Optimizing header strength utilizing finite element analyses
NASA Astrophysics Data System (ADS)
Burchett, S. N.
Finite element techniques have been successfully applied as a design tool in the optimization of high strength headers for pyrotechnic-driven actuators. These techniques have been applied to three aspects of the design process of a high strength header. The design process was a joint effort of experts from several disciplines including design engineers, material scientists, test engineers, manufacturing engineers, and structural analysts. Following material selection, finite element techniques were applied to evaluate the residual stresses due to manufacturing which were developed in the high strength glass ceramic-to-metal seal headers. Results from these finite element analyses were used to identify header designs which were manufacturable and had a minimum residual stress state. Finite element techniques were than applied to obtain the response of the header due to pyrotechnic burn. The results provided realistic upper bounds on the pressure containment ability of various preliminary header designs and provided a quick and inexpensive method of strengthening and refining the designs. Since testing of the headers was difficult and sometimes destructive, results of the analyses were also used to interpret test results and identify failure modes. In this paper, details of the finite element element techniques including the models used, material properties, material failure models, and loading will be presented. Results from the analyses showing the header failure process will also be presented. This paper will show that significant gains in capability and understanding can result when finite element techniques are included as an integral part of the design process of complicated high strength headers.
Finite Element analyses of soil bioengineered slopes
NASA Astrophysics Data System (ADS)
Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar
2014-05-01
Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio
A computer graphics program for general finite element analyses
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Sawyer, L. M.
1978-01-01
Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.
Life assessment of structural components using inelastic finite element analyses
NASA Astrophysics Data System (ADS)
Arya, Vinod K.; Halford, Gary R.
1993-10-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
Life assessment of structural components using inelastic finite element analyses
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
Finite element analyses of wood laminated composite poles
Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse
2005-01-01
Finite element analyses using ANSYS were conducted on orthotropic, polygonal, wood laminated composite poles subjected to a body force and a concentrated load at the free end. Deflections and stress distributions of small-scale and full-size composite poles were analyzed and compared to the results obtained in an experimental study. The predicted deflection for both...
Visualization of transient finite element analyses on large unstructured grids
Dovey, D.
1995-03-22
Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).
3-D Finite Element Analyses of the Egan Cavern Field
Klamerus, E.W.; Ehgartner, B.L.
1999-02-01
Three-dimensional finite element analyses were performed for the two gas-filled storage caverns at the Egan field, Jennings dome, Louisiana. The effects of cavern enlargement on surface subsidence, storage loss, and cavern stability were investigated. The finite element model simulated the leaching of caverns to 6 and 8 billion cubic feet (BCF) and examined their performance at various operating conditions. Operating pressures varied from 0.15 psi/ft to 0.9 psi/ft at the bottom of the lowest cemented casing. The analysis also examined the stability of the web or pillar of salt between the caverns under differential pressure loadings. The 50-year simulations were performed using JAC3D, a three dimensional finite element analysis code for nonlinear quasistatic solids. A damage criterion based on onset of dilatancy was used to evaluate cavern instability. Dilation results from the development of microfractures in salt and, hence, potential increases in permeability onset occurs well before large scale failure. The analyses predicted stable caverns throughout the 50-year period for the range of pressures investigated. Some localized salt damage was predicted near the bottom walls of the caverns if the caverns are operated at minimum pressure for long periods of time. Volumetric cavern closures over time due to creep were moderate to excessive depending on the salt creep properties and operating pressures. However, subsidence above the cavern field was small and should pose no problem, to surface facilities.
Finite element analyses of a linear-accelerator electron gun
Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.
2014-02-15
Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.
Thermo-Elastic Finite Element Analyses of Annular Nuclear Fuels
NASA Astrophysics Data System (ADS)
Kwon, Y. D.; Kwon, S. B.; Rho, K. T.; Kim, M. S.; Song, H. J.
In this study, we tried to examine the pros and cons of the annular type of fuel concerning mainly with the temperatures and stresses of pellet and cladding. The inner and outer gaps between pellet and cladding may play an important role on the temperature distribution and stress distribution of fuel system. Thus, we tested several inner and outer gap cases, and we evaluated the effect of gaps on fuel systems. We conducted thermo-elastic-plastic-creep analyses using an in-house thermo-elastic-plastic-creep finite element program that adopted the 'effective-stress-function' algorithm. Most analyses were conducted until the gaps disappeared; however, certain analyses lasted for 1582 days, after which the fuels were replaced. Further study on the optimal gaps sizes for annular nuclear fuel systems is still required.
Finite element (MARC) solution technologies for viscoplastic analyses
NASA Technical Reports Server (NTRS)
Arya, V. K.; Thompson, Robert L.
1988-01-01
A need for development of realistic constitutive models for structural components operating at high temperatures, accompanied by appropriate solution technologies for stress/life analyses of these components is studied. Viscoplastic models provide a better description of inelastic behavior of materials, but their mathematical structure is very complex. The highly nonlinear and stiff nature of the constitutive equations makes analytical solutions difficult. Therefore, suitable solution, finite element or other numerical, technologies must be developed to make these models adaptable for better and rational designs of components. NASA-Lewis has developed several solution technologies and successfully applied them to the solution of a number of uniaxial and multiaxial problems. Some of these solution technologies are described along with the models and representative results. The solution technologies developed and presented encompass a wide range of models, such as, isotropic, anisotropic, metal matrix composites, and single crystal models.
Numerical techniques in linear duct acoustics. [finite difference and finite element analyses
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1980-01-01
Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.
Finite element analyses for seismic shear wall international standard problem
Park, Y.J.; Hofmayer, C.H.
1998-04-01
Two identical reinforced concrete (RC) shear walls, which consist of web, flanges and massive top and bottom slabs, were tested up to ultimate failure under earthquake motions at the Nuclear Power Engineering Corporation`s (NUPEC) Tadotsu Engineering Laboratory, Japan. NUPEC provided the dynamic test results to the OECD (Organization for Economic Cooperation and Development), Nuclear Energy Agency (NEA) for use as an International Standard Problem (ISP). The shear walls were intended to be part of a typical reactor building. One of the major objectives of the Seismic Shear Wall ISP (SSWISP) was to evaluate various seismic analysis methods for concrete structures used for design and seismic margin assessment. It also offered a unique opportunity to assess the state-of-the-art in nonlinear dynamic analysis of reinforced concrete shear wall structures under severe earthquake loadings. As a participant of the SSWISP workshops, Brookhaven National Laboratory (BNL) performed finite element analyses under the sponsorship of the U.S. Nuclear Regulatory Commission (USNRC). Three types of analysis were performed, i.e., monotonic static (push-over), cyclic static and dynamic analyses. Additional monotonic static analyses were performed by two consultants, F. Vecchio of the University of Toronto (UT) and F. Filippou of the University of California at Berkeley (UCB). The analysis results by BNL and the consultants were presented during the second workshop in Yokohama, Japan in 1996. A total of 55 analyses were presented during the workshop by 30 participants from 11 different countries. The major findings on the presented analysis methods, as well as engineering insights regarding the applicability and reliability of the FEM codes are described in detail in this report. 16 refs., 60 figs., 16 tabs.
Rock penetration : finite element sensitivity and probabilistic modeling analyses.
Fossum, Arlo Frederick
2004-08-01
This report summarizes numerical analyses conducted to assess the relative importance on penetration depth calculations of rock constitutive model physics features representing the presence of microscale flaws such as porosity and networks of microcracks and rock mass structural features. Three-dimensional, nonlinear, transient dynamic finite element penetration simulations are made with a realistic geomaterial constitutive model to determine which features have the most influence on penetration depth calculations. A baseline penetration calculation is made with a representative set of material parameters evaluated from measurements made from laboratory experiments conducted on a familiar sedimentary rock. Then, a sequence of perturbations of various material parameters allows an assessment to be made of the main penetration effects. A cumulative probability distribution function is calculated with the use of an advanced reliability method that makes use of this sensitivity database, probability density functions, and coefficients of variation of the key controlling parameters for penetration depth predictions. Thus the variability of the calculated penetration depth is known as a function of the variability of the input parameters. This simulation modeling capability should impact significantly the tools that are needed to design enhanced penetrator systems, support weapons effects studies, and directly address proposed HDBT defeat scenarios.
Verified and validated finite element analyses of humeri.
Dahan, Gal; Trabelsi, Nir; Safran, Ori; Yosibash, Zohar
2016-05-03
Although ~200,000 emergency room visits per year in the US alone are associated with fractures of the proximal humerus, only limited studies exist on their mechanical response. We hypothesise that for the proximal humeri (a) the mechanical response can be well predicted by using inhomogeneous isotropic material properties, (b) the relation between bone elastic modulus and ash density (E(ρash)) is similar for the humerus and the femur, and may be general for long bones, and (c) it is possible to replicate a proximal humerus fracture in vitro by applying uniaxial compression on humerus׳ head at a prescribed angle. Four fresh frozen proximal humeri were CT-scanned, instrumented by strain-gauges and loaded at three inclination angles. Thereafter head displacement was applied to obtain a fracture. CT-based high order (p-) finite element (FE) and classical (h-) FE analyses were performed that mimic the experiments and predicted strains were compared to the experimental observations. The E(ρash) relationship appropriate for the femur is equally appropriate for the humeri: predicted strains in the elastic range showed an excellent agreement with experimental observations with a linear regression slope of m=1.09 and a coefficient of regression R(2)=0.98. p-FE and h-FE results were similar for the linear elastic response. Although fractures of the proximal humeri were realised in the in vitro experiments, the contact FE analyses (FEA) were unsuccessful in representing properly the experimental boundary conditions. The three hypotheses were confirmed and the linear elastic response of the proximal humerus, attributed to a stage at which the cortex bone is intact, was well predicted by the FEA. Due to a large post-elastic behaviour following the cortex fracture, a new non-linear constitutive model for proximal humerus needs to be incorporated into the FEA to well represent proximal humerus fractures. Thereafter, more in vitro experiments are to be performed, under boundary
Micromechanical Failure Analyses for Finite Element Polymer Modeling
CHAMBERS,ROBERT S.; REEDY JR.,EARL DAVID; LO,CHI S.; ADOLF,DOUGLAS B.; GUESS,TOMMY R.
2000-11-01
Polymer stresses around sharp corners and in constrained geometries of encapsulated components can generate cracks leading to system failures. Often, analysts use maximum stresses as a qualitative indicator for evaluating the strength of encapsulated component designs. Although this approach has been useful for making relative comparisons screening prospective design changes, it has not been tied quantitatively to failure. Accurate failure models are needed for analyses to predict whether encapsulated components meet life cycle requirements. With Sandia's recently developed nonlinear viscoelastic polymer models, it has been possible to examine more accurately the local stress-strain distributions in zones of likely failure initiation looking for physically based failure mechanisms and continuum metrics that correlate with the cohesive failure event. This study has identified significant differences between rubbery and glassy failure mechanisms that suggest reasonable alternatives for cohesive failure criteria and metrics. Rubbery failure seems best characterized by the mechanisms of finite extensibility and appears to correlate with maximum strain predictions. Glassy failure, however, seems driven by cavitation and correlates with the maximum hydrostatic tension. Using these metrics, two three-point bending geometries were tested and analyzed under variable loading rates, different temperatures and comparable mesh resolution (i.e., accuracy) to make quantitative failure predictions. The resulting predictions and observations agreed well suggesting the need for additional research. In a separate, additional study, the asymptotically singular stress state found at the tip of a rigid, square inclusion embedded within a thin, linear elastic disk was determined for uniform cooling. The singular stress field is characterized by a single stress intensity factor K{sub a} and the applicable K{sub a} calibration relationship has been determined for both fully bonded and
Finite element thermal-structural analyses of a cable-stiffened orbiting antenna
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Pandey, A. K.
1985-01-01
Finite element thermal-structural analyses of a cable-stiffened orbiting antenna are presented. The determination of prestresses in the antenna is described first. Heating and thermal analyses for orbiting space structures are then discussed briefly. Structural deformations and stresses are presented for three finite element structural analysis approaches: (1) small deflections, (2) stress-stiffening, and (3) large deflections. The accuracy of the three analysis approaches is evaluated for the orbiting antenna at different prestress levels.
Finite element analyses of tool stresses in metal cutting processes
Kistler, B.L.
1997-01-01
In this report, we analytically predict and examine stresses in tool tips used in high speed orthogonal machining operations. Specifically, one analysis was compared to an existing experimental measurement of stresses in a sapphire tool tip cutting 1020 steel at slow speeds. In addition, two analyses were done of a carbide tool tip in a machining process at higher cutting speeds, in order to compare to experimental results produced as part of this study. The metal being cut was simulated using a Sandia developed damage plasticity material model, which allowed the cutting to occur analytically without prespecifying the line of cutting/failure. The latter analyses incorporated temperature effects on the tool tip. Calculated tool forces and peak stresses matched experimental data to within 20%. Stress contours generally agreed between analysis and experiment. This work could be extended to investigate/predict failures in the tool tip, which would be of great interest to machining shops in understanding how to optimize cost/retooling time.
A comparison between different finite elements for elastic and aero-elastic analyses.
Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani
2017-11-01
In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.
SQA of finite element method (FEM) codes used for analyses of pit storage/transport packages
Russel, E.
1997-11-01
This report contains viewgraphs on the software quality assurance of finite element method codes used for analyses of pit storage and transport projects. This methodology utilizes the ISO 9000-3: Guideline for application of 9001 to the development, supply, and maintenance of software, for establishing well-defined software engineering processes to consistently maintain high quality management approaches.
Use of geostatistical modeling to capture complex geology in finite-element analyses
Rautman, C.A.; Longenbaugh, R.S.; Ryder, E.E.
1995-12-01
This paper summarizes a number of transient thermal analyses performed for a representative two-dimensional cross section of volcanic tuffs at Yucca Mountain using the finite element, nonlinear heat-conduction code COYOTE-II. In addition to conventional design analyses, in which material properties are formulated as a uniform single material and as horizontally layered, internally uniform matters, an attempt was made to increase the resemblance of the thermal property field to the actual geology by creating two fairly complex, geologically realistic models. The first model was created by digitizing an existing two-dimensional geologic cross section of Yucca Mountain. The second model was created using conditional geostatistical simulation. Direct mapping of geostatistically generated material property fields onto finite element computational meshes was demonstrated to yield temperature fields approximately equivalent to those generated through more conventional procedures. However, the ability to use the geostatistical models offers a means of simplifying the physical-process analyses.
