD modified counterpart are both applied to the one-way propagation of a square pulse. The TVD method clearly outperforms the non-TVD method, showing great potential as a new computational tool in the analysis of sonic boom propagation.
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
NASA Astrophysics Data System (ADS)
Hallez, Hans; Vanrumste, Bart; Van Hese, Peter; D'Asseler, Yves; Lemahieu, Ignace; Van de Walle, Rik
2005-08-01
Many implementations of electroencephalogram (EEG) dipole source localization neglect the anisotropical conductivities inherent to brain tissues, such as the skull and white matter anisotropy. An examination of dipole localization errors is made in EEG source analysis, due to not incorporating the anisotropic properties of the conductivity of the skull and white matter. First, simulations were performed in a 5 shell spherical head model using the analytical formula. Test dipoles were placed in three orthogonal planes in the spherical head model. Neglecting the skull anisotropy results in a dipole localization error of, on average, 13.73 mm with a maximum of 24.51 mm. For white matter anisotropy these values are 11.21 mm and 26.3 mm, respectively. Next, a finite difference method (FDM), presented by Saleheen and Kwong (1997 IEEE Trans. Biomed. Eng. 44 800-9), is used to incorporate the anisotropy of the skull and white matter. The FDM method has been validated for EEG dipole source localization in head models with all compartments isotropic as well as in a head model with white matter anisotropy. In a head model with skull anisotropy the numerical method could only be validated if the 3D lattice was chosen very fine (grid size <=2 mm).
NASA Astrophysics Data System (ADS)
Guan, Zhen; Heinonen, Vili; Lowengrub, John; Wang, Cheng; Wise, Steven M.
2016-09-01
In this paper we construct an energy stable finite difference scheme for the amplitude expansion equations for the two-dimensional phase field crystal (PFC) model. The equations are formulated in a periodic hexagonal domain with respect to the reciprocal lattice vectors to achieve a provably unconditionally energy stable and solvable scheme. To our knowledge, this is the first such energy stable scheme for the PFC amplitude equations. The convexity of each part in the amplitude equations is analyzed, in both the semi-discrete and fully-discrete cases. Energy stability is based on a careful convexity analysis for the energy (in both the spatially continuous and discrete cases). As a result, unique solvability and unconditional energy stability are available for the resulting scheme. Moreover, we show that the scheme is point-wise stable for any time and space step sizes. An efficient multigrid solver is devised to solve the scheme, and a few numerical experiments are presented, including grain rotation and shrinkage and grain growth studies, as examples of the strength and robustness of the proposed scheme and solver.
NASA Astrophysics Data System (ADS)
MacKinnon, Robert J.; Carey, Graham F.
2003-01-01
A new class of positivity-preserving, flux-limited finite-difference and Petrov-Galerkin (PG) finite-element methods are devised for reactive transport problems.The methods are similar to classical TVD flux-limited schemes with the main difference being that the flux-limiter constraint is designed to preserve positivity for problems involving diffusion and reaction. In the finite-element formulation, we also consider the effect of numerical quadrature in the lumped and consistent mass matrix forms on the positivity-preserving property. Analysis of the latter scheme shows that positivity-preserving solutions of the resulting difference equations can only be guaranteed if the flux-limited scheme is both implicit and satisfies an additional lower-bound condition on time-step size. We show that this condition also applies to standard Galerkin linear finite-element approximations to the linear diffusion equation. Numerical experiments are provided to demonstrate the behavior of the methods and confirm the theoretical conditions on time-step size, mesh spacing, and flux limiting for transport problems with and without nonlinear reaction.
Finite difference identification of noisy distributed systems using scanning measurements
NASA Technical Reports Server (NTRS)
Hughes, R. O.
1975-01-01
Most of the present-day literature concerned with identification theory and techniques is directed toward lumped parameter systems, and many comprehensive surveys of the field are available. Relatively little has appeared in the literature concerning distributed identification, and even more noticeable is the scarcity of papers dealing with systems described by the one-dimensional wave equation. Perdeauville and Goodson were perhaps the first researchers with a workable but time consuming method for the identification of coefficients of the wave equation. Fairman and Shen, also considering the wave equation, used the technique of finite differencing to approximate spatial derivatives, and Poisson filter chains to approximate temporal derivatives.
The Benard problem: A comparison of finite difference and spectral collocation eigen value solutions
NASA Technical Reports Server (NTRS)
Skarda, J. Raymond Lee; Mccaughan, Frances E.; Fitzmaurice, Nessan
1995-01-01
The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation formulation is described. The performance of the spectral scheme is compared with that of a 2nd order finite difference scheme. An exact solution to the Marangoni-Benard problem is used to evaluate the performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude smaller than finite difference error for a grid resolution of N = 15 (number of points used). The performance of the spectral formulation far exceeded the performance of the finite difference formulation for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order finite difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher order finite difference schemes.
NASA Technical Reports Server (NTRS)
Panczak, Tim; Ring, Steve; Welch, Mark
1999-01-01
Thermal engineering has long been left out of the concurrent engineering environment dominated by CAD (computer aided design) and FEM (finite element method) software. Current tools attempt to force the thermal design process into an environment primarily created to support structural analysis, which results in inappropriate thermal models. As a result, many thermal engineers either build models "by hand" or use geometric user interfaces that are separate from and have little useful connection, if any, to CAD and FEM systems. This paper describes the development of a new thermal design environment called the Thermal Desktop. This system, while fully integrated into a neutral, low cost CAD system, and which utilizes both FEM and FD methods, does not compromise the needs of the thermal engineer. Rather, the features needed for concurrent thermal analysis are specifically addressed by combining traditional parametric surface based radiation and FD based conduction modeling with CAD and FEM methods. The use of flexible and familiar temperature solvers such as SINDA/FLUINT (Systems Improved Numerical Differencing Analyzer/Fluid Integrator) is retained.
High-order cyclo-difference techniques: An alternative to finite differences
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Otto, John C.
1993-01-01
The summation-by-parts energy norm is used to establish a new class of high-order finite-difference techniques referred to here as 'cyclo-difference' techniques. These techniques are constructed cyclically from stable subelements, and require no numerical boundary conditions; when coupled with the simultaneous approximation term (SAT) boundary treatment, they are time asymptotically stable for an arbitrary hyperbolic system. These techniques are similar to spectral element techniques and are ideally suited for parallel implementation, but do not require special collocation points or orthogonal basis functions. The principal focus is on methods of sixth-order formal accuracy or less; however, these methods could be extended in principle to any arbitrary order of accuracy.
Fei, T.; Larner, K.
1995-11-01
Finite-difference acoustic-wave modeling and reverse-time depth migration based on the full wave equation are general approaches that can take into account arbitrary variations in velocity and density and can handle turning waves as well. However, conventional finite-difference methods for solving the acoustic- or elastic-wave equation suffer from numerical dispersion when too few samples per wavelength are used. The flux-corrected transport (FCT) algorithm, adapted from hydrodynamics, reduces the numerical dispersion in finite-difference wavefield continuation. The flux-correction procedure endeavors to incorporate diffusion into the wavefield continuation process only where needed to suppress the numerical dispersion. Incorporating the flux-correction procedure in conventional finite-difference modeling or reverse-time migration can provide finite-difference solutions with no numerical dispersion even for impulsive sources. The FCT correction, which can be applied to finite-difference approximations of any order in space and time, is an efficient alternative to use for finite-difference approximations of increasing order. Through demonstrations of modeling and migration on both synthetic and field data, the authors show the benefits of the FCT algorithm, as well as its inability to fully recover resolution lost when the spatial sampling becomes too coarse.
NASA Astrophysics Data System (ADS)
Clausen, Jonathan R.; Reasor, Daniel A.; Aidun, Cyrus K.
2010-06-01
We discuss the parallel implementation and scaling results of a hybrid lattice-Boltzmann/finite element code for suspension flow simulations. This code allows the direct numerical simulation of cellular blood flow, fully resolving the two-phase nature of blood and the deformation of the suspended phase. A brief introduction to the numerical methods employed is given followed by an outline of the code structure. Scaling results obtained on Argonne National Laboratories IBM Blue Gene/P ( BG/P) are presented. Details include performance characteristics on 512 to 65,536 processor cores.
NASA Technical Reports Server (NTRS)
Byun, Chansup; Guruswamy, Guru P.
1993-01-01
This paper presents a procedure for computing the aeroelasticity of wing-body configurations on multiple-instruction, multiple-data (MIMD) parallel computers. In this procedure, fluids are modeled using Euler equations discretized by a finite difference method, and structures are modeled using finite element equations. The procedure is designed in such a way that each discipline can be developed and maintained independently by using a domain decomposition approach. A parallel integration scheme is used to compute aeroelastic responses by solving the coupled fluid and structural equations concurrently while keeping modularity of each discipline. The present procedure is validated by computing the aeroelastic response of a wing and comparing with experiment. Aeroelastic computations are illustrated for a High Speed Civil Transport type wing-body configuration.
Optimization of a finite difference method for nonlinear wave equations
NASA Astrophysics Data System (ADS)
Chen, Miaochao
2013-07-01
Wave equations have important fluid dynamics background, which are extensively used in many fields, such as aviation, meteorology, maritime, water conservancy, etc. This paper is devoted to the explicit difference method for nonlinear wave equations. Firstly, a three-level and explicit difference scheme is derived. It is shown that the explicit difference scheme is uniquely solvable and convergent. Moreover, a numerical experiment is conducted to illustrate the theoretical results of the presented method.
NASA Astrophysics Data System (ADS)
Bettaibi, Soufiene; Kuznik, Frédéric; Sediki, Ezeddine
2016-02-01
This paper presents a numerical study of thermosolutal mixed convection in rectangular enclosure with sliding top lid. The fluid flow is solved by the multiple relaxation time (MRT) lattice Boltzmann method (LBM), whereas the temperature and concentration fields are computed by finite difference method (FDM). The main objective of this study is to investigate the accuracy and the effectiveness of such model to predict thermodynamics for heat and mass transfer in a driven cavity. This model is validated with different numerical methods in the current literature. A good agreement is obtained between our results and previous works. The different comparisons demonstrate the robustness and the accuracy of the proposed approach.
Finite-difference evolution of a scattered laser pulse in ocean water
NASA Astrophysics Data System (ADS)
Tessendorf, J.; Piotrowski, C.; Kelly, R. L.
1988-01-01
The effects of absorption and scattering on the propagation of a finite-size laser pulse through ocean water are investigated theoretically, applying a finite-difference model based on the time-dependent radiative-transfer equation. The derivation of the finite-difference evolution algorithm is outlined; its FORTRAN numerical implementation is explained; and simulation results for simple test problems are presented in graphs. The method is shown to provide unconditional stability and physically correct propagation velocities in all directions. The need to eliminate or compensate for ray effects is indicated.
A non-linear constrained optimization technique for the mimetic finite difference method
Manzini, Gianmarco; Svyatskiy, Daniil; Bertolazzi, Enrico; Frego, Marco
2014-09-30
This is a strategy for the construction of monotone schemes in the framework of the mimetic finite difference method for the approximation of diffusion problems on unstructured polygonal and polyhedral meshes.
APPLICATION OF A FINITE-DIFFERENCE TECHNIQUE TO THE HUMAN RADIOFREQUENCY DOSIMETRY PROBLEM
A powerful finite difference numerical technique has been applied to the human radiofrequency dosimetry problem. The method possesses inherent advantages over the method of moments approach in that its implementation requires much less computer memory. Consequently, it has the ca...
Techniques for correcting approximate finite difference solutions. [applied to transonic flow
NASA Technical Reports Server (NTRS)
Nixon, D.
1979-01-01
A method of correcting finite-difference solutions for the effect of truncation error or the use of an approximate basic equation is presented. Applications to transonic flow problems are described and examples given.
Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources.
Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue
2015-01-01
In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947
Finite-difference scheme for the numerical solution of the Schroedinger equation
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.; Ramadhani, Issa
1992-01-01
A finite-difference scheme for numerical integration of the Schroedinger equation is constructed. Asymptotically (r goes to infinity), the method gives the exact solution correct to terms of order r exp -2.
NASA Astrophysics Data System (ADS)
Lisitsa, Vadim; Tcheverda, Vladimir; Botter, Charlotte
2016-04-01
We present an algorithm for the numerical simulation of seismic wave propagation in models with a complex near surface part and free surface topography. The approach is based on the combination of finite differences with the discontinuous Galerkin method. The discontinuous Galerkin method can be used on polyhedral meshes; thus, it is easy to handle the complex surfaces in the models. However, this approach is computationally intense in comparison with finite differences. Finite differences are computationally efficient, but in general, they require rectangular grids, leading to the stair-step approximation of the interfaces, which causes strong diffraction of the wavefield. In this research we present a hybrid algorithm where the discontinuous Galerkin method is used in a relatively small upper part of the model and finite differences are applied to the main part of the model.
Finite-key security analyses on passive decoy-state QKD protocols with different unstable sources
Song, Ting-Ting; Qin, Su-Juan; Wen, Qiao-Yan; Wang, Yu-Kun; Jia, Heng-Yue
2015-01-01
In quantum communication, passive decoy-state QKD protocols can eliminate many side channels, but the protocols without any finite-key analyses are not suitable for in practice. The finite-key securities of passive decoy-state (PDS) QKD protocols with two different unstable sources, type-II parametric down-convention (PDC) and phase randomized weak coherent pulses (WCPs), are analyzed in our paper. According to the PDS QKD protocols, we establish an optimizing programming respectively and obtain the lower bounds of finite-key rates. Under some reasonable values of quantum setup parameters, the lower bounds of finite-key rates are simulated. The simulation results show that at different transmission distances, the affections of different fluctuations on key rates are different. Moreover, the PDS QKD protocol with an unstable PDC source can resist more intensity fluctuations and more statistical fluctuation. PMID:26471947
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.
1989-01-01
A family of conditionally stable, forward Euler finite difference equations can be constructed for the simplest equation of Schroedinger type, namely u sub t - iu sub xx. Generalization of this result to physically realistic Schroedinger type equations is presented.
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.
1991-01-01
Surface impedance boundary conditions are employed to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be utilized to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A 1-D implementation for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique.
Exact finite difference schemes for the non-linear unidirectional wave equation
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1985-01-01
Attention is given to the construction of exact finite difference schemes for the nonlinear unidirectional wave equation that describes the nonlinear propagation of a wave motion in the positive x-direction. The schemes constructed for these equations are compared with those obtained by using the usual procedures of numerical analysis. It is noted that the order of the exact finite difference models is equal to the order of the differential equation.
Choas and instabilities in finite difference approximations to nonlinear differential equations
Cloutman, L. D., LLNL
1998-07-01
The numerical solution of time-dependent ordinary and partial differential equations by finite difference techniques is a common task in computational physics and engineering The rate equations for chemical kinetics in combustion modeling are an important example. They not only are nonlinear, but they tend to be stiff, which makes their solution a challenge for transient problems. We show that one must be very careful how such equations are solved In addition to the danger of large time-marching errors, there can be unphysical chaotic solutions that remain numerically stable for a range of time steps that depends on the particular finite difference method used We point out that the solutions of the finite difference equations converge to those of the differential equations only in the limit as the time step approaches zero for stable and consistent finite difference approximations The chaotic behavior observed for finite time steps in some nonlinear difference equations is unrelated to solutions of the differential equations, but is connected with the onset of numerical instabilities of the finite difference equations This behavior suggests that the use of the theory of chaos in nonlinear iterated maps may be useful in stability anlaysis of finite difference approximations to nonlinear differential equations, providing more stringent time step limits than the formal linear stability analysis that tests only for unbounded solutions This observation implies that apparently stable numerical solutions of nonlinear differential equations by finite difference techniques may in fact be contaminated (if not dominated) by nonphysical chaotic parasitic solutions that degrade the accuracy of the numerical solution We demonstrate this phenomenon with some solutions of the logistic equation and a simple two-dimensional computational fluid dynamics example
NASA Astrophysics Data System (ADS)
Steich, David James
1995-01-01
The Finite Difference Time Domain (FDTD) method is a simple yet powerful method for numerically solving electromagnetic wave phenomenon on computers. The FDTD technique discretizes Maxwell's equations with finite difference equations. These finite difference equations, which approximate local field behavior, are applied to large spatial lattices allowing calculation of a vast array of electromagnetical phenomenon. The greatest strengths of the FDTD method are in its simplicity, efficiency, and diversity. FDTD is capable of modeling the scattering and coupling to lossy dielectrics, lossy magnetics, anisotropic media, dispersive media, and nonlinear materials for general geometric shapes. Wideband frequency information can be obtained using FDTD for both near and far field observation points in a single computational run. However, along with all of its benefits, the FDTD algorithm has some deficiencies. For most problems of interest, poor accuracy at geometry interfaces of differing media and at outer problem space boundarys where the spatial lattice must be truncated are the two largest error sources of the FDTD algorithm. Although most accuracy issues can be circumvented by expending large amounts of computer memory and cpu time, using excessive computer resources is not always possible and is never appealing. The purpose of this thesis is to generalize, analyze, and test various mainstream local Outer Radiating Boundary Conditions (ORBCs) for the FDTD method applied to Maxwell's equations in order to help gain a better understanding of present ORBC limitations. A common mathematical model is presented for the boundary conditions. Boundary conditions shown to fit the model include Mur, Superabsorption, Liao, Higdon, and Lindman ORBCs of varying orders. Simple operators are defined and then used to generate the final discretized equations for each of the boundary conditions, automatically, without requiring complicated high order equations. The procedure also allows
Finite-difference methods for solving loaded parabolic equations
NASA Astrophysics Data System (ADS)
Abdullayev, V. M.; Aida-zade, K. R.
2016-01-01
Loaded partial differential equations are solved numerically. For illustrative purposes, a boundary value problem for a parabolic equation with various point loads is considered. By applying difference approximations, the problems are reduced to systems of algebraic equations of special structure, which are solved using a parametric representation involving solutions of auxiliary linear systems with tridiagonal matrices. Numerical results are presented and analyzed.
Exploring the Effectiveness of Different Approaches to Teaching Finite Mathematics
ERIC Educational Resources Information Center
Smeal, Mary; Walker, Sandra; Carter, Jamye; Simmons-Johnson, Carolyn; Balam, Esenc
2013-01-01
Traditionally, mathematics has been taught using a very direct approach which the teacher explains the procedure to solve a problem and the students use pencil and paper to solve the problem. However, a variety of alternative approaches to mathematics have surfaced from a number of different directions. The purpose of this study was to examine the…
Surface Diffusion Directed Growth of Anisotropic Graphene Domains on Different Copper Lattices
Jung, Da Hee; Kang, Cheong; Nam, Ji Eun; Jeong, Heekyung; Lee, Jin Seok
2016-01-01
Anisotropic graphene domains are of significant interest since the electronic properties of pristine graphene strongly depend on its size, shape, and edge structures. In this work, considering that the growth of graphene domains is governable by the dynamics of the graphene-substrate interface during growth, we investigated the shape and defects of graphene domains grown on copper lattices with different indices by chemical vapor deposition of methane at either low pressure or atmospheric pressure. Computational modeling identified that the crystallographic orientation of copper strongly influences the shape of the graphene at low pressure, yet does not play a critical role at atmospheric pressure. Moreover, the defects that have been previously observed in the center of four-lobed graphene domains grown under low pressure conditions were demonstrated for the first time to be caused by a lattice mismatch between graphene and the copper substrate. PMID:26883174
Pouthier, Vincent
2012-11-01
A communication protocol is proposed in which vibron-mediated quantum state transfer takes place in a molecular lattice. We consider two distant molecular groups grafted on each side of the lattice. These groups form two quantum computers where vibrational qubits are implemented and received. The lattice defines the communication channel along which a vibron delocalizes and interacts with a phonon bath. Using quasi-degenerate perturbation theory, vibron-phonon entanglement is taken into account through the effective Hamiltonian concept. A vibron is thus dressed by a virtual phonon cloud whereas a phonon is clothed by virtual vibronic transitions. It is shown that three quasi-degenerate dressed states define the relevant paths followed by a vibron to tunnel between the computers. When the coupling between the computers and the lattice is judiciously chosen, constructive interference takes place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range. PMID:23044492
Viscous flow simulations in VTOL aerodynamics. [finite difference technique
NASA Technical Reports Server (NTRS)
Bower, W. W.
1978-01-01
The critical issues in viscous flow simulations, such as boundary-layer separation, entrainment, turbulence modeling, and compressibility, are discussed with regard to the ground effects problem for vertical-takeoff-and-landing (VTOL) aircraft. A simulation of the two-dimensional incompressible lift jet in ground proximity is based on solution of the Reynolds-averaged Navier-Stokes equations and a turbulence-model equation which are written in stream function-vorticity form and are solved using Hoffman's augmented-central-difference algorithm. The resulting equations and their shortcomings are discussed when the technique is extended to two-dimensional compressible and three-dimensional incompressible flows.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.
1981-01-01
Sound propagation without flow in a rectangular duct with a converging-diverging area variation was studied experimentally and theoretically. The area variation was of sufficient magnitude to produce large reflections and induce modal scattering. The rms (root-mean-squared) pressure and phase angle on both the flat and curved surface were measured and tabulated. The steady state finite element theory and the transient finite difference theory are in good agreement with the data. It is concluded that numerical finite difference and finite element theories appear ideally suited for handling duct propagation problems which encounter large area variations.
Spanning trees on graphs and lattices in d dimensions
NASA Astrophysics Data System (ADS)
Shrock, Robert; Wu, F. Y.
2000-06-01
The problem of enumerating spanning trees on graphs and lattices is considered. We obtain bounds on the number of spanning trees NST and establish inequalities relating the numbers of spanning trees of different graphs or lattices. A general formulation is presented for the enumeration of spanning trees on lattices in d≥2 dimensions, and is applied to the hypercubic, body-centred cubic, face-centred cubic and specific planar lattices including the kagomé, diced, 4-8-8 (bathroom-tile), Union Jack and 3-12-12 lattices. This leads to closed-form expressions for NST for these lattices of finite sizes. We prove a theorem concerning the classes of graphs and lattices →∞, where zL is a finite non-zero constant. This includes the bulk limit of lattices in any spatial dimension, and also sections of lattices whose lengths in some dimensions go to infinity while others are finite. We evaluate zL exactly for the lattices we consider, and discuss the dependence of zL on d and the lattice coordination number. We also establish a relation connecting zL to the free energy of the critical Ising model for planar lattices.
Lattice Boltzmann morphodynamic model
NASA Astrophysics Data System (ADS)
Zhou, Jian Guo
2014-08-01
Morphological change due to sediment transport is a common natural phenomenon in real flows. It involves complex processes of erosion and deposition such as those along beaches and in river beds, imposing a strong strain on human beings. Studying and understanding morphodynamic evolution are essential to protect living environment. Although there are conventional numerical methods like finite difference method and finite volume method for forecast of morphological change by solving flow and morphodynamic equations, the methods are too complex/inefficient to be applied to a real large scale problem. To overcome this, a lattice Boltzmann method is developed to simulate morphological evolution under flows. It provides an alternative way of studying morphodynamics at the full advantages of the lattice Boltzmann methodology. The model is verified by applications to the evolution of one and two dimensional sand dunes under shallow water flows.
Mixed finite-difference scheme for free vibration analysis of noncircular cylinders
NASA Technical Reports Server (NTRS)
Noor, A. K.; Stephens, W. B.
1973-01-01
A mixed finite-difference scheme is presented for the free-vibration analysis of simply supported closed noncircular cylindrical shells. The problem is formulated in terms of eight first-order differential equations in the circumferential coordinate which possess a symmetric coefficient matrix and are free of the derivatives of the elastic and geometric characteristics of the shell. In the finite-difference discretization, two interlacing grids are used for the different fundamental unknowns in such a way as to avoid averaging in the difference-quotient expressions used for the first derivative. The resulting finite-difference equations are symmetric. The inverse-power method is used for obtaining the eigenvalues and eigenvectors.
NASA Technical Reports Server (NTRS)
Byun, Chansup; Guruswamy, Guru P.; Kutler, Paul (Technical Monitor)
1994-01-01
In recent years significant advances have been made for parallel computers in both hardware and software. Now parallel computers have become viable tools in computational mechanics. Many application codes developed on conventional computers have been modified to benefit from parallel computers. Significant speedups in some areas have been achieved by parallel computations. For single-discipline use of both fluid dynamics and structural dynamics, computations have been made on wing-body configurations using parallel computers. However, only a limited amount of work has been completed in combining these two disciplines for multidisciplinary applications. The prime reason is the increased level of complication associated with a multidisciplinary approach. In this work, procedures to compute aeroelasticity on parallel computers using direct coupling of fluid and structural equations will be investigated for wing-body configurations. The parallel computer selected for computations is an Intel iPSC/860 computer which is a distributed-memory, multiple-instruction, multiple data (MIMD) computer with 128 processors. In this study, the computational efficiency issues of parallel integration of both fluid and structural equations will be investigated in detail. The fluid and structural domains will be modeled using finite-difference and finite-element approaches, respectively. Results from the parallel computer will be compared with those from the conventional computers using a single processor. This study will provide an efficient computational tool for the aeroelastic analysis of wing-body structures on MIMD type parallel computers.
NASA Astrophysics Data System (ADS)
Reitman, L.; Wolfshtein, M.; Adler, D.
1982-11-01
A finite difference method is developed for solving the non-viscous formulation of a three-dimensional compressible flow problem for turbomachinery impellers. The numerical results and the time efficiency of this method are compared to that provided by a finite element method for this problem. The finite difference method utilizes a numerical, curvilinear, and non-orthogonal coordinate transformation and the ADI scheme. The finite difference method is utilized to solve a test problem of a centrifugal compressor impeller. It is shown that the finite difference method produces results in good agreement with the experimentally determined flow fields and is as accurate as the finite element technique. However, the finite difference method only requires about half the time in order to obtain the solution for this problem as that required by the finite element method.
SOME NEW FINITE DIFFERENCE METHODS FOR HELMHOLTZ EQUATIONS ON IRREGULAR DOMAINS OR WITH INTERFACES.
Wan, Xiaohai; Li, Zhilin
2012-06-01
Solving a Helmholtz equation Δu + λu = f efficiently is a challenge for many applications. For example, the core part of many efficient solvers for the incompressible Navier-Stokes equations is to solve one or several Helmholtz equations. In this paper, two new finite difference methods are proposed for solving Helmholtz equations on irregular domains, or with interfaces. For Helmholtz equations on irregular domains, the accuracy of the numerical solution obtained using the existing augmented immersed interface method (AIIM) may deteriorate when the magnitude of λ is large. In our new method, we use a level set function to extend the source term and the PDE to a larger domain before we apply the AIIM. For Helmholtz equations with interfaces, a new maximum principle preserving finite difference method is developed. The new method still uses the standard five-point stencil with modifications of the finite difference scheme at irregular grid points. The resulting coefficient matrix of the linear system of finite difference equations satisfies the sign property of the discrete maximum principle and can be solved efficiently using a multigrid solver. The finite difference method is also extended to handle temporal discretized equations where the solution coefficient λ is inversely proportional to the mesh size. PMID:22701346
Fei, Tong; Larner, K.
1993-11-01
Finite-difference acoustic-wave modeling and reverse-time depth migration based on the full wave equation are general approaches that can take into account arbitary variations in velocity and density, and can handle turning waves well. However, conventional finite-difference methods for solving the acousticwave equation suffer from numerical dispersion when too few samples per wavelength are used. Here, we present two flux-corrected transport (FCT) algorithms, one based the second-order equation and the other based on first-order wave equations derived from the second-order one. Combining the FCT technique with conventional finite-difference modeling or reverse-time wave extrapolation can ensure finite-difference solutions without numerical dispersion even for shock waves and impulsive sources. Computed two-dimensional migration images show accurate positioning of reflectors with greater than 90-degree dip. Moreover, application to real data shows no indication of numerical dispersion. The FCT correction, which can be applied to finite-difference approximations of any order in space and time, is an efficient alternative to use of approximations of increasing order.
Improving sub-grid scale accuracy of boundary features in regional finite-difference models
Panday, Sorab; Langevin, Christian D.
2012-01-01
As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.
Björner, Anders
1987-01-01
A continuous analogue to the partition lattices is presented. This is the metric completion of the direct limit of a system of embeddings of the finite partition lattices. The construction is analogous to von Neumann's construction of a continuous geometry over a field F from the finite-dimensional projective geometries over F. PMID:16593874
Twisted mass finite volume effects
Colangelo, Gilberto; Wenger, Urs; Wu, Jackson M. S.
