Invariant polygons in systems with grazing-sliding.
Szalai, R; Osinga, H M
2008-06-01
The paper investigates generic three-dimensional nonsmooth systems with a periodic orbit near grazing-sliding. We assume that the periodic orbit is unstable with complex multipliers so that two dominant frequencies are present in the system. Because grazing-sliding induces a dimension loss and the instability drives every trajectory into sliding, the system has an attractor that consists of forward sliding orbits. We analyze this attractor in a suitably chosen Poincare section using a three-parameter generalized map that can be viewed as a normal form. We show that in this normal form the attractor must be contained in a finite number of lines that intersect in the vertices of a polygon. However the attractor is typically larger than the associated polygon. We classify the number of lines involved in forming the attractor as a function of the parameters. Furthermore, for fixed values of parameters we investigate the one-dimensional dynamics on the attractor.
Lyapunov exponents for infinite dimensional dynamical systems
NASA Technical Reports Server (NTRS)
Mhuiris, Nessan Mac Giolla
1987-01-01
Classically it was held that solutions to deterministic partial differential equations (i.e., ones with smooth coefficients and boundary data) could become random only through one mechanism, namely by the activation of more and more of the infinite number of degrees of freedom that are available to such a system. It is only recently that researchers have come to suspect that many infinite dimensional nonlinear systems may in fact possess finite dimensional chaotic attractors. Lyapunov exponents provide a tool for probing the nature of these attractors. This paper examines how these exponents might be measured for infinite dimensional systems.
On the dynamics of approximating schemes for dissipative nonlinear equations
NASA Technical Reports Server (NTRS)
Jones, Donald A.
1993-01-01
Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.
A class of cellular automata modeling winnerless competition
NASA Astrophysics Data System (ADS)
Afraimovich, V.; Ordaz, F. C.; Urías, J.
2002-06-01
Neural units introduced by Rabinovich et al. ("Sensory coding with dynamically competitive networks," UCSD and CIT, February 1999) motivate a class of cellular automata (CA) where spatio-temporal encoding is feasible. The spatio-temporal information capacity of a CA is estimated by the information capacity of the attractor set, which happens to be finitely specified. Two-dimensional CA are studied in detail. An example is given for which the attractor is not a subshift.
Long-time behavior for suspension bridge equations with time delay
NASA Astrophysics Data System (ADS)
Park, Sun-Hye
2018-04-01
In this paper, we consider suspension bridge equations with time delay of the form u_{tt}(x,t) + Δ ^2 u (x,t) + k u^+ (x,t) + a_0 u_t (x,t) + a_1 u_t (x, t- τ ) + f(u(x,t)) = g(x). Many researchers have studied well-posedness, decay rates of energy, and existence of attractors for suspension bridge equations without delay effects. But, as far as we know, there is no work about suspension equations with time delay. In addition, there are not many studies on attractors for other delayed systems. Thus we first provide well-posedness for suspension equations with time delay. And then show the existence of global attractors and the finite dimensionality of the attractors by establishing energy functionals which are related to the norm of the phase space to our problem.
Yue, Yuan; Miao, Pengcheng; Xie, Jianhua; Celso, Grebogi
2016-11-01
Quasiperiodic chaos (QC), which is a combination of quasiperiodic sets and a chaotic set, is uncovered in the six dimensional Poincaré map of a symmetric three-degree of freedom vibro-impact system. Accompanied by symmetry restoring bifurcation, this QC is the consequence of a novel intermittency that occurs between two conjugate quasiperiodic sets and a chaotic set. The six dimensional Poincaré map P is the 2-fold composition of another virtual implicit map Q, yielding the symmetry of the system. Map Q can capture two conjugate attractors, which is at the core of the dynamics of the vibro-impact system. Three types of symmetry restoring bifurcations are analyzed in detail. First, if two conjugate chaotic attractors join together, the chaos-chaos intermittency induced by attractor-merging crisis takes place. Second, if two conjugate quasiperiodic sets are suddenly embedded in a chaotic one, QC is induced by a new intermittency between the three attractors. Third, if two conjugate quasiperiodic attractors connect with each other directly, they merge to form a single symmetric quasiperiodic one. For the second case, the new intermittency is caused by the collision of two conjugate quasiperiodic attractors with an unstable symmetric limit set. As the iteration number is increased, the largest finite-time Lyapunov exponent of the QC does not converge to a constant, but fluctuates in the positive region.
Uncovering low dimensional macroscopic chaotic dynamics of large finite size complex systems
NASA Astrophysics Data System (ADS)
Skardal, Per Sebastian; Restrepo, Juan G.; Ott, Edward
2017-08-01
In the last decade, it has been shown that a large class of phase oscillator models admit low dimensional descriptions for the macroscopic system dynamics in the limit of an infinite number N of oscillators. The question of whether the macroscopic dynamics of other similar systems also have a low dimensional description in the infinite N limit has, however, remained elusive. In this paper, we show how techniques originally designed to analyze noisy experimental chaotic time series can be used to identify effective low dimensional macroscopic descriptions from simulations with a finite number of elements. We illustrate and verify the effectiveness of our approach by applying it to the dynamics of an ensemble of globally coupled Landau-Stuart oscillators for which we demonstrate low dimensional macroscopic chaotic behavior with an effective 4-dimensional description. By using this description, we show that one can calculate dynamical invariants such as Lyapunov exponents and attractor dimensions. One could also use the reconstruction to generate short-term predictions of the macroscopic dynamics.
Terminal attractors for addressable memory in neural networks
NASA Technical Reports Server (NTRS)
Zak, Michail
1988-01-01
A new type of attractors - terminal attractors - for an addressable memory in neural networks operating in continuous time is introduced. These attractors represent singular solutions of the dynamical system. They intersect (or envelope) the families of regular solutions while each regular solution approaches the terminal attractor in a finite time period. It is shown that terminal attractors can be incorporated into neural networks such that any desired set of these attractors with prescribed basins is provided by an appropriate selection of the weight matrix.
Analysis, synchronisation and circuit design of a new highly nonlinear chaotic system
NASA Astrophysics Data System (ADS)
Mobayen, Saleh; Kingni, Sifeu Takougang; Pham, Viet-Thanh; Nazarimehr, Fahimeh; Jafari, Sajad
2018-02-01
This paper investigates a three-dimensional autonomous chaotic flow without linear terms. Dynamical behaviour of the proposed system is investigated through eigenvalue structures, phase portraits, bifurcation diagram, Lyapunov exponents and basin of attraction. For a suitable choice of the parameters, the proposed system can exhibit anti-monotonicity, periodic oscillations and double-scroll chaotic attractor. Basin of attraction of the proposed system shows that the chaotic attractor is self-excited. Furthermore, feasibility of double-scroll chaotic attractor in the real word is investigated by using the OrCAD-PSpice software via an electronic implementation of the proposed system. A good qualitative agreement is illustrated between the numerical simulations and the OrCAD-PSpice results. Finally, a finite-time control method based on dynamic sliding surface for the synchronisation of master and slave chaotic systems in the presence of external disturbances is performed. Using the suggested control technique, the superior master-slave synchronisation is attained. Illustrative simulation results on the studied chaotic system are presented to indicate the effectiveness of the suggested scheme.
General method to find the attractors of discrete dynamic models of biological systems.
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
General method to find the attractors of discrete dynamic models of biological systems
NASA Astrophysics Data System (ADS)
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
Terminal attractors in neural networks
NASA Technical Reports Server (NTRS)
Zak, Michail
1989-01-01
A new type of attractor (terminal attractors) for content-addressable memory, associative memory, and pattern recognition in artificial neural networks operating in continuous time is introduced. The idea of a terminal attractor is based upon a violation of the Lipschitz condition at a fixed point. As a result, the fixed point becomes a singular solution which envelopes the family of regular solutions, while each regular solution approaches such an attractor in finite time. It will be shown that terminal attractors can be incorporated into neural networks such that any desired set of these attractors with prescribed basins is provided by an appropriate selection of the synaptic weights. The applications of terminal attractors for content-addressable and associative memories, pattern recognition, self-organization, and for dynamical training are illustrated.
Dynamical behavior for the three-dimensional generalized Hasegawa-Mima equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Ruifeng; Guo Boling; Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088
2007-01-15
The long time behavior of solution of the three-dimensional generalized Hasegawa-Mima [Phys. Fluids 21, 87 (1978)] equations with dissipation term is considered. The global attractor problem of the three-dimensional generalized Hasegawa-Mima equations with periodic boundary condition was studied. Applying the method of uniform a priori estimates, the existence of global attractor of this problem was proven, and also the dimensions of the global attractor are estimated.
Chaotic attractors of relaxation oscillators
NASA Astrophysics Data System (ADS)
Guckenheimer, John; Wechselberger, Martin; Young, Lai-Sang
2006-03-01
We develop a general technique for proving the existence of chaotic attractors for three-dimensional vector fields with two time scales. Our results connect two important areas of dynamical systems: the theory of chaotic attractors for discrete two-dimensional Henon-like maps and geometric singular perturbation theory. Two-dimensional Henon-like maps are diffeomorphisms that limit on non-invertible one-dimensional maps. Wang and Young formulated hypotheses that suffice to prove the existence of chaotic attractors in these families. Three-dimensional singularly perturbed vector fields have return maps that are also two-dimensional diffeomorphisms limiting on one-dimensional maps. We describe a generic mechanism that produces folds in these return maps and demonstrate that the Wang-Young hypotheses are satisfied. Our analysis requires a careful study of the convergence of the return maps to their singular limits in the Ck topology for k >= 3. The theoretical results are illustrated with a numerical study of a variant of the forced van der Pol oscillator.
Architecture of chaotic attractors for flows in the absence of any singular point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letellier, Christophe; Malasoma, Jean-Marc
2016-06-15
Some chaotic attractors produced by three-dimensional dynamical systems without any singular point have now been identified, but explaining how they are structured in the state space remains an open question. We here want to explain—in the particular case of the Wei system—such a structure, using one-dimensional sets obtained by vanishing two of the three derivatives of the flow. The neighborhoods of these sets are made of points which are characterized by the eigenvalues of a 2 × 2 matrix describing the stability of flow in a subspace transverse to it. We will show that the attractor is spiralling and twisted in themore » neighborhood of one-dimensional sets where points are characterized by a pair of complex conjugated eigenvalues. We then show that such one-dimensional sets are also useful in explaining the structure of attractors produced by systems with singular points, by considering the case of the Lorenz system.« less
Cusps enable line attractors for neural computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiao, Zhuocheng; Zhang, Jiwei; Sornborger, Andrew T.
Here, line attractors in neuronal networks have been suggested to be the basis of many brain functions, such as working memory, oculomotor control, head movement, locomotion, and sensory processing. In this paper, we make the connection between line attractors and pulse gating in feed-forward neuronal networks. In this context, because of their neutral stability along a one-dimensional manifold, line attractors are associated with a time-translational invariance that allows graded information to be propagated from one neuronal population to the next. To understand how pulse-gating manifests itself in a high-dimensional, nonlinear, feedforward integrate-and-fire network, we use a Fokker-Planck approach to analyzemore » system dynamics. We make a connection between pulse-gated propagation in the Fokker-Planck and population-averaged mean-field (firing rate) models, and then identify an approximate line attractor in state space as the essential structure underlying graded information propagation. An analysis of the line attractor shows that it consists of three fixed points: a central saddle with an unstable manifold along the line and stable manifolds orthogonal to the line, which is surrounded on either side by stable fixed points. Along the manifold defined by the fixed points, slow dynamics give rise to a ghost. We show that this line attractor arises at a cusp catastrophe, where a fold bifurcation develops as a function of synaptic noise; and that the ghost dynamics near the fold of the cusp underly the robustness of the line attractor. Understanding the dynamical aspects of this cusp catastrophe allows us to show how line attractors can persist in biologically realistic neuronal networks and how the interplay of pulse gating, synaptic coupling, and neuronal stochasticity can be used to enable attracting one-dimensional manifolds and, thus, dynamically control the processing of graded information.« less
Cusps enable line attractors for neural computation
NASA Astrophysics Data System (ADS)
Xiao, Zhuocheng; Zhang, Jiwei; Sornborger, Andrew T.; Tao, Louis
2017-11-01
Line attractors in neuronal networks have been suggested to be the basis of many brain functions, such as working memory, oculomotor control, head movement, locomotion, and sensory processing. In this paper, we make the connection between line attractors and pulse gating in feed-forward neuronal networks. In this context, because of their neutral stability along a one-dimensional manifold, line attractors are associated with a time-translational invariance that allows graded information to be propagated from one neuronal population to the next. To understand how pulse-gating manifests itself in a high-dimensional, nonlinear, feedforward integrate-and-fire network, we use a Fokker-Planck approach to analyze system dynamics. We make a connection between pulse-gated propagation in the Fokker-Planck and population-averaged mean-field (firing rate) models, and then identify an approximate line attractor in state space as the essential structure underlying graded information propagation. An analysis of the line attractor shows that it consists of three fixed points: a central saddle with an unstable manifold along the line and stable manifolds orthogonal to the line, which is surrounded on either side by stable fixed points. Along the manifold defined by the fixed points, slow dynamics give rise to a ghost. We show that this line attractor arises at a cusp catastrophe, where a fold bifurcation develops as a function of synaptic noise; and that the ghost dynamics near the fold of the cusp underly the robustness of the line attractor. Understanding the dynamical aspects of this cusp catastrophe allows us to show how line attractors can persist in biologically realistic neuronal networks and how the interplay of pulse gating, synaptic coupling, and neuronal stochasticity can be used to enable attracting one-dimensional manifolds and, thus, dynamically control the processing of graded information.
Cusps enable line attractors for neural computation
Xiao, Zhuocheng; Zhang, Jiwei; Sornborger, Andrew T.; ...
2017-11-07
Here, line attractors in neuronal networks have been suggested to be the basis of many brain functions, such as working memory, oculomotor control, head movement, locomotion, and sensory processing. In this paper, we make the connection between line attractors and pulse gating in feed-forward neuronal networks. In this context, because of their neutral stability along a one-dimensional manifold, line attractors are associated with a time-translational invariance that allows graded information to be propagated from one neuronal population to the next. To understand how pulse-gating manifests itself in a high-dimensional, nonlinear, feedforward integrate-and-fire network, we use a Fokker-Planck approach to analyzemore » system dynamics. We make a connection between pulse-gated propagation in the Fokker-Planck and population-averaged mean-field (firing rate) models, and then identify an approximate line attractor in state space as the essential structure underlying graded information propagation. An analysis of the line attractor shows that it consists of three fixed points: a central saddle with an unstable manifold along the line and stable manifolds orthogonal to the line, which is surrounded on either side by stable fixed points. Along the manifold defined by the fixed points, slow dynamics give rise to a ghost. We show that this line attractor arises at a cusp catastrophe, where a fold bifurcation develops as a function of synaptic noise; and that the ghost dynamics near the fold of the cusp underly the robustness of the line attractor. Understanding the dynamical aspects of this cusp catastrophe allows us to show how line attractors can persist in biologically realistic neuronal networks and how the interplay of pulse gating, synaptic coupling, and neuronal stochasticity can be used to enable attracting one-dimensional manifolds and, thus, dynamically control the processing of graded information.« less
Attractors in complex networks
NASA Astrophysics Data System (ADS)
Rodrigues, Alexandre A. P.
2017-10-01
In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).
Attractors in complex networks.
Rodrigues, Alexandre A P
2017-10-01
In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).
Noise Tolerance of Attractor and Feedforward Memory Models
Lim, Sukbin; Goldman, Mark S.
2017-01-01
In short-term memory networks, transient stimuli are represented by patterns of neural activity that persist long after stimulus offset. Here, we compare the performance of two prominent classes of memory networks, feedback-based attractor networks and feedforward networks, in conveying information about the amplitude of a briefly presented stimulus in the presence of gaussian noise. Using Fisher information as a metric of memory performance, we find that the optimal form of network architecture depends strongly on assumptions about the forms of nonlinearities in the network. For purely linear networks, we find that feedforward networks outperform attractor networks because noise is continually removed from feedforward networks when signals exit the network; as a result, feedforward networks can amplify signals they receive faster than noise accumulates over time. By contrast, attractor networks must operate in a signal-attenuating regime to avoid the buildup of noise. However, if the amplification of signals is limited by a finite dynamic range of neuronal responses or if noise is reset at the time of signal arrival, as suggested by recent experiments, we find that attractor networks can out-perform feedforward ones. Under a simple model in which neurons have a finite dynamic range, we find that the optimal attractor networks are forgetful if there is no mechanism for noise reduction with signal arrival but nonforgetful (perfect integrators) in the presence of a strong reset mechanism. Furthermore, we find that the maximal Fisher information for the feedforward and attractor networks exhibits power law decay as a function of time and scales linearly with the number of neurons. These results highlight prominent factors that lead to trade-offs in the memory performance of networks with different architectures and constraints, and suggest conditions under which attractor or feedforward networks may be best suited to storing information about previous stimuli. PMID:22091664
Hidden Attractors in a Model of a Bubble Contrast Agent Oscillating Near an Elastic Wall
NASA Astrophysics Data System (ADS)
Garashchuk, Ivan; Sinelshchikov, Dmitry; Kudryashov, Nikolay
2018-02-01
A model describing the dynamics of a spherical gas bubble in a compressible viscous liquid is studied. The bubble is oscillating close to an elastic wall of finite thickness under the influence of an external pressure field which simulates a contrast agent oscillating close to a blood vessel wall. Here we investigate numerically the coexistence of chaotic and periodic attractors in this model. One of the tools applied for seeking coexisting attractors is the perpetual points method. This method can be helpful for localizing coexisting attractors, occurring in various physically realistic ranges of variation of the control parameters. We provide some examples of coexisting attractors to demonstrate the importance of the multistability problem for the applications.
An algorithm for engineering regime shifts in one-dimensional dynamical systems
NASA Astrophysics Data System (ADS)
Tan, James P. L.
2018-01-01
Regime shifts are discontinuous transitions between stable attractors hosting a system. They can occur as a result of a loss of stability in an attractor as a bifurcation is approached. In this work, we consider one-dimensional dynamical systems where attractors are stable equilibrium points. Relying on critical slowing down signals related to the stability of an equilibrium point, we present an algorithm for engineering regime shifts such that a system may escape an undesirable attractor into a desirable one. We test the algorithm on synthetic data from a one-dimensional dynamical system with a multitude of stable equilibrium points and also on a model of the population dynamics of spruce budworms in a forest. The algorithm and other ideas discussed here contribute to an important part of the literature on exercising greater control over the sometimes unpredictable nature of nonlinear systems.
Low-Dimensional Chaos in an Instance of Epilepsy
NASA Astrophysics Data System (ADS)
Babloyantz, A.; Destexhe, A.
1986-05-01
Using a time series obtained from the electroencephalogram recording of a human epileptic seizure, we show the existence of a chaotic attractor, the latter being the direct consequence of the deterministic nature of brain activity. This result is compared with other attractors seen in normal human brain dynamics. A sudden jump is observed between the dimensionalities of these brain attractors 4.05 ± 0.05 for deep sleep) and the very low dimensionality of the epileptic state (2.05 ± 0.09). The evaluation of the autocorrelation function and of the largest Lyapunov exponent allows us to sharpen further the main features of underlying dynamics. Possible implications in biological and medical research are briefly discussed.
Application of incremental unknowns to the Burgers equation
NASA Technical Reports Server (NTRS)
Choi, Haecheon; Temam, Roger
1993-01-01
In this article, we make a few remarks on the role that attractors and inertial manifolds play in fluid mechanics problems. We then describe the role of incremental unknowns for approximating attractors and inertial manifolds when finite difference multigrid discretizations are used. The relation with direct numerical simulation and large eddy simulation is also mentioned.
Brunton, Steven L; Brunton, Bingni W; Proctor, Joshua L; Kutz, J Nathan
2016-01-01
In this wIn this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.ork, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control.
Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years
NASA Astrophysics Data System (ADS)
Faranda, Davide; Messori, Gabriele; Alvarez-Castro, M. Carmen; Yiou, Pascal
2017-12-01
Atmospheric dynamics are described by a set of partial differential equations yielding an infinite-dimensional phase space. However, the actual trajectories followed by the system appear to be constrained to a finite-dimensional phase space, i.e. a strange attractor. The dynamical properties of this attractor are difficult to determine due to the complex nature of atmospheric motions. A first step to simplify the problem is to focus on observables which affect - or are linked to phenomena which affect - human welfare and activities, such as sea-level pressure, 2 m temperature, and precipitation frequency. We make use of recent advances in dynamical systems theory to estimate two instantaneous dynamical properties of the above fields for the Northern Hemisphere: local dimension and persistence. We then use these metrics to characterize the seasonality of the different fields and their interplay. We further analyse the large-scale anomaly patterns corresponding to phase-space extremes - namely time steps at which the fields display extremes in their instantaneous dynamical properties. The analysis is based on the NCEP/NCAR reanalysis data, over the period 1948-2013. The results show that (i) despite the high dimensionality of atmospheric dynamics, the Northern Hemisphere sea-level pressure and temperature fields can on average be described by roughly 20 degrees of freedom; (ii) the precipitation field has a higher dimensionality; and (iii) the seasonal forcing modulates the variability of the dynamical indicators and affects the occurrence of phase-space extremes. We further identify a number of robust correlations between the dynamical properties of the different variables.
NASA Astrophysics Data System (ADS)
Lai, Bang-Cheng; He, Jian-Jun
2018-03-01
In this paper, we construct a novel 4D autonomous chaotic system with four cross-product nonlinear terms and five equilibria. The multiple coexisting attractors and the multiscroll attractor of the system are numerically investigated. Research results show that the system has various types of multiple attractors, including three strange attractors with a limit cycle, three limit cycles, two strange attractors with a pair of limit cycles, two coexisting strange attractors. By using the passive control theory, a controller is designed for controlling the chaos of the system. Both analytical and numerical studies verify that the designed controller can suppress chaotic motion and stabilise the system at the origin. Moreover, an electronic circuit is presented for implementing the chaotic system.
[Extraction and recognition of attractors in three-dimensional Lorenz plot].
Hu, Min; Jang, Chengfan; Wang, Suxia
2018-02-01
Lorenz plot (LP) method which gives a global view of long-time electrocardiogram signals, is an efficient simple visualization tool to analyze cardiac arrhythmias, and the morphologies and positions of the extracted attractors may reveal the underlying mechanisms of the onset and termination of arrhythmias. But automatic diagnosis is still impossible because it is lack of the method of extracting attractors by now. We presented here a methodology of attractor extraction and recognition based upon homogeneously statistical properties of the location parameters of scatter points in three dimensional LP (3DLP), which was constructed by three successive RR intervals as X , Y and Z axis in Cartesian coordinate system. Validation experiments were tested in a group of RR-interval time series and tags data with frequent unifocal premature complexes exported from a 24-hour Holter system. The results showed that this method had excellent effective not only on extraction of attractors, but also on automatic recognition of attractors by the location parameters such as the azimuth of the points peak frequency ( A PF ) of eccentric attractors once stereographic projection of 3DLP along the space diagonal. Besides, A PF was still a powerful index of differential diagnosis of atrial and ventricular extrasystole. Additional experiments proved that this method was also available on several other arrhythmias. Moreover, there were extremely relevant relationships between 3DLP and two dimensional LPs which indicate any conventional achievement of LPs could be implanted into 3DLP. It would have a broad application prospect to integrate this method into conventional long-time electrocardiogram monitoring and analysis system.
Plate falling in a fluid: Regular and chaotic dynamics of finite-dimensional models
NASA Astrophysics Data System (ADS)
Kuznetsov, Sergey P.
2015-05-01
Results are reviewed concerning the planar problem of a plate falling in a resisting medium studied with models based on ordinary differential equations for a small number of dynamical variables. A unified model is introduced to conduct a comparative analysis of the dynamical behaviors of models of Kozlov, Tanabe-Kaneko, Belmonte-Eisenberg-Moses and Andersen-Pesavento-Wang using common dimensionless variables and parameters. It is shown that the overall structure of the parameter spaces for the different models manifests certain similarities caused by the same inherent symmetry and by the universal nature of the phenomena involved in nonlinear dynamics (fixed points, limit cycles, attractors, and bifurcations).
Extended self-similarity in the two-dimensional metal-insulator transition
NASA Astrophysics Data System (ADS)
Moriconi, L.
2003-09-01
We show that extended self-similarity, a scaling phenomenon first observed in classical turbulent flows, holds for a two-dimensional metal-insulator transition that belongs to the universality class of random Dirac fermions. Deviations from multifractality, which in turbulence are due to the dominance of diffusive processes at small scales, appear in the condensed-matter context as a large-scale, finite-size effect related to the imposition of an infrared cutoff in the field theory formulation. We propose a phenomenological interpretation of extended self-similarity in the metal-insulator transition within the framework of the random β-model description of multifractal sets. As a natural step, our discussion is bridged to the analysis of strange attractors, where crossovers between multifractal and nonmultifractal regimes are found and extended self-similarity turns out to be verified as well.
A snapshot attractor view of the advection of inertial particles in the presence of history force
NASA Astrophysics Data System (ADS)
Guseva, Ksenia; Daitche, Anton; Tél, Tamás
2017-06-01
We analyse the effect of the Basset history force on the sedimentation or rising of inertial particles in a two-dimensional convection flow. We find that the concept of snapshot attractors is useful to understand the extraordinary slow convergence due to long-term memory: an ensemble of particles converges exponentially fast towards a snapshot attractor, and this attractor undergoes a slow drift for long times. We demonstrate for the case of a periodic attractor that the drift of the snapshot attractor can be well characterized both in the space of the fluid and in the velocity space. For the case of quasiperiodic and chaotic dynamics we propose the use of the average settling velocity of the ensemble as a distinctive measure to characterize the snapshot attractor and the time scale separation corresponding to the convergence towards the snapshot attractor and its own slow dynamics.
Attractors of three-dimensional fast-rotating Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Trahe, Markus
The three-dimensional (3-D) rotating Navier-Stokes equations describe the dynamics of rotating, incompressible, viscous fluids. In this work, they are considered with smooth, time-independent forces and the original statements implied by the classical "Taylor-Proudman Theorem" of geophysics are rigorously proved. It is shown that fully developed turbulence of 3-D fast-rotating fluids is essentially characterized by turbulence of two-dimensional (2-D) fluids in terms of numbers of degrees of freedom. In this context, the 3-D nonlinear "resonant limit equations", which arise in a non-linear averaging process as the rotation frequency O → infinity, are studied and optimal (2-D-type) upper bounds for fractal box and Hausdorff dimensions of the global attractor as well as upper bounds for box dimensions of exponential attractors are determined. Then, the convergence of exponential attractors for the full 3-D rotating Navier-Stokes equations to exponential attractors for the resonant limit equations as O → infinity in the sense of full Hausdorff-metric distances is established. This provides upper and lower semi-continuity of exponential attractors with respect to the rotation frequency and implies that the number of degrees of freedom (attractor dimension) of 3-D fast-rotating fluids is close to that of 2-D fluids. Finally, the algebraic-geometric structure of the Poincare curves, which control the resonances and small divisor estimates for partial differential equations, is further investigated; the 3-D nonlinear limit resonant operators are characterized by three-wave interactions governed by these curves. A new canonical transformation between those curves is constructed; with far-reaching consequences on the density of the latter.
Flattening Property and the Existence of Global Attractors in Banach Space
NASA Astrophysics Data System (ADS)
Aris, Naimah; Maharani, Sitti; Jusmawati, Massalesse; Nurwahyu, Budi
2018-03-01
This paper analyses the existence of global attractor in infinite dimensional system using flattening property. The earlier stage we show the existence of the global attractor in complete metric space by using concept of the ω-limit compact concept with measure of non-compactness methods. Then we show that the ω-limit compact concept is equivalent with the flattening property in Banach space. If we can prove there exist an absorbing set in the system and the flattening property holds, then the global attractor exist in the system.
Cell Fate Decision as High-Dimensional Critical State Transition
Zhou, Joseph; Castaño, Ivan G.; Leong-Quong, Rebecca Y. Y.; Chang, Hannah; Trachana, Kalliopi; Giuliani, Alessandro; Huang, Sui
2016-01-01
Cell fate choice and commitment of multipotent progenitor cells to a differentiated lineage requires broad changes of their gene expression profile. But how progenitor cells overcome the stability of their gene expression configuration (attractor) to exit the attractor in one direction remains elusive. Here we show that commitment of blood progenitor cells to the erythroid or myeloid lineage is preceded by the destabilization of their high-dimensional attractor state, such that differentiating cells undergo a critical state transition. Single-cell resolution analysis of gene expression in populations of differentiating cells affords a new quantitative index for predicting critical transitions in a high-dimensional state space based on decrease of correlation between cells and concomitant increase of correlation between genes as cells approach a tipping point. The detection of “rebellious cells” that enter the fate opposite to the one intended corroborates the model of preceding destabilization of a progenitor attractor. Thus, early warning signals associated with critical transitions can be detected in statistical ensembles of high-dimensional systems, offering a formal theory-based approach for analyzing single-cell molecular profiles that goes beyond current computational pattern recognition, does not require knowledge of specific pathways, and could be used to predict impending major shifts in development and disease. PMID:28027308
Chaotic attractors with separated scrolls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bouallegue, Kais, E-mail: kais-bouallegue@yahoo.fr
2015-07-15
This paper proposes a new behavior of chaotic attractors with separated scrolls while combining Julia's process with Chua's attractor and Lorenz's attractor. The main motivation of this work is the ability to generate a set of separated scrolls with different behaviors, which in turn allows us to choose one or many scrolls combined with modulation (amplitude and frequency) for secure communication or synchronization. This set seems a new class of hyperchaos because each element of this set looks like a simple chaotic attractor with one positive Lyapunov exponent, so the cardinal of this set is greater than one. This newmore » approach could be used to generate more general higher-dimensional hyperchaotic attractor for more potential application. Numerical simulations are given to show the effectiveness of the proposed theoretical results.« less
Inferring the Limit Behavior of Some Elementary Cellular Automata
NASA Astrophysics Data System (ADS)
Ruivo, Eurico L. P.; de Oliveira, Pedro P. B.
Cellular automata locally define dynamical systems, discrete in space, time and in the state variables, capable of displaying arbitrarily complex global emergent behavior. One core question in the study of cellular automata refers to their limit behavior, that is, to the global dynamical features in an infinite time evolution. Previous works have shown that for finite time evolutions, the dynamics of one-dimensional cellular automata can be described by regular languages and, therefore, by finite automata. Such studies have shown the existence of growth patterns in the evolution of such finite automata for some elementary cellular automata rules and also inferred the limit behavior of such rules based upon the growth patterns; however, the results on the limit behavior were obtained manually, by direct inspection of the structures that arise during the time evolution. Here we present the formalization of an automatic method to compute such structures. Based on this, the rules of the elementary cellular automata space were classified according to the existence of a growth pattern in their finite automata. Also, we present a method to infer the limit graph of some elementary cellular automata rules, derived from the analysis of the regular expressions that describe their behavior in finite time. Finally, we analyze some attractors of two rules for which we could not compute the whole limit set.
Dimensionality and entropy of spontaneous and evoked rate activity
NASA Astrophysics Data System (ADS)
Engelken, Rainer; Wolf, Fred
Cortical circuits exhibit complex activity patterns both spontaneously and evoked by external stimuli. Finding low-dimensional structure in population activity is a challenge. What is the diversity of the collective neural activity and how is it affected by an external stimulus? Using concepts from ergodic theory, we calculate the attractor dimensionality and dynamical entropy production of these networks. We obtain these two canonical measures of the collective network dynamics from the full set of Lyapunov exponents. We consider a randomly-wired firing-rate network that exhibits chaotic rate fluctuations for sufficiently strong synaptic weights. We show that dynamical entropy scales logarithmically with synaptic coupling strength, while the attractor dimensionality saturates. Thus, despite the increasing uncertainty, the diversity of collective activity saturates for strong coupling. We find that a time-varying external stimulus drastically reduces both entropy and dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in several limiting cases by random matrix theory. Our study opens a novel avenue to characterize the complex dynamics of rate networks and the geometric structure of the corresponding high-dimensional chaotic attractor. received funding from Evangelisches Studienwerk Villigst, DFG through CRC 889 and Volkswagen Foundation.
Brunton, Steven L.; Brunton, Bingni W.; Proctor, Joshua L.; Kutz, J. Nathan
2016-01-01
In this work, we explore finite-dimensional linear representations of nonlinear dynamical systems by restricting the Koopman operator to an invariant subspace spanned by specially chosen observable functions. The Koopman operator is an infinite-dimensional linear operator that evolves functions of the state of a dynamical system. Dominant terms in the Koopman expansion are typically computed using dynamic mode decomposition (DMD). DMD uses linear measurements of the state variables, and it has recently been shown that this may be too restrictive for nonlinear systems. Choosing the right nonlinear observable functions to form an invariant subspace where it is possible to obtain linear reduced-order models, especially those that are useful for control, is an open challenge. Here, we investigate the choice of observable functions for Koopman analysis that enable the use of optimal linear control techniques on nonlinear problems. First, to include a cost on the state of the system, as in linear quadratic regulator (LQR) control, it is helpful to include these states in the observable subspace, as in DMD. However, we find that this is only possible when there is a single isolated fixed point, as systems with multiple fixed points or more complicated attractors are not globally topologically conjugate to a finite-dimensional linear system, and cannot be represented by a finite-dimensional linear Koopman subspace that includes the state. We then present a data-driven strategy to identify relevant observable functions for Koopman analysis by leveraging a new algorithm to determine relevant terms in a dynamical system by ℓ1-regularized regression of the data in a nonlinear function space; we also show how this algorithm is related to DMD. Finally, we demonstrate the usefulness of nonlinear observable subspaces in the design of Koopman operator optimal control laws for fully nonlinear systems using techniques from linear optimal control. PMID:26919740
Random Attractors for the Stochastic Navier-Stokes Equations on the 2D Unit Sphere
NASA Astrophysics Data System (ADS)
Brzeźniak, Z.; Goldys, B.; Le Gia, Q. T.
2018-03-01
In this paper we prove the existence of random attractors for the Navier-Stokes equations on 2 dimensional sphere under random forcing irregular in space and time. We also deduce the existence of an invariant measure.
Models of Innate Neural Attractors and Their Applications for Neural Information Processing
Solovyeva, Ksenia P.; Karandashev, Iakov M.; Zhavoronkov, Alex; Dunin-Barkowski, Witali L.
2016-01-01
In this work we reveal and explore a new class of attractor neural networks, based on inborn connections provided by model molecular markers, the molecular marker based attractor neural networks (MMBANN). Each set of markers has a metric, which is used to make connections between neurons containing the markers. We have explored conditions for the existence of attractor states, critical relations between their parameters and the spectrum of single neuron models, which can implement the MMBANN. Besides, we describe functional models (perceptron and SOM), which obtain significant advantages over the traditional implementation of these models, while using MMBANN. In particular, a perceptron, based on MMBANN, gets specificity gain in orders of error probabilities values, MMBANN SOM obtains real neurophysiological meaning, the number of possible grandma cells increases 1000-fold with MMBANN. MMBANN have sets of attractor states, which can serve as finite grids for representation of variables in computations. These grids may show dimensions of d = 0, 1, 2,…. We work with static and dynamic attractor neural networks of the dimensions d = 0 and 1. We also argue that the number of dimensions which can be represented by attractors of activities of neural networks with the number of elements N = 104 does not exceed 8. PMID:26778977
Chaos and generalised multistability in a mesoscopic model of the electroencephalogram
NASA Astrophysics Data System (ADS)
Dafilis, Mathew P.; Frascoli, Federico; Cadusch, Peter J.; Liley, David T. J.
2009-06-01
We present evidence for chaos and generalised multistability in a mesoscopic model of the electroencephalogram (EEG). Two limit cycle attractors and one chaotic attractor were found to coexist in a two-dimensional plane of the ten-dimensional volume of initial conditions. The chaotic attractor was found to have a moderate value of the largest Lyapunov exponent (3.4 s -1 base e) with an associated Kaplan-Yorke (Lyapunov) dimension of 2.086. There are two different limit cycles appearing in conjunction with this particular chaotic attractor: one multiperiodic low amplitude limit cycle whose largest spectral peak is within the alpha band (8-13 Hz) of the EEG; and another multiperiodic large-amplitude limit cycle which may correspond to epilepsy. The cause of the coexistence of these structures is explained with a one-parameter bifurcation analysis. Each attractor has a basin of differing complexity: the large-amplitude limit cycle has a basin relatively uncomplicated in its structure while the small-amplitude limit cycle and chaotic attractor each have much more finely structured basins of attraction, but none of the basin boundaries appear to be fractal. The basins of attraction for the chaotic and small-amplitude limit cycle dynamics apparently reside within each other. We briefly discuss the implications of these findings in the context of theoretical attempts to understand the dynamics of brain function and behaviour.
Counting and classifying attractors in high dimensional dynamical systems.
Bagley, R J; Glass, L
1996-12-07
Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and immune systems. A key quantity of such networks is the number of basins of attraction in the state space. The number of basins of attraction changes as a function of the size of the network, its connectivity and its transition rules. In discrete networks, a simple count of the number of attractors does not reveal the combinatorial structure of the attractors. These points are illustrated in a reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman. We also consider comparisons between dynamics in discrete networks and continuous analogues. A continuous analogue of a discrete network may have a different number of attractors for many different reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several different attractors in a discrete network may be associated with a single attractor in the continuous case. Special problems in determining attractors in continuous systems arise when there is aperiodic dynamics associated with quasiperiodicity of deterministic chaos.
NASA Astrophysics Data System (ADS)
Sun, Changchun; Chen, Zhongtang; Xu, Qicheng
2017-12-01
An original three-dimensional (3D) smooth continuous chaotic system and its mirror-image system with eight common parameters are constructed and a pair of symmetric chaotic attractors can be generated simultaneously. Basic dynamical behaviors of two 3D chaotic systems are investigated respectively. A double-scroll chaotic attractor by connecting the pair of mutual mirror-image attractors is generated via a novel planar switching control approach. Chaos can also be controlled to a fixed point, a periodic orbit and a divergent orbit respectively by switching between two chaotic systems. Finally, an equivalent 3D chaotic system by combining two 3D chaotic systems with a switching law is designed by utilizing a sign function. Two circuit diagrams for realizing the double-scroll attractor are depicted by employing an improved module-based design approach.
Continuity of pullback and uniform attractors
NASA Astrophysics Data System (ADS)
Hoang, Luan T.; Olson, Eric J.; Robinson, James C.
2018-03-01
We study the continuity of pullback and uniform attractors for non-autonomous dynamical systems with respect to perturbations of a parameter. Consider a family of dynamical systems parameterized by λ ∈ Λ, where Λ is a complete metric space, such that for each λ ∈ Λ there exists a unique pullback attractor Aλ (t). Using the theory of Baire category we show under natural conditions that there exists a residual set Λ* ⊆ Λ such that for every t ∈ R the function λ ↦Aλ (t) is continuous at each λ ∈Λ* with respect to the Hausdorff metric. Similarly, given a family of uniform attractors Aλ, there is a residual set at which the map λ ↦Aλ is continuous. We also introduce notions of equi-attraction suitable for pullback and uniform attractors and then show when Λ is compact that the continuity of pullback attractors and uniform attractors with respect to λ is equivalent to pullback equi-attraction and, respectively, uniform equi-attraction. These abstract results are then illustrated in the context of the Lorenz equations and the two-dimensional Navier-Stokes equations.
Attractors of equations of non-Newtonian fluid dynamics
NASA Astrophysics Data System (ADS)
Zvyagin, V. G.; Kondrat'ev, S. K.
2014-10-01
This survey describes a version of the trajectory-attractor method, which is applied to study the limit asymptotic behaviour of solutions of equations of non-Newtonian fluid dynamics. The trajectory-attractor method emerged in papers of the Russian mathematicians Vishik and Chepyzhov and the American mathematician Sell under the condition that the corresponding trajectory spaces be invariant under the translation semigroup. The need for such an approach was caused by the fact that for many equations of mathematical physics for which the Cauchy initial-value problem has a global (weak) solution with respect to the time, the uniqueness of such a solution has either not been established or does not hold. In particular, this is the case for equations of fluid dynamics. At the same time, trajectory spaces invariant under the translation semigroup could not be constructed for many equations of non-Newtonian fluid dynamics. In this connection, a different approach to the construction of trajectory attractors for dissipative systems was proposed in papers of Zvyagin and Vorotnikov without using invariance of trajectory spaces under the translation semigroup and is based on the topological lemma of Shura-Bura. This paper presents examples of equations of non-Newtonian fluid dynamics (the Jeffreys system describing movement of the Earth's crust, the model of motion of weak aqueous solutions of polymers, a system with memory) for which the aforementioned construction is used to prove the existence of attractors in both the autonomous and the non-autonomous cases. At the beginning of the paper there is also a brief exposition of the results of Ladyzhenskaya on the existence of attractors of the two-dimensional Navier-Stokes system and the result of Vishik and Chepyzhov for the case of attractors of the three-dimensional Navier-Stokes system. Bibliography: 34 titles.
Chaotic interactions of self-replicating RNA.
Forst, C V
1996-03-01
A general system of high-order differential equations describing complex dynamics of replicating biomolecules is given. Symmetry relations and coordinate transformations of general replication systems leading to topologically equivalent systems are derived. Three chaotic attractors observed in Lotka-Volterra equations of dimension n = 3 are shown to represent three cross-sections of one and the same chaotic regime. Also a fractal torus in a generalized three-dimensional Lotka-Volterra Model has been linked to one of the chaotic attractors. The strange attractors are studied in the equivalent four-dimensional catalytic replicator network. The fractal torus has been examined in adapted Lotka-Volterra equations. Analytic expressions are derived for the Lyapunov exponents of the flow in the replicator system. Lyapunov spectra for different pathways into chaos has been calculated. In the generalized Lotka-Volterra system a second inner rest point--coexisting with (quasi)-periodic orbits--can be observed; with an abundance of different bifurcations. Pathways from chaotic tori, via quasi-periodic tori, via limit cycles, via multi-periodic orbits--emerging out of periodic doubling bifurcations--to "simple" chaotic attractors can be found.
Suemitsu, Yoshikazu; Nara, Shigetoshi
2004-09-01
Chaotic dynamics introduced into a neural network model is applied to solving two-dimensional mazes, which are ill-posed problems. A moving object moves from the position at t to t + 1 by simply defined motion function calculated from firing patterns of the neural network model at each time step t. We have embedded several prototype attractors that correspond to the simple motion of the object orienting toward several directions in two-dimensional space in our neural network model. Introducing chaotic dynamics into the network gives outputs sampled from intermediate state points between embedded attractors in a state space, and these dynamics enable the object to move in various directions. System parameter switching between a chaotic and an attractor regime in the state space of the neural network enables the object to move to a set target in a two-dimensional maze. Results of computer simulations show that the success rate for this method over 300 trials is higher than that of random walk. To investigate why the proposed method gives better performance, we calculate and discuss statistical data with respect to dynamical structure.
How to test for partially predictable chaos.
Wernecke, Hendrik; Sándor, Bulcsú; Gros, Claudius
2017-04-24
For a chaotic system pairs of initially close-by trajectories become eventually fully uncorrelated on the attracting set. This process of decorrelation can split into an initial exponential decrease and a subsequent diffusive process on the chaotic attractor causing the final loss of predictability. Both processes can be either of the same or of very different time scales. In the latter case the two trajectories linger within a finite but small distance (with respect to the overall extent of the attractor) for exceedingly long times and remain partially predictable. Standard tests for chaos widely use inter-orbital correlations as an indicator. However, testing partially predictable chaos yields mostly ambiguous results, as this type of chaos is characterized by attractors of fractally broadened braids. For a resolution we introduce a novel 0-1 indicator for chaos based on the cross-distance scaling of pairs of initially close trajectories. This test robustly discriminates chaos, including partially predictable chaos, from laminar flow. Additionally using the finite time cross-correlation of pairs of initially close trajectories, we are able to identify laminar flow as well as strong and partially predictable chaos in a 0-1 manner solely from the properties of pairs of trajectories.
Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elizalde, Emilio; Odintsov, Sergei D.; Pozdeeva, Ekaterina O.
2016-02-01
The possibility to construct an inflationary scenario for renormalization-group improved potentials corresponding to the Higgs sector of finite gauge models is investigated. Taking into account quantum corrections to the renormalization-group potential which sums all leading logs of perturbation theory is essential for a successful realization of the inflationary scenario, with very reasonable parameter values. The inflationary models thus obtained are seen to be in good agreement with the most recent and accurate observational data. More specifically, the values of the relevant inflationary parameters, n{sub s} and r, are close to the corresponding ones in the R{sup 2} and Higgs-driven inflationmore » scenarios. It is shown that the model here constructed and Higgs-driven inflation belong to the same class of cosmological attractors.« less
Bounding the first exit from the basin: Independence times and finite-time basin stability
NASA Astrophysics Data System (ADS)
Schultz, Paul; Hellmann, Frank; Webster, Kevin N.; Kurths, Jürgen
2018-04-01
We study the stability of deterministic systems, given sequences of large, jump-like perturbations. Our main result is the derivation of a lower bound for the probability of the system to remain in the basin, given that perturbations are rare enough. This bound is efficient to evaluate numerically. To quantify rare enough, we define the notion of the independence time of such a system. This is the time after which a perturbed state has probably returned close to the attractor, meaning that subsequent perturbations can be considered separately. The effect of jump-like perturbations that occur at least the independence time apart is thus well described by a fixed probability to exit the basin at each jump, allowing us to obtain the bound. To determine the independence time, we introduce the concept of finite-time basin stability, which corresponds to the probability that a perturbed trajectory returns to an attractor within a given time. The independence time can then be determined as the time scale at which the finite-time basin stability reaches its asymptotic value. Besides that, finite-time basin stability is a novel probabilistic stability measure on its own, with potential broad applications in complex systems.
NASA Astrophysics Data System (ADS)
Fernandez, P.; Wang, Q.
2017-12-01
We investigate the impact of numerical discretization on the Lyapunov spectrum of separated flow simulations. The two-dimensional chaotic flow around the NACA 0012 airfoil at a low Reynolds number and large angle of attack is considered to that end. Time, space and accuracy-order refinement studies are performed to examine each of these effects separately. Numerical results show that the time discretization has a small impact on the dynamics of the system, whereas the spatial discretization can dramatically change them. Also, the finite-time Lyapunov exponents associated to unstable modes are shown to be positively skewed, and quasi-homoclinic tangencies are observed in the attractor of the system. The implications of these results on flow physics and sensitivity analysis of chaotic flows are discussed.
Mapping attractor fields in face space: the atypicality bias in face recognition.
Tanaka, J; Giles, M; Kremen, S; Simon, V
1998-09-01
A familiar face can be recognized across many changes in the stimulus input. In this research, the many-to-one mapping of face stimuli to a single face memory is referred to as a face memory's 'attractor field'. According to the attractor field approach, a face memory will be activated by any stimuli falling within the boundaries of its attractor field. It was predicted that by virtue of its location in a multi-dimensional face space, the attractor field of an atypical face will be larger than the attractor field of a typical face. To test this prediction, subjects make likeness judgments to morphed faces that contained a 50/50 contribution from an atypical and a typical parent face. The main result of four experiments was that the morph face was judged to bear a stronger resemblance to the atypical face parent than the typical face parent. The computational basis of the atypicality bias was demonstrated in a neural network simulation where morph inputs of atypical and typical representations elicited stronger activation of atypical output units than of typical output units. Together, the behavioral and simulation evidence supports the view that the attractor fields of atypical faces span over a broader region of face space that the attractor fields of typical faces.
Synthetic Modeling of Autonomous Learning with a Chaotic Neural Network
NASA Astrophysics Data System (ADS)
Funabashi, Masatoshi
We investigate the possible role of intermittent chaotic dynamics called chaotic itinerancy, in interaction with nonsupervised learnings that reinforce and weaken the neural connection depending on the dynamics itself. We first performed hierarchical stability analysis of the Chaotic Neural Network model (CNN) according to the structure of invariant subspaces. Irregular transition between two attractor ruins with positive maximum Lyapunov exponent was triggered by the blowout bifurcation of the attractor spaces, and was associated with riddled basins structure. We secondly modeled two autonomous learnings, Hebbian learning and spike-timing-dependent plasticity (STDP) rule, and simulated the effect on the chaotic itinerancy state of CNN. Hebbian learning increased the residence time on attractor ruins, and produced novel attractors in the minimum higher-dimensional subspace. It also augmented the neuronal synchrony and established the uniform modularity in chaotic itinerancy. STDP rule reduced the residence time on attractor ruins, and brought a wide range of periodicity in emerged attractors, possibly including strange attractors. Both learning rules selectively destroyed and preserved the specific invariant subspaces, depending on the neuron synchrony of the subspace where the orbits are situated. Computational rationale of the autonomous learning is discussed in connectionist perspective.
Stationary black holes and attractor mechanism
NASA Astrophysics Data System (ADS)
Astefanesei, Dumitru; Yavartanoo, Hossein
2008-05-01
We investigate the symmetries of the near horizon geometry of extremal stationary black hole in four-dimensional Einstein gravity coupled to Abelian gauge fields and neutral scalars. Careful consideration of the equations of motion and the boundary conditions at the horizon imply that the near horizon geometry has SO(2,1)×U(1) isometry. This compliments the rotating attractors proposal of hep-th/0606244 that had assumed the presence of this isometry. The extremal solutions are classified into two families differentiated by the presence or absence of an ergo-region. We also comment on the attractor mechanism of both branches.
NASA Astrophysics Data System (ADS)
Bouchet, Freddy; Laurie, Jason; Zaboronski, Oleg
2014-09-01
We investigate a class of simple models for Langevin dynamics of turbulent flows, including the one-layer quasi-geostrophic equation and the two-dimensional Euler equations. Starting from a path integral representation of the transition probability, we compute the most probable fluctuation paths from one attractor to any state within its basin of attraction. We prove that such fluctuation paths are the time reversed trajectories of the relaxation paths for a corresponding dual dynamics, which are also within the framework of quasi-geostrophic Langevin dynamics. Cases with or without detailed balance are studied. We discuss a specific example for which the stationary measure displays either a second order (continuous) or a first order (discontinuous) phase transition and a tricritical point. In situations where a first order phase transition is observed, the dynamics are bistable. Then, the transition paths between two coexisting attractors are instantons (fluctuation paths from an attractor to a saddle), which are related to the relaxation paths of the corresponding dual dynamics. For this example, we show how one can analytically determine the instantons and compute the transition probabilities for rare transitions between two attractors.