Optimizing for minimum weight when two different finite element models and analyses are required
NASA Technical Reports Server (NTRS)
Hall, Jeffrey C.
1989-01-01
The Finite Element Structural Optimization Program's (FESOP) ability to perform minimum weight optimization using two different finite element analyses and models is discussed. FESOP uses the ADS optimizer developed by Dr. Garret Vanderplaats to solve the nonlinear constrained optimization problem. The design optimization problem requires a response spectrum analysis and model to evaluate the stress and displacement constraints. However, the problem needs a frequency analysis and model to calculate the natural frequencies used to evaluate the frequency range constraints. The results of both the successful and unsuccessful approaches used to solve this difficult weight minimization problem are summarized. The results show that no one ADS optimization algorithm worked in all cases. However, the Sequential Convex Programming and Modified Method of Feasible Directions algorithms were the most successful.
Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.
Finite-element analyses and fracture simulation in thin-sheet aluminum alloy
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Dawicke, D. S.; Bigelow, C. A.
1992-01-01
A two-dimensional, elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy under monotonic loading after precracking at different cyclic stress levels. Tests were conducted on three types of specimens: middle-crack, three-hole-crack and blunt-notch tensile specimens. An experiment technique was developed to measure CTOA during crack growth initiation and stable tearing using a high-resolution video camera and recorder. Crack front shapes were also measured during initiation and stable tearing using a fatigue marker-load technique. Three-dimensional elastic-plastic finite-element analyses of these crack shapes for stationary cracks were conducted to study the crack-front opening displacements. Predicted load against crack extension on middle-crack tension specimens agreed well with test results even for large-scale plastic deformations. The analyses were able to predict the effects of specimen size and precracking stress history on stable tearing. Predicted load against load-line displacements agreed well with test results up to maximum load bu the analyses tended to overpredict displacements as crack grew beyond the maximum load under displacement-controlled conditions. During the initiation phase, the measured CTOA values were high but decreased and remained nearly constant after a small amount of stable tearing. The constant value of CTOA agree well with the calculated value from the finite-element analysis. The larger CTOA values measured at the sheet surface during the initiation phase may be associated with the crack tunneling observed in the tests. Three-dimensional analyses for nonstraight crack fronts predicted much higher displacements near the free surface than in the interior.
Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.
1982-01-01
Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.
Application of finite-element-based solution technologies for viscoplastic structural analyses
NASA Technical Reports Server (NTRS)
Arya, V. K.
1990-01-01
Finite-element solution technology developed for use in conjunction with advanced viscoplastic models is described. The development of such solution technology is necessary for performing stress/life analyses of engineering structural problems where the complex geometries and loadings make the conventional analytical solutions difficult. The versatility of the solution technology is demonstrated by applying it to viscoplastic models possessing different mathematical structures and encompassing isotropic and anisotropic material. The computational results qualitatively replicate deformation behavior observed in experiments on prototypical structural components.
Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.
1993-01-01
Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.
Reliability Analyses of a Surface Mounted Package Using Finite Element Simulation
1987-10-01
Surface Mount Devices Leadless Chip Carrier 09 02 Finite Element Method Finite Element Analysis 14 04 IThermal Stress Theral Analvsls 19. ABSTRACT...simulate the response of the package/board to various physical factors and thermal environments. The data needed to execute NISA is typed into an...temperature distribution throughout the package. The time step is calcu- lated by appropriate parametric evaluations using the device’s physical and material
Finite Element Simulation for Analysing the Design and Testing of an Energy Absorption System.
Segade, Abraham; López-Campos, José A; Fernández, José R; Casarejos, Enrique; Vilán, José A
2016-08-05
It is not uncommon to use profiles to act as energy absorption parts in vehicle safety systems. This work analyses an impact attenuator based on a simple design and discusses the use of a thermoplastic material. We present the design of the impact attenuator and a mechanical test for the prototype. We develop a simulation model using the finite element method and explicit dynamics, and we evaluate the most appropriate mesh size and integration for describing the test results. Finally, we consider the performance of different materials, metallic ones (steel AISI 4310, Aluminium 5083-O) and a thermoplastic foam (IMPAXX500™). This reflects the car industry's interest in using new materials to make high-performance, low-mass energy absorbers. We show the strength of the models when it comes to providing reliable results for large deformations and strong non-linearities, and how they are highly correlated with respect to the test results both in value and behaviour.
Tawara, Daisuke; Sakamoto, Jiro; Murakami, Hideki; Kawahara, Norio; Oda, Juhachi; Tomita, Katsuro
2010-01-01
Osteoporosis can lead to bone compressive fractures in the lower lumbar vertebrae. In order to assess the recovery of vertebral strength during drug treatment for osteoporosis, it is necessary not only to measure the bone mass but also to perform patient-specific mechanical analyses, since the strength of osteoporotic vertebrae is strongly dependent on patient-specific factors, such as bone shape and bone density distribution in cancellous bone, which are related to stress distribution in the vertebrae. In the present study, patient-specific general (not voxel) finite element analyses of osteoporotic vertebrae during drug treatment were performed over time. We compared changes in bone density and compressive principal strain distribution in a relative manner using models for the first lumbar vertebra based on computer tomography images of four patients at three time points (before therapy, and after 6 and 12 months of therapy). The patient-specific mechanical analyses indicated that increases in bone density and decreases in compressive principal strain were significant in some osteoporotic vertebrae. The data suggested that the vertebrae were strengthened structurally and the drug treatment was effective in preventing compression fractures. The effectiveness of patient-specific mechanical analyses for providing useful and important information for the prognosis of osteoporosis is demonstrated.
Unnikrishnan, Ginu U; Morgan, Elise F
2011-07-01
Inaccuracies in the estimation of material properties and errors in the assignment of these properties into finite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based finite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based finite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the finite element mesh. A sensitivity study was first conducted on a calibration phantom to understand the influence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the influence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a finite element study to be determined based on the block size required for an accurate representation of the material field, while the size of the finite elements can be selected independently and based on the required numerical accuracy of the finite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of finite element analyses of vertebroplasty and
Finite Element Simulation for Analysing the Design and Testing of an Energy Absorption System
Segade, Abraham; López-Campos, José A.; Fernández, José R.; Casarejos, Enrique; Vilán, José A.
2016-01-01
It is not uncommon to use profiles to act as energy absorption parts in vehicle safety systems. This work analyses an impact attenuator based on a simple design and discusses the use of a thermoplastic material. We present the design of the impact attenuator and a mechanical test for the prototype. We develop a simulation model using the finite element method and explicit dynamics, and we evaluate the most appropriate mesh size and integration for describing the test results. Finally, we consider the performance of different materials, metallic ones (steel AISI 4310, Aluminium 5083-O) and a thermoplastic foam (IMPAXX500™). This reflects the car industry’s interest in using new materials to make high-performance, low-mass energy absorbers. We show the strength of the models when it comes to providing reliable results for large deformations and strong non-linearities, and how they are highly correlated with respect to the test results both in value and behaviour. PMID:28773778
Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses
Liu Wenning; Sun Xin; Ruokolainen, Robert; Gayden Xiaohong
2007-05-17
Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated.
Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses
Liu, Wenning; Sun, Xin; Ruokolainen, Robert; Gayden, X.
2007-06-20
Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated.
Investigation of Forming Performance of Laminated Steel Sheets Using Finite Element Analyses
NASA Astrophysics Data System (ADS)
Liu, Wenning; Sun, Xin; Ruokolainen, Robert; Gayden, Xiaohong
2007-05-01
Laminated steel sheets have been used in automotive structures for reducing in-cabin noise. However, due to the marked difference in material properties of the different laminated layers, integrating laminated steel parts into the manufacturing processes can be challenging. Especially, the behavior of laminated sheets during forming processes is very different from that of monolithic steel sheets. During the deep-draw forming process, large shear deformation and corresponding high interfacial stress may initiate and propagate interfacial cracks between the core polymer and the metal skin, hence degrading the performance of the laminated sheets. In this paper, the formability of the laminated steel sheets is investigated by means of numerical analysis. The goal of this work is to gain insight into the relationship between the individual properties of the laminated sheet layers and the corresponding formability of the laminated sheet as a whole, eventually leading to reliable design and successful forming process development of such materials. Finite element analyses of laminate sheet forming are presented. Effects of polymer core thickness and viscoelastic properties of the polymer core, as well as punching velocity, are also investigated.
Quinones, Armando, Sr.; Bibeau, Tiffany A.; Ho, Clifford Kuofei
2008-08-01
Finite-element analyses were performed to simulate the response of a hypothetical vertical masonry wall subject to different lateral loads with and without continuous horizontal filament ties laid between rows of concrete blocks. A static loading analysis and cost comparison were also performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Simulations of vertical walls subject to static loads representing 100 mph winds (0.2 psi) and a seismic event (0.66 psi) showed that the simulated walls performed similarly and adequately when subject to these loads with and without the ties. Additional simulations and tests are required to assess the performance of actual walls with and without the ties under greater loads and more realistic conditions (e.g., cracks, non-linear response).
Armando Quinones, Sr.; Bibeau, Tiffany A.; Ho, Clifford Kuofei
2006-06-01
Finite-element analyses were performed to simulate the response of a hypothetical masonry shear wall with and without continuous filament ties to various lateral loads. The loads represented three different scenarios: (1) 100 mph wind, (2) explosive attack, and (3) an earthquake. In addition, a static loading analysis and cost comparison were performed to evaluate optimal materials and designs for the spacers affixed to the filaments. Results showed that polypropylene, ABS, and polyethylene (high density) were suitable materials for the spacers based on performance and cost, and the short T-spacer design was optimal based on its performance and functionality. Results of the shear-wall loading simulations revealed that simulated walls with the continuous filament ties yielded factors of safety that were at least ten times greater than those without the ties. In the explosive attack simulation (100 psi), the simulated wall without the ties failed (minimum factor of safety was less than one), but the simulated wall with the ties yielded a minimum factor of safety greater than one. Simulations of the walls subject to lateral loads caused by 100 mph winds (0.2 psi) and seismic events with a peak ground acceleration of 1 ''g'' (0.66 psi) yielded no failures with or without the ties. Simulations of wall displacement during the seismic scenarios showed that the wall with the ties resulted in a maximum displacement that was 20% less than the wall without the ties.
Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2006-01-01
A computationally efficient, reduced-order method is presented for prediction of sonic fatigue of structures exhibiting geometrically nonlinear response. A procedure to determine the nonlinear modal stiffness using commercial finite element codes allows the coupled nonlinear equations of motion in physical degrees of freedom to be transformed to a smaller coupled system of equations in modal coordinates. The nonlinear modal system is first solved using a computationally light equivalent linearization solution to determine if the structure responds to the applied loading in a nonlinear fashion. If so, a higher fidelity numerical simulation in modal coordinates is undertaken to more accurately determine the nonlinear response. Comparisons of displacement and stress response obtained from the reduced-order analyses are made with results obtained from numerical simulation in physical degrees-of-freedom. Fatigue life predictions from nonlinear modal and physical simulations are made using the rainflow cycle counting method in a linear cumulative damage analysis. Results computed for a simple beam structure under a random acoustic loading demonstrate the effectiveness of the approach and compare favorably with results obtained from the solution in physical degrees-of-freedom.
Some Observations on the Current Status of Performing Finite Element Analyses
NASA Technical Reports Server (NTRS)
Raju, Ivatury S.; Knight, Norman F., Jr; Shivakumar, Kunigal N.
2015-01-01
Aerospace structures are complex high-performance structures. Advances in reliable and efficient computing and modeling tools are enabling analysts to consider complex configurations, build complex finite element models, and perform analysis rapidly. Many of the early career engineers of today are very proficient in the usage of modern computers, computing engines, complex software systems, and visualization tools. These young engineers are becoming increasingly efficient in building complex 3D models of complicated aerospace components. However, the current trends demonstrate blind acceptance of the results of the finite element analysis results. This paper is aimed at raising an awareness of this situation. Examples of the common encounters are presented. To overcome the current trends, some guidelines and suggestions for analysts, senior engineers, and educators are offered.
Finite element and experimental analyses of unsteady hydrodynamic flows in lakes
NASA Astrophysics Data System (ADS)
Watanabe, Masaji; Numaguchi, Satoshi
2005-01-01
We present a numerical result in finite element analysis of flows in the water environment. We also present a result that we obtained experimentally utilizing the global positioning system (GPS). We show how the numerical result can be incorporated in analysis to simulate the experimental result. We describe our technique with an example in which an unsteady flow generated in Kojima Lake was analyzed numerically and experimentally.
Manning, P.A.; Burdick, R.B.; Woehrle, T.G.
1992-11-01
The Lawrence Livermore National Laboratory is engaged in a technology development project which includes designing a lightweight, autonomous, highly maneuverable space vehicle, commonly referred to as a probe. The current probe design includes a guidance and control system that requires complete information on the dynamic response of the probe during operation. A finite element model of the probe was constructed to provide analytical information on the dynamic response to specific operational inputs. In order to verify the assumptions made in the model, a mass mock-up of the probe was constructed at LLNL and an experimental modal survey was performed to determine the frequencies, damping values and deflection shapes for each natural mode of the mock-up. The experimental modal parameters were compared with the parameters obtained through modal analysis of the finite element model to provide a measure of the correlation between the model and the actual structure. This report describes the experimental modal testing and analysis of the mass mock-up and compares the experimental results with the finite element results.
Coupling equivalent plate and finite element formulations in multiple-method structural analyses
NASA Technical Reports Server (NTRS)
Giles, Gary L.; Norwood, Keith
1994-01-01
A coupled multiple-method analysis procedure for use late in conceptual design or early in preliminary design of aircraft structures is described. Using this method, aircraft wing structures are represented with equivalent plate models, and structural details such as engine/pylon structure, landing gear, or a 'stick' model of a fuselage are represented with beam finite element models. These two analysis methods are implemented in an integrated multiple-method formulation that involves the assembly and solution of a combined set of linear equations. The corresponding solution vector contains coefficients of the polynomials that describe the deflection of the wing and also the components of translations and rotations at the joints of the beam members. Two alternative approaches for coupling the methods are investigated; one using transition finite elements and the other using Lagrange multipliers. The coupled formulation is applied to the static analysis and vibration analysis of a conceptual design model of a fighter aircraft. The results from the coupled method are compared with corresponding results from an analysis in which the entire model is composed of finite elements.