2010-08-01
We calculate finite-volume effects on the pion masses and decay constant in twisted mass lattice QCD at finite lattice spacing. We show that the lighter neutral pion in twisted mass lattice QCD gives rise to finite-volume effects that are exponentially enhanced when compared to those arising from the heavier charged pions. We demonstrate that the recent two flavor twisted mass lattice data can be better fitted when twisted mass effects in finite-volume corrections are taken into account.
NASA Technical Reports Server (NTRS)
Lee, L. C.
1976-01-01
The cross correlation of the intensity fluctuations between different frequencies and finite bandwidth effects on the intensity correlations based on the Markov approximation were calculated. Results may be applied to quite general turbulence spectra for an extended turbulent medium. Calculations of the cross-correlation function and of finite bandwidth effects are explicitly carried out for both Gaussian and Kolmogorov turbulence spectra. The increases of the correlation scale of intensity fluctuations are different for these two spectra and the difference can be used to determine whether the interstellar turbulent medium has a Gaussian or a Kolmogorov spectrum.
NASA Astrophysics Data System (ADS)
Ginzburg, Irina; Silva, Goncalo; Talon, Laurent
2015-02-01
This work focuses on the numerical solution of the Stokes-Brinkman equation for a voxel-type porous-media grid, resolved by one to eight spacings per permeability contrast of 1 to 10 orders in magnitude. It is first analytically demonstrated that the lattice Boltzmann method (LBM) and the linear-finite-element method (FEM) both suffer from the viscosity correction induced by the linear variation of the resistance with the velocity. This numerical artefact may lead to an apparent negative viscosity in low-permeable blocks, inducing spurious velocity oscillations. The two-relaxation-times (TRT) LBM may control this effect thanks to free-tunable two-rates combination Λ . Moreover, the Brinkman-force-based BF-TRT schemes may maintain the nondimensional Darcy group and produce viscosity-independent permeability provided that the spatial distribution of Λ is fixed independently of the kinematic viscosity. Such a property is lost not only in the BF-BGK scheme but also by "partial bounce-back" TRT gray models, as shown in this work. Further, we propose a consistent and improved IBF-TRT model which vanishes viscosity correction via simple specific adjusting of the viscous-mode relaxation rate to local permeability value. This prevents the model from velocity fluctuations and, in parallel, improves for effective permeability measurements, from porous channel to multidimensions. The framework of our exact analysis employs a symbolic approach developed for both LBM and FEM in single and stratified, unconfined, and bounded channels. It shows that even with similar bulk discretization, BF, IBF, and FEM may manifest quite different velocity profiles on the coarse grids due to their intrinsic contrasts in the setting of interface continuity and no-slip conditions. While FEM enforces them on the grid vertexes, the LBM prescribes them implicitly. We derive effective LBM continuity conditions and show that the heterogeneous viscosity correction impacts them, a property also shared
Ginzburg, Irina; Silva, Goncalo; Talon, Laurent
2015-02-01
This work focuses on the numerical solution of the Stokes-Brinkman equation for a voxel-type porous-media grid, resolved by one to eight spacings per permeability contrast of 1 to 10 orders in magnitude. It is first analytically demonstrated that the lattice Boltzmann method (LBM) and the linear-finite-element method (FEM) both suffer from the viscosity correction induced by the linear variation of the resistance with the velocity. This numerical artefact may lead to an apparent negative viscosity in low-permeable blocks, inducing spurious velocity oscillations. The two-relaxation-times (TRT) LBM may control this effect thanks to free-tunable two-rates combination Λ. Moreover, the Brinkman-force-based BF-TRT schemes may maintain the nondimensional Darcy group and produce viscosity-independent permeability provided that the spatial distribution of Λ is fixed independently of the kinematic viscosity. Such a property is lost not only in the BF-BGK scheme but also by "partial bounce-back" TRT gray models, as shown in this work. Further, we propose a consistent and improved IBF-TRT model which vanishes viscosity correction via simple specific adjusting of the viscous-mode relaxation rate to local permeability value. This prevents the model from velocity fluctuations and, in parallel, improves for effective permeability measurements, from porous channel to multidimensions. The framework of our exact analysis employs a symbolic approach developed for both LBM and FEM in single and stratified, unconfined, and bounded channels. It shows that even with similar bulk discretization, BF, IBF, and FEM may manifest quite different velocity profiles on the coarse grids due to their intrinsic contrasts in the setting of interface continuity and no-slip conditions. While FEM enforces them on the grid vertexes, the LBM prescribes them implicitly. We derive effective LBM continuity conditions and show that the heterogeneous viscosity correction impacts them, a property also shared
Bound states in two-dimensional spin systems near the Ising limit: A quantum finite-lattice study
Dusuel, Sebastien; Kamfor, Michael; Schmidt, Kai Phillip; Thomale, Ronny; Vidal, Julien
2010-02-01
We analyze the properties of low-energy bound states in the transverse-field Ising model and in the XXZ model on the square lattice. To this end, we develop an optimized implementation of perturbative continuous unitary transformations. The Ising model is studied in the small-field limit which is found to be a special case of the toric code model in a magnetic field. To analyze the XXZ model, we perform a perturbative expansion about the Ising limit in order to discuss the fate of the elementary magnon excitations when approaching the Heisenberg point.
Analysis of average density difference effect in a new two-lane lattice model
NASA Astrophysics Data System (ADS)
Zhang, Geng; Sun, Di-Hua; Zhao, Min; Liu, Wei-Ning; Cheng, Sen-Lin
2015-11-01
A new lattice model is proposed by taking the average density difference effect into account for two-lane traffic system according to Transportation Cyber-physical Systems. The influence of average density difference effect on the stability of traffic flow is investigated through linear stability theory and nonlinear reductive perturbation method. The linear analysis results reveal that the unstable region would be reduced by considering the average density difference effect. The nonlinear kink-antikink soliton solution derived from the mKdV equation is analyzed to describe the properties of traffic jamming transition near the critical point. Numerical simulations confirm the analytical results showing that traffic jam can be suppressed efficiently by considering the average density difference effect for two-lane traffic system.
NASA Technical Reports Server (NTRS)
Tam, Christopher K. W.; Webb, Jay C.
1994-01-01
In this paper finite-difference solutions of the Helmholtz equation in an open domain are considered. By using a second-order central difference scheme and the Bayliss-Turkel radiation boundary condition, reasonably accurate solutions can be obtained when the number of grid points per acoustic wavelength used is large. However, when a smaller number of grid points per wavelength is used excessive reflections occur which tend to overwhelm the computed solutions. Excessive reflections are due to the incompability between the governing finite difference equation and the Bayliss-Turkel radiation boundary condition. The Bayliss-Turkel radiation boundary condition was developed from the asymptotic solution of the partial differential equation. To obtain compatibility, the radiation boundary condition should be constructed from the asymptotic solution of the finite difference equation instead. Examples are provided using the improved radiation boundary condition based on the asymptotic solution of the governing finite difference equation. The computed results are free of reflections even when only five grid points per wavelength are used. The improved radiation boundary condition has also been tested for problems with complex acoustic sources and sources embedded in a uniform mean flow. The present method of developing a radiation boundary condition is also applicable to higher order finite difference schemes. In all these cases no reflected waves could be detected. The use of finite difference approximation inevita bly introduces anisotropy into the governing field equation. The effect of anisotropy is to distort the directional distribution of the amplitude and phase of the computed solution. It can be quite large when the number of grid points per wavelength used in the computation is small. A way to correct this effect is proposed. The correction factor developed from the asymptotic solutions is source independent and, hence, can be determined once and for all. The
Palmer, R.B.
1987-05-01
This paper looks at, and compares three types of damping ring lattices: conventional, wiggler lattice with finite ..cap alpha.., wiggler lattice with ..cap alpha.. = 0, and observes the attainable equilibrium emittances for the three cases assuming a constraint on the attainable longitudinal impedance of 0.2 ohms. The emittance obtained are roughly in the ratio 4:2:1 for these cases.
Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation
ERIC Educational Resources Information Center
Prentice, J. S. C.
2012-01-01
An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…
Fast solvers for finite difference approximations for the Stokes and Navier-Stokes equations
Shin, D.
1992-01-01
The authors consider several methods for solving the linear equations arising from finite difference discretizations of the Stokes equations. The pressure equation method presented here for the first time, apparently, and the method, presented by Bramble and Pasciak, are shown to have computational effort that grows slowly with the number of grid points. The methods work with second-order accurate discretizations. Computational results are shown for both the Stokes and incompressible Navier-Stokes at low Reynolds number. The inf-sup conditions resulting from three finite difference approximations of the Stokes equations are proven. These conditions are used to prove that the Schur complement Q[sub h] of the linear system generated by each of these approximations is bounded uniformly away from zero. For the pressure equation method, this guarantees that the conjugate gradient method applied to Q[sub h] converges in a finite number of iterations which is independent of mesh size. The fact that Q[sub h] is bounded below is used to prove convergence estimates for the solutions generated by these finite difference approximations. One of the estimates is for a staggered grid and the estimate of the scheme shows that both the pressure and the velocity parts of the solution are second-order accurate. Iterative methods are compared by the use of the regularized central differencing introduced by Strikwerda. Several finite difference approximations of the Stokes equations by the SOR method are compared and the excellence of the approximations by the regularized central differencing over the other finite difference approximation is mentioned. This difference gives rise to a linear equation with a matrix which is slightly non-symmetric. The convergence of the typical steepest descent method and conjugate gradient method, which is almost as same as the typical conjugate gradient method, applied to slightly non-symmetric positive definite matrices are proven.
NASA Astrophysics Data System (ADS)
Rindlisbacher, Tobias; de Forcrand, Philippe
2016-02-01
We investigate the properties of the half-filling point in lattice QCD (LQCD), in particular the disappearance of the sign problem and the emergence of an apparent particle-hole symmetry, and try to understand where these properties come from by studying the heavy-dense fermion determinant and the corresponding strong-coupling partition function (which can be integrated analytically). We then add in a first step an effective Polyakov loop gauge action (which reproduces the leading terms in the character expansion of the Wilson gauge action) to the heavy-dense partition function and try to analyze how some of the properties of the half-filling point change when leaving the strong coupling limit. In a second step, we take also the leading nearest-neighbor fermion hopping terms into account (including gauge interactions in the fundamental representation) and mention how the method could be improved further to incorporate the full set of nearest-neighbor fermion hoppings. Using our mean-field method, we also obtain an approximate ( μ, T) phase diagram for heavy-dense LQCD at finite inverse gauge coupling β. Finally, we propose a simple criterion to identify the chemical potential beyond which lattice artifacts become dominant.
Numerical solution of a diffusion problem by exponentially fitted finite difference methods.
D'Ambrosio, Raffaele; Paternoster, Beatrice
2014-01-01
This paper is focused on the accurate and efficient solution of partial differential differential equations modelling a diffusion problem by means of exponentially fitted finite difference numerical methods. After constructing and analysing special purpose finite differences for the approximation of second order partial derivatives, we employed them in the numerical solution of a diffusion equation with mixed boundary conditions. Numerical experiments reveal that a special purpose integration, both in space and in time, is more accurate and efficient than that gained by employing a general purpose solver. PMID:26034665
NASA Technical Reports Server (NTRS)
Beggs, John H.; Luebbers, Raymond J.; Kunz, Karl S.; Yee, Kane S.
1991-01-01
Surface impedance boundary conditions are used to reduce the solution volume during the analysis of scattering from lossy dielectric objects. In a finite difference solution, they also can be used to avoid using small cells, made necessary by shorter wavelengths in conducting media, throughout the solution volume. A one dimensional implementation is presented for a surface impedance boundary condition for good conductors in the Finite Difference Time Domain (FDTD) technique. In order to illustrate the FDTD surface impedance boundary condition, a planar air-lossy dielectric interface is considered.
Srivastava, Vineet K.; Awasthi, Mukesh K.; Singh, Sarita
2013-12-15
This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM), for the numerical solution of two dimensional time-dependent coupled viscous Burgers’ equation on the uniform grid points. As the Burgers’ equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers’ equation.
NASA Astrophysics Data System (ADS)
Srivastava, Vineet K.; Awasthi, Mukesh K.; Singh, Sarita
2013-12-01
This article describes a new implicit finite-difference method: an implicit logarithmic finite-difference method (I-LFDM), for the numerical solution of two dimensional time-dependent coupled viscous Burgers' equation on the uniform grid points. As the Burgers' equation is nonlinear, the proposed technique leads to a system of nonlinear systems, which is solved by Newton's iterative method at each time step. Computed solutions are compared with the analytical solutions and those already available in the literature and it is clearly shown that the results obtained using the method is precise and reliable for solving Burgers' equation.
Test of two methods for faulting on finite-difference calculations
Andrews, D.J.
1999-01-01
Tests of two fault boundary conditions show that each converges with second order accuracy as the finite-difference grid is refined. The first method uses split nodes so that there are disjoint grids that interact via surface traction. The 3D version described here is a generalization of a method I have used extensively in 2D; it is as accurate as the 2D version. The second method represents fault slip as inelastic strain in a fault zone. Offset of stress from its elastic value is seismic moment density. Implementation of this method is quite simple in a finite-difference scheme using velocity and stress as dependent variables.
Finite difference methods for transient signal propagation in stratified dispersive media
NASA Technical Reports Server (NTRS)
Lam, D. H.
1975-01-01
Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.
A guide to differences between stochastic point-source and stochastic finite-fault simulations
Atkinson, G.M.; Assatourians, K.; Boore, D.M.; Campbell, K.; Motazedian, D.
2009-01-01
Why do stochastic point-source and finite-fault simulation models not agree on the predicted ground motions for moderate earthquakes at large distances? This question was posed by Ken Campbell, who attempted to reproduce the Atkinson and Boore (2006) ground-motion prediction equations for eastern North America using the stochastic point-source program SMSIM (Boore, 2005) in place of the finite-source stochastic program EXSIM (Motazedian and Atkinson, 2005) that was used by Atkinson and Boore (2006) in their model. His comparisons suggested that a higher stress drop is needed in the context of SMSIM to produce an average match, at larger distances, with the model predictions of Atkinson and Boore (2006) based on EXSIM; this is so even for moderate magnitudes, which should be well-represented by a point-source model. Why? The answer to this question is rooted in significant differences between point-source and finite-source stochastic simulation methodologies, specifically as implemented in SMSIM (Boore, 2005) and EXSIM (Motazedian and Atkinson, 2005) to date. Point-source and finite-fault methodologies differ in general in several important ways: (1) the geometry of the source; (2) the definition and application of duration; and (3) the normalization of finite-source subsource summations. Furthermore, the specific implementation of the methods may differ in their details. The purpose of this article is to provide a brief overview of these differences, their origins, and implications. This sets the stage for a more detailed companion article, "Comparing Stochastic Point-Source and Finite-Source Ground-Motion Simulations: SMSIM and EXSIM," in which Boore (2009) provides modifications and improvements in the implementations of both programs that narrow the gap and result in closer agreement. These issues are important because both SMSIM and EXSIM have been widely used in the development of ground-motion prediction equations and in modeling the parameters that control
Zhang Jiefang; Meng Jianping; Wu Lei; Li Yishen; Malomed, Boris A.
2010-09-15
We investigate solitons and nonlinear Bloch waves in Bose-Einstein condensates trapped in optical lattices (OLs). By introducing specially designed localized profiles of the spatial modulation of the attractive nonlinearity, we construct an infinite set of exact soliton solutions in terms of Mathieu and elliptic functions, with the chemical potential belonging to the semi-infinite gap of the OL-induced spectrum. Starting from the particular exact solutions, we employ the relaxation method to construct generic families of soliton solutions in a numerical form. The stability of the solitons is investigated through the computation of the eigenvalues for small perturbations, and also by direct simulations. Finally, we demonstrate a virtually exact (in the numerical sense) composition relation between nonlinear Bloch waves and solitons.
A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES
A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromagnetic properties of the model are symmetric with respect ...
Finite-difference, spectral and Galerkin methods for time-dependent problems
NASA Technical Reports Server (NTRS)
Tadmor, E.
1983-01-01
Finite difference, spectral and Galerkin methods for the approximate solution of time dependent problems are surveyed. A unified discussion on their accuracy, stability and convergence is given. In particular, the dilemma of high accuracy versus stability is studied in some detail.
High Order Finite Difference Methods, Multidimensional Linear Problems and Curvilinear Coordinates
NASA Technical Reports Server (NTRS)
Nordstrom, Jan; Carpenter, Mark H.
1999-01-01
Boundary and interface conditions are derived for high order finite difference methods applied to multidimensional linear problems in curvilinear coordinates. The boundary and interface conditions lead to conservative schemes and strict and strong stability provided that certain metric conditions are met.
Finite difference micromagnetic simulation with self-consistent currents and smooth surfaces
Cerjan, C; Gibbons, M R; Hewett, D W; Parker, G
1999-05-27
A micromagnetic algorithm has been developed using the finite difference method (FDM). Elliptic field equations are solved on the mesh using the efficient Dynamic Alternating Direction Implicit method. Smooth surfaces have been included in the FDM formulation so structures of irregular shape can be modeled. The current distribution and temperature of devices are also calculated. Keywords: Micromagnetic simulation, Magnetic dots, Read heads, Thermal Effects
FWAVE V1.0 a framework for finite difference wave equation modeling
2002-07-01
FWAVE provides a computation framework for the rapid prototyping and efficient use of finite difference wave equation solutions. The user provides single grid Fortran solver components that are integrated using opaque handles to C++ distributed data structures. Permits the scientific researcher to make of clusters and parallel computers by concentrating only on the numerical schemes.
The rate of the electromagnetic energy deposition and the resultant thermoregulatory response of a block model of a squirrel monkey exposed to plane-wave fields at 350 MHz were calculated using a finite-difference procedure. Noninvasive temperature measurements in live squirrel m...
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1984-01-01
Work on the construction of finite difference models of differential equations having zero truncation errors is summarized. Both linear and nonlinear unidirectional wave equations are discussed. Results regarding the construction of zero truncation error schemes for the full wave equation and Burger's equation are also briefly reported.
A FINITE-DIFFERENCE, DISCRETE-WAVENUMBER METHOD FOR CALCULATING RADAR TRACES
A hybrid of the finite-difference method and the discrete-wavenumber method is developed to calculate radar traces. The method is based on a three-dimensional model defined in the Cartesian coordinate system; the electromag-netic properties of the model are symmetric with respect...
NASA Astrophysics Data System (ADS)
Lin, M. C.; Nieter, C.; Stoltz, P. H.; Smithe, D. N.
2009-05-01
This work introduces a conformal finite difference time domain (CFDTD) method to accurately determine the dispersion relation of an A6 relativistic magnetron. The accuracy is measured by comparing with accurate SUPERFISH calculations based on finite element method. The results show that an accuracy of 99.4% can be achieved by using only 10,000 mesh points with Dey-Mittra algorithm. By comparison, a mesh number of 360,000 is needed to preserve 99% accuracy using conventional FDTD method. This suggests one can efficiently and accurately study the hot tests of microwave tubes using CFDTD particle-in-cell method instead of conventional FDTD one.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1981-01-01
The cutoff mode instability problem associated with a transient finite difference solution to the wave equation is explained. The steady-state impedance boundary condition is found to produce acoustic reflections during the initial transient, which cause finite instabilities in the cutoff modes. The stability problem is resolved by extending the duct length to prevent transient reflections. Numerical calculations are presented at forcing frequencies above, below, and nearly at the cutoff frequency, and exit impedance models are presented for use in the practical design of turbofan inlets.
Spatial parallelism of a 3D finite difference, velocity-stress elastic wave propagation code
Minkoff, S.E.
1999-12-01
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately, finite difference simulations for 3D elastic wave propagation are expensive. The authors model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MPI library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speedup. Because I/O is handled largely outside of the time-step loop (the most expensive part of the simulation) the authors have opted for straight-forward broadcast and reduce operations to handle I/O. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ghost cells. When this communication is balanced against computation by allocating subdomains of reasonable size, they observe excellent scaled speedup. Allocating subdomains of size 25 x 25 x 25 on each node, they achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
Spatial Parallelism of a 3D Finite Difference, Velocity-Stress Elastic Wave Propagation Code
MINKOFF,SUSAN E.
1999-12-09
Finite difference methods for solving the wave equation more accurately capture the physics of waves propagating through the earth than asymptotic solution methods. Unfortunately. finite difference simulations for 3D elastic wave propagation are expensive. We model waves in a 3D isotropic elastic earth. The wave equation solution consists of three velocity components and six stresses. The partial derivatives are discretized using 2nd-order in time and 4th-order in space staggered finite difference operators. Staggered schemes allow one to obtain additional accuracy (via centered finite differences) without requiring additional storage. The serial code is most unique in its ability to model a number of different types of seismic sources. The parallel implementation uses the MP1 library, thus allowing for portability between platforms. Spatial parallelism provides a highly efficient strategy for parallelizing finite difference simulations. In this implementation, one can decompose the global problem domain into one-, two-, and three-dimensional processor decompositions with 3D decompositions generally producing the best parallel speed up. Because i/o is handled largely outside of the time-step loop (the most expensive part of the simulation) we have opted for straight-forward broadcast and reduce operations to handle i/o. The majority of the communication in the code consists of passing subdomain face information to neighboring processors for use as ''ghost cells''. When this communication is balanced against computation by allocating subdomains of reasonable size, we observe excellent scaled speed up. Allocating subdomains of size 25 x 25 x 25 on each node, we achieve efficiencies of 94% on 128 processors. Numerical examples for both a layered earth model and a homogeneous medium with a high-velocity blocky inclusion illustrate the accuracy of the parallel code.
An Eigenvalue Analysis of finite-difference approximations for hyperbolic IBVPs
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1989-01-01
The eigenvalue spectrum associated with a linear finite-difference approximation plays a crucial role in the stability analysis and in the actual computational performance of the discrete approximation. The eigenvalue spectrum associated with the Lax-Wendroff scheme applied to a model hyperbolic equation was investigated. For an initial-boundary-value problem (IBVP) on a finite domain, the eigenvalue or normal mode analysis is analytically intractable. A study of auxiliary problems (Dirichlet and quarter-plane) leads to asymptotic estimates of the eigenvalue spectrum and to an identification of individual modes as either benign or unstable. The asymptotic analysis establishes an intuitive as well as quantitative connection between the algebraic tests in the theory of Gustafsson, Kreiss, and Sundstrom and Lax-Richtmyer L(sub 2) stability on a finite domain.
An eigenvalue analysis of finite-difference approximations for hyperbolic IBVPs
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1990-01-01
The eigenvalue spectrum associated with a linear finite-difference approximation plays a crucial role in the stability analysis and in the actual computational performance of the discrete approximation. The eigenvalue spectrum associated with the Lax-Wendroff scheme applied to a model hyperbolic equation was investigated. For an initial-boundary-value problem (IBVP) on a finite domain, the eigenvalue or normal mode analysis is analytically intractable. A study of auxiliary problems (Dirichlet and quarter-plane) leads to asymptotic estimates of the eigenvalue spectrum and to an identification of individual modes as either benign or unstable. The asymptotic analysis establishes an intuitive as well as quantitative connection between the algebraic tests in the theory of Gustafsson, Kreiss, and Sundstrom and Lax-Richtmyer L (sub 2) stability on a finite domain.
An improved finite-difference analysis of uncoupled vibrations of tapered cantilever beams
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1983-01-01
An improved finite difference procedure for determining the natural frequencies and mode shapes of tapered cantilever beams undergoing uncoupled vibrations is presented. Boundary conditions are derived in the form of simple recursive relations involving the second order central differences. Results obtained by using the conventional first order central differences and the present second order central differences are compared, and it is observed that the present second order scheme is more efficient than the conventional approach. An important advantage offered by the present approach is that the results converge to exact values rapidly, and thus the extrapolation of the results is not necessary. Consequently, the basic handicap with the classical finite difference method of solution that requires the Richardson's extrapolation procedure is eliminated. Furthermore, for the cases considered herein, the present approach produces consistent lower bound solutions.
Modeling anisotropic flow and heat transport by using mimetic finite differences
NASA Astrophysics Data System (ADS)
Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Büsing, Henrik
2016-08-01
Modeling anisotropic flow in porous or fractured rock often assumes that the permeability tensor is diagonal, which means that its principle directions are always aligned with the coordinate axes. However, the permeability of a heterogeneous anisotropic medium usually is a full tensor. For overcoming this shortcoming, we use the mimetic finite difference method (mFD) for discretizing the flow equation in a hydrothermal reservoir simulation code, SHEMAT-Suite, which couples this equation with the heat transport equation. We verify SHEMAT-Suite-mFD against analytical solutions of pumping tests, using both diagonal and full permeability tensors. We compare results from three benchmarks for testing the capability of SHEMAT-Suite-mFD to handle anisotropic flow in porous and fractured media. The benchmarks include coupled flow and heat transport problems, three-dimensional problems and flow through a fractured porous medium with full equivalent permeability tensor. It shows firstly that the mimetic finite difference method can model anisotropic flow both in porous and in fractured media accurately and its results are better than those obtained by the multi-point flux approximation method in highly anisotropic models, secondly that the asymmetric permeability tensor can be included and leads to improved results compared the symmetric permeability tensor in the equivalent fracture models, and thirdly that the method can be easily implemented in existing finite volume or finite difference codes, which has been demonstrated successfully for SHEMAT-Suite.
NASA Astrophysics Data System (ADS)
MacKinnon, R. J.; Carey, G. F.
1988-03-01
An analysis of material interface discontinuities is developed and applied in finite difference theory to determine mathematically rigorous averaging techniques for material properties. This result is compared with other averaging techniques, particularly harmonic averaging, which is often applied in practice. We also develop a class of formulas of high accuracy for post-processing the difference formula to compute derivatives (fluxes, stresses), and conduct supporting numerical studies.
NASA Technical Reports Server (NTRS)
Chen, G.; Zheng, Q.; Coleman, M.; Weerakoon, S.
1983-01-01
This paper briefly reviews convergent finite difference schemes for hyperbolic initial boundary value problems and their applications to boundary control systems of hyperbolic type which arise in the modelling of vibrations. These difference schemes are combined with the primal and the dual approaches to compute the optimal control in the unconstrained case, as well as the case when the control is subject to inequality constraints. Some of the preliminary numerical results are also presented.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Caradonna, F. X.
1980-01-01
An implicit finite difference procedure is developed to solve the unsteady full potential equation in conservation law form. Computational efficiency is maintained by use of approximate factorization techniques. The numerical algorithm is first order in time and second order in space. A circulation model and difference equations are developed for lifting airfoils in unsteady flow; however, thin airfoil body boundary conditions have been used with stretching functions to simplify the development of the numerical algorithm.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Eversman, W.; Astley, R. J.; White, J. W.
1981-01-01
Experimental data are presented for sound propagation in a simulated infinite hard wall duct with a large change in duct cross sectional area. The data are conveniently tabulated for further use. The 'steady' state finite element theory of Astley and Eversman (1981) and the transient finite difference theory of White (1981) are in good agreement with the data for both the axial and transverse pressure profiles and the axial phase angle. Therefore, numerical finite difference and finite element theories appear to be ideally suited for handling duct propagation problems which encounter large axial gradients in acoustic parameters. The measured energy reflection coefficient agrees with the values from the Astley-Eversman modal coupling model.
NASA Astrophysics Data System (ADS)
Ren, B. Y.; Wang, L.; Tzou, H. S.; Yue, H. H.
2010-08-01
Electrical modeling of piezoelectric structronic systems by analog circuits has the disadvantages of huge circuit structure and low precision. However, studies of electrical simulation of segmented distributed piezoelectric structronic plate systems (PSPSs) by using output voltage signals of high-speed digital circuits to evaluate the real-time dynamic displacements are scarce in the literature. Therefore, an equivalent dynamic model based on the finite difference method (FDM) is presented to simulate the actual physical model of the segmented distributed PSPS with simply supported boundary conditions. By means of the FDM, the four-ordered dynamic partial differential equations (PDEs) of the main structure/segmented distributed sensor signals/control moments of the segmented distributed actuator of the PSPS are transformed to finite difference equations. A dynamics matrix model based on the Newmark-β integration method is established. The output voltage signal characteristics of the lower modes (m <= 3, n <= 3) with different finite difference mesh dimensions and different integration time steps are analyzed by digital signal processing (DSP) circuit simulation software. The control effects of segmented distributed actuators with different effective areas are consistent with the results of the analytical model in relevant references. Therefore, the method of digital simulation for vibration analysis of segmented distributed PSPSs presented in this paper can provide a reference for further research into the electrical simulation of PSPSs.