Statistical Properties of Lorenz-like Flows, Recent Developments and Perspectives
NASA Astrophysics Data System (ADS)
Araujo, Vitor; Galatolo, Stefano; Pacifico, Maria José
We comment on the mathematical results about the statistical behavior of Lorenz equations and its attractor, and more generally on the class of singular hyperbolic systems. The mathematical theory of such kind of systems turned out to be surprisingly difficult. It is remarkable that a rigorous proof of the existence of the Lorenz attractor was presented only around the year 2000 with a computer-assisted proof together with an extension of the hyperbolic theory developed to encompass attractors robustly containing equilibria. We present some of the main results on the statistical behavior of such systems. We show that for attractors of three-dimensional flows, robust chaotic behavior is equivalent to the existence of certain hyperbolic structures, known as singular-hyperbolicity. These structures, in turn, are associated with the existence of physical measures: in low dimensions, robust chaotic behavior for flows ensures the existence of a physical measure. We then give more details on recent results on the dynamics of singular-hyperbolic (Lorenz-like) attractors: (1) there exists an invariant foliation whose leaves are forward contracted by the flow (and further properties which are useful to understand the statistical properties of the dynamics); (2) there exists a positive Lyapunov exponent at every orbit; (3) there is a unique physical measure whose support is the whole attractor and which is the equilibrium state with respect to the center-unstable Jacobian; (4) this measure is exact dimensional; (5) the induced measure on a suitable family of cross-sections has exponential decay of correlations for Lipschitz observables with respect to a suitable Poincaré return time map; (6) the hitting time associated to Lorenz-like attractors satisfy a logarithm law; (7) the geometric Lorenz flow satisfies the Almost Sure Invariance Principle (ASIP) and the Central Limit Theorem (CLT); (8) the rate of decay of large deviations for the volume measure on the ergodic basin of a geometric Lorenz attractor is exponential; (9) a class of geometric Lorenz flows exhibits robust exponential decay of correlations; (10) all geometric Lorenz flows are rapidly mixing and their time-1 map satisfies both ASIP and CLT.
On the control of the chaotic attractors of the 2-d Navier-Stokes equations.
Smaoui, Nejib; Zribi, Mohamed
2017-03-01
The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, R e . Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.
On the control of the chaotic attractors of the 2-d Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Smaoui, Nejib; Zribi, Mohamed
2017-03-01
The control problem of the chaotic attractors of the two dimensional (2-d) Navier-Stokes (N-S) equations is addressed in this paper. First, the Fourier Galerkin method based on a reduced-order modelling approach developed by Chen and Price is applied to the 2-d N-S equations to construct a fifth-order system of nonlinear ordinary differential equations (ODEs). The dynamics of the fifth-order system was studied by analyzing the system's attractor for different values of Reynolds number, Re. Then, control laws are proposed to drive the states of the ODE system to a desired attractor. Finally, an adaptive controller is designed to synchronize two reduced order ODE models having different Reynolds numbers and starting from different initial conditions. Simulation results indicate that the proposed control schemes work well.
Generation of 2N + 1-scroll existence in new three-dimensional chaos systems.
Liu, Yue; Guan, Jian; Ma, Chunyang; Guo, Shuxu
2016-08-01
We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a12a21 = 0, while the Chua system satisfies a12a21 > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential use in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.
Chaotic behaviour of the short-term variations in ozone column observed in Arctic
NASA Astrophysics Data System (ADS)
Petkov, Boyan H.; Vitale, Vito; Mazzola, Mauro; Lanconelli, Christian; Lupi, Angelo
2015-09-01
The diurnal variations observed in the ozone column at Ny-Ålesund, Svalbard during different periods of 2009, 2010 and 2011 have been examined to test the hypothesis that they could be a result of a chaotic process. It was found that each of the attractors, reconstructed by applying the time delay technique and corresponding to any of the three time series can be embedded by 6-dimensional space. Recurrence plots, depicted to characterise the attractor features revealed structures typical for a chaotic system. In addition, the two positive Lyapunov exponents found for the three attractors, the fractal Hausdorff dimension presented by the Kaplan-Yorke estimator and the feasibility to predict the short-term ozone column variations within 10-20 h, knowing the past behaviour make the assumption about their chaotic character more realistic. The similarities of the estimated parameters in all three cases allow us to hypothesise that the three time series under study likely present one-dimensional projections of the same chaotic system taken at different time intervals.
The route to chaos for the Kuramoto-Sivashinsky equation
NASA Technical Reports Server (NTRS)
Papageorgiou, Demetrios T.; Smyrlis, Yiorgos
1990-01-01
The results of extensive numerical experiments of the spatially periodic initial value problem for the Kuramoto-Sivashinsky equation. This paper is concerned with the asymptotic nonlinear dynamics at the dissipation parameter decreases and spatio-temporal chaos sets in. To this end the initial condition is taken to be the same for all numerical experiments (a single sine wave is used) and the large time evolution of the system is followed numerically. Numerous computations were performed to establish the existence of windows, in parameter space, in which the solution has the following characteristics as the viscosity is decreased: a steady fully modal attractor to a steady bimodal attractor to another steady fully modal attractor to a steady trimodal attractor to a periodic attractor, to another steady fully modal attractor, to another periodic attractor, to a steady tetramodal attractor, to another periodic attractor having a full sequence of period-doublings (in parameter space) to chaos. Numerous solutions are presented which provide conclusive evidence of the period-doubling cascades which precede chaos for this infinite-dimensional dynamical system. These results permit a computation of the length of subwindows which in turn provide an estimate for their successive ratios as the cascade develops. A calculation based on the numerical results is also presented to show that the period doubling sequences found here for the Kuramoto-Sivashinsky equation, are in complete agreement with Feigenbaum's universal constant of 4,669201609... . Some preliminary work shows several other windows following the first chaotic one including periodic, chaotic, and a steady octamodal window; however, the windows shrink significantly in size to enable concrete quantitative conclusions to be made.
On swinging spring chaotic oscillations
NASA Astrophysics Data System (ADS)
Aldoshin, Gennady T.; Yakovlev, Sergey P.
2018-05-01
In this work, chaotic modes of Swinging spring oscillations, their appearing conditions and probable scenario of evolution are studied. Swinging spring two-dimensional potential has (under certain conditions) local maximum. It can lead to stochastic attractor appearing. The system instability reason is inner (auto-parametric) resonance with frequencies ratio 2:1, which allows us to conclude that attractor could evolve according to the period doubling scenario, which was predicted by Feigenbaum in 1978.
Classification of attractors for systems of identical coupled Kuramoto oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelbrecht, Jan R.; Mirollo, Renato
2014-03-15
We present a complete classification of attractors for networks of coupled identical Kuramoto oscillators. In such networks, each oscillator is driven by the same first-order trigonometric function, with coefficients given by symmetric functions of the entire oscillator ensemble. For N≠3 oscillators, there are four possible types of attractors: completely synchronized fixed points or limit cycles, and fixed points or limit cycles where all but one of the oscillators are synchronized. The case N = 3 is exceptional; systems of three identical Kuramoto oscillators can also posses attracting fixed points or limit cycles with all three oscillators out of sync, as well asmore » chaotic attractors. Our results rely heavily on the invariance of the flow for such systems under the action of the three-dimensional group of Möbius transformations, which preserve the unit disc, and the analysis of the possible limiting configurations for this group action.« less
The Pendulum Weaves All Knots and Links
NASA Astrophysics Data System (ADS)
Starrett, John
2003-08-01
From a topological point of view, periodic orbits of three dimensional dynamical systems are knots, that is, circles (S∧1) embedded in the three sphere (S∧3) or in R∧3. The ensemble of periodic orbits comprising the skeleton of a 3-D strange attractor form a link: a collection of (not necessarily linked) knots. Joan Birman and Robert Williams used a topological device known as the template, a branched two-manifold that results when the stable direction is collapsed out of an attractor, to analyze the knot and link types appearing in the geometric Lorenz attractor. More recently, Robert Ghrist has shown the existence of universal templates: templates that support all knot and link types. I show that the template constructed from the geometric attractor of a forced physical pendulum contains a universal template as a subtemplate, and therefore the orbit set of the pendulum contains every knot and link type.
NASA Astrophysics Data System (ADS)
Huang, Sui
Transitions between high-dimensional attractor states in the quasi-potential landscape of the gene regulatory network, induced by environmental perturbations and/or facilitated by mutational rewiring of the network, underlie cell phenotype switching in development as well as in cancer progression, including acquisition of drug-resistant phenotypes. Considering heterogeneous cell populations as statistical ensembles of cells, and single-cell resolution gene expression profiling of cell populations undergoing a cell phenotype shift allow us now to map the topography of the landscape and its distortion. From snapshots of single-cell expression patterns of a cell population measured during major transitions we compute a quantity that identifies symmetry-breaking destabilization of attractors (bifurcation) and concomitant dimension-reduction of the state space manifold (landscape distortion) which precede critical transitions to new attractor states. The model predicts, and we show experimentally, the almost inevitable generation of aberrant cells associated with such critical transitions in multi-attractor landscapes: therapeutic perturbations which seek to push cancer cells to the apoptotic state, almost always produce ``rebellious'' cells which move in the ``opposite direction'': instead of dying they become more stem-cell-like and malignant. We show experimentally that the inadvertent generation of more malignant cancer cells by therapy indeed results from transition of surviving (but stressed) cells into unforeseen attractor states and not simply from selection of inherently more resistant cells. Thus, cancer cells follow not so much Darwin, as generally thought (survival of the fittest), but rather Nietzsche (What does not kill me makes me stronger). Supported by NIH (NCI, NIGMS), Alberta Innovates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emenheiser, Jeffrey; Department of Physics, University of California, Davis, California 95616; Chapman, Airlie
Following the long-lived qualitative-dynamics tradition of explaining behavior in complex systems via the architecture of their attractors and basins, we investigate the patterns of switching between distinct trajectories in a network of synchronized oscillators. Our system, consisting of nonlinear amplitude-phase oscillators arranged in a ring topology with reactive nearest-neighbor coupling, is simple and connects directly to experimental realizations. We seek to understand how the multiple stable synchronized states connect to each other in state space by applying Gaussian white noise to each of the oscillators' phases. To do this, we first analytically identify a set of locally stable limit cyclesmore » at any given coupling strength. For each of these attracting states, we analyze the effect of weak noise via the covariance matrix of deviations around those attractors. We then explore the noise-induced attractor switching behavior via numerical investigations. For a ring of three oscillators, we find that an attractor-switching event is always accompanied by the crossing of two adjacent oscillators' phases. For larger numbers of oscillators, we find that the distribution of times required to stochastically leave a given state falls off exponentially, and we build an attractor switching network out of the destination states as a coarse-grained description of the high-dimensional attractor-basin architecture.« less
Crisis of the chaotic attractor of a climate model: a transfer operator approach
NASA Astrophysics Data System (ADS)
Tantet, Alexis; Lucarini, Valerio; Lunkeit, Frank; Dijkstra, Henk A.
2018-05-01
The destruction of a chaotic attractor leading to rough changes in the dynamics of a dynamical system is studied. Local bifurcations are known to be characterised by a single or a pair of characteristic exponents crossing the imaginary axis. As a result, the approach of such bifurcations in the presence of noise can be inferred from the slowing down of the decay of correlations (Held and Kleinen 2004 Geophys. Res. Lett. 31 1–4). On the other hand, little is known about global bifurcations involving high-dimensional attractors with several positive Lyapunov exponents. It is known that the global stability of chaotic attractors may be characterised by the spectral properties of the Koopman (Mauroy and Mezić 2016 IEEE Trans. Autom. Control 61 3356–69) or the transfer operators governing the evolution of statistical ensembles. Accordingly, it has recently been shown (Tantet 2017 J. Stat. Phys. 1–33) that a boundary crisis in the Lorenz flow coincides with the approach to the unit circle of the eigenvalues of these operators associated with motions about the attractor, the stable resonances. A second class of resonances, the unstable resonances, are responsible for the decay of correlations and mixing on the attractor. In the deterministic case, these cannot be expected to be affected by general boundary crises. Here, however, we give an example of a chaotic system in which slowing down of the decay of correlations of some observables does occur at the approach of a boundary crisis. The system considered is a high-dimensional, chaotic climate model of physical relevance. Moreover, coarse-grained approximations of the transfer operators on a reduced space, constructed from a long time series of the system, give evidence that this behaviour is due to the approach of unstable resonances to the unit circle. That the unstable resonances are affected by the crisis can be physically understood from the fact that the process responsible for the instability, the ice-albedo feedback, is also active on the attractor. Finally, we discuss implications regarding response theory and the design of early-warning signals.
Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram.
Dafilis, Mathew P; Frascoli, Federico; Cadusch, Peter J; Liley, David T J
2013-06-01
The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.
Properties of the Tent map for decimal fractions with fixed precision
NASA Astrophysics Data System (ADS)
Chetverikov, V. M.
2018-01-01
The one-dimensional discrete Tent map is a well-known example of a map whose fixed points are all unstable on the segment [0,1]. This map leads to the positivity of the Lyapunov exponent for the corresponding recurrent sequence. Therefore in a situation of general position, this sequence must demonstrate the properties of deterministic chaos. However if the first term of the recurrence sequence is taken as a decimal fraction with a fixed number “k” of digits after the decimal point and all calculations are carried out accurately, then the situation turns out to be completely different. In this case, first, the Tent map does not lead to an increase in significant digits in the terms of the sequence, and secondly, demonstrates the existence of a finite number of eventually periodic orbits, which are attractors for all other decimal numbers with the number of significant digits not exceeding “k”.
NASA Astrophysics Data System (ADS)
Sushko, Iryna; Gardini, Laura; Matsuyama, Kiminori
2018-05-01
We consider a two-dimensional continuous noninvertible piecewise smooth map, which characterizes the dynamics of innovation activities in the two-country model of trade and product innovation proposed in [7]. This two-dimensional map can be viewed as a coupling of two one-dimensional skew tent maps, each of which characterizes the innovation dynamics in each country in the absence of trade, and the coupling parameter depends inversely on the trade cost between the two countries. Hence, this model offers a laboratory for studying how a decline in the trade cost, or globalization, might synchronize endogenous fluctuations of innovation activities in the two countries. In this paper, we focus on the bifurcation scenarios, how the phase portrait of the two-dimensional map changes with a gradual decline of the trade cost, leading to border collision, merging, expansion and final bifurcations of the coexisting chaotic attractors. An example of peculiar border collision bifurcation leading to an increase of dimension of the chaotic attractor is also presented.
Multiple attractors and boundary crises in a tri-trophic food chain.
Boer, M P; Kooi, B W; Kooijman, S A
2001-02-01
The asymptotic behaviour of a model of a tri-trophic food chain in the chemostat is analysed in detail. The Monod growth model is used for all trophic levels, yielding a non-linear dynamical system of four ordinary differential equations. Mass conservation makes it possible to reduce the dimension by 1 for the study of the asymptotic dynamic behaviour. The intersections of the orbits with a Poincaré plane, after the transient has died out, yield a two-dimensional Poincaré next-return map. When chaotic behaviour occurs, all image points of this next-return map appear to lie close to a single curve in the intersection plane. This motivated the study of a one-dimensional bi-modal, non-invertible map of which the graph resembles this curve. We will show that the bifurcation structure of the food chain model can be understood in terms of the local and global bifurcations of this one-dimensional map. Homoclinic and heteroclinic connecting orbits and their global bifurcations are discussed also by relating them to their counterparts for a two-dimensional map which is invertible like the next-return map. In the global bifurcations two homoclinic or two heteroclinic orbits collide and disappear. In the food chain model two attractors coexist; a stable limit cycle where the top-predator is absent and an interior attractor. In addition there is a saddle cycle. The stable manifold of this limit cycle forms the basin boundary of the interior attractor. We will show that this boundary has a complicated structure when there are heteroclinic orbits from a saddle equilibrium to this saddle limit cycle. A homoclinic bifurcation to a saddle limit cycle will be associated with a boundary crisis where the chaotic attractor disappears suddenly when a bifurcation parameter is varied. Thus, similar to a tangent local bifurcation for equilibria or limit cycles, this homoclinic global bifurcation marks a region in the parameter space where the top-predator goes extinct. The 'Paradox of Enrichment' says that increasing the concentration of nutrient input can cause destabilization of the otherwise stable interior equilibrium of a bi-trophic food chain. For a tri-trophic food chain enrichment of the environment can even lead to extinction of the highest trophic level.
Generation of 2N + 1-scroll existence in new three-dimensional chaos systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yue; Guan, Jian; Ma, Chunyang
2016-08-15
We propose a systematic methodology for creating 2N + 1-scroll chaotic attractors from a simple three-dimensional system, which is named as the translation chaotic system. It satisfies the condition a{sub 12}a{sub 21} = 0, while the Chua system satisfies a{sub 12}a{sub 21} > 0. In this paper, we also propose a successful (an effective) design and an analytical approach for constructing 2N + 1-scrolls, the translation transformation principle. Also, the dynamics properties of the system are studied in detail. MATLAB simulation results show very sophisticated dynamical behaviors and unique chaotic behaviors of the system. It provides a new approach for 2N + 1-scroll attractors. Finally, to explore the potential usemore » in technological applications, a novel block circuit diagram is also designed for the hardware implementation of 1-, 3-, 5-, and 7-scroll attractors via switching the switches. Translation chaotic system has the merit of convenience and high sensitivity to initial values, emerging potentials in future engineering chaos design.« less
Sensitivity analysis of consumption cycles
NASA Astrophysics Data System (ADS)
Jungeilges, Jochen; Ryazanova, Tatyana; Mitrofanova, Anastasia; Popova, Irina
2018-05-01
We study the special case of a nonlinear stochastic consumption model taking the form of a 2-dimensional, non-invertible map with an additive stochastic component. Applying the concept of the stochastic sensitivity function and the related technique of confidence domains, we establish the conditions under which the system's complex consumption attractor is likely to become observable. It is shown that the level of noise intensities beyond which the complex consumption attractor is likely to be observed depends on the weight given to past consumption in an individual's preference adjustment.
Task-dependent recurrent dynamics in visual cortex
Tajima, Satohiro; Koida, Kowa; Tajima, Chihiro I; Suzuki, Hideyuki; Aihara, Kazuyuki; Komatsu, Hidehiko
2017-01-01
The capacity for flexible sensory-action association in animals has been related to context-dependent attractor dynamics outside the sensory cortices. Here, we report a line of evidence that flexibly modulated attractor dynamics during task switching are already present in the higher visual cortex in macaque monkeys. With a nonlinear decoding approach, we can extract the particular aspect of the neural population response that reflects the task-induced emergence of bistable attractor dynamics in a neural population, which could be obscured by standard unsupervised dimensionality reductions such as PCA. The dynamical modulation selectively increases the information relevant to task demands, indicating that such modulation is beneficial for perceptual decisions. A computational model that features nonlinear recurrent interaction among neurons with a task-dependent background input replicates the key properties observed in the experimental data. These results suggest that the context-dependent attractor dynamics involving the sensory cortex can underlie flexible perceptual abilities. DOI: http://dx.doi.org/10.7554/eLife.26868.001 PMID:28737487
Periodicity and Chaos Amidst Twisting and Folding in Two-Dimensional Maps
NASA Astrophysics Data System (ADS)
Garst, Swier; Sterk, Alef E.
We study the dynamics of three planar, noninvertible maps which rotate and fold the plane. Two maps are inspired by real-world applications whereas the third map is constructed to serve as a toy model for the other two maps. The dynamics of the three maps are remarkably similar. A stable fixed point bifurcates through a Hopf-Neĭmark-Sacker which leads to a countably infinite set of resonance tongues in the parameter plane of the map. Within a resonance tongue a periodic point can bifurcate through a period-doubling cascade. At the end of the cascade we detect Hénon-like attractors which are conjectured to be the closure of the unstable manifold of a saddle periodic point. These attractors have a folded structure which can be explained by means of the concept of critical lines. We also detect snap-back repellers which can either coexist with Hénon-like attractors or which can be formed when the saddle-point of a Hénon-like attractor becomes a source.
Damping of quasi-two-dimensional internal wave attractors by rigid-wall friction
NASA Astrophysics Data System (ADS)
Beckebanze, F.; Brouzet, C.; Sibgatullin, I. N.; Maas, L. R. M.
2018-04-01
The reflection of internal gravity waves at sloping boundaries leads to focusing or defocusing. In closed domains, focusing typically dominates and projects the wave energy onto 'wave attractors'. For small-amplitude internal waves, the projection of energy onto higher wave numbers by geometric focusing can be balanced by viscous dissipation at high wave numbers. Contrary to what was previously suggested, viscous dissipation in interior shear layers may not be sufficient to explain the experiments on wave attractors in the classical quasi-2D trapezoidal laboratory set-ups. Applying standard boundary layer theory, we provide an elaborate description of the viscous dissipation in the interior shear layer, as well as at the rigid boundaries. Our analysis shows that even if the thin lateral Stokes boundary layers consist of no more than 1% of the wall-to-wall distance, dissipation by lateral walls dominates at intermediate wave numbers. Our extended model for the spectrum of 3D wave attractors in equilibrium closes the gap between observations and theory by Hazewinkel et al. (2008).
Senthilkumar, D V; Srinivasan, K; Thamilmaran, K; Lakshmanan, M
2008-12-01
We identify an unconventional route to the creation of a strange nonchaotic attractor (SNA) in a quasiperiodically forced electronic circuit with a nonsinusoidal (square wave) force as one of the quasiperiodic forces through numerical and experimental studies. We find that bubbles appear in the strands of the quasiperiodic attractor due to the instability induced by the additional square-wave-type force. The bubbles then enlarge and get increasingly wrinkled as a function of the control parameter. Finally, the bubbles get extremely wrinkled (while the remaining parts of the strands of the torus remain largely unaffected) resulting in the creation of the SNA; we term this the bubbling route to the SNA. We characterize and confirm this creation from both experimental and numerical data using maximal Lyapunov exponents and their variance, Poincaré maps, Fourier amplitude spectra, and spectral distribution functions. We also strongly confirm the creation of a SNA via the bubbling route by the distribution of the finite-time Lyapunov exponents.
Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo
NASA Astrophysics Data System (ADS)
Wei, Zhouchao; Moroz, Irene; Sprott, J. C.; Akgul, Akif; Zhang, Wei
2017-03-01
We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this feature has not been previously reported in any other high-dimensional system. Moreover, the 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and the oscilloscope outputs produce similar phase portraits. Such implementations in real time represent a new type of hidden attractor with important consequences for engineering applications.
Hidden hyperchaos and electronic circuit application in a 5D self-exciting homopolar disc dynamo.
Wei, Zhouchao; Moroz, Irene; Sprott, J C; Akgul, Akif; Zhang, Wei
2017-03-01
We report on the finding of hidden hyperchaos in a 5D extension to a known 3D self-exciting homopolar disc dynamo. The hidden hyperchaos is identified through three positive Lyapunov exponents under the condition that the proposed model has just two stable equilibrium states in certain regions of parameter space. The new 5D hyperchaotic self-exciting homopolar disc dynamo has multiple attractors including point attractors, limit cycles, quasi-periodic dynamics, hidden chaos or hyperchaos, as well as coexisting attractors. We use numerical integrations to create the phase plane trajectories, produce bifurcation diagram, and compute Lyapunov exponents to verify the hidden attractors. Because no unstable equilibria exist in two parameter regions, the system has a multistability and six kinds of complex dynamic behaviors. To the best of our knowledge, this feature has not been previously reported in any other high-dimensional system. Moreover, the 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integrations. Both Matlab and the oscilloscope outputs produce similar phase portraits. Such implementations in real time represent a new type of hidden attractor with important consequences for engineering applications.
Multistability and hidden attractors in a relay system with hysteresis
NASA Astrophysics Data System (ADS)
Zhusubaliyev, Zhanybai T.; Mosekilde, Erik; Rubanov, Vasily G.; Nabokov, Roman A.
2015-06-01
For nonlinear dynamic systems with switching control, the concept of a "hidden attractor" naturally applies to a stable dynamic state that either (1) coexists with the stable switching cycle or (2), if the switching cycle is unstable, has a basin of attraction that does not intersect with the neighborhood of that cycle. We show how the equilibrium point of a relay system disappears in a boundary-equilibrium bifurcation as the system enters the region of autonomous switching dynamics and demonstrate experimentally how a relay system can exhibit large amplitude chaotic oscillations at high values of the supply voltage. By investigating a four-dimensional model of the experimental relay system we finally show how a variety of hidden periodic, quasiperiodic and chaotic attractors arise, transform and disappear through different bifurcations.
Predicting atmospheric states from local dynamical properties of the underlying attractor
NASA Astrophysics Data System (ADS)
Faranda, Davide; Rodrigues, David; Alvarez-Castro, M. Carmen; Messori, Gabriele; Yiou, Pascal
2017-04-01
Mid-latitude flows are characterized by a chaotic dynamics and recurring patterns hinting to the existence of an atmospheric attractor. In 1963 Lorenz described this object as: "the collection of all states that the system can assume or approach again and again, as opposed to those that it will ultimately avoid" and analyzed a low dimensional system describing a convective dynamics whose attractor has the shape of a butterfly. Since then, many studies try to find equivalent of the Lorenz butterfly in the complex atmospheric dynamics. Most of the studies where focused to determine the average dimension D of the attractor i.e. the number of degrees of freedom sufficient to describe the atmospheric circulation. However, obtaining reliable estimates of D has proved challenging. Moreover, D does not provide information on transient atmospheric motions, such as those leading to weather extremes. Using recent developments in dynamical systems theory, we show that such motions can be classified through instantaneous rather than average properties of the attractor. The instantaneous properties are uniquely determined by instantaneous dimension and stability. Their extreme values correspond to specific atmospheric patterns, and match extreme weather occurrences. We further show the existence of a significant correlation between the time series of instantaneous stability and dimension and the mean spread of sea-level pressure fields in an operational ensemble weather forecast at lead times of over two weeks. Instantaneous properties of the attractor therefore provide an efficient way of evaluating and informing operational weather forecasts.
Nonlinear dynamics of homeothermic temperature control in skunk cabbage, Symplocarpus foetidus
NASA Astrophysics Data System (ADS)
Ito, Takanori; Ito, Kikukatsu
2005-11-01
Certain primitive plants undergo orchestrated temperature control during flowering. Skunk cabbage, Symplocarpus foetidus, has been demonstrated to maintain an internal temperature of around 20 °C even when the ambient temperature drops below freezing. However, it is not clear whether a unique algorithm controls the homeothermic behavior of S. foetidus, or whether such an algorithm might exhibit linear or nonlinear thermoregulatory dynamics. Here we report the underlying dynamics of temperature control in S. foetidus using nonlinear forecasting, attractor and correlation dimension analyses. It was shown that thermoregulation in S. foetidus was governed by low-dimensional chaotic dynamics, the geometry of which showed a strange attractor named the “Zazen attractor.” Our data suggest that the chaotic thermoregulation in S. foetidus is inherent and that it is an adaptive response to the natural environment.
Periodicity, chaos, and multiple attractors in a memristor-based Shinriki's circuit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kengne, J.; Njitacke Tabekoueng, Z.; Kamdoum Tamba, V.
2015-10-15
In this contribution, a novel memristor-based oscillator, obtained from Shinriki's circuit by substituting the nonlinear positive conductance with a first order memristive diode bridge, is introduced. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. The basic dynamical properties of the system are investigated including equilibria and stability, phase portraits, frequency spectra, bifurcation diagrams, and Lyapunov exponents' spectrum. It is found that in addition to the classical period-doubling and symmetry restoring crisis scenarios reported in the original circuit, the memristor-based oscillator experiences the unusual and striking feature of multiple attractors (i.e., coexistence of a pairmore » of asymmetric periodic attractors with a pair of asymmetric chaotic ones) over a broad range of circuit parameters. Results of theoretical analyses are verified by laboratory experimental measurements.« less
Oscillations in Spurious States of the Associative Memory Model with Synaptic Depression
NASA Astrophysics Data System (ADS)
Murata, Shin; Otsubo, Yosuke; Nagata, Kenji; Okada, Masato
2014-12-01
The associative memory model is a typical neural network model that can store discretely distributed fixed-point attractors as memory patterns. When the network stores the memory patterns extensively, however, the model has other attractors besides the memory patterns. These attractors are called spurious memories. Both spurious states and memory states are in equilibrium, so there is little difference between their dynamics. Recent physiological experiments have shown that the short-term dynamic synapse called synaptic depression decreases its efficacy of transmission to postsynaptic neurons according to the activities of presynaptic neurons. Previous studies revealed that synaptic depression destabilizes the memory states when the number of memory patterns is finite. However, it is very difficult to study the dynamical properties of the spurious states if the number of memory patterns is proportional to the number of neurons. We investigate the effect of synaptic depression on spurious states by Monte Carlo simulation. The results demonstrate that synaptic depression does not affect the memory states but mainly destabilizes the spurious states and induces periodic oscillations.
Casey, M
1996-08-15
Recurrent neural networks (RNNs) can learn to perform finite state computations. It is shown that an RNN performing a finite state computation must organize its state space to mimic the states in the minimal deterministic finite state machine that can perform that computation, and a precise description of the attractor structure of such systems is given. This knowledge effectively predicts activation space dynamics, which allows one to understand RNN computation dynamics in spite of complexity in activation dynamics. This theory provides a theoretical framework for understanding finite state machine (FSM) extraction techniques and can be used to improve training methods for RNNs performing FSM computations. This provides an example of a successful approach to understanding a general class of complex systems that has not been explicitly designed, e.g., systems that have evolved or learned their internal structure.
NASA Astrophysics Data System (ADS)
Wei, Zhouchao; Rajagopal, Karthikeyan; Zhang, Wei; Kingni, Sifeu Takougang; Akgül, Akif
2018-04-01
Hidden hyperchaotic attractors can be generated with three positive Lyapunov exponents in the proposed 5D hyperchaotic Burke-Shaw system with only one stable equilibrium. To the best of our knowledge, this feature has rarely been previously reported in any other higher-dimensional systems. Unidirectional linear error feedback coupling scheme is used to achieve hyperchaos synchronisation, which will be estimated by using two indicators: the normalised average root-mean squared synchronisation error and the maximum cross-correlation coefficient. The 5D hyperchaotic system has been simulated using a specially designed electronic circuit and viewed on an oscilloscope, thereby confirming the results of the numerical integration. In addition, fractional-order hidden hyperchaotic system will be considered from the following three aspects: stability, bifurcation analysis and FPGA implementation. Such implementations in real time represent hidden hyperchaotic attractors with important consequences for engineering applications.
Fractal attractors in economic growth models with random pollution externalities
NASA Astrophysics Data System (ADS)
La Torre, Davide; Marsiglio, Simone; Privileggi, Fabio
2018-05-01
We analyze a discrete time two-sector economic growth model where the production technologies in the final and human capital sectors are affected by random shocks both directly (via productivity and factor shares) and indirectly (via a pollution externality). We determine the optimal dynamics in the decentralized economy and show how these dynamics can be described in terms of a two-dimensional affine iterated function system with probability. This allows us to identify a suitable parameter configuration capable of generating exactly the classical Barnsley's fern as the attractor of the log-linearized optimal dynamical system.
The attractor dimension of solar decimetric radio pulsations
NASA Technical Reports Server (NTRS)
Kurths, J.; Benz, A. O.; Aschwanden, M. J.
1991-01-01
The temporal characteristics of decimetric pulsations and related radio emissions during solar flares are analyzed using statistical methods recently developed for nonlinear dynamic systems. The results of the analysis is consistent with earlier reports on low-dimensional attractors of such events and yield a quantitative description of their temporal characteristics and hidden order. The estimated dimensions of typical decimetric pulsations are generally in the range of 3.0 + or - 0.5. Quasi-periodic oscillations and sudden reductions may have dimensions as low as 2. Pulsations of decimetric type IV continua have typically a dimension of about 4.
Antimonotonicity, Chaos and Multiple Attractors in a Novel Autonomous Jerk Circuit
NASA Astrophysics Data System (ADS)
Kengne, J.; Negou, A. Nguomkam; Njitacke, Z. T.
2017-06-01
We perform a systematic analysis of a system consisting of a novel jerk circuit obtained by replacing the single semiconductor diode of the original jerk circuit described in [Sprott, 2011a] with a pair of semiconductor diodes connected in antiparallel. The model is described by a continuous time three-dimensional autonomous system with hyperbolic sine nonlinearity, and may be viewed as a control system with nonlinear velocity feedback. The stability of the (unique) fixed point, the local bifurcations, and the discrete symmetries of the model equations are discussed. The complex behavior of the system is categorized in terms of its parameters by using bifurcation diagrams, Lyapunov exponents, time series, Poincaré sections, and basins of attraction. Antimonotonicity, period doubling bifurcation, symmetry restoring crises, chaos, and coexisting bifurcations are reported. More interestingly, one of the key contributions of this work is the finding of various regions in the parameters’ space in which the proposed (“elegant”) jerk circuit experiences the unusual phenomenon of multiple competing attractors (i.e. coexistence of four disconnected periodic and chaotic attractors). The basins of attraction of various coexisting attractors display complexity (i.e. fractal basins boundaries), thus suggesting possible jumps between coexisting attractors in experiment. Results of theoretical analyses are perfectly traced by laboratory experimental measurements. To the best of the authors’ knowledge, the jerk circuit/system introduced in this work represents the simplest electrical circuit (only a quadruple op amplifier chip without any analog multiplier chip) reported to date capable of four disconnected periodic and chaotic attractors for the same parameters setting.
Far-from-equilibrium attractors and nonlinear dynamical systems approach to the Gubser flow
NASA Astrophysics Data System (ADS)
Behtash, Alireza; Cruz-Camacho, C. N.; Martinez, M.
2018-02-01
The nonequilibrium attractors of systems undergoing Gubser flow within relativistic kinetic theory are studied. In doing so we employ well-established methods of nonlinear dynamical systems which rely on finding the fixed points, investigating the structure of the flow diagrams of the evolution equations, and characterizing the basin of attraction using a Lyapunov function near the stable fixed points. We obtain the attractors of anisotropic hydrodynamics, Israel-Stewart (IS) and transient fluid (DNMR) theories and show that they are indeed nonplanar and the basin of attraction is essentially three dimensional. The attractors of each hydrodynamical model are compared with the one obtained from the exact Gubser solution of the Boltzmann equation within the relaxation time approximation. We observe that the anisotropic hydrodynamics is able to match up to high numerical accuracy the attractor of the exact solution while the second-order hydrodynamical theories fail to describe it. We show that the IS and DNMR asymptotic series expansions diverge and use resurgence techniques to perform the resummation of these divergences. We also comment on a possible link between the manifold of steepest descent paths in path integrals and the basin of attraction for the attractors via Lyapunov functions that opens a new horizon toward an effective field theory description of hydrodynamics. Our findings indicate that the reorganization of the expansion series carried out by anisotropic hydrodynamics resums the Knudsen and inverse Reynolds numbers to all orders and thus, it can be understood as an effective theory for the far-from-equilibrium fluid dynamics.
On the dynamics of Airy beams in nonlinear media with nonlinear losses.
Ruiz-Jiménez, Carlos; Nóbrega, K Z; Porras, Miguel A
2015-04-06
We investigate on the nonlinear dynamics of Airy beams in a regime where nonlinear losses due to multi-photon absorption are significant. We identify the nonlinear Airy beam (NAB) that preserves the amplitude of the inward Hänkel component as an attractor of the dynamics. This attractor governs also the dynamics of finite-power (apodized) Airy beams, irrespective of the location of the entrance plane in the medium with respect to the Airy waist plane. A soft (linear) input long before the waist, however, strongly speeds up NAB formation and its persistence as a quasi-stationary beam in comparison to an abrupt input at the Airy waist plane, and promotes the formation of a new type of highly dissipative, fully nonlinear Airy beam not described so far.
Miranda, Rodrigo A; Rempel, Erico L; Chian, Abraham C-L; Seehafer, Norbert; Toledo, Benjamin A; Muñoz, Pablo R
2013-09-01
We study a transition to hyperchaos in the two-dimensional incompressible Navier-Stokes equations with periodic boundary conditions and an external forcing term. Bifurcation diagrams are constructed by varying the Reynolds number, and a transition to hyperchaos (HC) is identified. Before the onset of HC, there is coexistence of two chaotic attractors and a hyperchaotic saddle. After the transition to HC, the two chaotic attractors merge with the hyperchaotic saddle, generating random switching between chaos and hyperchaos, which is responsible for intermittent bursts in the time series of energy and enstrophy. The chaotic mixing properties of the flow are characterized by detecting Lagrangian coherent structures. After the transition to HC, the flow displays complex Lagrangian patterns and an increase in the level of Lagrangian chaoticity during the bursty periods that can be predicted statistically by the hyperchaotic saddle prior to HC transition.
Cocaine-Induced Changes in Low-Dimensional Attractors of Local Field Potentials in Optogenetic Mice
Oprisan, Sorinel A.; Imperatore, Julia; Helms, Jessica; Tompa, Tamas; Lavin, Antonieta
2018-01-01
Optogenetically evoked local field potential (LFP) recorded from the medial prefrontal cortex (mPFC) of mice during basal conditions and following a systemic cocaine administration were analyzed. Blue light stimuli were delivered to mPFC through a fiber optic every 2 s and each trial was repeated 100 times. As in the previous study, we used a surrogate data method to check that nonlinearity was present in the experimental LFPs and only used the last 1.5 s of steady activity to measure the LFPs phase resetting induced by the brief 10 ms light stimulus. We found that the steady dynamics of the mPFC in response to light stimuli could be reconstructed in a three-dimensional phase space with topologically similar “8”-shaped attractors across different animals. Therefore, cocaine did not change the complexity of the recorded nonlinear data compared to the control case. The phase space of the reconstructed attractor is determined by the LFP time series and its temporally shifted versions by a multiple of some lag time. We also compared the change in the attractor shape between cocaine-injected and control using (1) dendrogram clustering and (2) Frechet distance. We found about 20% overlap between control and cocaine trials when classified using dendrogram method, which suggest that it may be possible to describe mathematically both data sets with the same model and slightly different model parameters. We also found that the lag times are about three times shorter for cocaine trials compared to control. As a result, although the phase space trajectories for control and cocaine may look similar, their dynamics is significantly different. PMID:29445337
Zillmer, Rüdiger; Brunel, Nicolas; Hansel, David
2009-03-01
We present results of an extensive numerical study of the dynamics of networks of integrate-and-fire neurons connected randomly through inhibitory interactions. We first consider delayed interactions with infinitely fast rise and decay. Depending on the parameters, the network displays transients which are short or exponentially long in the network size. At the end of these transients, the dynamics settle on a periodic attractor. If the number of connections per neuron is large ( approximately 1000) , this attractor is a cluster state with a short period. In contrast, if the number of connections per neuron is small ( approximately 100) , the attractor has complex dynamics and very long period. During the long transients the neurons fire in a highly irregular manner. They can be viewed as quasistationary states in which, depending on the coupling strength, the pattern of activity is asynchronous or displays population oscillations. In the first case, the average firing rates and the variability of the single-neuron activity are well described by a mean-field theory valid in the thermodynamic limit. Bifurcations of the long transient dynamics from asynchronous to synchronous activity are also well predicted by this theory. The transient dynamics display features reminiscent of stable chaos. In particular, despite being linearly stable, the trajectories of the transient dynamics are destabilized by finite perturbations as small as O(1/N) . We further show that stable chaos is also observed for postsynaptic currents with finite decay time. However, we report in this type of network that chaotic dynamics characterized by positive Lyapunov exponents can also be observed. We show in fact that chaos occurs when the decay time of the synaptic currents is long compared to the synaptic delay, provided that the network is sufficiently large.
COSMOS-e'-soft Higgsotic attractors
NASA Astrophysics Data System (ADS)
Choudhury, Sayantan
2017-07-01
In this work, we have developed an elegant algorithm to study the cosmological consequences from a huge class of quantum field theories (i.e. superstring theory, supergravity, extra dimensional theory, modified gravity, etc.), which are equivalently described by soft attractors in the effective field theory framework. In this description we have restricted our analysis for two scalar fields - dilaton and Higgsotic fields minimally coupled with Einstein gravity, which can be generalized for any arbitrary number of scalar field contents with generalized non-canonical and non-minimal interactions. We have explicitly used R^2 gravity, from which we have studied the attractor and non-attractor phases by exactly computing two point, three point and four point correlation functions from scalar fluctuations using the In-In (Schwinger-Keldysh) and the δ N formalisms. We have also presented theoretical bounds on the amplitude, tilt and running of the primordial power spectrum, various shapes (equilateral, squeezed, folded kite or counter-collinear) of the amplitude as obtained from three and four point scalar functions, which are consistent with observed data. Also the results from two point tensor fluctuations and the field excursion formula are explicitly presented for the attractor and non-attractor phase. Further, reheating constraints, scale dependent behavior of the couplings and the dynamical solution for the dilaton and Higgsotic fields are also presented. New sets of consistency relations between two, three and four point observables are also presented, which shows significant deviation from canonical slow-roll models. Additionally, three possible theoretical proposals have presented to overcome the tachyonic instability at the time of late time acceleration. Finally, we have also provided the bulk interpretation from the three and four point scalar correlation functions for completeness.
Stochastic dynamics and combinatorial optimization
NASA Astrophysics Data System (ADS)
Ovchinnikov, Igor V.; Wang, Kang L.
2017-11-01
Natural dynamics is often dominated by sudden nonlinear processes such as neuroavalanches, gamma-ray bursts, solar flares, etc., that exhibit scale-free statistics much in the spirit of the logarithmic Ritcher scale for earthquake magnitudes. On phase diagrams, stochastic dynamical systems (DSs) exhibiting this type of dynamics belong to the finite-width phase (N-phase for brevity) that precedes ordinary chaotic behavior and that is known under such names as noise-induced chaos, self-organized criticality, dynamical complexity, etc. Within the recently proposed supersymmetric theory of stochastic dynamics, the N-phase can be roughly interpreted as the noise-induced “overlap” between integrable and chaotic deterministic dynamics. As a result, the N-phase dynamics inherits the properties of the both. Here, we analyze this unique set of properties and conclude that the N-phase DSs must naturally be the most efficient optimizers: on one hand, N-phase DSs have integrable flows with well-defined attractors that can be associated with candidate solutions and, on the other hand, the noise-induced attractor-to-attractor dynamics in the N-phase is effectively chaotic or aperiodic so that a DS must avoid revisiting solutions/attractors thus accelerating the search for the best solution. Based on this understanding, we propose a method for stochastic dynamical optimization using the N-phase DSs. This method can be viewed as a hybrid of the simulated and chaotic annealing methods. Our proposition can result in a new generation of hardware devices for efficient solution of various search and/or combinatorial optimization problems.
Gauge/Gravity correspondence and black hole attractors in various dimensions
NASA Astrophysics Data System (ADS)
Li, Wei
This thesis investigates several topics on Gauge/Gravity correspondence and black hole attractors in various dimensions. The first chapter contains a brief review and summary of main results. Chapters 2 and 3 aim at a microscopic description of black objects in five dimensions. Chapter 2 studies higher-derivative corrections for 5D black rings and spinning black holes. It shows that certain R 2 terms found in Calabi-Yau compactifications of M-theory yield macroscopic corrections to the entropies that match the microscopic corrections. Chapter 3 constructs probe brane configurations that preserve half of the enhanced near-horizon supersymmetry of 5D spinning black holes, whose near-horizon geometry is squashed AdS2 x S 3. There are supersymmetric zero-brane probes stabilized by orbital angular momentum on S3 and one-brane probes with momentum and winding around a U(1)L x U(1)R torus in S3. Chapter 4 constructs and analyzes generic single-centered and multi-centered black hole attractor solutions in various four-dimensional models which, after Kaluza-Klein reduction, admit a description in terms of 3D gravity coupled to a sigma model whose target space is symmetric coset space. The solutions correspond to certain nilpotent generators of the coset algebra. The non-BPS black hole attractors are found to be drastically different from their BPS counterparts. Chapter 5 examines three-dimensional topologically massive gravity with negative cosmological constant in asymptotically AdS 3 spacetimes. It proves that the theory is unitary and stable only at a special value of Chern-Simons coupling, where the theory becomes chiral. This suggests the existence of a stable, consistent quantum gravity theory at the chiral point which is dual to a holomorphic boundary CFT 2. Finally, Chapter 6 studies the two-dimensional N = 1 critical string theory with a linear dilaton background. It constructs time-dependent boundary state solutions that correspond to D0-branes falling toward the Liouville wall. It also shows that there exist four types of stable, falling D0-branes (two branes and two anti-branes) in Type 0A projection and two unstable ones in Type 0B projection.
Low, R; Pothérat, A
2015-05-01
We investigate aspects of low-magnetic-Reynolds-number flow between two parallel, perfectly insulating walls in the presence of an imposed magnetic field parallel to the bounding walls. We find a functional basis to describe the flow, well adapted to the problem of finding the attractor dimension and which is also used in subsequent direct numerical simulation of these flows. For given Reynolds and Hartmann numbers, we obtain an upper bound for the dimension of the attractor by means of known bounds on the nonlinear inertial term and this functional basis for the flow. Three distinct flow regimes emerge: a quasi-isotropic three-dimensional (3D) flow, a nonisotropic 3D flow, and a 2D flow. We find the transition curves between these regimes in the space parametrized by Hartmann number Ha and attractor dimension d(att). We find how the attractor dimension scales as a function of Reynolds and Hartmann numbers (Re and Ha) in each regime. We also investigate the thickness of the boundary layer along the bounding wall and find that in all regimes this scales as 1/Re, independently of the value of Ha, unlike Hartmann boundary layers found when the field is normal to the channel. The structure of the set of least dissipative modes is indeed quite different between these two cases but the properties of turbulence far from the walls (smallest scales and number of degrees of freedom) are found to be very similar.
DEEP ATTRACTOR NETWORK FOR SINGLE-MICROPHONE SPEAKER SEPARATION.
Chen, Zhuo; Luo, Yi; Mesgarani, Nima
2017-03-01
Despite the overwhelming success of deep learning in various speech processing tasks, the problem of separating simultaneous speakers in a mixture remains challenging. Two major difficulties in such systems are the arbitrary source permutation and unknown number of sources in the mixture. We propose a novel deep learning framework for single channel speech separation by creating attractor points in high dimensional embedding space of the acoustic signals which pull together the time-frequency bins corresponding to each source. Attractor points in this study are created by finding the centroids of the sources in the embedding space, which are subsequently used to determine the similarity of each bin in the mixture to each source. The network is then trained to minimize the reconstruction error of each source by optimizing the embeddings. The proposed model is different from prior works in that it implements an end-to-end training, and it does not depend on the number of sources in the mixture. Two strategies are explored in the test time, K-means and fixed attractor points, where the latter requires no post-processing and can be implemented in real-time. We evaluated our system on Wall Street Journal dataset and show 5.49% improvement over the previous state-of-the-art methods.
NASA Astrophysics Data System (ADS)
Ibrahim, K. M.; Jamal, R. K.; Ali, F. H.
2018-05-01
The behaviour of certain dynamical nonlinear systems are described in term as chaos, i.e., systems’ variables change with the time, displaying very sensitivity to initial conditions of chaotic dynamics. In this paper, we study archetype systems of ordinary differential equations in two-dimensional phase spaces of the Rössler model. A system displays continuous time chaos and is explained by three coupled nonlinear differential equations. We study its characteristics and determine the control parameters that lead to different behavior of the system output, periodic, quasi-periodic and chaos. The time series, attractor, Fast Fourier Transformation and bifurcation diagram for different values have been described.
Stochastic Lagrangian dynamics for charged flows in the E-F regions of ionosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang Wenbo; Mahalov, Alex
2013-03-15
We develop a three-dimensional numerical model for the E-F region ionosphere and study the Lagrangian dynamics for plasma flows in this region. Our interest rests on the charge-neutral interactions and the statistics associated with stochastic Lagrangian motion. In particular, we examine the organizing mixing patterns for plasma flows due to polarized gravity wave excitations in the neutral field, using Lagrangian coherent structures (LCS). LCS objectively depict the flow topology-the extracted attractors indicate generation of ionospheric density gradients, due to accumulation of plasma. Using Lagrangian measures such as the finite-time Lyapunov exponents, we locate the Lagrangian skeletons for mixing in plasma,more » hence where charged fronts are expected to appear. With polarized neutral wind, we find that the corresponding plasma velocity is also polarized. Moreover, the polarized velocity alone, coupled with stochastic Lagrangian motion, may give rise to polarized density fronts in plasma. Statistics of these trajectories indicate high level of non-Gaussianity. This includes clear signatures of variance, skewness, and kurtosis of displacements taking polarized structures aligned with the gravity waves, and being anisotropic.« less
Ergodic properties of spiking neuronal networks with delayed interactions
NASA Astrophysics Data System (ADS)
Palmigiano, Agostina; Wolf, Fred
The dynamical stability of neuronal networks, and the possibility of chaotic dynamics in the brain pose profound questions to the mechanisms underlying perception. Here we advance on the tractability of large neuronal networks of exactly solvable neuronal models with delayed pulse-coupled interactions. Pulse coupled delayed systems with an infinite dimensional phase space can be studied in equivalent systems of fixed and finite degrees of freedom by introducing a delayer variable for each neuron. A Jacobian of the equivalent system can be analytically obtained, and numerically evaluated. We find that depending on the action potential onset rapidness and the level of heterogeneities, the asynchronous irregular regime characteristic of balanced state networks loses stability with increasing delays to either a slow synchronous irregular or a fast synchronous irregular state. In networks of neurons with slow action potential onset, the transition to collective oscillations leads to an increase of the exponential rate of divergence of nearby trajectories and of the entropy production rate of the chaotic dynamics. The attractor dimension, instead of increasing linearly with increasing delay as reported in many other studies, decreases until eventually the network reaches full synchrony
Well-behaved dynamics in a dissipative nonideal periodically kicked rotator.
Chacón, R; Martínez García-Hoz, A
2003-12-01
Well-behaved dynamical properties are found in a dissipative kicked rotator subjected to a periodic string of asymmetric pulses of finite amplitude and width. The stability boundaries of the equilibrium are determined to arbitrary approximation for trigonometric pulses by means of circular harmonic balance, and to first approximation for general elliptic pulses by means of an elliptic harmonic balance method. The bifurcation behavior at the stability boundaries is determined numerically. We show how the extension of the instability region of the equilibrium in pulse parameter space reaches a maximum as the pulse width is varied. We also characterize the dependence of the mean duration of the transients to the equilibrium on the pulse width. The evolution of the basins of attraction of chaotic attractors when solely the pulse width is varied is characterized numerically. Finally, we show that the order-chaos route when solely the width of the pulses is altered appears to be especially rich, including different types of crises. The mechanism underlying these reshaping-induced crises is discussed with the aid of a two-dimensional map.
From globally coupled maps to complex-systems biology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaneko, Kunihiko, E-mail: kaneko@complex.c.u-tokyo.ac.jp
Studies of globally coupled maps, introduced as a network of chaotic dynamics, are briefly reviewed with an emphasis on novel concepts therein, which are universal in high-dimensional dynamical systems. They include clustering of synchronized oscillations, hierarchical clustering, chimera of synchronization and desynchronization, partition complexity, prevalence of Milnor attractors, chaotic itinerancy, and collective chaos. The degrees of freedom necessary for high dimensionality are proposed to equal the number in which the combinatorial exceeds the exponential. Future analysis of high-dimensional dynamical systems with regard to complex-systems biology is briefly discussed.