Sun, Xin; Khaleel, Mohammad A.
2004-07-01
This paper summarizes work on finite element modeling of nugget growth for resistance spot welding of aluminum alloy to steel. It is a sequel to a previous paper on experimental studies of resistance spot welding of aluminum to steel using a transition material. Since aluminum alloys and steel cannot be readily fusion welded together due to their drastically different thermal physical properties, a cold-rolled clad material was introduced as a transition to aid the resistance welding process. Coupled electrical-thermal-mechanical finite element analyses were performed to simulate the nugget growth and heat generation patterns during the welding process. The predicted nugget growth results were compared to the experimental weld cross sections. Reasonable comparisons of nugget size were achieved. The finite element simulation procedures were also used in the electrode selection state to help reduce weld expulsion and improve weld quality.
An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Saether, E.; Glaessgen, E.H.; Yamakov, V.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
Finite element analyses of a dual actuated prototype of a smart needle
NASA Astrophysics Data System (ADS)
Konh, Bardia; Podder, Tarun K.
2017-04-01
Brachytherapy is one of the most effective modalities for treating early stage prostate cancer. In this procedure, radioactive seeds are being placed in the prostate to kill the tumorous cells. Inaccurate placement of seeds can underdose the tumor and dangerously overdose the critical structures (urethra, rectum, bladder) and adjacent healthy tissues. It is very difficult, if not impossible, for the surgeons to compensate the needle misplacement errors while using the conventional passive straight needles. The smart needles actuated by shape memory alloy (SMA) wires are being developed to provide more actuation and control for the surgeons to achieve more geometric conformity. In our recent work, a prototype of a smart needle was developed where not only the actuation of SMA wires were incorporated, but also shape memory polymers (SMPs) were included in the design introducing a soft joint element to further assist the flexibility of the active surgical needles. The additional actuation of shape memory polymers provided the capability of reaching much high flexibility that was not achievable before. However, there are some disadvantages using this active SMP component compared to a passive Nylon joint component that are discussed in this work. The utilization of a heated SMP as a soft joint showed about 20% improvement in the final needle tip deflection. This work presents the finite element studies of the developed prototype. A finite element model that could accurately predict the behavior of the smart needle could be very valuable in analyzing and optimizing the future novel designs.
New finite element models and seismic analyses of the telescopes at W.M. Keck Observatory
NASA Astrophysics Data System (ADS)
Kan, Frank W.; Sarawit, Andrew T.; Callahan, Shawn P.; Pollard, Mike L.
2014-07-01
On 15 October 2006 a large earthquake damaged both telescopes at Keck observatory resulting in weeks of observing downtime. A significant portion of the downtime was attributed to recovery efforts repairing damage to telescope bearing journals, radial pad support structures and encoder subsystems. Inadequate damping and strength in the seismic restraint design and the lack of break-away features on the azimuth radial pads are key design deficiencies. In May, 2011 a feasibility study was conducted to review several options to enhance the protection of the telescopes with the goal to minimize the time to bring the telescopes back into operation after a large seismic event. At that time it was determined that new finite element models of the telescope structures were required to better understand the telescope responses to design earthquakes required by local governing building codes and the USGS seismic data collected at the site on 15 October 2006. These models were verified by comparing the calculated natural frequencies from the models to the measured frequencies obtained from the servo identification study and comparing the time history responses of the telescopes to the October 2006 seismic data to the actual observed damages. The results of two finite element methods, response spectrum analysis and time history analysis, used to determine seismic demand forces and seismic response of each telescope to the design earthquakes were compared. These models can be used to evaluate alternate seismic restraint design options for both Keck telescopes.
Improving the local solution accuracy of large-scale digital image-based finite element analyses.
Charras, G T; Guldberg, R E
2000-02-01
Digital image-based finite element modeling (DIBFEM) has become a widely utilized approach for efficiently meshing complex biological structures such as trabecular bone. While DIBFEM can provide accurate predictions of apparent mechanical properties, its application to simulate local phenomena such as tissue failure or adaptation has been limited by high local solution errors at digital model boundaries. Furthermore, refinement of digital meshes does not necessarily reduce local maximum errors. The purpose of this study was to evaluate the potential to reduce local mean and maximum solution errors in digital meshes using a post-processing filtration method. The effectiveness of a three-dimensional, boundary-specific filtering algorithm was found to be mesh size dependent. Mean absolute and maximum errors were reduced for meshes with more than five elements through the diameter of a cantilever beam considered representative of a single trabecula. Furthermore, mesh refinement consistently decreased errors for filtered solutions but not necessarily for non-filtered solutions. Models with more than five elements through the beam diameter yielded absolute mean errors of less than 15% for both Von Mises stress and maximum principal strain. When applied to a high-resolution model of trabecular bone microstructure, boundary filtering produced a more continuous solution distribution and reduced the predicted maximum stress by 30%. Boundary-specific filtering provides a simple means of improving local solution accuracy while retaining the model generation and numerical storage efficiency of the DIBFEM technique.
Using a general purpose finite element approach to attain higher fidelity rotordynamic analyses
NASA Astrophysics Data System (ADS)
Gyekenyesi, Andrew L.; Wroblewski, Adam C.
2015-04-01
By utilizing a general purpose finite element (FE) code, the dynamic response of a rotor system was numerically studied in order to assess physical effects that are typically not taken into account using traditional rotordynamic codes. This included the allowance for disk flexibility as well as conducting a simultaneous heat transfer analysis that resulted in varying temperatures in the axial and radial directions. The numerical study utilized a generic, multi-disk model with a flexible hollow shaft. The Campbell diagrams and the mode shapes showed that neglecting any of the additional influences may cause errors regarding the predicted rotor dynamic response. By increasing the fidelity of the rotor model and accounting for the various effects, the slight signal modifications due to damage can be more easily recognized allowing for increased accuracy during rotor health monitoring.
NASA Astrophysics Data System (ADS)
Hu, Tao; Panhao, Tang; Xiao, Jiahua
2015-03-01
Radio-frequency ablation (RFA) is a minimally invasive surgical procedure to thermally ablate the targeted diseased tissue. There have been many finite-element method (FEM) studies of cardiac and hepatic RFA, but hardly find any FEM study on endometrial ablation for abnormal uterine bleeding. In this paper, a FEM model was generated to analyze the temperature distribution of bipolar RF global endometrial ablation with three pairs of bipolar electrodes placed at the perimeter of the uterine cavity. COMSOL was utilized to calculate the RF electric fields and temperature fields by numerically solving the bioheat equation in the triangle uterine cavity range. The 55°C isothermal surfaces show the shape of the ablation dimensions (depth and width), which reasonably matched the experimental results.
NASA Astrophysics Data System (ADS)
Abdul-Aziz, Ali; Woike, Mark R.; Clem, Michelle; Baaklini, George Y.
2014-04-01
Generally, rotating engine components undergo high centrifugal loading environment which subject them to various types of failure initiation mechanisms. Health monitoring of these components is a necessity and is often challenging to implement. This is primarily due to numerous factors including the presence of scattered loading conditions, flaw sizes, component geometry and materials properties, all which hinder the simplicity of applying health monitoring applications. This paper represents a summary work of combined experimental and analytical modeling that included data collection from a spin test experiment of a rotor disk addressing the aforementioned durability issues. It further covers presentation of results obtained from a finite element modeling study to characterize the structural durability of a cracked rotor as it relates to the experimental findings. The experimental data include blade tip clearance, blade tip timing and shaft displacement measurements. The tests were conducted at the NASA Glenn Research Center's Rotordynamics Laboratory, a high precision spin rig. The results are evaluated and examined to determine their significance on the development of a health monitoring system to pre-predict cracks and other anomalies and to assist in initiating a supplemental physics based fault prediction analytical model.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
NASA Technical Reports Server (NTRS)
Ko, William L.
1988-01-01
Accuracies of solutions (structural temperatures and thermal stresses) obtained from different thermal and structural FEMs set up for the Space Shuttle Orbiter (SSO) are compared and discussed. For studying the effect of element size on the solution accuracies of heat-transfer and thermal-stress analyses of the SSO, five SPAR thermal models and five NASTRAN structural models were set up for wing midspan bay 3. The structural temperature distribution over the wing skin (lower and upper) surface of one bay was dome shaped and induced more severe thermal stresses in the chordwise direction than in the spanwise direction. The induced thermal stresses were extremely sensitive to slight variation in structural temperature distributions. Both internal convention and internal radiation were found to have equal effects on the SSO.
Static simulation and analyses of mower's ROPS behavior in a finite element model.
Wang, X; Ayers, P; Womac, A R
2009-10-01
The goal of this research was to numerically predict the maximum lateral force acting on a mower rollover protective structure (ROPS) and the energy absorbed by the ROPS during a lateral continuous roll. A finite element (FE) model of the ROPS was developed using elastic and plastic theories including nonlinear relationships between stresses and strains in the plastic deformation range. Model validation was performed using field measurements of ROPS behavior in a lateral continuous roll on a purpose-designed test slope. Field tests determined the maximum deformation of the ROPS of a 900 kg John Deere F925 mower with a 183 cm (72 in.) mowing deck during an actual lateral roll on a pad and on soil. In the FE model, lateral force was gradually added to the ROPS until the field-measured maximum deformation was achieved. The results from the FE analysis indicated that the top corners of the ROPS enter slightly into the plastic deformation region. Maximum lateral forces acting on the ROPS during the simulated impact with the pad and soil were 19650 N and 22850 N, respectively. The FE model predicted that the energy absorbed by the ROPS (643 J) in the lateral roll test on the pad was less than the static test requirements (1575 J) of Organization for Economic Development (OECD) Code 6. In addition, the energy absorbed by the ROPS (1813 J) in the test on the soil met the static test requirements (1575 J). Both the FE model and the field test results indicated that the deformed ROPS of the F925 mower with deck did not intrude into the occupant clearance zone during the lateral continuous or non-continuous roll.
NASA Astrophysics Data System (ADS)
Albertz, M.; Lingrey, S.; Sanz, P. F.
2011-12-01
Geometric/kinematic models of the common fault-related fold types (fault-bend, fault-propagation, detachment folding) typically assume a simplified flexural-slip based bed-parallel simple shear mechanism. The magnitude of local strain is a function of layer dip change irrespective of material properties. Line-lengths parallel to and layer thicknesses orthogonal to the flexural-slip surface remain constant. This study reports on a range of more complicated kinematic and mechanical responses observed in fourteen idealized forward numerical models of contractional fault-related folding. The models test the effects of material properties, initial fault dip, and the presence of weak inter-layer detachment horizons. We employ a Lagrangian finite element method with adaptive remeshing and a constitutive model that is based on critical state mechanics. This approach allows for large, volumetric deformation and realistic evolution of the failure envelope during progressive deformation. We demonstrate that material properties affect the way faults propagate and thus exert a significant control on resultant fold layer geometry. In most cases, these geometries differ from the flexural-slip based kinematic idealizations. For instance, models of uniform sandstone properties exhibit efficient strain localization and clear patterns of fault tip propagation. Uniform shale properties tends to inhibit fault propagation due to distributed plastic deformation. Models with mixed inter-layered sandstone and shale deform in a disharmonic manner, resembling lobate-cuspate arrangements that are common to many outcrop-scale folds. Inter-layer detachments accommodate shortening by bed-parallel slip, resulting in fault-bend fold kinematics, imbrication of sand layers, and a general absence of fault propagation across layers. Constant area based plane strain restoration of the deformed models recovers the first-order contractional deformation (80-90% of true contractional strain). Constant line
Three-dimensional finite element analyses of the local mechanical behavior of riveted lap joints
NASA Astrophysics Data System (ADS)
Iyer, Kaushik Arjunan
Three-dimensional elastic-plastic finite element models of single and double rivet-row lap joints have been developed to evaluate local distortions and the mechanics of airframe-type 7075-T6 aluminum alloy riveted assemblies. Loading induced distortion features such as the excess assembly compliance, rivet tilt, local in- and out-of-plane slips and stress concentration factors are evaluated as functions of rivet countersinking, rivet material and friction coefficient. Computed features are examined to identify alterations in the proportions of in-plane and out-of-plane load transmission across rivet-panel interfaces and isolate global and lower-order effects present in the complex response of these multi-body assemblies. Analytical procedures are validated by comparing calculated and measured values of excess assembly compliance and local panel bending. Direct out-of-plane load transmission between the rivet heads and panels affects global deformation features such as remote panel bending and local features such as the panel stress concentration factor. The increase in stress concentration due to panel bending is self-limiting owing to decreasing in-plane load bearing with increasing rivet tilt, which is a composite reflection of the basic rivet deformation modes of shear and rotation. Calculations have also been performed to define approximate steady-state fretting fatigue conditions that lead to crack initiation at a panel hole surface in single and double rivet-row assemblies for countersunk and non-countersunk rivets. These account for and isolate effects of interference and clamping forces on fatigue performance by comparing computed circumferential variations of bulk residual stresses, cyclic stress range and mean stress. With interference, a non-countersunk assembly is shown to be as prone to crack initiation as a countersunk assembly. Frictional work due to fretting is evaluated and the physical location of fretting fatigue crack initiation is predicted by
Behaviour study of thick laminated composites: Experimentation and finite element analyses
NASA Astrophysics Data System (ADS)
Duchaine, Francois
In today's industries, it is common practice to utilize composite materials in very large and thick structures like bridge decks, high pressure vessels, wind turbine blades and aircraft parts to mention a few. Composite materials are highly favoured due to their physical characteristics: low weight, low cost, adaptable mechanical properties, high specific strength and stiffness. The use of composite materials for large structures has however raised several concerns in the prediction of the behaviour of thick laminated composite parts. A lack of knowledge and experience in the use of composite materials during the design, sizing and manufacturing of thick composite parts can lead to catastrophic events. In this thesis, it was supposed that the elastic material properties may vary with the laminate thickness. In order to measure the influence of the thickness on nine orthotropic elastic material properties (E1, E2, E3, nu12, nu 13, nu23, G12, G13 and G23), three categories of thickness have been defined using a comparison between the classical lamination theory (CLT), different beam theories and a numerical 3D solid finite element analysis (FEA) model. The defined categories are: thin laminates for thicknesses below 6 mm (0.236"), moderately thick laminates for thicknesses up to 16 mm (0.630") and thick laminates for thicknesses above 16 mm (0.630"). For three different thicknesses (thin -- 1.5 mm, moderately thick -- 10 mm and thick -- 20 mm), the influence of the thickness on the orthotropic elastic material properties of unidirectional (UD) fibreglass/epoxy laminates has been measured. A torsion test on rectangular bar is also proposed to measure the influence of the thickness on G13 and G23. The nine elastic material properties, in function of the thickness, have been used in CLT and 3D solid FEA model in order to predict the axial Young's modulus and Poisson's ratios of cross-ply and quasi-isotropic laminates. Experimental results have also been obtained for
NASA Technical Reports Server (NTRS)
Reed, K. W.; Atluri, S. N.