NASA Technical Reports Server (NTRS)
Jameson, A.
1976-01-01
A review is presented of some recently developed numerical methods for the solution of nonlinear equations of mixed type. The methods considered use finite difference approximations to the differential equation. Central difference formulas are employed in the subsonic zone and upwind difference formulas are used in the supersonic zone. The relaxation method for the small disturbance equation is discussed and a description is given of difference schemes for the potential flow equation in quasi-linear form. Attention is also given to difference schemes for the potential flow equation in conservation form, the analysis of relaxation schemes by the time dependent analogy, the accelerated iterative method, and three-dimensional calculations.
Hunt, R.J.; Anderson, M.P.; Kelson, V.A.
1998-01-01
This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.
Projection methods for incompressible flow problems with WENO finite difference schemes
NASA Astrophysics Data System (ADS)
de Frutos, Javier; John, Volker; Novo, Julia
2016-03-01
Weighted essentially non-oscillatory (WENO) finite difference schemes have been recommended in a competitive study of discretizations for scalar evolutionary convection-diffusion equations [20]. This paper explores the applicability of these schemes for the simulation of incompressible flows. To this end, WENO schemes are used in several non-incremental and incremental projection methods for the incompressible Navier-Stokes equations. Velocity and pressure are discretized on the same grid. A pressure stabilization Petrov-Galerkin (PSPG) type of stabilization is introduced in the incremental schemes to account for the violation of the discrete inf-sup condition. Algorithmic aspects of the proposed schemes are discussed. The schemes are studied on several examples with different features. It is shown that the WENO finite difference idea can be transferred to the simulation of incompressible flows. Some shortcomings of the methods, which are due to the splitting in projection schemes, become also obvious.
NASA Technical Reports Server (NTRS)
Subrahmanyam, K. B.; Kaza, K. R. V.
1985-01-01
Theoretical natural frequencies of the first three modes of torsional vibration of pretwisted, rotating cantilever beams are determined for various thickness and aspect ratios. Conclusions concerning individual and collective effects of warping, pretwist, tension-torsion coupling and tennis racket effect (twist-rotational coupling) terms on the natural frequencies are drawn from numerical results obtained by using a finite difference procedure with first order central differences. The relative importance of structural warping, inertial warping, pretwist, tension-torsion and twist-rotational coupling terms is discussed for various rotational speeds. The accuracy of results obtained by using the finite difference approach is verified by a comparison with the exact solution for specialized simple cases of the equation of motion used in this paper.
NASA Astrophysics Data System (ADS)
Liao, Jianfei; Sun, Junqiang
2012-12-01
Based on the full-vector finite element method with anisotropic perfectly matched layers, modal birefringence and confinement loss for the fundamental mode in rectangular-lattice photonic crystal fibers with different sizes of elliptical air holes in the cladding and the core are investigated numerically. The results show that the modal birefringence in this proposed photonic crystal fibers can be up to 5.64 × 10-2 at the wavelength of 1.55 μm. Moreover, when the birefringence is higher than 4 × 10-2, the confinement loss of x-polarized mode can be kept less than 0.005 dB/km at 1.55 μm. It means that the tradeoff between the high birefringence and the low confinement loss is overcome.
A finite difference solution for the propagation of sound in near sonic flows
NASA Technical Reports Server (NTRS)
Hariharan, S. I.; Lester, H. C.
1983-01-01
An explicit time/space finite difference procedure is used to model the propagation of sound in a quasi one-dimensional duct containing high Mach number subsonic flow. Nonlinear acoustic equations are derived by perturbing the time-dependent Euler equations about a steady, compressible mean flow. The governing difference relations are based on a fourth-order, two-step (predictor-corrector) MacCormack scheme. The solution algorithm functions by switching on a time harmonic source and allowing the difference equations to iterate to a steady state. The principal effect of the non-linearities was to shift acoustical energy to higher harmonics. With increased source strengths, wave steepening was observed. This phenomenon suggests that the acoustical response may approach a shock behavior at at higher sound pressure level as the throat Mach number aproaches unity. On a peak level basis, good agreement between the nonlinear finite difference and linear finite element solutions was observed, even through a peak sound pressure level of about 150 dB occurred in the throat region. Nonlinear steady state waveform solutions are shown to be in excellent agreement with a nonlinear asymptotic theory.
Higher-order finite-difference formulation of periodic Orbital-free Density Functional Theory
NASA Astrophysics Data System (ADS)
Ghosh, Swarnava; Suryanarayana, Phanish
2016-02-01
We present a real-space formulation and higher-order finite-difference implementation of periodic Orbital-free Density Functional Theory (OF-DFT). Specifically, utilizing a local reformulation of the electrostatic and kernel terms, we develop a generalized framework for performing OF-DFT simulations with different variants of the electronic kinetic energy. In particular, we propose a self-consistent field (SCF) type fixed-point method for calculations involving linear-response kinetic energy functionals. In this framework, evaluation of both the electronic ground-state and forces on the nuclei are amenable to computations that scale linearly with the number of atoms. We develop a parallel implementation of this formulation using the finite-difference discretization. We demonstrate that higher-order finite-differences can achieve relatively large convergence rates with respect to mesh-size in both the energies and forces. Additionally, we establish that the fixed-point iteration converges rapidly, and that it can be further accelerated using extrapolation techniques like Anderson's mixing. We validate the accuracy of the results by comparing the energies and forces with plane-wave methods for selected examples, including the vacancy formation energy in Aluminum. Overall, the suitability of the proposed formulation for scalable high performance computing makes it an attractive choice for large-scale OF-DFT calculations consisting of thousands of atoms.
NASA Astrophysics Data System (ADS)
Cunha, G.; Redonnet, S.
2014-04-01
The present article aims at highlighting the strengths and weaknesses of the so-called spectral-like optimized (explicit central) finite-difference schemes, when the latter are used for numerically approximating spatial derivatives in aeroacoustics evolution problems. With that view, we first remind how differential operators can be approximated using explicit central finite-difference schemes. The possible spectral-like optimization of the latter is then discussed, the advantages and drawbacks of such an optimization being theoretically studied, before they are numerically quantified. For doing so, two popular spectral-like optimized schemes are assessed via a direct comparison against their standard counterparts, such a comparative exercise being conducted for several academic test cases. At the end, general conclusions are drawn, which allows us discussing the way spectral-like optimized schemes shall be preferred (or not) to standard ones, when it comes to simulate real-life aeroacoustics problems.
A mapped finite difference study of noise propagation in nonuniform ducts with mean flow
NASA Technical Reports Server (NTRS)
Raad, Peter E.; White, James W.
1987-01-01
The primary objective of this work is to study noise propagation in acoustically lined variable area ducts with mean fluid flow. The method of study is numerical in nature and involves a body-fitted grid mapping procedure in conjunction with a factored-implicit finite difference technique. The mean fluid flow model used is two-dimensional, inviscid, irrotational, incompressible, and nonheat conducting. Fully-coupled solutions of the linearized gasdynamic equations are obtained for both positive and negative Mach numbers as well as for hard and soft wall conditions. The factored-implicit finite difference technique used did give rise to short wavelength perturbations, but these were dampened by the introduction of higher order artificial dissipation terms into the scheme. Results compared favorably with available numerical and experimental data.
A semi-implicit finite difference model for three-dimensional tidal circulation,
Casulli, V.; Cheng, R.T.
1992-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.
On One-Dimensional Stretching Functions for Finite-Difference Calculations
NASA Technical Reports Server (NTRS)
Vinokur, M.
1980-01-01
The class of one dimensional stretching function used in finite difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two sided stretching function, for which the arbitrary slopes at the two ends of the one dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. The general two sided function has many applications in the construction of finite difference grids.
NASA Technical Reports Server (NTRS)
Hannah, S. R.; Palazotto, A. N.
1978-01-01
A new trigonometric approach to the finite difference calculus was applied to the problem of beam buckling as represented by virtual work and equilibrium equations. The trigonometric functions were varied by adjusting a wavelength parameter in the approximating Fourier series. Values of the critical force obtained from the modified approach for beams with a variety of boundary conditions were compared to results using the conventional finite difference method. The trigonometric approach produced significantly more accurate approximations for the critical force than the conventional approach for a relatively wide range in values of the wavelength parameter; and the optimizing value of the wavelength parameter corresponded to the half-wavelength of the buckled mode shape. It was found from a modal analysis that the most accurate solutions are obtained when the approximating function closely represents the actual displacement function and matches the actual boundary conditions.
NASA Astrophysics Data System (ADS)
Peng, Guanghan
2013-10-01
In this paper, we propose a new lattice model of traffic flow with the consideration of individual difference of anticipation driving behavior. The linear stability condition and the mKdV equation are derived from linear stability analysis and nonlinear analysis, respectively. Furthermore, numerical simulation shows that the anticipation driving behavior can increase the cell number of low density, which means that more cars can run freely and traffic congestion can be suppressed efficiently by taking the anticipation driving behavior into account in lattice model. Moreover, with the coefficient of the anticipation driving behavior increasing, the low density region turns wide corresponding to individual difference of anticipation driving behavior.
Three-dimensional finite difference time domain modeling of the Earth-ionosphere cavity resonances
NASA Astrophysics Data System (ADS)
Yang, Heng; Pasko, Victor P.
2005-02-01
Comparison of results from a three-dimensional (3-D) finite difference time domain (FDTD) model of Schumann resonances (SR) with a set of classical eigenfrequency and quality factor solutions for laterally uniform spherically symmetric Earth-ionosphere cavity and recent SR observations during solar proton events (SPEs) and X-ray bursts demonstrate the potential and applicability of the FDTD technique for studies of realistic SR problems.
Simulation of realistic rotor blade-vortex interactions using a finite-difference technique
NASA Technical Reports Server (NTRS)
Hassan, Ahmed A.; Charles, Bruce D.
1989-01-01
A numerical finite-difference code has been used to predict helicopter blade loads during realistic self-generated three-dimensional blade-vortex interactions. The velocity field is determined via a nonlinear superposition of the rotor flowfield. Data obtained from a lifting-line helicopter/rotor trim code are used to determine the instantaneous position of the interaction vortex elements with respect to the blade. Data obtained for three rotor advance ratios show a reasonable correlation with wind tunnel data.
Transport and dispersion of pollutants in surface impoundments: a finite difference model
Yeh, G.T.
1980-07-01
A surface impoundment model by finite-difference (SIMFD) has been developed. SIMFD computes the flow rate, velocity field, and the concentration distribution of pollutants in surface impoundments with any number of islands located within the region of interest. Theoretical derivations and numerical algorithm are described in detail. Instructions for the application of SIMFD and listings of the FORTRAN IV source program are provided. Two sample problems are given to illustrate the application and validity of the model.
Finite-difference, time-domain analysis of a folded acoustic transmission line.
Jackson, Charles M
2005-03-01
Recently designed, modern versions of renais sance woodwind instruments such as the recorder and serpent use square cross sections and a folded acoustic transmission line. Conventional microwave techniques would expect that this bend would cause unwanted reflections and impedance discontinuities. This paper analyses the folded acoustic transmission line using finite-difference, time-domain techniques and shows that the discontinuity can be compensated with by the use of a manufacturable method. PMID:15857045
A staggered mesh finite difference scheme for the computation of compressible flows
NASA Technical Reports Server (NTRS)
Sanders, Richard
1992-01-01
A simple high resolution finite difference technique is presented to approximate weak solutions to hyperbolic systems of conservation laws. The method does not rely on Riemann problem solvers and is therefore easy to extend to a wide variety of problems. The overall performance (resolution and CPU requirements) is competitive, with other state-of-the-art techniques offering sharp nonoscillatory shocks and contacts. Theoretical results confirm the reliability of the approach for linear systems and nonlinear scalar equations.
NASA Astrophysics Data System (ADS)
von Sydow, Lina
2013-10-01
The discontinuous Galerkin method for time integration of the Black-Scholes partial differential equation for option pricing problems is studied and compared with more standard time-integrators. In space an adaptive finite difference discretization is employed. The results show that the dG method are in most cases at least comparable to standard time-integrators and in some cases superior to them. Together with adaptive spatial grids the suggested pricing method shows great qualities.
NASA Technical Reports Server (NTRS)
Abramopoulos, Frank
1988-01-01
The conditions under which finite difference schemes for the shallow water equations can conserve both total energy and potential enstrophy are considered. A method of deriving such schemes using operator formalism is developed. Several such schemes are derived for the A-, B- and C-grids. The derived schemes include second-order schemes and pseudo-fourth-order schemes. The simplest B-grid pseudo-fourth-order schemes are presented.
ADI Finite Difference Discretization of the Heston-Hull-White PDE
NASA Astrophysics Data System (ADS)
Haentjens, Tinne; Hout, Karel in't.
2010-09-01
This paper concerns the efficient numerical solution of the time-dependent, three-dimensional Heston-Hull-White PDE for the fair prices of European call options. The numerical solution method described in this paper consists of a finite difference discretization on non-uniform spatial grids followed by an Alternating Direction Implicit scheme for the time discretization and extends the method recently proved effective by In't Hout & Foulon (2010) for the simpler, two-dimensional Heston PDE.
Finite-difference model for 3-D flow in bays and estuaries
Smith, Peter E.; Larock, Bruce E.
1993-01-01
This paper describes a semi-implicit finite-difference model for the numerical solution of three-dimensional flow in bays and estuaries. The model treats the gravity wave and vertical diffusion terms in the governing equations implicitly, and other terms explicitly. The model achieves essentially second-order accurate and stable solutions in strongly nonlinear problems by using a three-time-level leapfrog-trapezoidal scheme for the time integration.
Finite-difference models of ordinary differential equations - Influence of denominator functions
NASA Technical Reports Server (NTRS)
Mickens, Ronald E.; Smith, Arthur
1990-01-01
This paper discusses the influence on the solutions of finite-difference schemes of using a variety of denominator functions in the discrete modeling of the derivative for any ordinary differential equation. The results obtained are a consequence of using a generalized definition of the first derivative. A particular example of the linear decay equation is used to illustrate in detail the various solution possibilities that can occur.
Direct Simulations of Transition and Turbulence Using High-Order Accurate Finite-Difference Schemes
NASA Technical Reports Server (NTRS)
Rai, Man Mohan
1997-01-01
In recent years the techniques of computational fluid dynamics (CFD) have been used to compute flows associated with geometrically complex configurations. However, success in terms of accuracy and reliability has been limited to cases where the effects of turbulence and transition could be modeled in a straightforward manner. Even in simple flows, the accurate computation of skin friction and heat transfer using existing turbulence models has proved to be a difficult task, one that has required extensive fine-tuning of the turbulence models used. In more complex flows (for example, in turbomachinery flows in which vortices and wakes impinge on airfoil surfaces causing periodic transitions from laminar to turbulent flow) the development of a model that accounts for all scales of turbulence and predicts the onset of transition may prove to be impractical. Fortunately, current trends in computing suggest that it may be possible to perform direct simulations of turbulence and transition at moderate Reynolds numbers in some complex cases in the near future. This seminar will focus on direct simulations of transition and turbulence using high-order accurate finite-difference methods. The advantage of the finite-difference approach over spectral methods is that complex geometries can be treated in a straightforward manner. Additionally, finite-difference techniques are the prevailing methods in existing application codes. In this seminar high-order-accurate finite-difference methods for the compressible and incompressible formulations of the unsteady Navier-Stokes equations and their applications to direct simulations of turbulence and transition will be presented.
Properties of finite difference models of non-linear conservative oscillators
NASA Technical Reports Server (NTRS)
Mickens, R. E.
1988-01-01
Finite-difference (FD) approaches to the numerical solution of the differential equations describing the motion of a nonlinear conservative oscillator are investigated analytically. A generalized formulation of the Duffing and modified Duffing equations is derived and analyzed using several FD techniques, and it is concluded that, although it is always possible to contstruct FD models of conservative oscillators which are themselves conservative, caution is required to avoid numerical solutions which do not accurately reflect the properties of the original equation.
QUARKONIUM AT FINITE TEMPERATURE.
UMEDA, T.
2006-06-09
Lattice QCD studies on charmonium at finite temperature are presented After a discussion about problems for the Maximum Entropy Method applied to finite temperature lattice QCD, I show several results on charmonium spectral functions. The 'wave function' of charmonium is also discussed to study the spatial correlation between quark and anti-quark in deconfinement phase.
NASA Astrophysics Data System (ADS)
Geneva, Nicholas; Wang, Lian-Ping
2015-11-01
In the past 25 years, the mesoscopic lattice Boltzmann method (LBM) has become an increasingly popular approach to simulate incompressible flows including turbulent flows. While LBM solves more solution variables compared to the conventional CFD approach based on the macroscopic Navier-Stokes equation, it also offers opportunities for more efficient parallelization. In this talk we will describe several different algorithms that have been developed over the past 10 plus years, which can be used to represent the two core steps of LBM, collision and streaming, more effectively than standard approaches. The application of these algorithms spans LBM simulations ranging from basic channel to particle laden flows. We will cover the essential detail on the implementation of each algorithm for simple 2D flows, to the challenges one faces when using a given algorithm for more complex simulations. The key is to explore the best use of data structure and cache memory. Two basic data structures will be discussed and the importance of effective data storage to maximize a CPU's cache will be addressed. The performance of a 3D turbulent channel flow simulation using these different algorithms and data structures will be compared along with important hardware related issues.
NASA Technical Reports Server (NTRS)
Lansing, Faiza S.; Rascoe, Daniel L.
1993-01-01
This paper presents a modified Finite-Difference Time-Domain (FDTD) technique using a generalized conformed orthogonal grid. The use of the Conformed Orthogonal Grid, Finite Difference Time Domain (GFDTD) enables the designer to match all the circuit dimensions, hence eliminating a major source o error in the analysis.
Finite difference time domain analysis of microwave ferrite devices and mobile antenna systems
NASA Astrophysics Data System (ADS)
Yildirim, Bahadir Suleyman
This dissertation presents analysis and design of shielded mobile antenna systems and microwave ferrite devices using a finite-difference time-domain method. Novel shielded antenna structures suitable for cellular communications have been analyzed and designed with emphasize on reducing excessive radiated energy absorbed in user's head and hand, while keeping the antenna performance at its peak in the presence of user. These novel antennas include a magnetically shielded antenna, a dual-resonance shielded antenna and, a shorted and truncated microstrip antenna. The effect of magnetic coating on the performance of a shielded monopole antenna is studied extensively. A parametric study is performed to analyze the dual-resonance phenomenon observed in the dual-resonance shielded antenna, optimize the antenna design within the cellular communications band, and improve the antenna performance. Input impedance, near and far fields of the dual-resonance shielded antenna are calculated using the finite-difference time-domain method. Experimental validation is also presented. In addition, performance of a shorted and truncated microstrip antenna has been investigated over a wide range of substrate parameters and dimensions. Objectives of the research work also include development of a finite-difference time-domain technique to accurately model magnetically anisotropic media, including the effect of non-uniform magnetization within the finite-size ferrite material due to demagnetizing fields. A slow wave thin film isolator and a stripline disc junction circulator are analyzed. An extensive parametric study calculates wide-band frequency-dependent parameters of these devices for various device dimensions and material parameters. Finally, a ferrite-filled stripline configuration is analyzed to study the non- linear behaviour of ferrite by introducing a modified damping factor.
Experiments with explicit filtering for LES using a finite-difference method
NASA Technical Reports Server (NTRS)
Lund, T. S.; Kaltenbach, H. J.
1995-01-01
The equations for large-eddy simulation (LES) are derived formally by applying a spatial filter to the Navier-Stokes equations. The filter width as well as the details of the filter shape are free parameters in LES, and these can be used both to control the effective resolution of the simulation and to establish the relative importance of different portions of the resolved spectrum. An analogous, but less well justified, approach to filtering is more or less universally used in conjunction with LES using finite-difference methods. In this approach, the finite support provided by the computational mesh as well as the wavenumber-dependent truncation errors associated with the finite-difference operators are assumed to define the filter operation. This approach has the advantage that it is also 'automatic' in the sense that no explicit filtering: operations need to be performed. While it is certainly convenient to avoid the explicit filtering operation, there are some practical considerations associated with finite-difference methods that favor the use of an explicit filter. Foremost among these considerations is the issue of truncation error. All finite-difference approximations have an associated truncation error that increases with increasing wavenumber. These errors can be quite severe for the smallest resolved scales, and these errors will interfere with the dynamics of the small eddies if no corrective action is taken. Years of experience at CTR with a second-order finite-difference scheme for high Reynolds number LES has repeatedly indicated that truncation errors must be minimized in order to obtain acceptable simulation results. While the potential advantages of explicit filtering are rather clear, there is a significant cost associated with its implementation. In particular, explicit filtering reduces the effective resolution of the simulation compared with that afforded by the mesh. The resolution requirements for LES are usually set by the need to capture
A mimetic finite difference method for the Stokes problem with elected edge bubbles
Lipnikov, K; Berirao, L
2009-01-01
A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this article is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.
Mimetic finite difference method for the stokes problem on polygonal meshes
Lipnikov, K; Beirao Da Veiga, L; Gyrya, V; Manzini, G
2009-01-01
Various approaches to extend the finite element methods to non-traditional elements (pyramids, polyhedra, etc.) have been developed over the last decade. Building of basis functions for such elements is a challenging task and may require extensive geometry analysis. The mimetic finite difference (MFD) method has many similarities with low-order finite element methods. Both methods try to preserve fundamental properties of physical and mathematical models. The essential difference is that the MFD method uses only the surface representation of discrete unknowns to build stiffness and mass matrices. Since no extension inside the mesh element is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we develop a MFD method for the Stokes problem on arbitrary polygonal meshes. The method is constructed for tensor coefficients, which will allow to apply it to the linear elasticity problem. The numerical experiments show the second-order convergence for the velocity variable and the first-order for the pressure.
Numerical analysis of polarization gratings using the finite-difference time-domain method
Oh, Chulwoo; Escuti, Michael J.
2007-10-15
We report the first full numerical analysis of polarization gratings (PGs), and study their most general properties and limits by using the finite-difference time-domain (FDTD) method. In this way, we avoid limiting assumptions on material properties or grating dimensions (e.g., no paraxial approximations) and provide a more complete understanding of PG diffraction behavior. We identify the fundamental delineation between diffraction regimes (thin versus thick) for anisotropic gratings and determine the conditions for {approx_equal}100% diffraction efficiency in the framework of the coupled-wave {rho} and Q parameters. Diffraction characteristics including the efficiency, spectral response, and polarization sensitivity are investigated for the two primary types of PGs with linear and circular birefringence. The angular response and finite-grating behavior (i.e., pixelation) are also examined. Comparisons with previous analytic approximations, where applicable, show good agreement.
NASA Technical Reports Server (NTRS)
Kishoni, Doron; Taasan, Shlomo
1994-01-01
Solution of the wave equation using techniques such as finite difference or finite element methods can model elastic wave propagation in solids. This requires mapping the physical geometry into a computational domain whose size is governed by the size of the physical domain of interest and by the required resolution. This computational domain, in turn, dictates the computer memory requirements as well as the calculation time. Quite often, the physical region of interest is only a part of the whole physical body, and does not necessarily include all the physical boundaries. Reduction of the calculation domain requires positioning an artificial boundary or region where a physical boundary does not exist. It is important however that such a boundary, or region, will not affect the internal domain, i.e., it should not cause reflections that propagate back into the material. This paper concentrates on the issue of constructing such a boundary region.
NASA Astrophysics Data System (ADS)
Ranjbar-Far, M.; Absi, J.; Mariaux, G.
2012-12-01
A new finite element model is used to investigate catastrophic failures of a thermal barrier coatings system due to crack propagation along the interfaces between the ceramic top-coat, thermally grown oxide, and bond-coat layers, as well as between the lamellas structure of the ceramic layer. The thermo-mechanical model is designed to take into account a non-homogenous temperature distribution and the effects of the residual stresses generated during the coating process. Crack propagation is simulated using the contact tool "Debond" present in the ABAQUS finite element code. Simulations are performed with a geometry corresponding to similar or dissimilar amplitudes of asperity, and for different thicknesses of the oxide layer. The numerical results have shown that crack evolution depends crucially on the ratio of the loading rate caused by growth and swelling of the oxide layer and also on the interface roughness obtained during the spraying of coatings.
NASA Astrophysics Data System (ADS)
Kumar, Vivek; Raghurama Rao, S. V.
2008-04-01
Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally
A transfer-matrix study of directed lattice animals and directed percolation on a square lattice
NASA Astrophysics Data System (ADS)
Knežević, Dragica; Knežević, Milan
2016-03-01
We studied the large-scale properties of directed lattice animals and directed percolation on a square lattice. Using a transfer-matrix approach on strips of finite widths, we generated relatively long sequences of estimates for effective values of critical fugacity, percolation threshold and correlation length critical exponents. We applied two different extrapolation methods to obtain estimates for infinite systems. The precision of our final estimates is comparable to (or better than) the precision of the best currently available results.
Application of finite difference techniques to noise propagation in jet engine ducts
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1973-01-01
A finite difference formulation is presented for wave propagation in a rectangular two-dimensional duct without steady flow. The difference technique, which should be useful in the study of acoustically treated inlet and exhausts ducts used in turbofan engines, can readily handle acoustical flow field complications such as axial variations in wall impedance and cross section area. In the numerical analysis, the continuous acoustic field is lumped into a series of grid points in which the pressure and velocity at each grid point are separated into real and imaginary terms. An example calculation is also presented for the sound attenuation in a two-dimensional straight soft-walled suppressor.
Application of finite difference techniques to noise propagation in jet engine ducts
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1973-01-01
A finite difference formulation is presented for wave propagation in a rectangular two-dimensional duct without steady flow. The difference technique, which should be used in the study of acoustically treated inlet and exhausts ducts used in turbofan engines, can readily handle acoustical flow field complications such as axial variations in wall impedance and cross-section area. In the numerical analysis, the continuous acoustic field is lumped into a series of grid points in which the pressure and velocity at each grid point are separated into real and imaginary terms. An example calculation is also presented for the sound attenuation in a two-dimensional straight soft-walled suppressor.
Flux vector splitting of the inviscid equations with application to finite difference methods
NASA Technical Reports Server (NTRS)
Steger, J. L.; Warming, R. F.
1979-01-01
The conservation-law form of the inviscid gasdynamic equations has the remarkable property that the nonlinear flux vectors are homogeneous functions of degree one. This property readily permits the splitting of flux vectors into subvectors by similarity transformations so that each subvector has associated with it a specified eigenvalue spectrum. As a consequence of flux vector splitting, new explicit and implicit dissipative finite-difference schemes are developed for first-order hyperbolic systems of equations. Appropriate one-sided spatial differences for each split flux vector are used throughout the computational field even if the flow is locally subsonic. The results of some preliminary numerical computations are included.
Harbaugh, Arlen W.
1992-01-01
The U.S. Geological Survey's Modular Ground-Water Flow Model assumes that model nodes are in the center of cells and that transmissivity is constant within a cell. Based on these assumptions, the model calculates coefficients, called conductance, that are multiplied by head difference to determine flow between cells. Although these are common assumptions in finite-difference models, other assumptions are possible. A new option to the model program reads conductance as input data rather than calculating it. This optional lows the user to calculate conductance outside of the model. The user thus has the flexibility to define conductance using any desired assumptions. For a water-table condition, horizontal conductance must change as water level varies. To handle this situation, the new option reads conductance divided by thickness (CDT) as input data. The model calculates saturated thickness and multiplies it by CDT to obtain conductance. Thus, the user is still free from the assumptions of centered nodes and constant transmissivity in cells. The model option is written in FORTRAN77 and is fully compatible with the existing model. This report documents the new model option; it includes a description of the concepts, detailed input instructions, and a listing of the code.
NASA Technical Reports Server (NTRS)
Noor, A. K.; Stephens, W. B.