Chaotic Attractor Crisis and Climate Sensitivity: a Transfer Operator Approach
NASA Astrophysics Data System (ADS)
Tantet, A.; Lucarini, V.; Lunkeit, F.; Dijkstra, H. A.
2015-12-01
The rough response to a smooth parameter change of some non-chaotic climate models, such as the warm to snowball-Earth transition in energy balance models due to the ice-albedo feedback, can be studied in the framework of bifurcation theory, in particular by analysing the Lyapunov spectrum of fixed points or periodic orbits. However, bifurcation theory is of little help to study the destruction of a chaotic attractor which can occur in high-dimensional General Circulation Models (GCM). Yet, one would expect critical slowing down to occur before the crisis, since, as the system becomes susceptible to the physical instability mechanism responsible for the crisis, it turns out to be less and less resilient to exogenous perturbations and to spontaneous fluctuations due to other types of instabilities on the attractor. The statistical physics framework, extended to nonequilibrium systems, is particularly well suited for the study of global properties of chaotic and stochastic systems. In particular, the semigroup of transfer operators governs the evolution of distributions in phase space and its spectrum characterises both the relaxation rate of distributions to a statistical steady-state and the stability of this steady-state to perturbations. If critical slowing down indeed occurs in the approach to an attractor crisis, the gap in the spectrum of the semigroup of transfer operators is expected to shrink. We show that the chaotic attractor crisis due to the ice-albedo feedback and resulting in a transition from a warm to a snowball-Earth in the Planet Simulator (PlaSim), a GCM of intermediate complexity, is associated with critical slowing down, as observed by the slower decay of correlations before the crisis (cf. left panel). In addition, we demonstrate that this critical slowing down can be traced back to the shrinkage of the gap between the leading eigenvalues of coarse-grained approximations of the transfer operators and that these eigenvalues capture the fundamental features of the attractor crisis (cf. right panel). Finally, that the spectral gap is small close to the crisis suggests that the linear concept of Climate Sensitivity may be applied only far from an attractor crisis.
Optimizing energy growth as a tool for finding exact coherent structures
NASA Astrophysics Data System (ADS)
Olvera, D.; Kerswell, R. R.
2017-08-01
We discuss how searching for finite-amplitude disturbances of a given energy that maximize their subsequent energy growth after a certain later time T can be used to probe the phase space around a reference state and ultimately to find other nearby solutions. The procedure relies on the fact that of all the initial disturbances on a constant-energy hypersphere, the optimization procedure will naturally select the one that lies closest to the stable manifold of a nearby solution in phase space if T is large enough. Then, when in its subsequent evolution the optimal disturbance transiently approaches the new solution, a flow state at this point can be used as an initial guess to converge the solution to machine precision. We illustrate this approach in plane Couette flow by rediscovering the spanwise-localized "snake" solutions of Schneider et al. [Phys. Rev. Lett. 104, 104501 (2010), 10.1103/PhysRevLett.104.104501], probing phase space at very low Reynolds numbers (less than 127.7 ) where the constant-shear solution is believed to be the global attractor and examining how the edge between laminar and turbulent flow evolves when stable stratification eliminates the turbulence. We also show that the steady snake solution smoothly delocalizes as unstable stratification is gradually turned on until it connects (via an intermediary global three-dimensional solution) to two-dimensional Rayleigh-Bénard roll solutions.
Giuliani, Alessandro; Tomita, Masaru
2010-01-01
Cell fate decision remarkably generates specific cell differentiation path among the multiple possibilities that can arise through the complex interplay of high-dimensional genome activities. The coordinated action of thousands of genes to switch cell fate decision has indicated the existence of stable attractors guiding the process. However, origins of the intracellular mechanisms that create “cellular attractor” still remain unknown. Here, we examined the collective behavior of genome-wide expressions for neutrophil differentiation through two different stimuli, dimethyl sulfoxide (DMSO) and all-trans-retinoic acid (atRA). To overcome the difficulties of dealing with single gene expression noises, we grouped genes into ensembles and analyzed their expression dynamics in correlation space defined by Pearson correlation and mutual information. The standard deviation of correlation distributions of gene ensembles reduces when the ensemble size is increased following the inverse square root law, for both ensembles chosen randomly from whole genome and ranked according to expression variances across time. Choosing the ensemble size of 200 genes, we show the two probability distributions of correlations of randomly selected genes for atRA and DMSO responses overlapped after 48 hours, defining the neutrophil attractor. Next, tracking the ranked ensembles' trajectories, we noticed that only certain, not all, fall into the attractor in a fractal-like manner. The removal of these genome elements from the whole genomes, for both atRA and DMSO responses, destroys the attractor providing evidence for the existence of specific genome elements (named “genome vehicle”) responsible for the neutrophil attractor. Notably, within the genome vehicles, genes with low or moderate expression changes, which are often considered noisy and insignificant, are essential components for the creation of the neutrophil attractor. Further investigations along with our findings might provide a comprehensive mechanistic view of cell fate decision. PMID:20725638
Parameter-dependent behaviour of periodic channels in a locus of boundary crisis
NASA Astrophysics Data System (ADS)
Rankin, James; Osinga, Hinke M.
2017-06-01
A boundary crisis occurs when a chaotic attractor outgrows its basin of attraction and suddenly disappears. As previously reported, the locus of a boundary crisis is organised by homo- or heteroclinic tangencies between the stable and unstable manifolds of saddle periodic orbits. In two parameters, such tangencies lead to curves, but the locus of boundary crisis along those curves exhibits gaps or channels, in which other non-chaotic attractors persist. These attractors are stable periodic orbits which themselves can undergo a cascade of period-doubling bifurcations culminating in multi-component chaotic attractors. The canonical diffeomorphic two-dimensional Hénon map exhibits such periodic channels, which are structured in a particular ordered way: each channel is bounded on one side by a saddle-node bifurcation and on the other by a period-doubling cascade to chaos; furthermore, all channels seem to have the same orientation, with the saddle-node bifurcation always on the same side. We investigate the locus of boundary crisis in the Ikeda map, which models the dynamics of energy levels in a laser ring cavity. We find that the Ikeda map features periodic channels with a richer and more general organisation than for the Hénon map. Using numerical continuation, we investigate how the periodic channels depend on a third parameter and characterise how they split into multiple channels with different properties.
Statistical and dynamical properties of a dissipative kicked rotator
NASA Astrophysics Data System (ADS)
Oliveira, Diego F. M.; Leonel, Edson D.
2014-11-01
Some dynamical and statistical properties for a conservative as well as the dissipative problem of relativistic particles in a waveguide are considered. For the first time, two different types of dissipation namely: (i) due to viscosity and; (ii) due to inelastic collision (upon the kick) are considered individually and acting together. For the first case, and contrary to what is expected for the original Zaslavsky’s relativistic model, we show there is a critical parameter where a transition from local to global chaos occurs. On the other hand, after considering the introduction of dissipation also on the kick, the structure of the phase space changes in the sense that chaotic and periodic attractors appear. We study also the chaotic sea by using scaling arguments and we proposed an analytical argument to reinforce the validity of the scaling exponents obtained numerically. In principle such an approach can be extended to any two-dimensional map. Finally, based on the Lyapunov exponent, we show that the parameter space exhibits infinite families of self-similar shrimp-shape structures, corresponding to periodic attractors, embedded in a large region corresponding to chaotic attractors.
Coherence resonance in bursting neural networks
NASA Astrophysics Data System (ADS)
Kim, June Hoan; Lee, Ho Jun; Min, Cheol Hong; Lee, Kyoung J.
2015-10-01
Synchronized neural bursts are one of the most noticeable dynamic features of neural networks, being essential for various phenomena in neuroscience, yet their complex dynamics are not well understood. With extrinsic electrical and optical manipulations on cultured neural networks, we demonstrate that the regularity (or randomness) of burst sequences is in many cases determined by a (few) low-dimensional attractor(s) working under strong neural noise. Moreover, there is an optimal level of noise strength at which the regularity of the interburst interval sequence becomes maximal—a phenomenon of coherence resonance. The experimental observations are successfully reproduced through computer simulations on a well-established neural network model, suggesting that the same phenomena may occur in many in vivo as well as in vitro neural networks.
Allawala, Altan; Marston, J B
2016-11-01
We investigate the Fokker-Planck description of the equal-time statistics of the three-dimensional Lorenz attractor with additive white noise. The invariant measure is found by computing the zero (or null) mode of the linear Fokker-Planck operator as a problem of sparse linear algebra. Two variants are studied: a self-adjoint construction of the linear operator and the replacement of diffusion with hyperdiffusion. We also access the low-order statistics of the system by a perturbative expansion in equal-time cumulants. A comparison is made to statistics obtained by the standard approach of accumulation via direct numerical simulation. Theoretical and computational aspects of the Fokker-Planck and cumulant expansion methods are discussed.
Deterministic representation of chaos with application to turbulence
NASA Technical Reports Server (NTRS)
Zak, M.
1987-01-01
Chaotic motions of nonlinear dynamical systems are decomposed into mean components and fluctuations. The approach is based upon the concept that the fluctuations driven by the instability of the original (unperturbed) motion grow until a new stable state is approached. The Reynolds-type equations written for continuous as well as for finite-degrees-of-freedom dynamical systems are closed by using this stabilization principle. The theory is applied to conservative systems, to strange attractors and to turbulent motions.
Attractors for non-dissipative irrotational von Karman plates with boundary damping
NASA Astrophysics Data System (ADS)
Bociu, Lorena; Toundykov, Daniel
Long-time behavior of solutions to a von Karman plate equation is considered. The system has an unrestricted first-order perturbation and a nonlinear damping acting through free boundary conditions only. This model differs from those previously considered (e.g. in the extensive treatise (Chueshov and Lasiecka, 2010 [11])) because the semi-flow may be of a non-gradient type: the unique continuation property is not known to hold, and there is no strict Lyapunov function on the natural finite-energy space. Consequently, global bounds on the energy, let alone the existence of an absorbing ball, cannot be a priori inferred. Moreover, the free boundary conditions are not recognized by weak solutions and some helpful estimates available for clamped, hinged or simply-supported plates cannot be invoked. It is shown that this non-monotone flow can converge to a global compact attractor with the help of viscous boundary damping and appropriately structured restoring forces acting only on the boundary or its collar.
Deterministic and stochastic bifurcations in the Hindmarsh-Rose neuronal model
NASA Astrophysics Data System (ADS)
Dtchetgnia Djeundam, S. R.; Yamapi, R.; Kofane, T. C.; Aziz-Alaoui, M. A.
2013-09-01
We analyze the bifurcations occurring in the 3D Hindmarsh-Rose neuronal model with and without random signal. When under a sufficient stimulus, the neuron activity takes place; we observe various types of bifurcations that lead to chaotic transitions. Beside the equilibrium solutions and their stability, we also investigate the deterministic bifurcation. It appears that the neuronal activity consists of chaotic transitions between two periodic phases called bursting and spiking solutions. The stochastic bifurcation, defined as a sudden change in character of a stochastic attractor when the bifurcation parameter of the system passes through a critical value, or under certain condition as the collision of a stochastic attractor with a stochastic saddle, occurs when a random Gaussian signal is added. Our study reveals two kinds of stochastic bifurcation: the phenomenological bifurcation (P-bifurcations) and the dynamical bifurcation (D-bifurcations). The asymptotical method is used to analyze phenomenological bifurcation. We find that the neuronal activity of spiking and bursting chaos remains for finite values of the noise intensity.
Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.
Lin, J K; Pawelzik, K; Ernst, U; Sejnowski, T J
1998-08-01
We investigate the spatial and temporal aspects of firing patterns in a network of integrate-and-fire neurons arranged in a one-dimensional ring topology. The coupling is stochastic and shaped like a Mexican hat with local excitation and lateral inhibition. With perfect precision in the couplings, the attractors of activity in the network occur at every position in the ring. Inhomogeneities in the coupling break the translational invariance of localized attractors and lead to synchronization within highly active as well as weakly active clusters. The interspike interval variability is high, consistent with recent observations of spike time distributions in visual cortex. The robustness of our results is demonstrated with more realistic simulations on a network of McGregor neurons which model conductance changes and after-hyperpolarization potassium currents.
On the origin of reproducible sequential activity in neural circuits
NASA Astrophysics Data System (ADS)
Afraimovich, V. S.; Zhigulin, V. P.; Rabinovich, M. I.
2004-12-01
Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.
On the origin of reproducible sequential activity in neural circuits.
Afraimovich, V S; Zhigulin, V P; Rabinovich, M I
2004-12-01
Robustness and reproducibility of sequential spatio-temporal responses is an essential feature of many neural circuits in sensory and motor systems of animals. The most common mathematical images of dynamical regimes in neural systems are fixed points, limit cycles, chaotic attractors, and continuous attractors (attractive manifolds of neutrally stable fixed points). These are not suitable for the description of reproducible transient sequential neural dynamics. In this paper we present the concept of a stable heteroclinic sequence (SHS), which is not an attractor. SHS opens the way for understanding and modeling of transient sequential activity in neural circuits. We show that this new mathematical object can be used to describe robust and reproducible sequential neural dynamics. Using the framework of a generalized high-dimensional Lotka-Volterra model, that describes the dynamics of firing rates in an inhibitory network, we present analytical results on the existence of the SHS in the phase space of the network. With the help of numerical simulations we confirm its robustness in presence of noise in spite of the transient nature of the corresponding trajectories. Finally, by referring to several recent neurobiological experiments, we discuss possible applications of this new concept to several problems in neuroscience.
NASA Astrophysics Data System (ADS)
Samson, A. M.; Kotomtseva, L. A.; Grigor'eva, E. V.
1989-02-01
A theoretical study of the dynamics of a laser with a bleachable filter revealed chaotic lasing regimes and ranges of bistable states of parameters close to those found in reality. It is shown how a transition to chaos occurs as a result of period-doubling bifurcation. A study is reported of the degree of chaos and of the structure of the resultant strange attractor by calculation of its fractal dimensionality and of the Lyapunov indices.
Various Types of Coexisting Attractors in a New 4D Autonomous Chaotic System
NASA Astrophysics Data System (ADS)
Lai, Qiang; Akgul, Akif; Zhao, Xiao-Wen; Pei, Huiqin
An unique 4D autonomous chaotic system with signum function term is proposed in this paper. The system has four unstable equilibria and various types of coexisting attractors appear. Four-wing and four-scroll strange attractors are observed in the system and they will be broken into two coexisting butterfly attractors and two coexisting double-scroll attractors with the variation of the parameters. Numerical simulation shows that the system has various types of multiple coexisting attractors including two butterfly attractors with four limit cycles, two double-scroll attractors with a limit cycle, four single-scroll strange attractors, four limit cycles with regard to different parameters and initial values. The coexistence of the attractors is determined by the bifurcation diagrams. The chaotic and hyperchaotic properties of the attractors are verified by the Lyapunov exponents. Moreover, we present an electronic circuit to experimentally realize the dynamic behavior of the system.
Approximation theory for LQG (Linear-Quadratic-Gaussian) optimal control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Adamian, A.
1988-01-01
An approximation theory is presented for the LQG (Linear-Quadratic-Gaussian) optimal control problem for flexible structures whose distributed models have bounded input and output operators. The main purpose of the theory is to guide the design of finite dimensional compensators that approximate closely the optimal compensator. The optimal LQG problem separates into an optimal linear-quadratic regulator problem and an optimal state estimation problem. The solution of the former problem lies in the solution to an infinite dimensional Riccati operator equation. The approximation scheme approximates the infinite dimensional LQG problem with a sequence of finite dimensional LQG problems defined for a sequence of finite dimensional, usually finite element or modal, approximations of the distributed model of the structure. Two Riccati matrix equations determine the solution to each approximating problem. The finite dimensional equations for numerical approximation are developed, including formulas for converting matrix control and estimator gains to their functional representation to allow comparison of gains based on different orders of approximation. Convergence of the approximating control and estimator gains and of the corresponding finite dimensional compensators is studied. Also, convergence and stability of the closed-loop systems produced with the finite dimensional compensators are discussed. The convergence theory is based on the convergence of the solutions of the finite dimensional Riccati equations to the solutions of the infinite dimensional Riccati equations. A numerical example with a flexible beam, a rotating rigid body, and a lumped mass is given.
Black holes, anti de Sitter space, and topological strings
NASA Astrophysics Data System (ADS)
Yin, Xi
This thesis is devoted to the study of black holes in string theory, their connection to two and three dimensional anti de-Sitter space, and topological strings. We start by proposing a relation between supersymmetric black holes in four and five dimensions, as well as connections between multi-centered black holes in four dimensions and black rings in five dimensions. This connection is then applied to counting supersymmetric dyonic black holes in four dimensional string compactifications with 16 and 32 supersymmetries, respectively. We then turn to the near horizon attractor geometry AdS 2 x S2 x CY 3, and study the classical supersymmetric D-branes in this background. We also find supersymmetric black hole solutions in supergravity in AdS2 x S2, although the solutions have regions of closed timelike curves. Finally we consider the M-theory attractor geometry AdS3 x S2 x CY3, and compute the elliptic genus of the dual (0, 4) CFT by counting wrapped M2-brane states in the bulk in a dilute gas approximation. This leads to a derivation of the conjectured relation between black hole partition function and topological string amplitudes.
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Rosen, I. G.
1988-01-01
In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-01-01
By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.
Aston, Philip J; Christie, Mark I; Huang, Ying H; Nandi, Manasi
2018-03-01
Advances in monitoring technology allow blood pressure waveforms to be collected at sampling frequencies of 250-1000 Hz for long time periods. However, much of the raw data are under-analysed. Heart rate variability (HRV) methods, in which beat-to-beat interval lengths are extracted and analysed, have been extensively studied. However, this approach discards the majority of the raw data. Our aim is to detect changes in the shape of the waveform in long streams of blood pressure data. Our approach involves extracting key features from large complex data sets by generating a reconstructed attractor in a three-dimensional phase space using delay coordinates from a window of the entire raw waveform data. The naturally occurring baseline variation is removed by projecting the attractor onto a plane from which new quantitative measures are obtained. The time window is moved through the data to give a collection of signals which relate to various aspects of the waveform shape. This approach enables visualisation and quantification of changes in the waveform shape and has been applied to blood pressure data collected from conscious unrestrained mice and to human blood pressure data. The interpretation of the attractor measures is aided by the analysis of simple artificial waveforms. We have developed and analysed a new method for analysing blood pressure data that uses all of the waveform data and hence can detect changes in the waveform shape that HRV methods cannot, which is confirmed with an example, and hence our method goes 'beyond HRV'.
Aston, Philip J; Christie, Mark I; Huang, Ying H; Nandi, Manasi
2018-01-01
Abstract Advances in monitoring technology allow blood pressure waveforms to be collected at sampling frequencies of 250–1000 Hz for long time periods. However, much of the raw data are under-analysed. Heart rate variability (HRV) methods, in which beat-to-beat interval lengths are extracted and analysed, have been extensively studied. However, this approach discards the majority of the raw data. Objective: Our aim is to detect changes in the shape of the waveform in long streams of blood pressure data. Approach: Our approach involves extracting key features from large complex data sets by generating a reconstructed attractor in a three-dimensional phase space using delay coordinates from a window of the entire raw waveform data. The naturally occurring baseline variation is removed by projecting the attractor onto a plane from which new quantitative measures are obtained. The time window is moved through the data to give a collection of signals which relate to various aspects of the waveform shape. Main results: This approach enables visualisation and quantification of changes in the waveform shape and has been applied to blood pressure data collected from conscious unrestrained mice and to human blood pressure data. The interpretation of the attractor measures is aided by the analysis of simple artificial waveforms. Significance: We have developed and analysed a new method for analysing blood pressure data that uses all of the waveform data and hence can detect changes in the waveform shape that HRV methods cannot, which is confirmed with an example, and hence our method goes ‘beyond HRV’. PMID:29350622
NASA Astrophysics Data System (ADS)
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-01-01
By using a simple state feedback controller in a three-dimensional chaotic system, a novel 4D chaotic system is derived in this paper. The system state equations are composed of nine terms including only one constant term. Depending on the different values of the constant term, this new proposed system has a line of equilibrium points or no equilibrium points. Compared with other similar chaotic systems, the newly presented system owns more abundant and complicated dynamic properties. What interests us is the observation that if the value of the constant term of the system is nonzero, it has no equilibria, and therefore, the Shil'nikov theorem is not suitable to verify the existence of chaos for the lack of heteroclinic or homoclinic trajectory. However, one-wing, two-wing, three-wing, and four-wing hidden attractors can be obtained from this new system. In addition, various coexisting hidden attractors are obtained and the complex transient transition behaviors are also observed. More interestingly, the unusual and striking dynamic behavior of the coexistence of infinitely many hidden attractors is revealed by selecting the different initial values of the system, which means that extreme multistability arises. The rich and complex hidden dynamic characteristics of this system are investigated by phase portraits, bifurcation diagrams, Lyapunov exponents, and so on. Finally, the new system is implemented by an electronic circuit. A very good agreement is observed between the experimental results and the numerical simulations of the same system on the Matlab platform.
NASA Astrophysics Data System (ADS)
Cid, Antonella; Leon, Genly; Leyva, Yoelsy
2016-02-01
In this paper we investigate the evolution of a Jordan-Brans-Dicke scalar field, Φ, with a power-law potential in the presence of a second scalar field, phi, with an exponential potential, in both the Jordan and the Einstein frames. We present the relation of our model with the induced gravity model with power-law potential and the integrability of this kind of models is discussed when the quintessence field phi is massless, and has a small velocity. The fact that for some fine-tuned values of the parameters we may get some integrable cosmological models, makes our choice of potentials very interesting. We prove that in Jordan-Brans-Dicke theory, the de Sitter solution is not a natural attractor. Instead, we show that the attractor in the Jordan frame corresponds to an ``intermediate accelerated'' solution of the form a(t) simeq eα1 tp1, as t → ∞ where α1 > 0 and 0 < p1 < 1, for a wide range of parameters. Furthermore, when we work in the Einstein frame we get that the attractor is also an ``intermediate accelerated'' solution of the form fraktur a(fraktur t) simeq eα2 fraktur tp2 as fraktur t → ∞ where α2 > 0 and 0
Complex networks with large numbers of labelable attractors
NASA Astrophysics Data System (ADS)
Mi, Yuanyuan; Zhang, Lisheng; Huang, Xiaodong; Qian, Yu; Hu, Gang; Liao, Xuhong
2011-09-01
Information storage in many functional subsystems of the brain is regarded by theoretical neuroscientists to be related to attractors of neural networks. The number of attractors is large and each attractor can be temporarily represented or suppressed easily by corresponding external stimulus. In this letter, we discover that complex networks consisting of excitable nodes have similar fascinating properties of coexistence of large numbers of oscillatory attractors, most of which can be labeled with a few nodes. According to a simple labeling rule, different attractors can be identified and the number of labelable attractors can be predicted from the analysis of network topology. With the cues of the labeling association, these attractors can be conveniently retrieved or suppressed on purpose.
A local chaotic quasi-attractor in a kicked rotator
NASA Astrophysics Data System (ADS)
Jiang, Yu-Mei; Lu, Yun-Qing; Zhao, Jin-Gang; Wang, Xu-Ming; Chen, He-Sheng; He, Da-Ren
2002-03-01
Recently, Hu et al. reported a diffusion in a special kind of stochastic web observed in a kicked rotator described by a discontinuous but invertible two-dimensional area-preserving map^1. We modified the function form of the system so that the period of the kicking force becomes different in two parts of the space, and the conservative map becomes both discontinuous and noninvertible. It is found that when the ratio between both periods becomes smaller or larger than (but near to) 1, the chaotic diffusion in the web transfers to chaotic transients, which are attracted to the elliptic islands those existed inside the holes of the web earlier when the ratio equals 1. As soon as reaching the islands, the iteration follows the conservative laws exactly. Therefore we address these elliptic islands as "regular quasi-attractor"^2. When the ratio increases further and becomes far from 1, all the elliptic islands disappear and a local chaotic quasi-attractor appears instead. It attracts the iterations starting from most initial points in the phase space. This behavior may be considered as a kind of "confinement" of chaotic motion of a particle. ^1B. Hu et al., Phys.Rev.Lett.,82(1999)4224. ^2J. Wang et al., Phys.Rev.E, 64(2001)026202.
Arnold tongues in a billiard problem in nonlinear and nonequilibrium systems
NASA Astrophysics Data System (ADS)
Miyaji, Tomoyuki
2017-02-01
We study a billiard problem in nonlinear and nonequilibrium systems. This is motivated by the motions of a traveling spot in a reaction-diffusion system (RDS) in a rectangular domain. We consider a four-dimensional dynamical system, defined by ordinary differential equations. This was first derived by S.-I. Ei et al. (2006), based on a reduced system on the center manifold in a neighborhood of a pitchfork bifurcation of a stationary spot for the RDS. In contrast to the classical billiard problem, this defines a dynamical system that is dissipative rather than conservative, and has an attractor. According to previous numerical studies, the attractor of the system changes depending on parameters such as the aspect ratio of the domain. It may be periodic, quasi-periodic, or chaotic. In this paper, we elucidate that it results from parameters crossing Arnold tongues and that the organizing center is a Hopf-Hopf bifurcation of the trivial equilibrium.
Cross over of recurrence networks to random graphs and random geometric graphs
NASA Astrophysics Data System (ADS)
Jacob, Rinku; Harikrishnan, K. P.; Misra, R.; Ambika, G.
2017-02-01
Recurrence networks are complex networks constructed from the time series of chaotic dynamical systems where the connection between two nodes is limited by the recurrence threshold. This condition makes the topology of every recurrence network unique with the degree distribution determined by the probability density variations of the representative attractor from which it is constructed. Here we numerically investigate the properties of recurrence networks from standard low-dimensional chaotic attractors using some basic network measures and show how the recurrence networks are different from random and scale-free networks. In particular, we show that all recurrence networks can cross over to random geometric graphs by adding sufficient amount of noise to the time series and into the classical random graphs by increasing the range of interaction to the system size. We also highlight the effectiveness of a combined plot of characteristic path length and clustering coefficient in capturing the small changes in the network characteristics.
Chaos in the sunspot cycle - Analysis and prediction
NASA Technical Reports Server (NTRS)
Mundt, Michael D.; Maguire, W. Bruce, II; Chase, Robert R. P.
1991-01-01
The variability of solar activity over long time scales, given semiquantitatively by measurements of sunspot numbers, is examined as a nonlinear dynamical system. First, a discussion of the data set used and the techniques utilized to reduce the noise and capture the long-term dynamics inherent in the data is presented. Subsequently, an attractor is reconstructed from the data set using the method of time delays. The reconstructed attractor is then used to determine both the dimension of the underlying system and also the largest Lyapunov exponent, which together indicate that the sunspot cycle is indeed chaotic and also low dimensional. In addition, recent techniques of exploiting chaotic dynamics to provide accurate, short-term predictions are utilized in order to improve upon current forecasting methods and also to place theoretical limits on predictability extent. The results are compared to chaotic solar-dynamo models as a possible physically motivated source of this chaotic behavior.
Nowicki, Dimitri; Siegelmann, Hava
2010-01-01
This paper introduces a new model of associative memory, capable of both binary and continuous-valued inputs. Based on kernel theory, the memory model is on one hand a generalization of Radial Basis Function networks and, on the other, is in feature space, analogous to a Hopfield network. Attractors can be added, deleted, and updated on-line simply, without harming existing memories, and the number of attractors is independent of input dimension. Input vectors do not have to adhere to a fixed or bounded dimensionality; they can increase and decrease it without relearning previous memories. A memory consolidation process enables the network to generalize concepts and form clusters of input data, which outperforms many unsupervised clustering techniques; this process is demonstrated on handwritten digits from MNIST. Another process, reminiscent of memory reconsolidation is introduced, in which existing memories are refreshed and tuned with new inputs; this process is demonstrated on series of morphed faces. PMID:20552013
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Fish attractor, spawning... OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be constructed...
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...
18 CFR 1304.411 - Fish attractor, spawning, and habitat structures.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Fish attractor... STRUCTURES AND OTHER ALTERATIONS Miscellaneous § 1304.411 Fish attractor, spawning, and habitat structures. Fish attractors constitute potential obstructions and require TVA approval. (a) Fish attractors may be...
Kooi, Bob W; Venturino, Ezio
2016-04-01
In this paper we analyse a predator-prey model where the prey population shows group defense and the prey individuals are affected by a transmissible disease. The resulting model is of the Rosenzweig-MacArthur predator-prey type with an SI (susceptible-infected) disease in the prey. Modeling prey group defense leads to a square root dependence in the Holling type II functional for the predator-prey interaction term. The system dynamics is investigated using simulations, classical existence and asymptotic stability analysis and numerical bifurcation analysis. A number of bifurcations, such as transcritical and Hopf bifurcations which occur commonly in predator-prey systems will be found. Because of the square root interaction term there is non-uniqueness of the solution and a singularity where the prey population goes extinct in a finite time. This results in a collapse initiated by extinction of the healthy or susceptible prey and thereafter the other population(s). When also a positive attractor exists this leads to bistability similar to what is found in predator-prey models with a strong Allee effect. For the two-dimensional disease-free (i.e. the purely demographic) system the region in the parameter space where bistability occurs is marked by a global bifurcation. At this bifurcation a heteroclinic connection exists between saddle prey-only equilibrium points where a stable limit cycle together with its basin of attraction, are destructed. In a companion paper (Gimmelli et al., 2015) the same model was formulated and analysed in which the disease was not in the prey but in the predator. There we also observed this phenomenon. Here we extend its analysis using a phase portrait analysis. For the three-dimensional ecoepidemic predator-prey system where the prey is affected by the disease, also tangent bifurcations including a cusp bifurcation and a torus bifurcation of limit cycles occur. This leads to new complex dynamics. Continuation by varying one parameter of the emerging quasi-periodic dynamics from a torus bifurcation can lead to its destruction by a collision with a saddle-cycle. Under other conditions the quasi-periodic dynamics changes gradually in a trajectory that lands on a boundary point where the prey go extinct in finite time after which a total collapse of the three-dimensional system occurs. Copyright © 2016 Elsevier Inc. All rights reserved.
Li, X Y; Yang, G W; Zheng, D S; Guo, W S; Hung, W N N
2015-04-28
Genetic regulatory networks are the key to understanding biochemical systems. One condition of the genetic regulatory network under different living environments can be modeled as a synchronous Boolean network. The attractors of these Boolean networks will help biologists to identify determinant and stable factors. Existing methods identify attractors based on a random initial state or the entire state simultaneously. They cannot identify the fixed length attractors directly. The complexity of including time increases exponentially with respect to the attractor number and length of attractors. This study used the bounded model checking to quickly locate fixed length attractors. Based on the SAT solver, we propose a new algorithm for efficiently computing the fixed length attractors, which is more suitable for large Boolean networks and numerous attractors' networks. After comparison using the tool BooleNet, empirical experiments involving biochemical systems demonstrated the feasibility and efficiency of our approach.
Hidden attractors in dynamical systems
NASA Astrophysics Data System (ADS)
Dudkowski, Dawid; Jafari, Sajad; Kapitaniak, Tomasz; Kuznetsov, Nikolay V.; Leonov, Gennady A.; Prasad, Awadhesh
2016-06-01
Complex dynamical systems, ranging from the climate, ecosystems to financial markets and engineering applications typically have many coexisting attractors. This property of the system is called multistability. The final state, i.e., the attractor on which the multistable system evolves strongly depends on the initial conditions. Additionally, such systems are very sensitive towards noise and system parameters so a sudden shift to a contrasting regime may occur. To understand the dynamics of these systems one has to identify all possible attractors and their basins of attraction. Recently, it has been shown that multistability is connected with the occurrence of unpredictable attractors which have been called hidden attractors. The basins of attraction of the hidden attractors do not touch unstable fixed points (if exists) and are located far away from such points. Numerical localization of the hidden attractors is not straightforward since there are no transient processes leading to them from the neighborhoods of unstable fixed points and one has to use the special analytical-numerical procedures. From the viewpoint of applications, the identification of hidden attractors is the major issue. The knowledge about the emergence and properties of hidden attractors can increase the likelihood that the system will remain on the most desirable attractor and reduce the risk of the sudden jump to undesired behavior. We review the most representative examples of hidden attractors, discuss their theoretical properties and experimental observations. We also describe numerical methods which allow identification of the hidden attractors.
Attractors for discrete periodic dynamical systems
John E. Franke; James F. Selgrade
2003-01-01
A mathematical framework is introduced to study attractors of discrete, nonautonomous dynamical systems which depend periodically on time. A structure theorem for such attractors is established which says that the attractor of a time-periodic dynamical system is the unin of attractors of appropriate autonomous maps. If the nonautonomous system is a perturbation of an...
Phenotypic Plasticity and Cell Fate Decisions in Cancer: Insights from Dynamical Systems Theory.
Jia, Dongya; Jolly, Mohit Kumar; Kulkarni, Prakash; Levine, Herbert
2017-06-22
Waddington's epigenetic landscape, a famous metaphor in developmental biology, depicts how a stem cell progresses from an undifferentiated phenotype to a differentiated one. The concept of "landscape" in the context of dynamical systems theory represents a high-dimensional space, in which each cell phenotype is considered as an "attractor" that is determined by interactions between multiple molecular players, and is buffered against environmental fluctuations. In addition, biological noise is thought to play an important role during these cell-fate decisions and in fact controls transitions between different phenotypes. Here, we discuss the phenotypic transitions in cancer from a dynamical systems perspective and invoke the concept of "cancer attractors"-hidden stable states of the underlying regulatory network that are not occupied by normal cells. Phenotypic transitions in cancer occur at varying levels depending on the context. Using epithelial-to-mesenchymal transition (EMT), cancer stem-like properties, metabolic reprogramming and the emergence of therapy resistance as examples, we illustrate how phenotypic plasticity in cancer cells enables them to acquire hybrid phenotypes (such as hybrid epithelial/mesenchymal and hybrid metabolic phenotypes) that tend to be more aggressive and notoriously resilient to therapies such as chemotherapy and androgen-deprivation therapy. Furthermore, we highlight multiple factors that may give rise to phenotypic plasticity in cancer cells, such as (a) multi-stability or oscillatory behaviors governed by underlying regulatory networks involved in cell-fate decisions in cancer cells, and (b) network rewiring due to conformational dynamics of intrinsically disordered proteins (IDPs) that are highly enriched in cancer cells. We conclude by discussing why a therapeutic approach that promotes "recanalization", i.e., the exit from "cancer attractors" and re-entry into "normal attractors", is more likely to succeed rather than a conventional approach that targets individual molecules/pathways.
Approximating high-dimensional dynamics by barycentric coordinates with linear programming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirata, Yoshito, E-mail: yoshito@sat.t.u-tokyo.ac.jp; Aihara, Kazuyuki; Suzuki, Hideyuki
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics ofmore » the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.« less
Approximating high-dimensional dynamics by barycentric coordinates with linear programming.
Hirata, Yoshito; Shiro, Masanori; Takahashi, Nozomu; Aihara, Kazuyuki; Suzuki, Hideyuki; Mas, Paloma
2015-01-01
The increasing development of novel methods and techniques facilitates the measurement of high-dimensional time series but challenges our ability for accurate modeling and predictions. The use of a general mathematical model requires the inclusion of many parameters, which are difficult to be fitted for relatively short high-dimensional time series observed. Here, we propose a novel method to accurately model a high-dimensional time series. Our method extends the barycentric coordinates to high-dimensional phase space by employing linear programming, and allowing the approximation errors explicitly. The extension helps to produce free-running time-series predictions that preserve typical topological, dynamical, and/or geometric characteristics of the underlying attractors more accurately than the radial basis function model that is widely used. The method can be broadly applied, from helping to improve weather forecasting, to creating electronic instruments that sound more natural, and to comprehensively understanding complex biological data.
NASA Astrophysics Data System (ADS)
Oberst, S.; Lai, J. C. S.
2011-02-01
Brake squeal has become an increasing concern to the automotive industry because of warranty costs and the requirement for continued interior vehicle noise reduction. Most research has been directed to either analytical and experimental studies of brake squeal mechanisms or the prediction of brake squeal propensity using finite element methods. By comparison, there is a lack of systematic analysis of brake squeal data obtained from a noise dynamometer. It is well known that brake squeal is a nonlinear transient phenomenon and a number of studies using analytical and experimental models of brake systems (e.g., pin-on-disc) indicate that it could be treated as a chaotic phenomenon. Data obtained from a full brake system on a noise dynamometer were examined with nonlinear analysis techniques. The application of recurrence plots reveals chaotic structures even in noisy data from the squealing events. By separating the time series into different regimes, lower dimensional attractors are isolated and quantified by dynamic invariants such as correlation dimension estimates or Lyapunov exponents. Further analysis of the recurrence plot of squealing events by means of recurrence quantification analysis measures reveals different regimes of laminar and random behaviour, periodicity and chaos-forming recurrent transitions. These results help to classify brake squeal mechanisms and to enhance understanding of friction-related noise phenomena.
Segundo, J P; Sugihara, G; Dixon, P; Stiber, M; Bersier, L F
1998-12-01
This communication describes the new information that may be obtained by applying nonlinear analytical techniques to neurobiological time-series. Specifically, we consider the sequence of interspike intervals Ti (the "timing") of trains recorded from synaptically inhibited crayfish pacemaker neurons. As reported earlier, different postsynaptic spike train forms (sets of timings with shared properties) are generated by varying the average rate and/or pattern (implying interval dispersions and sequences) of presynaptic spike trains. When the presynaptic train is Poisson (independent exponentially distributed intervals), the form is "Poisson-driven" (unperturbed and lengthened intervals succeed each other irregularly). When presynaptic trains are pacemaker (intervals practically equal), forms are either "p:q locked" (intervals repeat periodically), "intermittent" (mostly almost locked but disrupted irregularly), "phase walk throughs" (intermittencies with briefer regular portions), or "messy" (difficult to predict or describe succinctly). Messy trains are either "erratic" (some intervals natural and others lengthened irregularly) or "stammerings" (intervals are integral multiples of presynaptic intervals). The individual spike train forms were analysed using attractor reconstruction methods based on the lagged coordinates provided by successive intervals from the time-series Ti. Numerous models were evaluated in terms of their predictive performance by a trial-and-error procedure: the most successful model was taken as best reflecting the true nature of the system's attractor. Each form was characterized in terms of its dimensionality, nonlinearity and predictability. (1) The dimensionality of the underlying dynamical attractor was estimated by the minimum number of variables (coordinates Ti) required to model acceptably the system's dynamics, i.e. by the system's degrees of freedom. Each model tested was based on a different number of Ti; the smallest number whose predictions were judged successful provided the best integer approximation of the attractor's true dimension (not necessarily an integer). Dimensionalities from three to five provided acceptable fits. (2) The degree of nonlinearity was estimated by: (i) comparing the correlations between experimental results and data from linear and nonlinear models, and (ii) tuning model nonlinearity via a distance-weighting function and identifying the either local or global neighborhood size. Lockings were compatible with linear models and stammerings were marginal; nonlinear models were best for Poisson-driven, intermittent and erratic forms. (3) Finally, prediction accuracy was plotted against increasingly long sequences of intervals forecast: the accuracies for Poisson-driven, locked and stammering forms were invariant, revealing irregularities due to uncorrelated noise, but those of intermittent and messy erratic forms decayed rapidly, indicating an underlying deterministic process. The excellent reconstructions possible for messy erratic and for some intermittent forms are especially significant because of their relatively low dimensionality (around 4), high degree of nonlinearity and prediction decay with time. This is characteristic of chaotic systems, and provides evidence that nonlinear couplings between relatively few variables are the major source of the apparent complexity seen in these cases. This demonstration of different dimensions, degrees of nonlinearity and predictabilities provides rigorous support for the categorization of different synaptically driven discharge forms proposed earlier on the basis of more heuristic criteria. This has significant implications. (1) It demonstrates that heterogeneous postsynaptic forms can indeed be induced by manipulating a few presynaptic variables. (2) Each presynaptic timing induces a form with characteristic dimensionality, thus breaking up the preparation into subsystems such that the physical variables in each operate as one
Modelling the aggregation process of cellular slime mold by the chemical attraction.
Atangana, Abdon; Vermeulen, P D
2014-01-01
We put into exercise a comparatively innovative analytical modus operandi, the homotopy decomposition method (HDM), for solving a system of nonlinear partial differential equations arising in an attractor one-dimensional Keller-Segel dynamics system. Numerical solutions are given and some properties show evidence of biologically practical reliance on the parameter values. The reliability of HDM and the reduction in computations give HDM a wider applicability.
Using machine learning to replicate chaotic attractors and calculate Lyapunov exponents from data
NASA Astrophysics Data System (ADS)
Pathak, Jaideep; Lu, Zhixin; Hunt, Brian R.; Girvan, Michelle; Ott, Edward
2017-12-01
We use recent advances in the machine learning area known as "reservoir computing" to formulate a method for model-free estimation from data of the Lyapunov exponents of a chaotic process. The technique uses a limited time series of measurements as input to a high-dimensional dynamical system called a "reservoir." After the reservoir's response to the data is recorded, linear regression is used to learn a large set of parameters, called the "output weights." The learned output weights are then used to form a modified autonomous reservoir designed to be capable of producing an arbitrarily long time series whose ergodic properties approximate those of the input signal. When successful, we say that the autonomous reservoir reproduces the attractor's "climate." Since the reservoir equations and output weights are known, we can compute the derivatives needed to determine the Lyapunov exponents of the autonomous reservoir, which we then use as estimates of the Lyapunov exponents for the original input generating system. We illustrate the effectiveness of our technique with two examples, the Lorenz system and the Kuramoto-Sivashinsky (KS) equation. In the case of the KS equation, we note that the high dimensional nature of the system and the large number of Lyapunov exponents yield a challenging test of our method, which we find the method successfully passes.
Uenohara, Seiji; Mitsui, Takahito; Hirata, Yoshito; Morie, Takashi; Horio, Yoshihiko; Aihara, Kazuyuki
2013-06-01
We experimentally study strange nonchaotic attractors (SNAs) and chaotic attractors by using a nonlinear integrated circuit driven by a quasiperiodic input signal. An SNA is a geometrically strange attractor for which typical orbits have nonpositive Lyapunov exponents. It is a difficult problem to distinguish between SNAs and chaotic attractors experimentally. If a system has an SNA as a unique attractor, the system produces an identical response to a repeated quasiperiodic signal, regardless of the initial conditions, after a certain transient time. Such reproducibility of response outputs is called consistency. On the other hand, if the attractor is chaotic, the consistency is low owing to the sensitive dependence on initial conditions. In this paper, we analyze the experimental data for distinguishing between SNAs and chaotic attractors on the basis of the consistency.
Kataoka; Tsutahara; Akuzawa
2000-02-14
We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.
Correlation Dimension Estimates of Global and Local Temperature Data.
NASA Astrophysics Data System (ADS)
Wang, Qiang
1995-11-01
The author has attempted to detect the presence of low-dimensional deterministic chaos in temperature data by estimating the correlation dimension with the Hill estimate that has been recently developed by Mikosch and Wang. There is no convincing evidence of low dimensionality with either global dataset (Southern Hemisphere monthly average temperatures from 1858 to 1984) or local temperature dataset (daily minimums at Auckland, New Zealand). Any apparent reduction in the dimension estimates appears to be due large1y, if not entirely, to effects of statistical bias, but neither is it a purely random stochastic process. The dimension of the climatic attractor may be significantly larger than 10.
NASA Astrophysics Data System (ADS)
Guzzo, H.; Hernández, I.; Sánchez-Valenzuela, O. A.
2014-09-01
Finite dimensional semisimple real Lie superalgebras are described via finite dimensional semisimple complex Lie superalgebras. As an application of these results, finite dimensional real Lie superalgebras mathfrak {m}=mathfrak {m}_0 oplus mathfrak {m}_1 for which mathfrak {m}_0 is a simple Lie algebra are classified up to isomorphism.
Finite-dimensional integrable systems: A collection of research problems
NASA Astrophysics Data System (ADS)
Bolsinov, A. V.; Izosimov, A. M.; Tsonev, D. M.
2017-05-01
This article suggests a series of problems related to various algebraic and geometric aspects of integrability. They reflect some recent developments in the theory of finite-dimensional integrable systems such as bi-Poisson linear algebra, Jordan-Kronecker invariants of finite dimensional Lie algebras, the interplay between singularities of Lagrangian fibrations and compatible Poisson brackets, and new techniques in projective geometry.
A Thin Codimension-One Decomposition of the Hilbert Cube
ERIC Educational Resources Information Center
Phon-On, Aniruth
2010-01-01
For cell-like upper semicontinuous (usc) decompositions "G" of finite dimensional manifolds "M", the decomposition space "M/G" turns out to be an ANR provided "M/G" is finite dimensional ([Dav07], page 129). Furthermore, if "M/G" is finite dimensional and has the Disjoint Disks Property (DDP), then "M/G" is homeomorphic to "M" ([Dav07], page 181).…
Gong, Lu-Lu; Zhu, Jing; Ding, Zu-Quan; Li, Guo-Qiang; Wang, Li-Ming; Yan, Bo-Yong
2008-04-01
To develop a method to construct a three-dimensional finite element model of the dentulous mandibular body of a normal person. A series of pictures with the interval of 0.1 mm were taken by CT scanning. After extracting the coordinates of key points of some pictures by the procedure, we used a C program to process the useful data, and constructed a platform of the three-dimensional finite element model of the dentulous mandibular body with the Ansys software for finite element analysis. The experimental results showed that the platform of the three-dimensional finite element model of the dentulous mandibular body was more accurate and applicable. The exact three-dimensional shape of model was well constructed, and each part of this model, such as one single tooth, can be deleted, which can be used to emulate various tooth-loss clinical cases. The three-dimensional finite element model is constructed with life-like shapes of dental cusps. Each part of this model can be easily removed. In conclusion, this experiment provides a good platform of biomechanical analysis on various tooth-loss clinical cases.
d=4 attractors, effective horizon radius, and fake supergravity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrara, Sergio; INFN-Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati; Gnecchi, Alessandra
2008-09-15
We consider extremal black hole attractors [both Bogomol'nyi-Prasad-Sommerfield (BPS) and non-BPS] for N=3 and N=5 supergravity in d=4 space-time dimensions. Attractors for matter-coupled N=3 theory are similar to attractors in N=2 supergravity minimally coupled to Abelian vector multiplets. On the other hand, N=5 attractors are similar to attractors in N=4 pure supergravity, and in such theories only (1/N)-BPS nondegenerate solutions exist. All the above-mentioned theories have a simple interpretation in the first order (fake supergravity) formalism. Furthermore, such theories do not have a d=5 uplift. Finally we comment on the duality relations among the attractor solutions of N{>=}2 supergravities sharingmore » the same full bosonic sector.« less
Two-dimensional heteroclinic attractor in the generalized Lotka-Volterra system
NASA Astrophysics Data System (ADS)
Afraimovich, Valentin S.; Moses, Gregory; Young, Todd
2016-05-01
We study a simple dynamical model exhibiting sequential dynamics. We show that in this model there exist sets of parameter values for which a cyclic chain of saddle equilibria, O k , k=1,\\ldots,p , have two-dimensional unstable manifolds that contain orbits connecting each O k to the next two equilibrium points O k+1 and O k+2 in the chain ({{O}p+1}={{O}1} ). We show that the union of these equilibria and their unstable manifolds form a two-dimensional surface with a boundary that is homeomorphic to a cylinder if p is even and a Möbius strip if p is odd. If, further, each equilibrium in the chain satisfies a condition called ‘dissipativity’, then this surface is asymptotically stable.
Generalized correlation integral vectors: A distance concept for chaotic dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haario, Heikki, E-mail: heikki.haario@lut.fi; Kalachev, Leonid, E-mail: KalachevL@mso.umt.edu; Hakkarainen, Janne
2015-06-15
Several concepts of fractal dimension have been developed to characterise properties of attractors of chaotic dynamical systems. Numerical approximations of them must be calculated by finite samples of simulated trajectories. In principle, the quantities should not depend on the choice of the trajectory, as long as it provides properly distributed samples of the underlying attractor. In practice, however, the trajectories are sensitive with respect to varying initial values, small changes of the model parameters, to the choice of a solver, numeric tolerances, etc. The purpose of this paper is to present a statistically sound approach to quantify this variability. Wemore » modify the concept of correlation integral to produce a vector that summarises the variability at all selected scales. The distribution of this stochastic vector can be estimated, and it provides a statistical distance concept between trajectories. Here, we demonstrate the use of the distance for the purpose of estimating model parameters of a chaotic dynamic model. The methodology is illustrated using computational examples for the Lorenz 63 and Lorenz 95 systems, together with a framework for Markov chain Monte Carlo sampling to produce posterior distributions of model parameters.« less
Oscillatory attractors: a new cosmological phase
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bains, Jasdeep S.; Hertzberg, Mark P.; Wilczek, Frank, E-mail: bains@physics.harvard.edu, E-mail: mark.hertzberg@tufts.edu, E-mail: wilczek@mit.edu
2017-05-01
In expanding FRW spacetimes, it is usually the case that homogeneous scalar fields redshift and their amplitudes approach limiting values: Hubble friction usually ensures that the field relaxes to its minimum energy configuration, which is usually a static configuration. Here we discover a class of relativistic scalar field models in which the attractor behavior is the field oscillating indefinitely, with finite amplitude, in an expanding FRW spacetime, despite the presence of Hubble friction. This is an example of spontaneous breaking of time translation symmetry. We find that the effective equation of state of the field has average value ( wmore » )=−1, implying that the field itself could drive an inflationary or dark energy dominated phase. This behavior is reminiscent of ghost condensate models, but in the new models, unlike in the ghost condensate models, the energy-momentum tensor is time dependent, so that these new models embody a more definitive breaking of time translation symmetry. We explore (quantum) fluctuations around the homogeneous background solution, and find that low k -modes can be stable, while high k -modes are typically unstable. We discuss possible interpretations and implications of that instability.« less
The surface-induced spatial-temporal structures in confined binary alloys
NASA Astrophysics Data System (ADS)
Krasnyuk, Igor B.; Taranets, Roman M.; Chugunova, Marina
2014-12-01
This paper examines surface-induced ordering in confined binary alloys. The hyperbolic initial boundary value problem (IBVP) is used to describe a scenario of spatiotemporal ordering in a disordered phase for concentration of one component of binary alloy and order parameter with non-linear dynamic boundary conditions. This hyperbolic model consists of two coupled second order differential equations for order parameter and concentration. It also takes into account effects of the “memory” on the ordering of atoms and their densities in the alloy. The boundary conditions characterize surface velocities of order parameter and concentration changing which is due to surface (super)cooling on walls confining the binary alloy. It is shown that for large times there are three classes of dynamic non-linear boundary conditions which lead to three different types of attractor’s elements for the IBVP. Namely, the elements of attractor are the limit periodic simple shock waves with fronts of “discontinuities” Γ. If Γ is finite, then the attractor contains spatiotemporal functions of relaxation type. If Γ is infinite and countable then we observe the functions of pre-turbulent type. If Γ is infinite and uncountable then we obtain the functions of turbulent type.