1983-01-01
A new hybrid-stress finite element algorithm, suitable for analyses of large, quasistatic, inelastic deformations, is presented. The algorithm is base upon a generalization of de Veubeke's complementary energy principle. The principal variables in the formulation are the nominal stress rate and spin, and thg resulting finite element equations are discrete versions of the equations of compatibility and angular momentum balance. The algorithm produces true rates, time derivatives, as opposed to 'increments'. There results a complete separation of the boundary value problem (for stress rate and velocity) and the initial value problem (for total stress and deformation); hence, their numerical treatments are essentially independent. After a fairly comprehensive discussion of the numerical treatment of the boundary value problem, we launch into a detailed examination of the numerical treatment of the initial value problem, covering the topics of efficiency, stability and objectivity. The paper is closed with a set of examples, finite homogeneous deformation problems, which serve to bring out important aspects of the algorithm.
Watson, Peter J; Fagan, Michael J; Dobson, Catherine A
2015-01-01
Biomechanical analysis of juvenile pelvic growth can be used in the evaluation of medical devices and investigation of hip joint disorders. This requires access to scan data of healthy juveniles, which are not always freely available. This article analyses the application of a geometric morphometric technique, which facilitates the reconstruction of the articulated juvenile pelvis from cadaveric remains, in biomechanical modelling. The sensitivity of variation in reconstructed morphologies upon predicted stress/strain distributions is of particular interest. A series of finite element analyses of a 9-year-old hemi-pelvis were performed to examine differences in predicted strain distributions between a reconstructed model and the originally fully articulated specimen. Only minor differences in the minimum principal strain distributions were observed between two varying hemi-pelvic morphologies and that of the original articulation. A Wilcoxon rank-sum test determined there was no statistical significance between the nodal strains recorded at 60 locations throughout the hemi-pelvic structures. This example suggests that finite element models created by this geometric morphometric reconstruction technique can be used with confidence, and as observed with this hemi-pelvis model, even a visual morphological difference does not significantly affect the predicted results. The validated use of this geometric morphometric reconstruction technique in biomechanical modelling reduces the dependency on clinical scan data.
Unnikrishnan, Ginu U.; Morgan, Elise F.
2011-01-01
Inaccuracies in the estimation of material properties and errors in the assignment of these properties into ﬁnite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based ﬁnite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based ﬁnite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the ﬁnite element mesh. A sensitivity study was ﬁrst conducted on a calibration phantom to understand the inﬂuence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the inﬂuence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a ﬁnite element study to be determined based on the block size required for an accurate representation of the material ﬁeld, while the size of the ﬁnite elements can be selected independently and based on the required numerical accuracy of the ﬁnite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of ﬁnite element analyses of
Lin, S; Shi, S; LeGeros, R Z; LeGeros, J P
2000-01-01
The effects of implant shape and size on the stress distribution around high-strength silicon nitride implants under vertical and oblique forces were determined using a three-dimensional finite element analysis. Finite element models were designed using as a basis the serial sections of the mandible. Using Auto-CAD software, the model simulated the placement of implants in the molar region of the left mandible. Results of the analyses demonstrated that mainly the implant root shape and the directions of bite forces influence the stress distributions in the supporting bone around each implant. Implant size is a lesser factor. The serrated implants presented a larger surface area to the bone than either the cylindrical or tapered implants, which resulted in lower compressive stress around the serrated implants. With increasing implant diameter and length, compressive stress decreased. The mean compressive stress distribution on the serrated implants was more flat (platykurtic) than on either the cylindrical or tapered implants. Results of studies on two load directions (vertical and oblique) showed that, in either case, the compressive stress in the cortical bone around the neck of the implant was higher than in the cancellous bone along the length of the implant. The most extreme principal compressive stress was found with oblique force. This study provides the first information on the relationship between shape of the silicon nitride implant and stress on the supporting bone.
Shy, D.S.
1987-01-01
The theoretical background and concept are provided for analyzing the filament-wound pressure vessels with thin metallic liners. The thin metallic liner serves mainly as a permeation barrier to hold liquid or gas, while the composite is sized to carry most of the pressure loads. The bilinear material model is selected to simulate the material stress-strain curve that governs the metal linear behavior. Subjects investigated are classical lamination theory, quadratic failure criterion, bilinear material model, finite-element analysis for axisymmetric solids, and linear elastic fracture mechanics. Four sample cases are analyzed to demonstrate the capabilities of the developed finite-element program FEASY4ND in solving the axisymmetric shell problems. The cases investigated include the parametric study on Poisson's ratio, the thick-walled and thin-walled sphere analyses, and analysis of a sample filament-wound pressure vessel with a thin metallic liner. The filament-wound pressure vessel is analyzed at proof, operating, and design burst pressures. The liner cycle life is calculated based on the principle of linear elastic fracture mechanics.
Phelippeau,A.; Pommier, S.; Tsakalakos, T.; Clavel, M.; Prioul, C.
2006-01-01
Cold drawing steel wires lead to an increase of their mechanical strength and to a drop of their ductility. The increase of their mechanical strength has long been related to the reduction of the various material scales by plastic deformation, but the mechanisms controlling their elongation to failure have received relatively little attention. It is usually found that heavily deformed materials show a tendency to plastic strain localization and necking. However, in this paper it is shown that, though the steel wires are plastically deformed up to strain levels as high as 3.5, a significant capability of plastic deformation is preserved in as-drawn wires. This apparent contradiction is resolved by the existence of residual stresses inside the wire. Finite element analyses have been conducted in order to show that residual stresses, inherited from the drawing process, are sufficient to produce a significant hardening effect during a post-drawing tensile test, without introducing any hardening in the local material behavior. The main conclusion of this paper is that once the material has lost its hardening capabilities, residual stresses, inherited from the process, control the elongation of cold drawn wires. The finite element method allowed also the determination of the residual stress field that would lead to the best agreement between the simulated and the experimental stress strain curve of as-drawn wires.
Finite element shell instability analysis
NASA Technical Reports Server (NTRS)
1975-01-01
Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.
Finite element analyses of two dimensional, anisotropic heat transfer in wood
John F. Hunt; Hongmei Gu
2004-01-01
The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Inputting basic orthogonal properties of the wood material alone are not sufficient for accurate modeling because wood is a combination of porous fiber cells that are aligned and mis-...
NASTRAN thermal analyzer in a unified finite-element treatment of thermo-structural analyses
NASA Astrophysics Data System (ADS)
Lee, H. P.
The NASTRAN thermal analyzer (NTA) which performs large-scale unified thermo-structural analyses with the NASTRAN (NASA structural analysis) computer program is described. The mathematical similitude between these two distinct disciplines of thermal and structure is examined. It serves as the theoretical basis upon which the implementation of the thermal capability in NASTRAN was accomplished. The program structure, the functional flow, the solution algorithms, the organization of an input data deck and the solution capabilities of NTA are summarized. Emphasis is placed on the interface of the unified approach in thermo-structural analyses where stresses, deflections, vibrations and bucklings induced by the effect of temperature change are of concern. Attentions are also directed to the preprocessor and post processors. As a specially designed preprocessor, the VIEW program is capable of generating exchange factors which can be output, at user's option, in formats compatible with that required by NTA. Two post processors that serve specific objectives are included. They are the thermal variance analysis and the graphical displaying capability of temperatures in color or black and white.
NASTRAN thermal analyzer in a unified finite-element treatment of thermo-structural analyses
NASA Technical Reports Server (NTRS)
Lee, H. P.
1982-01-01
The NASTRAN thermal analyzer (NTA) which performs large-scale unified thermo-structural analyses with the NASTRAN (NASA structural analysis) computer program is described. The mathematical similitude between these two distinct disciplines of thermal and structure is examined. It serves as the theoretical basis upon which the implementation of the thermal capability in NASTRAN was accomplished. The program structure, the functional flow, the solution algorithms, the organization of an input data deck and the solution capabilities of NTA are summarized. Emphasis is placed on the interface of the unified approach in thermo-structural analyses where stresses, deflections, vibrations and bucklings induced by the effect of temperature change are of concern. Attentions are also directed to the preprocessor and post processors. As a specially designed preprocessor, the VIEW program is capable of generating exchange factors which can be output, at user's option, in formats compatible with that required by NTA. Two post processors that serve specific objectives are included. They are the thermal variance analysis and the graphical displaying capability of temperatures in color or black and white.
Automatic finite element generators
NASA Technical Reports Server (NTRS)
Wang, P. S.
1984-01-01
The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.
Rate sensitive continuum damage models and mesh dependence in finite element analyses.
Ljustina, Goran; Fagerström, Martin; Larsson, Ragnar
2014-01-01
The experiences from orthogonal machining simulations show that the Johnson-Cook (JC) dynamic failure model exhibits significant element size dependence. Such mesh dependence is a direct consequence of the utilization of local damage models. The current contribution is an investigation of the extent of the possible pathological mesh dependence. A comparison of the resulting JC model behavior combined with two types of damage evolution is considered. The first damage model is the JC dynamic failure model, where the development of the "damage" does not affect the response until the critical state is reached. The second one is a continuum damage model, where the damage variable is affecting the material response continuously during the deformation. Both the plasticity and the damage models are rate dependent, and the damage evolutions for both models are defined as a postprocessing of the effective stress response. The investigation is conducted for a series of 2D shear tests utilizing different FE representations of the plane strain plate with pearlite material properties. The results show for both damage models, using realistic pearlite material parameters, that similar extent of the mesh dependence is obtained and that the possible viscous regularization effects are absent in the current investigation.
NASA Technical Reports Server (NTRS)
Reed, K. W.; Atluri, S. N.
1983-01-01
A new hybrid-stress finite element algorithm suitable for analyzing large quasistatic deformations of inelastic solids is presented and its feasibility and performance are demonstrated with examples. The algorithm provides extremely accurate bifurcation analysis which is stable with respect to variation in the finite element mesh, so long as the same type of element is used in every mesh. When the mesh element is varied, the result changes in a predictable manner. The method does not necessarily lead to an upper or lower bound for the critical load. An explicit forward gradient scheme is used to improve stability and is shown to be useful also for elongation-dominated deformations. The application of the method to the onset of necking in plane extension and to deformation and stress in plane extension of an elasticoviscous fluid with an array of cylindrical voids is given in detail.
Jackman, Timothy M; DelMonaco, Alex M; Morgan, Elise F
2016-01-25
Finite element (FE) models built from quantitative computed tomography (QCT) scans can provide patient-specific estimates of bone strength and fracture risk in the spine. While prior studies demonstrate accurate QCT-based FE predictions of vertebral stiffness and strength, the accuracy of the predicted failure patterns, i.e., the locations where failure occurs within the vertebra and the way in which the vertebra deforms as failure progresses, is less clear. This study used digital volume correlation (DVC) analyses of time-lapse micro-computed tomography (μCT) images acquired during mechanical testing (compression and anterior flexion) of thoracic spine segments (T7-T9, n=28) to measure displacements occurring throughout the T8 vertebral body at the ultimate point. These displacements were compared to those simulated by QCT-based FE analyses of T8. We hypothesized that the FE predictions would be more accurate when the boundary conditions are based on measurements of pressure distributions within intervertebral discs of similar level of disc degeneration vs. boundary conditions representing rigid platens. The FE simulations captured some of the general, qualitative features of the failure patterns; however, displacement errors ranged 12-279%. Contrary to our hypothesis, no differences in displacement errors were found when using boundary conditions representing measurements of disc pressure vs. rigid platens. The smallest displacement errors were obtained using boundary conditions that were measured directly by DVC at the T8 endplates. These findings indicate that further work is needed to develop methods of identifying physiological loading conditions for the vertebral body, for the purpose of achieving robust, patient-specific FE analyses of failure mechanisms.
Jackman, Timothy M.; DelMonaco, Alex M.; Morgan, Elise F.