1973-01-01
Several finite difference schemes are applied to the stress and free vibration analysis of homogeneous isotropic and layered orthotropic shells of revolution. The study is based on a form of the Sanders-Budiansky first-approximation linear shell theory modified such that the effects of shear deformation and rotary inertia are included. A Fourier approach is used in which all the shell stress resultants and displacements are expanded in a Fourier series in the circumferential direction, and the governing equations reduce to ordinary differential equations in the meridional direction. While primary attention is given to finite difference schemes used in conjunction with first order differential equation formulation, comparison is made with finite difference schemes used with other formulations. These finite difference discretization models are compared with respect to simplicity of application, convergence characteristics, and computational efficiency. Numerical studies are presented for the effects of variations in shell geometry and lamination parameters on the accuracy and convergence of the solutions obtained by the different finite difference schemes. On the basis of the present study it is shown that the mixed finite difference scheme based on the first order differential equation formulation and two interlacing grids for the different fundamental unknowns combines a number of advantages over other finite difference schemes previously reported in the literature.
An overlapped grid method for multigrid, finite volume/difference flow solvers: MaGGiE
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Lessard, Victor R.
1990-01-01
The objective is to develop a domain decomposition method via overlapping/embedding the component grids, which is to be used by upwind, multi-grid, finite volume solution algorithms. A computer code, given the name MaGGiE (Multi-Geometry Grid Embedder) is developed to meet this objective. MaGGiE takes independently generated component grids as input, and automatically constructs the composite mesh and interpolation data, which can be used by the finite volume solution methods with or without multigrid convergence acceleration. Six demonstrative examples showing various aspects of the overlap technique are presented and discussed. These cases are used for developing the procedure for overlapping grids of different topologies, and to evaluate the grid connection and interpolation data for finite volume calculations on a composite mesh. Time fluxes are transferred between mesh interfaces using a trilinear interpolation procedure. Conservation losses are minimal at the interfaces using this method. The multi-grid solution algorithm, using the coaser grid connections, improves the convergence time history as compared to the solution on composite mesh without multi-gridding.
Evaluation of a thin-slot formalism for finite-difference time-domain electromagnetics codes
Turner, C.D.; Bacon, L.D.
1987-03-01
A thin-slot formalism for use with finite-difference time-domain (FDTD) electromagnetics codes has been evaluated in both two and three dimensions. This formalism allows narrow slots to be modeled in the wall of a scatterer without reducing the space grid size to the gap width. In two dimensions, the evaluation involves the calculation of the total fields near two infinitesimally thin coplanar strips separated by a gap. A method-of-moments (MoM) solution of the same problem is used as a benchmark for comparison. Results in two dimensions show that up to 10% error can be expected in total electric and magnetic fields both near (lambda/40) and far (1 lambda) from the slot. In three dimensions, the evaluation is similar. The finite-length slot is placed in a finite plate and an MoM surface patch solution is used for the benchmark. These results, although less extensive than those in two dimensions, show that slightly larger errors can be expected. Considering the approximations made near the slot in incorporating the formalism, the results are very promising. Possibilities also exist for applying this formalism to walls of arbitrary thickness and to other types of slots, such as overlapping joints. 11 refs., 25 figs., 6 tabs.
Lee, D. W.; Joo, H. G.
2013-07-01
The methods and performance of a three-dimensional S{sub n} transport code employing the Discontinuous Finite Element Method (DFEM) and the Coarse Mesh Finite Difference (CMFD) formulation are presented. The mesh generator GMSH and a post processing visualization tool Visit are combined with the code for flexible geometry processing and versatile visualization. The CMFD method for DFEM Sn applications is formulated and the performance of the CMFD acceleration of eigenvalue calculations is demonstrated for a simple set of neutron transport problems. (authors)
A modular three-dimensional finite-difference ground-water flow model
McDonald, M.G.; Harbaugh, A.W.
1984-01-01
This report presents a finite-difference model and its associated modular computer program. The model simulates flow in three dimensions. The report includes detailed explanations of physical and mathematical concepts on which the model is based and an explanation of how those concepts were incorporated in the modular structure of the computer program. The modular structure consists of a Main Program and a series of highly independent subroutines called 'modules.' The modules are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system which is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving linear equations which describe the flow system, such as the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The division of the program into modules permits the user to examine specific hydrologic features of the model independently. This also facilitates development of additional capabilities because new modules or packages can be added to the program without modifying the existing modules or packages. The input and output systems of the computer program are also designed to permit maximum flexibility. Ground-water flow within the aquifer is simulated using a block-centered finite-difference approach. Layers can be simulated as confined, unconfined, or a combination of confined and unconfined. Flow from external stresses, such as flow to wells, areal recharge, evapotranspiration, flow to drains, and flow through riverbeds, can also be simulated. The finite-difference equations can be solved using either the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The program is written in FORTRAN '66 and will run without modification on most computers which have a FORTRAN '66 compiler. It will also run, without modification, with most extended FORTRAN '77 compilers and with minor modifications on standard FORTRAN '77 compilers. Documentation presented in this report
A modular three-dimensional finite-difference ground-water flow model
McDonald, Michael G.; Harbaugh, Arlen W.
1988-01-01
This report presents a finite-difference model and its associated modular computer program. The model simulates flow in three dimensions. The report includes detailed explanations of physical and mathematical concepts on which the model is based and an explanation of how those concepts are incorporated in the modular structure of the computer program. The modular structure consists of a Main Program and a series of highly independent subroutines called 'modules.' The modules are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system which is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving linear equations which describe the flow system, such as the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The division of the program into modules permits the user to examine specific hydrologic features of the model independently. This also facilita development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program are also designed to permit maximum flexibility. Ground-water flow within the aquifer is simulated using a block-centered finite-difference approach. Layers can be simulated as confined, unconfined, or a combination of confined and unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and streams, can also be simulated. The finite-difference equations can be solved using either the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The program is written in FORTRAN 77 and will run without modification on most computers that have a FORTRAN 77 compiler. For each program ,module, this report includes a narrative description, a flow chart, a list of variables, and a module listing.
A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model
McDonald, Michael G.; Harbaugh, Arlen W.; Guo, Weixing, (translator); Lu, Guoping
1988-01-01
This report presents a finite-difference model and its associated modular computer program. The model simulates flow in three dimensions. The report includes detailed explanations of physical and mathematical concepts on which the model is based and an explanation of how those concepts are incorporated in the modular structure of the computer program. The modular structure consists of a Main Program and a series of highly independent subroutines called 'modules.' The modules are grouped into 'packages.' Each package deals with a specific feature of the hydrologic system which is to be simulated, such as flow from rivers or flow into drains, or with a specific method of solving linear equations which describe the flow system, such as the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The division of the program into modules permits the user to examine specific hydrologic features of the model independently. This also facilita development of additional capabilities because new packages can be added to the program without modifying the existing packages. The input and output systems of the computer program are also designed to permit maximum flexibility. Ground-water flow within the aquifer is simulated using a block-centered finite-difference approach. Layers can be simulated as confined, unconfined, or a combination of confined and unconfined. Flow associated with external stresses, such as wells, areal recharge, evapotranspiration, drains, and streams, can also be simulated. The finite-difference equations can be solved using either the Strongly Implicit Procedure or Slice-Successive Overrelaxation. The program is written in FORTRAN 77 and will run without modification on most computers that have a FORTRAN 77 compiler. For each program ,module, this report includes a narrative description, a flow chart, a list of variables, and a module listing.
Transient analysis of printed lines using finite-difference time-domain method
Ahmed, Shahid
2012-03-29
Comprehensive studies of ultra-wideband pulses and electromagnetic coupling on printed coupled lines have been performed using full-wave 3D finite-difference time-domain analysis. Effects of unequal phase velocities of coupled modes, coupling between line traces, and the frequency dispersion on the waveform fidelity and crosstalk have been investigated in detail. To discriminate the contributions of different mechanisms into pulse evolution, single and coupled microstrip lines without (ϵ_{r} = 1) and with (ϵ_{r} > 1) dielectric substrates have been examined. To consistently compare the performance of the coupled lines with substrates of different permittivities and transients of different characteristic times, a generic metric similar to the electrical wavelength has been introduced. The features of pulse propagation on coupled lines with layered and pedestal substrates and on the irregular traces have been explored. Finally, physical interpretations of the simulation results are discussed in the paper.
Computing interaural differences through finite element modeling of idealized human heads
Cai, Tingli; Rakerd, Brad; Hartmann, William M.
2015-01-01
Acoustical interaural differences were computed for a succession of idealized shapes approximating the human head-related anatomy: sphere, ellipsoid, and ellipsoid with neck and torso. Calculations were done as a function of frequency (100–2500 Hz) and for source azimuths from 10 to 90 degrees using finite element models. The computations were compared to free-field measurements made with a manikin. Compared to a spherical head, the ellipsoid produced greater large-scale variation with frequency in both interaural time differences and interaural level differences, resulting in better agreement with the measurements. Adding a torso, represented either as a large plate or as a rectangular box below the neck, further improved the agreement by adding smaller-scale frequency variation. The comparisons permitted conjectures about the relationship between details of interaural differences and gross features of the human anatomy, such as the height of the head, and length of the neck. PMID:26428792
Nonlinear Comparison of High-Order and Optimized Finite-Difference Schemes
NASA Technical Reports Server (NTRS)
Hixon, R.
1998-01-01
The effect of reducing the formal order of accuracy of a finite-difference scheme in order to optimize its high-frequency performance is investigated using the I-D nonlinear unsteady inviscid Burgers'equation. It is found that the benefits of optimization do carry over into nonlinear applications. Both explicit and compact schemes are compared to Tam and Webb's explicit 7-point Dispersion Relation Preserving scheme as well as a Spectral-like compact scheme derived following Lele's work. Results are given for the absolute and L2 errors as a function of time.
One-dimensional transient finite difference model of an operational salinity gradient solar pond
NASA Technical Reports Server (NTRS)
Hicks, Michael C.; Golding, Peter
1992-01-01
This paper describes the modeling approach used to simulate the transient behavior of a salinity gradient solar pond. A system of finite difference equations are used to generate the time dependent temperature and salinity profiles within the pond. The stability of the pond, as determined by the capacity of the resulting salinity profile to suppress thermal convection within the primary gradient region of the pond, is continually monitored and when necessary adjustments are made to the thickness of the gradient zone. Results of the model are then compared to measurements taken during two representative seasonal periods at the University of Texas at El Paso's (UTEP's) research solar pond.
Finite Differences and Collocation Methods for the Solution of the Two Dimensional Heat Equation
NASA Technical Reports Server (NTRS)
Kouatchou, Jules
1999-01-01
In this paper we combine finite difference approximations (for spatial derivatives) and collocation techniques (for the time component) to numerically solve the two dimensional heat equation. We employ respectively a second-order and a fourth-order schemes for the spatial derivatives and the discretization method gives rise to a linear system of equations. We show that the matrix of the system is non-singular. Numerical experiments carried out on serial computers, show the unconditional stability of the proposed method and the high accuracy achieved by the fourth-order scheme.
A staggered mesh finite difference scheme for the computation of hypersonic Euler flows
NASA Technical Reports Server (NTRS)
Sanders, Richard
1991-01-01
A shock capturing finite difference method for systems of hyperbolic conservation laws is presented which avoids the need to solve Riemann problems while being competitive in performance with other current methods. A staggered spatial mesh is employed, so that complicated nonlinear waves generated at cell interfaces are averaged over cell interiors at the next time level. The full method combines to form a conservative version of the modified method of characteristics. The advantages of the method are discussed, and numerical results are presented for the two-dimensional double ellipse problem.
Finite-Difference Time-Domain solution of Maxwell's equations for the dispersive ionosphere
NASA Astrophysics Data System (ADS)
Nickisch, L. J.; Franke, P. M.
1992-10-01
The Finite-Difference Time-Domain (FDTD) technique is a conceptually simple, yet powerful, method for obtaining numerical solutions to electromagnetic propagation problems. However, the application of FDTD methods to problems in ionospheric radiowave propagation is complicated by the dispersive nature of the ionospheric plasma. In the time domain, the electric displacement is the convolution of the dielectric tensor with the electric field, and thus requires information from the entire signal history. This difficulty can be avoided by returning to the dynamical equations from which the dielectric tensor is derived. By integrating these differential equations simultaneously with the Maxwell equations, temporal dispersion is fully incorporated.
Rotordynamic coefficients for labyrinth seals calculated by means of a finite difference technique
NASA Technical Reports Server (NTRS)
Nordmann, R.; Weiser, P.
1989-01-01
The compressible, turbulent, time dependent and three dimensional flow in a labyrinth seal can be described by the Navier-Stokes equations in conjunction with a turbulence model. Additionally, equations for mass and energy conservation and an equation of state are required. To solve these equations, a perturbation analysis is performed yielding zeroth order equations for centric shaft position and first order equations describing the flow field for small motions around the seal center. For numerical solution a finite difference method is applied to the zeroth and first order equations resulting in leakage and dynamic seal coefficients respectively.
NASA Astrophysics Data System (ADS)
Yamamoto, Kaho; Iwai, Yosuke; Uchida, Yoshiaki; Nishiyama, Norikazu
2016-08-01
We numerically analyzed the light propagation in cholesteric liquid crystalline (CLC) droplet array by the finite-difference time-domain (FDTD) method. The FDTD method successfully reproduced the experimental light path observed in the complicated photonic structure of the CLC droplet array more accurately than the analysis of CLC droplets by geometric optics with Bragg condition, and this method help us understand the polarization of the propagating light waves. The FDTD method holds great promise for the design of various photonic devices composed of curved photonic materials like CLC droplets and microcapsules.
The electromagnetic modeling of thin apertures using the finite-difference time-domain technique
NASA Technical Reports Server (NTRS)
Demarest, Kenneth R.
1987-01-01
A technique which computes transient electromagnetic responses of narrow apertures in complex conducting scatterers was implemented as an extension of previously developed Finite-Difference Time-Domain (FDTD) computer codes. Although these apertures are narrow with respect to the wavelengths contained within the power spectrum of excitation, this technique does not require significantly more computer resources to attain the increased resolution at the apertures. In the report, an analytical technique which utilizes Babinet's principle to model the apertures is developed, and an FDTD computer code which utilizes this technique is described.
NASA Technical Reports Server (NTRS)
Tadghighi, Hormoz; Hassan, Ahmed A.; Charles, Bruce
1990-01-01
The present numerical finite-difference scheme for helicopter blade-load prediction during realistic, self-generated three-dimensional blade-vortex interactions (BVI) derives the velocity field through a nonlinear superposition of the rotor flow-field yielded by the full potential rotor flow solver RFS2 for BVI, on the one hand, over the rotational vortex flow field computed with the Biot-Savart law. Despite the accurate prediction of the acoustic waveforms, peak amplitudes are found to have been persistently underpredicted. The inclusion of BVI noise source in the acoustic analysis significantly improved the perceived noise level-corrected tone prediction.
A fully nonlinear, mixed spectral and finite difference model for thermally driven, rotating flows
NASA Technical Reports Server (NTRS)
Miller, Timothy L.; Lu, Huei-Iin; Butler, Karen A.
1992-01-01
Finite difference in time and the meridional plane, in conjunction with a spectral technique in the azimuthal direction, are used to approximate the Navier-Stokes equations in a model that can simulate a variety of thermally driven rotating flows in cylindrical and spherical geometries. Axisymmetric flow, linearized waves relative to a fixed or changing axisymmetric flow, nonlinear waves without wave-wave interaction, and fully nonlinear 3D flow, can in this way be calculated. A reexamination is conducted of the steady baroclinic wave case previously treated by Williams (1971) and Quon (1976).
Finite difference methods with non-uniform meshes for nonlinear fractional differential equations
NASA Astrophysics Data System (ADS)
Li, Changpin; Yi, Qian; Chen, An
2016-07-01
In this article, finite difference methods with non-uniform meshes for solving nonlinear fractional differential equations are presented, where the non-equidistant stepsize is non-decreasing. The rectangle formula and trapezoid formula are proposed based on the non-uniform meshes. Combining the above two methods, we then establish the predictor-corrector scheme. The error and stability analysis are carefully investigated. At last, numerical examples are carried out to verify the theoretical analysis. Besides, the comparisons between non-uniform and uniform meshes are given, where the non-uniform meshes show the better performance when dealing with the less smooth problems.
NASA Technical Reports Server (NTRS)
Steger, J. L.
1978-01-01
Although the Navier-Stokes equations describe most flows of interest in aerodynamics, the inviscid conservation law equations may be used for small regions with viscous forces. Thus, Euler equations and several time-accurate finite difference procedures, explicit and implicit, are discussed. Although implicit techniques require more computational work, they permit larger time steps to be taken without instability. It is noted that the Jacobian matrices for Euler equations in conservation-law form have certain eigenvalue-eigenvector properties which may be used to construct conservative-form coefficient matrices. This reduces the computation time of several implicit and semiimplicit schemes. Extensions of the basic approach to other areas are suggested.
WONDY V: a one-dimensional finite-difference wave-propagation code
Kipp, M.E.; Lawrence, R.J.
1982-06-01
WONDY V solves the finite difference analogs to the Lagrangian equations of motion in one spatial dimension (planar, cylindrical, or spherical). Simulations of explosive detonation, energy deposition, plate impact, and dynamic fracture are possible, using a variety of existing material models. In addition, WONDY has proven to be a powerful tool in the evaluation of new constitutive models. A preprocessor is available to allocate storage arrays commensurate with problem size, and automatic rezoning may be employed to improve resolution. This document provides a description of the equations solved, available material models, operating instructions, and sample problems.
A multigrid algorithm for the cell-centered finite difference scheme
NASA Technical Reports Server (NTRS)
Ewing, Richard E.; Shen, Jian
1993-01-01
In this article, we discuss a non-variational V-cycle multigrid algorithm based on the cell-centered finite difference scheme for solving a second-order elliptic problem with discontinuous coefficients. Due to the poor approximation property of piecewise constant spaces and the non-variational nature of our scheme, one step of symmetric linear smoothing in our V-cycle multigrid scheme may fail to be a contraction. Again, because of the simple structure of the piecewise constant spaces, prolongation and restriction are trivial; we save significant computation time with very promising computational results.
An adaptive-mesh finite-difference solution method for the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Luchini, Paolo
1987-02-01
An adjustable variable-spacing grid is presented which permits the addition or deletion of single points during iterative solutions of the Navier-Stokes equations by finite difference methods. The grid is designed for application to two-dimensional steady-flow problems which can be described by partial differential equations whose second derivatives are constrained to the Laplacian operator. An explicit Navier-Stokes equations solution technique defined for use with the grid incorporates a hybrid form of the convective terms. Three methods are developed for automatic modifications of the mesh during calculations.
Ramirez-Granados, J C; Paez, G; Strojnik, M
2012-06-01
We develop a technique to analyze pulsed thermography videos in order to detect and reconstruct subsurface defects in homogeneous and layered objects. The technique is based on the analysis of the thermal response of an object to a heat pulse. This thermal response is compared to the predictions of a finite-difference model that is systematically and progressively adjusted to minimize a cost function. With this minimization process, we obtain a depth and a thickness function that allow us to determine the three-dimensional shape, size, depth, thickness, and location of internal defects. The detected defects are reliably reconstructed with graphics of easy interpretation. PMID:22695546
A finite-difference program for stresses in anisotropic, layered plates in bending
NASA Technical Reports Server (NTRS)
Salamon, N. J.
1975-01-01
The interlaminar stresses induced in a layered laminate that is bent into a cylindrical surface are studied. The laminate is modeled as a continuum, and the resulting elasticity equations are solved using the finite difference method. The report sets forth the mathematical framework, presents some preliminary results, and provides a listing and explanation of the computer program. Significant among the results are apparent symmetry relationships that will reduce the numerical size of certain problems and an interlaminar stress behavior having a sharp rise at the free edges.
NASA Technical Reports Server (NTRS)
Osher, S.
1984-01-01
The construction of a reliable, shock capturing finite difference method to solve the Euler equations for inviscid, supersonic flow past fighter and missile type configurations is highly desirable. The numerical method must have a firm theoretical foundation and must be robust and efficient. It should be able to treat subsonic pockets in a predominantly supersonic flow. The method must also be easily applicable to the complex topologies of the aerodynamic configuration under consideration. The ongoing approach to this task is described and for steady supersonic flows is presented. This scheme is the basic numerical method. Results of work obtained during previous years are presented.
NASA Technical Reports Server (NTRS)
Van Dalsem, W. R.; Steger, J. L.
1983-01-01
A new, fast, direct-inverse, finite-difference boundary-layer code has been developed and coupled with a full-potential transonic airfoil analysis code via new inviscid-viscous interaction algorithms. The resulting code has been used to calculate transonic separated flows. The results are in good agreement with Navier-Stokes calculations and experimental data. Solutions are obtained in considerably less computer time than Navier-Stokes solutions of equal resolution. Because efficient inviscid and viscous algorithms are used, it is expected this code will also compare favorably with other codes of its type as they become available.
A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals
NASA Technical Reports Server (NTRS)
Dietzen, F. J.; Nordmann, R.
1989-01-01
A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.
Ceotto, Michele; Zhuang, Yu; Hase, William L
2013-02-01
This paper shows how a compact finite difference Hessian approximation scheme can be proficiently implemented into semiclassical initial value representation molecular dynamics. Effects of the approximation on the monodromy matrix calculation are tested by propagating initial sampling distributions to determine power spectra for analytic potential energy surfaces and for "on the fly" carbon dioxide direct dynamics. With the approximation scheme the computational cost is significantly reduced, making ab initio direct semiclassical dynamics computationally more feasible and, at the same time, properly reproducing important quantum effects inherent in the monodromy matrix and the pre-exponential factor of the semiclassical propagator. PMID:23406107
Memory cost of absorbing conditions for the finite-difference time-domain method.
Chobeau, Pierre; Savioja, Lauri
2016-07-01
Three absorbing layers are investigated using standard rectilinear finite-difference schemes. The perfectly matched layer (PML) is compared with basic lossy layers terminated by two types of absorbing boundary conditions, all simulated using equivalent memory consumption. Lossy layers present the advantage of being scalar schemes, whereas the PML relies on a staggered scheme where both velocity and pressure are split. Although the PML gives the lowest reflection magnitudes over all frequencies and incidence angles, the most efficient lossy layer gives reflection magnitudes of the same order as the PML from mid- to high-frequency and for restricted incidence angles. PMID:27475200
NASA Technical Reports Server (NTRS)
Liu, C.; Liu, Z.
1993-01-01
The fourth-order finite-difference scheme with fully implicit time-marching presently used to computationally study the spatial instability of planar Poiseuille flow incorporates a novel treatment for outflow boundary conditions that renders the buffer area as short as one wavelength. A semicoarsening multigrid method accelerates convergence for the implicit scheme at each time step; a line-distributive relaxation is developed as a robust fast solver that is efficient for anisotropic grids. Computational cost is no greater than that of explicit schemes, and excellent agreement with linear theory is obtained.
Computation of wing-vortex interaction in transonic flow using implicit finite difference algorithm
NASA Technical Reports Server (NTRS)
Srinivasan, G.; Steger, J. L.
1981-01-01
An implicit delta form finite difference algorithm for Euler equations in conservation law form was used in preliminary calculations of three dimensional wing vortex interaction. Both steady and unsteady transonic flow wing vortex interactions are computed. The computations themselves are meant to guide upcoming wind tunnel experiments of the same flow field. Various modifications to the numerical method that are intended to improve computational efficiency are also described and tested in both two and three dimensions. Combination of these methods can reduce the overall computational time by a factor of 4.
NASA Technical Reports Server (NTRS)
Bridgeman, J. O.; Steger, J. L.; Caradonna, F. X.
1982-01-01
An implicit, approximate-factorization, finite-difference algorithm has been developed for the computation of unsteady, inviscid transonic flows in two and three dimensions. The computer program solves the full-potential equation in generalized coordinates in conservation-law form in order to properly capture shock-wave position and speed. A body-fitted coordinate system is employed for the simple and accurate treatment of boundary conditions on the body surface. The time-accurate algorithm is modified to a conventional ADI relaxation scheme for steady-state computations. Results from two- and three-dimensional steady and two-dimensional unsteady calculations are compared with existing methods.
NASA Technical Reports Server (NTRS)
Anderson, O. L.
1974-01-01
A finite-difference procedure for computing the turbulent, swirling, compressible flow in axisymmetric ducts is described. Arbitrary distributions of heat and mass transfer at the boundaries can be treated, and the effects of struts, inlet guide vanes, and flow straightening vanes can be calculated. The calculation procedure is programmed in FORTRAN 4 and has operated successfully on the UNIVAC 1108, IBM 360, and CDC 6600 computers. The analysis which forms the basis of the procedure, a detailed description of the computer program, and the input/output formats are presented. The results of sample calculations performed with the computer program are compared with experimental data.
Ground motion simulations in Marmara (Turkey) region from 3D finite difference method
NASA Astrophysics Data System (ADS)
Aochi, Hideo; Ulrich, Thomas; Douglas, John
2016-04-01
In the framework of the European project MARSite (2012-2016), one of the main contributions from our research team was to provide ground-motion simulations for the Marmara region from various earthquake source scenarios. We adopted a 3D finite difference code, taking into account the 3D structure around the Sea of Marmara (including the bathymetry) and the sea layer. We simulated two moderate earthquakes (about Mw4.5) and found that the 3D structure improves significantly the waveforms compared to the 1D layer model. Simulations were carried out for different earthquakes (moderate point sources and large finite sources) in order to provide shake maps (Aochi and Ulrich, BSSA, 2015), to study the variability of ground-motion parameters (Douglas & Aochi, BSSA, 2016) as well as to provide synthetic seismograms for the blind inversion tests (Diao et al., GJI, 2016). The results are also planned to be integrated in broadband ground-motion simulations, tsunamis generation and simulations of triggered landslides (in progress by different partners). The simulations are freely shared among the partners via the internet and the visualization of the results is diffused on the project's homepage. All these simulations should be seen as a reference for this region, as they are based on the latest knowledge that obtained during the MARSite project, although their refinement and validation of the model parameters and the simulations are a continuing research task relying on continuing observations. The numerical code used, the models and the simulations are available on demand.
McLeod, R.; Hawkins, R.J.; Kallman, J.S.
1991-04-01
Interest has recently grown in applying microwave modeling techniques to optical circuit modeling. One of the simplest, yet most powerful, microwave simulation techniques is the finite-difference time-domain algorithm (FDTD). In this technique, the differential form of the time-domain Maxwell's equations are discretized and all derivatives are approximated as differences. Minor algebraic manipulations on the resulting equations produces a set of update equations that produce fields at a given time step from fields at the previous time step. The FDTD algorithm, then, is quite simple. Source fields are launched into the discrete grid by some means. The FDTD equations advance these fields in time. At the boundaries of the grid, special update equations called radiation conditions are applied that approximate a continuing, infinite space. Because virtually no assumptions are made in the development of the FDTD method, the algorithm is able to represent a wide-range of physical effects. Waves can propagate in any direction, multiple reflections within structures can cause resonances, multiple modes of various polarizations can be launched, each of which may generate within the device an infinite spectrum of bound and radiation modes. The ability to model these types of general physical effects is what makes the FDTD method interesting to the field of optics. In this paper, we discuss the application of the finite-difference time-domain technique to integrated optics. Animations will be shown of the simulations of a TE coupler, TM grating, and a TE integrated detector. 3 refs., 1 fig.
On the Definition of Surface Potentials for Finite-Difference Operators
NASA Technical Reports Server (NTRS)
Tsynkov, S. V.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
For a class of linear constant-coefficient finite-difference operators of the second order, we introduce the concepts similar to those of conventional single- and double-layer potentials for differential operators. The discrete potentials are defined completely independently of any notion related to the approximation of the continuous potentials on the grid. We rather use all approach based on differentiating, and then inverting the differentiation of a function with surface discontinuity of a particular kind, which is the most general way of introducing surface potentials in the theory of distributions. The resulting finite-difference "surface" potentials appear to be solutions of the corresponding continuous potentials. Primarily, this pertains to the possibility of representing a given solution to the homogeneous equation on the domain as a variety of surface potentials, with the density defined on the domain's boundary. At the same time the discrete surface potentials can be interpreted as one specific realization of the generalized potentials of Calderon's type, and consequently, their approximation properties can be studied independently in the framework of the difference potentials method by Ryaben'kii. The motivation for introducing and analyzing the discrete surface potentials was provided by the problems of active shielding and control of sound, in which the aforementioned source terms that drive the potentials are interpreted as the acoustic control sources that cancel out the unwanted noise on a predetermined region of interest.