NASA Astrophysics Data System (ADS)
Premraj, D.; Suresh, K.; Palanivel, J.; Thamilmaran, K.
2017-09-01
A periodically forced series LCR circuit with Chua's diode as a nonlinear element exhibits slow passage through Hopf bifurcation. This slow passage leads to a delay in the Hopf bifurcation. The delay in this bifurcation is a unique quantity and it can be predicted using various numerical analysis. We find that when an additional periodic force is added to the system, the delay in bifurcation becomes chaotic which leads to an unpredictability in bifurcation delay. Further, we study the bifurcation of the periodic delay to chaotic delay in the slow passage effect through strange nonchaotic delay. We also report the occurrence of strange nonchaotic dynamics while varying the parameter of the additional force included in the system. We observe that the system exhibits a hitherto unknown dynamical transition to a strange nonchaotic attractor. With the help of Lyapunov exponent, we explain the new transition to strange nonchaotic attractor and its mechanism is studied by making use of rational approximation theory. The birth of SNA has also been confirmed numerically, using Poincaré maps, phase sensitivity exponent, the distribution of finite-time Lyapunov exponents and singular continuous spectrum analysis.
NASA Astrophysics Data System (ADS)
Lai, Qiang; Zhao, Xiao-Wen; Rajagopal, Karthikeyan; Xu, Guanghui; Akgul, Akif; Guleryuz, Emre
2018-01-01
This paper considers the generation of multi-butterfly chaotic attractors from a generalised Sprott C system with multiple non-hyperbolic equilibria. The system is constructed by introducing an additional variable whose derivative has a switching function to the Sprott C system. It is numerically found that the system creates two-, three-, four-, five-butterfly attractors and any other multi-butterfly attractors. First, the dynamic analyses of multi-butterfly chaotic attractors are presented. Secondly, the field programmable gate array implementation, electronic circuit realisation and random number generator are done with the multi-butterfly chaotic attractors.
NASA Astrophysics Data System (ADS)
Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Gundara, G.; Mada Sanjaya, W. S.; Subiyanto
2018-03-01
A 3-D new chaotic attractor with two quadratic nonlinearities is proposed in this paper. The dynamical properties of the new chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new chaotic system has three unstable equilibrium points. The new chaotic attractor is dissipative in nature. As an engineering application, adaptive synchronization of identical new chaotic attractors is designed via nonlinear control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic attractor model.
Applying Chaos Theory to Careers: Attraction and Attractors
ERIC Educational Resources Information Center
Pryor, Robert G. L.; Bright, Jim E. H.
2007-01-01
This article presents the Chaos Theory of Careers with particular reference to the concepts of "attraction" and "attractors". Attractors are defined in terms of characteristic trajectories, feedback mechanisms, end states, ordered boundedness, reality visions and equilibrium and fluctuation. The identified types of attractors (point, pendulum,…
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Phase-space finite elements in a least-squares solution of the transport equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drumm, C.; Fan, W.; Pautz, S.
2013-07-01
The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less
Electric fields yield chaos in microflows
Posner, Jonathan D.; Pérez, Carlos L.; Santiago, Juan G.
2012-01-01
We present an investigation of chaotic dynamics of a low Reynolds number electrokinetic flow. Electrokinetic flows arise due to couplings of electric fields and electric double layers. In these flows, applied (steady) electric fields can couple with ionic conductivity gradients outside electric double layers to produce flow instabilities. The threshold of these instabilities is controlled by an electric Rayleigh number, Rae. As Rae increases monotonically, we show here flow dynamics can transition from steady state to a time-dependent periodic state and then to an aperiodic, chaotic state. Interestingly, further monotonic increase of Rae shows a transition back to a well-ordered state, followed by a second transition to a chaotic state. Temporal power spectra and time-delay phase maps of low dimensional attractors graphically depict the sequence between periodic and chaotic states. To our knowledge, this is a unique report of a low Reynolds number flow with such a sequence of periodic-to-aperiodic transitions. Also unique is a report of strange attractors triggered and sustained through electric fluid body forces. PMID:22908251
Yau, Stephen S.-T.
1983-01-01
A natural mapping from the set of complex analytic isolated hypersurface singularities to the set of finite dimensional Lie algebras is first defined. It is proven that the image under this natural mapping is contained in the set of solvable Lie algebras. This approach gives rise to a continuous inequivalent family of finite dimensional representations of a solvable Lie algebra. PMID:16593401
Tang, Sanyi; Cheke, Robert A
2005-03-01
A state-dependent impulsive model is proposed for integrated pest management (IPM). IPM involves combining biological, mechanical, and chemical tactics to reduce pest numbers to tolerable levels after a pest population has reached its economic threshold (ET). The complete expression of an orbitally asymptotically stable periodic solution to the model with a maximum value no larger than the given ET is presented, the existence of which implies that pests can be controlled at or below their ET levels. We also prove that there is no periodic solution with order larger than or equal to three, except for one special case, by using the properties of the LambertW function and Poincare map. Moreover, we show that the existence of an order two periodic solution implies the existence of an order one periodic solution. Various positive invariant sets and attractors of this impulsive semi-dynamical system are described and discussed. In particular, several horseshoe-like attractors, whose interiors can simultaneously contain stable order 1 periodic solutions and order 2 periodic solutions, are found and the interior structure of the horseshoe-like attractors is discussed. Finally, the largest invariant set and the sufficient conditions which guarantee the global orbital and asymptotic stability of the order 1 periodic solution in the meaningful domain for the system are given using the Lyapunov function. Our results show that, in theory, a pest can be controlled such that its population size is no larger than its ET by applying effects impulsively once, twice, or at most, a finite number of times, or according to a periodic regime. Moreover, our theoretical work suggests how IPM strategies could be used to alter the levels of the ET in the farmers' favour.
Applications of an exponential finite difference technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.; Keith, T.G. Jr.
1988-07-01
An exponential finite difference scheme first presented by Bhattacharya for one dimensional unsteady heat conduction problems in Cartesian coordinates was extended. The finite difference algorithm developed was used to solve the unsteady diffusion equation in one dimensional cylindrical coordinates and was applied to two and three dimensional conduction problems in Cartesian coordinates. Heat conduction involving variable thermal conductivity was also investigated. The method was used to solve nonlinear partial differential equations in one and two dimensional Cartesian coordinates. Predicted results are compared to exact solutions where available or to results obtained by other numerical methods.
Non-Equlibrium Driven Dynamics of Continuous Attractors in Place Cell Networks
NASA Astrophysics Data System (ADS)
Zhong, Weishun; Kim, Hyun Jin; Schwab, David; Murugan, Arvind
Attractors have found much use in neuroscience as a means of information processing and decision making. Examples include associative memory with point and continuous attractors, spatial navigation and planning using place cell networks, dynamic pattern recognition among others. The functional use of such attractors requires the action of spatially and temporally varying external driving signals and yet, most theoretical work on attractors has been in the limit of small or no drive. We take steps towards understanding the non-equilibrium driven dynamics of continuous attractors in place cell networks. We establish an `equivalence principle' that relates fluctuations under a time-dependent external force to equilibrium fluctuations in a `co-moving' frame with only static forces, much like in Newtonian physics. Consequently, we analytically derive a network's capacity to encode multiple attractors as a function of the driving signal size and rate of change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffries, C.; Perez, J.
For a driven nonlinear oscillator we report direct evidence for three cases of an interior crisis of the attractor, as conjectured by Grebogi, Ott, and Yorke. These crises are sudden and discontinuous changes in the attractor, observed directly from bifurcation diagrams and attractor diagrams (Poincare sections) in real time. The crises arise from intersection of an unstable orbit with the chaotic attractor.
Exact Recovery of Chaotic Systems from Highly Corrupted Data
2016-08-01
dimension to reconstruct a state space which preserves the topological properties of the original system. In [CM87, RS92], the authors use the singular...in high dimensional nonlinear functional spaces [Spr94, SL00, LCC04]. In this work, we bring together connections between compressed sensing, splitting... compact , connected attractor Λ and the flow admits a unique so-called “physical" measure µ with supp(µ) = Λ. An invariant probability measure µ for a flow
NASA Astrophysics Data System (ADS)
Roach, James; Sander, Leonard; Zochowski, Michal
Auto-associative memory is the ability to retrieve a pattern from a small fraction of the pattern and is an important function of neural networks. Within this context, memories that are stored within the synaptic strengths of networks act as dynamical attractors for network firing patterns. In networks with many encoded memories, some attractors will be stronger than others. This presents the problem of how networks switch between attractors depending on the situation. We suggest that regulation of neuronal spike-frequency adaptation (SFA) provides a universal mechanism for network-wide attractor selectivity. Here we demonstrate in a Hopfield type attractor network that neurons minimal SFA will reliably activate in the pattern corresponding to a local attractor and that a moderate increase in SFA leads to the network to converge to the strongest attractor state. Furthermore, we show that on long time scales SFA allows for temporal sequences of activation to emerge. Finally, using a model of cholinergic modulation within the cortex we argue that dynamic regulation of attractor preference by SFA could be critical for the role of acetylcholine in attention or for arousal states in general. This work was supported by: NSF Graduate Research Fellowship Program under Grant No. DGE 1256260 (JPR), NSF CMMI 1029388 (MRZ) and NSF PoLS 1058034 (MRZ & LMS).
Yang, Suixing; Feng, Jing; Zhang, Zuo; Qu, Aili; Gong, Miao; Tang, Jie; Fan, Junheng; Li, Songqing; Zhao, Yanling
2013-04-01
To construct a three-dimensional finite element model of the upper airway and adjacent structure of an obstructive sleep apnea hypopnea syndrome (OSAHS) patient for biomechanical analysis. And to study the influence of glossopharyngeum of an OSAHS patient with three-dimensional finite element model during titrated mandible advancement. DICOM format image information of an OSAHS patient's upper airway was obtained by thin-section CT scanning and digital image processing were utilized to construct a three-dimensional finite element model by Mimics 10.0, Imageware 10.0 and Ansys software. The changes and the law of glossopharyngeum were observed by biomechanics and morphology after loading with titrated mandible advancement. A three-dimensional finite element model of the adjacent upper airway structure of OSAHS was established successfully. After loading, the transverse diameter of epiglottis tip of glossopharyngeum increased significantly, although the sagittal diameter decreased correspondingly. The principal stress was mainly distributed in anterior wall of the upper airway. The location of principal stress concentration did not change significantly with the increasing of distance. The stress of glossopharyngeum increased during titrated mandible advancement. A more precise three-dimensional finite model of upper airway and adjacent structure of an OSAHS patient is established and improved efficiency by Mimics, Imageware and Ansys software. The glossopharyngeum of finite element model of OSAHS is analyzed by titrated mandible advancement and can effectively show the relationship between mandible advancement and the glossopharyngeum.
Lee, Jonathan K.; Froehlich, David C.
1987-01-01
Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.
Ikeda-like chaos on a dynamically filtered supercontinuum light source
NASA Astrophysics Data System (ADS)
Chembo, Yanne K.; Jacquot, Maxime; Dudley, John M.; Larger, Laurent
2016-08-01
We demonstrate temporal chaos in a color-selection mechanism from the visible spectrum of a supercontinuum light source. The color-selection mechanism is governed by an acousto-optoelectronic nonlinear delayed-feedback scheme modeled by an Ikeda-like equation. Initially motivated by the design of a broad audience live demonstrator in the framework of the International Year of Light 2015, the setup also provides a different experimental tool to investigate the dynamical complexity of delayed-feedback dynamics. Deterministic hyperchaos is analyzed here from the experimental time series. A projection method identifies the delay parameter, for which the chaotic strange attractor originally evolving in an infinite-dimensional phase space can be revealed in a two-dimensional subspace.
Silk, Daniel; Kirk, Paul D W; Barnes, Chris P; Toni, Tina; Rose, Anna; Moon, Simon; Dallman, Margaret J; Stumpf, Michael P H
2011-10-04
Chaos and oscillations continue to capture the interest of both the scientific and public domains. Yet despite the importance of these qualitative features, most attempts at constructing mathematical models of such phenomena have taken an indirect, quantitative approach, for example, by fitting models to a finite number of data points. Here we develop a qualitative inference framework that allows us to both reverse-engineer and design systems exhibiting these and other dynamical behaviours by directly specifying the desired characteristics of the underlying dynamical attractor. This change in perspective from quantitative to qualitative dynamics, provides fundamental and new insights into the properties of dynamical systems.
Nonlinear Conservation Laws and Finite Volume Methods
NASA Astrophysics Data System (ADS)
Leveque, Randall J.
Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References
Orthogonality preserving infinite dimensional quadratic stochastic operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akın, Hasan; Mukhamedov, Farrukh
In the present paper, we consider a notion of orthogonal preserving nonlinear operators. We introduce π-Volterra quadratic operators finite and infinite dimensional settings. It is proved that any orthogonal preserving quadratic operator on finite dimensional simplex is π-Volterra quadratic operator. In infinite dimensional setting, we describe all π-Volterra operators in terms orthogonal preserving operators.
Self-organization of cosmic radiation pressure instability. II - One-dimensional simulations
NASA Technical Reports Server (NTRS)
Hogan, Craig J.; Woods, Jorden
1992-01-01
The clustering of statistically uniform discrete absorbing particles moving solely under the influence of radiation pressure from uniformly distributed emitters is studied in a simple one-dimensional model. Radiation pressure tends to amplify statistical clustering in the absorbers; the absorbing material is swept into empty bubbles, the biggest bubbles grow bigger almost as they would in a uniform medium, and the smaller ones get crushed and disappear. Numerical simulations of a one-dimensional system are used to support the conjecture that the system is self-organizing. Simple statistics indicate that a wide range of initial conditions produce structure approaching the same self-similar statistical distribution, whose scaling properties follow those of the attractor solution for an isolated bubble. The importance of the process for large-scale structuring of the interstellar medium is briefly discussed.
NASA Astrophysics Data System (ADS)
Laurie, J.; Bouchet, F.
2012-04-01
Many turbulent flows undergo sporadic random transitions, after long periods of apparent statistical stationarity. For instance, paths of the Kuroshio [1], the Earth's magnetic field reversal, atmospheric flows [2], MHD experiments [3], 2D turbulence experiments [4,5], 3D flows [6] show this kind of behavior. The understanding of this phenomena is extremely difficult due to the complexity, the large number of degrees of freedom, and the non-equilibrium nature of these turbulent flows. It is however a key issue for many geophysical problems. A straightforward study of these transitions, through a direct numerical simulation of the governing equations, is nearly always impracticable. This is mainly a complexity problem, due to the large number of degrees of freedom involved for genuine turbulent flows, and the extremely long time between two transitions. In this talk, we consider two-dimensional and geostrophic turbulent models, with stochastic forces. We consider regimes where two or more attractors coexist. As an alternative to direct numerical simulation, we propose a non-equilibrium statistical mechanics approach to the computation of this phenomenon. Our strategy is based on large deviation theory [7], derived from a path integral representation of the stochastic process. Among the trajectories connecting two non-equilibrium attractors, we determine the most probable one. Moreover, we also determine the transition rates, and in which cases this most probable trajectory is a typical one. Interestingly, we prove that in the class of models we consider, a mechanism exists for diffusion over sets of connected attractors. For the type of stochastic forces that allows this diffusion, the transition between attractors is not a rare event. It is then very difficult to characterize the flow as bistable. However for another class of stochastic forces, this diffusion mechanism is prevented, and genuine bistability or multi-stability is observed. We discuss how these results are probably connected to the long debated existence of multi-stability in the atmosphere and oceans.
Challenges in Characterizing and Controlling Complex Cellular Systems
NASA Astrophysics Data System (ADS)
Wikswo, John
2011-03-01
Multicellular dynamic biological processes such as developmental differentiation, wound repair, disease, aging, and even homeostasis can be represented by trajectories through a phase space whose extent reflects the genetic, post-translational, and metabolic complexity of the process - easily extending to tens of thousands of dimensions. Intra- and inter-cellular sensing and regulatory systems and their nested, redundant, and non-linear feed-forward and feed-back controls create high-dimensioned attractors in this phase space. Metabolism provides free energy to drive non-equilibrium processes and dynamically reconfigure attractors. Studies of single molecules and cells provide only minimalist projections onto a small number of axes. It may be difficult to infer larger-scale emergent behavior from linearized experiments that perform only small amplitude perturbations on a limited number of the dimensions. Complete characterization may succeed for bounded component problems, such as an individual cell cycle or signaling cascade, but larger systems problems will require a coarse-grained approach. Hence a new experimental and analytical framework is needed. Possibly one could utilize high-amplitude, multi-variable driving of the system to infer coarse-grained, effective models, which in turn can be tested by their ability to control systems behavior. Navigation at will between attractors in a high-dimensioned dynamical system will provide not only detailed knowledge of the shape of attractor basins, but also measures of underlying stochastic events such as noise in gene expression or receptor binding and how both affect system stability and robustness. Needed for this are wide-bandwidth methods to sense and actuate large numbers of intracellular and extracellular variables and automatically and rapidly infer dynamic control models. The success of this approach may be determined by how broadly the sensors and actuators can span the full dimensionality of the phase space. Supported by the Defense Threat Reduction Agency HDTRA-09-1-0013, NIH National Institute on Drug Abuse RC2DA028981, the National Academies Keck Futures Initiative, and the Vanderbilt Institute for Integrative Biosystems Research and Education.
Non-linear principal component analysis applied to Lorenz models and to North Atlantic SLP
NASA Astrophysics Data System (ADS)
Russo, A.; Trigo, R. M.
2003-04-01
A non-linear generalisation of Principal Component Analysis (PCA), denoted Non-Linear Principal Component Analysis (NLPCA), is introduced and applied to the analysis of three data sets. Non-Linear Principal Component Analysis allows for the detection and characterisation of low-dimensional non-linear structure in multivariate data sets. This method is implemented using a 5-layer feed-forward neural network introduced originally in the chemical engineering literature (Kramer, 1991). The method is described and details of its implementation are addressed. Non-Linear Principal Component Analysis is first applied to a data set sampled from the Lorenz attractor (1963). It is found that the NLPCA approximations are more representative of the data than are the corresponding PCA approximations. The same methodology was applied to the less known Lorenz attractor (1984). However, the results obtained weren't as good as those attained with the famous 'Butterfly' attractor. Further work with this model is underway in order to assess if NLPCA techniques can be more representative of the data characteristics than are the corresponding PCA approximations. The application of NLPCA to relatively 'simple' dynamical systems, such as those proposed by Lorenz, is well understood. However, the application of NLPCA to a large climatic data set is much more challenging. Here, we have applied NLPCA to the sea level pressure (SLP) field for the entire North Atlantic area and the results show a slight imcrement of explained variance associated. Finally, directions for future work are presented.%}
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems.
Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias
2014-01-01
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems
NASA Astrophysics Data System (ADS)
Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias
2014-02-01
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
2007-03-01
partners for their mutual benefit. Unfortunately, based on government reports, FEMA did not have adequate control of its supply chain information ...is one attractor . “Edge of chaos” systems have two to eight attractors and in chaotic systems many attractors . Some are called strange attractors ...investigates whether chaos theory, part of complexity science, can extract information from Katrina contracting data to help managers make better logistics
James F. Selgrade; James H. Roberds
2001-01-01
This work discusses the effects of periodic forcing on attracting cycles and more complicated attractors for autonomous systems of nonlinear difference equations. Results indicate that an attractor for a periodically forced dynamical system may inherit structure from an attractor of the autonomous (unforced) system and also from the periodicity of the forcing. In...
NASA Technical Reports Server (NTRS)
Chan, S. T. K.; Lee, C. H.; Brashears, M. R.
1975-01-01
A finite element algorithm for solving unsteady, three-dimensional high velocity impact problems is presented. A computer program was developed based on the Eulerian hydroelasto-viscoplastic formulation and the utilization of the theorem of weak solutions. The equations solved consist of conservation of mass, momentum, and energy, equation of state, and appropriate constitutive equations. The solution technique is a time-dependent finite element analysis utilizing three-dimensional isoparametric elements, in conjunction with a generalized two-step time integration scheme. The developed code was demonstrated by solving one-dimensional as well as three-dimensional impact problems for both the inviscid hydrodynamic model and the hydroelasto-viscoplastic model.
Coexistence of Multiple Attractors in an Active Diode Pair Based Chua’s Circuit
NASA Astrophysics Data System (ADS)
Bao, Bocheng; Wu, Huagan; Xu, Li; Chen, Mo; Hu, Wen
This paper focuses on the coexistence of multiple attractors in an active diode pair based Chua’s circuit with smooth nonlinearity. With dimensionless equations, dynamical properties, including boundness of system orbits and stability distributions of two nonzero equilibrium points, are investigated, and complex coexisting behaviors of multiple kinds of disconnected attractors of stable point attractors, limit cycles and chaotic attractors are numerically revealed. The results show that unlike the classical Chua’s circuit, the proposed circuit has two stable nonzero node-foci for the specified circuit parameters, thereby resulting in the emergence of multistability phenomenon. Based on two general impedance converters, the active diode pair based Chua’s circuit with an adjustable inductor and an adjustable capacitor is made in hardware, from which coexisting multiple attractors are conveniently captured.
2010-01-01
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract. PMID:20420714
Wang, Xingyuan; Meng, Juan; Tan, Guilin; Zou, Lixian
2010-04-27
Using phase space reconstruct technique from one-dimensional and multi-dimensional time series and the quantitative criterion rule of system chaos, and combining the neural network; analyses, computations and sort are conducted on electroencephalogram (EEG) signals of five kinds of human consciousness activities (relaxation, mental arithmetic of multiplication, mental composition of a letter, visualizing a 3-dimensional object being revolved about an axis, and visualizing numbers being written or erased on a blackboard). Through comparative studies on the determinacy, the phase graph, the power spectra, the approximate entropy, the correlation dimension and the Lyapunov exponent of EEG signals of 5 kinds of consciousness activities, the following conclusions are shown: (1) The statistic results of the deterministic computation indicate that chaos characteristic may lie in human consciousness activities, and central tendency measure (CTM) is consistent with phase graph, so it can be used as a division way of EEG attractor. (2) The analyses of power spectra show that ideology of single subject is almost identical but the frequency channels of different consciousness activities have slight difference. (3) The approximate entropy between different subjects exist discrepancy. Under the same conditions, the larger the approximate entropy of subject is, the better the subject's innovation is. (4) The results of the correlation dimension and the Lyapunov exponent indicate that activities of human brain exist in attractors with fractional dimensions. (5) Nonlinear quantitative criterion rule, which unites the neural network, can classify different kinds of consciousness activities well. In this paper, the results of classification indicate that the consciousness activity of arithmetic has better differentiation degree than that of abstract.
Low-dimensional attractor for neural activity from local field potentials in optogenetic mice
Oprisan, Sorinel A.; Lynn, Patrick E.; Tompa, Tamas; Lavin, Antonieta
2015-01-01
We used optogenetic mice to investigate possible nonlinear responses of the medial prefrontal cortex (mPFC) local network to light stimuli delivered by a 473 nm laser through a fiber optics. Every 2 s, a brief 10 ms light pulse was applied and the local field potentials (LFPs) were recorded with a 10 kHz sampling rate. The experiment was repeated 100 times and we only retained and analyzed data from six animals that showed stable and repeatable response to optical stimulations. The presence of nonlinearity in our data was checked using the null hypothesis that the data were linearly correlated in the temporal domain, but were random otherwise. For each trail, 100 surrogate data sets were generated and both time reversal asymmetry and false nearest neighbor (FNN) were used as discriminating statistics for the null hypothesis. We found that nonlinearity is present in all LFP data. The first 0.5 s of each 2 s LFP recording were dominated by the transient response of the networks. For each trial, we used the last 1.5 s of steady activity to measure the phase resetting induced by the brief 10 ms light stimulus. After correcting the LFPs for the effect of phase resetting, additional preprocessing was carried out using dendrograms to identify “similar” groups among LFP trials. We found that the steady dynamics of mPFC in response to light stimuli could be reconstructed in a three-dimensional phase space with topologically similar “8”-shaped attractors across different animals. Our results also open the possibility of designing a low-dimensional model for optical stimulation of the mPFC local network. PMID:26483665
Hunt, R.J.; Anderson, M.P.; Kelson, V.A.
1998-01-01
This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.This paper demonstrates that analytic element models have potential as powerful screening tools that can facilitate or improve calibration of more complicated finite-difference and finite-element models. We demonstrate how a two-dimensional analytic element model was used to identify errors in a complex three-dimensional finite-difference model caused by incorrect specification of boundary conditions. An improved finite-difference model was developed using boundary conditions developed from a far-field analytic element model. Calibration of a revised finite-difference model was achieved using fewer zones of hydraulic conductivity and lake bed conductance than the original finite-difference model. Calibration statistics were also improved in that simulated base-flows were much closer to measured values. The improved calibration is due mainly to improved specification of the boundary conditions made possible by first solving the far-field problem with an analytic element model.
Adaptive finite element methods for two-dimensional problems in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1994-01-01
Some recent results obtained using solution-adaptive finite element methods in two-dimensional problems in linear elastic fracture mechanics are presented. The focus is on the basic issue of adaptive finite element methods for validating the new methodology by computing demonstration problems and comparing the stress intensity factors to analytical results.
Reconstruction of the dynamics of the climatic system from time-series data
Nicolis, C.; Nicolis, G.
1986-01-01
The oxygen isotope record of the last million years, as provided by a deep sea core sediment, is analyzed by a method recently developed in the theory of dynamical systems. The analysis suggests that climatic variability is the manifestation of a chaotic dynamics described by an attractor of fractal dimensionality. A quantitative measure of the limited predictability of the climatic system is provided by the evaluation of the time-correlation function and the largest positive Lyapounov exponent of the system. PMID:16593650
NASA Technical Reports Server (NTRS)
Solomon, S. C.
1980-01-01
The measurability of changes in plate driving or resistive forces associated with plate boundary earthquakes by laser rangefinding or VLBI is considered with emphasis on those aspects of plate forces that can be characterized by such measurements. Topics covered include: (1) analytic solutions for two dimensional stress diffusion in a plate following earthquake faulting on a finite fault; (2) two dimensional finite-element solutions for the global state of stress at the Earth's surface for possible plate driving forces; and (3) finite-element solutions for three dimensional stress diffusion in a viscoelastic Earth following earthquake faulting.
NASA Technical Reports Server (NTRS)
Burns, John A.; Marrekchi, Hamadi
1993-01-01
The problem of using reduced order dynamic compensators to control a class of nonlinear parabolic distributed parameter systems was considered. Concentration was on a system with unbounded input and output operators governed by Burgers' equation. A linearized model was used to compute low-order-finite-dimensional control laws by minimizing certain energy functionals. Then these laws were applied to the nonlinear model. Standard approaches to this problem employ model/controller reduction techniques in conjunction with linear quadratic Gaussian (LQG) theory. The approach used is based on the finite dimensional Bernstein/Hyland optimal projection theory which yields a fixed-finite-order controller.
NASA Astrophysics Data System (ADS)
Matveev, A. D.
2016-11-01
To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.
Chaotic itinerancy and power-law residence time distribution in stochastic dynamical systems.
Namikawa, Jun
2005-08-01
Chaotic itinerant motion among varieties of ordered states is described by a stochastic model based on the mechanism of chaotic itinerancy. The model consists of a random walk on a half-line and a Markov chain with a transition probability matrix. The stability of attractor ruin in the model is investigated by analyzing the residence time distribution of orbits at attractor ruins. It is shown that the residence time distribution averaged over all attractor ruins can be described by the superposition of (truncated) power-law distributions if the basin of attraction for each attractor ruin has a zero measure. This result is confirmed by simulation of models exhibiting chaotic itinerancy. Chaotic itinerancy is also shown to be absent in coupled Milnor attractor systems if the transition probability among attractor ruins can be represented as a Markov chain.
NASA Technical Reports Server (NTRS)
Handschuh, Robert F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that were more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.
exponential finite difference technique for solving partial differential equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Handschuh, R.F.
1987-01-01
An exponential finite difference algorithm, as first presented by Bhattacharya for one-dimensianal steady-state, heat conduction in Cartesian coordinates, has been extended. The finite difference algorithm developed was used to solve the diffusion equation in one-dimensional cylindrical coordinates and applied to two- and three-dimensional problems in Cartesian coordinates. The method was also used to solve nonlinear partial differential equations in one (Burger's equation) and two (Boundary Layer equations) dimensional Cartesian coordinates. Predicted results were compared to exact solutions where available, or to results obtained by other numerical methods. It was found that the exponential finite difference method produced results that weremore » more accurate than those obtained by other numerical methods, especially during the initial transient portion of the solution. Other applications made using the exponential finite difference technique included unsteady one-dimensional heat transfer with temperature varying thermal conductivity and the development of the temperature field in a laminar Couette flow.« less
Approximate Approaches to the One-Dimensional Finite Potential Well
ERIC Educational Resources Information Center
Singh, Shilpi; Pathak, Praveen; Singh, Vijay A.
2011-01-01
The one-dimensional finite well is a textbook problem. We propose approximate approaches to obtain the energy levels of the well. The finite well is also encountered in semiconductor heterostructures where the carrier mass inside the well (m[subscript i]) is taken to be distinct from mass outside (m[subscript o]). A relevant parameter is the mass…
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system.
Yuan, Fang; Wang, Guangyi; Wang, Xiaowei
2016-07-01
In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numerical simulations.
Features from the non-attractor beginning of inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yi-Fu; Wang, Dong-Gang; Wang, Ziwei
2016-10-01
We study the effects of the non-attractor initial conditions for the canonical single-field inflation. The non-attractor stage can last only several e -folding numbers, and should be followed by hilltop inflation. This two-stage evolution leads to large scale suppression in the primordial power spectrum, which is favored by recent observations. Moreover we give a detailed calculation of primordial non-Gaussianity due to the ''from non-attractor to slow-roll'' transition, and find step features in the local and equilateral shapes. We conclude that a plateau-like inflaton potential with an initial non-attractor phase yields interesting features in both power spectrum and bispectrum.
NASA Astrophysics Data System (ADS)
van Herck, Walter; Wyder, Thomas
2010-04-01
The enumeration of BPS bound states in string theory needs refinement. Studying partition functions of particles made from D-branes wrapped on algebraic Calabi-Yau 3-folds, and classifying states using split attractor flow trees, we extend the method for computing a refined BPS index, [1]. For certain D-particles, a finite number of microstates, namely polar states, exclusively realized as bound states, determine an entire partition function (elliptic genus). This underlines their crucial importance: one might call them the ‘chromosomes’ of a D-particle or a black hole. As polar states also can be affected by our refinement, previous predictions on elliptic genera are modified. This can be metaphorically interpreted as ‘crossing-over in the meiosis of a D-particle’. Our results improve on [2], provide non-trivial evidence for a strong split attractor flow tree conjecture, and thus suggest that we indeed exhaust the BPS spectrum. In the D-brane description of a bound state, the necessity for refinement results from the fact that tachyonic strings split up constituent states into ‘generic’ and ‘special’ states. These are enumerated separately by topological invariants, which turn out to be partitions of Donaldson-Thomas invariants. As modular predictions provide a check on many of our results, we have compelling evidence that our computations are correct.
Changes of mind in an attractor network of decision-making.
Albantakis, Larissa; Deco, Gustavo
2011-06-01
Attractor networks successfully account for psychophysical and neurophysiological data in various decision-making tasks. Especially their ability to model persistent activity, a property of many neurons involved in decision-making, distinguishes them from other approaches. Stable decision attractors are, however, counterintuitive to changes of mind. Here we demonstrate that a biophysically-realistic attractor network with spiking neurons, in its itinerant transients towards the choice attractors, can replicate changes of mind observed recently during a two-alternative random-dot motion (RDM) task. Based on the assumption that the brain continues to evaluate available evidence after the initiation of a decision, the network predicts neural activity during changes of mind and accurately simulates reaction times, performance and percentage of changes dependent on difficulty. Moreover, the model suggests a low decision threshold and high incoming activity that drives the brain region involved in the decision-making process into a dynamical regime close to a bifurcation, which up to now lacked evidence for physiological relevance. Thereby, we further affirmed the general conformance of attractor networks with higher level neural processes and offer experimental predictions to distinguish nonlinear attractor from linear diffusion models.
NASA Astrophysics Data System (ADS)
Commendatore, Pasquale; Kubin, Ingrid; Sushko, Iryna
2018-05-01
We consider a three-region developing economy with poor transport infrastructures. Two models are related to different stages of development: in the first all regions are autarkic; in the second two of the regions begin to integrate with the third region still not accessible to trade. The properties of the two models are studied also considering the interplay between industry location and trade patterns. Dynamics of these models are described by two-dimensional piecewise smooth maps, characterized by multistability and complex bifurcation structure of the parameter space. We obtain analytical results related to stability of various fixed points and illustrate several bifurcation structures by means of two-dimensional bifurcation diagrams and basins of coexisting attractors.
NASA Astrophysics Data System (ADS)
Madriz Aguilar, José Edgar; Bellini, Mauricio
2009-08-01
Considering a five-dimensional (5D) Riemannian spacetime with a particular stationary Ricci-flat metric, we obtain in the framework of the induced matter theory an effective 4D static and spherically symmetric metric which give us ordinary gravitational solutions on small (planetary and astrophysical) scales, but repulsive (anti gravitational) forces on very large (cosmological) scales with ω=-1. Our approach is an unified manner to describe dark energy, dark matter and ordinary matter. We illustrate the theory with two examples, the solar system and the great attractor. From the geometrical point of view, these results follow from the assumption that exists a confining force that make possible that test particles move on a given 4D hypersurface.
Tomograms for open quantum systems: In(finite) dimensional optical and spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thapliyal, Kishore, E-mail: tkishore36@yahoo.com; Banerjee, Subhashish, E-mail: subhashish@iitj.ac.in; Pathak, Anirban, E-mail: anirban.pathak@gmail.com
Tomograms are obtained as probability distributions and are used to reconstruct a quantum state from experimentally measured values. We study the evolution of tomograms for different quantum systems, both finite and infinite dimensional. In realistic experimental conditions, quantum states are exposed to the ambient environment and hence subject to effects like decoherence and dissipation, which are dealt with here, consistently, using the formalism of open quantum systems. This is extremely relevant from the perspective of experimental implementation and issues related to state reconstruction in quantum computation and communication. These considerations are also expected to affect the quasiprobability distribution obtained frommore » experimentally generated tomograms and nonclassicality observed from them. -- Highlights: •Tomograms are constructed for open quantum systems. •Finite and infinite dimensional quantum systems are studied. •Finite dimensional systems (phase states, single & two qubit spin states) are studied. •A dissipative harmonic oscillator is considered as an infinite dimensional system. •Both pure dephasing as well as dissipation effects are studied.« less
Modeling and control of flexible structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.
1988-01-01
This monograph presents integrated modeling and controller design methods for flexible structures. The controllers, or compensators, developed are optimal in the linear-quadratic-Gaussian sense. The performance objectives, sensor and actuator locations and external disturbances influence both the construction of the model and the design of the finite dimensional compensator. The modeling and controller design procedures are carried out in parallel to ensure compatibility of these two aspects of the design problem. Model reduction techniques are introduced to keep both the model order and the controller order as small as possible. A linear distributed, or infinite dimensional, model is the theoretical basis for most of the text, but finite dimensional models arising from both lumped-mass and finite element approximations also play an important role. A central purpose of the approach here is to approximate an optimal infinite dimensional controller with an implementable finite dimensional compensator. Both convergence theory and numerical approximation methods are given. Simple examples are used to illustrate the theory.
Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.
Vlachas, Pantelis R; Byeon, Wonmin; Wan, Zhong Y; Sapsis, Themistoklis P; Koumoutsakos, Petros
2018-05-01
We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.
Revisiting non-Gaussianity from non-attractor inflation models
NASA Astrophysics Data System (ADS)
Cai, Yi-Fu; Chen, Xingang; Namjoo, Mohammad Hossein; Sasaki, Misao; Wang, Dong-Gang; Wang, Ziwei
2018-05-01
Non-attractor inflation is known as the only single field inflationary scenario that can violate non-Gaussianity consistency relation with the Bunch-Davies vacuum state and generate large local non-Gaussianity. However, it is also known that the non-attractor inflation by itself is incomplete and should be followed by a phase of slow-roll attractor. Moreover, there is a transition process between these two phases. In the past literature, this transition was approximated as instant and the evolution of non-Gaussianity in this phase was not fully studied. In this paper, we follow the detailed evolution of the non-Gaussianity through the transition phase into the slow-roll attractor phase, considering different types of transition. We find that the transition process has important effect on the size of the local non-Gaussianity. We first compute the net contribution of the non-Gaussianities at the end of inflation in canonical non-attractor models. If the curvature perturbations keep evolving during the transition—such as in the case of smooth transition or some sharp transition scenarios—the Script O(1) local non-Gaussianity generated in the non-attractor phase can be completely erased by the subsequent evolution, although the consistency relation remains violated. In extremal cases of sharp transition where the super-horizon modes freeze immediately right after the end of the non-attractor phase, the original non-attractor result can be recovered. We also study models with non-canonical kinetic terms, and find that the transition can typically contribute a suppression factor in the squeezed bispectrum, but the final local non-Gaussianity can still be made parametrically large.
Personalized identification of differentially expressed pathways in pediatric sepsis.
Li, Binjie; Zeng, Qiyi
2017-10-01
Sepsis is a leading killer of children worldwide with numerous differentially expressed genes reported to be associated with sepsis. Identifying core pathways in an individual is important for understanding septic mechanisms and for the future application of custom therapeutic decisions. Samples used in the study were from a control group (n=18) and pediatric sepsis group (n=52). Based on Kauffman's attractor theory, differentially expressed pathways associated with pediatric sepsis were detected as attractors. When the distribution results of attractors are consistent with the distribution of total data assessed using support vector machine, the individualized pathway aberrance score (iPAS) was calculated to distinguish differences. Through attractor and Kyoto Encyclopedia of Genes and Genomes functional analysis, 277 enriched pathways were identified as attractors. There were 81 pathways with P<0.05 and 59 pathways with P<0.01. Distribution outcomes of screened attractors were mostly consistent with the total data demonstrated by the six classifying parameters, which suggested the efficiency of attractors. Cluster analysis of pediatric sepsis using the iPAS method identified seven pathway clusters and four sample clusters. Thus, in the majority pediatric sepsis samples, core pathways can be detected as different from accumulated normal samples. In conclusion, a novel procedure that identified the dysregulated attractors in individuals with pediatric sepsis was constructed. Attractors can be markers to identify pathways involved in pediatric sepsis. iPAS may provide a correlation score for each of the signaling pathways present in an individual patient. This process may improve the personalized interpretation of disease mechanisms and may be useful in the forthcoming era of personalized medicine.
Equilibrium and dynamic methods when comparing an English text and its Esperanto translation
NASA Astrophysics Data System (ADS)
Ausloos, M.
2008-11-01
A comparison of two English texts written by Lewis Carroll, one (Alice in Wonderland), also translated into Esperanto, the other (Through the Looking Glass) are discussed in order to observe whether natural and artificial languages significantly differ from each other. One dimensional time series like signals are constructed using only word frequencies (FTS) or word lengths (LTS). The data is studied through (i) a Zipf method for sorting out correlations in the FTS and (ii) a Grassberger-Procaccia (GP) technique based method for finding correlations in LTS. The methods correspond to an equilibrium and a dynamic approach respectively to human texts features. There are quantitative statistical differences between the original English text and its Esperanto translation, but the qualitative differences are very minutes. However different power laws are observed with characteristic exponents for the ranking properties, and the phase space attractor dimensionality. The Zipf exponent can take values much less than unity (∼0.50 or 0.30) depending on how a sentence is defined. This variety in exponents can be conjectured to be an intrinsic measure of the book style or purpose, rather than the language or author vocabulary richness, since a similar exponent is obtained whatever the text. Moreover the attractor dimension r is a simple function of the so called phase space dimension n, i.e., r=nλ, with λ=0.79. Such an exponent could also be conjectured to be a measure of the author style versatility, - here well preserved in the translation.
1984-12-30
as three dimensional, when the assumption is made that all SUTRA parameters and coefficients have a constant value in the third space direction. A...finite element. The type of element employed by SUTRA for two-dimensional simulation is a quadrilateral which has a finite thickness in the third ... space dimension. This type of a quad- rilateral element and a typical two-dimensional mesh is shown in Figure 3.1. - All twelve edges of the two
Finite-Dimensional Representations for Controlled Diffusions with Delay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Federico, Salvatore, E-mail: salvatore.federico@unimi.it; Tankov, Peter, E-mail: tankov@math.univ-paris-diderot.fr
2015-02-15
We study stochastic delay differential equations (SDDE) where the coefficients depend on the moving averages of the state process. As a first contribution, we provide sufficient conditions under which the solution of the SDDE and a linear path functional of it admit a finite-dimensional Markovian representation. As a second contribution, we show how approximate finite-dimensional Markovian representations may be constructed when these conditions are not satisfied, and provide an estimate of the error corresponding to these approximations. These results are applied to optimal control and optimal stopping problems for stochastic systems with delay.
NASA Astrophysics Data System (ADS)
Kokurin, M. Yu.
2010-11-01
A general scheme for improving approximate solutions to irregular nonlinear operator equations in Hilbert spaces is proposed and analyzed in the presence of errors. A modification of this scheme designed for equations with quadratic operators is also examined. The technique of universal linear approximations of irregular equations is combined with the projection onto finite-dimensional subspaces of a special form. It is shown that, for finite-dimensional quadratic problems, the proposed scheme provides information about the global geometric properties of the intersections of quadrics.
Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goto, Shin-itiro, E-mail: sgoto@ims.ac.jp
It has been proposed that equilibrium thermodynamics is described on Legendre submanifolds in contact geometry. It is shown in this paper that Legendre submanifolds embedded in a contact manifold can be expressed as attractors in phase space for a certain class of contact Hamiltonian vector fields. By giving a physical interpretation that points outside the Legendre submanifold can represent nonequilibrium states of thermodynamic variables, in addition to that points of a given Legendre submanifold can represent equilibrium states of the variables, this class of contact Hamiltonian vector fields is physically interpreted as a class of relaxation processes, in which thermodynamicmore » variables achieve an equilibrium state from a nonequilibrium state through a time evolution, a typical nonequilibrium phenomenon. Geometric properties of such vector fields on contact manifolds are characterized after introducing a metric tensor field on a contact manifold. It is also shown that a contact manifold and a strictly convex function induce a lower dimensional dually flat space used in information geometry where a geometrization of equilibrium statistical mechanics is constructed. Legendre duality on contact manifolds is explicitly stated throughout.« less
Computation of rare transitions in the barotropic quasi-geostrophic equations
NASA Astrophysics Data System (ADS)
Laurie, Jason; Bouchet, Freddy
2015-01-01
We investigate the theoretical and numerical computation of rare transitions in simple geophysical turbulent models. We consider the barotropic quasi-geostrophic and two-dimensional Navier-Stokes equations in regimes where bistability between two coexisting large-scale attractors exist. By means of large deviations and instanton theory with the use of an Onsager-Machlup path integral formalism for the transition probability, we show how one can directly compute the most probable transition path between two coexisting attractors analytically in an equilibrium (Langevin) framework and numerically otherwise. We adapt a class of numerical optimization algorithms known as minimum action methods to simple geophysical turbulent models. We show that by numerically minimizing an appropriate action functional in a large deviation limit, one can predict the most likely transition path for a rare transition between two states. By considering examples where theoretical predictions can be made, we show that the minimum action method successfully predicts the most likely transition path. Finally, we discuss the application and extension of such numerical optimization schemes to the computation of rare transitions observed in direct numerical simulations and experiments and to other, more complex, turbulent systems.
Amplitude-Phase Modulation, Topological Horseshoe and Scaling Attractor of a Dynamical System
NASA Astrophysics Data System (ADS)
Li, Chun-Lai; Li, Wen; Zhang, Jing; Xie, Yuan-Xi; Zhao, Yi-Bo
2016-09-01
A three-dimensional autonomous chaotic system is discussed in this paper. Some basic dynamical properties of the system, including phase portrait, Poincaré map, power spectrum, Kaplan-Yorke dimension, Lyapunov exponent spectra, signal amplitude and topological horseshoe are studied theoretically and numerically. The main finding by analysis is that the signal amplitude can be modulated via controlling the coefficients of the linear term, cross-product term and squared term simultaneously or respectively, and the phase of x3 can be modulated by the product of the coefficients of the linear term and cross-product term. Furthermore, scaling chaotic attractors of this system are achieved by modified projective synchronization with an optimization-based linear coupling method, which is safer for secure communications than the existed synchronization scheme since the scaling factors can be regarded as the security encoding key. Supported by Hunan Provincial Natural Science Foundation of China under Grant No. 2016JJ4036, University Natural Science Foundation of Jiangsu Province under Grant No. 14KJB120007 and the National Natural Science Foundation of China under Grant Nos. 11504176 and 11602084
Chaos in driven Alfvén systems: unstable periodic orbits and chaotic saddles
NASA Astrophysics Data System (ADS)
Chian, A. C.-L.; Santana, W. M.; Rempel, E. L.; Borotto, F. A.; Hada, T.; Kamide, Y.
2007-01-01
The chaotic dynamics of Alfvén waves in space plasmas governed by the derivative nonlinear Schrödinger equation, in the low-dimensional limit described by stationary spatial solutions, is studied. A bifurcation diagram is constructed, by varying the driver amplitude, to identify a number of nonlinear dynamical processes including saddle-node bifurcation, boundary crisis, and interior crisis. The roles played by unstable periodic orbits and chaotic saddles in these transitions are analyzed, and the conversion from a chaotic saddle to a chaotic attractor in these dynamical processes is demonstrated. In particular, the phenomenon of gap-filling in the chaotic transition from weak chaos to strong chaos via an interior crisis is investigated. A coupling unstable periodic orbit created by an explosion, within the gaps of the chaotic saddles embedded in a chaotic attractor following an interior crisis, is found numerically. The gap-filling unstable periodic orbits are responsible for coupling the banded chaotic saddle (BCS) to the surrounding chaotic saddle (SCS), leading to crisis-induced intermittency. The physical relevance of chaos for Alfvén intermittent turbulence observed in the solar wind is discussed.
Cosmography and Data Visualization
NASA Astrophysics Data System (ADS)
Pomarède, Daniel; Courtois, Hélène M.; Hoffman, Yehuda; Tully, R. Brent
2017-05-01
Cosmography, the study and making of maps of the universe or cosmos, is a field where visual representation benefits from modern three-dimensional visualization techniques and media. At the extragalactic distance scales, visualization is contributing to our understanding of the complex structure of the local universe in terms of spatial distribution and flows of galaxies and dark matter. In this paper, we report advances in the field of extragalactic cosmography obtained using the SDvision visualization software in the context of the Cosmicflows Project. Here, multiple visualization techniques are applied to a variety of data products: catalogs of galaxy positions and galaxy peculiar velocities, reconstructed velocity field, density field, gravitational potential field, velocity shear tensor viewed in terms of its eigenvalues and eigenvectors, envelope surfaces enclosing basins of attraction. These visualizations, implemented as high-resolution images, videos, and interactive viewers, have contributed to a number of studies: the cosmography of the local part of the universe, the nature of the Great Attractor, the discovery of the boundaries of our home supercluster of galaxies Laniakea, the mapping of the cosmic web, and the study of attractors and repellers.
Extreme multistability in a memristor-based multi-scroll hyper-chaotic system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Fang, E-mail: yf210yf@163.com; Wang, Guangyi, E-mail: wanggyi@163.com; Wang, Xiaowei
In this paper, a new memristor-based multi-scroll hyper-chaotic system is designed. The proposed memristor-based system possesses multiple complex dynamic behaviors compared with other chaotic systems. Various coexisting attractors and hidden coexisting attractors are observed in this system, which means extreme multistability arises. Besides, by adjusting parameters of the system, this chaotic system can perform single-scroll attractors, double-scroll attractors, and four-scroll attractors. Basic dynamic characteristics of the system are investigated, including equilibrium points and stability, bifurcation diagrams, Lyapunov exponents, and so on. In addition, the presented system is also realized by an analog circuit to confirm the correction of the numericalmore » simulations.« less
Multibunch solutions of the differential-difference equation for traffic flow
Nakanishi
2000-09-01
The Newell-Whitham type of car-following model, with a hyperbolic tangent as the optimal velocity function, has a finite number of exact steady traveling wave solutions that can be expressed in terms of elliptic theta functions. Each such solution describes a density wave with a definite number of car bunches on a circuit. In our numerical simulations, we observe a transition process from uniform flow to congested flow described by a one-bunch analytic solution, which appears to be an attractor of the system. In this process, the system exhibits a series of transitions through which it comes to assume configurations closely approximating multibunch solutions with successively fewer bunches.
NASA Astrophysics Data System (ADS)
Leonov, G. A.; Kuznetsov, N. V.
From a computational point of view, in nonlinear dynamical systems, attractors can be regarded as self-excited and hidden attractors. Self-excited attractors can be localized numerically by a standard computational procedure, in which after a transient process a trajectory, starting from a point of unstable manifold in a neighborhood of equilibrium, reaches a state of oscillation, therefore one can easily identify it. In contrast, for a hidden attractor, a basin of attraction does not intersect with small neighborhoods of equilibria. While classical attractors are self-excited, attractors can therefore be obtained numerically by the standard computational procedure. For localization of hidden attractors it is necessary to develop special procedures, since there are no similar transient processes leading to such attractors. At first, the problem of investigating hidden oscillations arose in the second part of Hilbert's 16th problem (1900). The first nontrivial results were obtained in Bautin's works, which were devoted to constructing nested limit cycles in quadratic systems, that showed the necessity of studying hidden oscillations for solving this problem. Later, the problem of analyzing hidden oscillations arose from engineering problems in automatic control. In the 50-60s of the last century, the investigations of widely known Markus-Yamabe's, Aizerman's, and Kalman's conjectures on absolute stability have led to the finding of hidden oscillations in automatic control systems with a unique stable stationary point. In 1961, Gubar revealed a gap in Kapranov's work on phase locked-loops (PLL) and showed the possibility of the existence of hidden oscillations in PLL. At the end of the last century, the difficulties in analyzing hidden oscillations arose in simulations of drilling systems and aircraft's control systems (anti-windup) which caused crashes. Further investigations on hidden oscillations were greatly encouraged by the present authors' discovery, in 2010 (for the first time), of chaotic hidden attractor in Chua's circuit. This survey is dedicated to efficient analytical-numerical methods for the study of hidden oscillations. Here, an attempt is made to reflect the current trends in the synthesis of analytical and numerical methods.
2007-03-01
Finite -dimensional regulators for a class of infinite dimensional systems ,” Systems and Control Letters, 3 (1983), 7-12. [11] B...semiglobal stabilizability by encoded state feedback,” to appear in Systems and Control Letters. 22 29. C. De Persis, A. Isidori, “Global stabilization of...nonequilibrium setting, for both finite and infinite dimensional control systems . Our objectives for distributed parameter systems included
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, G.; Belouettar, S.