2016-01-01
Finite element (FE) models built from quantitative computed tomography (QCT) scans can provide patient-specific estimates of bone strength and fracture risk in the spine. While prior studies demonstrate accurate QCT-based FE predictions of vertebral stiffness and strength, the accuracy of the predicted failure patterns, i.e., the locations where failure occurs within the vertebra and the way in which the vertebra deforms as failure progresses, is less clear. This study used digital volume correlation (DVC) analyses of time-lapse micro-computed tomography (µCT) images acquired during mechanical testing (compression and anterior flexion) of thoracic spine segments (T7–T9, n = 28) to measure displacements occurring throughout the T8 vertebral body at the ultimate point. These displacements were compared to those simulated by QCT-based FE analyses of T8. We hypothesized that the FE predictions would be more accurate when the boundary conditions are based on measurements of pressure distributions within intervertebral discs of similar level of disc degeneration vs. boundary conditions representing rigid platens. The FE simulations captured some of the general, qualitative features of the failure patterns; however, displacement errors ranged 12–279%. Contrary to our hypothesis, no differences in displacement errors were found when using boundary conditions representing measurements of disc pressure vs. rigid platens. The smallest displacement errors were obtained using boundary conditions that were measured directly by DVC at the T8 endplates. These findings indicate that further work is needed to develop methods of identifying physiological loading conditions for the vertebral body, for the purpose of achieving robust, patient-specific FE analyses of failure mechanisms. PMID:26792288
NASA Astrophysics Data System (ADS)
Bae, Jae Wung; Um, Ho Yong; Lee, Sang Hyun; Min, Byeoung Jin; Kim, Seong Yeon; Chung, Jae Sook; Park, Kyo Sun; Seo, Min Hong; Kim, Hyoung Seop
2017-03-01
Although the compact endless cast and rolling mill (CEM) is a promising candidate as a next-generation energy-saving steel process, due to its short history, the formability of the steel sheet produced by the CEM process are not known yet. Herein, drawability and stretchability of low-carbon steel sheets produced by the CEM process are investigated and compared with those of conventional hot-rolled low-carbon steel sheets, to estimate its applicability to industrial parts. Finite element analyses using the Gurson-Tvergaard-Needleman damage model were conducted and compared with the experimental results. Homogeneous microstructure and relatively strong textures of {111}||ND γ-fibers and <110>||RD α-fibers were developed in the CEM-processed steel in comparison with the conventional hot-rolled specimen. The drawn cup of the CEM specimen showed weak earing phenomena, while having higher limiting drawing ratios (2.0 and 1.95 in the experimental and numerical simulation, respectively). Furthermore, a difference in limit dome height between the two specimens is negligible. Therefore, it is confirmed that CEM-processed steels have comparable properties of strength and formability, provide an effective manufacturing process, and exhibit good potential as a next-generation energy-saving process.
NASA Astrophysics Data System (ADS)
Bae, Jae Wung; Um, Ho Yong; Lee, Sang Hyun; Min, Byeoung Jin; Kim, Seong Yeon; Chung, Jae Sook; Park, Kyo Sun; Seo, Min Hong; Kim, Hyoung Seop
2017-01-01
Although the compact endless cast and rolling mill (CEM) is a promising candidate as a next-generation energy-saving steel process, due to its short history, the formability of the steel sheet produced by the CEM process are not known yet. Herein, drawability and stretchability of low-carbon steel sheets produced by the CEM process are investigated and compared with those of conventional hot-rolled low-carbon steel sheets, to estimate its applicability to industrial parts. Finite element analyses using the Gurson-Tvergaard-Needleman damage model were conducted and compared with the experimental results. Homogeneous microstructure and relatively strong textures of {111}||ND γ-fibers and <110>||RD α-fibers were developed in the CEM-processed steel in comparison with the conventional hot-rolled specimen. The drawn cup of the CEM specimen showed weak earing phenomena, while having higher limiting drawing ratios (2.0 and 1.95 in the experimental and numerical simulation, respectively). Furthermore, a difference in limit dome height between the two specimens is negligible. Therefore, it is confirmed that CEM-processed steels have comparable properties of strength and formability, provide an effective manufacturing process, and exhibit good potential as a next-generation energy-saving process.
NASA Technical Reports Server (NTRS)
Sanfeliz, Jose G.
1993-01-01
Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
NASA Astrophysics Data System (ADS)
Lu, Feng
The wear mechanisms of electrodes used on resistance spot welding of galvannealed steels were studied. The study focused on the inter-relationship among the steel properties, welding parameters and electrode wear. Six different galvannealed steels were studied using a standard constant current welding test. With the same kind of Cu-Zr electrode, the tests were performed with the electrode force fixed at 600 lbs and the welding time fixed at 12 cycles for all the steels studied. The welding current is set at just below the expulsion limit for each of the steels. The microstructure and mechanical properties of these steels were examined by SEM and microhardness tests. The face profiles for electrodes subjected to various numbers of welds were examined using carbon imprint tests and low magnification optical microscopy. The alloys formed on the electrode face were studied by the EDS and WDS quantitative analyses and linescans. Changes in the microhardness of the electrode material near the electrode face during the electrode wear process were also studied. Combined with the experimental examination, a sequentially coupled finite element analysis procedure was used to analyze the detailed distribution and evolution of the electrical current, temperature and stress throughout the process of making a weld. These analyses have greatly enhanced the understanding of the experimental observations. The results of this study indicate that the welding current is the dominant factor influencing electrode life. When the electrode force and the welding time are fixed, the welding current is determined by the steel properties. Thicker steel sheets and higher steel sheet surface hardnesses will result in smaller welding current. When the electrode force and welding time are fixed, steels requiring higher welding currents will yield shorter electrode lives. With increasing welding current, the top and bottom electrodes in this study showed increasingly different wear behaviors
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.
1979-01-01
Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.
Rees, J S; Jacobsen, P H
2000-02-01
Partial failure around the tooth-composite interface of a class V restoration is common due to the effects of polymerization shrinkage. The effect that this has on the force distribution of the remaining intact interfaces has not been investigated. The aim of this study was to quantify the effect that partial failure of an isolated cavity wall interface had on the force distribution around the remaining intact interfaces of a class V composite restoration in a lower first premolar using a two-dimensional plane strain finite element model. Partial failure resulted in a 4-6-fold increase in peak tensile and shear forces compared to a tooth with a fully intact cavity wall interface. In some instances, the peak stresses were greater than the known bond strengths of composite to dentine.
NASA Astrophysics Data System (ADS)
Moczo, Peter; Kristek, Jozef; Galis, Martin; Chaljub, Emmanuel; Etienne, Vincent
2011-12-01
We analyse 13 3-D numerical time-domain explicit schemes for modelling seismic wave propagation and earthquake motion for their behaviour with a varying P-wave to S-wave speed ratio (VP/VS). The second-order schemes include three finite-difference, three finite-element and one discontinuous-Galerkin schemes. The fourth-order schemes include three finite-difference and two spectral-element schemes. All schemes are second-order in time. We assume a uniform cubic grid/mesh and present all schemes in a unified form. We assume plane S-wave propagation in an unbounded homogeneous isotropic elastic medium. We define relative local errors of the schemes in amplitude and the vector difference in one time step and normalize them for a unit time. We also define the equivalent spatial sampling ratio as a ratio at which the maximum relative error is equal to the reference maximum error. We present results of the extensive numerical analysis. We theoretically (i) show how a numerical scheme sees the P and S waves if the VP/VS ratio increases, (ii) show the structure of the errors in amplitude and the vector difference and (iii) compare the schemes in terms of the truncation errors of the discrete approximations to the second mixed and non-mixed spatial derivatives. We find that four of the tested schemes have errors in amplitude almost independent on the VP/VS ratio. The homogeneity of the approximations to the second mixed and non-mixed spatial derivatives in terms of the coefficients of the leading terms of their truncation errors as well as the absolute values of the coefficients are key factors for the behaviour of the schemes with increasing VP/VS ratio. The dependence of the errors in the vector difference on the VP/VS ratio should be accounted for by a proper (sufficiently dense) spatial sampling.
Shih, Kao-Shang; Hsu, Ching-Chi; Hsu, Tzu-Pin; Hou, Sheng-Mou; Liaw, Chen-Kun
2014-02-01
Femoral shaft fractures can be treated using retrograde interlocking nailing systems; however, fracture nonunion still occurs. Dynamic fixation techniques, which remove either the proximal or distal locking screws, have been used to solve the problem of nonunion. In addition, a surgical rule for dynamic fixation techniques has been defined based on past clinical reports. However, the biomechanical performance of the retrograde interlocking nailing systems with either the traditional static fixation technique or the dynamic fixation techniques has not been investigated by using nonlinear numerical modeling. Three-dimensional nonlinear finite element models were developed, and the implant strength, fixation stability, and contact area of the fracture surfaces were evaluated. Three types of femoral shaft fractures (a proximal femoral shaft fracture, a middle femoral shaft fracture, and a distal femoral shaft fracture) fixed by three fixation techniques (insertion of all the locking screws, removal of the proximal locking screws, or removal of the distal locking screws) were analyzed. The results showed that the static fixation technique resulted in sufficient fixation stability and that the dynamic fixation techniques decreased the failure risk of the implant and produced a larger contact area of the fracture surfaces. The outcomes of the current study could assist orthopedic surgeons in comprehending the biomechanical performances of both static and dynamic fixation techniques. In addition, the surgeons could also select a fixation technique based on the specific patient situation using the numerical outcomes of this study.
Ma, Li; Guess, Petra C.; Zhang, Yu
2013-01-01
Objectives The aim of this study was to test the hypothesis that monolithic lithium disilicate glass-ceramic occlusal onlay can exhibit a load-bearing capacity that approaches monolithic zirconia, due to a smaller elastic modulus mismatch between the lithium disilicate and its supporting tooth structure relative to zirconia. Methods Ceramic occlusal onlays of various thicknesses cemented to either enamel or dentin were considered. Occlusal load was applied through an enamel-like deformable indenter or a control rigid indenter. Flexural tensile stress at the ceramic intaglio (cementation) surface—a cause for bulk fracture of occlusal onlays—was rigorously analyzed using finite element analysis and classical plate-on-foundation theory. Results When bonded to enamel (supported by dentin), the load-bearing capacity of lithium disilicate can approach 75% of that of zirconia, despite the flexural strength of lithium disilicate (400 MPa) being merely 40% of zirconia (1000 MPa). When bonded to dentin (with the enamel completely removed), the load-bearing capacity of lithium disilicate is about 57% of zirconia, still significantly higher than the anticipated value based on its strength. Both ceramics show slightly higher load-bearing capacity when loaded with a deformable indenter (enamel, glass-ceramic, or porcelain) rather than a rigid indenter. Significance When supported by enamel, the load-bearing property of minimally invasive lithium disilicate occlusal onlays (0.6 to 1.4 mm thick) can exceed 70% of that of zircona. Additionally, a relatively weak dependence of fracture load on restoration thickness indicates that a 1.2 mm thin lithium disilicate onlay can be as fracture resistant as its 1.6 mm counterpart. PMID:23683531
2013-01-01
Background Internal fixation of femoral fractures requires drilling holes through the cortical bone of the shaft of the femur. Intramedullary suction reduces the fat emboli produced by reaming and nailing femoral fractures but requires four suction portals to be drilled into the femoral shaft. This work investigated the effect of these additional holes on the strength of the femur. Methods Finite element analysis (FEA) was used to calculate compression, tension and load limits which were then compared to the results from mechanical testing. Models of intact femora and fractured femora internally fixed with intramedullary nailing were generated. In addition, four suction portals, lateral, anterior and posterior, were modelled. Stresses were used to calculate safety factors and predict fatigue. Physical testing on synthetic femora was carried out on a universal mechanical testing machine. Results The FEA model for stresses generated during walking showed tensile stresses in the lateral femur and compression stresses in the medial femur with a maximum sheer stress through the neck of the femur. The lateral suction portals produced tensile stresses up to over 300% greater than in the femur without suction portals. The anterior and posterior portals did not significantly increase stresses. The lateral suction portals had a safety factor of 0.7, while the anterior and posterior posts had safety factors of 2.4 times walking loads. Synthetic bone subjected to cyclical loading and load to failure showed similar results. On mechanical testing, all constructs failed at the neck of the femur. Conclusions The anterior suction portals produced minimal increases in stress to loading so are the preferred site should a femur require such drill holes for suction or internal fixation. PMID:24004617
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Finite elements of nonlinear continua.
NASA Technical Reports Server (NTRS)
Oden, J. T.
1972-01-01
The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.
Finite elements of nonlinear continua.
NASA Technical Reports Server (NTRS)
Oden, J. T.
1972-01-01
The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.
Toward automatic finite element analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Perucchio, Renato; Voelcker, Herbert
1987-01-01
Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
Parallel, Implicit, Finite Element Solver
NASA Astrophysics Data System (ADS)
Lowrie, Weston; Shumlak, Uri; Meier, Eric; Marklin, George
2007-11-01
A parallel, implicit, finite element solver is described for solutions to the ideal MHD equations and the Pseudo-1D Euler equations. The solver uses the conservative flux source form of the equations. This helps simplify the discretization of the finite element method by keeping the specification of the physics separate. An implicit time advance is used to allow sufficiently large time steps. The Portable Extensible Toolkit for Scientific Computation (PETSc) is implemented for parallel matrix solvers and parallel data structures. Results for several test cases are described as well as accuracy of the method.
On numerically accurate finite element
NASA Technical Reports Server (NTRS)
Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.
1974-01-01
A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis
2017-09-01
Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
NASA Astrophysics Data System (ADS)
Agata, Ryoichiro; Ichimura, Tsuyoshi; Hirahara, Kazuro; Hyodo, Mamoru; Hori, Takane; Hori, Muneo
2016-09-01
Computation of many Green's functions (GFs) in finite element (FE) analyses of crustal deformation is an essential technique in inverse analyses of coseismic slip estimations. In particular, analysis based on a high-resolution FE model (high-fidelity model) is expected to contribute to the construction of a community standard FE model and benchmark solution. Here, we propose a naive but robust and portable capacity computing method to compute many GFs using a high-fidelity model, assuming that various types of PC clusters are used. The method is based on the master-worker model, implemented using the Message Passing Interface (MPI), to perform robust and efficient input/output operations. The method was applied to numerical experiments of coseismic slip estimation in the Tohoku region of Japan; comparison of the estimated results with those generated using lower-fidelity models revealed the benefits of using a high-fidelity FE model in coseismic slip distribution estimation. Additionally, the proposed method computes several hundred GFs more robustly and efficiently than methods without the master-worker model and MPI.
Nonlinear, finite deformation, finite element analysis
NASA Astrophysics Data System (ADS)
Nguyen, Nhung; Waas, Anthony M.
2016-06-01
The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Lundström, T; Jonas, T; Volkwein, A
2008-01-01
Thirteen Norway spruce [Picea abies (L.) Karst.] trees of different size, age, and social status, and grown under varying conditions, were investigated to see how they react to complex natural static loading under summer and winter conditions, and how they have adapted their growth to such combinations of load and tree state. For this purpose a non-linear finite-element model and an extensive experimental data set were used, as well as a new formulation describing the degree to which the exploitation of the bending stress capacity is uniform. The three main findings were: material and geometric non-linearities play important roles when analysing tree deflections and critical loads; the strengths of the stem and the anchorage mutually adapt to the local wind acting on the tree crown in the forest canopy; and the radial stem growth follows a mechanically high-performance path because it adapts to prevailing as well as acute seasonal combinations of the tree state (e.g. frozen or unfrozen stem and anchorage) and load (e.g. wind and vertical and lateral snow pressure). Young trees appeared to adapt to such combinations in a more differentiated way than older trees. In conclusion, the mechanical performance of the Norway spruce studied was mostly very high, indicating that their overall growth had been clearly influenced by the external site- and tree-specific mechanical stress.