Enhancing finite differences with radial basis functions: Experiments on the Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Flyer, Natasha; Barnett, Gregory A.; Wicker, Louis J.
2016-07-01
Polynomials are used together with polyharmonic spline (PHS) radial basis functions (RBFs) to create local RBF-finite-difference (RBF-FD) weights on different node layouts for spatial discretizations that can be viewed as enhancements of the classical finite differences (FD). The presented method replicates the convergence properties of FD but for arbitrary node layouts. It is tested on the 2D compressible Navier-Stokes equations at low Mach number, relevant to atmospheric flows. Test cases are taken from the numerical weather prediction community and solved on bounded domains. Thus, attention is given on how to handle boundaries with the RBF-FD method, as well as a novel implementation for hyperviscosity. Comparisons are done on Cartesian, hexagonal, and quasi-uniform node layouts. Consideration and guidelines are given on PHS order, polynomial degree and stencil size. The main advantages of the present method are: 1) capturing the basic physics of the problem surprisingly well, even at very coarse resolutions, 2) high-order accuracy without the need of tuning a shape parameter, and 3) the inclusion of polynomials eliminates stagnation (saturation) errors. A MATLAB code is given to calculate the differentiation weights for this novel approach.
NASA Technical Reports Server (NTRS)
Mccoy, M. J.
1980-01-01
Various finite difference techniques used to solve Laplace's equation are compared. Curvilinear coordinate systems are used on two dimensional regions with irregular boundaries, specifically, regions around circles and airfoils. Truncation errors are analyzed for three different finite difference methods. The false boundary method and two point and three point extrapolation schemes, used when having the Neumann boundary condition are considered and the effects of spacing and nonorthogonality in the coordinate systems are studied.
An unconditionally energy stable finite difference scheme for a stochastic Cahn-Hilliard equation
NASA Astrophysics Data System (ADS)
Li, Xiao; Qiao, ZhongHua; Zhang, Hui
2016-09-01
In this work, the MMC-TDGL equation, a stochastic Cahn-Hilliard equation is solved numerically by using the finite difference method in combination with a convex splitting technique of the energy functional. For the non-stochastic case, we develop an unconditionally energy stable difference scheme which is proved to be uniquely solvable. For the stochastic case, by adopting the same splitting of the energy functional, we construct a similar and uniquely solvable difference scheme with the discretized stochastic term. The resulted schemes are nonlinear and solved by Newton iteration. For the long time simulation, an adaptive time stepping strategy is developed based on both first- and second-order derivatives of the energy. Numerical experiments are carried out to verify the energy stability, the efficiency of the adaptive time stepping and the effect of the stochastic term.
NASA Astrophysics Data System (ADS)
Kobus, J.; Moncrieff, D.; Wilson, S.
2001-12-01
A comparison is made of the accuracy by which the electric dipole polarizability αzz and hyperpolarizability βzzz can be calculated by using the finite basis set approach (the algebraic approximation) and finite difference method in calculations employing the Hartree-Fock model. The numerical and algebraic methods were tested on the ground states of H2, LiH, BH and FH molecules at their respective experimental equilibrium geometries. For the FH molecule at its experimental equilibrium geometry, a sequence of distributed universal even-tempered basis sets have been used to explore the convergence pattern of the total energy, dipole moment and polarizabilities. The comparison of finite difference and finite basis set methods is extended to geometries for which the nuclear separation, RFH, lies in the range 1.5-2.2 b. The methods give consistent results to within 1% or better. In the case of the FH molecule the dependence of truncation errors of the total energy, dipole moment and polarizabilities on the geometry have been studied and are shown to be negligible.
2D time-domain finite-difference modeling for viscoelastic seismic wave propagation
NASA Astrophysics Data System (ADS)
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-07-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
NASA Astrophysics Data System (ADS)
Kang, K.-T.; Kim, K.-Y.; Jung, H.-J.; Lee, H.-Y.; Chun, H.-J.; Lee, H.-M.; Moon, S.-H.; Kim, H.-J.
2010-03-01
The aim of this study is to evaluate the biomechanical changes after Spinous Process Osteotomy (SPO) with different amounts of facetectomy of the lumbar spine and to compare the models with SPO and intact models using finite element models. Intact spine models and one decompression models (L3-4) with SPO were developed. SPO models included three different amounts of facetectomy (25%, 50%, and 75%). After validation of the models, finite element analyses were performed to investigate the ranges of motion and disc stresses at each corresponding level among three SPO models and intact lumbar spine models. The ranges of motion in the SPO models were increased more than the intact models. According to increase of amounts of facetectomy, ranges of motion were also increased. Similar to range of motion, the von Mises stress of disc in the SPO models was higher than that of intact models. Moreover, with the increase of amount of facetectomy, the disc stress increased at each segments under various moments. The decompression procedures using spinous process osteotomy has been reported to provide better postoperative stability compared to the conventional laminectomy. However, facetectomy over 50 % is likely to attenuate this advantage.
NASA Astrophysics Data System (ADS)
Kang, K.-T.; Kim, K.-Y.; Jung, H.-J.; Lee, H.-Y.; Chun, H.-J.; Lee, H.-M.; Moon, S.-H.; Kim, H.-J.
2009-12-01
The aim of this study is to evaluate the biomechanical changes after Spinous Process Osteotomy (SPO) with different amounts of facetectomy of the lumbar spine and to compare the models with SPO and intact models using finite element models. Intact spine models and one decompression models (L3-4) with SPO were developed. SPO models included three different amounts of facetectomy (25%, 50%, and 75%). After validation of the models, finite element analyses were performed to investigate the ranges of motion and disc stresses at each corresponding level among three SPO models and intact lumbar spine models. The ranges of motion in the SPO models were increased more than the intact models. According to increase of amounts of facetectomy, ranges of motion were also increased. Similar to range of motion, the von Mises stress of disc in the SPO models was higher than that of intact models. Moreover, with the increase of amount of facetectomy, the disc stress increased at each segments under various moments. The decompression procedures using spinous process osteotomy has been reported to provide better postoperative stability compared to the conventional laminectomy. However, facetectomy over 50 % is likely to attenuate this advantage.
Feldberg, S.W.
1991-01-01
Commencing in the early 60s the application of explicit finite difference (EFD) methods to the analysis of electrochemical problems paralleled the development and availability of fast, main-frame, digital computers. The appeal of the EFD method has been its simplicity of principle and of application. EFD algorithms, however, are notoriously inefficient for solving certain types of stiff problems (e.g., problems involving a wide dynamic range of time constants). In this presentation the author discusses the principles and some applications of a fast quasi-explicit finite difference (FQEFD) method in which the computational speed is enhanced, by many orders of magnitude in some cases, without compromising the user friendliness which has popularized the EFD method. The method is designed to treat electrochemical responses to a discontinuous (e.g, chronoamperometric) perturbation and utilizes the DuFort-Frankel algorithm (1) with exponentially expanding space (2) and exponentially expanding time grids. (A previously published version of the FQEFD method (3,4) was designed to treat electrochemical responses to a continuous (e.g., cyclic voltammetric) perturbation and utilizes the DuFort-Frankel (3) algorithm in conjunction with an exponentially expanding space grid and a uniform time grid. The development of the basic FQEFD equations was presented there). The protocol for introducing the expanding time grid is straightforward and is discussed. 7 refs., 1 fig. 1 tab.
NASA Astrophysics Data System (ADS)
Wu, Kailiang; Tang, Huazhong
2015-10-01
The paper develops high-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamical (RHD) equations, built on the local Lax-Friedrichs splitting, the WENO reconstruction, the physical-constraints-preserving flux limiter, and the high-order strong stability preserving time discretization. They are extensions of the positivity-preserving finite difference WENO schemes for the non-relativistic Euler equations [20]. However, developing physical-constraints-preserving methods for the RHD system becomes much more difficult than the non-relativistic case because of the strongly coupling between the RHD equations, no explicit formulas of the primitive variables and the flux vectors with respect to the conservative vector, and one more physical constraint for the fluid velocity in addition to the positivity of the rest-mass density and the pressure. The key is to prove the convexity and other properties of the admissible state set and discover a concave function with respect to the conservative vector instead of the pressure which is an important ingredient to enforce the positivity-preserving property for the non-relativistic case. Several one- and two-dimensional numerical examples are used to demonstrate accuracy, robustness, and effectiveness of the proposed physical-constraints-preserving schemes in solving RHD problems with large Lorentz factor, or strong discontinuities, or low rest-mass density or pressure etc.
A moving mesh finite difference method for equilibrium radiation diffusion equations
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor–corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
A coarse-mesh nodal method-diffusive-mesh finite difference method
Joo, H.; Nichols, W.R.
1994-05-01
Modern nodal methods have been successfully used for conventional light water reactor core analyses where the homogenized, node average cross sections (XSs) and the flux discontinuity factors (DFs) based on equivalence theory can reliably predict core behavior. For other types of cores and other geometries characterized by tightly-coupled, heterogeneous core configurations, the intranodal flux shapes obtained from a homogenized nodal problem may not accurately portray steep flux gradients near fuel assembly interfaces or various reactivity control elements. This may require extreme values of DFs (either very large, very small, or even negative) to achieve a desired solution accuracy. Extreme values of DFs, however, can disrupt the convergence of the iterative methods used to solve for the node average fluxes, and can lead to a difficulty in interpolating adjacent DF values. Several attempts to remedy the problem have been made, but nothing has been satisfactory. A new coarse-mesh nodal scheme called the Diffusive-Mesh Finite Difference (DMFD) technique, as contrasted with the coarse-mesh finite difference (CMFD) technique, has been developed to resolve this problem. This new technique and the development of a few-group, multidimensional kinetics computer program are described in this paper.
A moving mesh finite difference method for equilibrium radiation diffusion equations
NASA Astrophysics Data System (ADS)
Yang, Xiaobo; Huang, Weizhang; Qiu, Jianxian
2015-10-01
An efficient moving mesh finite difference method is developed for the numerical solution of equilibrium radiation diffusion equations in two dimensions. The method is based on the moving mesh partial differential equation approach and moves the mesh continuously in time using a system of meshing partial differential equations. The mesh adaptation is controlled through a Hessian-based monitor function and the so-called equidistribution and alignment principles. Several challenging issues in the numerical solution are addressed. Particularly, the radiation diffusion coefficient depends on the energy density highly nonlinearly. This nonlinearity is treated using a predictor-corrector and lagged diffusion strategy. Moreover, the nonnegativity of the energy density is maintained using a cutoff method which has been known in literature to retain the accuracy and convergence order of finite difference approximation for parabolic equations. Numerical examples with multi-material, multiple spot concentration situations are presented. Numerical results show that the method works well for radiation diffusion equations and can produce numerical solutions of good accuracy. It is also shown that a two-level mesh movement strategy can significantly improve the efficiency of the computation.
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
NASA Astrophysics Data System (ADS)
Zehner, Björn; Hellwig, Olaf; Linke, Maik; Görz, Ines; Buske, Stefan
2016-01-01
3D geological underground models are often presented by vector data, such as triangulated networks representing boundaries of geological bodies and geological structures. Since models are to be used for numerical simulations based on the finite difference method, they have to be converted into a representation discretizing the full volume of the model into hexahedral cells. Often the simulations require a high grid resolution and are done using parallel computing. The storage of such a high-resolution raster model would require a large amount of storage space and it is difficult to create such a model using the standard geomodelling packages. Since the raster representation is only required for the calculation, but not for the geometry description, we present an algorithm and concept for rasterizing geological models on the fly for the use in finite difference codes that are parallelized by domain decomposition. As a proof of concept we implemented a rasterizer library and integrated it into seismic simulation software that is run as parallel code on a UNIX cluster using the Message Passing Interface. We can thus run the simulation with realistic and complicated surface-based geological models that are created using 3D geomodelling software, instead of using a simplified representation of the geological subsurface using mathematical functions or geometric primitives. We tested this set-up using an example model that we provide along with the implemented library.
Kudryavtsev, Oleg
2013-01-01
In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation. The goal of the paper is to incorporate the Wiener-Hopf factorization into finite difference methods for pricing options in Lévy models with jumps. The method is applicable for pricing barrier and American options. The pricing problem is reduced to the sequence of linear algebraic systems with a dense Toeplitz matrix; then the Wiener-Hopf factorization method is applied. We give an important probabilistic interpretation based on the infinitely divisible distributions theory to the Laurent operators in the correspondent factorization identity. Notice that our algorithm has the same complexity as the ones which use the explicit-implicit scheme, with a tridiagonal matrix. However, our method is more accurate. We support the advantage of the new method in terms of accuracy and convergence by using numerical experiments. PMID:24489518
2013-01-01
In the paper, we consider the problem of pricing options in wide classes of Lévy processes. We propose a general approach to the numerical methods based on a finite difference approximation for the generalized Black-Scholes equation. The goal of the paper is to incorporate the Wiener-Hopf factorization into finite difference methods for pricing options in Lévy models with jumps. The method is applicable for pricing barrier and American options. The pricing problem is reduced to the sequence of linear algebraic systems with a dense Toeplitz matrix; then the Wiener-Hopf factorization method is applied. We give an important probabilistic interpretation based on the infinitely divisible distributions theory to the Laurent operators in the correspondent factorization identity. Notice that our algorithm has the same complexity as the ones which use the explicit-implicit scheme, with a tridiagonal matrix. However, our method is more accurate. We support the advantage of the new method in terms of accuracy and convergence by using numerical experiments. PMID:24489518
Modeling of tension-modulated strings using finite difference and digital waveguide techniques
NASA Astrophysics Data System (ADS)
Pakarinen, Jyri
2005-09-01
Tension modulation is a nonlinear phenomenon where large-amplitude string vibrations cause the tension of the string to vary. This results in an initial pitch glide and energy coupling between modes, causing for example the generation of missing harmonics. The presentation discusses two methods for numerical simulation of the tension modulation nonlinearity from the sound synthesis point of view. The tension modulation is assumed to propagate instantaneously along the string. In the digital waveguide approach, spatially distributed fractional delay filters are used in modulating the string length during run time. Energy-preserving techniques can be used in implementing the fractional delays. In the finite difference approach, time-domain interpolation is used to artificially modulate the wave propagation velocity. The generation of missing harmonics is implemented in the finite difference model by creating an additional excitation point at the string termination. In the waveguide model, the same effect can be obtained by using suitable approximations in the string elongation calculation. Synthesis results for both techniques are presented. Also, a brief comparison of the models with a discussion on stability issues is provided. [This research has been funded by the Academy of Finland (Project No. 104934), S3TK graduate school, and Tekniikan edistamissaatio.
Converged accelerated finite difference scheme for the multigroup neutron diffusion equation
Terranova, N.; Mostacci, D.; Ganapol, B. D.
2013-07-01
Computer codes involving neutron transport theory for nuclear engineering applications always require verification to assess improvement. Generally, analytical and semi-analytical benchmarks are desirable, since they are capable of high precision solutions to provide accurate standards of comparison. However, these benchmarks often involve relatively simple problems, usually assuming a certain degree of abstract modeling. In the present work, we show how semi-analytical equivalent benchmarks can be numerically generated using convergence acceleration. Specifically, we investigate the error behavior of a 1D spatial finite difference scheme for the multigroup (MG) steady-state neutron diffusion equation in plane geometry. Since solutions depending on subsequent discretization can be envisioned as terms of an infinite sequence converging to the true solution, extrapolation methods can accelerate an iterative process to obtain the limit before numerical instability sets in. The obtained results have been compared to the analytical solution to the 1D multigroup diffusion equation when available, using FORTRAN as the computational language. Finally, a slowing down problem has been solved using a cascading source update, showing how a finite difference scheme performs for ultra-fine groups (104 groups) in a reasonable computational time using convergence acceleration. (authors)
Hurrell, Andrew M
2008-06-01
The interaction of an incident sound wave with an acoustically impenetrable two-layer barrier is considered. Of particular interest is the presence of several acoustic wave components in the shadow region of this barrier. A finite difference model capable of simulating this geometry is validated by comparison to the analytical solution for an idealized, hard-soft barrier. A panel comprising a high air-content closed cell foam backed with an elastic (metal) back plate is then examined. The insertion loss of this panel was found to exceed the dynamic range of the measurement system and was thus acoustically impenetrable. Experimental results from such a panel are shown to contain artifacts not present in the diffraction solution, when acoustic waves are incident upon the soft surface. A finite difference analysis of this experimental configuration replicates the presence of the additional field components. Furthermore, the simulated results allow the additional components to be identified as arising from the S(0) and A(0) Lamb modes traveling in the elastic plate. These Lamb mode artifacts are not found to be present in the shadow region when the acoustic waves are incident upon the elastic surface. PMID:18537372
NASA Technical Reports Server (NTRS)
Baumeister, K. J.; Kreider, K. L.
1996-01-01
An explicit finite difference iteration scheme is developed to study harmonic sound propagation in ducts. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.
Accuracy issues in the finite difference time domain simulation of photomask scattering
NASA Astrophysics Data System (ADS)
Pistor, Thomas V.
2001-09-01
As the use of electromagnetic simulation in lithography increases, accuracy issues are uncovered and must be addressed. A proper understanding of these issues can allow the lithographer to avoid pitfalls in electromagnetic simulation and to know what can and can not be accurately simulated. This paper addresses the important accuracy issues related to the simulation of photomask scattering using the Finite Difference Time Domain (FDTD) method. Errors related to discretization and periodic boundary conditions are discussed. Discretization-related issues arise when derivatives are replaced by finite differences and when integrals are replaced by summations. These approximations can lead to mask features that do not have exact dimensions. The effects of discretization error on phase wells and thin films are shown. The reflectivity of certain thin film layers is seen to be very sensitive to the layer thickness. Simulation experiments and theory are used to determine how fine a discretization is necessary and various discretization schemes that help minimize error are presented. Boundary-condition-related errors arise from the use of periodic boundary conditions when simulating isolated mask features. The effects of periodic boundary conditions are assessed through the use of simulation experiments. All errors are associated with an ever-present trade-off between accuracy and computational resources. However, choosing the cell size wisely can, in many cases, minimize error without significantly increasing computation resource requirements.
Real-space finite difference scheme for the von Neumann equation with the Dirac Hamiltonian
NASA Astrophysics Data System (ADS)
Schreilechner, Magdalena; Pötz, Walter
2016-07-01
A finite difference scheme for the numerical treatment of the von Neumann equation for the (2+1)D Dirac Hamiltonian is presented. It is based on a sequential left-right (ket-bra) application of a staggered space-time scheme for the pure-state Dirac equation and offers a numerical treatment of the general mixed-state dynamics of an isolated quantum system within the von Neumann equation. Thereby this direct scheme inherits all the favorable features of the finite-difference scheme for the pure-state Dirac equation, such as the single-cone energy-momentum dispersion, convergence conditions, and scaling behavior. A conserved functional is identified. Moreover this scheme is shown to conserve both Hermiticity and positivity. Numerical tests comprise a numerical analysis of stability, as well as the simulation of a mixed-state time-evolution of Gaussian wave functions, illustrating Zitterbewegung and transverse current oscillations. Imaginary-potential absorbing boundary conditions and parameters which pertain to topological insulator surface states were used in the numerical simulations.
Development of an advanced finite-difference atmospheric general circulation model
Randall, D.A.
1992-03-01
We have proposed to provide and further develop an advanced finite-difference climate model for use in CHAMMP. The model includes advanced parameterizations of cumulus convection, boundary-layer processes, cloud formation, and land-surface vegetation, as well as parameterizations of radiative transfer and gravity wave drag. Postprocessing codes and a user's guide will also be provided. This research is being conducted in collaboration with Professors C.R. Mechoso and A. Arakawa at the University of California at Los Angeles (UCLA). The following research tasks are being carried out in support of CHAMMP: (1) Provide to CHAMMP a base-line finite-difference model and postprocessing codes for further development by the CHAMMP Science Team; (2) Provide to CHAMMP improved model physics to be developed in the course of our research project; (3) Provide to CHAMMP improved computational methods for use in the model; and, (4) Investigate the performance of current and to-be-developed physical parameterizations and computational methods at very high resolution.
ATLAS: A real-space finite-difference implementation of orbital-free density functional theory
NASA Astrophysics Data System (ADS)
Mi, Wenhui; Shao, Xuecheng; Su, Chuanxun; Zhou, Yuanyuan; Zhang, Shoutao; Li, Quan; Wang, Hui; Zhang, Lijun; Miao, Maosheng; Wang, Yanchao; Ma, Yanming
2016-03-01
Orbital-free density functional theory (OF-DFT) is a promising method for large-scale quantum mechanics simulation as it provides a good balance of accuracy and computational cost. Its applicability to large-scale simulations has been aided by progress in constructing kinetic energy functionals and local pseudopotentials. However, the widespread adoption of OF-DFT requires further improvement in its efficiency and robustly implemented software. Here we develop a real-space finite-difference (FD) method for the numerical solution of OF-DFT in periodic systems. Instead of the traditional self-consistent method, a powerful scheme for energy minimization is introduced to solve the Euler-Lagrange equation. Our approach engages both the real-space finite-difference method and a direct energy-minimization scheme for the OF-DFT calculations. The method is coded into the ATLAS software package and benchmarked using periodic systems of solid Mg, Al, and Al3Mg. The test results show that our implementation can achieve high accuracy, efficiency, and numerical stability for large-scale simulations.
2015-01-01
PURPOSE The objective of this study was to evaluate the influence of various cement types on the stress distribution in monolithic zirconia crowns under maximum bite force using the finite element analysis. MATERIALS AND METHODS The models of the prepared #46 crown (deep chamfer margin) were scanned and solid models composed of the monolithic zirconia crown, cement layer, and prepared tooth were produced using the computer-aided design technology and were subsequently translated into 3-dimensional finite element models. Four models were prepared according to different cement types (zinc phosphate, polycarboxylate, glass ionomer, and resin). A load of 700 N was applied vertically on the crowns (8 loading points). Maximum principal stress was determined. RESULTS Zinc phosphate cement had a greater stress concentration in the cement layer, while polycarboxylate cement had a greater stress concentration on the distal surface of the monolithic zirconia crown and abutment tooth. Resin cement and glass ionomer cement showed similar patterns, but resin cement showed a lower stress distribution on the lingual and mesial surface of the cement layer. CONCLUSION The test results indicate that the use of different luting agents that have various elastic moduli has an impact on the stress distribution of the monolithic zirconia crowns, cement layers, and abutment tooth. Resin cement is recommended for the luting agent of the monolithic zirconia crowns. PMID:26816578
Parallelized implicit propagators for the finite-difference Schrödinger equation
NASA Astrophysics Data System (ADS)
Parker, Jonathan; Taylor, K. T.
1995-08-01
We describe the application of block Gauss-Seidel and block Jacobi iterative methods to the design of implicit propagators for finite-difference models of the time-dependent Schrödinger equation. The block-wise iterative methods discussed here are mixed direct-iterative methods for solving simultaneous equations, in the sense that direct methods (e.g. LU decomposition) are used to invert certain block sub-matrices, and iterative methods are used to complete the solution. We describe parallel variants of the basic algorithm that are well suited to the medium- to coarse-grained parallelism of work-station clusters, and MIMD supercomputers, and we show that under a wide range of conditions, fine-grained parallelism of the computation can be achieved. Numerical tests are conducted on a typical one-electron atom Hamiltonian. The methods converge robustly to machine precision (15 significant figures), in some cases in as few as 6 or 7 iterations. The rate of convergence is nearly independent of the finite-difference grid-point separations.
Wang, Wei; Shu, Chi-Wang; Yee, H.C.; Sjögreen, Björn
2012-01-01
A new high order finite-difference method utilizing the idea of Harten ENO subcell resolution method is proposed for chemical reactive flows and combustion. In reaction problems, when the reaction time scale is very small, e.g., orders of magnitude smaller than the fluid dynamics time scales, the governing equations will become very stiff. Wrong propagation speed of discontinuity may occur due to the underresolved numerical solution in both space and time. The present proposed method is a modified fractional step method which solves the convection step and reaction step separately. In the convection step, any high order shock-capturing method can be used. In the reaction step, an ODE solver is applied but with the computed flow variables in the shock region modified by the Harten subcell resolution idea. For numerical experiments, a fifth-order finite-difference WENO scheme and its anti-diffusion WENO variant are considered. A wide range of 1D and 2D scalar and Euler system test cases are investigated. Studies indicate that for the considered test cases, the new method maintains high order accuracy in space for smooth flows, and for stiff source terms with discontinuities, it can capture the correct propagation speed of discontinuities in very coarse meshes with reasonable CFL numbers.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-05-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P, slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
NASA Technical Reports Server (NTRS)
Stein, M.; Housner, J. D.
1978-01-01
A numerical analysis developed for the buckling of rectangular orthotropic layered panels under combined shear and compression is described. This analysis uses a central finite difference procedure based on trigonometric functions instead of using the conventional finite differences which are based on polynomial functions. Inasmuch as the buckle mode shape is usually trigonometric in nature, the analysis using trigonometric finite differences can be made to exhibit a much faster convergence rate than that using conventional differences. Also, the trigonometric finite difference procedure leads to difference equations having the same form as conventional finite differences; thereby allowing available conventional finite difference formulations to be converted readily to trigonometric form. For two-dimensional problems, the procedure introduces two numerical parameters into the analysis. Engineering approaches for the selection of these parameters are presented and the analysis procedure is demonstrated by application to several isotropic and orthotropic panel buckling problems. Among these problems is the shear buckling of stiffened isotropic and filamentary composite panels in which the stiffener is broken. Results indicate that a break may degrade the effect of the stiffener to the extent that the panel will not carry much more load than if the stiffener were absent.
NASA Astrophysics Data System (ADS)
Appadu, A. R.
2016-06-01
An unconditionally positive definite scheme has been derived in [1] to approximate a linear advection-diffusion-reaction equation which models exponential travelling waves and the coefficients of advective, diffusive and reactive terms have been chosen as one. The scheme has been baptised as Unconditionally Positive Finite Difference (UPFD). In this work, we use the UPFD scheme to solve the advection-diffusion-reaction problem in [1] and we also extend our study to three other important regimes involved in this model. The temporal step size is varied while fixing the spatial step size. We compute some errors namely; L1 error, dispersion, dissipation errors. We also study the variation of the modulus of the exact amplification factor, modulus of amplification factor of the scheme and relative phase error, all vs the phase angle for the four different regimes.
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.
NASA Astrophysics Data System (ADS)
Deng, Xiaogang; Mao, Meiliang; Tu, Guohua; Liu, Huayong; Zhang, Hanxin
2011-02-01
The geometric conservation law (GCL) includes the volume conservation law (VCL) and the surface conservation law (SCL). Though the VCL is widely discussed for time-depending grids, in the cases of stationary grids the SCL also works as a very important role for high-order accurate numerical simulations. The SCL is usually not satisfied on discretized grid meshes because of discretization errors, and the violation of the SCL can lead to numerical instabilities especially when high-order schemes are applied. In order to fulfill the SCL in high-order finite difference schemes, a conservative metric method (CMM) is presented. This method is achieved by computing grid metric derivatives through a conservative form with the same scheme applied for fluxes. The CMM is proven to be a sufficient condition for the SCL, and can ensure the SCL for interior schemes as well as boundary and near boundary schemes. Though the first-level difference operators δ3 have no effects on the SCL, no extra errors can be introduced as δ3 = δ2. The generally used high-order finite difference schemes are categorized as central schemes (CS) and upwind schemes (UPW) based on the difference operator δ1 which are used to solve the governing equations. The CMM can be applied to CS and is difficult to be satisfied by UPW. Thus, it is critical to select the difference operator δ1 to reduce the SCL-related errors. Numerical tests based on WCNS-E-5 show that the SCL plays a very important role in ensuring free-stream conservation, suppressing numerical oscillations, and enhancing the robustness of the high-order scheme in complex grids.
NASA Technical Reports Server (NTRS)
Nordstrom, Jan; Carpenter, Mark H.
1998-01-01
Boundary and interface conditions for high order finite difference methods applied to the constant coefficient Euler and Navier-Stokes equations are derived. The boundary conditions lead to strict and strong stability. The interface conditions are stable and conservative even if the finite difference operators and mesh sizes vary from domain to domain. Numerical experiments show that the new conditions also lead to good results for the corresponding nonlinear problems.