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems
NASA Astrophysics Data System (ADS)
Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; Del Giudice, Paolo
2015-10-01
Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems.
Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; del Giudice, Paolo
2015-10-14
Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a 'basin' of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases.
Quasi-potential landscape in complex multi-stable systems
Zhou, Joseph Xu; Aliyu, M. D. S.; Aurell, Erik; Huang, Sui
2012-01-01
The developmental dynamics of multicellular organisms is a process that takes place in a multi-stable system in which each attractor state represents a cell type, and attractor transitions correspond to cell differentiation paths. This new understanding has revived the idea of a quasi-potential landscape, first proposed by Waddington as a metaphor. To describe development, one is interested in the ‘relative stabilities’ of N attractors (N > 2). Existing theories of state transition between local minima on some potential landscape deal with the exit part in the transition between two attractors in pair-attractor systems but do not offer the notion of a global potential function that relates more than two attractors to each other. Several ad hoc methods have been used in systems biology to compute a landscape in non-gradient systems, such as gene regulatory networks. Here we present an overview of currently available methods, discuss their limitations and propose a new decomposition of vector fields that permits the computation of a quasi-potential function that is equivalent to the Freidlin–Wentzell potential but is not limited to two attractors. Several examples of decomposition are given, and the significance of such a quasi-potential function is discussed. PMID:22933187
Anisotropic nonequilibrium hydrodynamic attractor
NASA Astrophysics Data System (ADS)
Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.
2018-02-01
We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.; Vidussoni, Marco A.
1990-01-01
A practical example of applying two- to three-dimensional (2- to 3-D) global/local finite element analysis to laminated composites is presented. Cross-ply graphite/epoxy laminates of 0.1-in. (0.254-cm) thickness with central circular holes ranging from 1 to 6 in. (2.54 to 15.2 cm) in diameter, subjected to in-plane compression were analyzed. Guidelines for full three-dimensional finite element analysis and two- to three-dimensional global/local analysis of interlaminar stresses at straight free edges of laminated composites are included. The larger holes were found to reduce substantially the interlaminar stresses at the straight free-edge in proximity to the hole. Three-dimensional stress results were obtained for thin laminates which require prohibitive computer resources for full three-dimensional analyses of comparative accuracy.
The MUSIC algorithm for impedance tomography of small inclusions from discrete data
NASA Astrophysics Data System (ADS)
Lechleiter, A.
2015-09-01
We consider a point-electrode model for electrical impedance tomography and show that current-to-voltage measurements from finitely many electrodes are sufficient to characterize the positions of a finite number of point-like inclusions. More precisely, we consider an asymptotic expansion with respect to the size of the small inclusions of the relative Neumann-to-Dirichlet operator in the framework of the point electrode model. This operator is naturally finite-dimensional and models difference measurements by finitely many small electrodes of the electric potential with and without the small inclusions. Moreover, its leading-order term explicitly characterizes the centers of the small inclusions if the (finite) number of point electrodes is large enough. This characterization is based on finite-dimensional test vectors and leads naturally to a MUSIC algorithm for imaging the inclusion centers. We show both the feasibility and limitations of this imaging technique via two-dimensional numerical experiments, considering in particular the influence of the number of point electrodes on the algorithm’s images.
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
NASA Astrophysics Data System (ADS)
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
2015-12-01
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field is chaotic. We argue that this second type of behavior is "extensive" in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.
Ultrametric properties of the attractor spaces for random iterated linear function systems
NASA Astrophysics Data System (ADS)
Buchovets, A. G.; Moskalev, P. V.
2018-03-01
We investigate attractors of random iterated linear function systems as independent spaces embedded in the ordinary Euclidean space. The introduction on the set of attractor points of a metric that satisfies the strengthened triangle inequality makes this space ultrametric. Then inherent in ultrametric spaces the properties of disconnectedness and hierarchical self-similarity make it possible to define an attractor as a fractal. We note that a rigorous proof of these properties in the case of an ordinary Euclidean space is very difficult.
3-d finite element model development for biomechanics: a software demonstration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollerbach, K.; Hollister, A.M.; Ashby, E.
1997-03-01
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models,more » using human hand and knee examples, and will demonstrate their software tools.« less
Internal Waves and Wave Attractors in Enceladus' Subsurface Ocean
NASA Astrophysics Data System (ADS)
van Oers, A. M.; Maas, L. R.; Vermeersen, B. L. A.
2016-12-01
One of the most peculiar features on Saturn moon Enceladus is its so-called tiger stripe pattern at the geologically active South Polar Terrain (SPT), as first observed in detail by the Cassini spacecraft early 2005. It is generally assumed that the four almost parallel surface lines that constitute this pattern are faults in the icy surface overlying a confined salty water reservoir. In 2013, we formulated the original idea [Vermeersen et al., AGU Fall Meeting 2013, abstract #P53B-1848] that the tiger stripe pattern is formed and maintained by induced, tidally and rotationally driven, wave-attractor motions in the ocean underneath the icy surface of the tiger-stripe region. Such wave-attractor motions are observed in water tank experiments in laboratories on Earth and in numerical experiments [Maas et al., Nature, 338, 557-561, 1997; Drijfhout and Maas, J. Phys. Oceanogr., 37, 2740-2763, 2007; Hazewinkel et al., Phys. Fluids, 22, 107102, 2010]. Numerical simulations show the persistence of wave attractors for a range of ocean shapes and stratifications. The intensification of the wave field near the location of the surface reflections of wave attractors has been numerically and experimentally confirmed. We measured the forces a wave attractor exerts on a solid surface, near a reflection point. These reflection points would correspond to the location of the tiger stripes. Combining experiments and numerical simulations we conclude that (1) wave attractors can exist in Enceladus' subsurface sea, (2) their shape can be matched to the tiger stripes, (3) the wave attractors cause a localized force at the water-ice boundaries, (4) this force could have been large enough to contribute to fracturing the ice and (5) the wave attractors localize energy (and particles) and cause dissipation along its path, helping explain Enceladus' enigmatic heat output at the tiger stripes.
Precision and reliability of periodically and quasiperiodically driven integrate-and-fire neurons.
Tiesinga, P H E
2002-04-01
Neurons in the brain communicate via trains of all-or-none electric events known as spikes. How the brain encodes information using spikes-the neural code-remains elusive. Here the robustness against noise of stimulus-induced neural spike trains is studied in terms of attractors and bifurcations. The dynamics of model neurons converges after a transient onto an attractor yielding a reproducible sequence of spike times. At a bifurcation point the spike times on the attractor change discontinuously when a parameter is varied. Reliability, the stability of the attractor against noise, is reduced when the neuron operates close to a bifurcation point. We determined using analytical spike-time maps the attractor and bifurcation structure of an integrate-and-fire model neuron driven by a periodic or a quasiperiodic piecewise constant current and investigated the stability of attractors against noise. The integrate-and-fire model neuron became mode locked to the periodic current with a rational winding number p/q and produced p spikes per q cycles. There were q attractors. p:q mode-locking regions formed Arnold tongues. In the model, reliability was the highest during 1:1 mode locking when there was only one attractor, as was also observed in recent experiments. The quasiperiodically driven neuron mode locked to either one of the two drive periods, or to a linear combination of both of them. Mode-locking regions were organized in Arnold tongues and reliability was again highest when there was only one attractor. These results show that neuronal reliability in response to the rhythmic drive generated by synchronized networks of neurons is profoundly influenced by the location of the Arnold tongues in parameter space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiaojun; School of Mathematics and Statistics, Tianshui Normal University, Tianshui 741001; Hong, Ling, E-mail: hongling@mail.xjtu.edu.cn
Global bifurcations include sudden changes in chaotic sets due to crises. There are three types of crises defined by Grebogi et al. [Physica D 7, 181 (1983)]: boundary crisis, interior crisis, and metamorphosis. In this paper, by means of the extended generalized cell mapping (EGCM), boundary and interior crises of a fractional-order Duffing system are studied as one of the system parameters or the fractional derivative order is varied. It is found that a crisis can be generally defined as a collision between a chaotic basic set and a basic set, either periodic or chaotic, to cause a sudden discontinuousmore » change in chaotic sets. Here chaotic sets involve three different kinds: a chaotic attractor, a chaotic saddle on a fractal basin boundary, and a chaotic saddle in the interior of a basin and disjoint from the attractor. A boundary crisis results from the collision of a periodic (or chaotic) attractor with a chaotic (or regular) saddle in the fractal (or smooth) boundary. In such a case, the attractor, together with its basin of attraction, is suddenly destroyed as the control parameter passes through a critical value, leaving behind a chaotic saddle in the place of the original attractor and saddle after the crisis. An interior crisis happens when an unstable chaotic set in the basin of attraction collides with a periodic attractor, which causes the appearance of a new chaotic attractor, while the original attractor and the unstable chaotic set are converted to the part of the chaotic attractor after the crisis. These results further demonstrate that the EGCM is a powerful tool to reveal the mechanism of crises in fractional-order systems.« less
Analytic proof of the existence of the Lorenz attractor in the extended Lorenz model
NASA Astrophysics Data System (ADS)
Ovsyannikov, I. I.; Turaev, D. V.
2017-01-01
We give an analytic (free of computer assistance) proof of the existence of a classical Lorenz attractor for an open set of parameter values of the Lorenz model in the form of Yudovich-Morioka-Shimizu. The proof is based on detection of a homoclinic butterfly with a zero saddle value and rigorous verification of one of the Shilnikov criteria for the birth of the Lorenz attractor; we also supply a proof for this criterion. The results are applied in order to give an analytic proof for the existence of a robust, pseudohyperbolic strange attractor (the so-called discrete Lorenz attractor) for an open set of parameter values in a 4-parameter family of 3D Henon-like diffeomorphisms.
A finite area scheme for shallow granular flows on three-dimensional surfaces
NASA Astrophysics Data System (ADS)
Rauter, Matthias
2017-04-01
Shallow granular flow models have become a popular tool for the estimation of natural hazards, such as landslides, debris flows and avalanches. The shallowness of the flow allows to reduce the three-dimensional governing equations to a quasi two-dimensional system. Three-dimensional flow fields are replaced by their depth-integrated two-dimensional counterparts, which yields a robust and fast method [1]. A solution for a simple shallow granular flow model, based on the so-called finite area method [3] is presented. The finite area method is an adaption of the finite volume method [4] to two-dimensional curved surfaces in three-dimensional space. This method handles the three dimensional basal topography in a simple way, making the model suitable for arbitrary (but mildly curved) topography, such as natural terrain. Furthermore, the implementation into the open source software OpenFOAM [4] is shown. OpenFOAM is a popular computational fluid dynamics application, designed so that the top-level code mimics the mathematical governing equations. This makes the code easy to read and extendable to more sophisticated models. Finally, some hints on how to get started with the code and how to extend the basic model will be given. I gratefully acknowledge the financial support by the OEAW project "beyond dense flow avalanches". Savage, S. B. & Hutter, K. 1989 The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics 199, 177-215. Ferziger, J. & Peric, M. 2002 Computational methods for fluid dynamics, 3rd edn. Springer. Tukovic, Z. & Jasak, H. 2012 A moving mesh finite volume interface tracking method for surface tension dominated interfacial fluid flow. Computers & fluids 55, 70-84. Weller, H. G., Tabor, G., Jasak, H. & Fureby, C. 1998 A tensorial approach to computational continuum mechanics using object-oriented techniques. Computers in physics 12(6), 620-631.
Detecting changes in forced climate attractors with Wasserstein distance
NASA Astrophysics Data System (ADS)
Robin, Yoann; Yiou, Pascal; Naveau, Philippe
2017-07-01
The climate system can been described by a dynamical system and its associated attractor. The dynamics of this attractor depends on the external forcings that influence the climate. Such forcings can affect the mean values or variances, but regions of the attractor that are seldom visited can also be affected. It is an important challenge to measure how the climate attractor responds to different forcings. Currently, the Euclidean distance or similar measures like the Mahalanobis distance have been favored to measure discrepancies between two climatic situations. Those distances do not have a natural building mechanism to take into account the attractor dynamics. In this paper, we argue that a Wasserstein distance, stemming from optimal transport theory, offers an efficient and practical way to discriminate between dynamical systems. After treating a toy example, we explore how the Wasserstein distance can be applied and interpreted to detect non-autonomous dynamics from a Lorenz system driven by seasonal cycles and a warming trend.
An Interactive Preprocessor Program with Graphics for a Three-Dimensional Finite Element Code.
ERIC Educational Resources Information Center
Hamilton, Claude Hayden, III
The development and capabilities of an interactive preprocessor program with graphics for an existing three-dimensional finite element code is presented. This preprocessor program, EDGAP3D, is designed to be used in conjunction with the Texas Three Dimensional Grain Analysis Program (TXCAP3D). The code presented in this research is capable of the…
NASA Technical Reports Server (NTRS)
Cwik, Tom; Zuffada, Cinzia; Jamnejad, Vahraz
1996-01-01
Finite element modeling has proven useful for accurtely simulating scattered or radiated fields from complex three-dimensional objects whose geometry varies on the scale of a fraction of a wavelength.
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Rosen, I. G.
1986-01-01
An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.
Simulation of wave propagation in three-dimensional random media
NASA Astrophysics Data System (ADS)
Coles, Wm. A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.
1995-04-01
Quantitative error analyses for the simulation of wave propagation in three-dimensional random media, when narrow angular scattering is assumed, are presented for plane-wave and spherical-wave geometry. This includes the errors that result from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive indices of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared with the spatial spectra of
A Mathematical Model of Demand-Supply Dynamics with Collectability and Saturation Factors
NASA Astrophysics Data System (ADS)
Li, Y. Charles; Yang, Hong
We introduce a mathematical model on the dynamics of demand and supply incorporating collectability and saturation factors. Our analysis shows that when the fluctuation of the determinants of demand and supply is strong enough, there is chaos in the demand-supply dynamics. Our numerical simulation shows that such a chaos is not an attractor (i.e. dynamics is not approaching the chaos), instead a periodic attractor (of period-3 under the Poincaré period map) exists near the chaos, and coexists with another periodic attractor (of period-1 under the Poincaré period map) near the market equilibrium. Outside the basins of attraction of the two periodic attractors, the dynamics approaches infinity indicating market irrational exuberance or flash crash. The period-3 attractor represents the product’s market cycle of growth and recession, while period-1 attractor near the market equilibrium represents the regular fluctuation of the product’s market. Thus our model captures more market phenomena besides Marshall’s market equilibrium. When the fluctuation of the determinants of demand and supply is strong enough, a three leaf danger zone exists where the basins of attraction of all attractors intertwine and fractal basin boundaries are formed. Small perturbations in the danger zone can lead to very different attractors. That is, small perturbations in the danger zone can cause the market to experience oscillation near market equilibrium, large growth and recession cycle, and irrational exuberance or flash crash.
NASA Astrophysics Data System (ADS)
Gori, Luca; Sodini, Mauro
2014-03-01
This paper analyses the mathematical properties of an economic growth model with overlapping generations, endogenous labour supply, and multiplicative external habits. The dynamics of the economy is characterised by a two-dimensional map describing the time evolution of capital and labour supply. We show that if the relative importance of external habits in the utility function is sufficiently high, multiple (determinate or indeterminate) fixed points and poverty traps can exist. In addition, periodic or quasiperiodic behaviour and/or coexistence of attractors may occur.
A semi-implicit finite difference model for three-dimensional tidal circulation,
Casulli, V.; Cheng, R.T.
1992-01-01
A semi-implicit finite difference formulation for the numerical solution of three-dimensional tidal circulation is presented. The governing equations are the three-dimensional Reynolds equations in which the pressure is assumed to be hydrostatic. A minimal degree of implicitness has been introduced in the finite difference formula so that in the absence of horizontal viscosity the resulting algorithm is unconditionally stable at a minimal computational cost. When only one vertical layer is specified this method reduces, as a particular case, to a semi-implicit scheme for the solutions of the corresponding two-dimensional shallow water equations. The resulting two- and three-dimensional algorithm is fast, accurate and mass conservative. This formulation includes the simulation of flooding and drying of tidal flats, and is fully vectorizable for an efficient implementation on modern vector computers.
Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.
2003-01-01
The use of multi-dimensional finite volume numerical techniques with finite thickness models for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the one-dimensional semi -infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody were investigated. An array of streamwise orientated heating striations were generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients due to the striation patterns two-dimensional heat transfer techniques were necessary to obtain accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates because it did not account for lateral heat conduction in the model.
Optoelectronic Terminal-Attractor-Based Associative Memory
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Barhen, Jacob; Farhat, Nabil H.
1994-01-01
Report presents theoretical and experimental study of optically and electronically addressable optical implementation of artificial neural network that performs associative recall. Shows by computer simulation that terminal-attractor-based associative memory can have perfect convergence in associative retrieval and increased storage capacity. Spurious states reduced by exploiting terminal attractors.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
[Establishment and validation of normal human L1-L5 lumbar three-dimensional finite element model].
Zhu, Zhenqi; Liu, Chenjun; Wang, Jiefu; Wang, Kaifeng; Huang, Zhixin; Wang, Weida; Liu, Haiying
2014-10-14
To create and validate a L1-L5 lumbar three-dimensional finite element model. The L1-L5 lumbar spines of a male healthy volunteer were scanned with computed tomography (CT). And a L1-L5 lumbar three-dimensional finite element model was created with the aid of software packages of Mimics, Geomagic and Ansys. Then border conditions were set, unit type was determined, finite element mesh was divided and a model was established for loading and calculating. Average model stiffness under the conditions of flexion, extension, lateral bending and axial rotation was calculated and compared with the outcomes of former articles for validation. A normal human L1-L5 lumbar three-dimensional finite element model was established to include 459 340 elements and 661 938 nodes. After constraining the inferior endplate of L5 vertebral body, 500 kg × m × s⁻² compressive loading was imposed averagely on the superior endplate of L1 vertebral body. Then 10 kg × m² × s⁻² moment simulating flexion, extension, lateral bending and axial rotation were imposed on the superior endplate of L1 vertebral body. Eventually the average stiffness of all directions was calculated and it was similar to the outcomes of former articles. The L1-L5 lumbar three-dimensional finite element model is validated so that it may used with biomechanical simulation and analysis of normal or surgical models.
On the Connectedness of Attractors for Dynamical Systems
NASA Astrophysics Data System (ADS)
Gobbino, Massimo; Sardella, Mirko
1997-01-01
For a dynamical system on a connected metric spaceX, the global attractor (when it exists) is connected provided that either the semigroup is time-continuous orXis locally connected. Moreover, there exists an example of a dynamical system on a connected metric space which admits a disconnected global attractor.
Chartier, Sylvain; Proulx, Robert
2005-11-01
This paper presents a new unsupervised attractor neural network, which, contrary to optimal linear associative memory models, is able to develop nonbipolar attractors as well as bipolar attractors. Moreover, the model is able to develop less spurious attractors and has a better recall performance under random noise than any other Hopfield type neural network. Those performances are obtained by a simple Hebbian/anti-Hebbian online learning rule that directly incorporates feedback from a specific nonlinear transmission rule. Several computer simulations show the model's distinguishing properties.
Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems
Giulioni, Massimiliano; Corradi, Federico; Dante, Vittorio; del Giudice, Paolo
2015-01-01
Neuromorphic chips embody computational principles operating in the nervous system, into microelectronic devices. In this domain it is important to identify computational primitives that theory and experiments suggest as generic and reusable cognitive elements. One such element is provided by attractor dynamics in recurrent networks. Point attractors are equilibrium states of the dynamics (up to fluctuations), determined by the synaptic structure of the network; a ‘basin’ of attraction comprises all initial states leading to a given attractor upon relaxation, hence making attractor dynamics suitable to implement robust associative memory. The initial network state is dictated by the stimulus, and relaxation to the attractor state implements the retrieval of the corresponding memorized prototypical pattern. In a previous work we demonstrated that a neuromorphic recurrent network of spiking neurons and suitably chosen, fixed synapses supports attractor dynamics. Here we focus on learning: activating on-chip synaptic plasticity and using a theory-driven strategy for choosing network parameters, we show that autonomous learning, following repeated presentation of simple visual stimuli, shapes a synaptic connectivity supporting stimulus-selective attractors. Associative memory develops on chip as the result of the coupled stimulus-driven neural activity and ensuing synaptic dynamics, with no artificial separation between learning and retrieval phases. PMID:26463272
NASA Astrophysics Data System (ADS)
Manukure, Solomon
2018-04-01
We construct finite-dimensional Hamiltonian systems by means of symmetry constraints from the Lax pairs and adjoint Lax pairs of a bi-Hamiltonian hierarchy of soliton equations associated with the 3-dimensional special linear Lie algebra, and discuss the Liouville integrability of these systems based on the existence of sufficiently many integrals of motion.
Mechanisms of gap gene expression canalization in the Drosophila blastoderm.
Gursky, Vitaly V; Panok, Lena; Myasnikova, Ekaterina M; Manu; Samsonova, Maria G; Reinitz, John; Samsonov, Alexander M
2011-01-01
Extensive variation in early gap gene expression in the Drosophila blastoderm is reduced over time because of gap gene cross regulation. This phenomenon is a manifestation of canalization, the ability of an organism to produce a consistent phenotype despite variations in genotype or environment. The canalization of gap gene expression can be understood as arising from the actions of attractors in the gap gene dynamical system. In order to better understand the processes of developmental robustness and canalization in the early Drosophila embryo, we investigated the dynamical effects of varying spatial profiles of Bicoid protein concentration on the formation of the expression border of the gap gene hunchback. At several positions on the anterior-posterior axis of the embryo, we analyzed attractors and their basins of attraction in a dynamical model describing expression of four gap genes with the Bicoid concentration profile accounted as a given input in the model equations. This model was tested against a family of Bicoid gradients obtained from individual embryos. These gradients were normalized by two independent methods, which are based on distinct biological hypotheses and provide different magnitudes for Bicoid spatial variability. We showed how the border formation is dictated by the biological initial conditions (the concentration gradient of maternal Hunchback protein) being attracted to specific attracting sets in a local vicinity of the border. Different types of these attracting sets (point attractors or one dimensional attracting manifolds) define several possible mechanisms of border formation. The hunchback border formation is associated with intersection of the spatial gradient of the maternal Hunchback protein and a boundary between the attraction basins of two different point attractors. We demonstrated how the positional variability for hunchback is related to the corresponding variability of the basin boundaries. The observed reduction in variability of the hunchback gene expression can be accounted for by specific geometrical properties of the basin boundaries. We clarified the mechanisms of gap gene expression canalization in early Drosophila embryos. These mechanisms were specified in the case of hunchback in well defined terms of the dynamical system theory.
ANALYTICAL SOLUTION TO SATURATED FLOW IN A FINITE STRATIFIED AQUIFER
An analytical solution for the flow of water in a saturated-stratified aquitard-aquifer-aquitard system of finite length is presented. The analytical solution assumes one-dimensional horizontal flow in the aquifer and two-dimensional flow in the aquitards. Several examples are gi...
Stabilizing embedology: Geometry-preserving delay-coordinate maps
NASA Astrophysics Data System (ADS)
Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B.; Rozell, Christopher J.
2018-02-01
Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.
Stabilizing embedology: Geometry-preserving delay-coordinate maps.
Eftekhari, Armin; Yap, Han Lun; Wakin, Michael B; Rozell, Christopher J
2018-02-01
Delay-coordinate mapping is an effective and widely used technique for reconstructing and analyzing the dynamics of a nonlinear system based on time-series outputs. The efficacy of delay-coordinate mapping has long been supported by Takens' embedding theorem, which guarantees that delay-coordinate maps use the time-series output to provide a reconstruction of the hidden state space that is a one-to-one embedding of the system's attractor. While this topological guarantee ensures that distinct points in the reconstruction correspond to distinct points in the original state space, it does not characterize the quality of this embedding or illuminate how the specific parameters affect the reconstruction. In this paper, we extend Takens' result by establishing conditions under which delay-coordinate mapping is guaranteed to provide a stable embedding of a system's attractor. Beyond only preserving the attractor topology, a stable embedding preserves the attractor geometry by ensuring that distances between points in the state space are approximately preserved. In particular, we find that delay-coordinate mapping stably embeds an attractor of a dynamical system if the stable rank of the system is large enough to be proportional to the dimension of the attractor. The stable rank reflects the relation between the sampling interval and the number of delays in delay-coordinate mapping. Our theoretical findings give guidance to choosing system parameters, echoing the tradeoff between irrelevancy and redundancy that has been heuristically investigated in the literature. Our initial result is stated for attractors that are smooth submanifolds of Euclidean space, with extensions provided for the case of strange attractors.
Random attractor of non-autonomous stochastic Boussinesq lattice system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Min, E-mail: zhaomin1223@126.com; Zhou, Shengfan, E-mail: zhoushengfan@yahoo.com
2015-09-15
In this paper, we first consider the existence of tempered random attractor for second-order non-autonomous stochastic lattice dynamical system of nonlinear Boussinesq equations effected by time-dependent coupled coefficients and deterministic forces and multiplicative white noise. Then, we establish the upper semicontinuity of random attractors as the intensity of noise approaches zero.
NASA Astrophysics Data System (ADS)
Denis-le Coarer, Florian; Quirce, Ana; Valle, Angel; Pesquera, Luis; Rodríguez, Miguel A.; Panajotov, Krassimir; Sciamanna, Marc
2018-03-01
We present experimental and theoretical results of noise-induced attractor hopping between dynamical states found in a single transverse mode vertical-cavity surface-emitting laser (VCSEL) subject to parallel optical injection. These transitions involve dynamical states with different polarizations of the light emitted by the VCSEL. We report an experimental map identifying, in the injected power-frequency detuning plane, regions where attractor hopping between two, or even three, different states occur. The transition between these behaviors is characterized by using residence time distributions. We find multistability regions that are characterized by heavy-tailed residence time distributions. These distributions are characterized by a -1.83 ±0.17 power law. Between these regions we find coherence enhancement of noise-induced attractor hopping in which transitions between states occur regularly. Simulation results show that frequency detuning variations and spontaneous emission noise play a role in causing switching between attractors. We also find attractor hopping between chaotic states with different polarization properties. In this case, simulation results show that spontaneous emission noise inherent to the VCSEL is enough to induce this hopping.
Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains
NASA Astrophysics Data System (ADS)
Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.
2004-07-01
Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Sivasubramaniam, Kiruba
This thesis makes advances in three dimensional finite element analysis of electrical machines and the quantification of their parameters and performance. The principal objectives of the thesis are: (1)the development of a stable and accurate method of nonlinear three-dimensional field computation and application to electrical machinery and devices; and (2)improvement in the accuracy of determination of performance parameters, particularly forces and torque computed from finite elements. Contributions are made in two general areas: a more efficient formulation for three dimensional finite element analysis which saves time and improves accuracy, and new post-processing techniques to calculate flux density values from a given finite element solution. A novel three-dimensional magnetostatic solution based on a modified scalar potential method is implemented. This method has significant advantages over the traditional total scalar, reduced scalar or vector potential methods. The new method is applied to a 3D geometry of an iron core inductor and a permanent magnet motor. The results obtained are compared with those obtained from traditional methods, in terms of accuracy and speed of computation. A technique which has been observed to improve force computation in two dimensional analysis using a local solution of Laplace's equation in the airgap of machines is investigated and a similar method is implemented in the three dimensional analysis of electromagnetic devices. A new integral formulation to improve force calculation from a smoother flux-density profile is also explored and implemented. Comparisons are made and conclusions drawn as to how much improvement is obtained and at what cost. This thesis also demonstrates the use of finite element analysis to analyze torque ripples due to rotor eccentricity in permanent magnet BLDC motors. A new method for analyzing torque harmonics based on data obtained from a time stepping finite element analysis of the machine is explored and implemented.
NASTRAN analysis for the Airmass Sunburst model 'C' Ultralight Aircraft
NASA Technical Reports Server (NTRS)
Verbestel, John; Smith, Howard W.
1993-01-01
The purpose of this project was to create a three dimensional NASTRAN model of the Airmass Sunburst Ultralight comparable to one made for finite element analysis. A two dimensional sample problem will be calculated by hand and by NASTRAN to make sure that NASTRAN finds similar results. A three dimensional model, similar to the one analyzed by the finite element program, will be run on NASTRAN. A comparison will be done between the NASTRAN results and the finite element program results. This study will deal mainly with the aerodynamic loads on the wing and surrounding support structure at an attack angle of 10 degrees.
An Integrated Magnetic Circuit Model and Finite Element Model Approach to Magnetic Bearing Design
NASA Technical Reports Server (NTRS)
Provenza, Andrew J.; Kenny, Andrew; Palazzolo, Alan B.
2003-01-01
A code for designing magnetic bearings is described. The code generates curves from magnetic circuit equations relating important bearing performance parameters. Bearing parameters selected from the curves by a designer to meet the requirements of a particular application are input directly by the code into a three-dimensional finite element analysis preprocessor. This means that a three-dimensional computer model of the bearing being developed is immediately available for viewing. The finite element model solution can be used to show areas of magnetic saturation and make more accurate predictions of the bearing load capacity, current stiffness, position stiffness, and inductance than the magnetic circuit equations did at the start of the design process. In summary, the code combines one-dimensional and three-dimensional modeling methods for designing magnetic bearings.
NASA Technical Reports Server (NTRS)
Balas, M. J.; Kaufman, H.; Wen, J.
1985-01-01
A command generator tracker approach to model following contol of linear distributed parameter systems (DPS) whose dynamics are described on infinite dimensional Hilbert spaces is presented. This method generates finite dimensional controllers capable of exponentially stable tracking of the reference trajectories when certain ideal trajectories are known to exist for the open loop DPS; we present conditions for the existence of these ideal trajectories. An adaptive version of this type of controller is also presented and shown to achieve (in some cases, asymptotically) stable finite dimensional control of the infinite dimensional DPS.
Navier-Stokes-Voigt Equations with Memory in 3D Lacking Instantaneous Kinematic Viscosity
NASA Astrophysics Data System (ADS)
Di Plinio, Francesco; Giorgini, Andrea; Pata, Vittorino; Temam, Roger
2018-04-01
We consider a Navier-Stokes-Voigt fluid model where the instantaneous kinematic viscosity has been completely replaced by a memory term incorporating hereditary effects, in presence of Ekman damping. Unlike the classical Navier-Stokes-Voigt system, the energy balance involves the spatial gradient of the past history of the velocity rather than providing an instantaneous control on the high modes. In spite of this difficulty, we show that our system is dissipative in the dynamical systems sense and even possesses regular global and exponential attractors of finite fractal dimension. Such features of asymptotic well-posedness in absence of instantaneous high modes dissipation appear to be unique within the realm of dynamical systems arising from fluid models.
On the possible operation of natural laws in ecosystems.
Woodley, Michael A
2007-01-01
In this manuscript, after a brief review of the history of typological thinking in the biological sciences from Transcendentalism to Structuralism, it is argued that natural Platonic laws may operate in ecosystems. This claim is based on two observations of law-like behaviour. Firstly, that adaptation towards specialization can be considered as a form of typological lineage degeneration, where specialized species are more vulnerable to environmental perturbation. And secondly, that the convergent recurrence of biological forms indicates that there exists a finite number of niches which in the abstract could be considered as ecological analogies to Denton's molecular Platonic moulds, operating as attractors and restricting the range of possible organismal body plans based on the physical and chemical gradients that partly define their hyper-structure.
Lp harmonic 1-forms on minimal hypersurfaces with finite index
NASA Astrophysics Data System (ADS)
Choi, Hagyun; Seo, Keomkyo
2018-07-01
Let N be a complete simply connected Riemannian manifold with sectional curvature KN satisfying -k2 ≤KN ≤ 0 for a nonzero constant k. In this paper we prove that if M is an n(≥ 3) -dimensional complete minimal hypersurface with finite index in N, then the space of Lp harmonic 1-forms on M must be finite dimensional for certain p > 0 provided the bottom of the spectrum of the Laplace operator is sufficiently large. In particular, M has finitely many ends. These results can be regarded as an extension of Li-Wang (2002).
NASA Astrophysics Data System (ADS)
Song, Huimin
In the aerospace and automotive industries, many finite element analyses use lower-dimensional finite elements such as beams, plates and shells, to simplify the modeling. These simplified models can greatly reduce the computation time and cost; however, reduced-dimensional models may introduce inaccuracies, particularly near boundaries and near portions of the structure where reduced-dimensional models may not apply. Another factor in creation of such models is that beam-like structures frequently have complex geometry, boundaries and loading conditions, which may make them unsuitable for modeling with single type of element. The goal of this dissertation is to develop a method that can accurately and efficiently capture the response of a structure by rigorous combination of a reduced-dimensional beam finite element model with a model based on full two-dimensional (2D) or three-dimensional (3D) finite elements. The first chapter of the thesis gives the background of the present work and some related previous work. The second chapter is focused on formulating a system of equations that govern the joining of a 2D model with a beam model for planar deformation. The essential aspect of this formulation is to find the transformation matrices to achieve deflection and load continuity on the interface. Three approaches are provided to obtain the transformation matrices. An example based on joining a beam to a 2D finite element model is examined, and the accuracy of the analysis is studied by comparing joint results with the full 2D analysis. The third chapter is focused on formulating the system of equations for joining a beam to a 3D finite element model for static and free-vibration problems. The transition between the 3D elements and beam elements is achieved by use of the stress recovery technique of the variational-asymptotic method as implemented in VABS (the Variational Asymptotic Beam Section analysis). The formulations for an interface transformation matrix and the generalized Timoshenko beam are discussed in this chapter. VABS is also used to obtain the beam constitutive properties and warping functions for stress recovery. Several 3D-beam joint examples are presented to show the convergence and accuracy of the analysis. Accuracy is accessed by comparing the joint results with the full 3D analysis. The fourth chapter provides conclusions from present studies and recommendations for future work.
Attractor controllability of Boolean networks by flipping a subset of their nodes
NASA Astrophysics Data System (ADS)
Rafimanzelat, Mohammad Reza; Bahrami, Fariba
2018-04-01
The controllability analysis of Boolean networks (BNs), as models of biomolecular regulatory networks, has drawn the attention of researchers in recent years. In this paper, we aim at governing the steady-state behavior of BNs using an intervention method which can easily be applied to most real system, which can be modeled as BNs, particularly to biomolecular regulatory networks. To this end, we introduce the concept of attractor controllability of a BN by flipping a subset of its nodes, as the possibility of making a BN converge from any of its attractors to any other one, by one-time flipping members of a subset of BN nodes. Our approach is based on the algebraic state-space representation of BNs using semi-tensor product of matrices. After introducing some new matrix tools, we use them to derive necessary and sufficient conditions for the attractor controllability of BNs. A forward search algorithm is then suggested to identify the minimal perturbation set for attractor controllability of a BN. Next, a lower bound is derived for the cardinality of this set. Two new indices are also proposed for quantifying the attractor controllability of a BN and the influence of each network variable on the attractor controllability of the network and the relationship between them is revealed. Finally, we confirm the efficiency of the proposed approach by applying it to the BN models of some real biomolecular networks.
Vanishing of local non-Gaussianity in canonical single field inflation
NASA Astrophysics Data System (ADS)
Bravo, Rafael; Mooij, Sander; Palma, Gonzalo A.; Pradenas, Bastián
2018-05-01
We study the production of observable primordial local non-Gaussianity in two opposite regimes of canonical single field inflation: attractor (standard single field slow-roll inflation) and non attractor (ultra slow-roll inflation). In the attractor regime, the standard derivation of the bispectrum's squeezed limit using co-moving coordinates gives the well known Maldacena's consistency relation fNL = 5 (1‑ns) / 12. On the other hand, in the non-attractor regime, the squeezed limit offers a substantial violation of this relation given by fNL = 5/2. In this work we argue that, independently of whether inflation is attractor or non-attractor, the size of the observable primordial local non-Gaussianity is predicted to be fNLobs = 0 (a result that was already understood to hold in the case of attractor models). To show this, we follow the use of the so-called Conformal Fermi Coordinates (CFC), recently introduced in the literature. These coordinates parametrize the local environment of inertial observers in a perturbed FRW spacetime, allowing one to identify and compute gauge invariant quantities, such as n-point correlation functions. Concretely, we find that during inflation, after all the modes have exited the horizon, the squeezed limit of the 3-point correlation function of curvature perturbations vanishes in the CFC frame, regardless of the inflationary regime. We argue that such a cancellation should persist after inflation ends.
NASA Technical Reports Server (NTRS)
Baker, A. J.
1974-01-01
The finite-element method is used to establish a numerical solution algorithm for the Navier-Stokes equations for two-dimensional flows of a viscous compressible fluid. Numerical experiments confirm the advection property for the finite-element equivalent of the nonlinear convection term for both unidirectional and recirculating flowfields. For linear functionals, the algorithm demonstrates good accuracy using coarse discretizations and h squared convergence with discretization refinement.
NASA Technical Reports Server (NTRS)
Barth, Timothy J.
2014-01-01
Simulation codes often utilize finite-dimensional approximation resulting in numerical error. Some examples include, numerical methods utilizing grids and finite-dimensional basis functions, particle methods using a finite number of particles. These same simulation codes also often contain sources of uncertainty, for example, uncertain parameters and fields associated with the imposition of initial and boundary data,uncertain physical model parameters such as chemical reaction rates, mixture model parameters, material property parameters, etc.
Electromagnetic density of modes for a finite-size three-dimensional structure.
D'Aguanno, Giuseppe; Mattiucci, Nadia; Centini, Marco; Scalora, Michael; Bloemer, Mark J
2004-05-01
The concept of the density of modes has been lacking a precise mathematical definition for a finite-size structure. With the explosive growth in the fabrication of photonic crystals and nanostructures, which are inherently finite in size, a workable definition is imperative. We give a simple and physically intuitive definition of the electromagnetic density of modes based on the Green's function for a generic three-dimensional open cavity filled with a linear, isotropic, dielectric material.
Probabilistic Learning by Rodent Grid Cells
Cheung, Allen
2016-01-01
Mounting evidence shows mammalian brains are probabilistic computers, but the specific cells involved remain elusive. Parallel research suggests that grid cells of the mammalian hippocampal formation are fundamental to spatial cognition but their diverse response properties still defy explanation. No plausible model exists which explains stable grids in darkness for twenty minutes or longer, despite being one of the first results ever published on grid cells. Similarly, no current explanation can tie together grid fragmentation and grid rescaling, which show very different forms of flexibility in grid responses when the environment is varied. Other properties such as attractor dynamics and grid anisotropy seem to be at odds with one another unless additional properties are assumed such as a varying velocity gain. Modelling efforts have largely ignored the breadth of response patterns, while also failing to account for the disastrous effects of sensory noise during spatial learning and recall, especially in darkness. Here, published electrophysiological evidence from a range of experiments are reinterpreted using a novel probabilistic learning model, which shows that grid cell responses are accurately predicted by a probabilistic learning process. Diverse response properties of probabilistic grid cells are statistically indistinguishable from rat grid cells across key manipulations. A simple coherent set of probabilistic computations explains stable grid fields in darkness, partial grid rescaling in resized arenas, low-dimensional attractor grid cell dynamics, and grid fragmentation in hairpin mazes. The same computations also reconcile oscillatory dynamics at the single cell level with attractor dynamics at the cell ensemble level. Additionally, a clear functional role for boundary cells is proposed for spatial learning. These findings provide a parsimonious and unified explanation of grid cell function, and implicate grid cells as an accessible neuronal population readout of a set of probabilistic spatial computations. PMID:27792723
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, Wai Lim; Girvan, Michelle; Ott, Edward
In this paper, we study dynamical systems in which a large number N of identical Landau-Stuart oscillators are globally coupled via a mean-field. Previously, it has been observed that this type of system can exhibit a variety of different dynamical behaviors. These behaviors include time periodic cluster states in which each oscillator is in one of a small number of groups for which all oscillators in each group have the same state which is different from group to group, as well as a behavior in which all oscillators have different states and the macroscopic dynamics of the mean field ismore » chaotic. We argue that this second type of behavior is “extensive” in the sense that the chaotic attractor in the full phase space of the system has a fractal dimension that scales linearly with N and that the number of positive Lyapunov exponents of the attractor also scales linearly with N. An important focus of this paper is the transition between cluster states and extensive chaos as the system is subjected to slow adiabatic parameter change. We observe discontinuous transitions between the cluster states (which correspond to low dimensional dynamics) and the extensively chaotic states. Furthermore, examining the cluster state, as the system approaches the discontinuous transition to extensive chaos, we find that the oscillator population distribution between the clusters continually evolves so that the cluster state is always marginally stable. This behavior is used to reveal the mechanism of the discontinuous transition. We also apply the Kaplan-Yorke formula to study the fractal structure of the extensively chaotic attractors.« less
Bifurcation from an invariant to a non-invariant attractor
NASA Astrophysics Data System (ADS)
Mandal, D.
2016-12-01
Switching dynamical systems are very common in many areas of physics and engineering. We consider a piecewise linear map that periodically switches between more than one different functional forms. We show that in such systems it is possible to have a border collision bifurcation where the system transits from an invariant attractor to a non-invariant attractor.
Alfvén Turbulence Driven by High-Dimensional Interior Crisis in the Solar Wind
NASA Astrophysics Data System (ADS)
Chian, A. C.-L.; Rempel, E. L.; Macau, E. E. N.; Rosa, R. R.; Christiansen, F.
2003-09-01
Alfvén intermittent turbulence has been observed in the solar wind. It has been previously shown that the interplanetary Alfvén intermittent turbulence can appear due to a low-dimensional temporal chaos [1]. In this paper, we study the nonlinear spatiotemporal dynamics of Alfvén waves governed by the Kuramoto-Sivashinsky equation which describes the phase evolution of a large-amplitude Alfvén wave. We investigate the Alfvén turbulence driven by a high-dimensional interior crisis, which is a global bifurcation caused by the collision of a chaotic attractor with an unstable periodic orbit. This nonlinear phenomenon is analyzed using the numerical solutions of the model equation. The identification of the unstable periodic orbits and their invariant manifolds is fundamental for understanding the instability, chaos and turbulence in complex systems such as the solar wind plasma. The high-dimensional dynamical system approach to space environment turbulence developed in this paper can improve our interpretation of the origin and the nature of Alfvén turbulence observed in the solar wind.
This manual describes a two-dimensional, finite element model for coupled multiphase flow and multicomponent transport in planar or radially symmetric vertical sections. low and transport of three fluid phases, including water, nonaqueous phase liquid (NAPL), and gas are consider...
The Ehrenfest force field: Topology and consequences for the definition of an atom in a molecule.
Martín Pendás, A; Hernández-Trujillo, J
2012-10-07
The Ehrenfest force is the force acting on the electrons in a molecule due to the presence of the other electrons and the nuclei. There is an associated force field in three-dimensional space that is obtained by the integration of the corresponding Hermitian quantum force operator over the spin coordinates of all of the electrons and the space coordinates of all of the electrons but one. This paper analyzes the topology induced by this vector field and its consequences for the definition of molecular structure and of an atom in a molecule. Its phase portrait reveals: that the nuclei are attractors of the Ehrenfest force, the existence of separatrices yielding a dense partitioning of three-dimensional space into disjoint regions, and field lines connecting the attractors through these separatrices. From the numerical point of view, when the Ehrenfest force field is obtained as minus the divergence of the kinetic stress tensor, the induced topology was found to be highly sensitive to choice of gaussian basis sets at long range. Even the use of large split valence and highly uncontracted basis sets can yield spurious critical points that may alter the number of attraction basins. Nevertheless, at short distances from the nuclei, in general, the partitioning of three-dimensional space with the Ehrenfest force field coincides with that induced by the gradient field of the electron density. However, exceptions are found in molecules where the electron density yields results in conflict with chemical intuition. In these cases, the molecular graphs of the Ehrenfest force field reveal the expected atomic connectivities. This discrepancy between the definition of an atom in a molecule between the two vector fields casts some doubts on the physical meaning of the integration of Ehrenfest forces over the basins of the electron density.
Non-linguistic Conditions for Causativization as a Linguistic Attractor.
Nichols, Johanna
2017-01-01
An attractor, in complex systems theory, is any state that is more easily or more often entered or acquired than departed or lost; attractor states therefore accumulate more members than non-attractors, other things being equal. In the context of language evolution, linguistic attractors include sounds, forms, and grammatical structures that are prone to be selected when sociolinguistics and language contact make it possible for speakers to choose between competing forms. The reasons why an element is an attractor are linguistic (auditory salience, ease of processing, paradigm structure, etc.), but the factors that make selection possible and propagate selected items through the speech community are non-linguistic. This paper uses the consonants in personal pronouns to show what makes for an attractor and how selection and diffusion work, then presents a survey of several language families and areas showing that the derivational morphology of pairs of verbs like fear and frighten , or Turkish korkmak 'fear, be afraid' and korkutmak 'frighten, scare', or Finnish istua 'sit' and istutta 'seat (someone)', or Spanish sentarse 'sit down' and sentar 'seat (someone)' is susceptible to selection. Specifically, the Turkish and Finnish pattern, where 'seat' is derived from 'sit' by addition of a suffix-is an attractor and a favored target of selection. This selection occurs chiefly in sociolinguistic contexts of what is defined here as linguistic symbiosis, where languages mingle in speech, which in turn is favored by certain demographic, sociocultural, and environmental factors here termed frontier conditions. Evidence is surveyed from northern Eurasia, the Caucasus, North and Central America, and the Pacific and from both modern and ancient languages to raise the hypothesis that frontier conditions and symbiosis favor causativization.
Non-linguistic Conditions for Causativization as a Linguistic Attractor
Nichols, Johanna
2018-01-01
An attractor, in complex systems theory, is any state that is more easily or more often entered or acquired than departed or lost; attractor states therefore accumulate more members than non-attractors, other things being equal. In the context of language evolution, linguistic attractors include sounds, forms, and grammatical structures that are prone to be selected when sociolinguistics and language contact make it possible for speakers to choose between competing forms. The reasons why an element is an attractor are linguistic (auditory salience, ease of processing, paradigm structure, etc.), but the factors that make selection possible and propagate selected items through the speech community are non-linguistic. This paper uses the consonants in personal pronouns to show what makes for an attractor and how selection and diffusion work, then presents a survey of several language families and areas showing that the derivational morphology of pairs of verbs like fear and frighten, or Turkish korkmak ‘fear, be afraid’ and korkutmak ‘frighten, scare’, or Finnish istua ‘sit’ and istutta ‘seat (someone)’, or Spanish sentarse ‘sit down’ and sentar ‘seat (someone)’ is susceptible to selection. Specifically, the Turkish and Finnish pattern, where ‘seat’ is derived from ‘sit’ by addition of a suffix—is an attractor and a favored target of selection. This selection occurs chiefly in sociolinguistic contexts of what is defined here as linguistic symbiosis, where languages mingle in speech, which in turn is favored by certain demographic, sociocultural, and environmental factors here termed frontier conditions. Evidence is surveyed from northern Eurasia, the Caucasus, North and Central America, and the Pacific and from both modern and ancient languages to raise the hypothesis that frontier conditions and symbiosis favor causativization. PMID:29410636
NASA Astrophysics Data System (ADS)
Takamatsu, Atsuko
2006-11-01
Three-oscillator systems with plasmodia of true slime mold, Physarum polycephalum, which is an oscillatory amoeba-like unicellular organism, were experimentally constructed and their spatio-temporal patterns were investigated. Three typical spatio-temporal patterns were found: rotation ( R), partial in-phase ( PI), and partial anti-phase with double frequency ( PA). In pattern R, phase differences between adjacent oscillators were almost 120 ∘. In pattern PI, two oscillators were in-phase and the third oscillator showed anti-phase against the two oscillators. In pattern PA, two oscillators showed anti-phase and the third oscillator showed frequency doubling oscillation with small amplitude. Actually each pattern is not perfectly stable but quasi-stable. Interestingly, the system shows spontaneous switching among the multiple quasi-stable patterns. Statistical analyses revealed a characteristic in the residence time of each pattern: the histograms seem to have Gamma-like distribution form but with a sharp peak and a tail on the side of long period. That suggests the attractor of this system has complex structure composed of at least three types of sub-attractors: a “Gamma attractor”-involved with several Poisson processes, a “deterministic attractor”-the residence time is deterministic, and a “stable attractor”-each pattern is stable. When the coupling strength was small, only the Gamma attractor was observed and switching behavior among patterns R, PI, and PA almost always via an asynchronous pattern named O. A conjecture is as follows: Internal/external noise exposes each pattern of R, PI, and PA coexisting around bifurcation points: That is observed as the Gamma attractor. As coupling strength increases, the deterministic attractor appears then followed by the stable attractor, always accompanied with the Gamma attractor. Switching behavior could be caused by regular existence of the Gamma attractor.
Attractor neural networks with resource-efficient synaptic connectivity
NASA Astrophysics Data System (ADS)
Pehlevan, Cengiz; Sengupta, Anirvan
Memories are thought to be stored in the attractor states of recurrent neural networks. Here we explore how resource constraints interplay with memory storage function to shape synaptic connectivity of attractor networks. We propose that given a set of memories, in the form of population activity patterns, the neural circuit choses a synaptic connectivity configuration that minimizes a resource usage cost. We argue that the total synaptic weight (l1-norm) in the network measures the resource cost because synaptic weight is correlated with synaptic volume, which is a limited resource, and is proportional to neurotransmitter release and post-synaptic current, both of which cost energy. Using numerical simulations and replica theory, we characterize optimal connectivity profiles in resource-efficient attractor networks. Our theory explains several experimental observations on cortical connectivity profiles, 1) connectivity is sparse, because synapses are costly, 2) bidirectional connections are overrepresented and 3) are stronger, because attractor states need strong recurrence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saiki, Yoshitaka, E-mail: yoshi.saiki@r.hit-u.ac.jp; Yamada, Michio; Chian, Abraham C.-L.
The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originatemore » from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs.« less
Multistability in Chua's circuit with two stable node-foci
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, B. C.; Wang, N.; Xu, Q.
2016-04-15
Only using one-stage op-amp based negative impedance converter realization, a simplified Chua's diode with positive outer segment slope is introduced, based on which an improved Chua's circuit realization with more simpler circuit structure is designed. The improved Chua's circuit has identical mathematical model but completely different nonlinearity to the classical Chua's circuit, from which multiple attractors including coexisting point attractors, limit cycle, double-scroll chaotic attractor, or coexisting chaotic spiral attractors are numerically simulated and experimentally captured. Furthermore, with dimensionless Chua's equations, the dynamical properties of the Chua's system are studied including equilibrium and stability, phase portrait, bifurcation diagram, Lyapunov exponentmore » spectrum, and attraction basin. The results indicate that the system has two symmetric stable nonzero node-foci in global adjusting parameter regions and exhibits the unusual and striking dynamical behavior of multiple attractors with multistability.« less
Saiki, Yoshitaka; Yamada, Michio; Chian, Abraham C-L; Miranda, Rodrigo A; Rempel, Erico L
2015-10-01
The unstable periodic orbits (UPOs) embedded in a chaotic attractor after an attractor merging crisis (MC) are classified into three subsets, and employed to reconstruct chaotic saddles in the Kuramoto-Sivashinsky equation. It is shown that in the post-MC regime, the two chaotic saddles evolved from the two coexisting chaotic attractors before crisis can be reconstructed from the UPOs embedded in the pre-MC chaotic attractors. The reconstruction also involves the detection of the mediating UPO responsible for the crisis, and the UPOs created after crisis that fill the gap regions of the chaotic saddles. We show that the gap UPOs originate from saddle-node, period-doubling, and pitchfork bifurcations inside the periodic windows in the post-MC chaotic region of the bifurcation diagram. The chaotic attractor in the post-MC regime is found to be the closure of gap UPOs.