Hu, Jong Wan
2014-01-01
In this paper, the superelastic shape memory alloy (SMA) slit damper system as an alternative design approach for steel structures is intended to be evaluated with respect to inelastic behavior simulated by refined finite element (FE) analyses. Although the steel slit dampers conventionally used for aseismic design are able to dissipate a considerable amount of energy generated by the plastic yielding of the base materials, large permanent deformation may occur in the entire structure. After strong seismic events, extra damage repair costs are required to restore the original configuration and to replace defective devices with new ones. Innovative slit dampers fabricated by superelastic SMAs that automatically recover their initial conditions only by the removal of stresses without heat treatment are introduced with a view toward mitigating the problem of permanent deformation. The cyclically tested FE models are calibrated to experimental results for the purpose of predicting accurate behavior. This study also focuses on the material constitutive model that is able to reproduce the inherent behavior of superelastic SMA materials by taking phase transformation between austenite and martensite into consideration. The responses of SMA slit dampers are compared to those of steel slit dampers. Axial stress and strain components are also investigated on the FE models under cyclic loading in an effort to validate the adequacy of FE modeling and then to compare between two slit damper systems. It can be shown that SMA slit dampers exhibit many structural advantages in terms of ultimate strength, moderate energy dissipation and recentering capability. PMID:28788504
Belvedere, Claudio; Leardini, Alberto; Catani, Fabio; Pianigiani, Silvia; Innocenti, Bernardo
2017-07-01
In total knee replacement, the investigation on the exact contact patterns at the post-cam in implanted patients from real in vivo data during daily living activities is fundamental for validating implant design concepts and assessing relevant performances. This study is aimed at verifying the restoration of natural tibio-femoral condylar kinematics by investigating the post-cam engagement at different motor tasks. An innovative validated technique, combining three-dimensional fluoroscopic and finite element analyses, was applied to measure joint kinematics during daily living activities in 15 patients implanted with guided motion posterior-stabilized total knee replacement. Motion results showed physiological antero-posterior translations of the tibio-femoral condyles for every motor task. However, high variability was observed in the position of the calculated pivot point among different patients and different motor tasks, as well as in the range of post-cam engagement. Physiological tibio-femoral joint rotations and contacts at the condyles were found restored in the present knee replacement. Articular contact patterns experienced at the post-cam were found compatible with this original prosthesis design. The present study reports replaced knee kinematics also in terms of articular surface contacts, both at the condyles and, for the first time, at the post-cam. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1396-1403, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
Peridynamic Multiscale Finite Element Methods
Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Finite element model and identification procedure
NASA Technical Reports Server (NTRS)
How, Jonathan P.; Blackwood, Gary; Anderson, Eric; Balmes, Etienne
1992-01-01
Viewgraphs on finite element model and identification procedure are presented. Topics covered include: interferometer finite element model; testbed mode shapes; finite element model update; identification procedure; shaker locations; data analysis; modal frequency and damping comparison; computational procedure; fit comparison; residue analysis; typical residues; identification/FEM residual comparison; and pathlength control using isolation mounts.
EXODUS II: A finite element data model
Schoof, L.A.; Yarberry, V.R.
1994-09-01
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
Finite element simulation of microindentation
NASA Astrophysics Data System (ADS)
Zhuk, D. I.; Isaenkova, M. G.; Perlovich, Yu. A.; Krymskaya, O. A.
2017-05-01
Finite element models are created to describe the testing of a material by a Berkovich indenter. The results of calculations by these models are compared to experimental data on indentation of the same material (grade 10 steel). The experimental and calculated data agree well with each other. The developed models for an indenter and the material to be tested are used to find the laws of behavior of a material during indentation. The state of stress in the material under an indenter is studied by various methods. The indentation results are plotted versus the mechanical properties of a material.
Analysis of finite deformations of elastic solids by the finite element method.
NASA Technical Reports Server (NTRS)
Oden, J. T.; Key, J. E.
1971-01-01
Finite element applications, particularly to analyses of finite deformations in elastic solids, are reviewed, along with the difficulties encountered in the formulation of certain problems and in their numerical solution. Various approaches are discussed for overcoming these and other difficulties. A computer program designed for finite elasticity problems is described, and several numerical examples are presented.
2-d Finite Element Code Postprocessor
Sanford, L. A.; Hallquist, J. O.
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Nakamachi, Eiji; Uchida, Takahiro; Kuramae, Hiroyuki; Morita, Yusuke
2014-08-01
In this study, we developed a multi-scale finite element (FE) analysis code to obtain the stress and strain that occurred in the smooth muscle cell (SMC) at micro-scale, which was seeded in the real fabricated braid fibril artificial blood vessel. This FE code can predict the dynamic response of stress under the blood pressure loading. We try to establish a computer-aided engineering (CAE)-driven scaffold design technique for the blood vessel regeneration. Until now, there occurred the great progresses for the endothelial cell activation and intima layer regeneration in the blood vessel regeneration study. However, there remains the difficulty of the SMC activation and media layer regeneration. Therefore, many researchers are now studying to elucidate the fundamental mechanism of SMC activation and media layer regeneration by using the biomechanical technique. As the numerical tool, we used the dynamic-explicit FE code PAM-CRASH, ESI Ltd. For the material models, the nonlinear viscoelastic constitutive law was adapted for the human blood vessel, SMC and the extra-cellular matrix, and the elastic law for the polyglycolic acid (PGA) fiber. Through macro-FE and micro-FE analyses of fabricated braid fibril tubes by using PGA fiber under the combined conditions of the orientation angle and the pitch of fiber, we searched an appropriate structure for the stress stimulation for SMC functionalization. Objectives of this study are indicated as follows: 1. to analyze the stress and strain of the human blood vessel and SMC, and 2. to calculate stress and strain of the real fabricated braid fibril artificial blood vessel and SMC to search an appropriate PGA fiber structure under combined conditions of PGA fiber numbers, 12 and 24, and the helical orientation angles of fiber, 15, 30, 45, 60, and 75 degrees. Finally, we found a braid fibril tube, which has an angle of 15 degree and 12 PGA fibers, as a most appropriate artificial blood vessel for SMC functionalization. Copyright
Domain decomposition methods for mortar finite elements
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Finite element coiled cochlea model
NASA Astrophysics Data System (ADS)
Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad
2015-12-01
Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Finite-Element Composite-Analysis Program
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
3-D Finite Element Code Postprocessor
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Books and monographs on finite element technology
NASA Technical Reports Server (NTRS)
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Books and monographs on finite element technology
NASA Technical Reports Server (NTRS)
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Finite element analysis enhancement of cryogenic testing
NASA Astrophysics Data System (ADS)
Thiem, Clare D.; Norton, Douglas A.
1991-12-01
Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.
Hybrid stress finite elements for large deformations of inelastic solids
NASA Technical Reports Server (NTRS)
Reed, K. W.; Atluri, S. N.
1984-01-01
A new hybrid stress finite element algorithm, based on a generalization of Fraeijs de Veubeke's complementary energy principle is presented. Analyses of large quasistatic deformation of inelastic solids (hypoelastic, plastic, viscoplastic) are within its capability. Principle variables in the formulation are the nominal stress rate and spin. A brief account is given of the boundary value problem in these variables, and the 'equivalent' variational principle. The finite element equation, along with initial positions and stresses, comprise an initial value problem. Factors affecting the choice of time integration schemes are discussed. Results found by application of the new algorithm are compared to those obtained by a velocity based finite element algorithm.
Evaluation of a hybrid, anisotropic, multilayered, quadrilateral finite element
NASA Technical Reports Server (NTRS)
Robinson, J. C.; Blackburn, C. L.
1978-01-01
A multilayered finite element with bending-extensional coupling is evaluated for: (1) buckling of general laminated plates; (2) thermal stresses of laminated plates cured at elevated temperatures; (3) displacements of a bimetallic beam; and (4) displacement and stresses of a single-cell box beam with warped cover panels. Also, displacements and stresses for flat and spherical orthotropic and anisotropic segments are compared with results from higher order plate and shell finite-element analyses.
Murakami, Kazuhiro; Yamamoto, Kazuhiko; Sugiura, Tsutomu; Horita, Satoshi; Matsusue, Yumiko; Kirita, Tadaaki
2017-06-01
This study was performed to evaluate stresses in various types of plates placed for a virtually reduced unilateral condylar fracture of the mandible using computed tomography-based 3-dimensional finite element (FE) models of a patient to select the optimal plate system. A computed tomography-based FE model of the mandible of a patient with a unilateral condylar fracture was constructed. The fracture was virtually reduced and fixed with 1 straight titanium plate; 2 straight titanium plates; 2 straight poly-L-lactic acid plates; and 4-hole (box), 5-hole (strut), and 7-hole (lambda) condylar plates. Stresses developing in these plates were analyzed by applying 478.1 N of bite force at the first molar of the contralateral side of the mandible. The magnitudes of tensile stress were within the tensile strength in all types of plates. However, the magnitudes of compressive stress in 1 straight titanium plate and 2 straight poly-L-lactic acid plates were beyond the compressive strength. The tensile and compressive stresses of the 5-hole (strut) plate were the smallest among the 3 types of condylar plates. Fixation by 2 straight titanium plates or any type of condylar plate was biomechanically indicated for the condylar fracture of this patient. Among these plates, the 5-hole (strut) plate was considered optimal. FE analysis is useful in selecting the optimal fixation method in the individual patient. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Visualization of higher order finite elements.
Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay
2004-04-01
Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:
Inelastic stress analyses at finite deformation through complementary energy approaches
NASA Technical Reports Server (NTRS)
Atluri, S. N.; Reed, K. W.
1983-01-01
A new hybrid-stress finite element algorithm, suitable for analyses of large, quasistatic, inelastic deformations, is presented. The algorithm is based upon a generalization of de Veubeke's (1972) complementary energy principle. The principal variables in the formulation are the nominal stress rate and spin, and the resulting finite element equations are discrete versions of the equations of compatibility and angular momentum balance. The algorithm produces true rates, time derivatives, as opposed to 'increments'. There results a boundary value problem (for stress rate and velocity) and an initial value problem (for total stress and deformation). A discussion of the numerical treatment of the boundary value problem is followed by a detailed examination of the numerical treatment of the initial value problem, covering the topics of efficiency, stability, and objectivity. The paper is closed with a set of examples, finite homogeneous deformation problems, which serve to bring out important aspects of the algorithm.
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Finite element schemes for Fermi equation
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Beilina, L.; Naseer, M.; Standar, C.
2017-07-01
A priori error estimates are derived for the streamline diffusion (SD) finite element methods for the Fermi pencil-beam equation. Two-dimensional numerical examples confirm our theoretical investigations.
Finite element modeling of the human pelvis
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Quadratic finite elements and incompressible viscous flows.
Dohrmann, Clark R.; Gartling, David K.
2005-01-01
Pressure stabilization methods are applied to higher-order velocity finite elements for application to viscous incompressible flows. Both a standard pressure stabilizing Petrov-Galerkin (PSPG) method and a new polynomial pressure projection stabilization (PPPS) method have been implemented and tested for various quadratic elements in two dimensions. A preconditioner based on relaxing the incompressibility constraint is also tested for the iterative solution of saddle point problems arising from mixed Galerkin finite element approximations to the Navier-Stokes equations. The preconditioner is demonstrated for BB stable elements with discontinuous pressure approximations in two and three dimensions.
Wu, Aaron Yu-Jen; Hsu, Jui-Ting; Chee, Winston; Lin, Yun-Te; Fuh, Lih-Jyh; Huang, Heng-Li
2016-09-01
Small-diameter dental implants are associated with a higher risk of implant failure. This study used both three-dimensional finite-element (FE) simulations and in-vitro experimental tests to analyze the stresses and strains in both the implant and the surrounding bone when using one-piece (NobelDirect) and two-piece (NobelReplace) small-diameter implants, with the aim of understanding the underlying biomechanical mechanisms. Six experimental artificial jawbone models and two FE models were prepared for one-piece and two-piece 3.5-mm diameter implants. Rosette strain gauges were used for in-vitro tests, with peak values of the principal bone strain recorded with a data acquisition system. Implant stability as quantified by Periotest values (PTV) were also recorded for both types of implants. Experimental data were analyzed statistically using Wilcoxon's rank-sum test. In FE simulations, the peak value and distribution of von-Mises stresses in the implant and bone were selected for evaluation. In in-vitro tests, the peak bone strain was 42% lower for two-piece implants than for one-piece implants. The PTV was slightly lower for one-piece implants (PTV = -6) than for two-piece implants (PTV = -5). In FE simulations, the stresses in the bone and implant were about 23% higher and 12% lower, respectively, for one-piece implants than those for two-piece implants. Due to the higher peri-implant bone stresses and strains, one-piece implants (NobelDirect) might be not suitable for use as small-diameter implants. Copyright © 2016. Published by Elsevier B.V.