Improved finite-difference computation of the van der Waals force: One-dimensional case
Pinto, Fabrizio
2009-10-15
We present an improved demonstration of the calculation of Casimir forces in one-dimensional systems based on the recently proposed numerical imaginary frequency Green's function computation approach. The dispersion force on two thick lossy dielectric slabs separated by an empty gap and placed within a perfectly conducting cavity is obtained from the Green's function of the modified Helmholtz equation by means of an ordinary finite-difference method. In order to demonstrate the possibility to develop algorithms to explore complex geometries in two and three dimensions to higher order in the mesh spacing, we generalize existing classical electromagnetism algebraic methods to generate the difference equations for dielectric boundaries not coinciding with any grid points. Diagnostic tests are presented to monitor the accuracy of our implementation of the method and follow-up applications in higher dimensions are introduced.
Finite Difference Time Domain Electromagnetic Scattering from Frequency-Dependent Lossy Materials
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.
1991-01-01
During this effort the tasks specified in the Statement of Work have been successfully completed. The extension of Finite Difference Time Domain (FDTD) to more complicated materials has been made. A three-dimensional FDTD code capable of modeling interactions with both dispersive dielectric and magnetic materials has been written, validated, and documented. This code is efficient and is capable of modeling interesting targets using a modest computer work station platform. However, in addition to the tasks in the Statement of Work, a significant number of other FDTD extensions and calculations have been made. RCS results for two different plate geometries have been reported. The FDTD method has been extended to computing far zone time domain results in two dimensions. Finally, the capability to model nonlinear materials has been incorporated into FDTD and validated. The FDTD computer codes developed have been supplied, along with documentation, and preprints describing the other FDTD advances have been included with this report as attachments.
Computationally efficient finite-difference modal method for the solution of Maxwell's equations.
Semenikhin, Igor; Zanuccoli, Mauro
2013-12-01
In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method. PMID:24323014
NASA Technical Reports Server (NTRS)
Lansing, F. L.
1976-01-01
A numerical procedure was established using the finite-difference technique in the determination of the time-varying temperature distribution of a tubular solar collector under changing solar radiancy and ambient temperature. Three types of spatial discretization processes were considered and compared for their accuracy of computations and for selection of the shortest computer time and cost. The stability criteria of this technique was analyzed in detail to give the critical time increment to ensure stable computations. The results of the numerical analysis were in good agreement with the analytical solution previously reported. The numerical method proved to be a powerful tool in the investigation of the collector sensitivity to two different flow patterns and several flow control mechanisms.
Samak, M. Mosleh E. Abu; Bakar, A. Ashrif A.; Kashif, Muhammad; Zan, Mohd Saiful Dzulkifly
2016-01-01
This paper discusses numerical analysis methods for different geometrical features that have limited interval values for typically used sensor wavelengths. Compared with existing Finite Difference Time Domain (FDTD) methods, the alternating direction implicit (ADI)-FDTD method reduces the number of sub-steps by a factor of two to three, which represents a 33% time savings in each single run. The local one-dimensional (LOD)-FDTD method has similar numerical equation properties, which should be calculated as in the previous method. Generally, a small number of arithmetic processes, which result in a shorter simulation time, are desired. The alternating direction implicit technique can be considered a significant step forward for improving the efficiency of unconditionally stable FDTD schemes. This comparative study shows that the local one-dimensional method had minimum relative error ranges of less than 40% for analytical frequencies above 42.85 GHz, and the same accuracy was generated by both methods.
NASA Astrophysics Data System (ADS)
Arias-Ramirez, Walter; Olson, Britton; Wolf, William; Lawrence Livermore National Laboratory Team; University of Campinas Team
2015-11-01
The suitability of a continuing forcing immersed boundary method (IBM) combined with a high-order finite difference method is examined on several acoustic scattering problems. A suite of two-dimensional numerical simulations of canonical cases are conducted with the aim of analyzing the error behavior associated with the IBM, through wave reflection, wave diffraction, and the shock-boundary layer interaction phenomena. The compressible Navier-Stokes equations are solved using the Miranda code developed at Lawrence Livermore National Laboratory. Comparison of analytical solution against numerical results is shown for different flow parameters. Preliminary results indicate that the continuing forcing approach has the largest error in wave reflection compared to analytical solution. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
Seismic effects of viscous Biot-coupling: Finite difference simulations on micro-scale
NASA Astrophysics Data System (ADS)
Saenger, E. H.; Shapiro, S. A.; Keehm, Y.
2005-07-01
This paper is concerned with numerical considerations of viscous fluid effects on wave propagation in porous media. We apply a displacement-stress rotated staggered finite-difference (FD) grid technique to solve the elastodynamic wave equation. An accurate approximation of a Newtonian fluid is implemented in this technique by using a generalized Maxwell body. With this approach we consider the velocity predictions of the Biot theory for elastic waves in different digital rock samples. To distinguish between the low and the high frequency range we estimate the effective permeabilities by a flow simulation. Our numerical results indicate that the viscous Biot-coupling is visible in the numerical experiments. Moreover, the influences of other solid-fluid interactions (e.g., Squirt flow) are also discussed.
Transfer-matrix approach for finite-difference time-domain simulation of periodic structures.
Deinega, Alexei; Belousov, Sergei; Valuev, Ilya
2013-11-01
Optical properties of periodic structures can be calculated using the transfer-matrix approach, which establishes a relation between amplitudes of the wave incident on a structure with transmitted or reflected waves. The transfer matrix can be used to obtain transmittance and reflectance spectra of finite periodic structures as well as eigenmodes of infinite structures. Traditionally, calculation of the transfer matrix is performed in the frequency domain and involves linear algebra. In this work, we present a technique for calculation of the transfer matrix using the finite-difference time-domain (FDTD) method and show the way of its implementation in FDTD code. To illustrate the performance of our technique we calculate the transmittance spectra for opal photonic crystal slabs consisting of multiple layers of spherical scatterers. Our technique can be used for photonic band structure calculations. It can also be combined with existing FDTD methods for the analysis of periodic structures at an oblique incidence, as well as for modeling point sources in a periodic environment. PMID:24329377
Reddy, Jaggari Chandrakanth; Srikakula, Naveen Kumar; Juturu, Rajesh Kumar Reddy; Paidi, Shameen Kumar; Tedlapu, Satyendra Kumar; Mannava, Padmakanth; Khatoon, Rukhaiya
2016-01-01
Introduction Retention and esthetics are believed to play a crucial role in deciding the success of removable partial dentures. Aim To compare retention of acetal resin and cobalt–chromium clasps. Materials and Methods A finite element model was designed with an edentulous space between mandibular right second premolar and second molar. Occlusal rests were placed on distal fossa of the second premolar and mesial fossa of second molar. An undercut depth of 0.01inch was created on the mesiobuccal surface of the premolar and distobuccal surface of second molar. Three dimensional finite element model of clasp assembly was designed and assigned with the properties of two different materials namely acetal resin and cobalt–chromium in successive steps. A horizontal bar was constructed between the occlusal rests of the prosthesis. Later, variable amount of dislodging force, in increasing order, was applied at the centre of the horizontal bar and the force at which the clasp arm gets dislodged was noted with respect to each of the material. The obtained values were noted and then subsequently analyzed. Results The amount of force required to dislodge acetal resin and cobalt–chromium clasps was found to be 0.02N and 2N respectively. Conclusion The results obtained suggested that acetal resin clasp exhibited less retentive force than cobalt–chromium clasps. PMID:27437346
El-Anwar, Mohamed I.; Yousief, Salah A.; Soliman, Tarek A.; Saleh, Mahmoud M.; Omar, Wael S.
2015-01-01
Objective This study aimed to evaluate stress patterns generated within implant-supported mandibular overdentures retained by two different attachment types: ball and socket and locator attachments. Materials and methods Commercial CAD/CAM and finite element analysis software packages were utilized to construct two 3D finite element models for the two attachment types. Unilateral masticatory compressive loads of 50, 100, and 150 N were applied vertically to the overdentures, parallel to the longitudinal axes of the implants. Loads were directed toward the central fossa in the molar region of each overdenture, that linear static analysis was carried out to find the generated stresses and deformation on each part of the studied model. Results According to FEA results the ball attachment neck is highly stressed in comparison to the locator one. On the other hand mucosa and cortical bone received less stresses under ball and socket attachment. Conclusions Locator and ball and socket attachments induce equivalent stresses on bone surrounding implants. Locator attachment performance was superior to that of the ball and socket attachment in the implants, nylon caps, and overdenture. Locator attachments are highly recommended and can increase the interval between successive maintenance sessions. PMID:26644755
GPU-accelerated 3D neutron diffusion code based on finite difference method
Xu, Q.; Yu, G.; Wang, K.
2012-07-01
Finite difference method, as a traditional numerical solution to neutron diffusion equation, although considered simpler and more precise than the coarse mesh nodal methods, has a bottle neck to be widely applied caused by the huge memory and unendurable computation time it requires. In recent years, the concept of General-Purpose computation on GPUs has provided us with a powerful computational engine for scientific research. In this study, a GPU-Accelerated multi-group 3D neutron diffusion code based on finite difference method was developed. First, a clean-sheet neutron diffusion code (3DFD-CPU) was written in C++ on the CPU architecture, and later ported to GPUs under NVIDIA's CUDA platform (3DFD-GPU). The IAEA 3D PWR benchmark problem was calculated in the numerical test, where three different codes, including the original CPU-based sequential code, the HYPRE (High Performance Pre-conditioners)-based diffusion code and CITATION, were used as counterpoints to test the efficiency and accuracy of the GPU-based program. The results demonstrate both high efficiency and adequate accuracy of the GPU implementation for neutron diffusion equation. A speedup factor of about 46 times was obtained, using NVIDIA's Geforce GTX470 GPU card against a 2.50 GHz Intel Quad Q9300 CPU processor. Compared with the HYPRE-based code performing in parallel on an 8-core tower server, the speedup of about 2 still could be observed. More encouragingly, without any mathematical acceleration technology, the GPU implementation ran about 5 times faster than CITATION which was speeded up by using the SOR method and Chebyshev extrapolation technique. (authors)
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.
2013-01-01
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol−1) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non-periodic PB
Rocklin, Gabriel J.; Mobley, David L.; Dill, Ken A.; Hünenberger, Philippe H.
2013-11-14
The calculation of a protein-ligand binding free energy based on molecular dynamics (MD) simulations generally relies on a thermodynamic cycle in which the ligand is alchemically inserted into the system, both in the solvated protein and free in solution. The corresponding ligand-insertion free energies are typically calculated in nanoscale computational boxes simulated under periodic boundary conditions and considering electrostatic interactions defined by a periodic lattice-sum. This is distinct from the ideal bulk situation of a system of macroscopic size simulated under non-periodic boundary conditions with Coulombic electrostatic interactions. This discrepancy results in finite-size effects, which affect primarily the charging component of the insertion free energy, are dependent on the box size, and can be large when the ligand bears a net charge, especially if the protein is charged as well. This article investigates finite-size effects on calculated charging free energies using as a test case the binding of the ligand 2-amino-5-methylthiazole (net charge +1 e) to a mutant form of yeast cytochrome c peroxidase in water. Considering different charge isoforms of the protein (net charges −5, 0, +3, or +9 e), either in the absence or the presence of neutralizing counter-ions, and sizes of the cubic computational box (edges ranging from 7.42 to 11.02 nm), the potentially large magnitude of finite-size effects on the raw charging free energies (up to 17.1 kJ mol{sup −1}) is demonstrated. Two correction schemes are then proposed to eliminate these effects, a numerical and an analytical one. Both schemes are based on a continuum-electrostatics analysis and require performing Poisson-Boltzmann (PB) calculations on the protein-ligand system. While the numerical scheme requires PB calculations under both non-periodic and periodic boundary conditions, the latter at the box size considered in the MD simulations, the analytical scheme only requires three non
NASA Astrophysics Data System (ADS)
Castaldo, Raffaele; Tizzani, Pietro
2016-04-01
Many numerical models have been developed to simulate the deformation and stress changes associated to the faulting process. This aspect is an important topic in fracture mechanism. In the proposed study, we investigate the impact of the deep fault geometry and tectonic setting on the co-seismic ground deformation pattern associated to different earthquake phenomena. We exploit the impact of the structural-geological data in Finite Element environment through an optimization procedure. In this framework, we model the failure processes in a physical mechanical scenario to evaluate the kinematics associated to the Mw 6.1 L'Aquila 2009 earthquake (Italy), the Mw 5.9 Ferrara and Mw 5.8 Mirandola 2012 earthquake (Italy) and the Mw 8.3 Gorkha 2015 earthquake (Nepal). These seismic events are representative of different tectonic scenario: the normal, the reverse and thrust faulting processes, respectively. In order to simulate the kinematic of the analyzed natural phenomena, we assume, under the plane stress approximation (is defined to be a state of stress in which the normal stress, sz, and the shear stress sxz and syz, directed perpendicular to x-y plane are assumed to be zero), the linear elastic behavior of the involved media. The performed finite element procedure consist of through two stages: (i) compacting under the weight of the rock successions (gravity loading), the deformation model reaches a stable equilibrium; (ii) the co-seismic stage simulates, through a distributed slip along the active fault, the released stresses. To constrain the models solution, we exploit the DInSAR deformation velocity maps retrieved by satellite data acquired by old and new generation sensors, as ENVISAT, RADARSAT-2 and SENTINEL 1A, encompassing the studied earthquakes. More specifically, we first generate 2D several forward mechanical models, then, we compare these with the recorded ground deformation fields, in order to select the best boundaries setting and parameters. Finally
A free surface capturing discretization for the staggered grid finite difference scheme
NASA Astrophysics Data System (ADS)
Duretz, T.; May, D. A.; Yamato, P.
2016-03-01
The coupling that exists between surface processes and deformation within both the shallow crust and the deeper mantle-lithosphere has stimulated the development of computational geodynamic models that incorporate a free surface boundary condition. We introduce a treatment of this boundary condition that is suitable for staggered grid, finite difference schemes employing a structured Eulerian mesh. Our interface capturing treatment discretizes the free surface boundary condition via an interface that conforms with the edges of control volumes (e.g. a `staircase' representation) and requires only local stencil modifications to be performed. Comparisons with analytic solutions verify that the method is first-order accurate. Additional intermodel comparisons are performed between known reference models to further validate our free surface approximation. Lastly, we demonstrate the applicability of a multigrid solver to our free surface methodology and demonstrate that the local stencil modifications do not strongly influence the convergence of the iterative solver.
NASA Astrophysics Data System (ADS)
Jia, Jinhong; Wang, Hong
2015-07-01
Numerical methods for space-fractional diffusion equations often generate dense or even full stiffness matrices. Traditionally, these methods were solved via Gaussian type direct solvers, which requires O (N3) of computational work per time step and O (N2) of memory to store where N is the number of spatial grid points in the discretization. In this paper we develop a preconditioned fast Krylov subspace iterative method for the efficient and faithful solution of finite difference methods (both steady-state and time-dependent) space-fractional diffusion equations with fractional derivative boundary conditions in one space dimension. The method requires O (N) of memory and O (Nlog N) of operations per iteration. Due to the application of effective preconditioners, significantly reduced numbers of iterations were achieved that further reduces the computational cost of the fast method. Numerical results are presented to show the utility of the method.
Seismic Analysis of a Rockfill Dam by FLAC Finite Difference Code
Miglio, Livia; Pagliaroli, Alessandro; Lanzo, Giuseppe; Miliziano, Salvatore
2008-07-08
The paper presents the results of numerical analyses carried out with FLAC finite difference code aiming at investigating the seismic response of rockfill dams. In particular the hysteretic damping model, recently incorporated within the code, coupled with a perfectly plastic yield criterion, was employed. As first step, 1D and 2D calibration analyses were performed and comparisons with the results supplied by well known linear equivalent and fully non linear codes were carried out. Then the seismic response of E1 Infiernillo rockfill dam was investigated during two weak and strong seismic events. Benefits and shortcomings of using the hysteretic damping model are discussed in the light of the results obtained from calibration studies and field-scale analyses.
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2015-03-01
Two square matrices of (arbitrary) order N are introduced. They are defined in terms of N arbitrary numbers zn, and of an arbitrary additional parameter (a respectively q), and provide finite-dimensional representations of the two operators acting on a function f(z) as follows: [f(z + a) - f(z)]/a respectively [f(qz) - f(z)]/[(q - 1) z]. These representations are exact—in a sense explained in the paper—when the function f(z) is a polynomial in z of degree less than N. This formalism allows to transform difference equations valid in the space of polynomials of degree less than N into corresponding matrix-vector equations. As an application of this technique, several remarkable square matrices of order N are identified, which feature explicitly N arbitrary numbers zn, or the N zeros of polynomials belonging to the Askey and q-Askey schemes. Several of these findings have a Diophantine character.
NASA Astrophysics Data System (ADS)
Raynaud, M.; Bransier, J.
A space-marching finite difference algorithm is developed for solving the one-dimensional inverse heat conduction problem. The method is easy to apply, stable, and as accurate as the most efficient existing methods. An experimental set-up made of a rectangular parallelepiped polymerized around a woof of thermocouples has been designed especially to validate the method. The thermal conductivity of the test specimen was previously determined with the same set-up, and the specific heat is estimated during the experiments. The estimated surface heat flux is in very good agreement with the heat flux measured by a foil heat flux gage, regardless of the sensor locations. These results show that the method remains effective in spite of the cumulated effects of the errors due to the data acquisition system, to the location and calibration of the sensors, and to the simultaneous estimation of the specific heat.
NASA Astrophysics Data System (ADS)
Bhattacharya, Amitabh
2013-11-01
An efficient algorithm for simulating Stokes flow around particles is presented here, in which a second order Finite Difference method (FDM) is coupled to a Boundary Integral method (BIM). This method utilizes the strong points of FDM (i.e. localized stencil) and BIM (i.e. accurate representation of particle surface). Specifically, in each iteration, the flow field away from the particles is solved on a Cartesian FDM grid, while the traction on the particle surface (given the the velocity of the particle) is solved using BIM. The two schemes are coupled by matching the solution in an intermediate region between the particle and surrounding fluid. We validate this method by solving for flow around an array of cylinders, and find good agreement with Hasimoto's (J. Fluid Mech. 1959) analytical results.
NASA Technical Reports Server (NTRS)
Vinokur, M.
1979-01-01
The class of one-dimensional stretching functions used in finite-difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two-sided stretching function, for which the arbitrary slopes at the two ends of the one-dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent.
NASA Technical Reports Server (NTRS)
Schroeter, Jens; Wunsch, Carl
1986-01-01
The paper studies with finite difference nonlinear circulation models the uncertainties in interesting flow properties, such as western boundary current transport, potential and kinetic energy, owing to the uncertainty in the driving surface boundary condition. The procedure is based upon nonlinear optimization methods. The same calculations permit quantitative study of the importance of new information as a function of type, region of measurement and accuracy, providing a method to study various observing strategies. Uncertainty in a model parameter, the bottom friction coefficient, is studied in conjunction with uncertain measurements. The model is free to adjust the bottom friction coefficient such that an objective function is minimized while fitting a set of data to within prescribed bounds. The relative importance of the accuracy of the knowledge about the friction coefficient with respect to various kinds of observations is then quantified, and the possible range of the friction coefficients is calculated.
A Finite Difference Method for Modeling Migration of Impurities in Multilayer Systems
NASA Astrophysics Data System (ADS)
Tosa, V.; Kovacs, Katalin; Mercea, P.; Piringer, O.
2008-09-01
A finite difference method to solve the one-dimensional diffusion of impurities in a multilayer system was developed for the special case in which a partition coefficient K impose a ratio of the concentrations at the interface between two adiacent layers. The fictitious point method was applied to derive the algebraic equations for the mesh points at the interface, while for the non-uniform mesh points within the layers a combined method was used. The method was tested and then applied to calculate migration of impurities from multilayer systems into liquids or solids samples, in migration experiments performed for quality testing purposes. An application was developed in the field of impurities migrations from multilayer plastic packagings into food, a problem of increasing importance in food industry.
NASA Technical Reports Server (NTRS)
Fisher, Travis C.; Carpenter, Mark H.; Yamaleev, Nail K.; Frankel, Steven H.
2009-01-01
A general strategy exists for constructing Energy Stable Weighted Essentially Non Oscillatory (ESWENO) finite difference schemes up to eighth-order on periodic domains. These ESWENO schemes satisfy an energy norm stability proof for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, boundary closures are developed for the fourth-order ESWENO scheme that maintain wherever possible the WENO stencil biasing properties, while satisfying the summation-by-parts (SBP) operator convention, thereby ensuring stability in an L2 norm. Second-order, and third-order boundary closures are developed that achieve stability in diagonal and block norms, respectively. The global accuracy for the second-order closures is three, and for the third-order closures is four. A novel set of non-uniform flux interpolation points is necessary near the boundaries to simultaneously achieve 1) accuracy, 2) the SBP convention, and 3) WENO stencil biasing mechanics.
NASA Technical Reports Server (NTRS)
Kaul, Upender K.
2005-01-01
A three-dimensional numerical solver based on finite-difference solution of three-dimensional elastodynamic equations in generalized curvilinear coordinates has been developed and used to generate data such as radial and tangential stresses over various gear component geometries under rotation. The geometries considered are an annulus, a thin annular disk, and a thin solid disk. The solution is based on first principles and does not involve lumped parameter or distributed parameter systems approach. The elastodynamic equations in the velocity-stress formulation that are considered here have been used in the solution of problems of geophysics where non-rotating Cartesian grids are considered. For arbitrary geometries, these equations along with the appropriate boundary conditions have been cast in generalized curvilinear coordinates in the present study.
AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode
Toomey, Aoife
2005-01-06
This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.
Black-Scholes finite difference modeling in forecasting of call warrant prices in Bursa Malaysia
NASA Astrophysics Data System (ADS)
Mansor, Nur Jariah; Jaffar, Maheran Mohd
2014-07-01
Call warrant is a type of structured warrant in Bursa Malaysia. It gives the holder the right to buy the underlying share at a specified price within a limited period of time. The issuer of the structured warrants usually uses European style to exercise the call warrant on the maturity date. Warrant is very similar to an option. Usually, practitioners of the financial field use Black-Scholes model to value the option. The Black-Scholes equation is hard to solve analytically. Therefore the finite difference approach is applied to approximate the value of the call warrant prices. The central in time and central in space scheme is produced to approximate the value of the call warrant prices. It allows the warrant holder to forecast the value of the call warrant prices before the expiry date.
Finite-difference time-domain simulation of thermal noise in open cavities
Andreasen, Jonathan; Cao Hui; Taflove, Allen; Kumar, Prem |; Cao Changqi
2008-02-15
A numerical model based on the finite-difference time-domain (FDTD) method is developed to simulate thermal noise in open cavities owing to output coupling. The absorbing boundary of the FDTD grid is treated as a blackbody, whose thermal radiation penetrates the cavity in the grid. The calculated amount of thermal noise in a one-dimensional dielectric cavity recovers the standard result of the quantum Langevin equation in the Markovian regime. Our FDTD simulation also demonstrates that in the non-Markovian regime the buildup of the intracavity noise field depends on the ratio of the cavity photon lifetime to the coherence time of thermal radiation. The advantage of our numerical method is that the thermal noise is introduced in the time domain without prior knowledge of cavity modes.
Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation
Sha, Wei . E-mail: ws108@ahu.edu.cn; Huang, Zhixiang; Wu, Xianliang; Chen, Mingsheng
2007-07-01
An explicit fourth-order finite-difference time-domain (FDTD) scheme using the symplectic integrator is applied to electromagnetic simulation. A feasible numerical implementation of the symplectic FDTD (SFDTD) scheme is specified. In particular, new strategies for the air-dielectric interface treatment and the near-to-far-field (NFF) transformation are presented. By using the SFDTD scheme, both the radiation and the scattering of three-dimensional objects are computed. Furthermore, the energy-conserving characteristic hold for the SFDTD scheme is verified under long-term simulation. Numerical results suggest that the SFDTD scheme is more efficient than the traditional FDTD method and other high-order methods, and can save computational resources.
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1998-01-01
This project is about the development of high order, non-oscillatory type schemes for computational fluid dynamics. Algorithm analysis, implementation, and applications are performed. Collaborations with NASA scientists have been carried out to ensure that the research is relevant to NASA objectives. The combination of ENO finite difference method with spectral method in two space dimension is considered, jointly with Cai [3]. The resulting scheme behaves nicely for the two dimensional test problems with or without shocks. Jointly with Cai and Gottlieb, we have also considered one-sided filters for spectral approximations to discontinuous functions [2]. We proved theoretically the existence of filters to recover spectral accuracy up to the discontinuity. We also constructed such filters for practical calculations.
Finite Difference Time Domain Analysis for a Sound Field Including a Plate in Water
NASA Astrophysics Data System (ADS)
Saito, Hideaki; Naoi, Jun; Kikuchi, Toshiaki
2004-05-01
In marine research, measures against self-noise of an observatory ship are important. Generally, the self-noise is measured after the completion of ships. It is difficult to predict this noise level beforehand. Then, an attempt is made to determine the noise emitted from various elements of a structure. The finite difference time domain method is applied to obtain sound fields, including that of a plate in water. The time behavior of the sound wave emitted from a sound source placed near the upper part of a plate is investigated. As a result, the reflected and re-radiated waves from the plate including the head wave resulting from the longitudinal and traverse waves in the plate are able to be visualized. In the case of the plate with a branch plate, the suppression of the wave which propagates at the inside of the plate with the length of the branch plate is shown.
NASA Astrophysics Data System (ADS)
Collins, M. W.
1980-03-01
The complete two-dimensional partial differential equations for developing laminar flow in a circular tube have been treated by a finite difference analysis. Property variation with temperature, especially that of viscosity, is allowed for in a flexible manner. The continuity and momentum equations, and then the energy equations, are solved by direct elimination at each axial step, and a marching procedure used in the axial direction. The stepwise energy balance is rigidly satisfied throughout by using it as a constituent equation in place of the 'explicit' wall thermal boundary condition normally used. The analysis predicts the complete developing hydrodynamic and thermal fields, together with friction factors and heat transfer coefficients. It has been tested for a range of fluid velocity and thermal boundary conditions and for various fluids, including high viscosity oils, water and air. Predictions for constant wall temperature presented here are for forced and combined convection and are compared with experimental data of Test and Zeldin and Schmidt.
A finite difference-time domain technique for modeling narrow apertures in conducting scatterers
NASA Technical Reports Server (NTRS)
Demarest, Kenneth R.
1987-01-01
The finite difference-time domain (FDTD) technique has proven to be a valuable tool for the calculation of the transient and steady state scattering characteristics of relatively complex scatterer and source configurations. In spite of its usefulness, it exhibits serious deficiencies when used to analyze geometries that contain fine detail. An FDTD technique is described that utilizes Babinet's principle to decouple the regions on both sides of the aperture. The result is an FDTD technique that is capable of modeling apertures that are much smaller than the spatial grid used in the analysis and yet is not perturbed by numerical noise when used in the 'scattered field' mode. Numerical results are presented that show the field penetration through cavity-backed apertures that are much smaller than the spatial grid used during the solution.
Simulation of the turbulent Rayleigh-Benard problem using a spectral/finite difference technique
NASA Technical Reports Server (NTRS)
Eidson, T. M.; Hussaini, M. Y.; Zang, T. A.
1986-01-01
The three-dimensional, incompressible Navier-Stokes and energy equations with the Bousinesq assumption have been directly simulated at a Rayleigh number of 3.8 x 10 to the 5th power and a Prandtl number of 0.76. In the vertical direction, wall boundaries were used and in the horizontal, periodic boundary conditions were used. A spectral/finite difference numerical method was used to simulate the flow. The flow at these conditions is turbulent and a sufficiently fine mesh was used to capture all relevant flow scales. The results of the simulation are compared to experimental data to justify the conclusion that the small scale motion is adequately resolved.
A fast high-order finite difference algorithm for pricing American options
NASA Astrophysics Data System (ADS)
Tangman, D. Y.; Gopaul, A.; Bhuruth, M.