Interactive mixture of inhomogeneous dark fluids driven by dark energy: a dynamical system analysis
NASA Astrophysics Data System (ADS)
Izquierdo, Germán; Blanquet-Jaramillo, Roberto C.; Sussman, Roberto A.
2018-03-01
We examine the evolution of an inhomogeneous mixture of non-relativistic pressureless cold dark matter (CDM), coupled to dark energy (DE) characterised by the equation of state parameter w<-1/3, with the interaction term proportional to the DE density. This coupled mixture is the source of a spherically symmetric Lemaître-Tolman-Bondi (LTB) metric admitting an asymptotic Friedman-Lemaître-Robertson-Walker (FLRW) background. Einstein's equations reduce to a 5-dimensional autonomous dynamical system involving quasi-local variables related to suitable averages of covariant scalars and their fluctuations. The phase space evolution around the critical points (past/future attractors and five saddles) is examined in detail. For all parameter values and both directions of energy flow (CDM to DE and DE to CDM) the phase space trajectories are compatible with a physically plausible early cosmic times behaviour near the past attractor. This result compares favourably with mixtures with interaction driven by the CDM density, whose past evolution is unphysical for DE to CDM energy flow. Numerical examples are provided describing the evolution of an initial profile that can be associated with idealised structure formation scenarios.
Jiang, T; Jiang, C-Y; Shu, J-H; Xu, Y-J
2017-07-10
The molecular mechanism of nasopharyngeal carcinoma (NPC) is poorly understood and effective therapeutic approaches are needed. This research aimed to excavate the attractor modules involved in the progression of NPC and provide further understanding of the underlying mechanism of NPC. Based on the gene expression data of NPC, two specific protein-protein interaction networks for NPC and control conditions were re-weighted using Pearson correlation coefficient. Then, a systematic tracking of candidate modules was conducted on the re-weighted networks via cliques algorithm, and a total of 19 and 38 modules were separately identified from NPC and control networks, respectively. Among them, 8 pairs of modules with similar gene composition were selected, and 2 attractor modules were identified via the attract method. Functional analysis indicated that these two attractor modules participate in one common bioprocess of cell division. Based on the strategy of integrating systemic module inference with the attract method, we successfully identified 2 attractor modules. These attractor modules might play important roles in the molecular pathogenesis of NPC via affecting the bioprocess of cell division in a conjunct way. Further research is needed to explore the correlations between cell division and NPC.
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
NASA Astrophysics Data System (ADS)
Lonsdale, R. D.; Webster, R.
This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.
Bearing-Load Modeling and Analysis Study for Mechanically Connected Structures
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2006-01-01
Bearing-load response for a pin-loaded hole is studied within the context of two-dimensional finite element analyses. Pin-loaded-hole configurations are representative of mechanically connected structures, such as a stiffener fastened to a rib of an isogrid panel, that are idealized as part of a larger structural component. Within this context, the larger structural component may be idealized as a two-dimensional shell finite element model to identify load paths and high stress regions. Finite element modeling and analysis aspects of a pin-loaded hole are considered in the present paper including the use of linear and nonlinear springs to simulate the pin-bearing contact condition. Simulating pin-connected structures within a two-dimensional finite element analysis model using nonlinear spring or gap elements provides an effective way for accurate prediction of the local effective stress state and peak forces.
NASA Technical Reports Server (NTRS)
Sohn, Kiho D.; Ip, Shek-Se P.
1988-01-01
Three-dimensional finite element models were generated and transferred into three-dimensional finite difference models to perform transient thermal analyses for the SSME high pressure fuel turbopump's first stage nozzles and rotor blades. STANCOOL was chosen to calculate the heat transfer characteristics (HTCs) around the airfoils, and endwall effects were included at the intersections of the airfoils and platforms for the steady-state boundary conditions. Free and forced convection due to rotation effects were also considered in hollow cores. Transient HTCs were calculated by taking ratios of the steady-state values based on the flow rates and fluid properties calculated at each time slice. Results are presented for both transient plots and three-dimensional color contour isotherm plots; they were also converted into universal files to be used for FEM stress analyses.
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.; Collins, Jeffery D.
1991-01-01
A review of a hybrid finite element-boundary integral formulation for scattering and radiation by two- and three-dimensional composite structures is presented. In contrast to other hybrid techniques involving the finite element method, the proposed one is in principle exact and can be implemented using a low O(N) storage. This is of particular importance for large scale applications and is a characteristic of the boundary chosen to terminate the finite element mesh, usually as close to the structure as possible. A certain class of these boundaries lead to convolutional boundary integrals which can be evaluated via the fast Fourier transform (FFT) without a need to generate a matrix; thus, retaining the O(N) storage requirement. The paper begins with a general description of the method. A number of two- and three-dimensional applications are then given, including numerical computations which demonstrate the method's accuracy, efficiency, and capability.
Sato, Y; Wadamoto, M; Tsuga, K; Teixeira, E R
1999-04-01
More validity of finite element analysis in implant biomechanics requires element downsizing. However, excess downsizing needs computer memory and calculation time. To investigate the effectiveness of element downsizing on the construction of a three-dimensional finite element bone trabeculae model, with different element sizes (600, 300, 150 and 75 microm) models were constructed and stress induced by vertical 10 N loading was analysed. The difference in von Mises stress values between the models with 600 and 300 microm element sizes was larger than that between 300 and 150 microm. On the other hand, no clear difference of stress values was detected among the models with 300, 150 and 75 microm element sizes. Downsizing of elements from 600 to 300 microm is suggested to be effective in the construction of a three-dimensional finite element bone trabeculae model for possible saving of computer memory and calculation time in the laboratory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McEneaney, William M.
2004-08-15
Stochastic games under imperfect information are typically computationally intractable even in the discrete-time/discrete-state case considered here. We consider a problem where one player has perfect information.A function of a conditional probability distribution is proposed as an information state.In the problem form here, the payoff is only a function of the terminal state of the system,and the initial information state is either linear ora sum of max-plus delta functions.When the initial information state belongs to these classes, its propagation is finite-dimensional.The state feedback value function is also finite-dimensional,and obtained via dynamic programming,but has a nonstandard form due to the necessity ofmore » an expanded state variable.Under a saddle point assumption,Certainty Equivalence is obtained and the proposed function is indeed an information state.« less
Simultaneous Control of Multispecies Particle Transport and Segregation in Driven Lattices
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Aritra K.; Liebchen, Benno; Schmelcher, Peter
2018-05-01
We provide a generic scheme to separate the particles of a mixture by their physical properties like mass, friction, or size. The scheme employs a periodically shaken two-dimensional dissipative lattice and hinges on a simultaneous transport of particles in species-specific directions. This selective transport is achieved by controlling the late-time nonlinear particle dynamics, via the attractors embedded in the phase space and their bifurcations. To illustrate the spectrum of possible applications of the scheme, we exemplarily demonstrate the separation of polydisperse colloids and mixtures of cold thermal alkali atoms in optical lattices.
Higher-dimensional attractors with absolutely continuous invariant probability
NASA Astrophysics Data System (ADS)
Bocker, Carlos; Bortolotti, Ricardo
2018-05-01
Consider a dynamical system given by , where E is a linear expanding map of , C is a linear contracting map of and f is in . We provide sufficient conditions for E that imply the existence of an open set of pairs for which the corresponding dynamic T admits a unique absolutely continuous invariant probability. A geometrical characteristic of transversality between self-intersections of images of is present in the dynamic of the maps in . In addition, we give a condition between E and C under which it is possible to perturb f to obtain a pair in .
NASA Technical Reports Server (NTRS)
Ransom, Jonathan B.
2002-01-01
A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.
Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ortega, Mario Ivan; Drumm, Clifton R.
Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.
Three-dimensional compact explicit-finite difference time domain scheme with density variation
NASA Astrophysics Data System (ADS)
Tsuchiya, Takao; Maruta, Naoki
2018-07-01
In this paper, the density variation is implemented in the three-dimensional compact-explicit finite-difference time-domain (CE-FDTD) method. The formulation is first developed based on the continuity equation and the equation of motion, which include the density. Some numerical demonstrations are performed for the three-dimensional sound wave propagation in a two density layered medium. The numerical results are compared with the theoretical results to verify the proposed formulation.
Wang, Q; Yang, Y; Fei, Q; Li, D; Li, J J; Meng, H; Su, N; Fan, Z H; Wang, B Q
2017-06-06
Objective: To build a three-dimensional finite element models of a modified posterior cervical single open-door laminoplasty with short-segmental lateral mass screws fusion. Methods: The C(2)-C(7) segmental data were obtained from computed tomography (CT) scans of a male patient with cervical spondylotic myelopathy and spinal stenosis.Three-dimensional finite element models of a modified cervical single open-door laminoplasty (before and after surgery) were constructed by the combination of software package MIMICS, Geomagic and ABAQUS.The models were composed of bony vertebrae, articulating facets, intervertebral disc and associated ligaments.The loads of moments 1.5Nm at different directions (flexion, extension, lateral bending and axial rotation)were applied at preoperative model to calculate intersegmental ranges of motion.The results were compared with the previous studies to verify the validation of the models. Results: Three-dimensional finite element models of the modified cervical single open- door laminoplasty had 102258 elements (preoperative model) and 161 892 elements (postoperative model) respectively, including C(2-7) six bony vertebraes, C(2-3)-C(6-7) five intervertebral disc, main ligaments and lateral mass screws.The intersegmental responses at the preoperative model under the loads of moments 1.5 Nm at different directions were similar to the previous published data. Conclusion: Three-dimensional finite element models of the modified cervical single open- door laminoplasty were successfully established and had a good biological fidelity, which can be used for further study.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Zapp, John; Hsa, Chang-Yu; Volakis, John L.
1990-01-01
An extension of a two dimensional formulation is presented for a three dimensional body of revolution. With the introduction of a Fourier expansion of the vector electric and magnetic fields, a coupled two dimensional system is generated and solved via the finite element method. An exact boundary condition is employed to terminate the mesh and the fast fourier transformation (FFT) is used to evaluate the boundary integrals for low O(n) memory demand when an iterative solution algorithm is used. By virtue of the finite element method, the algorithm is applicable to structures of arbitrary material composition. Several improvements to the two dimensional algorithm are also described. These include: (1) modifications for terminating the mesh at circular boundaries without distorting the convolutionality of the boundary integrals; (2) the development of nonproprietary mesh generation routines for two dimensional applications; (3) the development of preprocessors for interfacing SDRC IDEAS with the main algorithm; and (4) the development of post-processing algorithms based on the public domain package GRAFIC to generate two and three dimensional gray level and color field maps.
Explorations in fuzzy physics and non-commutative geometry
NASA Astrophysics Data System (ADS)
Kurkcuoglu, Seckin
Fuzzy spaces arise as discrete approximations to continuum manifolds. They are usually obtained through quantizing coadjoint orbits of compact Lie groups and they can be described in terms of finite-dimensional matrix algebras, which for large matrix sizes approximate the algebra of functions of the limiting continuum manifold. Their ability to exactly preserve the symmetries of their parent manifolds is especially appealing for physical applications. Quantum Field Theories are built over them as finite-dimensional matrix models preserving almost all the symmetries of their respective continuum models. In this dissertation, we first focus our attention to the study of fuzzy supersymmetric spaces. In this regard, we obtain the fuzzy supersphere S2,2F through quantizing the supersphere, and demonstrate that it has exact supersymmetry. We derive a finite series formula for the *-product of functions over S2,2F and analyze the differential geometric information encoded in this formula. Subsequently, we show that quantum field theories on S2,2F are realized as finite-dimensional supermatrix models, and in particular we obtain the non-linear sigma model over the fuzzy supersphere by constructing the fuzzy supersymmetric extensions of a certain class of projectors. We show that this model too, is realized as a finite-dimensional supermatrix model with exact supersymmetry. Next, we show that fuzzy spaces have a generalized Hopf algebra structure. By focusing on the fuzzy sphere, we establish that there is a *-homomorphism from the group algebra SU(2)* of SU(2) to the fuzzy sphere. Using this and the canonical Hopf algebra structure of SU(2)* we show that both the fuzzy sphere and their direct sum are Hopf algebras. Using these results, we discuss processes in which a fuzzy sphere with angular momenta J splits into fuzzy spheres with angular momenta K and L. Finally, we study the formulation of Chern-Simons (CS) theory on an infinite strip of the non-commutative plane. We develop a finite-dimensional matrix model, whose large size limit approximates the CS theory on the infinite strip, and show that there are edge observables in this model obeying a finite-dimensional Lie algebra, that resembles the Kac-Moody algebra.
Three-dimensional finite element modelling of muscle forces during mastication.
Röhrle, Oliver; Pullan, Andrew J
2007-01-01
This paper presents a three-dimensional finite element model of human mastication. Specifically, an anatomically realistic model of the masseter muscles and associated bones is used to investigate the dynamics of chewing. A motion capture system is used to track the jaw motion of a subject chewing standard foods. The three-dimensional nonlinear deformation of the masseter muscles are calculated via the finite element method, using the jaw motion data as boundary conditions. Motion-driven muscle activation patterns and a transversely isotropic material law, defined in a muscle-fibre coordinate system, are used in the calculations. Time-force relationships are presented and analysed with respect to different tasks during mastication, e.g. opening, closing, and biting, and are also compared to a more traditional one-dimensional model. The results strongly suggest that, due to the complex arrangement of muscle force directions, modelling skeletal muscles as conventional one-dimensional lines of action might introduce a significant source of error.
Wu, Zhi-fang; Lei, Yong-hua; Li, Wen-jie; Liao, Sheng-hui; Zhao, Zi-jin
2013-02-01
To explore an effective method to construct and validate a finite element model of the unilateral cleft lip and palate(UCLP) craniomaxillary complex with sutures, which could be applied in further three-dimensional finite element analysis (FEA). One male patient aged 9 with left complete lip and palate cleft was selected and CT scan was taken at 0.75mm intervals on the skull. The CT data was saved in Dicom format, which was, afterwards, imported into Software Mimics 10.0 to generate a three-dimensional anatomic model. Then Software Geomagic Studio 12.0 was used to match, smoothen and transfer the anatomic model into a CAD model with NURBS patches. Then, 12 circum-maxillary sutures were integrated into the CAD model by Solidworks (2011 version). Finally meshing by E-feature Biomedical Modeler was done and a three-dimensional finite element model with sutures was obtained. A maxillary protraction force (500 g per side, 20° downward and forward from the occlusal plane) was applied. Displacement and stress distribution of some important craniofacial structures were measured and compared with the results of related researches in the literature. A three-dimensional finite element model of UCLP craniomaxillary complex with 12 sutures was established from the CT scan data. This simulation model consisted of 206 753 individual elements with 260 662 nodes, which was a more precise simulation and a better representation of human craniomaxillary complex than the formerly available FEA models. By comparison, this model was proved to be valid. It is an effective way to establish the three-dimensional finite element model of UCLP cranio-maxillary complex with sutures from CT images with the help of the following softwares: Mimics 10.0, Geomagic Studio 12.0, Solidworks and E-feature Biomedical Modeler.
Understanding the Role of Chaos Theory in Military Decision Making
2009-01-01
Because chaos is bounded, planners can create allowances for system noise. The existence of strange and normal chaotic attractors helps explain why... strange and normal chaotic attractors helps explain why system turbulence is uneven or concentrated around specific solution regions. Finally, the...give better understanding of the implications of chaos: sensitivity to initial conditions, strange attractors , and constants of motion. By showing the
On infinite-dimensional state spaces
NASA Astrophysics Data System (ADS)
Fritz, Tobias
2013-05-01
It is well known that the canonical commutation relation [x, p] = i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p] = i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context from which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V-1U2V = U3, then finite-dimensionality entails the relation UV-1UV = V-1UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V-1U2V = U3 holds only up to ɛ and then yields a lower bound on the dimension.
Paucity of attractors in nonlinear systems driven with complex signals.
Pethel, Shawn D; Blakely, Jonathan N
2011-04-01
We study the probability of multistability in a quadratic map driven repeatedly by a random signal of length N, where N is taken as a measure of the signal complexity. We first establish analytically that the number of coexisting attractors is bounded above by N. We then numerically estimate the probability p of a randomly chosen signal resulting in a multistable response as a function of N. Interestingly, with increasing drive signal complexity the system exhibits a paucity of attractors. That is, almost any drive signal beyond a certain complexity level will result in a single attractor response (p=0). This mechanism may play a role in allowing sensitive multistable systems to respond consistently to external influences.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.
In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct linkmore » between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.« less
A Numerical Approximation Framework for the Stochastic Linear Quadratic Regulator on Hilbert Spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levajković, Tijana, E-mail: tijana.levajkovic@uibk.ac.at, E-mail: t.levajkovic@sf.bg.ac.rs; Mena, Hermann, E-mail: hermann.mena@uibk.ac.at; Tuffaha, Amjad, E-mail: atufaha@aus.edu
We present an approximation framework for computing the solution of the stochastic linear quadratic control problem on Hilbert spaces. We focus on the finite horizon case and the related differential Riccati equations (DREs). Our approximation framework is concerned with the so-called “singular estimate control systems” (Lasiecka in Optimal control problems and Riccati equations for systems with unbounded controls and partially analytic generators: applications to boundary and point control problems, 2004) which model certain coupled systems of parabolic/hyperbolic mixed partial differential equations with boundary or point control. We prove that the solutions of the approximate finite-dimensional DREs converge to the solutionmore » of the infinite-dimensional DRE. In addition, we prove that the optimal state and control of the approximate finite-dimensional problem converge to the optimal state and control of the corresponding infinite-dimensional problem.« less
NASA Astrophysics Data System (ADS)
Zhu, Zheng; Ochoa, Andrew J.; Katzgraber, Helmut G.
2018-05-01
The search for problems where quantum adiabatic optimization might excel over classical optimization techniques has sparked a recent interest in inducing a finite-temperature spin-glass transition in quasiplanar topologies. We have performed large-scale finite-temperature Monte Carlo simulations of a two-dimensional square-lattice bimodal spin glass with next-nearest ferromagnetic interactions claimed to exhibit a finite-temperature spin-glass state for a particular relative strength of the next-nearest to nearest interactions [Phys. Rev. Lett. 76, 4616 (1996), 10.1103/PhysRevLett.76.4616]. Our results show that the system is in a paramagnetic state in the thermodynamic limit, despite zero-temperature simulations [Phys. Rev. B 63, 094423 (2001), 10.1103/PhysRevB.63.094423] suggesting the existence of a finite-temperature spin-glass transition. Therefore, deducing the finite-temperature behavior from zero-temperature simulations can be dangerous when corrections to scaling are large.
NASA Technical Reports Server (NTRS)
Wang, R.; Demerdash, N. A.
1990-01-01
The effects of finite element grid geometries and associated ill-conditioning were studied in single medium and multi-media (air-iron) three dimensional magnetostatic field computation problems. The sensitivities of these 3D field computations to finite element grid geometries were investigated. It was found that in single medium applications the unconstrained magnetic vector potential curl-curl formulation in conjunction with first order finite elements produce global results which are almost totally insensitive to grid geometries. However, it was found that in multi-media (air-iron) applications first order finite element results are sensitive to grid geometries and consequent elemental shape ill-conditioning. These sensitivities were almost totally eliminated by means of the use of second order finite elements in the field computation algorithms. Practical examples are given in this paper to demonstrate these aspects mentioned above.
NASA Technical Reports Server (NTRS)
Vos, R. G.; Straayer, J. W.
1975-01-01
The BOPACE 3-D is a finite element computer program, which provides a general family of three-dimensional isoparametric solid elements, and includes a new algorithm for improving the efficiency of the elastic-plastic-creep solution procedure. Theoretical, user, and programmer oriented sections are presented to describe the program.
Calculation methods for compressible turbulent boundary layers, 1976
NASA Technical Reports Server (NTRS)
Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.
1977-01-01
Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
This study presents a three-dimensional explicit, finite-difference, shock-capturing numerical algorithm applied to viscous hypersonic flows in thermochemical nonequilibrium. The algorithm employs a two-temperature physical model. Equations governing the finite-rate chemical reactions are fully-coupled to the gas dynamic equations using a novel coupling technique. The new coupling method maintains stability in the explicit, finite-rate formulation while allowing relatively large global time steps. The code uses flux-vector accuracy. Comparisons with experimental data and other numerical computations verify the accuracy of the present method. The code is used to compute the three-dimensional flowfield over the Aeroassist Flight Experiment (AFE) vehicle at one of its trajectory points.
Finite state modeling of aeroelastic systems
NASA Technical Reports Server (NTRS)
Vepa, R.
1977-01-01
A general theory of finite state modeling of aerodynamic loads on thin airfoils and lifting surfaces performing completely arbitrary, small, time-dependent motions in an airstream is developed and presented. The nature of the behavior of the unsteady airloads in the frequency domain is explained, using as raw materials any of the unsteady linearized theories that have been mechanized for simple harmonic oscillations. Each desired aerodynamic transfer function is approximated by means of an appropriate Pade approximant, that is, a rational function of finite degree polynomials in the Laplace transform variable. The modeling technique is applied to several two dimensional and three dimensional airfoils. Circular, elliptic, rectangular and tapered planforms are considered as examples. Identical functions are also obtained for control surfaces for two and three dimensional airfoils.
Simulation of wave propagation in three-dimensional random media
NASA Technical Reports Server (NTRS)
Coles, William A.; Filice, J. P.; Frehlich, R. G.; Yadlowsky, M.
1993-01-01
Quantitative error analysis for simulation of wave propagation in three dimensional random media assuming narrow angular scattering are presented for the plane wave and spherical wave geometry. This includes the errors resulting from finite grid size, finite simulation dimensions, and the separation of the two-dimensional screens along the propagation direction. Simple error scalings are determined for power-law spectra of the random refractive index of the media. The effects of a finite inner scale are also considered. The spatial spectra of the intensity errors are calculated and compared to the spatial spectra of intensity. The numerical requirements for a simulation of given accuracy are determined for realizations of the field. The numerical requirements for accurate estimation of higher moments of the field are less stringent.
Least-squares finite element solutions for three-dimensional backward-facing step flow
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Hou, Lin-Jun; Lin, Tsung-Liang
1993-01-01
Comprehensive numerical solutions of the steady state incompressible viscous flow over a three-dimensional backward-facing step up to Re equals 800 are presented. The results are obtained by the least-squares finite element method (LSFEM) which is based on the velocity-pressure-vorticity formulation. The computed model is of the same size as that of Armaly's experiment. Three-dimensional phenomena are observed even at low Reynolds number. The calculated values of the primary reattachment length are in good agreement with experimental results.
NASA Astrophysics Data System (ADS)
Ohlson Timoudas, Thomas
2017-12-01
Let Φ be a quasi-periodically forced quadratic map, where the rotation constant ω is a Diophantine irrational. A strange non-chaotic attractor (SNA) is an invariant (under Φ) attracting graph of a nowhere continuous measurable function ψ from the circle {T} to [0, 1] . This paper investigates how a smooth attractor degenerates into a strange one, as a parameter \
Timing of transients: quantifying reaching times and transient behavior in complex systems
NASA Astrophysics Data System (ADS)
Kittel, Tim; Heitzig, Jobst; Webster, Kevin; Kurths, Jürgen
2017-08-01
In dynamical systems, one may ask how long it takes for a trajectory to reach the attractor, i.e. how long it spends in the transient phase. Although for a single trajectory the mathematically precise answer may be infinity, it still makes sense to compare different trajectories and quantify which of them approaches the attractor earlier. In this article, we categorize several problems of quantifying such transient times. To treat them, we propose two metrics, area under distance curve and regularized reaching time, that capture two complementary aspects of transient dynamics. The first, area under distance curve, is the distance of the trajectory to the attractor integrated over time. It measures which trajectories are ‘reluctant’, i.e. stay distant from the attractor for long, or ‘eager’ to approach it right away. Regularized reaching time, on the other hand, quantifies the additional time (positive or negative) that a trajectory starting at a chosen initial condition needs to approach the attractor as compared to some reference trajectory. A positive or negative value means that it approaches the attractor by this much ‘earlier’ or ‘later’ than the reference, respectively. We demonstrated their substantial potential for application with multiple paradigmatic examples uncovering new features.
NASA Astrophysics Data System (ADS)
Yu, Yue; Zhang, Zhengdi; Han, Xiujing
2018-03-01
In this work, we aim to demonstrate the novel routes to periodic and chaotic bursting, i.e., the different bursting dynamics via delayed pitchfork bifurcations around stable attractors, in the classical controlled Lü system. First, by computing the corresponding characteristic polynomial, we determine where some critical values about bifurcation behaviors appear in the Lü system. Moreover, the transition mechanism among different stable attractors has been introduced including homoclinic-type connections or chaotic attractors. Secondly, taking advantage of the above analytical results, we carry out a study of the mechanism for bursting dynamics in the Lü system with slowly periodic variation of certain control parameter. A distinct delayed supercritical pitchfork bifurcation behavior can be discussed when the control item passes through bifurcation points periodically. This delayed dynamical behavior may terminate at different parameter areas, which leads to different spiking modes around different stable attractors (equilibriums, limit cycles, or chaotic attractors). In particular, the chaotic attractor may appear by Shilnikov connections or chaos boundary crisis, which leads to the occurrence of impressive chaotic bursting oscillations. Our findings enrich the study of bursting dynamics and deepen the understanding of some similar sorts of delayed bursting phenomena. Finally, some numerical simulations are included to illustrate the validity of our study.
Parity bifurcations in trapped multistable phase locked exciton-polariton condensates
NASA Astrophysics Data System (ADS)
Tan, E. Z.; Sigurdsson, H.; Liew, T. C. H.
2018-02-01
We present a theoretical scheme for multistability in planar microcavity exciton-polariton condensates under nonresonant driving. Using an excitation profile resulting in a spatially patterned condensate, we observe organized phase locking which can abruptly reorganize as a result of pump induced instability made possible by nonlinear interactions. For π /2 symmetric systems this reorganization can be regarded as a parity transition and is found to be a fingerprint of multistable regimes existing over a finite range of excitation strengths. The natural degeneracy of the planar equations of motion gives rise to parity bifurcation points where the condensate, as a function of excitation intensity, bifurcates into one of two anisotropic degenerate solutions. Deterministic transitions between multistable states are made possible using controlled nonresonant pulses, perturbing the solution from one attractor to another.
Ben Abdallah, Emna; Folschette, Maxime; Roux, Olivier; Magnin, Morgan
2017-01-01
This paper addresses the problem of finding attractors in biological regulatory networks. We focus here on non-deterministic synchronous and asynchronous multi-valued networks, modeled using automata networks (AN). AN is a general and well-suited formalism to study complex interactions between different components (genes, proteins,...). An attractor is a minimal trap domain, that is, a part of the state-transition graph that cannot be escaped. Such structures are terminal components of the dynamics and take the form of steady states (singleton) or complex compositions of cycles (non-singleton). Studying the effect of a disease or a mutation on an organism requires finding the attractors in the model to understand the long-term behaviors. We present a computational logical method based on answer set programming (ASP) to identify all attractors. Performed without any network reduction, the method can be applied on any dynamical semantics. In this paper, we present the two most widespread non-deterministic semantics: the asynchronous and the synchronous updating modes. The logical approach goes through a complete enumeration of the states of the network in order to find the attractors without the necessity to construct the whole state-transition graph. We realize extensive computational experiments which show good performance and fit the expected theoretical results in the literature. The originality of our approach lies on the exhaustive enumeration of all possible (sets of) states verifying the properties of an attractor thanks to the use of ASP. Our method is applied to non-deterministic semantics in two different schemes (asynchronous and synchronous). The merits of our methods are illustrated by applying them to biological examples of various sizes and comparing the results with some existing approaches. It turns out that our approach succeeds to exhaustively enumerate on a desktop computer, in a large model (100 components), all existing attractors up to a given size (20 states). This size is only limited by memory and computation time.
Stress-intensity factor equations for cracks in three-dimensional finite bodies
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Raju, I. S.
1981-01-01
Empirical stress intensity factor equations are presented for embedded elliptical cracks, semi-elliptical surface cracks, quarter-elliptical corner cracks, semi-elliptical surface cracks at a hole, and quarter-elliptical corner cracks at a hole in finite plates. The plates were subjected to remote tensile loading. Equations give stress intensity factors as a function of parametric angle, crack depth, crack length, plate thickness, and where applicable, hole radius. The stress intensity factors used to develop the equations were obtained from three dimensional finite element analyses of these crack configurations.
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik
Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.
Coexisting multiple attractors and riddled basins of a memristive system.
Wang, Guangyi; Yuan, Fang; Chen, Guanrong; Zhang, Yu
2018-01-01
In this paper, a new memristor-based chaotic system is designed, analyzed, and implemented. Multistability, multiple attractors, and complex riddled basins are observed from the system, which are investigated along with other dynamical behaviors such as equilibrium points and their stabilities, symmetrical bifurcation diagrams, and sustained chaotic states. With different sets of system parameters, the system can also generate various multi-scroll attractors. Finally, the system is realized by experimental circuits.
A Search for Strange Attractors in the Saturation of Middle Atmosphere Gravity Waves
1990-09-01
Fraser, A. M. and H. L. Swinney, 1986: Independent coordinates for strange attractors from mutual information . Phvs. Rev. A, 33, 1134-1140. Fraser...vectors implies that the two are linearly independent . However, data characterized by a strange attractor are usually highly nonlinear, thus making...noise in this data set. The degree of autocorrelation and the lack of general independence as determined from the mutual information also reduces the
DOE Office of Scientific and Technical Information (OSTI.GOV)
Márquez, Bicky A., E-mail: bmarquez@ivic.gob.ve; Suárez-Vargas, José J., E-mail: jjsuarez@ivic.gob.ve; Ramírez, Javier A.
2014-09-01
Controlled transitions between a hierarchy of n-scroll attractors are investigated in a nonlinear optoelectronic oscillator. Using the system's feedback strength as a control parameter, it is shown experimentally the transition from Van der Pol-like attractors to 6-scroll, but in general, this scheme can produce an arbitrary number of scrolls. The complexity of every state is characterized by Lyapunov exponents and autocorrelation coefficients.
Renormalization group independence of Cosmological Attractors
NASA Astrophysics Data System (ADS)
Fumagalli, Jacopo
2017-06-01
The large class of inflationary models known as α- and ξ-attractors gives identical cosmological predictions at tree level (at leading order in inverse power of the number of efolds). Working with the renormalization group improved action, we show that these predictions are robust under quantum corrections. This means that for all the models considered the inflationary parameters (ns , r) are (nearly) independent on the Renormalization Group flow. The result follows once the field dependence of the renormalization scale, fixed by demanding the leading log correction to vanish, satisfies a quite generic condition. In Higgs inflation (which is a particular ξ-attractor) this is indeed the case; in the more general attractor models this is still ensured by the renormalizability of the theory in the effective field theory sense.
NASA Astrophysics Data System (ADS)
Lien, C.-H.; Vaidyanathan, S.; Sambas, A.; Sukono; Mamat, M.; Sanjaya, W. S. M.; Subiyanto
2018-03-01
A 3-D new two-scroll chaotic attractor with three quadratic nonlinearities is investigated in this paper. First, the qualitative and dynamical properties of the new two-scroll chaotic system are described in terms of phase portraits, equilibrium points, Lyapunov exponents, Kaplan-Yorke dimension, dissipativity, etc. We show that the new two-scroll dissipative chaotic system has three unstable equilibrium points. As an engineering application, global chaos control of the new two-scroll chaotic system with unknown system parameters is designed via adaptive feedback control and Lyapunov stability theory. Furthermore, an electronic circuit realization of the new chaotic attractor is presented in detail to confirm the feasibility of the theoretical chaotic two-scroll attractor model.
A study of roll attractor and wing rock of delta wings at high angles of attack
NASA Technical Reports Server (NTRS)
Niranjana, T.; Rao, D. M.; Pamadi, Bandu N.
1993-01-01
Wing rock is a high angle of attack dynamic phenomenon of limited cycle motion predominantly in roll. The wing rock is one of the limitations to combat effectiveness of the fighter aircraft. Roll Attractor is the steady state or equilibrium trim angle (phi(sub trim)) attained by the free-to-roll model, held at some angle of attack, and released form rest at a given initial roll (bank) angle (phi(sub O)). Multiple roll attractors are attained at different trim angles depending on initial roll angle. The test facility (Vigyan's low speed wind tunnel) and experimental work is presented here along with mathematical modelling of roll attractor phenomenon and analysis and comparison of predictions with experimental data.
The finite body triangulation: algorithms, subgraphs, homogeneity estimation and application.
Carson, Cantwell G; Levine, Jonathan S
2016-09-01
The concept of a finite body Dirichlet tessellation has been extended to that of a finite body Delaunay 'triangulation' to provide a more meaningful description of the spatial distribution of nonspherical secondary phase bodies in 2- and 3-dimensional images. A finite body triangulation (FBT) consists of a network of minimum edge-to-edge distances between adjacent objects in a microstructure. From this is also obtained the characteristic object chords formed by the intersection of the object boundary with the finite body tessellation. These two sets of distances form the basis of a parsimonious homogeneity estimation. The characteristics of the spatial distribution are then evaluated with respect to the distances between objects and the distances within them. Quantitative analysis shows that more physically representative distributions can be obtained by selecting subgraphs, such as the relative neighbourhood graph and the minimum spanning tree, from the finite body tessellation. To demonstrate their potential, we apply these methods to 3-dimensional X-ray computed tomographic images of foamed cement and their 2-dimensional cross sections. The Python computer code used to estimate the FBT is made available. Other applications for the algorithm - such as porous media transport and crack-tip propagation - are also discussed. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
Nonperturbative evaluation for anomalous dimension in 2-dimensional O (3 ) sigma model
NASA Astrophysics Data System (ADS)
Calle Jimenez, Sergio; Oka, Makoto; Sasaki, Kiyoshi
2018-06-01
We nonperturbatively calculate the wave-function renormalization in the two-dimensional O (3 ) sigma model. It is evaluated in a box with a finite spatial extent. We determine the anomalous dimension in the finite-volume scheme through an analysis of the step-scaling function. Results are compared with a perturbative evaluation, and reasonable behavior is observed.
The finite-dimensional Freeman thesis.
Rudolph, Lee
2008-06-01
I suggest a modification--and mathematization--of Freeman's thesis on the relations among "perception", "the finite brain", and "the world", based on my recent proposal that the theory of finite topological spaces is both an adequate and a natural mathematical foundation for human psychology.
Stability diagram for the forced Kuramoto model.
Childs, Lauren M; Strogatz, Steven H
2008-12-01
We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.
NASA Technical Reports Server (NTRS)
Bertschinger, Edmund; Dekel, Avishai; Faber, Sandra M.; Dressler, Alan; Burstein, David
1990-01-01
A potential flow reconstruction algorithm has been applied to the real universe to reconstruct the three-dimensional potential, velocity, and mass density fields smoothed on large scales. The results are shown as maps of these fields, revealing the three-dimensional structure within 6000 km/s distance from the Local Group. The dominant structure is an extended deep potential well in the Hydra-Centaurus region, stretching across the Galactic plane toward Pavo, broadly confirming the Great Attractor (GA) model of Lynden-Bell et al. (1988). The Local Supercluster appears to be an extended ridge on the near flank of the GA, proceeding through the Virgo Southern Extension to the Virgo and Ursa Major clusters. The Virgo cluster and the Local Group are both falling toward the bottom of the GA potential well with peculiar velocities of 658 + or - 121 km/s and 565 + or - 125 km/s, respectively.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Paris, Isbelle L.; OBrien, T. Kevin; Minguet, Pierre J.
2004-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane-strain elements as well as three different generalized plane strain type approaches were performed. The computed skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with delamination length. For more accurate predictions, however, a three-dimensional analysis is required.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Minguet, Pierre J.; Bushnell, Dennis M. (Technical Monitor)
2002-01-01
The influence of two-dimensional finite element modeling assumptions on the debonding prediction for skin-stiffener specimens was investigated. Geometrically nonlinear finite element analyses using two-dimensional plane-stress and plane strain elements as well as three different generalized plane strain type approaches were performed. The computed deflections, skin and flange strains, transverse tensile stresses and energy release rates were compared to results obtained from three-dimensional simulations. The study showed that for strains and energy release rate computations the generalized plane strain assumptions yielded results closest to the full three-dimensional analysis. For computed transverse tensile stresses the plane stress assumption gave the best agreement. Based on this study it is recommended that results from plane stress and plane strain models be used as upper and lower bounds. The results from generalized plane strain models fall between the results obtained from plane stress and plane strain models. Two-dimensional models may also be used to qualitatively evaluate the stress distribution in a ply and the variation of energy release rates and mixed mode ratios with lamination length. For more accurate predictions, however, a three-dimensional analysis is required.
Predicting epileptic seizures from scalp EEG based on attractor state analysis.
Chu, Hyunho; Chung, Chun Kee; Jeong, Woorim; Cho, Kwang-Hyun
2017-05-01
Epilepsy is the second most common disease of the brain. Epilepsy makes it difficult for patients to live a normal life because it is difficult to predict when seizures will occur. In this regard, if seizures could be predicted a reasonable period of time before their occurrence, epilepsy patients could take precautions against them and improve their safety and quality of life. In this paper, we investigate a novel seizure precursor based on attractor state analysis for seizure prediction. We analyze the transition process from normal to seizure attractor state and investigate a precursor phenomenon seen before reaching the seizure attractor state. From the result of an analysis, we define a quantified spectral measure in scalp EEG for seizure prediction. From scalp EEG recordings, the Fourier coefficients of six EEG frequency bands are extracted, and the defined spectral measure is computed based on the coefficients for each half-overlapped 20-second-long window. The computed spectral measure is applied to seizure prediction using a low-complexity methodology. Within scalp EEG, we identified an early-warning indicator before an epileptic seizure occurs. Getting closer to the bifurcation point that triggers the transition from normal to seizure state, the power spectral density of low frequency bands of the perturbation of an attractor in the EEG, showed a relative increase. A low-complexity seizure prediction algorithm using this feature was evaluated, using ∼583h of scalp EEG in which 143 seizures in 16 patients were recorded. With the test dataset, the proposed method showed high sensitivity (86.67%) with a false prediction rate of 0.367h -1 and average prediction time of 45.3min. A novel seizure prediction method using scalp EEG, based on attractor state analysis, shows potential for application with real epilepsy patients. This is the first study in which the seizure-precursor phenomenon of an epileptic seizure is investigated based on attractor-based analysis of the macroscopic dynamics of the brain. With the scalp EEG, we first propose use of a spectral feature identified for seizure prediction, in which the dynamics of an attractor are excluded, and only the perturbation dynamics from the attractor are considered. Copyright © 2017 Elsevier B.V. All rights reserved.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin; Krueger, Ronald
2001-01-01
Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.
NASA Technical Reports Server (NTRS)
Dec, John A.; Braun, Robert D.
2011-01-01
A finite element ablation and thermal response program is presented for simulation of three-dimensional transient thermostructural analysis. The three-dimensional governing differential equations and finite element formulation are summarized. A novel probabilistic design methodology for thermal protection systems is presented. The design methodology is an eight step process beginning with a parameter sensitivity study and is followed by a deterministic analysis whereby an optimum design can determined. The design process concludes with a Monte Carlo simulation where the probabilities of exceeding design specifications are estimated. The design methodology is demonstrated by applying the methodology to the carbon phenolic compression pads of the Crew Exploration Vehicle. The maximum allowed values of bondline temperature and tensile stress are used as the design specifications in this study.
Modeling and controlling the two-phase dynamics of the p53 network: a Boolean network approach
NASA Astrophysics Data System (ADS)
Lin, Guo-Qiang; Ao, Bin; Chen, Jia-Wei; Wang, Wen-Xu; Di, Zeng-Ru
2014-12-01
Although much empirical evidence has demonstrated that p53 plays a key role in tumor suppression, the dynamics and function of the regulatory network centered on p53 have not yet been fully understood. Here, we develop a Boolean network model to reproduce the two-phase dynamics of the p53 network in response to DNA damage. In particular, we map the fates of cells into two types of Boolean attractors, and we find that the apoptosis attractor does not exist for minor DNA damage, reflecting that the cell is reparable. As the amount of DNA damage increases, the basin of the repair attractor shrinks, accompanied by the rising of the apoptosis attractor and the expansion of its basin, indicating that the cell becomes more irreparable with more DNA damage. For severe DNA damage, the repair attractor vanishes, and the apoptosis attractor dominates the state space, accounting for the exclusive fate of death. Based on the Boolean network model, we explore the significance of links, in terms of the sensitivity of the two-phase dynamics, to perturbing the weights of links and removing them. We find that the links are either critical or ordinary, rather than redundant. This implies that the p53 network is irreducible, but tolerant of small mutations at some ordinary links, and this can be interpreted with evolutionary theory. We further devised practical control schemes for steering the system into the apoptosis attractor in the presence of DNA damage by pinning the state of a single node or perturbing the weight of a single link. Our approach offers insights into understanding and controlling the p53 network, which is of paramount importance for medical treatment and genetic engineering.
Accurate path integration in continuous attractor network models of grid cells.
Burak, Yoram; Fiete, Ila R
2009-02-01
Grid cells in the rat entorhinal cortex display strikingly regular firing responses to the animal's position in 2-D space and have been hypothesized to form the neural substrate for dead-reckoning. However, errors accumulate rapidly when velocity inputs are integrated in existing models of grid cell activity. To produce grid-cell-like responses, these models would require frequent resets triggered by external sensory cues. Such inadequacies, shared by various models, cast doubt on the dead-reckoning potential of the grid cell system. Here we focus on the question of accurate path integration, specifically in continuous attractor models of grid cell activity. We show, in contrast to previous models, that continuous attractor models can generate regular triangular grid responses, based on inputs that encode only the rat's velocity and heading direction. We consider the role of the network boundary in the integration performance of the network and show that both periodic and aperiodic networks are capable of accurate path integration, despite important differences in their attractor manifolds. We quantify the rate at which errors in the velocity integration accumulate as a function of network size and intrinsic noise within the network. With a plausible range of parameters and the inclusion of spike variability, our model networks can accurately integrate velocity inputs over a maximum of approximately 10-100 meters and approximately 1-10 minutes. These findings form a proof-of-concept that continuous attractor dynamics may underlie velocity integration in the dorsolateral medial entorhinal cortex. The simulations also generate pertinent upper bounds on the accuracy of integration that may be achieved by continuous attractor dynamics in the grid cell network. We suggest experiments to test the continuous attractor model and differentiate it from models in which single cells establish their responses independently of each other.
Gauged supergravities from M-theory reductions
NASA Astrophysics Data System (ADS)
Katmadas, Stefanos; Tomasiello, Alessandro
2018-04-01
In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.
Stress concentration investigations using NASTRAN
NASA Technical Reports Server (NTRS)
Gillcrist, M. C.; Parnell, L. A.
1986-01-01
Parametic investigations are performed using several two dimensional finite element formulations to determine their suitability for use in predicting extremum stresses in marine propellers. Comparisons are made of two NASTRAN elements (CTRIM6 and CTRAIA2) wherein elasticity properties have been modified to yield plane strain results. The accuracy of the elements is investigated by comparing finite element stress predictions with experimentally determined stresses in two classical cases: (1) tension in a flat plate with a circular hole; and (2) a filleted flat bar subjected to in-plane bending. The CTRIA2 element is found to provide good results. The displacement field from a three dimensional finite element model of a representative marine propeller is used as the boundary condition for the two dimensional plane strain investigations of stresses in the propeller blade and fillet. Stress predictions from the three dimensional analysis are compared with those from the two dimensional models. The validity of the plane strain modifications to the NASTRAN element is checked by comparing the modified CTRIA2 element stress predictions with those of the ABAQUS plane strain element, CPE4.
On infinite-dimensional state spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fritz, Tobias
It is well known that the canonical commutation relation [x, p]=i can be realized only on an infinite-dimensional Hilbert space. While any finite set of experimental data can also be explained in terms of a finite-dimensional Hilbert space by approximating the commutation relation, Occam's razor prefers the infinite-dimensional model in which [x, p]=i holds on the nose. This reasoning one will necessarily have to make in any approach which tries to detect the infinite-dimensionality. One drawback of using the canonical commutation relation for this purpose is that it has unclear operational meaning. Here, we identify an operationally well-defined context frommore » which an analogous conclusion can be drawn: if two unitary transformations U, V on a quantum system satisfy the relation V{sup -1}U{sup 2}V=U{sup 3}, then finite-dimensionality entails the relation UV{sup -1}UV=V{sup -1}UVU; this implication strongly fails in some infinite-dimensional realizations. This is a result from combinatorial group theory for which we give a new proof. This proof adapts to the consideration of cases where the assumed relation V{sup -1}U{sup 2}V=U{sup 3} holds only up to {epsilon} and then yields a lower bound on the dimension.« less
Kanamaru, Takashi; Fujii, Hiroshi; Aihara, Kazuyuki
2013-01-01
Corticopetal acetylcholine (ACh) is released transiently from the nucleus basalis of Meynert (NBM) into the cortical layers and is associated with top-down attention. Recent experimental data suggest that this release of ACh disinhibits layer 2/3 pyramidal neurons (PYRs) via muscarinic presynaptic effects on inhibitory synapses. Together with other possible presynaptic cholinergic effects on excitatory synapses, this may result in dynamic and temporal modifications of synapses associated with top-down attention. However, the system-level consequences and cognitive relevance of such disinhibitions are poorly understood. Herein, we propose a theoretical possibility that such transient modifications of connectivity associated with ACh release, in addition to top-down glutamatergic input, may provide a neural mechanism for the temporal reactivation of attractors as neural correlates of memories. With baseline levels of ACh, the brain returns to quasi-attractor states, exhibiting transitive dynamics between several intrinsic internal states. This suggests that top-down attention may cause the attention-induced deformations between two types of attractor landscapes: the quasi-attractor landscape (Q-landscape, present under low-ACh, non-attentional conditions) and the attractor landscape (A-landscape, present under high-ACh, top-down attentional conditions). We present a conceptual computational model based on experimental knowledge of the structure of PYRs and interneurons (INs) in cortical layers 1 and 2/3 and discuss the possible physiological implications of our results. PMID:23326520
A Systems Approach to Stress, Stressors and Resilience in Humans
Oken, Barry S.; Chamine, Irina; Wakeland, Wayne
2014-01-01
The paper focuses on the biology of stress and resilience and their biomarkers in humans from the system science perspective. A stressor pushes the physiological system away from its baseline state towards a lower utility state. The physiological system may return towards the original state in one attractor basin but may be shifted to a state in another, lower utility attractor basin. While some physiological changes induced by stressors may benefit health, there is often a chronic wear and tear cost due to implementing changes to enable the return of the system to its baseline state and maintain itself in the high utility baseline attractor basin following repeated perturbations. This cost, also called allostatic load, is the utility reduction associated with both a change in state and with alterations in the attractor basin that affect system responses following future perturbations. This added cost can increase the time course of the return to baseline or the likelihood of moving into a different attractor basin following a perturbation. Opposite to this is the system’s resilience which influences its ability to return to the high utility attractor basin following a perturbation by increasing the likelihood and/or speed of returning to the baseline state following a stressor. This review paper is a qualitative systematic review; it covers areas most relevant for moving the stress and resilience field forward from a more quantitative and neuroscientific perspective. PMID:25549855
Approximation of Optimal Infinite Dimensional Compensators for Flexible Structures
NASA Technical Reports Server (NTRS)
Gibson, J. S.; Mingori, D. L.; Adamian, A.; Jabbari, F.
1985-01-01
The infinite dimensional compensator for a large class of flexible structures, modeled as distributed systems are discussed, as well as an approximation scheme for designing finite dimensional compensators to approximate the infinite dimensional compensator. The approximation scheme is applied to develop a compensator for a space antenna model based on wrap-rib antennas being built currently. While the present model has been simplified, it retains the salient features of rigid body modes and several distributed components of different characteristics. The control and estimator gains are represented by functional gains, which provide graphical representations of the control and estimator laws. These functional gains also indicate the convergence of the finite dimensional compensators and show which modes the optimal compensator ignores.
On some dynamical chameleon systems
NASA Astrophysics Data System (ADS)
Burkin, I. M.; Kuznetsova, O. I.
2018-03-01
It is now well known that dynamical systems can be categorized into systems with self-excited attractors and systems with hidden attractors. A self-excited attractor has a basin of attraction that is associated with an unstable equilibrium, while a hidden attractor has a basin of attraction that does not intersect with small neighborhoods of any equilibrium points. Hidden attractors play the important role in engineering applications because they allow unexpected and potentially disastrous responses to perturbations in a structure like a bridge or an airplane wing. In addition, complex behaviors of chaotic systems have been applied in various areas from image watermarking, audio encryption scheme, asymmetric color pathological image encryption, chaotic masking communication to random number generator. Recently, researchers have discovered the so-called “chameleon systems”. These systems were so named because they demonstrate self-excited or hidden oscillations depending on the value of parameters. The present paper offers a simple algorithm of synthesizing one-parameter chameleon systems. The authors trace the evolution of Lyapunov exponents and the Kaplan-Yorke dimension of such systems which occur when parameters change.
NASA Astrophysics Data System (ADS)
Merdan, Ziya; Karakuş, Özlem
2016-11-01
The six dimensional Ising model with nearest-neighbor pair interactions has been simulated and verified numerically on the Creutz Cellular Automaton by using five bit demons near the infinite-lattice critical temperature with the linear dimensions L=4,6,8,10. The order parameter probability distribution for six dimensional Ising model has been calculated at the critical temperature. The constants of the analytical function have been estimated by fitting to probability function obtained numerically at the finite size critical point.
Influence of two-dimensional hygrothermal gradients on interlaminar stresses near free edges
NASA Technical Reports Server (NTRS)
Farley, G. L.; Herakovich, C. T.
1977-01-01
Interlaminar stresses are determined for mechanical loading, uniform hygrothermal loading, and gradient moisture loading through implementation of a finite element computer code. Nonuniform two-dimensional hygroscopic gradients are obtained from a finite difference solution of the diffusion equation. It is shown that hygroscopic induced stresses can be larger than those resulting from mechanical and thermal loading, and that the distribution of the interlaminar normal stress may be changed significantly in the presence of a two-dimensional moisture gradient in the boundary layer of a composite laminate.
NASA Technical Reports Server (NTRS)
Ehlers, F. E.; Sebastian, J. D.; Weatherill, W. H.