Motta, Andréia Barreira; Pereira, Luiz Carlos; da Cunha, Andréia R.C.C
2007-01-01
All-ceramic fixed partial dentures (FPDs) have an esthetic approach for oral rehabilitation. However, metal-ceramic FPDs are best indicated in the posterior area where the follow-up studies found a lower failure rate. This 2D finite element study compared the stress distribution on 3-unit all-ceramic and metal-ceramic FPDs and identified the areas of major risk of failure. Three FPD models were designed: (1) metal-ceramic FPD; (2) All-ceramic FPD with the veneering porcelain on the occlusal and cervical surface of the abutment tooth; (3) All-ceramic FPD with the veneering porcelain only on the occlusal surface. A 100 N load was applied in an area of 0.5 mm2 on the working cusps, following these simulations: (1) on the abutment teeth and the pontic; (2) only on the abutment teeth; and (3) only on the pontic. Relative to the maximum stress values found for the physiological load, all-ceramic FPD with only occlusal veneering porcelain produced the lowest stress value (220 MPa), followed by all-ceramic FPD with cervical veneering porcelain (322 MPa) and metal-ceramic FPD (387 MPa). The stress distribution of the load applied on the abutments was significantly better compared to the other two load simulations. The highest principal stress values were low and limited in a small area for the three types of models under this load. When the load was applied on the pontic, the highest stress values appeared on the connector areas between the abutments and pontic. In conclusion, the best stress values and distribution were found for the all-ceramic FPD with the veneering porcelain only on the occlusal surface. However, in under clinical conditions, fatigue conditions and restoration defects must be considered. PMID:19089168
Lu, Yongtao; Maquer, Ghislain; Museyko, Oleg; Püschel, Klaus; Engelke, Klaus; Zysset, Philippe; Morlock, Michael; Huber, Gerd
2014-07-18
Quantitative computer tomography (QCT)-based finite element (FE) models of vertebral body provide better prediction of vertebral strength than dual energy X-ray absorptiometry. However, most models were validated against compression of vertebral bodies with endplates embedded in polymethylmethalcrylate (PMMA). Yet, loading being as important as bone density, the absence of intervertebral disc (IVD) affects the strength. Accordingly, the aim was to assess the strength predictions of the classic FE models (vertebral body embedded) against the in vitro and in silico strengths of vertebral bodies loaded via IVDs. High resolution peripheral QCT (HR-pQCT) were performed on 13 segments (T11/T12/L1). T11 and L1 were augmented with PMMA and the samples were tested under a 4° wedge compression until failure of T12. Specimen-specific model was generated for each T12 from the HR-pQCT data. Two FE sets were created: FE-PMMA refers to the classical vertebral body embedded model under axial compression; FE-IVD to their loading via hyperelastic IVD model under the wedge compression as conducted experimentally. Results showed that FE-PMMA models overestimated the experimental strength and their strength prediction was satisfactory considering the different experimental set-up. On the other hand, the FE-IVD models did not prove significantly better (Exp/FE-PMMA: R²=0.68; Exp/FE-IVD: R²=0.71, p=0.84). In conclusion, FE-PMMA correlates well with in vitro strength of human vertebral bodies loaded via real IVDs and FE-IVD with hyperelastic IVDs do not significantly improve this correlation. Therefore, it seems not worth adding the IVDs to vertebral body models until fully validated patient-specific IVD models become available.
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Stabilized Finite Elements in FUN3D
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Newman, James C.; Karman, Steve L.
2017-01-01
A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.
Wave dispersion properties of compound finite elements
NASA Astrophysics Data System (ADS)
Melvin, Thomas; Thuburn, John
2017-06-01
Mixed finite elements use different approximation spaces for different dependent variables. Certain classes of mixed finite elements, called compatible finite elements, have been shown to exhibit a number of desirable properties for a numerical weather prediction model. In two-dimensions the lowest order element of the Raviart-Thomas based mixed element is the finite element equivalent of the widely used C-grid staggering, which is known to possess good wave dispersion properties, at least for quadrilateral grids. It has recently been proposed that building compound elements from a number of triangular Raviart-Thomas sub-elements, such that both the primal and (implied) dual grid are constructed from the same sub-elements, would allow greater flexibility in the use of different advection schemes along with the ability to build arbitrary polygonal elements. Although the wave dispersion properties of the triangular sub-elements are well understood, those of the compound elements are unknown. It would be useful to know how they compare with the non-compound elements and what properties of the triangular sub-grid elements are inherited? Here a numerical dispersion analysis is presented for the linear shallow water equations in two dimensions discretised using the lowest order compound Raviart-Thomas finite elements on regular quadrilateral and hexagonal grids. It is found that, in comparison with the well known C-grid scheme, the compound elements exhibit a more isotropic dispersion relation, with a small over estimation of the frequency for short waves compared with the relatively large underestimation for the C-grid. On a quadrilateral grid the compound elements are found to differ from the non-compound Raviart-Thomas quadrilateral elements even for uniform elements, exhibiting the influence of the underlying sub-elements. This is shown to lead to small improvements in the accuracy of the dispersion relation: the compound quadrilateral element is slightly better for
Finite Element Interface to Linear Solvers
Williams, Alan
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.
Model Reduction of Viscoelastic Finite Element Models
NASA Astrophysics Data System (ADS)
Park, C. H.; Inman, D. J.; Lam, M. J.
1999-01-01
This paper examines a method of adding viscoelastic properties to finite element models by using additional co-ordinates to account for the frequency dependence usually associated with such damping materials. Several such methods exist and all suffer from an increase in order of the final finite model which is undesirable in many applications. Here we propose to combine one of these methods, the GHM (Golla-Hughes-McTavish) method, with model reduction techniques to remove the objection of increased model order. The result of combining several methods is an ability to add the effects of visoelastic components to finite element or other analytical models without increasing the order of the system. The procedure is illustrated by a numerical example. The method proposed here results in a viscoelastic finite element of a structure without increasing the order of the original model.
Halabian, Mahdi; Beigzadeh, Borhan; Karimi, Alireza; Shirazi, Hadi Asgharzadeh; Shaali, Mohammad Hasan
2016-12-01
One of the main clinical applications of the needles is its practical usage in the femoral vein catheterization. Annually more than two million peoples in the United States are exposed to femoral vein catheterization. How to use the input needles into the femoral vein has a key role in the sense of pain in post-injection and possible injuries, such as tissue damage and bleeding. It has been shown that there might be a correlation between the stresses and deformations due to femoral injection to the tissue and the sense of pain and, consequently, injuries caused by needles. In this study, the stresses and deformations induced by the needle to the femoral tissue were experimentally and numerically investigated in response to an input needle at four different angles, i.e., 30°, 45°, 60°, and 90°, via finite element method. In addition, a set of experimental injections at different angles were carried out to compare the numerical results with that of the experimental ones, namely pain score. The results revealed that by increasing the angle of injection up to 60°, the strain at the interaction site of the needle-tissue is increased accordingly while a significant falling is observed at the angle of 90°. In contrast, the stress due to injection was decreased at the region of needle-tissue interaction with showing the lowest one at the angle of 90°. Experimental results were also well confirmed the numerical observations since the lowest pain score was seen at the angle of 90°. The results suggest that the most effective angle of injection would be 90° due to a lower amount of stresses and deformations compared to the other angles of injection. These findings may have implications not only for understating the stresses and deformations induced during injection around the needle-tissue interaction, but also to give an outlook to the doctors to implement the most suitable angle of injection in order to reduce the pain as well as post injury of the patients.
Finite-element models of continental extension
NASA Technical Reports Server (NTRS)
Lynch, H. David; Morgan, Paul
1990-01-01
Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.
The GPRIME approach to finite element modeling
NASA Technical Reports Server (NTRS)
Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.
1983-01-01
GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.
Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
Waveguide finite elements for curved structures
NASA Astrophysics Data System (ADS)
Finnveden, Svante; Fraggstedt, Martin
2008-05-01
A waveguide finite element formulation for the analysis of curved structures is introduced. The formulation is valid for structures that along one axis have constant properties. It is based on a modified Hamilton's principle valid for general linear viscoelastic motion, which is derived here. Using this principle, material properties such as losses may be distributed in the system and may vary with frequency. Element formulations for isoparametric solid elements and deep shell elements are presented for curved waveguides as well as for straight waveguides. In earlier works, the curved elements have successfully been used to model a passenger car tyre. Here a simple validation example and convergence study is presented, which considers a finite length circular cylinder and all four elements presented are used, in turn, to model this structure. Calculated results compare favourably to those in the literature.
Stabilized plane and axisymmetric Lobatto finite element models
NASA Astrophysics Data System (ADS)
Hu, Y. C.; Sze, K. Y.; Zhou, Y. X.
2015-11-01
High order elements are renowned for their high accuracy and convergence. Among them, Lobatto spectral finite elements are commonly used in explicit dynamic analyses as their mass matrices when evaluated by the Lobatto integration rule are diagonal. While there are numerous advanced first and second order elements, advanced high order elements are rarely seen. In this paper, generic stabilization schemes are devised for the reduced integrated plane and axisymmetric elements. Static and explicit dynamic tests are considered for evaluating the relatively merits of the stabilized and conventional elements. The displacement errors of the stabilized elements are less than those of the conventional Lobatto elements. When the material is nearly incompressible, the stabilized elements are also more accurate in terms of the energy error norm. This advantage is of practical importance for bio-tissue and hydrated soil analyses.
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.
Guo, Hongqiang; Shah, Mitul; Spilker, Robert L.
2014-01-01
The study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. However, to date, few biphasic finite element contact analysis for 3D physiological geometries under finite deformation has been developed. The objective of this paper is to develop a hyperelastic biphasic contact implementation for finite deformation and sliding problem. An augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The finite element implementation was based on a general purpose software, COMSOL Multiphysics. The accuracy of the implementation is verified using example problems, for which solutions are available by alternative analyses. The implementation was proven to be robust and able to handle finite deformation and sliding. PMID:24496915
VALIDATION OF ANSYS FINITE ELEMENT ANALYSIS SOFTWARE
HAMM, E.R.
2003-06-27
This document provides a record of the verification and Validation of the ANSYS Version 7.0 software that is installed on selected CH2M HILL computers. The issues addressed include: Software verification, installation, validation, configuration management and error reporting. The ANSYS{reg_sign} computer program is a large scale multi-purpose finite element program which may be used for solving several classes of engineering analysis. The analysis capabilities of ANSYS Full Mechanical Version 7.0 installed on selected CH2M Hill Hanford Group (CH2M HILL) Intel processor based computers include the ability to solve static and dynamic structural analyses, steady-state and transient heat transfer problems, mode-frequency and buckling eigenvalue problems, static or time-varying magnetic analyses and various types of field and coupled-field applications. The program contains many special features which allow nonlinearities or secondary effects to be included in the solution, such as plasticity, large strain, hyperelasticity, creep, swelling, large deflections, contact, stress stiffening, temperature dependency, material anisotropy, and thermal radiation. The ANSYS program has been in commercial use since 1970, and has been used extensively in the aerospace, automotive, construction, electronic, energy services, manufacturing, nuclear, plastics, oil and steel industries.
Finite element modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.
1983-01-01
Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. To demonstrate suitability for nonlinear structural analyses, the model is implemented into a finite element program and analyses for several uniaxial and multiaxial problems are performed. Good agreement is shown between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.
Visualizing higher order finite elements. Final report
Thompson, David C; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.
Evaluation of MHOST analysis capabilities for a plate element. [finite element modeling
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Abumeri, Galib H.; Brown, Helen C.
1992-01-01
Results of the evaluation of the static, buckling, and free vibration analyses capabilities of MHOST for the plate elements are presented. Two large scale, general purpose finite element codes (MARC and MSC/NASTRAN) are used to validate MHOST. Comparisons of MHOST results with those from MARC and MSC/NASTRAN show good agreement and indicate that MHOST can be used with confidence to perform the aforementioned analyses using the plate element.
Finite Element Analysis of Pipe Elbows.
1980-02-01
AD-AO81 077 DAVD TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/B 13/11 FINITE ELEMENT ANALYSIS OF PIPE ELBOWS .(U) FE SO M S MARCUS, B C...TAYLOR NAVAL SHIP i RESEARCH AND DEVELOPMENT CENTER Bethesda, Md. 20084 4 FINITE ELEMENT ANALYSIS OF PIPE ELBOWS by 0 Melvyn S. Marcus and Gordon C...a 90-degree pipe elbow to determine principal stresses due to internal pressure, inplane bending, out-of-plane bending, and torsion moment loadings
Finite element methods for high speed flows
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.; Peraire, J.; Zienkiewicz, O. C.
1985-01-01
An explicit finite element based solution procedure for solving the equations of compressible viscous high speed flow is presented. The method uses domain splitting to advance the solution with different timesteps on different portions of the mesh. For steady inviscid flows, adaptive mesh refinement procedures are successfully employed to enhance the definition of discontinuities. Preliminary ideas on the application of adaptive mesh refinement to the solution of problems involving steady viscous flow are presented. Sample timings are given for the performance of the finite element code on modern supercomputers.
Studies of finite element analysis of composite material structures
NASA Technical Reports Server (NTRS)
Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.
1975-01-01
Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.
Finite element modelling of buried structures
NASA Technical Reports Server (NTRS)
Playdon, D. K.; Simmonds, S. H.
1984-01-01
In many structures the final stress states are dependent on the sequence of construction or the stress states at various stages of construction are of interest. Such problems can be analyzed using finite element programs that have the capability of adding (birthing) elements to simulate the progress of construction. However, the usual procedure of assembling elements may lead to numerical instabilities or stress states that are unrealistic. Both problems are demonstrated in the analysis of a structure using the program ADINA. A technique which combines application of a preload with element birthing to overcome these problems is described and illustrated.
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Finite-Element Analysis of Forced Convection and Conduction
NASA Technical Reports Server (NTRS)
Wieting, A. R.
1982-01-01
TAP2 thermal-analysis program was developed as part of research on finite element methodology for thermal analysis of convectively cooled structures, such as scramjet engines and hypersonic aircraft. Program simplifies computations when both structural and thermal analyses are required and is suited for thermal analysis of nuclear reactors and solar-panel heating systems.
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
Finite element wavelets with improved quantitative properties
NASA Astrophysics Data System (ADS)
Nguyen, Hoang; Stevenson, Rob
2009-08-01
In [W. Dahmen, R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal. 37 (1) (1999) 319-352 (electronic)], finite element wavelets were constructed on polygonal domains or Lipschitz manifolds that are piecewise parametrized by mappings with constant Jacobian determinants. The wavelets could be arranged to have any desired order of cancellation properties, and they generated stable bases for the Sobolev spaces Hs for (or s<=1 on manifolds). Unfortunately, it appears that the quantitative properties of these wavelets are rather disappointing. In this paper, we modify the construction from the above-mentioned work to obtain finite element wavelets which are much better conditioned.
Finite Element Simulation of Smart Structures
NASA Technical Reports Server (NTRS)
Cui, Y. Lawrence; Panahandeh, M.