2008-12-01
We describe an improvement of Han and Wu's algorithm [H. Han, X.Wu, A fast numerical method for the Black-Scholes equation of American options, SIAM J. Numer. Anal. 41 (6) (2003) 2081-2095] for American options. A high-order optimal compact scheme is used to discretise the transformed Black-Scholes PDE under a singularity separating framework. A more accurate free boundary location based on the smooth pasting condition and the use of a non-uniform grid with a modified tridiagonal solver lead to an efficient implementation of the free boundary value problem. Extensive numerical experiments show that the new finite difference algorithm converges rapidly and numerical solutions with good accuracy are obtained. Comparisons with some recently proposed methods for the American options problem are carried out to show the advantage of our numerical method.
Full-wave finite-difference time-domain simulation of electromagnetic cloaking structures.
Zhao, Yan; Argyropoulos, Christos; Hao, Yang
2008-04-28
This paper proposes a radial dependent dispersive finite-difference time-domain method for the modeling of electromagnetic cloaking structures. The permittivity and permeability of the cloak are mapped to the Drude dispersion model and taken into account in dispersive FDTD simulations. Numerical simulations demonstrate that under ideal conditions, objects placed inside the cloak are 'invisible' to external electromagnetic fields. However for the simplified cloak based on linear transformations, the back scattering has a similar level to the case of a PEC cylinder without any cloak, rendering the object still being 'visible'. It is also demonstrated numerically that the simplified cloak based on high-order transformations can indeed improve the cloaking performance. PMID:18545374
Skolski, J. Z. P. Vincenc Obona, J.; Römer, G. R. B. E.; Huis in 't Veld, A. J.
2014-03-14
A model predicting the formation of laser-induced periodic surface structures (LIPSSs) is presented. That is, the finite-difference time domain method is used to study the interaction of electromagnetic fields with rough surfaces. In this approach, the rough surface is modified by “ablation after each laser pulse,” according to the absorbed energy profile, in order to account for inter-pulse feedback mechanisms. LIPSSs with a periodicity significantly smaller than the laser wavelength are found to “grow” either parallel or orthogonal to the laser polarization. The change in orientation and periodicity follow from the model. LIPSSs with a periodicity larger than the wavelength of the laser radiation and complex superimposed LIPSS patterns are also predicted by the model.
Finite difference method to find period-one gait cycles of simple passive walkers
NASA Astrophysics Data System (ADS)
Dardel, Morteza; Safartoobi, Masoumeh; Pashaei, Mohammad Hadi; Ghasemi, Mohammad Hassan; Navaei, Mostafa Kazemi
2015-01-01
Passive dynamic walking refers to a class of bipedal robots that can walk down an incline with no actuation or control input. These bipeds are sensitive to initial conditions due to their style of walking. According to small basin of attraction of passive limit cycles, it is important to start with an initial condition in the basin of attraction of stable walking (limit cycle). This paper presents a study of the simplest passive walker with point and curved feet. A new approach is proposed to find proper initial conditions for a pair of stable and unstable period-one gait limit cycles. This methodology is based on finite difference method which can solve the nonlinear differential equations of motion on a discrete time. Also, to investigate the physical configurations of the walkers and the environmental influence such as the slope angle, the parameter analysis is applied. Numerical simulations reveal the performance of the presented method in finding two stable and unstable gait patterns.
Inclusion of lumped elements in finite difference time domain electromagnetic calculations
Thomas, V.A.; Jones, M.E.; Mason, R.J.
1994-12-31
A general approach for including lumped circuit elements in a finite difference, time domain (FD-TD) solution of Maxwell`s equations is presented. The methodology allows the direct access to SPICE to model the lumped circuits, while the full 3-Dimensional solution to Maxwell`s equations provides the electromagnetic field evolution. This type of approach could be used to mode a pulsed power machine by using a SPICE model for the driver and using an electromagnetic PIC code for the plasma/electromagnetics calculation. The evolution of the driver can be made self consistent with the behavior of the plasma load. Other applications are also possible, including modeling of nonlinear microwave circuits (as long as the non-linearities may be expressed in terms of a lumped element) and self-consistent calculation of very high speed computer interconnections and digital circuits.
Finite difference time domain calculation of transients in antennas with nonlinear loads
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent
1991-01-01
In this paper transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.
NASA Technical Reports Server (NTRS)
Kaul, Upender K. (Inventor)
2009-01-01
Modeling and simulation of free and forced structural vibrations is essential to an overall structural health monitoring capability. In the various embodiments, a first principles finite-difference approach is adopted in modeling a structural subsystem such as a mechanical gear by solving elastodynamic equations in generalized curvilinear coordinates. Such a capability to generate a dynamic structural response is widely applicable in a variety of structural health monitoring systems. This capability (1) will lead to an understanding of the dynamic behavior of a structural system and hence its improved design, (2) will generate a sufficiently large space of normal and damage solutions that can be used by machine learning algorithms to detect anomalous system behavior and achieve a system design optimization and (3) will lead to an optimal sensor placement strategy, based on the identification of local stress maxima all over the domain.
The arbitrary order mixed mimetic finite difference method for the diffusion equation
Gyrya, Vitaliy; Lipnikov, Konstantin; Manzini, Gianmarco
2016-05-01
Here, we propose an arbitrary-order accurate mimetic finite difference (MFD) method for the approximation of diffusion problems in mixed form on unstructured polygonal and polyhedral meshes. As usual in the mimetic numerical technology, the method satisfies local consistency and stability conditions, which determines the accuracy and the well-posedness of the resulting approximation. The method also requires the definition of a high-order discrete divergence operator that is the discrete analog of the divergence operator and is acting on the degrees of freedom. The new family of mimetic methods is proved theoretically to be convergent and optimal error estimates for flux andmore » scalar variable are derived from the convergence analysis. A numerical experiment confirms the high-order accuracy of the method in solving diffusion problems with variable diffusion tensor. It is worth mentioning that the approximation of the scalar variable presents a superconvergence effect.« less
NASA Astrophysics Data System (ADS)
Zhu, Lu; Liu, Yuanyuan; Chen, Suhua; Hu, Fei; Chen, Zhizhang (David)
2015-04-01
Synthetic aperture imaging radiometer (SAIR) has the potential to meet the spatial resolution requirement of passive millimeter remote sensing from space. A new two-dimensional (2-D) imaging radiometer at millimeter wave (MMW) band is described in this paper; it uses a one-dimensional (1-D) synthetic aperture digital radiometer (SADR) to obtain an image on one dimension and a rotary platform to provide a scan on the second dimension. Due to the ill-posed inverse problem of SADR, we proposed a new reconstruction algorithm based on Finite Difference (FD) regularization to improve brightness temperature images. Experimental results show that the proposed 2-D MMW radiometer can give the brightness temperature images of natural scenes and the FD regularization reconstruction algorithm is able to improve the quality of brightness temperature images.
Bensa, Julien; Bilbao, Stefan; Kronland-Martinet, Richard; Smith, Julius O
2003-08-01
A model of transverse piano string vibration, second order in time, which models frequency-dependent loss and dispersion effects is presented here. This model has many desirable properties, in particular that it can be written as a well-posed initial-boundary value problem (permitting stable finite difference schemes) and that it may be directly related to a digital waveguide model, a digital filter-based algorithm which can be used for musical sound synthesis. Techniques for the extraction of model parameters from experimental data over the full range of the grand piano are discussed, as is the link between the model parameters and the filter responses in a digital waveguide. Simulations are performed. Finally, the waveguide model is extended to the case of several coupled strings. PMID:12942987
NASA Technical Reports Server (NTRS)
Siegel, R.; Molls, F. B.
1992-01-01
Transient solutions were obtained for a square region of heat conducting semitransparent material cooling by thermal radiation. The region is in a vacuum environment, so energy is dissipated only by radiation from within the medium leaving through its boundaries. The effect of heat conduction during the transient is to partially equalize the internal temperature distribution. As the optical thickness of the region is increased, the temperature gradients increase near the boundaries and corners, unless heat conduction is large. The solution procedure must provide accurate temperature distributions in these regions to prevent error in the calculated radiation losses. Two-dimensional numerical Gaussian integration is used to obtain the local radiative source term. A finite difference procedure with variable space and time increments is used to solve the transient energy equation. Variable spacing was used to concentrate grid points in regions with large temperature gradients.
Low-dispersion finite difference methods for acoustic waves in a pipe
NASA Technical Reports Server (NTRS)
Davis, Sanford
1991-01-01
A new algorithm for computing one-dimensional acoustic waves in a pipe is demonstrated by solving the acoustic equations as an initial-boundary-value problem. Conventional dissipation-free second-order finite difference methods suffer severe phase distortion for grids with less that about ten mesh points per wavelength. Using the signal generation by a piston in a duct as an example, transient acoustic computations are presented using a new compact three-point algorithm which allows about 60 percent fewer mesh points per wavelength. Both pulse and harmonic excitation are considered. Coupling of the acoustic signal with the pipe resonant modes is shown to generate a complex transient wave with rich harmonic content.
Finite difference solution for transient cooling of a radiating-conducting semitransparent layer
NASA Technical Reports Server (NTRS)
Siegel, Robert
1992-01-01
Transient solutions were obtained for cooling a semitransparent material by radiation and conduction. The layer is in a vacuum environment so the only means for heat dissipation is by radiation from within the medium leaving through the boundaries. Heat conduction serves only to partially equalize temperatures across the layer. As the optical thickness is increased, steep temperature gradients exist near the boundaries when conduction is relatively small. A solution procedure is required that will provide accurate temperature distributions adjacent to the boundaries, or radiative heat losses will be in error. The approach utilized numerical Gaussian integration to obtain the local radiative source term, and a finite difference procedure with variable space and time increments to solve the transient energy equation.
Day, D.R.
1993-12-31
Disposable and permanently mounted dielectric sensors were used to characterize the cure in polyester sheet molding compound (SMC) at various locations through the thickness of the part in a simulated molding environment. Using established techniques, the dielectric and temperature information were combined to yield local cure state information for each sensor. Parts under five millimeters thick were found to cure rather uniformly while parts greater than this had increasing degrees of nonuniformity in cure behavior through the thickness. These observed cure state data were compared to finite difference model predictions. The model predictions, which were confirmed by the sensor cure data, may be used to optimize part design and production by predicting the curing behavior and molding cycle time required for new structures.
Free transverse vibration of a wrinkled annular thin film by using finite difference method
NASA Astrophysics Data System (ADS)
Wang, C. G.; Liu, Y. P.; Lan, L.; Tan, H. F.
2016-02-01
This paper investigates the free transverse vibration of a wrinkled annular thin film. The non-dimensional Hamilton motion equation of the wrinkled annular thin film is established, which is solved by using the finite difference method to acquire the vibration frequency and mode. The predicted vibration characteristics are verified by the experimental measurements based on the digital image correlation (DIC) technique. The results show that wrinkles have great effects on the vibration of the annular thin film. Especially for the heavily wrinkled cases, the local-global interactive mode dominates the vibration of the annular thin film. The frequency increases as the wrinkling level increases which is mainly due to the increased nonlinear geometric stiffness. The results provide favorable supports for understanding the role of nonlinear wrinkling on the vibration of thin films.
NASA Astrophysics Data System (ADS)
Putri, Selmi; Arif, Idam; Khotimah, Siti Nurul
2015-04-01
In this study, peritoneal dialysis transport system was numerically simulated using finite difference method. The increase in the intraperitoneal pressure due to coughing has a high value outside the working area of the void volume fraction of the hydrostatic pressure θ(P). Therefore to illustrate the effects of the pressure increment, the pressure of working area is chosen between 1 and 3 mmHg. The effects of increased pressure in peritoneal tissue cause more fluid to flow into the blood vessels and lymph. Furthermore, the increased pressure in peritoneal tissue makes the volumetric flux jv and solute flux js across the tissue also increase. The more fluid flow into the blood vessels and lymph causes the fluid to flow into tissue qv and the glucose flow qs to have more negative value and also decreases the glucose concentration CG in the tissue.
NASA Astrophysics Data System (ADS)
Guda, A. A.; Guda, S. A.; Soldatov, M. A.; Lomachenko, K. A.; Bugaev, A. L.; Lamberti, C.; Gawelda, W.; Bressler, C.; Smolentsev, G.; Soldatov, A. V.; Joly, Y.
2016-05-01
Finite difference method (FDM) implemented in the FDMNES software [Phys. Rev. B, 2001, 63, 125120] was revised. Thorough analysis shows, that the calculated diagonal in the FDM matrix consists of about 96% zero elements. Thus a sparse solver would be more suitable for the problem instead of traditional Gaussian elimination for the diagonal neighbourhood. We have tried several iterative sparse solvers and the direct one MUMPS solver with METIS ordering turned out to be the best. Compared to the Gaussian solver present method is up to 40 times faster and allows XANES simulations for complex systems already on personal computers. We show applicability of the software for metal-organic [Fe(bpy)3]2+ complex both for low spin and high spin states populated after laser excitation.
CUDA Fortran acceleration for the finite-difference time-domain method
NASA Astrophysics Data System (ADS)
Hadi, Mohammed F.; Esmaeili, Seyed A.
2013-05-01
A detailed description of programming the three-dimensional finite-difference time-domain (FDTD) method to run on graphical processing units (GPUs) using CUDA Fortran is presented. Two FDTD-to-CUDA thread-block mapping designs are investigated and their performances compared. Comparative assessment of trade-offs between GPU's shared memory and L1 cache is also discussed. This presentation is for the benefit of FDTD programmers who work exclusively with Fortran and are reluctant to port their codes to C in order to utilize GPU computing. The derived CUDA Fortran code is compared with an optimized CPU version that runs on a workstation-class CPU to present a realistic GPU to CPU run time comparison and thus help in making better informed investment decisions on FDTD code redesigns and equipment upgrades. All analyses are mirrored with CUDA C simulations to put in perspective the present state of CUDA Fortran development.
A fourth order accurate finite difference scheme for the computation of elastic waves
NASA Technical Reports Server (NTRS)
Bayliss, A.; Jordan, K. E.; Lemesurier, B. J.; Turkel, E.
1986-01-01
A finite difference for elastic waves is introduced. The model is based on the first order system of equations for the velocities and stresses. The differencing is fourth order accurate on the spatial derivatives and second order accurate in time. The model is tested on a series of examples including the Lamb problem, scattering from plane interf aces and scattering from a fluid-elastic interface. The scheme is shown to be effective for these problems. The accuracy and stability is insensitive to the Poisson ratio. For the class of problems considered here it is found that the fourth order scheme requires for two-thirds to one-half the resolution of a typical second order scheme to give comparable accuracy.
Single-cone real-space finite difference scheme for the time-dependent Dirac equation
NASA Astrophysics Data System (ADS)
Hammer, René; Pötz, Walter; Arnold, Anton
2014-05-01
A finite difference scheme for the numerical treatment of the (3+1)D Dirac equation is presented. Its staggered-grid intertwined discretization treats space and time coordinates on equal footing, thereby avoiding the notorious fermion doubling problem. This explicit scheme operates entirely in real space and leads to optimal linear scaling behavior for the computational effort per space-time grid-point. It allows for an easy and efficient parallelization. A functional for a norm on the grid is identified. It can be interpreted as probability density and is proved to be conserved by the scheme. The single-cone dispersion relation is shown and exact stability conditions are derived. Finally, a single-cone scheme for the two-component (2+1)D Dirac equation, its properties, and a simulation of scattering at a Klein step are presented.
NASA Astrophysics Data System (ADS)
Tian, Jun-Fang; Yuan, Zhen-Zhou; Jia, Bin; Fan, Hong-Qiang
2013-03-01
We investigate the phase transitions and the Korteweg-de Vries (KdV) equation in the density difference lattice hydrodynamic (DDLM) model, which shows a close connection with the gas-kinetic-based model and the microscopic car following model. The KdV equation near the neutral stability line is derived and the corresponding soliton solution describing the density waves is obtained. Numerical simulations are conducted in two aspects. On the one hand, under periodic conditions perturbations are applied to demonstrate the nonlinear analysis result. On the other hand, the open boundary condition with random fluctuations is designed to explore the empirical congested traffic patterns. The phase transitions among the free traffic (FT), widening synchronized flow pattern (WSP), moving localized cluster (MLC), oscillatory congested traffic (OCT) and homogeneous congested traffic (HCT) occur by varying the amplitude of the fluctuations. To our knowledge, it is the first research showing that the lattice hydrodynamic model could reproduce so many congested traffic patterns.
Anami, Lilian Costa; da Costa Lima, Júlia Magalhães; Takahashi, Fernando Eidi; Neisser, Maximiliano Piero; Noritomi, Pedro Yoshito; Bottino, Marco Antonio
2015-04-01
The goal of this study was to evaluate the distribution of stresses generated around implants with different internal-cone abutments by photoelastic (PA) and finite element analysis (FEA). For FEA, implant and abutments with different internal-cone connections (H- hexagonal and S- solid) were scanned, 3D meshes were modeled and objects were loaded with computer software. Trabecular and cortical bones and photoelastic resin blocks were simulated. The PA was performed with photoelastic resin blocks where implants were included and different abutments were bolted. Specimens were observed in the circular polariscope with the application device attached, where loads were applied on same conditions as FEA. FEA images showed very similar stress distribution between two models with different abutments. Differences were observed between stress distribution in bone and resin blocks; PA images resembled those obtained on resin block FEA. PA images were also quantitatively analyzed by comparing the values assigned to fringes. It was observed that S abutment distributes loads more evenly to bone adjacent to an implant when compared to H abutment, for both analysis methods used. It was observed that the PA has generated very similar results to those obtained in FEA with the resin block. PMID:23750560
Stringhini, Diego José; Sommerfeld, Ricardo; Uetanabaro, Lucas Caetano; Leonardi, Denise Piotto; Araújo, Melissa Rodrigues; Rebellato, Nelson Luís Barbosa; Costa, Delson João da; Scariot, Rafaela
2016-01-01
The aim of this study was to evaluate the stress and dislodgement resistance by finite element analysis of different types of fixation in mandibular orthognathic surgery. A 3D solid finite element model of a hemi-mandible was obtained. A bilateral sagittal split osteotomy was simulated and the distal segment was advanced 5 mm forward. After the adjustment and superimposing of segments, 9 different types of osteosynthesis with 2.0 miniplates and screws were simulated: A, one 4-hole conventional straight miniplate; B, one 4-hole locking straight miniplate; C, one 4-hole conventional miniplate and one bicortical screw; D, one 4-hole locking miniplate and 1 bicortical screws; E, one 6-hole conventional straight miniplate; F, one 6-hole locking miniplate; G, two 4-hole conventional straight miniplates; H, two 4-hole locking straight miniplates; and I, 3 bicortical screws in an inverted-L pattern. In each model, forces simulating the masticatory muscles were applied. The values of stress in the plates and screws were checked. The dislodgement resistance was checked at the proximal segment since the distal segment was stable because of the screen at the occlusal tooth. The regions with the lowest and highest displacement were measured. The offset between the osteotomized segments was verified by millimeter intervals. Inverted-L with bicortical screws was the model that had the lowest dislodgment and the model with the lowest tension was the one with two conventional plates. The results suggest that the tension was better distributed in the locking miniplates, but the locking screws presented higher concentration of tension. PMID:27224561
Field Test of a Hybrid Finite-Difference and Analytic Element Regional Model.
Abrams, D B; Haitjema, H M; Feinstein, D T; Hunt, R J
2016-01-01
Regional finite-difference models often have cell sizes that are too large to sufficiently model well-stream interactions. Here, a steady-state hybrid model is applied whereby the upper layer or layers of a coarse MODFLOW model are replaced by the analytic element model GFLOW, which represents surface waters and wells as line and point sinks. The two models are coupled by transferring cell-by-cell leakage obtained from the original MODFLOW model to the bottom of the GFLOW model. A real-world test of the hybrid model approach is applied on a subdomain of an existing model of the Lake Michigan Basin. The original (coarse) MODFLOW model consists of six layers, the top four of which are aggregated into GFLOW as a single layer, while the bottom two layers remain part of MODFLOW in the hybrid model. The hybrid model and a refined "benchmark" MODFLOW model simulate similar baseflows. The hybrid and benchmark models also simulate similar baseflow reductions due to nearby pumping when the well is located within the layers represented by GFLOW. However, the benchmark model requires refinement of the model grid in the local area of interest, while the hybrid approach uses a gridless top layer and is thus unaffected by grid discretization errors. The hybrid approach is well suited to facilitate cost-effective retrofitting of existing coarse grid MODFLOW models commonly used for regional studies because it leverages the strengths of both finite-difference and analytic element methods for predictions in mildly heterogeneous systems that can be simulated with steady-state conditions. PMID:25628100
Overview of finite difference Hartree-Fock method algorithm, implementation and application
NASA Astrophysics Data System (ADS)
Kobus, J.
2012-12-01
Two-dimensional, finite difference Hartree-Fock method has been in constant usage and development over the last two decades. The method has proved stable and efficient enough to be applied to dozens of diatomic molecules, even to systems as large as the thorium fluoride. Its latest version is presented and the dependence of its accuracy on the grid size and efficiency on the overrelaxation parameters are discussed. The method has been mainly used to develop and calibrate sequences of universal even-tempered and polarization-consistent basis sets and assess basis set truncation and superposition errors. Its modified version has proved useful in testing various exchange-correlation potentials within the density functional theory. The method has turned out to be a valuable source of reference values of total energies, multipole moments, static polarizabilities and hyperpolarizabilities (αzz, βzzz, γzzzz, Az,zz and Bzz,zz) for atoms, diatomic molecules and their ions. Recently, it has been modified to allow to calculate the electrical properties of homonuclear molecules and the results for the Li2, N2, F2 and O2 systems are presented. Electrical properties of the AlF, CS, KCl diatomics and of highly ionized krypton atom (Kr+32) are reported as well. Accuracy of both the matrix Hartree-Fock employing universal even-tempered basis sets and the finite difference Hartree-Fock methods is discussed and the basis set superposition errors of the dipole polarizability and the first hyperpolarizability of the FH molecule is reexamined. Basis set superposition errors are also discussed in case of the dipole polarizability and the second hyperpolarizability of the F2 system.
NASA Astrophysics Data System (ADS)
Tsai, T. C.; Yu, H.-S.; Hsieh, M.-S.; Lai, S. H.; Yang, Y.-H.
2015-11-01
Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of parallel computing is of importance especially with the increasing computing scale. This paper proposes a high-order implicit predictor-corrector central finite difference (iPCCFD) scheme and demonstrates its high efficiency in parallel computing. Of special interests are the large scale numerical studies such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD scheme is developed based on fifth-order central finite difference method and fourth-order implicit predictor-corrector method in combination with elimination-of-the-round-off-errors (ERE) technique. We examine several numerical studies such as one-dimensional Brio-Wu shock tube problem, two-dimensional Orszag-Tang vortex system, vortex type K-H instability, kink type K-H instability, field loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our studies present relatively small numerical errors without employing any divergence-free reconstruction. In particular, we obtain fairly stable results in the two-dimensional Brio-Wu shock tube problem which well conserves ∇ ṡ B = 0 throughout the simulation. The ERE technique removes the accumulation of roundoff errors in the uniform or non-disturbed system. We have also shown that iPCCFD is characterized by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving the MHD equations in hyperbolic conservation systems.
Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; McDowell, David L.
2015-07-10
Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes themore » rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide
Lloyd, Jeffrey T.; Clayton, John D.; Austin, Ryan A.; McDowell, David L.
2015-07-10
Background: The shock response of metallic single crystals can be captured using a micro-mechanical description of the thermoelastic-viscoplastic material response; however, using a such a description within the context of traditional numerical methods may introduce a physical artifacts. Advantages and disadvantages of complex material descriptions, in particular the viscoplastic response, must be framed within approximations introduced by numerical methods. Methods: Three methods of modeling the shock response of metallic single crystals are summarized: finite difference simulations, steady wave simulations, and algebraic solutions of the Rankine-Hugoniot jump conditions. For the former two numerical techniques, a dislocation density based framework describes the rate- and temperature-dependent shear strength on each slip system. For the latter analytical technique, a simple (two-parameter) rate- and temperature-independent linear hardening description is necessarily invoked to enable simultaneous solution of the governing equations. For all models, the same nonlinear thermoelastic energy potential incorporating elastic constants of up to order 3 is applied. Results: Solutions are compared for plate impact of highly symmetric orientations (all three methods) and low symmetry orientations (numerical methods only) of aluminum single crystals shocked to 5 GPa (weak shock regime) and 25 GPa (overdriven regime). Conclusions: For weak shocks, results of the two numerical methods are very similar, regardless of crystallographic orientation. For strong shocks, artificial viscosity affects the finite difference solution, and effects of transverse waves for the lower symmetry orientations not captured by the steady wave method become important. The analytical solution, which can only be applied to highly symmetric orientations, provides reasonable accuracy with regards to prediction of most variables in the final shocked state but, by construction, does not provide insight
NASA Technical Reports Server (NTRS)
Sohn, Kiho D.; Ip, Shek-Se P.
1988-01-01
Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.
On a family of monotone finite-difference schemes of the second order of approximation
NASA Astrophysics Data System (ADS)
Gushchin, Valentin A.
2015-11-01
Using a simple model of a linear transport equation a family of hybrid monotone finite difference schemes has been constructed. By the analysis of the differential approximation it was shown that the resulting family has a secondorder approximation in the spatial variable, has minimal scheme viscosity and dispersion and monotonous. It is shown that the region of operability of the base schemes (Modified Central Difference Schemes (MCDS) and Modified Upwind Difference Schemes (MUDS)) is a non-empty set. The local criterion for switching between the base schemes is based on the sign of the product of the velocity, the first and second differences of the transferred functions at the considered point. On the solution of the Cauchy problem provides a graphical comparison of the calculation results obtained using the known schemes of the first, second and third order approximation. This work has been partly supported by Russian Foundation for Basic Research (grants No. 14-01-00428, 15-51-50023), by the program of the Presidium of RAS No. 8 and by the program No. 3 of the Department of Mathematical Sciences of RAS.
Three-dimensional finite-difference modeling of non-linear ground notion
Jones, E.M.; Olsen, K.B.
1997-08-01
We present a hybrid finite-difference technique capable of modeling non-linear soil amplification from the 3-D finite-fault radiation pattern for earthquakes in arbitrary earth models. The method is applied to model non-linear effects in the soils of the San Fernando Valley (SFV) from the 17 January 1994 M 6.7 Northridge earthquake. 0-7 Hz particle velocities are computed for an area of 17 km by 19 km immediately above the causative fault and 5 km below the surface where peak strike-parallel, strike-perpendicular, vertical, and total velocities reach values of 71 cm/s, 145 cm/s, 152 cm/s, and 180 cm/s, respectively. Selected Green`s functions and a soil model for the SFV are used to compute the approximate stress level during the earthquake, and comparison to the values for near-surface alluvium at the U.S. Nevada Test Site suggests that the non-linear regime may have been entered. We use selected values from the simulated particle velocity distribution at 5 km depth to compute the non-linear response in a soil column below a site within the Van Norman Complex in SFV, where the strongest ground motion was recorded. Since site-specific non- linear material parameters from the SFV are currently unavailable, values are taken from analyses of observed Test Site ground motions. Preliminary results show significant reduction of spectral velocities at the surface normalized to the peak source velocity due to non-linear effects when the peak velocity increases from 32 cm/s (approximately linear case) to 64 cm/s (30-92%), 93 cm/s (7-83%), and 124 cm/s (2-70%). The largest reduction occurs for frequencies above 1 Hz.
NASA Astrophysics Data System (ADS)
Tam, Christopher K. W.; Ju, Hongbin
2009-09-01
The use of finite difference schemes to compute the scattering of acoustic waves by surfaces made up of different materials with sharp surface discontinuities at the joints would, invariably, result in the generations of spurious reflected waves of numerical origin. Spurious scattered waves are produced even if a high-order scheme capable of resolving and supporting the propagation of the incident wave is used. This problem is of practical importance in jet engine duct acoustic computation. In this work, the basic reason for the generation of spurious numerical waves is first examined. It is known that when the governing partial differential equations of acoustics are discretized, one should only use the long waves of the computational scheme to represent or simulate the physical waves. The short waves of the computational scheme have entirely different propagation characteristics. They are the spurious numerical waves. A method by which high wave number components (short waves) in the wave scattering process is intentionally removed so as to minimize the scattering of spurious numerical waves is proposed. This method is implemented in several examples from computational aeroacoustics to illustrate its effectiveness, accuracy and efficiency. This method is also employed to compute the scattering of acoustic waves by scatterers, such as rigid wall acoustic liner splices, with width smaller than the computational mesh size. Good results are obtained when comparing with computed results using much smaller mesh size. The method is further extended for applications to computations of acoustic wave reflection and scattering by very small surface inhomogeneities with simple geometries.