1979-01-01
Analytical and empirical studies of a finite difference method for the solution of the transonic flow about harmonically oscillating wings and airfoils are presented. The procedure is based on separating the velocity potential into steady and unsteady parts and linearizing the resulting unsteady equations for small disturbances. Since sinusoidal motion is assumed, the unsteady equation is independent of time. Three finite difference investigations are discussed including a new operator for mesh points with supersonic flow, the effects on relaxation solution convergence of adding a viscosity term to the original differential equation, and an alternate and relatively simple downstream boundary condition. A method is developed which uses a finite difference procedure over a limited inner region and an approximate analytical procedure for the remaining outer region. Two investigations concerned with three-dimensional flow are presented. The first is the development of an oblique coordinate system for swept and tapered wings. The second derives the additional terms required to make row relaxation solutions converge when mixed flow is present. A finite span flutter analysis procedure is described using the two-dimensional unsteady transonic program with a full three-dimensional steady velocity potential.
Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.
A quasi two-dimensional model for sound attenuation by the sonic crystals.
Gupta, A; Lim, K M; Chew, C H
2012-10-01
Sound propagation in the sonic crystal (SC) along the symmetry direction is modeled by sound propagation through a variable cross-sectional area waveguide. A one-dimensional (1D) model based on the Webster horn equation is used to obtain sound attenuation through the SC. This model is compared with two-dimensional (2D) finite element simulation and experiment. The 1D model prediction of frequency band for sound attenuation is found to be shifted by around 500 Hz with respect to the finite element simulation. The reason for this shift is due to the assumption involved in the 1D model. A quasi 2D model is developed for sound propagation through the waveguide. Sound pressure profiles from the quasi 2D model are compared with the finite element simulation and the 1D model. The result shows significant improvement over the 1D model and is in good agreement with the 2D finite element simulation. Finally, sound attenuation through the SC is computed based on the quasi 2D model and is found to be in good agreement with the finite element simulation. The quasi 2D model provides an improved method to calculate sound attenuation through the SC.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Glassy phase in quenched disordered crystalline membranes
NASA Astrophysics Data System (ADS)
Coquand, O.; Essafi, K.; Kownacki, J.-P.; Mouhanna, D.
2018-03-01
We investigate the flat phase of D -dimensional crystalline membranes embedded in a d -dimensional space and submitted to both metric and curvature quenched disorders using a nonperturbative renormalization group approach. We identify a second-order phase transition controlled by a finite-temperature, finite-disorder fixed point unreachable within the leading order of ɛ =4 -D and 1 /d expansions. This critical point divides the flow diagram into two basins of attraction: that associated with the finite-temperature fixed point controlling the long-distance behavior of disorder-free membranes and that associated with the zero-temperature, finite-disorder fixed point. Our work thus strongly suggests the existence of a whole low-temperature glassy phase for quenched disordered crystalline membranes and, possibly, for graphene and graphene-like compounds.
Chaotic Behaviour of a Driven P-N Junction
NASA Astrophysics Data System (ADS)
Perez, Jose Maria
The chaotic behavior of a driven p-n junction is experimentally examined. Bifurcation diagrams for the system are measured, showing period doubling bifurcations up to f/32, onset of chaos, reverse bifurcations of chaotic bands, and periodic windows. Some of the measured bifurcation diagrams are similar to the bifurcation diagram of the logistic map x(,n+1) = (lamda)x(,n)(1 - x(,n)). A return map is also measured showing approximately a one-dimensional map with a single extremum at low driving voltages. The intermittency route to chaos is experimentally observed to occur near a tangent bifurcation as the system approaches a period 5 window at (lamda) = (lamda)(,5). Data are presented for the dependence of the average laminar length
NASA Astrophysics Data System (ADS)
Gupta, R. P.; Banerjee, Malay; Chandra, Peeyush
2014-07-01
The present study investigates a prey predator type model for conservation of ecological resources through taxation with nonlinear harvesting. The model uses the harvesting function as proposed by Agnew (1979) [1] which accounts for the handling time of the catch and also the competition between standard vessels being utilized for harvesting of resources. In this paper we consider a three dimensional dynamic effort prey-predator model with Holling type-II functional response. The conditions for uniform persistence of the model have been derived. The existence and stability of bifurcating periodic solution through Hopf bifurcation have been examined for a particular set of parameter value. Using numerical examples it is shown that the system admits periodic, quasi-periodic and chaotic solutions. It is observed that the system exhibits periodic doubling route to chaos with respect to tax. Many forms of complexities such as chaotic bands (including periodic windows, period-doubling bifurcations, period-halving bifurcations and attractor crisis) and chaotic attractors have been observed. Sensitivity analysis is carried out and it is observed that the solutions are highly dependent to the initial conditions. Pontryagin's Maximum Principle has been used to obtain optimal tax policy to maximize the monetary social benefit as well as conservation of the ecosystem.
Synchronization in neural nets
NASA Technical Reports Server (NTRS)
Vidal, Jacques J.; Haggerty, John
1988-01-01
The paper presents an artificial neural network concept (the Synchronizable Oscillator Networks) where the instants of individual firings in the form of point processes constitute the only form of information transmitted between joining neurons. In the model, neurons fire spontaneously and regularly in the absence of perturbation. When interaction is present, the scheduled firings are advanced or delayed by the firing of neighboring neurons. Networks of such neurons become global oscillators which exhibit multiple synchronizing attractors. From arbitrary initial states, energy minimization learning procedures can make the network converge to oscillatory modes that satisfy multi-dimensional constraints. Such networks can directly represent routing and scheduling problems that consist of ordering sequences of events.
Non-BPS attractors in 5 d and 6 d extended supergravity
NASA Astrophysics Data System (ADS)
Andrianopoli, L.; Ferrara, S.; Marrani, A.; Trigiante, M.
2008-05-01
We connect the attractor equations of a certain class of N=2, d=5 supergravities with their (1,0), d=6 counterparts, by relating the moduli space of non-BPS d=5 black hole/black string attractors to the moduli space of extremal dyonic black string d=6 non-BPS attractors. For d=5 real special symmetric spaces and for N=4,6,8 theories, we explicitly compute the flat directions of the black object potential corresponding to vanishing eigenvalues of its Hessian matrix. In the case N=4, we study the relation to the (2,0), d=6 theory. We finally describe the embedding of the N=2, d=5 magic models in N=8, d=5 supergravity as well as the interconnection among the corresponding charge orbits.
Strange attractors in weakly turbulent Couette-Taylor flow
NASA Technical Reports Server (NTRS)
Brandstater, A.; Swinney, Harry L.
1987-01-01
An experiment is conducted on the transition from quasi-periodic to weakly turbulent flow of a fluid contained between concentric cylinders with the inner cylinder rotating and the outer cylinder at rest. Power spectra, phase-space portraits, and circle maps obtained from velocity time-series data indicate that the nonperiodic behavior observed is deterministic, that is, it is described by strange attractors. Various problems that arise in computing the dimension of strange attractors constructed from experimental data are discussed and it is shown that these problems impose severe requirements on the quantity and accuracy of data necessary for determining dimensions greater than about 5. In the present experiment the attractor dimension increases from 2 at the onset of turbulence to about 4 at a Reynolds number 50-percent above the onset of turbulence.
Two-dimensional finite element heat transfer model of softwood. Part II, Macrostructural effects
Hongmei Gu; John F. Hunt
2006-01-01
A two-dimensional finite element model was used to study the effects of structural features on transient heat transfer in softwood lumber with various orientations. Transient core temperature was modeled for lumber samples âcutâ from various locations within a simulated log. The effects of ring orientation, earlywood to latewood (E/L) ratio, and ring density were...
NASA Technical Reports Server (NTRS)
Hosny, W. M.; Tabakoff, W.
1975-01-01
A two-dimensional finite difference numerical technique is presented to determine the temperature distribution in a solid blade of a radial guide vane. A computer program is written in Fortran IV for IBM 370/165 computer. The computer results obtained from these programs have a similar behavior and trend as those obtained by experimental results.
Construction and validation of a three-dimensional finite element model of degenerative scoliosis.
Zheng, Jie; Yang, Yonghong; Lou, Shuliang; Zhang, Dongsheng; Liao, Shenghui
2015-12-24
With the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study. A 55-year-old female DS patient (Suer Pan, ID number was P141986) was selected for this study. This study was performed in accordance with the ethical standards of Declaration of Helsinki and its amendments and was approved by the local ethics committee (117 hospital of PLA ethics committee). Spiral computed tomography (CT) scanning was conducted on the patient's lumbar spine from the T12 to S1. CT images were then imported into a finite element modeling system. A three-dimensional solid model was then formed from segmentation of the CT scan. The three-dimensional model of each vertebra was then meshed, and material properties were assigned to each element according to the pathological characteristics of DS. Loads and boundary conditions were then applied in such a manner as to simulate in vitro biomechanical experiments conducted on lumbar segments. The results of the model were then compared with experimental results in order to validate the model. An integral three-dimensional finite element model of DS was built successfully, consisting of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 target elements, 4968 contact elements, totaling 157,635 elements, and 197,374 nodes. The model accurately described the physical features of DS and was geometrically similar to the object of study. The results of analysis with the finite element model agreed closely with in vitro experiments, validating the accuracy of the model. The three-dimensional finite element model of DS built in this study is clear, reliable, and effective for further biomechanical simulation study of DS.
[Analysis of a three-dimensional finite element model of atlas and axis complex fracture].
Tang, X M; Liu, C; Huang, K; Zhu, G T; Sun, H L; Dai, J; Tian, J W
2018-05-22
Objective: To explored the clinical application of the three-dimensional finite element model of atlantoaxial complex fracture. Methods: A three-dimensional finite element model of cervical spine (FEM/intact) was established by software of Abaqus6.12.On the basis of this model, a three-dimensional finite element model of four types of atlantoaxial complex fracture was established: C(1) fracture (Jefferson)+ C(2) fracture (type Ⅱfracture), Jefferson+ C(2) fracture(type Ⅲfracture), Jefferson+ C(2) fracture(Hangman), Jefferson+ stable C(2) fracture (FEM/fracture). The range of motion under flexion, extension, lateral bending and axial rotation were measured and compared with the model of cervical spine. Results: The three-dimensional finite element model of four types of atlantoaxial complex fracture had the same similarity and profile.The range of motion (ROM) of different segments had different changes.Compared with those in the normal model, the ROM of C(0/1) and C(1/2) in C(1) combined Ⅱ odontoid fracture model in flexion/extension, lateral bending and rotation increased by 57.45%, 29.34%, 48.09% and 95.49%, 88.52%, 36.71%, respectively.The ROM of C(0/1) and C(1/2) in C(1) combined Ⅲodontoid fracture model in flexion/extension, lateral bending and rotation increased by 47.01%, 27.30%, 45.31% and 90.38%, 27.30%, 30.0%.The ROM of C(0/1) and C(1/2) in C(1) combined Hangman fracture model in flexion/extension, lateral bending and rotation increased by 32.68%, 79.34%, 77.62% and 60.53%, 81.20%, 21.48%, respectively.The ROM of C(0/1) and C(1/2) in C(1) combined axis fracture model in flexion/extension, lateral bending and rotation increased by 15.00%, 29.30%, 8.47% and 37.87%, 75.57%, 8.30%, respectively. Conclusions: The three-dimensional finite element model can be used to simulate the biomechanics of atlantoaxial complex fracture.The ROM of atlantoaxial complex fracture is larger than nomal model, which indicates that surgical treatment should be performed.
Three-dimensional supersonic flow around double compression ramp with finite span
NASA Astrophysics Data System (ADS)
Lee, H. S.; Lee, J. H.; Park, G.; Park, S. H.; Byun, Y. H.
2017-01-01
Three-dimensional flows of Mach number 3 around a double-compression ramp with finite span have been investigated numerically. Shadowgraph visualisation images obtained in a supersonic wind tunnel are used for comparison. A three-dimensional Reynolds-averaged Navier-Stokes solver was used to obtain steady numerical solutions. Two-dimensional numerical results are also compared. Four different cases were studied: two different second ramp angles of 30° and 45° in configurations with and without sidewalls, respectively. Results showed that there is a leakage of mass and momentum fluxes heading outwards in the spanwise direction for three-dimensional cases without sidewalls. The leakage changed the flow characteristics of the shock-induced boundary layer and resulted in the discrepancy between the experimental data and two-dimensional numerical results. It is found that suppressing the flow leakage by attaching the sidewalls enhances the two-dimensionality of the experimental data for the double-compression ramp flow.
Two Unipolar Terminal-Attractor-Based Associative Memories
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang; Wu, Chwan-Hwa
1995-01-01
Two unipolar mathematical models of electronic neural network functioning as terminal-attractor-based associative memory (TABAM) developed. Models comprise sets of equations describing interactions between time-varying inputs and outputs of neural-network memory, regarded as dynamical system. Simplifies design and operation of optoelectronic processor to implement TABAM performing associative recall of images. TABAM concept described in "Optoelectronic Terminal-Attractor-Based Associative Memory" (NPO-18790). Experimental optoelectronic apparatus that performed associative recall of binary images described in "Optoelectronic Inner-Product Neural Associative Memory" (NPO-18491).
Stochastic Representation of Chaos using Terminal Attractors
NASA Technical Reports Server (NTRS)
Zak, Michail
2005-01-01
A nonlinear version of the Liouville equation based upon terminal attractors is proposed for describing post-instability motions of dynamical systems with exponential divergence of trajectories such as those leading to chaos and turbulence. As a result, the post-instability motions are represented by expectations, variances, and higher moments of the state variables as functions of time. The proposed approach can be applied to conservative chaos, and in particular, to n-bodies problem, as well as to dissipative systems, and in particular, to chaotic attractors and turbulence.
Inflaton fragmentation in E models of cosmological α -attractors
NASA Astrophysics Data System (ADS)
Hasegawa, Fuminori; Hong, Jeong-Pyong
2018-04-01
Cosmological α -attractors are observationally favored due to the asymptotic flatness of the potential. Since its flatness induces the negative pressure, the coherent oscillation of the inflaton field could fragment into quasistable localized objects called I-balls (or "oscillons"). We investigated the possibility of I-ball formation in E models of α -attractors. Using the linear analysis and the lattice simulations, we found that the instability sufficiently grows against the cosmic expansion and the inflaton actually fragments into the I-balls for α ≲10-3 .
Three-dimensional wave evolution on electrified falling films
NASA Astrophysics Data System (ADS)
Tomlin, Ruben; Papageorgiou, Demetrios; Pavliotis, Greg
2016-11-01
We consider the full three-dimensional model for a thin viscous liquid film completely wetting a flat infinite solid substrate at some non-zero angle to the horizontal, with an electric field normal to the substrate far from the flow. Thin film flows have applications in cooling processes. Many studies have shown that the presence of interfacial waves increases heat transfer by orders of magnitude due to film thinning and convection effects. A long-wave asymptotics procedure yields a Kuramoto-Sivashinsky equation with a non-local term to model the weakly nonlinear evolution of the interface dynamics for overlying film arrangements, with a restriction on the electric field strength. The non-local term is always linearly destabilising and produces growth rates proportional to the cube of the magnitude of the wavenumber vector. A sufficiently strong electric field is able promote non-trivial dynamics for subcritical Reynolds number flows where the flat interface is stable in the absence of an electric field. We present numerical simulations where we observe rich dynamical behavior with competing attractors, including "snaking" travelling waves and other fully three-dimensional wave formations. EPSRC studentship (RJT).
Posttest analysis of a 1:6-scale reinforced concrete reactor containment building
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weatherby, J.R.
In an experiment conducted at Sandia National Laboratories, 1:6-scale model of a reinforced concrete light water reactor containment building was pressurized with nitrogen gas to more than three times its design pressure. The pressurization produced one large tear and several smaller tears in the steel liner plate that functioned as the primary pneumatic seal for the structure. The data collected from the overpressurization test have been used to evaluate and further refine methods of structural analysis that can be used to predict the performance of containment buildings under conditions produced by a severe accident. This report describes posttest finite elementmore » analyses of the 1:6-scale model tests and compares pretest predictions of the structural response to the experimental results. Strain and displacements calculated in axisymmetric finite element analyses of the 1:6-scale model are compared to strains and displacement measured in the experiment. Detailed analyses of the liner plate are also described in the report. The region of the liner surrounding the large tear was analyzed using two different two-dimensional finite elements model. The results from these analyzed indicate that the primary mechanisms that initiated the tear can be captured in a two- dimensional finite element model. Furthermore, the analyses show that studs used to anchor the liner to the concrete wall, played an important role in initiating the liner tear. Three-dimensional finite element analyses of liner plates loaded by studs are also presented. Results from the three-dimensional analyses are compared to results from two-dimensional analyses of the same problems. 12 refs., 56 figs., 1 tab.« less
On the theory of oscillating airfoils of finite span in subsonic compressible flow
NASA Technical Reports Server (NTRS)
Reissner, Eric
1950-01-01
The problem of oscillating lifting surface of finite span in subsonic compressible flow is reduced to an integral equation. The kernel of the integral equation is approximated by a simpler expression, on the basis of the assumption of sufficiently large aspect ratio. With this approximation the double integral occurring in the formulation of the problem is reduced to two single integrals, one of which is taken over the chord and the other over the span of the lifting surface. On the basis of this reduction the three-dimensional problem appears separated into two two-dimensional problems, one of them being effectively the problem of two-dimensional flow and the other being the problem of spanwise circulation distribution. Earlier results concerning the oscillating lifting surface of finite span in incompressible flow are contained in the present more general results.
On One-Dimensional Stretching Functions for Finite-Difference Calculations
NASA Technical Reports Server (NTRS)
Vinokur, M.
1980-01-01
The class of one dimensional stretching function used in finite difference calculations is studied. For solutions containing a highly localized region of rapid variation, simple criteria for a stretching function are derived using a truncation error analysis. These criteria are used to investigate two types of stretching functions. One is an interior stretching function, for which the location and slope of an interior clustering region are specified. The simplest such function satisfying the criteria is found to be one based on the inverse hyperbolic sine. The other type of function is a two sided stretching function, for which the arbitrary slopes at the two ends of the one dimensional interval are specified. The simplest such general function is found to be one based on the inverse tangent. The general two sided function has many applications in the construction of finite difference grids.
An efficient, explicit finite-rate algorithm to compute flows in chemical nonequilibrium
NASA Technical Reports Server (NTRS)
Palmer, Grant
1989-01-01
An explicit finite-rate code was developed to compute hypersonic viscous chemically reacting flows about three-dimensional bodies. Equations describing the finite-rate chemical reactions were fully coupled to the gas dynamic equations using a new coupling technique. The new technique maintains stability in the explicit finite-rate formulation while permitting relatively large global time steps.
Inverse finite-size scaling for high-dimensional significance analysis
NASA Astrophysics Data System (ADS)
Xu, Yingying; Puranen, Santeri; Corander, Jukka; Kabashima, Yoshiyuki
2018-06-01
We propose an efficient procedure for significance determination in high-dimensional dependence learning based on surrogate data testing, termed inverse finite-size scaling (IFSS). The IFSS method is based on our discovery of a universal scaling property of random matrices which enables inference about signal behavior from much smaller scale surrogate data than the dimensionality of the original data. As a motivating example, we demonstrate the procedure for ultra-high-dimensional Potts models with order of 1010 parameters. IFSS reduces the computational effort of the data-testing procedure by several orders of magnitude, making it very efficient for practical purposes. This approach thus holds considerable potential for generalization to other types of complex models.
NASA Technical Reports Server (NTRS)
Nese, Jon M.
1989-01-01
A dynamical systems approach is used to quantify the instantaneous and time-averaged predictability of a low-order moist general circulation model. Specifically, the effects on predictability of incorporating an active ocean circulation, implementing annual solar forcing, and asynchronously coupling the ocean and atmosphere are evaluated. The predictability and structure of the model attractors is compared using the Lyapunov exponents, the local divergence rates, and the correlation, fractal, and Lyapunov dimensions. The Lyapunov exponents measure the average rate of growth of small perturbations on an attractor, while the local divergence rates quantify phase-spatial variations of predictability. These local rates are exploited to efficiently identify and distinguish subtle differences in predictability among attractors. In addition, the predictability of monthly averaged and yearly averaged states is investigated by using attractor reconstruction techniques.
Design and implementation of grid multi-scroll fractional-order chaotic attractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Liping, E-mail: lip-chenhut@126.com; Pan, Wei; Wu, Ranchao
2016-08-15
This paper proposes a novel approach for generating multi-scroll chaotic attractors in multi-directions for fractional-order (FO) systems. The stair nonlinear function series and the saturated nonlinear function are combined to extend equilibrium points with index 2 in a new FO linear system. With the help of stability theory of FO systems, stability of its equilibrium points is analyzed, and the chaotic behaviors are validated through phase portraits, Lyapunov exponents, and Poincaré section. Choosing the order 0.96 as an example, a circuit for generating 2-D grid multiscroll chaotic attractors is designed, and 2-D 9 × 9 grid FO attractors are observed at most.more » Numerical simulations and circuit experimental results show that the method is feasible and the designed circuit is correct.« less
Disease-induced mortality in density-dependent discrete-time S-I-S epidemic models.
Franke, John E; Yakubu, Abdul-Aziz
2008-12-01
The dynamics of simple discrete-time epidemic models without disease-induced mortality are typically characterized by global transcritical bifurcation. We prove that in corresponding models with disease-induced mortality a tiny number of infectious individuals can drive an otherwise persistent population to extinction. Our model with disease-induced mortality supports multiple attractors. In addition, we use a Ricker recruitment function in an SIS model and obtained a three component discrete Hopf (Neimark-Sacker) cycle attractor coexisting with a fixed point attractor. The basin boundaries of the coexisting attractors are fractal in nature, and the example exhibits sensitive dependence of the long-term disease dynamics on initial conditions. Furthermore, we show that in contrast to corresponding models without disease-induced mortality, the disease-free state dynamics do not drive the disease dynamics.
NASA Astrophysics Data System (ADS)
Hashimoto, Ryoji; Matsumura, Tomoya; Nozato, Yoshihiro; Watanabe, Kenji; Onoye, Takao
A multi-agent object attention system is proposed, which is based on biologically inspired attractor selection model. Object attention is facilitated by using a video sequence and a depth map obtained through a compound-eye image sensor TOMBO. Robustness of the multi-agent system over environmental changes is enhanced by utilizing the biological model of adaptive response by attractor selection. To implement the proposed system, an efficient VLSI architecture is employed with reducing enormous computational costs and memory accesses required for depth map processing and multi-agent attractor selection process. According to the FPGA implementation result of the proposed object attention system, which is accomplished by using 7,063 slices, 640×512 pixel input images can be processed in real-time with three agents at a rate of 9fps in 48MHz operation.
Understanding health system reform - a complex adaptive systems perspective.
Sturmberg, Joachim P; O'Halloran, Di M; Martin, Carmel M
2012-02-01
Everyone wants a sustainable well-functioning health system. However, this notion has different meaning to policy makers and funders compared to clinicians and patients. The former perceive public policy and economic constraints, the latter clinical or patient-centred strategies as the means to achieving a desired outcome. Theoretical development and critical analysis of a complex health system model. We introduce the concept of the health care vortex as a metaphor by which to understand the complex adaptive nature of health systems, and the degree to which their behaviour is predetermined by their 'shared values' or attractors. We contrast the likely functions and outcomes of a health system with a people-centred attractor and one with a financial attractor. This analysis suggests a shift in the system's attractor is fundamental to progress health reform thinking. © 2012 Blackwell Publishing Ltd.
Statistics and dynamics of attractor networks with inter-correlated patterns
NASA Astrophysics Data System (ADS)
Kropff, E.
2007-02-01
In an embodied feature representation view, the semantic memory represents concepts in the brain by the associated activation of the features that describe it, each one of them processed in a differentiated region of the cortex. This system has been modeled with a Potts attractor network. Several studies of feature representation show that the correlation between patterns plays a crucial role in semantic memory. The present work focuses on two aspects of the effect of correlations in attractor networks. In first place, it assesses how a Potts network can store a set of patterns with non-trivial correlations between them. This is done through a simple and biologically plausible modification to the classical learning rule. In second place, it studies the complexity of latching transitions between attractor states, and how this complexity can be controlled.
Concentration and limit behaviors of stationary measures
NASA Astrophysics Data System (ADS)
Huang, Wen; Ji, Min; Liu, Zhenxin; Yi, Yingfei
2018-04-01
In this paper, we study limit behaviors of stationary measures of the Fokker-Planck equations associated with a system of ordinary differential equations perturbed by a class of multiplicative noise including additive white noise case. As the noises are vanishing, various results on the invariance and concentration of the limit measures are obtained. In particular, we show that if the noise perturbed systems admit a uniform Lyapunov function, then the stationary measures form a relatively sequentially compact set whose weak∗-limits are invariant measures of the unperturbed system concentrated on its global attractor. In the case that the global attractor contains a strong local attractor, we further show that there exists a family of admissible multiplicative noises with respect to which all limit measures are actually concentrated on the local attractor; and on the contrary, in the presence of a strong local repeller in the global attractor, there exists a family of admissible multiplicative noises with respect to which no limit measure can be concentrated on the local repeller. Moreover, we show that if there is a strongly repelling equilibrium in the global attractor, then limit measures with respect to typical families of multiplicative noises are always concentrated away from the equilibrium. As applications of these results, an example of stochastic Hopf bifurcation and an example with non-decomposable ω-limit sets are provided. Our study is closely related to the problem of noise stability of compact invariant sets and invariant measures of the unperturbed system.
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.
Data-Adaptive Bias-Reduced Doubly Robust Estimation.
Vermeulen, Karel; Vansteelandt, Stijn
2016-05-01
Doubly robust estimators have now been proposed for a variety of target parameters in the causal inference and missing data literature. These consistently estimate the parameter of interest under a semiparametric model when one of two nuisance working models is correctly specified, regardless of which. The recently proposed bias-reduced doubly robust estimation procedure aims to partially retain this robustness in more realistic settings where both working models are misspecified. These so-called bias-reduced doubly robust estimators make use of special (finite-dimensional) nuisance parameter estimators that are designed to locally minimize the squared asymptotic bias of the doubly robust estimator in certain directions of these finite-dimensional nuisance parameters under misspecification of both parametric working models. In this article, we extend this idea to incorporate the use of data-adaptive estimators (infinite-dimensional nuisance parameters), by exploiting the bias reduction estimation principle in the direction of only one nuisance parameter. We additionally provide an asymptotic linearity theorem which gives the influence function of the proposed doubly robust estimator under correct specification of a parametric nuisance working model for the missingness mechanism/propensity score but a possibly misspecified (finite- or infinite-dimensional) outcome working model. Simulation studies confirm the desirable finite-sample performance of the proposed estimators relative to a variety of other doubly robust estimators.
[Finite Element Modelling of the Eye for the Investigation of Accommodation].
Martin, H; Stachs, O; Guthoff, R; Grabow, N
2016-12-01
Background: Accommodation research increasingly uses engineering methods. This article presents the use of the finite element method in accommodation research. Material and Methods: Geometry, material data and boundary conditions are prerequisites for the application of the finite element method. Published data on geometry and materials are reviewed. It is shown how boundary conditions are important and how they influence the results. Results: Two dimensional and three dimensional models of the anterior chamber of the eye are presented. With simple two dimensional models, it is shown that realistic results for the accommodation amplitude can always be achieved. More complex three dimensional models of the accommodation mechanism - including the ciliary muscle - require further investigations of the material data and of the morphology of the ciliary muscle, if they are to achieve realistic results for accommodation. Discussion and Conclusion: The efficiency and the limitations of the finite element method are especially clear for accommodation. Application of the method requires extensive preparation, including acquisition of geometric and material data and experimental validation. However, a validated model can be used as a basis for parametric studies, by systematically varying material data and geometric dimensions. This allows systematic investigation of how essential input parameters influence the results. Georg Thieme Verlag KG Stuttgart · New York.
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
Predictive Rate-Distortion for Infinite-Order Markov Processes
NASA Astrophysics Data System (ADS)
Marzen, Sarah E.; Crutchfield, James P.
2016-06-01
Predictive rate-distortion analysis suffers from the curse of dimensionality: clustering arbitrarily long pasts to retain information about arbitrarily long futures requires resources that typically grow exponentially with length. The challenge is compounded for infinite-order Markov processes, since conditioning on finite sequences cannot capture all of their past dependencies. Spectral arguments confirm a popular intuition: algorithms that cluster finite-length sequences fail dramatically when the underlying process has long-range temporal correlations and can fail even for processes generated by finite-memory hidden Markov models. We circumvent the curse of dimensionality in rate-distortion analysis of finite- and infinite-order processes by casting predictive rate-distortion objective functions in terms of the forward- and reverse-time causal states of computational mechanics. Examples demonstrate that the resulting algorithms yield substantial improvements.
Begum, M. Sameena; Dinesh, M. R.; Tan, Kenneth F. H.; Jairaj, Vani; Md Khalid, K.; Singh, Varun Pratap
2015-01-01
The finite element method (FEM) is a powerful computational tool for solving stress-strain problems; its ability to handle material inhomogeneity and complex shapes makes the FEM, the most suitable method for the analysis of internal stress levels in the tooth, periodontium, and alveolar bone. This article intends to explain the steps involved in the generation of a three-dimensional finite element model of tooth, periodontal ligament (PDL) and alveolar bone, as the procedure of modeling is most important because the result is based on the nature of the modeling systems. Finite element analysis offers a means of determining strain-stress levels in the tooth, ligament, and bone structures for a broad range of orthodontic loading scenarios without producing tissue damage. PMID:26538895
Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich
2013-12-01
This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
NASA Astrophysics Data System (ADS)
Huyakorn, Peter S.; Springer, Everett P.; Guvanasen, Varut; Wadsworth, Terry D.
1986-12-01
A three-dimensional finite-element model for simulating water flow in variably saturated porous media is presented. The model formulation is general and capable of accommodating complex boundary conditions associated with seepage faces and infiltration or evaporation on the soil surface. Included in this formulation is an improved Picard algorithm designed to cope with severely nonlinear soil moisture relations. The algorithm is formulated for both rectangular and triangular prism elements. The element matrices are evaluated using an "influence coefficient" technique that avoids costly numerical integration. Spatial discretization of a three-dimensional region is performed using a vertical slicing approach designed to accommodate complex geometry with irregular boundaries, layering, and/or lateral discontinuities. Matrix solution is achieved using a slice successive overrelaxation scheme that permits a fairly large number of nodal unknowns (on the order of several thousand) to be handled efficiently on small minicomputers. Six examples are presented to verify and demonstrate the utility of the proposed finite-element model. The first four examples concern one- and two-dimensional flow problems used as sample problems to benchmark the code. The remaining examples concern three-dimensional problems. These problems are used to illustrate the performance of the proposed algorithm in three-dimensional situations involving seepage faces and anisotropic soil media.
K-chameleon and the coincidence problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei Hao; Cai Ronggen; Institute of Theoretical Physics, Chinese Academy of Sciences, P.O. Box 2735, Beijing 100080
2005-02-15
In this paper we present a hybrid model of k-essence and chameleon, named as k-chameleon. In this model, due to the chameleon mechanism, the directly strong coupling between the k-chameleon field and matters (cold dark matters and baryons) is allowed. In the radiation-dominated epoch, the interaction between the k-chameleon field and background matters can be neglected; the behavior of the k-chameleon therefore is the same as that of the ordinary k-essence. After the onset of matter domination, the strong coupling between the k-chameleon and matters dramatically changes the result of the ordinary k-essence. We find that during the matter-dominated epoch,more » only two kinds of attractors may exist: one is the familiar K attractor and the other is a completely new, dubbed C attractor. Once the Universe is attracted into the C attractor, the fraction energy densities of the k-chameleon {omega}{sub {phi}} and dust matter {omega}{sub m} are fixed and comparable, and the Universe will undergo a power-law accelerated expansion. One can adjust the model so that the K attractor does not appear. Thus, the k-chameleon model provides a natural solution to the cosmological coincidence problem.« less
Intermittent control of coexisting attractors.
Liu, Yang; Wiercigroch, Marian; Ing, James; Pavlovskaia, Ekaterina
2013-06-28
This paper proposes a new control method applicable for a class of non-autonomous dynamical systems that naturally exhibit coexisting attractors. The central idea is based on knowledge of a system's basins of attraction, with control actions being applied intermittently in the time domain when the actual trajectory satisfies a proximity constraint with regards to the desired trajectory. This intermittent control uses an impulsive force to perturb one of the system attractors in order to switch the system response onto another attractor. This is carried out by bringing the perturbed state into the desired basin of attraction. The method has been applied to control both smooth and non-smooth systems, with the Duffing and impact oscillators used as examples. The strength of the intermittent control force is also considered, and a constrained intermittent control law is introduced to investigate the effect of limited control force on the efficiency of the controller. It is shown that increasing the duration of the control action and/or the number of control actuations allows one to successfully switch between the stable attractors using a lower control force. Numerical and experimental results are presented to demonstrate the effectiveness of the proposed method.
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-01-01
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains. PMID:26972968
From Cellular Attractor Selection to Adaptive Signal Control for Traffic Networks.
Tian, Daxin; Zhou, Jianshan; Sheng, Zhengguo; Wang, Yunpeng; Ma, Jianming
2016-03-14
The management of varying traffic flows essentially depends on signal controls at intersections. However, design an optimal control that considers the dynamic nature of a traffic network and coordinates all intersections simultaneously in a centralized manner is computationally challenging. Inspired by the stable gene expressions of Escherichia coli in response to environmental changes, we explore the robustness and adaptability performance of signalized intersections by incorporating a biological mechanism in their control policies, specifically, the evolution of each intersection is induced by the dynamics governing an adaptive attractor selection in cells. We employ a mathematical model to capture such biological attractor selection and derive a generic, adaptive and distributed control algorithm which is capable of dynamically adapting signal operations for the entire dynamical traffic network. We show that the proposed scheme based on attractor selection can not only promote the balance of traffic loads on each link of the network but also allows the global network to accommodate dynamical traffic demands. Our work demonstrates the potential of bio-inspired intelligence emerging from cells and provides a deep understanding of adaptive attractor selection-based control formation that is useful to support the designs of adaptive optimization and control in other domains.
Roudi, Yasser; Latham, Peter E
2007-09-01
A fundamental problem in neuroscience is understanding how working memory--the ability to store information at intermediate timescales, like tens of seconds--is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons.
Sourcing dark matter and dark energy from α-attractors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Swagat S.; Sahni, Varun; Shtanov, Yuri, E-mail: swagat@iucaa.in, E-mail: varun@iucaa.in, E-mail: shtanov@bitp.kiev.ua
In [1], Kallosh and Linde drew attention to a new family of superconformal inflationary potentials, subsequently called α-attractors [2]. The α-attractor family can interpolate between a large class of inflationary models. It also has an important theoretical underpinning within the framework of supergravity. We demonstrate that the α-attractors have an even wider appeal since they may describe dark matter and perhaps even dark energy. The dark matter associated with the α-attractors, which we call α-dark matter (αDM), shares many of the attractive features of fuzzy dark matter, with V (φ) = ½ m {sup 2}φ{sup 2}, while having none ofmore » its drawbacks. Like fuzzy dark matter, αDM can have a large Jeans length which could resolve the cusp-core and substructure problems faced by standard cold dark matter. αDM also has an appealing tracker property which enables it to converge to the late-time dark matter asymptote, ( w ) ≅ 0, from a wide range of initial conditions. It thus avoids the enormous fine-tuning problems faced by the m {sup 2}φ{sup 2} potential in describing dark matter.« less
NASA Astrophysics Data System (ADS)
Berezhnoi, D. V.; Balafendieva, I. S.; Sachenkov, A. A.; Sekaeva, L. R.
2017-06-01
In work the technique of calculation of elements of three-dimensional reinforced concrete substructures located in a soil, interacting with each other through rubber linings is realized. To describe the interaction of deformable structures with the ground, special “semi-infinite” finite elements are used. A technique has been implemented that allows one to describe the contact interaction of three-dimensional structures by means of a special contact finite element with specific properties. The obtained numerical results are compared with the experimental data, their good agreement is noted.
On the explicit construction of Parisi landscapes in finite dimensional Euclidean spaces
NASA Astrophysics Data System (ADS)
Fyodorov, Y. V.; Bouchaud, J.-P.
2007-12-01
An N-dimensional Gaussian landscape with multiscale translation-invariant logarithmic correlations has been constructed, and the statistical mechanics of a single particle in this environment has been investigated. In the limit of a high dimensional N → ∞, the free energy of the system in the thermodynamic limit coincides with the most general version of Derrida’s generalized random energy model. The low-temperature behavior depends essentially on the spectrum of length scales involved in the construction of the landscape. The construction is argued to be valid in any finite spatial dimensions N ≥1.
The smooth entropy formalism for von Neumann algebras
NASA Astrophysics Data System (ADS)
Berta, Mario; Furrer, Fabian; Scholz, Volkher B.
2016-01-01
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.
The smooth entropy formalism for von Neumann algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berta, Mario, E-mail: berta@caltech.edu; Furrer, Fabian, E-mail: furrer@eve.phys.s.u-tokyo.ac.jp; Scholz, Volkher B., E-mail: scholz@phys.ethz.ch
2016-01-15
We discuss information-theoretic concepts on infinite-dimensional quantum systems. In particular, we lift the smooth entropy formalism as introduced by Renner and collaborators for finite-dimensional systems to von Neumann algebras. For the smooth conditional min- and max-entropy, we recover similar characterizing properties and information-theoretic operational interpretations as in the finite-dimensional case. We generalize the entropic uncertainty relation with quantum side information of Tomamichel and Renner and discuss applications to quantum cryptography. In particular, we prove the possibility to perform privacy amplification and classical data compression with quantum side information modeled by a von Neumann algebra.
Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-07-28
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.
NASA Technical Reports Server (NTRS)
Hollis, Brian R.
1995-01-01
A FORTRAN computer code for the reduction and analysis of experimental heat transfer data has been developed. This code can be utilized to determine heat transfer rates from surface temperature measurements made using either thin-film resistance gages or coaxial surface thermocouples. Both an analytical and a numerical finite-volume heat transfer model are implemented in this code. The analytical solution is based on a one-dimensional, semi-infinite wall thickness model with the approximation of constant substrate thermal properties, which is empirically corrected for the effects of variable thermal properties. The finite-volume solution is based on a one-dimensional, implicit discretization. The finite-volume model directly incorporates the effects of variable substrate thermal properties and does not require the semi-finite wall thickness approximation used in the analytical model. This model also includes the option of a multiple-layer substrate. Fast, accurate results can be obtained using either method. This code has been used to reduce several sets of aerodynamic heating data, of which samples are included in this report.
Zhang, Ming-cai; Lü, Si-zhe; Cheng, Ying-wu; Gu, Li-xu; Zhan, Hong-sheng; Shi, Yin-yu; Wang, Xiang; Huang, Shi-rong
2011-02-01
To study the effect of vertebrae semi-dislocation on the stress distribution in facet joint and interuertebral disc of patients with cervical syndrome using three dimensional finite element model. A patient with cervical spondylosis was randomly chosen, who was male, 28 years old, and diagnosed as cervical vertebra semidislocation by dynamic and static palpation and X-ray, and scanned from C(1) to C(7) by 0.75 mm slice thickness of CT. Based on the CT data, the software was used to construct the three dimensional finite element model of cervical vertebra semidislocation (C(4)-C(6)). Based on the model,virtual manipulation was used to correct the vertebra semidislocation by the software, and the stress distribution was analyzed. The result of finite element analysis showed that the stress distribution of C(5-6) facet joint and intervertebral disc changed after virtual manipulation. The vertebra semidislocation leads to the abnormal stress distribution of facet joint and intervertebral disc.
AutoCAD-To-GIFTS Translator Program
NASA Technical Reports Server (NTRS)
Jones, Andrew
1989-01-01
AutoCAD-to-GIFTS translator program, ACTOG, developed to facilitate quick generation of small finite-element models using CASA/GIFTS finite-element modeling program. Reads geometric data of drawing from Data Exchange File (DXF) used in AutoCAD and other PC-based drafting programs. Geometric entities recognized by ACTOG include points, lines, arcs, solids, three-dimensional lines, and three-dimensional faces. From this information, ACTOG creates GIFTS SRC file, which then reads into GIFTS preprocessor BULKM or modified and reads into EDITM to create finite-element model. SRC file used as is or edited for any number of uses. Written in Microsoft Quick-Basic (Version 2.0).
Mathematical Techniques for Nonlinear System Theory.
1981-09-01
This report deals with research results obtained in the following areas: (1) Finite-dimensional linear system theory by algebraic methods--linear...Infinite-dimensional linear systems--realization theory of infinite-dimensional linear systems; (3) Nonlinear system theory --basic properties of
A low-dimensional analogue of holographic baryons
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Sutcliffe, Paul
2014-04-01
Baryons in holographic QCD correspond to topological solitons in the bulk. The most prominent example is the Sakai-Sugimoto model, where the bulk soliton in the five-dimensional spacetime of AdS-type can be approximated by the flat space self-dual Yang-Mills instanton with a small size. Recently, the validity of this approximation has been verified by comparison with the numerical field theory solution. However, multi-solitons and solitons with finite density are currently beyond numerical field theory computations. Various approximations have been applied to investigate these important issues and have led to proposals for finite density configurations that include dyonic salt and baryonic popcorn. Here we introduce and investigate a low-dimensional analogue of the Sakai-Sugimoto model, in which the bulk soliton can be approximated by a flat space sigma model instanton. The bulk theory is a baby Skyrme model in a three-dimensional spacetime with negative curvature. The advantage of the lower-dimensional theory is that numerical simulations of multi-solitons and finite density solutions can be performed and compared with flat space instanton approximations. In particular, analogues of dyonic salt and baryonic popcorn configurations are found and analysed.
Finite Volume Numerical Methods for Aeroheating Rate Calculations from Infrared Thermographic Data
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Berry, Scott A.; Horvath, Thomas J.; Nowak, Robert J.
2006-01-01
The use of multi-dimensional finite volume heat conduction techniques for calculating aeroheating rates from measured global surface temperatures on hypersonic wind tunnel models was investigated. Both direct and inverse finite volume techniques were investigated and compared with the standard one-dimensional semi-infinite technique. Global transient surface temperatures were measured using an infrared thermographic technique on a 0.333-scale model of the Hyper-X forebody in the NASA Langley Research Center 20-Inch Mach 6 Air tunnel. In these tests the effectiveness of vortices generated via gas injection for initiating hypersonic transition on the Hyper-X forebody was investigated. An array of streamwise-orientated heating striations was generated and visualized downstream of the gas injection sites. In regions without significant spatial temperature gradients, one-dimensional techniques provided accurate aeroheating rates. In regions with sharp temperature gradients caused by striation patterns multi-dimensional heat transfer techniques were necessary to obtain more accurate heating rates. The use of the one-dimensional technique resulted in differences of 20% in the calculated heating rates compared to 2-D analysis because it did not account for lateral heat conduction in the model.
NASA Technical Reports Server (NTRS)
Pan, Y. S.
1978-01-01
A three dimensional, partially elliptic, computer program was developed. Without requiring three dimensional computer storage locations for all flow variables, the partially elliptic program is capable of predicting three dimensional combustor flow fields with large downstream effects. The program requires only slight increase of computer storage over the parabolic flow program from which it was developed. A finite difference formulation for a three dimensional, fully elliptic, turbulent, reacting, flow field was derived. Because of the negligible diffusion effects in the main flow direction in a supersonic combustor, the set of finite-difference equations can be reduced to a partially elliptic form. Only the pressure field was governed by an elliptic equation and requires three dimensional storage; all other dependent variables are governed by parabolic equations. A numerical procedure which combines a marching integration scheme with an iterative scheme for solving the elliptic pressure was adopted.
Finite Volume Algorithms for Heat Conduction
2010-05-01
scalar quantity). Although (3) is relatively easy to discretize by using finite differences , its form in generalized coordinates is not. Later, we...familiar with the finite difference method for discretizing differential equations. In fact, the Newton divided difference is the numerical analog for a...expression (8) for the average derivative matches the Newton divided difference formula, so for uniform one-dimensional meshes, the finite volume and
Integrated transient thermal-structural finite element analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Wieting, A. R.; Tamma, K. K.
1981-01-01
An integrated thermal structural finite element approach for efficient coupling of transient thermal and structural analysis is presented. Integrated thermal structural rod and one dimensional axisymmetric elements considering conduction and convection are developed and used in transient thermal structural applications. The improved accuracy of the integrated approach is illustrated by comparisons with exact transient heat conduction elasticity solutions and conventional finite element thermal finite element structural analyses.
New universal attractor in nonminimally coupled gravity: Linear inflation
NASA Astrophysics Data System (ADS)
Racioppi, Antonio
2018-06-01
Once quantum corrections are taken into account, the strong coupling limit of the ξ -attractor models (in metric gravity) might depart from the usual Starobinsky solution and move into linear inflation. Furthermore, it is well known that the metric and Palatini formulations of gravity lead to different inflationary predictions in presence of nonminimally couplings between gravity and the inflaton. In this paper, we show that for a certain class of nonminimally coupled models, loop corrections will lead to a linear inflation attractor regardless of the adopted gravity formulation.
From Wang-Chen System with Only One Stable Equilibrium to a New Chaotic System Without Equilibrium
NASA Astrophysics Data System (ADS)
Pham, Viet-Thanh; Wang, Xiong; Jafari, Sajad; Volos, Christos; Kapitaniak, Tomasz
2017-06-01
Wang-Chen system with only one stable equilibrium as well as the coexistence of hidden attractors has attracted increasing interest due to its striking features. In this work, the effect of state feedback on Wang-Chen system is investigated by introducing a further state variable. It is worth noting that a new chaotic system without equilibrium is obtained. We believe that the system is an interesting example to illustrate the conversion of hidden attractors with one stable equilibrium to hidden attractors without equilibrium.
Analysis of chaos attractors of MCG-recordings.
Jiang, Shiqin; Yang, Fan; Yi, Panke; Chen, Bo; Luo, Ming; Wang, Lemin
2006-01-01
By studying the chaos attractor of cardiac magnetic induction strength B(z) generated by the electrical activity of the heart, we found that its projection in the reconstructed phase space has a similar shape with the map of the total current dipole vector. It is worth noting that the map of the total current dipole vector is computed with MCG recordings measured at 36 locations, whereas the chaos attractor of B(z) is generated by only one cardiac magnetic field recordings on the measured plan. We discuss only two subjects of different ages in this paper.
Connecting coherent structures and strange attractors
NASA Technical Reports Server (NTRS)
Keefe, Laurence R.
1990-01-01
A concept of turbulence derived from nonlinear dynamical systems theory suggests that turbulent solutions to the Navier-Stokes equations are restricted to strange attractors, and, by implication, that turbulent phenomenology must find some expression or source in the structure of these mathematical objects. Examples and discussions are presented to link coherent structures to some of the commonly known characteristics of strange attractors. Basic to this link is a geometric interpretation of conditional sampling techniques employed to educe coherent structures that offers an explanation for their appearance in measurements as well as their size.
A New Chaotic Flow with Hidden Attractor: The First Hyperjerk System with No Equilibrium
NASA Astrophysics Data System (ADS)
Ren, Shuili; Panahi, Shirin; Rajagopal, Karthikeyan; Akgul, Akif; Pham, Viet-Thanh; Jafari, Sajad
2018-02-01
Discovering unknown aspects of non-equilibrium systems with hidden strange attractors is an attractive research topic. A novel quadratic hyperjerk system is introduced in this paper. It is noteworthy that this non-equilibrium system can generate hidden chaotic attractors. The essential properties of such systems are investigated by means of equilibrium points, phase portrait, bifurcation diagram, and Lyapunov exponents. In addition, a fractional-order differential equation of this new system is presented. Moreover, an electronic circuit is also designed and implemented to verify the feasibility of the theoretical model.
NASA Astrophysics Data System (ADS)
Bouchet, F.; Laurie, J.; Zaboronski, O.
2012-12-01
We describe transitions between attractors with either one, two or more zonal jets in models of turbulent atmosphere dynamics. Those transitions are extremely rare, and occur over times scales of centuries or millennia. They are extremely hard to observe in direct numerical simulations, because they require on one hand an extremely good resolution in order to simulate accurately the turbulence and on the other hand simulations performed over an extremely long time. Those conditions are usually not met together in any realistic models. However many examples of transitions between turbulent attractors in geophysical flows are known to exist (paths of the Kuroshio, Earth's magnetic field reversal, atmospheric flows, and so on). Their study through numerical computations is inaccessible using conventional means. We present an alternative approach, based on instanton theory and large deviations. Instanton theory provides a way to compute (both numerically and theoretically) extremely rare transitions between turbulent attractors. This tool, developed in field theory, and justified in some cases through the large deviation theory in mathematics, can be applied to models of turbulent atmosphere dynamics. It provides both new theoretical insights and new type of numerical algorithms. Those algorithms can predict transition histories and transition rates using numerical simulations run over only hundreds of typical model dynamical time, which is several order of magnitude lower than the typical transition time. We illustrate the power of those tools in the framework of quasi-geostrophic models. We show regimes where two or more attractors coexist. Those attractors corresponds to turbulent flows dominated by either one or more zonal jets similar to midlatitude atmosphere jets. Among the trajectories connecting two non-equilibrium attractors, we determine the most probable ones. Moreover, we also determine the transition rates, which are several of magnitude larger than a typical time determined from the jet structure. We discuss the medium-term generalization of those results to models with more complexity, like primitive equations or GCMs.
Ring Attractor Dynamics Emerge from a Spiking Model of the Entire Protocerebral Bridge.
Kakaria, Kyobi S; de Bivort, Benjamin L
2017-01-01
Animal navigation is accomplished by a combination of landmark-following and dead reckoning based on estimates of self motion. Both of these approaches require the encoding of heading information, which can be represented as an allocentric or egocentric azimuthal angle. Recently, Ca 2+ correlates of landmark position and heading direction, in egocentric coordinates, were observed in the ellipsoid body (EB), a ring-shaped processing unit in the fly central complex (CX; Seelig and Jayaraman, 2015). These correlates displayed key dynamics of so-called ring attractors, namely: (1) responsiveness to the position of external stimuli; (2) persistence in the absence of external stimuli; (3) locking onto a single external stimulus when presented with two competitors; (4) stochastically switching between competitors with low probability; and (5) sliding or jumping between positions when an external stimulus moves. We hypothesized that ring attractor-like activity in the EB arises from reciprocal neuronal connections to a related structure, the protocerebral bridge (PB). Using recent light-microscopy resolution catalogs of neuronal cell types in the PB (Lin et al., 2013; Wolff et al., 2015), we determined a connectivity matrix for the PB-EB circuit. When activity in this network was simulated using a leaky-integrate-and-fire model, we observed patterns of activity that closely resemble the reported Ca 2+ phenomena. All qualitative ring attractor behaviors were recapitulated in our model, allowing us to predict failure modes of the putative PB-EB ring attractor and the circuit dynamics phenotypes of thermogenetic or optogenetic manipulations. Ring attractor dynamics emerged under a wide variety of parameter configurations, even including non-spiking leaky-integrator implementations. This suggests that the ring-attractor computation is a robust output of this circuit, apparently arising from its high-level network properties (topological configuration, local excitation and long-range inhibition) rather than fine-scale biological detail.
Is the Limit-Cycle-Attractor an (almost) invariable characteristic in human walking?
Broscheid, Kim-Charline; Dettmers, Christian; Vieten, Manfred
2018-05-16
Common methods of gait analyses measure step length/width, gait velocity and gait variability to name just a few. Those parameters tend to be changing with fitness and skill of the subjects. But, do stable subject characteristic parameters in walking exist? Does the Limit-Cycle-Attractor qualify as such a parameter?. The attractor method is a new approach focusing on the dynamics of human motion. It classifies the fundamental walking pattern by calculating the Limit-Cycle-Attractor and its variability from acceleration data of the feet. Our hypothesis is that the fundamental walking pattern in healthy controls and in people with Multiple Sclerosis (pwMS) is stable, but can be altered through acute interventions or rehabilitation. For this purpose, two investigations were conducted involving 113 subjects. The short-term stability was tested pre and post a 15 min passive/active MOTOmed (ergometer) session as well as up to 20 min afterwards. The long-term stability was tested over five weeks of rehabilitation once a week in pwMS. The main parameter of interest describes the velocity normalized average difference between two attractors (δM), which is an indicator for the change in movement pattern. The Friedman's two-way ANOVA by ranks did not reveal any significant difference in δM. However, the conventional walking tests (6 min.10 m) improved significantly (p < 0.05) during rehabilitation. Contrary to our original hypothesis, the fundamental walking pattern was highly stable against controlled motor-assisted movement initiation via MOTOmed and rehabilitation treatment. Movement characteristics appeared to be independent of the improved fitness as indicated by the enhanced walking speed and distance. The individual Limit-Cycle-Attractor is extremely robust and might indeed qualify as an (almost) invariable characteristic in human walking. This opens up the possibility to encode the individual walking characteristics. Conditions as Parkinson, Multiple Sclerosis etc., might display disease specific distinctions via the Limit-Cycle-Attractor. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Chao, Winston C.; Chen, Baode; Einaudi, Franco (Technical Monitor)
2000-01-01
Chao's numerical and theoretical work on multiple quasi-equilibria of the intertropical convergence zone (ITCZ) and the origin of monsoon onset is extended to solve two additional puzzles. One is the highly nonlinear dependence on latitude of the "force" acting on the ITCZ due to earth's rotation, which makes the multiple quasi-equilibria of the ITCZ and monsoon onset possible. The other is the dramatic difference in such dependence when different cumulus parameterization schemes are used in a model. Such a difference can lead to a switch between a single ITCZ at the equator and a double ITCZ, when a different cumulus parameterization scheme is used. Sometimes one of the double ITCZ can diminish and only the other remain, but still this can mean different latitudinal locations for the single ITCZ. A single idea based on two off-equator attractors for the ITCZ, due to earth's rotation and symmetric with respect to the equator, and the dependence of the strength and size of these attractors on the cumulus parameterization scheme solves both puzzles. The origin of these rotational attractors, explained in Part I, is further discussed. The "force" acting on the ITCZ due to earth's rotation is the sum of the "forces" of the two attractors. Each attractor exerts on the ITCZ a "force" of simple shape in latitude; but the sum gives a shape highly varying in latitude. Also the strength and the domain of influence of each attractor vary, when change is made in the cumulus parameterization. This gives rise to the high sensitivity of the "force" shape to cumulus parameterization. Numerical results, of experiments using Goddard's GEOS general circulation model, supporting this idea are presented. It is also found that the model results are sensitive to changes outside of the cumulus parameterization. The significance of this study to El Nino forecast and to tropical forecast in general is discussed.
NASA Technical Reports Server (NTRS)
Nett, C. N.; Jacobson, C. A.; Balas, M. J.
1983-01-01
This paper reviews and extends the fractional representation theory. In particular, new and powerful robustness results are presented. This new theory is utilized to develop a preliminary design methodology for finite dimensional control of a class of linear evolution equations on a Banach space. The design is for stability in an input-output sense, but particular attention is paid to internal stability as well.
Applications of FEM and BEM in two-dimensional fracture mechanics problems
NASA Technical Reports Server (NTRS)
Min, J. B.; Steeve, B. E.; Swanson, G. R.
1992-01-01
A comparison of the finite element method (FEM) and boundary element method (BEM) for the solution of two-dimensional plane strain problems in fracture mechanics is presented in this paper. Stress intensity factors (SIF's) were calculated using both methods for elastic plates with either a single-edge crack or an inclined-edge crack. In particular, two currently available programs, ANSYS for finite element analysis and BEASY for boundary element analysis, were used.
Instant preheating in quintessential inflation with α -attractors
NASA Astrophysics Data System (ADS)
Dimopoulos, Konstantinos; Wood, Leonora Donaldson; Owen, Charlotte
2018-03-01
We investigate a compelling model of quintessential inflation in the context of α -attractors, which naturally result in a scalar potential featuring two flat regions; the inflationary plateau and the quintessential tail. The "asymptotic freedom" of α -attractors, near the kinetic poles, suppresses radiative corrections and interactions, which would otherwise threaten to lift the flatness of the quintessential tail and cause a 5th-force problem respectively. Since this is a nonoscillatory inflation model, we reheat the Universe through instant preheating. The parameter space is constrained by both inflation and dark energy requirements. We find an excellent correlation between the inflationary observables and model predictions, in agreement with the α -attractors setup. We also obtain successful quintessence for natural values of the parameters. Our model predicts potentially sizeable tensor perturbations (at the level of 1%) and a slightly varying equation of state for dark energy, to be probed in the near future.
NASA Astrophysics Data System (ADS)
Wang, Ying-Mei; Wang, Wen-Xiu; Chen, He-Sheng; Zhang, Kai; Jiang, Yu-Mei; Wang, Xu-Ming; He, Da-Ren
2002-03-01
A system concatenated by two area-preserving maps may be addressed as "quasi- dissipative," since such a system can display dissipative behaviors^1. This is due to noninvertibility induced by discontinuity in the system function. In such a system, the image set of the discontinuous border forms a chaotic quasi-attractor. At a critical control parameter value the quasi-attractor suddenly vanishes. The chaotic iterations escape, via a leaking hole, to an emergent period-8 elliptic island. The hole is the intersection of the chaotic quasi-attractor and the period-8 island. The chaotic quasi-attractor thus changes to chaotic quasi-transients. The scaling behavior that drives the quasi-crisis has been investigated numerically. It reads:
NASA Astrophysics Data System (ADS)
Zhou, Ling; Wang, Chunhua; Zhang, Xin; Yao, Wei
By replacing the resistor in a Twin-T network with a generalized flux-controlled memristor, this paper proposes a simple fourth-order memristive Twin-T oscillator. Rich dynamical behaviors can be observed in the dynamical system. The most striking feature is that this system has various periodic orbits and various chaotic attractors generated by adjusting parameter b. At the same time, coexisting attractors and antimonotonicity are also detected (especially, two full Feigenbaum remerging trees in series are observed in such autonomous chaotic systems). Their dynamical features are analyzed by phase portraits, Lyapunov exponents, bifurcation diagrams and basin of attraction. Moreover, hardware experiments on a breadboard are carried out. Experimental measurements are in accordance with the simulation results. Finally, a multi-channel random bit generator is designed for encryption applications. Numerical results illustrate the usefulness of the random bit generator.
Sun, Mengyang; Cheng, Xianrui; Socolar, Joshua E S
2013-06-01
A common approach to the modeling of gene regulatory networks is to represent activating or repressing interactions using ordinary differential equations for target gene concentrations that include Hill function dependences on regulator gene concentrations. An alternative formulation represents the same interactions using Boolean logic with time delays associated with each network link. We consider the attractors that emerge from the two types of models in the case of a simple but nontrivial network: a figure-8 network with one positive and one negative feedback loop. We show that the different modeling approaches give rise to the same qualitative set of attractors with the exception of a possible fixed point in the ordinary differential equation model in which concentrations sit at intermediate values. The properties of the attractors are most easily understood from the Boolean perspective, suggesting that time-delay Boolean modeling is a useful tool for understanding the logic of regulatory networks.
Large-scale galactic motions: test of the Dipole Repeller model with the RFGC galaxies data
NASA Astrophysics Data System (ADS)
Parnovsky, S.
2017-06-01
The paper "The Dipole Repeller" in Nature Astronomy by Hoffman et al. state that the local large-scale galactic flow is dominated by a single attractor - associated with the Shapley Concentration - and a single previously unidentified repeller. We check this hypothesis using the data for 1459 galaxies from RFGC catalogue with distances up to 100 h-1 Mpc. We compared the models with multipole velocity field for pure Hubble expansion and dipole, quadrupole and octopole motion with the models with two attractors in the regions indicated by Hoffman et al with the multipole velocity field background. The results do not support the hypothesis, but does not contradict it. In any case, the inclusion of the following multipole is more effective than the addition of two attractors. Estimations of excess mass of attractors vary greatly, even changing their sign depending on the highest multipole used in model.
The dimension of attractors underlying periodic turbulent Poiseuille flow
NASA Technical Reports Server (NTRS)
Keefe, Laurence; Moin, Parviz; Kim, John
1992-01-01
A lower bound on the Liapunov dimenison, D-lambda, of the attractor underlying turbulent, periodic Poiseuille flow at a pressure-gradient Reynolds number of 3200 is calculated, on the basis of a coarse-grained (16x33x8) numerical solution, to be approximately 352. Comparison of Liapunov exponent spectra from this and a higher-resolution (16x33x16) simulation on the same spatial domain shows these spectra to have a universal shape when properly scaled. On the basis of these scaling properties, and a partial exponent spectrum from a still higher-resolution (32x33x32) simulation, it is argued that the actual dimension of the attractor underlying motion of the given computational domain is approximately 780. It is suggested that this periodic turbulent shear flow is deterministic chaos, and that a strange attractor does underly solutions to the Navier-Stokes equations in such flows.
Cancer Theory from Systems Biology Point of View
NASA Astrophysics Data System (ADS)
Wang, Gaowei; Tang, Ying; Yuan, Ruoshi; Ao, Ping
In our previous work, we have proposed a novel cancer theory, endogenous network theory, to understand mechanism underlying cancer genesis and development. Recently, we apply this theory to hepatocellular carcinoma (HCC). A core endogenous network of hepatocyte was established by integrating the current understanding of hepatocyte at molecular level. Quantitative description of the endogenous network consisted of a set of stochastic differential equations which could generate many local attractors with obvious or non-obvious biological functions. By comparing with clinical observation and experimental data, the results showed that two robust attractors from the model reproduced the main known features of normal hepatocyte and cancerous hepatocyte respectively at both modular and molecular level. In light of our theory, the genesis and progression of cancer is viewed as transition from normal attractor to HCC attractor. A set of new insights on understanding cancer genesis and progression, and on strategies for cancer prevention, cure, and care were provided.
Chen, Yung-Chuan; Tu, Yuan-Kun; Zhuang, Jun-Yan; Tsai, Yi-Jung; Yen, Cheng-Yo; Hsiao, Chih-Kun
2017-11-01
A three-dimensional dynamic elastoplastic finite element model was constructed and experimentally validated and was used to investigate the parameters which influence bone temperature during drilling, including the drill speed, feeding force, drill bit diameter, and bone density. Results showed the proposed three-dimensional dynamic elastoplastic finite element model can effectively simulate the temperature elevation during bone drilling. The bone temperature rise decreased with an increase in feeding force and drill speed, however, increased with the diameter of drill bit or bone density. The temperature distribution is significantly affected by the drilling duration; a lower drilling speed reduced the exposure duration, decreases the region of the thermally affected zone. The constructed model could be applied for analyzing the influence parameters during bone drilling to reduce the risk of thermal necrosis. It may provide important information for the design of drill bits and surgical drilling powers.
NASA Technical Reports Server (NTRS)
Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.
2015-01-01
Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.
NASA Astrophysics Data System (ADS)
Pötz, Walter
2017-11-01
A single-cone finite-difference lattice scheme is developed for the (2+1)-dimensional Dirac equation in presence of general electromagnetic textures. The latter is represented on a (2+1)-dimensional staggered grid using a second-order-accurate finite difference scheme. A Peierls-Schwinger substitution to the wave function is used to introduce the electromagnetic (vector) potential into the Dirac equation. Thereby, the single-cone energy dispersion and gauge invariance are carried over from the continuum to the lattice formulation. Conservation laws and stability properties of the formal scheme are identified by comparison with the scheme for zero vector potential. The placement of magnetization terms is inferred from consistency with the one for the vector potential. Based on this formal scheme, several numerical schemes are proposed and tested. Elementary examples for single-fermion transport in the presence of in-plane magnetization are given, using material parameters typical for topological insulator surfaces.
NASA Technical Reports Server (NTRS)
Dewitt, K. J.; Baliga, G.
1982-01-01
A numerical simulation was developed to investigate the one dimensional heat transfer occurring in a system composed of a layered aircraft blade having an ice deposit on its surface. The finite difference representation of the heat conduction equations was done using the Crank-Nicolson implicit finite difference formulation. The simulation considers uniform or time dependent heat sources, from heaters which can be either point sources or of finite thickness. For the ice water phase change, a numerical method which approximates the latent heat effect by a large heat capacity over a small temperature interval was applied. The simulation describes the temperature profiles within the various layers of the de-icer pad, as well as the movement of the ice water interface. The simulation could also be used to predict the one dimensional temperature profiles in any composite slab having different boundary conditions.
Lin, Ying-he; Man, Yi; Qu, Yi-li; Guan, Dong-hua; Lu, Xuan; Wei, Na
2006-01-01
To study the movement of long axis and the distribution of principal stress in the abutment teeth in removable partial denture which is retained by use of conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static loads were applied. The displacement of the long axis and the distribution of the principal stress in the abutment teeth was analyzed. There is no statistic difference of displacenat and stress distribution among different three-dimensional finite element models. Generally, the abutment teeth move along the long axis itself. Similar stress distribution was observed in each three-dimensional finite element model. The maximal principal compressive stress was observed at the distal cervix of the second premolar. The abutment teeth can be well protected by use of conical telescope.
Three dimensional finite element methods: Their role in the design of DC accelerator systems
NASA Astrophysics Data System (ADS)
Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.
2013-04-01
High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.
Nature of self-diffusion in two-dimensional fluids
NASA Astrophysics Data System (ADS)
Choi, Bongsik; Han, Kyeong Hwan; Kim, Changho; Talkner, Peter; Kidera, Akinori; Lee, Eok Kyun
2017-12-01
Self-diffusion in a two-dimensional simple fluid is investigated by both analytical and numerical means. We investigate the anomalous aspects of self-diffusion in two-dimensional fluids with regards to the mean square displacement, the time-dependent diffusion coefficient, and the velocity autocorrelation function (VACF) using a consistency equation relating these quantities. We numerically confirm the consistency equation by extensive molecular dynamics simulations for finite systems, corroborate earlier results indicating that the kinematic viscosity approaches a finite, non-vanishing value in the thermodynamic limit, and establish the finite size behavior of the diffusion coefficient. We obtain the exact solution of the consistency equation in the thermodynamic limit and use this solution to determine the large time asymptotics of the mean square displacement, the diffusion coefficient, and the VACF. An asymptotic decay law of the VACF resembles the previously known self-consistent form, 1/(t\\sqrt{{ln}t}), however with a rescaled time.
Development and verification of global/local analysis techniques for laminated composites
NASA Technical Reports Server (NTRS)
Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.
1991-01-01
A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.
An enriched finite element method to fractional advection-diffusion equation
NASA Astrophysics Data System (ADS)
Luan, Shengzhi; Lian, Yanping; Ying, Yuping; Tang, Shaoqiang; Wagner, Gregory J.; Liu, Wing Kam
2017-08-01
In this paper, an enriched finite element method with fractional basis [ 1,x^{α }] for spatial fractional partial differential equations is proposed to obtain more stable and accurate numerical solutions. For pure fractional diffusion equation without advection, the enriched Galerkin finite element method formulation is demonstrated to simulate the exact solution successfully without any numerical oscillation, which is advantageous compared to the traditional Galerkin finite element method with integer basis [ 1,x] . For fractional advection-diffusion equation, the oscillatory behavior becomes complex due to the introduction of the advection term which can be characterized by a fractional element Peclet number. For the purpose of addressing the more complex numerical oscillation, an enriched Petrov-Galerkin finite element method is developed by using a dimensionless fractional stabilization parameter, which is formulated through a minimization of the residual of the nodal solution. The effectiveness and accuracy of the enriched finite element method are demonstrated by a series of numerical examples of fractional diffusion equation and fractional advection-diffusion equation, including both one-dimensional and two-dimensional, steady-state and time-dependent cases.
Critical scaling of the mutual information in two-dimensional disordered Ising models
NASA Astrophysics Data System (ADS)
Sriluckshmy, P. V.; Mandal, Ipsita
2018-04-01
Rényi mutual information, computed from second Rényi entropies, can identify classical phase transitions from their finite-size scaling at critical points. We apply this technique to examine the presence or absence of finite temperature phase transitions in various two-dimensional models on a square lattice, which are extensions of the conventional Ising model by adding a quenched disorder. When the quenched disorder causes the nearest neighbor bonds to be both ferromagnetic and antiferromagnetic, (a) a spin glass phase exists only at zero temperature, and (b) a ferromagnetic phase exists at a finite temperature when the antiferromagnetic bond distributions are sufficiently dilute. Furthermore, finite temperature paramagnetic-ferromagnetic transitions can also occur when the disordered bonds involve only ferromagnetic couplings of random strengths. In our numerical simulations, the ‘zero temperature only’ phase transitions are identified when there is no consistent finite-size scaling of the Rényi mutual information curves, while for finite temperature critical points, the curves can identify the critical temperature T c by their crossings at T c and 2 Tc .
Vankan, W J; Huyghe, J M; Slaaf, D W; van Donkelaar, C C; Drost, M R; Janssen, J D; Huson, A
1997-09-01
Mechanical interaction between tissue stress and blood perfusion in skeletal muscles plays an important role in blood flow impediment during sustained contraction. The exact mechanism of this interaction is not clear, and experimental investigation of this mechanism is difficult. We developed a finite-element model of the mechanical behavior of blood-perfused muscle tissue, which accounts for mechanical blood-tissue interaction in maximally vasodilated vasculature. Verification of the model was performed by comparing finite-element results of blood pressure and flow with experimental measurements in a muscle that is subject to well-controlled mechanical loading conditions. In addition, we performed simulations of blood perfusion during tetanic, isometric contraction and maximal vasodilation in a simplified, two-dimensional finite-element model of a rat calf muscle. A vascular waterfall in the venous compartment was identified as the main cause for blood flow impediment both in the experiment and in the finite-element simulations. The validated finite-element model offers possibilities for detailed analysis of blood perfusion in three-dimensional muscle models under complicated loading conditions.
Finite-size scaling and integer-spin Heisenberg chains
NASA Astrophysics Data System (ADS)
Bonner, Jill C.; Müller, Gerhard
1984-03-01
Finite-size scaling (phenomenological renormalization) techniques are trusted and widely applied in low-dimensional magnetism and, particularly, in lattice gauge field theory. Recently, investigations have begun which subject the theoretical basis to systematic and intensive scrutiny to determine the validity of finite-size scaling in a variety of situations. The 2D ANNNI model is an example of a situation where finite-size scaling methods encounter difficulty, related to the occurrence of a disorder line (one-dimensional line). A second example concerns the behavior of the spin-1/2 antiferromagnetic XXZ model where the T=0 critical behavior is exactly known and features an essential singularity at the isotropic Heisenberg point. Standard finite-size scaling techniques do not convincingly reproduce the exact phase behavior and this is attributable to the essential singularity. The point is relevant in connection with a finite-size scaling analysis of a spin-one antiferromagnetic XXZ model, which claims to support a conjecture by Haldane that the T=0 phase behavior of integer-spin Heisenberg chains is significantly different from that of half-integer-spin Heisenberg chains.
Three dimensional finite-element analysis of finite-thickness fracture specimens
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1977-01-01
The stress-intensity factors for most of the commonly used fracture specimens (center-crack tension, single and double edge-crack tension, and compact), those that have a through-the-thickness crack, were calculated using a three dimensional finite-element elastic stress analysis. Three-dimensional singularity elements were used around the crack front. The stress intensity factors along the crack front were evaluated by using a force method, developed herein, that requires no prior assumption of either plane stress or plane strain. The calculated stress-intensity factors from the present analysis were compared with those from the literature whenever possible and were generally found to be in good agreement. The stress-intensity factors at the midplane for all specimens analyzed were within 3 percent of the two dimensional plane strain values. The stress intensity factors at the specimen surfaces were considerably lower than at the midplanes. For the center-crack tension specimens with large thickness to crack-length ratios, the stress-intensity factor reached a maximum near the surface of the specimen. In all other specimens considered the maximum stress intensity occurred at the midplane.
Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.
1993-01-01
Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
Identities of Finitely Generated Algebras Over AN Infinite Field
NASA Astrophysics Data System (ADS)
Kemer, A. R.
1991-02-01
It is proved that for each finitely generated associative PI-algebra U over an infinite field F, there is a finite-dimensional F-algebra C such that the ideals of identities of the algebras U and C coincide. This yields a positive solution to the local problem of Specht for algebras over an infinite field: A finitely generated free associative algebra satisfies the maximum condition for T-ideals.
Marquez, Bicky A; Larger, Laurent; Brunner, Daniel; Chembo, Yanne K; Jacquot, Maxime
2016-12-01
We report on experimental and theoretical analysis of the complex dynamics generated by a nonlinear time-delayed electro-optic bandpass oscillator. We investigate the interaction between the slow- and fast-scale dynamics of autonomous oscillations in the breather regime. We analyze in detail the coupling between the fast-scale behavior associated to a characteristic low-pass Ikeda behavior and the slow-scale dynamics associated to a Liénard limit-cycle. Finally, we show that when projected onto a two-dimensional phase space, the attractors corresponding to periodic and chaotic breathers display a spiral-like pattern, which strongly depends on the shape of the nonlinear function.
Dynamics of a minimal consumer network with bi-directional influence
NASA Astrophysics Data System (ADS)
Ekaterinchuk, Ekaterina; Jungeilges, Jochen; Ryazanova, Tatyana; Sushko, Iryna
2018-05-01
We study the dynamics of a model of interdependent consumer behavior defined by a family of two-dimensional noninvertible maps. This family belongs to a class of coupled logistic maps with different nonlinearity parameters and coupling terms that depend on one variable only. In our companion paper we considered the case of independent consumers as well as the case of uni-directionally connected consumers. The present paper aims at describing the dynamics in the case of a bi-directional connection. In particular, we investigate the bifurcation structure of the parameter plane associated with the strength of coupling between the consumers, focusing on the mechanisms of qualitative transformations of coexisting attractors and their basins of attraction.
Phase space interrogation of the empirical response modes for seismically excited structures
NASA Astrophysics Data System (ADS)
Paul, Bibhas; George, Riya C.; Mishra, Sudib K.
2017-07-01
Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.
Methods for analysis of cracks in three-dimensional solids
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.
Chaudhry, Anshul; Sidhu, Maninder S; Chaudhary, Girish; Grover, Seema; Chaudhry, Nimisha; Kaushik, Ashutosh
2015-02-01
The aim of this study was to evaluate the effects of a fixed functional appliance (Forsus Fatigue Resistant Device; 3M Unitek, Monrovia, Calif) on the mandible with 3-dimensional finite element stress analysis. A 3-dimensional finite element model of the mandible was constructed from the images generated by cone-beam computed tomography of a patient undergoing fixed orthodontic treatment. The changes were studied with the finite element method, in the form of highest von Mises stress and maximum principal stress regions. More areas of stress were seen in the model of the mandible with the Forsus compared with the model of the mandible in the resting stage. This fixed functional appliance studied by finite element model analysis caused increases in the maximum principal stress and the von Mises stress in both the cortical bone and the condylar region of the mandible by more than 2 times. Copyright © 2015 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Supermultiplet of β-deformations from twistors
NASA Astrophysics Data System (ADS)
Milián, Segundo P.
2017-09-01
We consider the supermultiplet of linearized beta-deformation of 𝒩 = 4 super-Yang-Mills (SYM). It was previously studied on the gravitational side. We study the supermultiplet of beta-deformations on the field theory side and we compare two finite-dimensional representations of psl(4|4,R) algebra. We show that they are related by an intertwining operator. We develop a twistor-based approach which could be useful for studying other finite-dimensional and nonunitary representations in AdS/CFT correspondence.
Computational methods for the control of distributed parameter systems
NASA Technical Reports Server (NTRS)
Burns, J. A.; Cliff, E. M.; Powers, R. K.
1985-01-01
It is shown that care must be taken to ensure that finite dimensional approximations of distributed parameter systems preserve important system properties (i.e., controllability, observability, stabilizability, detectability, etc.). It is noted that, if the particular scheme used to construct the finite dimensional model does not take into account these system properties, the model may not be suitable for control design and analysis. These ideas are illustrated by a simple example, i.e., a cable-spring-mass system.
CELFE/NASTRAN Code for the Analysis of Structures Subjected to High Velocity Impact
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1978-01-01
CELFE (Coupled Eulerian Lagrangian Finite Element)/NASTRAN Code three-dimensional finite element code has the capability for analyzing of structures subjected to high velocity impact. The local response is predicted by CELFE and, for large problems, the far-field impact response is predicted by NASTRAN. The coupling of the CELFE code with NASTRAN (CELFE/NASTRAN code) and the application of the code to selected three-dimensional high velocity impact problems are described.
[Three-dimensional finite element analysis on cell culture membrane under mechanical load].
Guo, Xin; Fan, Yubo; Song, Jinlin; Chen, Junkai
2002-01-01
A three-dimensional finite element model of the cell culture membrane was developed in the culture device under tension state made by us. The magnitude of tension and the displacement distribution in the membrane made of silicon rubber under different hydrostatic load were obtained by use of FEM analysis. A comparative study was made between the numerical and the experimental results. These results can serve as guides to the related cellular mechanical research.
Dynamic analysis of a buckled asymmetric piezoelectric beam for energy harvesting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Blarigan, Louis, E-mail: louis01@umail.ucsb.edu; Moehlis, Jeff
2016-03-15
A model of a buckled beam energy harvester is analyzed to determine the phenomena behind the transition between high and low power output levels. It is shown that the presence of a chaotic attractor is a sufficient condition to predict high power output, though there are relatively small areas where high output is achieved without a chaotic attractor. The chaotic attractor appears as a product of a period doubling cascade or a boundary crisis. Bifurcation diagrams provide insight into the development of the chaotic region as the input power level is varied, as well as the intermixed periodic windows.
NASA Astrophysics Data System (ADS)
La Torre, Davide; Marsiglio, Simone; Mendivil, Franklin; Privileggi, Fabio
2018-05-01
We analyze a multi-sector growth model subject to random shocks affecting the two sector-specific production functions twofold: the evolution of both productivity and factor shares is the result of such exogenous shocks. We determine the optimal dynamics via Euler-Lagrange equations, and show how these dynamics can be described in terms of an iterated function system with probability. We also provide conditions that imply the singularity of the invariant measure associated with the fractal attractor. Numerical examples show how specific parameter configurations might generate distorted copies of the Barnsley's fern attractor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anishchenko, Vadim S.; Vadivasova, Tatjana E.; Kopeikin, Andrey S.
2001-07-30
We study the influence of external noise on the relaxation to an invariant probability measure for two types of nonhyperbolic chaotic attractors, a spiral (or coherent) and a noncoherent one. We find that for the coherent attractor the rate of mixing changes under the influence of noise, although the largest Lyapunov exponent remains almost unchanged. A mechanism of the noise influence on mixing is presented which is associated with the dynamics of the instantaneous phase of chaotic trajectories. This also explains why the noncoherent regime is robust against the presence of external noise.
Colwell, Robert K; Gotelli, Nicholas J; Ashton, Louise A; Beck, Jan; Brehm, Gunnar; Fayle, Tom M; Fiedler, Konrad; Forister, Matthew L; Kessler, Michael; Kitching, Roger L; Klimes, Petr; Kluge, Jürgen; Longino, John T; Maunsell, Sarah C; McCain, Christy M; Moses, Jimmy; Noben, Sarah; Sam, Katerina; Sam, Legi; Shapiro, Arthur M; Wang, Xiangping; Novotny, Vojtech
2016-09-01
We introduce a novel framework for conceptualising, quantifying and unifying discordant patterns of species richness along geographical gradients. While not itself explicitly mechanistic, this approach offers a path towards understanding mechanisms. In this study, we focused on the diverse patterns of species richness on mountainsides. We conjectured that elevational range midpoints of species may be drawn towards a single midpoint attractor - a unimodal gradient of environmental favourability. The midpoint attractor interacts with geometric constraints imposed by sea level and the mountaintop to produce taxon-specific patterns of species richness. We developed a Bayesian simulation model to estimate the location and strength of the midpoint attractor from species occurrence data sampled along mountainsides. We also constructed midpoint predictor models to test whether environmental variables could directly account for the observed patterns of species range midpoints. We challenged these models with 16 elevational data sets, comprising 4500 species of insects, vertebrates and plants. The midpoint predictor models generally failed to predict the pattern of species midpoints. In contrast, the midpoint attractor model closely reproduced empirical spatial patterns of species richness and range midpoints. Gradients of environmental favourability, subject to geometric constraints, may parsimoniously account for elevational and other patterns of species richness. © 2016 John Wiley & Sons Ltd/CNRS.
Roudi, Yasser; Latham, Peter E
2007-01-01
A fundamental problem in neuroscience is understanding how working memory—the ability to store information at intermediate timescales, like tens of seconds—is implemented in realistic neuronal networks. The most likely candidate mechanism is the attractor network, and a great deal of effort has gone toward investigating it theoretically. Yet, despite almost a quarter century of intense work, attractor networks are not fully understood. In particular, there are still two unanswered questions. First, how is it that attractor networks exhibit irregular firing, as is observed experimentally during working memory tasks? And second, how many memories can be stored under biologically realistic conditions? Here we answer both questions by studying an attractor neural network in which inhibition and excitation balance each other. Using mean-field analysis, we derive a three-variable description of attractor networks. From this description it follows that irregular firing can exist only if the number of neurons involved in a memory is large. The same mean-field analysis also shows that the number of memories that can be stored in a network scales with the number of excitatory connections, a result that has been suggested for simple models but never shown for realistic ones. Both of these predictions are verified using simulations with large networks of spiking neurons. PMID:17845070
Measurement-based quantum teleportation on finite AKLT chains
NASA Astrophysics Data System (ADS)
Fujii, Akihiko; Feder, David
In the measurement-based model of quantum computation, universal quantum operations are effected by making repeated local measurements on resource states which contain suitable entanglement. Resource states include two-dimensional cluster states and the ground state of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state on the honeycomb lattice. Recent studies suggest that measurements on one-dimensional systems in the Haldane phase teleport perfect single-qubit gates in the correlation space, protected by the underlying symmetry. As laboratory realizations of symmetry-protected states will necessarily be finite, we investigate the potential for quantum gate teleportation in finite chains of a bilinear-biquadratic Hamiltonian which is a generalization of the AKLT model representing the full Haldane phase.
Accurate solutions for transonic viscous flow over finite wings
NASA Technical Reports Server (NTRS)
Vatsa, V. N.
1986-01-01
An explicit multistage Runge-Kutta type time-stepping scheme is used for solving the three-dimensional, compressible, thin-layer Navier-Stokes equations. A finite-volume formulation is employed to facilitate treatment of complex grid topologies encountered in three-dimensional calculations. Convergence to steady state is expedited through usage of acceleration techniques. Further numerical efficiency is achieved through vectorization of the computer code. The accuracy of the overall scheme is evaluated by comparing the computed solutions with the experimental data for a finite wing under different test conditions in the transonic regime. A grid refinement study ir conducted to estimate the grid requirements for adequate resolution of salient features of such flows.
A chaotic model for the epidemic of Ebola virus disease in West Africa (2013-2016)
NASA Astrophysics Data System (ADS)
Mangiarotti, Sylvain; Peyre, Marisa; Huc, Mireille
2016-11-01
An epidemic of Ebola Virus Disease (EVD) broke out in Guinea in December 2013. It was only identified in March 2014 while it had already spread out in Liberia and Sierra Leone. The spill over of the disease became uncontrollable and the epidemic could not be stopped before 2016. The time evolution of this epidemic is revisited here with the global modeling technique which was designed to obtain the deterministic models from single time series. A generalized formulation of this technique for multivariate time series is introduced. It is applied to the epidemic of EVD in West Africa focusing on the period between March 2014 and January 2015, that is, before any detected signs of weakening. Data gathered by the World Health Organization, based on the official publications of the Ministries of Health of the three main countries involved in this epidemic, are considered in our analysis. Two observed time series are used: the daily numbers of infections and deaths. A four-dimensional model producing a very complex dynamical behavior is obtained. The model is tested in order to investigate its skills and drawbacks. Our global analysis clearly helps to distinguish three main stages during the epidemic. A characterization of the obtained attractor is also performed. In particular, the topology of the chaotic attractor is analyzed and a skeleton is obtained for its structure.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
Flow Equation Approach to the Statistics of Nonlinear Dynamical Systems
NASA Astrophysics Data System (ADS)
Marston, J. B.; Hastings, M. B.
2005-03-01
The probability distribution function of non-linear dynamical systems is governed by a linear framework that resembles quantum many-body theory, in which stochastic forcing and/or averaging over initial conditions play the role of non-zero . Besides the well-known Fokker-Planck approach, there is a related Hopf functional methodootnotetextUriel Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press, 1995) chapter 9.5.; in both formalisms, zero modes of linear operators describe the stationary non-equilibrium statistics. To access the statistics, we investigate the method of continuous unitary transformationsootnotetextS. D. Glazek and K. G. Wilson, Phys. Rev. D 48, 5863 (1993); Phys. Rev. D 49, 4214 (1994). (also known as the flow equation approachootnotetextF. Wegner, Ann. Phys. 3, 77 (1994).), suitably generalized to the diagonalization of non-Hermitian matrices. Comparison to the more traditional cumulant expansion method is illustrated with low-dimensional attractors. The treatment of high-dimensional dynamical systems is also discussed.
Patterns and Oscillations in Reaction-Diffusion Systems with Intrinsic Fluctuations
NASA Astrophysics Data System (ADS)
Giver, Michael; Goldstein, Daniel; Chakraborty, Bulbul
2013-03-01
Intrinsic or demographic noise has been shown to play an important role in the dynamics of a variety of systems including predator-prey populations, biochemical reactions within cells, and oscillatory chemical reaction systems, and is known to give rise to oscillations and pattern formation well outside the parameter range predicted by standard mean-field analysis. Initially motivated by an experimental model of cells and tissues where the cells are represented by chemical reagents isolated in emulsion droplets, we study the stochastic Brusselator, a simple activator-inhibitor chemical reaction model. Our work extends the results of recent studies on the zero and one dimensional systems with the ultimate goals of understanding the role of noise in spatially structured systems and engineering novel patterns and attractors induced by fluctuations. In the zero dimensional system, we observe a noise induced switching between small and large amplitude oscillations when a separation of time scales is present, while the spatially extended system displays a similar switching between a stationary Turing pattern and uniform oscillations.
Robust stabilization of underactuated nonlinear systems: A fast terminal sliding mode approach.
Khan, Qudrat; Akmeliawati, Rini; Bhatti, Aamer Iqbal; Khan, Mahmood Ashraf
2017-01-01
This paper presents a fast terminal sliding mode based control design strategy for a class of uncertain underactuated nonlinear systems. Strategically, this development encompasses those electro-mechanical underactuated systems which can be transformed into the so-called regular form. The novelty of the proposed technique lies in the hierarchical development of a fast terminal sliding attractor design for the considered class. Having established sliding mode along the designed manifold, the close loop dynamics become finite time stable which, consequently, result in high precision. In addition, the adverse effects of the chattering phenomenon are reduced via strong reachability condition and the robustness of the system against uncertainties is confirmed theoretically. A simulation as well as experimental study of an inverted pendulum is presented to demonstrate the applicability of the proposed technique. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Phase space of modified Gauss-Bonnet gravity.
Carloni, Sante; Mimoso, José P
2017-01-01
We investigate the evolution of non-vacuum Friedmann-Lemaître-Robertson-Walker (FLRW) spacetimes with any spatial curvature in the context of Gauss-Bonnet gravity. The analysis employs a new method which enables us to explore the phase space of any specific theory of this class. We consider several examples, discussing the transition from a decelerating into an acceleration universe within these theories. We also deduce from the dynamical equations some general conditions on the form of the action which guarantee the presence of specific behaviours like the emergence of accelerated expansion. As in f ( R ) gravity, our analysis shows that there is a set of initial conditions for which these models have a finite time singularity which can be an attractor. The presence of this instability also in the Gauss-Bonnet gravity is to be ascribed to the fourth-order derivative in the field equations, i.e., is the direct consequence of the higher order of the equations.
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
2-D to 3-D global/local finite element analysis of cross-ply composite laminates
NASA Technical Reports Server (NTRS)
Thompson, D. Muheim; Griffin, O. Hayden, Jr.
1990-01-01
An example of two-dimensional to three-dimensional global/local finite element analysis of a laminated composite plate with a hole is presented. The 'zoom' technique of global/local analysis is used, where displacements of the global/local interface from the two-dimensional global model are applied to the edges of the three-dimensional local model. Three different hole diameters, one, three, and six inches, are considered in order to compare the effect of hole size on the three-dimensional stress state around the hole. In addition, three different stacking sequences are analyzed for the six inch hole case in order to study the effect of stacking sequence. The existence of a 'critical' hole size, where the interlaminar stresses are maximum, is indicated. Dispersion of plies at the same angle, as opposed to clustering, is found to reduce the magnitude of some interlaminar stress components and increase others.
Pressure distribution under flexible polishing tools. II - Cylindrical (conical) optics
NASA Astrophysics Data System (ADS)
Mehta, Pravin K.
1990-10-01
A previously developed eigenvalue model is extended to determine polishing pressure distribution by rectangular tools with unequal stiffness in two directions on cylindrical optics. Tool misfit is divided into two simplified one-dimensional problems and one simplified two-dimensional problem. Tools with nonuniform cross-sections are treated with a new one-dimensional eigenvalue algorithm, permitting evaluation of tool designs where the edge is more flexible than the interior. This maintains edge pressure variations within acceptable parameters. Finite element modeling is employed to resolve upper bounds, which handle pressure changes in the two-dimensional misfit element. Paraboloids and hyperboloids from the NASA AXAF system are treated with the AXAFPOD software for this method, and are verified with NASTRAN finite element analyses. The maximum deviation from the one-dimensional azimuthal pressure variation is predicted to be 10 percent and 20 percent for paraboloids and hyperboloids, respectively.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok
2012-01-01
This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.
Transition probabilities for non self-adjoint Hamiltonians in infinite dimensional Hilbert spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bagarello, F., E-mail: fabio.bagarello@unipa.it
In a recent paper we have introduced several possible inequivalent descriptions of the dynamics and of the transition probabilities of a quantum system when its Hamiltonian is not self-adjoint. Our analysis was carried out in finite dimensional Hilbert spaces. This is useful, but quite restrictive since many physically relevant quantum systems live in infinite dimensional Hilbert spaces. In this paper we consider this situation, and we discuss some applications to well known models, introduced in the literature in recent years: the extended harmonic oscillator, the Swanson model and a generalized version of the Landau levels Hamiltonian. Not surprisingly we willmore » find new interesting features not previously found in finite dimensional Hilbert spaces, useful for a deeper comprehension of this kind of physical systems.« less
Castellazzi, Giovanni; D’Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-01-01
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation. PMID:26225978
Finite-size scaling of clique percolation on two-dimensional Moore lattices
NASA Astrophysics Data System (ADS)
Dong, Jia-Qi; Shen, Zhou; Zhang, Yongwen; Huang, Zi-Gang; Huang, Liang; Chen, Xiaosong
2018-05-01
Clique percolation has attracted much attention due to its significance in understanding topological overlap among communities and dynamical instability of structured systems. Rich critical behavior has been observed in clique percolation on Erdős-Rényi (ER) random graphs, but few works have discussed clique percolation on finite dimensional systems. In this paper, we have defined a series of characteristic events, i.e., the historically largest size jumps of the clusters, in the percolating process of adding bonds and developed a new finite-size scaling scheme based on the interval of the characteristic events. Through the finite-size scaling analysis, we have found, interestingly, that, in contrast to the clique percolation on an ER graph where the critical exponents are parameter dependent, the two-dimensional (2D) clique percolation simply shares the same critical exponents with traditional site or bond percolation, independent of the clique percolation parameters. This has been corroborated by bridging two special types of clique percolation to site percolation on 2D lattices. Mechanisms for the difference of the critical behaviors between clique percolation on ER graphs and on 2D lattices are also discussed.
Three dimensional finite temperature SU(3) gauge theory near the phase transition
NASA Astrophysics Data System (ADS)
Bialas, P.; Daniel, L.; Morel, A.; Petersson, B.
2013-06-01
We have measured the correlation function of Polyakov loops on the lattice in three dimensional SU(3) gauge theory near its finite temperature phase transition. Using a new and powerful application of finite size scaling, we furthermore extend the measurements of the critical couplings to considerably larger values of the lattice sizes, both in the temperature and space directions, than was investigated earlier in this theory. With the help of these measurements we perform a detailed finite size scaling analysis, showing that for the critical exponents of the two dimensional three state Potts model the mass and the susceptibility fall on unique scaling curves. This strongly supports the expectation that the gauge theory is in the same universality class. The Nambu-Goto string model on the other hand predicts that the exponent ν has the mean field value, which is quite different from the value in the abovementioned Potts model. Using our values of the critical couplings we also determine the continuum limit of the value of the critical temperature in terms of the square root of the zero temperature string tension. This value is very near to the prediction of the Nambu-Goto string model in spite of the different critical behaviour.
Breeding novel solutions in the brain: a model of Darwinian neurodynamics.
Szilágyi, András; Zachar, István; Fedor, Anna; de Vladar, Harold P; Szathmáry, Eörs
2016-01-01
Background : The fact that surplus connections and neurons are pruned during development is well established. We complement this selectionist picture by a proof-of-principle model of evolutionary search in the brain, that accounts for new variations in theory space. We present a model for Darwinian evolutionary search for candidate solutions in the brain. Methods : We combine known components of the brain - recurrent neural networks (acting as attractors), the action selection loop and implicit working memory - to provide the appropriate Darwinian architecture. We employ a population of attractor networks with palimpsest memory. The action selection loop is employed with winners-share-all dynamics to select for candidate solutions that are transiently stored in implicit working memory. Results : We document two processes: selection of stored solutions and evolutionary search for novel solutions. During the replication of candidate solutions attractor networks occasionally produce recombinant patterns, increasing variation on which selection can act. Combinatorial search acts on multiplying units (activity patterns) with hereditary variation and novel variants appear due to (i) noisy recall of patterns from the attractor networks, (ii) noise during transmission of candidate solutions as messages between networks, and, (iii) spontaneously generated, untrained patterns in spurious attractors. Conclusions : Attractor dynamics of recurrent neural networks can be used to model Darwinian search. The proposed architecture can be used for fast search among stored solutions (by selection) and for evolutionary search when novel candidate solutions are generated in successive iterations. Since all the suggested components are present in advanced nervous systems, we hypothesize that the brain could implement a truly evolutionary combinatorial search system, capable of generating novel variants.
Chong, Ket Hing; Zhang, Xiaomeng; Zheng, Jie
2018-01-01
Ageing is a natural phenomenon that is inherently complex and remains a mystery. Conceptual model of cellular ageing landscape was proposed for computational studies of ageing. However, there is a lack of quantitative model of cellular ageing landscape. This study aims to investigate the mechanism of cellular ageing in a theoretical model using the framework of Waddington's epigenetic landscape. We construct an ageing gene regulatory network (GRN) consisting of the core cell cycle regulatory genes (including p53). A model parameter (activation rate) is used as a measure of the accumulation of DNA damage. Using the bifurcation diagrams to estimate the parameter values that lead to multi-stability, we obtained a conceptual model for capturing three distinct stable steady states (or attractors) corresponding to homeostasis, cell cycle arrest, and senescence or apoptosis. In addition, we applied a Monte Carlo computational method to quantify the potential landscape, which displays: I) one homeostasis attractor for low accumulation of DNA damage; II) two attractors for cell cycle arrest and senescence (or apoptosis) in response to high accumulation of DNA damage. Using the Waddington's epigenetic landscape framework, the process of ageing can be characterized by state transitions from landscape I to II. By in silico perturbations, we identified the potential landscape of a perturbed network (inactivation of p53), and thereby demonstrated the emergence of a cancer attractor. The simulated dynamics of the perturbed network displays a landscape with four basins of attraction: homeostasis, cell cycle arrest, senescence (or apoptosis) and cancer. Our analysis also showed that for the same perturbed network with low DNA damage, the landscape displays only the homeostasis attractor. The mechanistic model offers theoretical insights that can facilitate discovery of potential strategies for network medicine of ageing-related diseases such as cancer.
On the estimation of the correlation dimension and its application to radar reflector discrimination
NASA Technical Reports Server (NTRS)
Barnett, Kevin D.
1993-01-01
Recently, system theorists have recognized that low order systems of nonlinear differential equations can give rise to solutions which are neither periodic, constant, nor predictable in steady state, but which are nonetheless bounded and deterministic. This behavior, which was first described in the study of weather systems, has been termed 'chaotic.' Much study of chaotic systems has concentrated on analysis of the systems' phase space attractors. It has been recognized that invariant measures of the attractor possess inherent information about the system. One such measure is the dimension of the attractors. The dimension of a chaotic attractor has been shown to be noninteger, leading to the term 'strange attractor;' the attractor is said to have a fractal structure. The correlation dimension has become one of the most popular measures of dimension. However, many problems have been identified in correlation dimension estimation from time sequences. The most common methods for obtaining the correlation dimension have been least squares curves fitting to find the slope of the correlation integral and the Takens Estimator. However, these estimates show unacceptable sensitivity to the upper limit on the distance chosen. Here, a new method is proposed which is shown to be rather insensitive to the upper limit and to perform in a very stable manner, at least in the absence of noise. The correlation dimension is also shown to be an effective discriminant in distinguishing between radar returns resulting from weather and those from the ground. The weather returns are shown to have a correlation dimension generally between 2.0 and 3.0, while ground returns have a correlation dimension exceeding 3.0.
A general algorithm using finite element method for aerodynamic configurations at low speeds
NASA Technical Reports Server (NTRS)
Balasubramanian, R.
1975-01-01
A finite element algorithm for numerical simulation of two-dimensional, incompressible, viscous flows was developed. The Navier-Stokes equations are suitably modelled to facilitate direct solution for the essential flow parameters. A leap-frog time differencing and Galerkin minimization of these model equations yields the finite element algorithm. The finite elements are triangular with bicubic shape functions approximating the solution space. The finite element matrices are unsymmetrically banded to facilitate savings in storage. An unsymmetric L-U decomposition is performed on the finite element matrices to obtain the solution for the boundary value problem.
Modeling and analysis of visual digital impact model for a Chinese human thorax.
Zhu, Jin; Wang, Kai-Ming; Li, Shu; Liu, Hai-Yan; Jing, Xiao; Li, Xiao-Fang; Liu, Yi-He
2017-01-01
To establish a three-dimensional finite element model of the human chest for engineering research on individual protection. Computed tomography (CT) scanning data were used for three-dimensional reconstruction with the medical image reconstruction software Mimics. The finite element method (FEM) preprocessing software ANSYS ICEM CFD was used for cell mesh generation, and the relevant material behavior parameters of all of the model's parts were specified. The finite element model was constructed with the FEM software, and the model availability was verified based on previous cadaver experimental data. A finite element model approximating the anatomical structure of the human chest was established, and the model's simulation results conformed to the results of the cadaver experiment overall. Segment data of the human body and specialized software can be utilized for FEM model reconstruction to satisfy the need for numerical analysis of shocks to the human chest in engineering research on body mechanics.
NASA Astrophysics Data System (ADS)
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2009-05-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, a three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulae describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for the model calibration and evaluation of the corresponding acoustic field.
Adaptive mixed finite element methods for Darcy flow in fractured porous media
NASA Astrophysics Data System (ADS)
Chen, Huangxin; Salama, Amgad; Sun, Shuyu
2016-10-01
In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2010-01-01
Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulas describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for model calibration and evaluation of the corresponding acoustic field. PMID:19351978
Finite-amplitude strain waves in laser-excited plates.
Mirzade, F Kh
2008-07-09
The governing equations for two-dimensional finite-amplitude longitudinal strain waves in isotropic laser-excited solid plates are derived. Geometric and weak material nonlinearities are included, and the interaction of longitudinal displacements with the field of concentration of non-equilibrium laser-generated atomic defects is taken into account. An asymptotic approach is used to show that the equations are reducible to the Kadomtsev-Petviashvili-Burgers nonlinear evolution equation for a longitudinal self-consistent strain field. It is shown that two-dimensional shock waves can propagate in plates.
NASA Astrophysics Data System (ADS)
Parumasur, N.; Willie, R.
2008-09-01
We consider a simple HIV/AIDs finite dimensional mathematical model on interactions of the blood cells, the HIV/AIDs virus and the immune system for consistence of the equations to the real biomedical situation that they model. A better understanding to a cure solution to the illness modeled by the finite dimensional equations is given. This is accomplished through rigorous mathematical analysis and is reinforced by numerical analysis of models developed for real life cases.
NASA Technical Reports Server (NTRS)
Gyekenyesi, J. P.; Mendelson, A.; Kring, J.
1973-01-01
A seminumerical method is presented for solving a set of coupled partial differential equations subject to mixed and coupled boundary conditions. The use of this method is illustrated by obtaining solutions for two circular geometry and mixed boundary value problems in three-dimensional elasticity. Stress and displacement distributions are calculated in an axisymmetric, circular bar of finite dimensions containing a penny-shaped crack. Approximate results for an annular plate containing internal surface cracks are also presented.
NASA Astrophysics Data System (ADS)
Fu, Yuchen; Shelley-Abrahamson, Seth
2016-06-01
We give explicit constructions of some finite-dimensional representations of generalized double affine Hecke algebras (GDAHA) of higher rank using R-matrices for U_q(sl_N). Our construction is motivated by an analogous construction of Silvia Montarani in the rational case. Using the Drinfeld-Kohno theorem for Knizhnik-Zamolodchikov differential equations, we prove that the explicit representations we produce correspond to Montarani's representations under a monodromy functor introduced by Etingof, Gan, and Oblomkov.
Two-dimensional potential flow past a smooth wall with partly constant curvature
NASA Technical Reports Server (NTRS)
Koppenfels, Werner Von
1941-01-01
The speed of a two-dimensional flow potential flow past a smooth wall, which evinces a finite curvature jump at a certain point and approximates to two arcs in the surrounding area, has a vertical tangent of inflection in the critical point as a function of the arc length of the boundary curve. This report looks at a general theorem of the local character of the conformal function at the critical point as well as the case of the finite curvature jump.