Convergence properties of finite-difference hydrodynamics schemes in the presence of shocks
NASA Technical Reports Server (NTRS)
Kimoto, Paul A.; Chernoff, David F.
1995-01-01
We investigate the asymptotic convergence of finite-difference schemes for the Euler equations when the limiting solution contains shocks. The Lax-Wendroff theorem guarantees that certain conservative schemes converge to correct, physically valid solutions. We focus on two one-dimensional operator-split schemes with explicit artificial-viscosity terms. One, an internal-energy scheme, does not satisfy the assumptions of Lax-Wendroff; the other, a conservative total-energy scheme, does. With viscous lengths chosen proportional to the grid size, we find that both schemes converge to their zero-grid-size limits at the theoretically expected rate, but only the conversative scheme converges toward correct solutions of the inviscid fluid equations. We show that the difference in their behaviors results directly from the presence of shocks in the limiting solution. Empirically, we find that when the viscous lenghts tend toward zero more slowly than the grid size, however the nonconservative scheme also converges toward correct solutions. We characterize the asymptotic behavior of the total-energy scheme in a particular problem in which a shock forms. As the grid is refined, a Cauchy error approaches the expected rate of change slowly. We show that the changes in the artificial viscosity alter the diffusion of small-amplitude waves. The differences associated with such waves make the dominant contribution to the Cauchy error. We formulate an analytic model to relate the rate of approach to the effect of varying diffusion in waves and find quantitative agreement with our numerical results.
NASA Astrophysics Data System (ADS)
Third, J. R.; Chen, Y.; Müller, C. R.
2016-07-01
Lattice-Boltzmann method (LBM) simulations of a gas-fluidised bed have been performed. In contrast to the current state-of-the-art coupled computational fluid dynamics-discrete element method (CFD-DEM) simulations, the LBM does not require a closure relationship for the particle-fluid interaction force. Instead, the particle-fluid interaction can be calculated directly from the detailed flow profile around the particles. Here a comparison is performed between CFD-DEM and LBM simulations of a small fluidised bed. Simulations are performed for two different values of the superficial gas velocity and it is found that the LBM predicts a larger bed expansion for both flowrates. Furthermore the particle-fluid interaction force obtained for LBM simulations is compared to the force which would be predicted by a CFD-DEM model under the same conditions. On average the force predicted by the CFD-DEM closure relationship is found to be significantly smaller than the force obtained from the LBM.
Finite-difference modeling with variable grid-size and adaptive time-step in porous media
NASA Astrophysics Data System (ADS)
Liu, Xinxin; Yin, Xingyao; Wu, Guochen
2014-04-01
Forward modeling of elastic wave propagation in porous media has great importance for understanding and interpreting the influences of rock properties on characteristics of seismic wavefield. However, the finite-difference forward-modeling method is usually implemented with global spatial grid-size and time-step; it consumes large amounts of computational cost when small-scaled oil/gas-bearing structures or large velocity-contrast exist underground. To overcome this handicap, combined with variable grid-size and time-step, this paper developed a staggered-grid finite-difference scheme for elastic wave modeling in porous media. Variable finite-difference coefficients and wavefield interpolation were used to realize the transition of wave propagation between regions of different grid-size. The accuracy and efficiency of the algorithm were shown by numerical examples. The proposed method is advanced with low computational cost in elastic wave simulation for heterogeneous oil/gas reservoirs.
Evolution of the Hofstadter butterfly in a tunable optical lattice
NASA Astrophysics Data System (ADS)
Yılmaz, F.; Ünal, F. Nur; Oktel, M. Ã.-.
2015-06-01
Recent advances in realizing artificial gauge fields on optical lattices promise experimental detection of topologically nontrivial energy spectra. Self-similar fractal energy structures generally known as Hofstadter butterflies depend sensitively on the geometry of the underlying lattice, as well as the applied magnetic field. The recent demonstration of an adjustable lattice geometry [L. Tarruell, D. Greif, T. Uehlinger, G. Jotzu, and T. Esslinger, Nature (London) 483, 302 (2012), 10.1038/nature10871] presents a unique opportunity to study this dependence. In this paper, we calculate the Hofstadter butterflies that can be obtained in such an adjustable lattice and find three qualitatively different regimes. We show that the existence of Dirac points at zero magnetic field does not imply the topological equivalence of spectra at finite field. As the real-space structure evolves from the checkerboard lattice to the honeycomb lattice, two square-lattice Hofstadter butterflies merge to form a honeycomb lattice butterfly. This merging is topologically nontrivial, as it is accomplished by sequential closings of gaps. Ensuing Chern number transfer between the bands can be probed with the adjustable lattice experiments. We also calculate the Chern numbers of the gaps for qualitatively different spectra and discuss the evolution of topological properties with underlying lattice geometry.
NASA Astrophysics Data System (ADS)
Min, Xiaoyi
This thesis first presents the study of the interaction of electromagnetic waves with three-dimensional heterogeneous, dielectric, magnetic, and lossy bodies by surface integral equation modeling. Based on the equivalence principle, a set of coupled surface integral equations is formulated and then solved numerically by the method of moments. Triangular elements are used to model the interfaces of the heterogeneous body, and vector basis functions are defined to expand the unknown current in the formulation. The validity of this formulation is verified by applying it to concentric spheres for which an exact solution exists. The potential applications of this formulation to a partially coated sphere and a homogeneous human body are discussed. Next, this thesis also introduces an efficient new set of integral equations for treating the scattering problem of a perfectly conducting body coated with a thin magnetically lossy layer. These electric field integral equations and magnetic field integral equations are numerically solved by the method of moments (MoM). To validate the derived integral equations, an alternative method to solve the scattering problem of an infinite circular cylinder coated with a thin magnetic lossy layer has also been developed, based on the eigenmode expansion. Results for the radar cross section and current densities via the MoM and the eigenmode expansion method are compared. The agreement is excellent. The finite difference time domain method is subsequently implemented to solve a metallic object coated with a magnetic thin layer and numerical results are compared with that by the MoM. Finally, this thesis presents an application of the finite-difference time-domain approach to the problem of electromagnetic receiving and scattering by a cavity -backed antenna situated on an infinite conducting plane. This application involves modifications of Yee's model, which applies the difference approximations of field derivatives to differential
NASA Astrophysics Data System (ADS)
Liao, Fei; Ye, Zhengyin
2015-12-01
Despite significant progress in recent computational techniques, the accurate numerical simulations, such as direct-numerical simulation and large-eddy simulation, are still challenging. For accurate calculations, the high-order finite difference method (FDM) is usually adopted with coordinate transformation from body-fitted grid to Cartesian grid. But this transformation might lead to failure in freestream preservation with the geometric conservation law (GCL) violated, particularly in high-order computations. GCL identities, including surface conservation law (SCL) and volume conservation law (VCL), are very important in discretization of high-order FDM. To satisfy GCL, various efforts have been made. An early and successful approach was developed by Thomas and Lombard [6] who used the conservative form of metrics to cancel out metric terms to further satisfy SCL. Visbal and Gaitonde [7] adopted this conservative form of metrics for SCL identities and satisfied VCL identity through invoking VCL equation to acquire the derivative of Jacobian in computation on moving and deforming grids with central compact schemes derived by Lele [5]. Later, using the metric technique from Visbal and Gaitonde [7], Nonomura et al. [8] investigated the freestream and vortex preservation properties of high-order WENO and WCNS on stationary curvilinear grids. A conservative metric method (CMM) was further developed by Deng et al. [9] with stationary grids, and detailed discussion about the innermost difference operator of CMM was shown with proof and corresponding numerical test cases. Noticing that metrics of CMM is asymmetrical without coordinate-invariant property, Deng et al. proposed a symmetrical CMM (SCMM) [12] by using the symmetric forms of metrics derived by Vinokur and Yee [10] to further eliminate asymmetric metric errors with stationary grids considered only. The research from Abe et al. [11] presented new asymmetric and symmetric conservative forms of time metrics and
NASA Technical Reports Server (NTRS)
Campbell, W.
1981-01-01
A theoretical evaluation of the stability of an explicit finite difference solution of the transient temperature field in a composite medium is presented. The grid points of the field are assumed uniformly spaced, and media interfaces are either vertical or horizontal and pass through grid points. In addition, perfect contact between different media (infinite interfacial conductance) is assumed. A finite difference form of the conduction equation is not valid at media interfaces; therefore, heat balance forms are derived. These equations were subjected to stability analysis, and a computer graphics code was developed that permitted determination of a maximum time step for a given grid spacing.
Ackleh, Azmy S; Farkas, József Z; Li, Xinyu; Ma, Baoling
2015-01-01
We consider a size-structured population model where individuals may be recruited into the population at different sizes. First- and second-order finite difference schemes are developed to approximate the solution of the model. The convergence of the approximations to a unique weak solution is proved. We then show that as the distribution of the new recruits become concentrated at the smallest size, the weak solution of the distributed states-at-birth model converges to the weak solution of the classical Gurtin-McCamy-type size-structured model in the weak* topology. Numerical simulations are provided to demonstrate the achievement of the desired accuracy of the two methods for smooth solutions as well as the superior performance of the second-order method in resolving solution-discontinuities. Finally, we provide an example where supercritical Hopf-bifurcation occurs in the limiting single state-at-birth model and we apply the second-order numerical scheme to show that such bifurcation also occurs in the distributed model. PMID:24890735
Guan, Wei; Hu, Hengshan; He, Xiao
2009-04-01
Monopole acoustic logs in a homogeneous fluid-saturated porous formation can be simulated by the real-axis integration (RAI) method to analytically solve Biot's equations [(1956a) J. Acoust. Soc. Am. 28, 168-178; (1956b) J. Acoust. Soc. Am. 28, 179-191; (1962) J. Appl. Phys. 33, 1482-1498], which govern the wave propagation in poro-elastic media. Such analytical solution generally is impossible for horizontally stratified formations which are common in reality. In this paper, a velocity-stress finite-difference time-domain (FDTD) algorithm is proposed to solve the problem. This algorithm considers both the low-frequency viscous force and the high-frequency inertial force in poro-elastic media, extending its application to a wider frequency range compared to existing algorithms which are only valid in the low-frequency limit. The perfectly matched layer (PML) is applied as an absorbing boundary condition to truncate the computational region. A PML technique without splitting the fields is extended to the poro-elastic wave problem. The FDTD algorithm is validated by comparisons against the RAI method in a variety of formations with different velocities and permeabilities. The acoustic logs in a horizontally stratified porous formation are simulated with the proposed FDTD algorithm. PMID:19354370
High-Accuracy Finite Difference Equations for Simulation of Photonic Structures
Hadley, G.R.
1999-04-23
Progress towards the development of such algorithms as been reported for waveguide analysis'-3and vertical-cavity laser simulation. In all these cases, the higher accuracy order was obtained for a single spatial dimension. More recently, this concept was extended to differencing of the Helmholtz Equation on a 2-D grid, with uniform regions treated to 4th order and dielectric interfaces to 3'd order5. No attempt was made to treat corners properly. In this talk I will describe the extension of this concept to allow differencing of the Helmholtz Equation on a 2-D grid to 6* order in uniform regions and 5* order at dielectric interfaces. In addition, the first known derivation of a finite difference equation for a dielectric comer that allows correct satisfaction of all boundary conditions will be presented. This equation is only accurate to first order, but as will be shown, results in simulations that are third-order-accurate. In contrast to a previous approach3 that utilized a generalized Douglas scheme to increase the accuracy order of the difference second derivative, the present method invokes the Helmholtz Equation itself to convert derivatives of high order in a single direction into mixed
Light Scattering by Gaussian Particles: A Solution with Finite-Difference Time Domain Technique
NASA Technical Reports Server (NTRS)
Sun, W.; Nousiainen, T.; Fu, Q.; Loeb, N. G.; Videen, G.; Muinonen, K.
2003-01-01
The understanding of single-scattering properties of complex ice crystals has significance in atmospheric radiative transfer and remote-sensing applications. In this work, light scattering by irregularly shaped Gaussian ice crystals is studied with the finite-difference time-domain (FDTD) technique. For given sample particle shapes and size parameters in the resonance region, the scattering phase matrices and asymmetry factors are calculated. It is found that the deformation of the particle surface can significantly smooth the scattering phase functions and slightly reduce the asymmetry factors. The polarization properties of irregular ice crystals are also significantly different from those of spherical cloud particles. These FDTD results could provide a reference for approximate light-scattering models developed for irregular particle shapes and can have potential applications in developing a much simpler practical light scattering model for ice clouds angular-distribution models and for remote sensing of ice clouds and aerosols using polarized light. (copyright) 2003 Elsevier Science Ltd. All rights reserved.
Implicit Predictor-Corrector finite difference scheme for the ideal MHD simulations
NASA Astrophysics Data System (ADS)
Tsai, T.; Yu, H.; Lai, S.
2012-12-01
A innovative simulation code for ideal magnetohydrodynamics (MHD) is developed. We present a multiple-dimensional MHD code based on high-order implicit predictor-corrector finite difference scheme (high-order IPCFD scheme). High-order IPCFD scheme adopts high-order predictor-corrector scheme for the time integration and high-order central difference method as the spatial derivative solver. We use Elimination-of-the-Runoff-Errors (ERE) technology to avoid the numerical oscillations and numerical instability in the simulation results. In one-dimensional MHD problem, our simulation results show good agreement with the Brio & Wu MHD shock tube problem. The divergent B constraint remains fully satisfied, that is the divergent B equals to zero throughout the simulation. When solving the two-dimensional (2D) linear wave in MHD plasma, we clearly obtain the group-velocity Friedrichs diagrams of the MHD waves. Here we demonstrate 2D simulation results of rotor problem, Orszag-Tang vortex system, vortex type K-H instability, and kink type K-H instability by using our IPCFD MHD code and discuss the advantage of our simulation code.
Finite difference time domain calculation of transients in antennas with nonlinear loads
NASA Technical Reports Server (NTRS)
Luebbers, Raymond J.; Beggs, John H.; Kunz, Karl S.; Chamberlin, Kent
1991-01-01
Determining transient electromagnetic fields in antennas with nonlinear loads is a challenging problem. Typical methods used involve calculating frequency domain parameters at a large number of different frequencies, then applying Fourier transform methods plus nonlinear equation solution techniques. If the antenna is simple enough so that the open circuit time domain voltage can be determined independently of the effects of the nonlinear load on the antennas current, time stepping methods can be applied in a straightforward way. Here, transient fields for antennas with more general geometries are calculated directly using Finite Difference Time Domain (FDTD) methods. In each FDTD cell which contains a nonlinear load, a nonlinear equation is solved at each time step. As a test case, the transient current in a long dipole antenna with a nonlinear load excited by a pulsed plane wave is computed using this approach. The results agree well with both calculated and measured results previously published. The approach given here extends the applicability of the FDTD method to problems involving scattering from targets, including nonlinear loads and materials, and to coupling between antennas containing nonlinear loads. It may also be extended to propagation through nonlinear materials.
Wave force on double cylindrical piles: a comparison between exact and finite difference solutions
NASA Astrophysics Data System (ADS)
Ali, Lotfollahi-Yaghin Mohammad; Mehdi, Moosavi Sayyid; Amin, Lotfollahi-Yaghin
2011-03-01
The wave force exerted on vertical piles of offshore structures is the main criterion in designing them. In structures with more than one large pile, the influence of piles on each other is one of the most important issues being concerned in past researches. An efficient method for determining the interaction of piles is introduced in present research. First the wave force is calculated by the exact method using the diffraction theory, then in the finite difference numerical method the force is calculated by adding the velocity potentials of each pile and integration of pressure on their surface. The results showed that the ratio of the wave force on each of the double piles to a single pile has a damped oscillation around unity in which the amplitude of oscillation decreases with the increase in the spacing parameter. Also different wave incident directions and diffraction parameters were used and the results showed that the numerical solution has acceptable accuracy when the diffraction parameter is larger than unity.
High-order conservative finite difference GLM-MHD schemes for cell-centered MHD
NASA Astrophysics Data System (ADS)
Mignone, Andrea; Tzeferacos, Petros; Bodo, Gianluigi
2010-08-01
We present and compare third- as well as fifth-order accurate finite difference schemes for the numerical solution of the compressible ideal MHD equations in multiple spatial dimensions. The selected methods lean on four different reconstruction techniques based on recently improved versions of the weighted essentially non-oscillatory (WENO) schemes, monotonicity preserving (MP) schemes as well as slope-limited polynomial reconstruction. The proposed numerical methods are highly accurate in smooth regions of the flow, avoid loss of accuracy in proximity of smooth extrema and provide sharp non-oscillatory transitions at discontinuities. We suggest a numerical formulation based on a cell-centered approach where all of the primary flow variables are discretized at the zone center. The divergence-free condition is enforced by augmenting the MHD equations with a generalized Lagrange multiplier yielding a mixed hyperbolic/parabolic correction, as in Dedner et al. [J. Comput. Phys. 175 (2002) 645-673]. The resulting family of schemes is robust, cost-effective and straightforward to implement. Compared to previous existing approaches, it completely avoids the CPU intensive workload associated with an elliptic divergence cleaning step and the additional complexities required by staggered mesh algorithms. Extensive numerical testing demonstrate the robustness and reliability of the proposed framework for computations involving both smooth and discontinuous features.
NASA Astrophysics Data System (ADS)
Kunz, K.; Steich, D.; Lewis, K.; Landrum, C.; Barth, M.
1994-03-01
Hyperbolic partial differential equations encompass an extremely important set of physical phenomena including electromagnetics and acoustics. Small amplitude acoustic interactions behave much the same as electromagnetic interactions for longitudinal acoustic waves because of the similar nature of the governing hyperbolic equations. Differences appear when transverse acoustic waves are considered; nonetheless, the strong analogy between the acoustic and electromagnetic phenomena prompted the development of a Finite Difference Time Domain (FDTD) acoustic analog to the existing electromagnetic FDTD technique. The advantages of an acoustic FDTD (AFDTD) code are as follows: (1) boundary condition-free treatment of the acoustic scatterer--only the intrinsic properties of the scatterer's material are needed, no shell treatment or other set of special equations describing the macroscopic behavior of a sheet of material or a junction, etc. are required; this allows completely general geometries and materials in the model. (2) Advanced outer radiation boundary condition analogs--in the electromagnetics arena, highly absorbing outer radiation boundary conditions were developed that can be applied with little modification to the acoustics arena with equal success. (3) A suite of preexisting capabilities related to electromagnetic modeling--this includes automated model generation and interaction visualization as its most important components and is best exemplified by the capabilities of the LLNL generated TSAR electromagnetic FDTD code.
Simulation of optical devices using parallel finite-difference time-domain method
NASA Astrophysics Data System (ADS)
Li, Kang; Kong, Fanmin; Mei, Liangmo; Liu, Xin
2005-11-01
This paper presents a new parallel finite-difference time-domain (FDTD) numerical method in a low-cost network environment to stimulate optical waveguide characteristics. The PC motherboard based cluster is used, as it is relatively low-cost, reliable and has high computing performance. Four clusters are networked by fast Ethernet technology. Due to the simplicity nature of FDTD algorithm, a native Ethernet packet communication mechanism is used to reduce the overhead of the communication between the adjacent clusters. To validate the method, a microcavity ring resonator based on semiconductor waveguides is chosen as an instance of FDTD parallel computation. Speed-up rate under different division density is calculated. From the result we can conclude that when the decomposing size reaches a certain point, a good parallel computing speed up will be maintained. This simulation shows that through the overlapping of computation and communication method and controlling the decomposing size, the overhead of the communication of the shared data will be conquered. The result indicates that the implementation can achieve significant speed up for the FDTD algorithm. This will enable us to tackle the larger real electromagnetic problem by the low-cost PC clusters.
A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations
NASA Technical Reports Server (NTRS)
Gerritsen, Margot; Olsson, Pelle
1996-01-01
We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.
Interference based square lattice photonic crystal logic gates working with different wavelengths
NASA Astrophysics Data System (ADS)
D'souza, Nirmala Maria; Mathew, Vincent
2016-06-01
We propose a new configuration of interference based OR, XOR, NOT and AND optical logic gates on a two dimensional square lattice photonic crystal (PhC) platform. The working of these devices was analyzed by the FDTD method and the operating frequency range was explored using the plane wave expansion method. The XOR and NOT gates have high contrast ratio which is more than 35 dB between high and low logic states, for a particular wavelength. All these devices are operating with multiple wavelengths. The impact of structural parameter like radius on the operating wavelength and Contrast Ratio (CR) was analyzed. It is found that the optimization of structural parameters makes it possible to obtain the operating wavelength allowed by band structure. These proposed devices were made up of linear waveguides and square ring resonator waveguides, without using nonlinear materials, optical amplifiers and external phase shifters.
NASA Astrophysics Data System (ADS)
Gao, Junhui
2013-05-01
Overlap grid is usually used in numerical simulation of flow with complex geometry by high order finite difference scheme. It is difficult to generate overlap grid and the connectivity information between adjacent blocks, especially when interpolation is required for non-coincident overlap grids. In this study, an interface flux reconstruction (IFR) method is proposed for numerical simulation using high order finite difference scheme with multi-block structured grids. In this method the neighboring blocks share a common face, and the fluxes on each block are matched to set the boundary conditions for each interior block. Therefore this method has the promise of allowing discontinuous grids on either side of an interior block interface. The proposed method is proven to be stable for 7-point central DRP scheme coupled with 4-point and 5-point boundary closure schemes, as well as the 4th order compact scheme coupled with 3rd order boundary closure scheme. Four problems are numerically solved with the developed code to validate the interface flux reconstruction method in this study. The IFR method coupled with the 4th order DRP scheme or compact scheme is validated to be 4th order accuracy with one and two dimensional waves propagation problems. Two dimensional pulse propagation in mean flow is computed with wavy mesh to demonstrate the ability of the proposed method for non-uniform grid. To demonstrate the ability of the proposed method for complex geometry, sound scattering by two cylinders is simulated and the numerical results are compared with the analytical data. It is shown that the numerical results agree well with the analytical data. Finally the IFR method is applied to simulate viscous flow pass a cylinder at Reynolds number 150 to show its capability for viscous problem. The computed pressure coefficient on the cylinder surface, the frequency of vortex shedding, the lift and drag coefficients are presented. The numerical results are compared with the data
Goode, D.J.; Appel, C.A.
1992-01-01
More accurate alternatives to the widely used harmonic mean interblock transmissivity are proposed for block-centered finite-difference models of ground-water flow in unconfined aquifers and in aquifers having smoothly varying transmissivity. The harmonic mean is the exact interblock transmissivity for steady-state one-dimensional flow with no recharge if the transmissivity is assumed to be spatially uniform over each finite-difference block, changing abruptly at the block interface. However, the harmonic mean may be inferior to other means if transmissivity varies in a continuous or smooth manner between nodes. Alternative interblock transmissivity functions are analytically derived for the case of steady-state one-dimensional flow with no recharge. The second author has previously derived the exact interblock transmissivity, the logarithmic mean, for one-dimensional flow when transmissivity is a linear function of distance in the direction of flow. We show that the logarithmic mean transmissivity is also exact for uniform flow parallel to the direction of changing transmissivity in a two- or three-dimensional model, regardless of grid orientation relative to the flow vector. For the case of horizontal flow in a homogeneous unconfined or water-table aquifer with a horizontal bottom and with areally distributed recharge, the exact interblock transmissivity is the unweighted arithmetic mean of transmissivity at the nodes. This mean also exhibits no grid-orientation effect for unidirectional flow in a two-dimensional model. For horizontal flow in an unconfined aquifer with no recharge where hydraulic conductivity is a linear function of distance in the direction of flow the exact interblock transmissivity is the product of the arithmetic mean saturated thickness and the logarithmic mean hydraulic conductivity. For several hypothetical two- and three-dimensional cases with smoothly varying transmissivity or hydraulic conductivity, the harmonic mean is shown to yield
Hybrid spectral difference/embedded finite volume method for conservation laws
NASA Astrophysics Data System (ADS)
Choi, Jung J.
2015-08-01
Recently, interests have been increasing towards applying the high-order methods to various engineering applications with complex geometries [30]. As a result, a family of discontinuous high-order methods, such as Discontinuous Galerkin (DG), Spectral Volume (SV) and Spectral Difference (SD) methods, is under active development. These methods provide high-order accurate solutions and are highly parallelizable due to the local solution reconstruction within each element. But, these methods suffer from the Gibbs phenomena when discontinuities are present in the flow fields. Various types of limiters [43-45] and artificial viscosity [46,48] have been employed to overcome this problem. A novel hybrid spectral difference/embedded finite volume method is introduced in order to apply a discontinuous high-order method for large scale engineering applications involving discontinuities in the flows with complex geometries. In the proposed hybrid approach, the finite volume (FV) element, consisting of structured FV subcells, is embedded in the base hexahedral element containing discontinuity, and an FV based high-order shock-capturing scheme is employed to overcome the Gibbs phenomena. Thus, a discontinuity is captured at the resolution of FV subcells within an embedded FV element. In the smooth flow region, the SD element is used in the base hexahedral element. Then, the governing equations are solved by the SD method. The SD method is chosen for its low numerical dissipation and computational efficiency preserving high-order accurate solutions. The coupling between the SD element and the FV element is achieved by the globally conserved mortar method [56]. In this paper, the 5th-order WENO scheme with the characteristic decomposition is employed as the shock-capturing scheme in the embedded FV element, and the 5th-order SD method is used in the smooth flow field. The order of accuracy study and various 1D and 2D test cases are carried out, which involve the discontinuities
NASA Astrophysics Data System (ADS)
Deyasi, Arpan; Bhattacharyya, S.; Das, N. R.
2014-06-01
In this paper, electron energies in core-shell quantum wires (CSQW) of rectangular, triangular, T-shaped, H-shaped and circular geometries are numerically computed by solving a time-independent Schrödinger equation using the finite difference technique. Computation is performed for both normal and inverted structures of CSQW, taking into account Kane-type nonparabolicity, conduction band discontinuity, and effective mass mismatch at the hetero-interface. Sparse, structured Hamiltonian matrices are produced for the calculation of energy eigenvalues and intersubband transition energies. Comparative study reveals that for a given core width of normal CSQW, the eigenenergy is the highest for the triangular geometry and the lowest for the rectangular geometry. For inverted CSQW, the ground-state energy of the triangular wire decreases with increasing core width, unlike other geometries. Studies on the intersubband transition energy show that for triangular and H-shaped inverted CSQW, it varies in a direction opposite to that of other inverted structures. Suitable tailoring of wire dimensions indicates the possibility of tuning the transition energy for photonic applications.
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1977-01-01
Finite difference equations are derived for sound propagation in a two dimensional, straight, soft wall duct with a uniform flow by using the wave envelope concept. This concept reduces the required number of finite difference grid points by one to two orders of magnitude depending on the length of the duct and the frequency of the sound. The governing acoustic difference equations in complex notation are derived. An exit condition is developed that allows a duct of finite length to simulate the wave propagation in an infinitely long duct. Sample calculations presented for a plane wave incident upon the acoustic liner show the numerical theory to be in good agreement with closed form analytical theory. Complete pressure and velocity printouts are given to some sample problems and can be used to debug and check future computer programs.
NASA Technical Reports Server (NTRS)
Gladden, Herbert J.; Ko, Ching L.; Boddy, Douglas E.
1995-01-01
A higher-order finite-difference technique is developed to calculate the developing-flow field of steady incompressible laminar flows in the entrance regions of circular pipes. Navier-Stokes equations governing the motion of such a flow field are solved by using this new finite-difference scheme. This new technique can increase the accuracy of the finite-difference approximation, while also providing the option of using unevenly spaced clustered nodes for computation such that relatively fine grids can be adopted for regions with large velocity gradients. The velocity profile at the entrance of the pipe is assumed to be uniform for the computation. The velocity distribution and the surface pressure drop of the developing flow then are calculated and compared to existing experimental measurements reported in the literature. Computational results obtained are found to be in good agreement with existing experimental correlations and therefore, the reliability of the new technique has been successfully tested.