1996-01-01
Finite element equations representing the behavior of piezoelectric materials when bounded to a typical structure and used as sensors and actuators were developed. Emphasis was placed on generating sensor output equations of piezoelectric sensors and responses of a typical structure bonded with piezoelectric sensors and actuators on the basis of finite element formulation. The model can predict not only structural responses due to both mechanical and electrical loading but also electrical potential due to mechanical or thermal effects. The resulted finite element equations were then used for simple control design and performance evaluation. In the control algorithm, voltages coming out from piezoelectric sensors, which are proportional to strains at sensing locations, are taken as input. The voltages applied to the piezoelectric actuators are used as output. The feasibility of integrating control algorithm with the element routine developed herein and FEAP was demonstrated. In particular, optimal independent modal space control was implemented in a software package on the basis of finite element formulation. A rudimentary finite element-control algorithm package was also developed to evaluate the performance of candidate control laws. A few numerical simulations using the software package developed herein were given. The integrated software package will provide a design tool to address issues such as how adaptive smart systems will scale to a full size aircraft, the amount of piezoelectric materials and the powers needed to actuate it for desired performance. It will also provide a viable new structural control design concept for practical applications in large flexible structures such as aerospace vehicles and aircraft.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
Adaptive finite element strategies for shell structures
NASA Technical Reports Server (NTRS)
Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.
1992-01-01
The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.
Finite element modeling of nonisothermal polymer flows
NASA Technical Reports Server (NTRS)
Roylance, D.
1981-01-01
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Finite element analysis applied to cornea reshaping.
Cabrera Fernández, Delia; Niazy, A M; Kurtz, R M; Djotyan, G P; Juhasz, T
2005-01-01
A 2-D finite element model of the cornea is developed to simulate corneal reshaping and the resulting deformation induced by refractive surgery. In the numerical simulations, linear and nonlinear elastic models are applied when stiffness inhomogeneities varying with depth are considered. Multiple simulations are created that employ different geometric configurations for the removal of the corneal tissue. Side-by-side comparisons of the different constitutive laws are also performed. To facilitate the comparison, the material property constants are identified from the same experimental data, which are obtained from mechanical tests on corneal strips and membrane inflation experiments. We then validate the resulting models by comparing computed refractive power changes with clinical results. Tissue deformations created by simulated corneal tissue removal using finite elements are consistent with clinically observed postsurgical results. The model developed provides a much more predictable refractive outcome when the stiffness inhomogeneities of the cornea and nonlinearities of the deformations are included in the simulations. Finite element analysis is a useful tool for modeling surgical effects on the cornea and developing a better understanding of the biomechanics of the cornea. The creation of patient-specific simulations would allow surgical outcomes to be predicted based on individualized finite element models.
Finite element displacement analysis of a lung.
NASA Technical Reports Server (NTRS)
Matthews, F. L.; West, J. B.
1972-01-01
A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.
Finite element modelling of acoustic emission sensor
NASA Astrophysics Data System (ADS)
Gerasimov, S. I.; Sych, T. V.
2017-08-01
With a validated finite element system COSMOS/M, the out-of-plane displacements corresponding to model sources of acoustic emission (AE) were calculated in three-dimensional samples. The displacement signals were calculated for positions of the receiver on the top plate surface at several different distances (in the far-field) from the source’s epicenter.
TACO: a finite element heat transfer code
Mason, W.E. Jr.
1980-02-01
TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Nondestructive Evaluation Correlated with Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Azid, Ali; Baaklini, George Y.
1999-01-01
Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.
Finite Element Analysis of Piping Tees.
1980-06-01
Combustion Engineering, Inc., performed an experimental stress analysis3 on an ANSI B16.9 carbon steelt tee designated T-12. Pipe extensions were welded to...AD-ASS? 353 DAVID If TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/S 13/11 FINITE ELEENT ANALYSIS OF PIPING TEES.(U) JUN 8 A J QUEZON. S C...DAVID W. TAYLOR NAVAL SHIP SRESEARCH AND DEVELOPMENT CENTER Bethesa Md. 20084 FINITE ELEMENT ANALYSIS OF PIPING TEES by Antonio J. Quezon, Gordon C
Finite Element Heat & Mass Transfer Code
Trease, Lynn
1996-10-10
FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities.
FEHM. Finite Element Heat & Mass Transfer Code
Zyvoloski, G.A.
1996-10-10
FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities.
Finite element simulations of stacked crystal filters
NASA Astrophysics Data System (ADS)
Lee, Jiunn-Horng; Tzeng, Kung-Yu; Cheng, Chih-Wei; Shih, Yu-Ching; Yao, Chih-Min
2004-03-01
Wireless networks are growing rapidly. Their applications include cellular phone, satellite communication and wireless local area networks. In order to avoid interference between all these applications, high selectivity RF filters are essential. The stacked crystal filter (SCF) is a useful configuration when low insertion loss is desired and the near-in skirt selectivity requirement is not as high as that produced by ladder filters. A SCF is an acoustically coupled resonator filter which includes a pair of thickness mode piezoelectric plates attached to each other. Mounted between adjacent sides of the two plates is a shared electrode. The common ways to model the SCF are mason model and lumped element equivalent circuit method. To accommodate complicated geometries, we need to use the other kinds of numerical analysis techniques. Finite element methods have been applied to the modeling of thin film bulk acoustic wave resonator in recent years. Advanced FEM software has the capability to do a coupled piezoelectric-circuit analysis that can connect electrical circuits directly to the piezoelectric finite element models. In this work, we integrate the SCF two-dimensional piezoelectric finite element models and electrical circuits together to simulate the performance of SCF. The influences of electrode property and acoustic loss to the performance of filter are also investigated. The results of simulation are verified by mason model. This methodology can be applied to more complicated geometry models and other types of filters simulation such as coupled resonator filters (CRF) and ladder filters.
Hierarchical flux-based thermal-structural finite element analysis method
NASA Technical Reports Server (NTRS)
Polesky, Sandra P.
1992-01-01
A hierarchical flux-based finite element method is developed for both a one and two dimensional thermal structural analyses. Derivation of the finite element equations is presented. The resulting finite element matrices associated with the flux based formulation are evaluated in a closed form. The hierarchical finite elements include additional degrees of freedom in the approximation of the element variable distributions by the use of nodeless variables. The nodeless variables offer increased solution accuracy without the need for defining actual nodes and rediscretizing the finite element model. Thermal and structural responses are obtained from a conventional linear finite element method and exact solutions. Results show that the hierarchical flux-based method can provide improved thermal and structural solution accuracy with fewer elements when compared to results for the conventional linear element method.
Three Dimensional Finite Element Simulation of the Fretting Wear Problems
NASA Astrophysics Data System (ADS)
Lee, Choon Yeol; Bae, Joon Woo; Choi, Byung Sun; Chai, Young Suck
The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element analysis was used to investigate fretting wear on the secondary side of the steam generator, which arises from flow-induced vibrations (FIV) between the U-tubes and supports or foreign objects. Two-dimensional and three-dimensional finite element analyses were adopted to investigate the fretting wear problems. The purpose of the two-dimensional analysis, which simulated the contact between a punch and a plate, was to demonstrate the validity of using finite element analysis to analyze fretting wear problems. This was achieved by controlling the value of the wear constant and the number of cycles. The two-dimensional solutions obtained from this study were in good agreement with previous results reported by Strömberg. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate tubes contacting at right angles. The results of the analyses showed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.
Finite element modelling of SAW correlator
NASA Astrophysics Data System (ADS)
Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek
2007-12-01
Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.
EC Vacuum Vessel Finite Element Analysis
Rudland, D.; Luther, R.; /Fermilab
1992-02-04
This Note contains a summary of the results of the finite element analysis of the EC Cryostat vacuum vessel performed by Dave Rudland in 1987. The results are used in the structural evaluation of the EC cryostats presented in Engineering Note 194. It should also be noted that the adequacy of the design of the vacuum vessels was reviewed and verified by the Battelle Memorial Institute. Battelle used a shell of revolution program to essentially duplicate the FEA analysis with similar results. It should be noted that no plots of the finite element mesh were retained from the analysis, and these can not be easily reproduced due to a change in the version of the ANSYS computer program shortly after the analysis was completed.
Finite element substructuring methods for composite mechanics
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Chamis, Christos C.
1988-01-01
Finite element substructuring strategies are presented to obtain numerical solutions for three typical problems of interest to the composites community: (1) impact and toughness characterization of composites using Charpy's impact test specimen; (2) free-edge stress analysis of composite laminates; and (3) fracture toughness predictions of composites for individual and combined fracture of modes I, II, and III. The key issue common to these problems is the presence of singular or near singular stress fields. The regions prone to see steep stress gradients are substructured with progressively refined meshes to study the local response simultaneously with the global response. The results from the select examples indicate that finite element substructuring methods are computationally effective for composite singularity mechanics.
Finite element modeling of permanent magnet devices
NASA Astrophysics Data System (ADS)
Brauer, J. R.; Larkin, L. A.; Overbye, V. D.
1984-03-01
New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.
Finite element analysis of human joints
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Finite element concepts in computational aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
Finite element methods in fracture mechanics
NASA Technical Reports Server (NTRS)
Liebowitz, H.; Moyer, E. T., Jr.
1989-01-01
Finite-element methodology specific to the analysis of fracture mechanics problems is reviewed. Primary emphasis is on the important algorithmic developments which have enhanced the numerical modeling of fracture processes. Methodologies to address elastostatic problems in two and three dimensions, elastodynamic problems, elastoplastic problems, special considerations for three-dimensional nonlinear problems, and the modeling of stable crack growth are reviewed. In addition, the future needs of the fracture community are discussed and open questions are identified.
Finite Element Output Bounds for Hyperbolic Problems
Machiels, L.
2000-03-27
We propose a Neumann-subproblem a posteriori finite element error bound technique for linear stationary scalar advection problems. The method is similar in many respects to the previous output bound technique developed for elliptic problems. In the new approach, however, the primal residual is enhanced with a streamline diffusion term. We first formulate the bound algorithm, with particular emphasis on the proof of the bounding properties; then, we provide numerical results for an illustrative example.
Finite Element Methods: Principles for Their Selection.
1983-02-01
the finite element methods. 39 Various statements in the literature that certain mixed methods work well inspite of the fact that the LBB (BB...method, displacement and mixed methods , various adaptive approaches, etc. The examples discussed in Sections 2 and 3 show that the same computational...performance and their relation to mixed methods , SIAM J. Num. Anal., to appear. 5. F. Brezzi, On the existence uniqueness and approximation of saddle-point
Finite Element Analysis of Reverberation Chambers
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Finite element based electric motor design optimization
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1993-01-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
Finite Element Results Visualization for Unstructured Grids
Speck, Douglas E.; Dovey, Donald J.
1996-07-15
GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1984-05-01
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Kennedy, T.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1993-11-30
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-d Finite Element Code Postprocessor
Whirley, R.G.
1991-05-01
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-d Finite Element Code Postprocessor
Whirley, R.G.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
Transient finite element method using edge elements for moving conductor
Tani, Koji; Nishio, Takayuki; Yamada, Takashi ); Kawase, Yoshihiro . Dept. of Information Science)
1999-05-01
For the next generation of high speed railway systems and automobiles new braking systems are currently under development. These braking systems take into account the eddy currents, which are produced by the movement of the conductor in the magnetic field. For their optimum design, it is necessary to know the distribution of eddy currents in the moving conductor. The finite element method (FEM) is often used to simulate them. Here, transient finite element method using edge elements for moving conductor is presented. Here the magnetic vector potential is interpolated at the upwind position and the time derivative term is discretized by the backward difference method. As a result, the system matrix becomes symmetric and the ICCG method is applicable to solve the matrix. This method is used to solve an eddy current rail brake system. The results demonstrate that this approach is suitable to solve transient problems involving movement.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Finite element modeling of lipid bilayer membranes
NASA Astrophysics Data System (ADS)
Feng, Feng; Klug, William S.
2006-12-01
A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.
Gauge finite element method for incompressible flows
NASA Astrophysics Data System (ADS)
E, Weinan; Liu, Jian-Guo
2000-12-01
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher-order) finite elements. This method can achieve high-order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright
FESDIF -- Finite Element Scalar Diffraction theory code
Kraus, H.G.
1992-09-01
This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.
Finite element methodology for transient conduction/forced-convection thermal analysis
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Wieting, A. R.
1979-01-01
Finite element methodology for steady state thermal analysis of convectively cooled structures has been extended for transient analysis. The finite elements are based on representing the fluid passages by fluid bulk-temperature nodes and fluid-solid interface nodes. The formulation of the finite element equations for a typical flow passage is based on the weighted residual method with upwind weighting functions. Computer implementation of the convective finite element methodology using explicit and implicit time integration algorithms is described. Accuracy and efficiency of the methodology is evaluated by comparisons with analytical solutions and finite-difference lumped-parameter analyses. The comparative analyses demonstrate that finite element conduction/conduction methodology may be used to predict transient temperatures with an accuracy equal or superior to the lumped-parameter finite-difference method.
Chang, Yen-Hsiang; Lee, Hao; Lin, Chun-Li
2015-11-01
This study utilizes micro-computerized tomographic (micro-CT) and finite element (FE) sub-modeling analyses to investigate the micro-mechanical behavior associated with voids/bubbles stress behavior at the luting material layer to understand the early damage in a root canal treated premolar. 3-dimensional finite element (FE) models of a macro-root canal treated premolar and two sub-models at the luting material layer to provide the void/bubble distribution and dimensions were constructed from micro-CT images and simulated to receive axial and lateral forces. The boundary conditions for the sub-models were determined from the macro-premolar model results and applied in sub-modeling analysis. The first principal stresses for the dentin, luting material layer and post in macro-premolar model and for luting material void/bubble in sub-models were recorded. The simulated results revealed that the macro-premolar model dramatically underestimated the luting material stress because the voids/bubbles at the adhesive layer cannot be captured due to coarse mesh and high stress gradient and the variations between sub- and macro-models ranging from 2.65 to 4.5 folds under lateral load at the mapping location. Stress concentrations were found at the edge of the voids/bubbles and values over 20 MPa in sub-modeling analysis immediately caused the luting material failure/micro-crack. This study establishes that micro-CT and FE sub-modeling techniques can be used to simulate the stress pattern at the micro-scale luting material layer in a root canal treated premolar, suggesting that attention must be paid to resin luting material initial failure/debonding when large voids/bubbles are generated during luting procedures.
Implicit extrapolation methods for multilevel finite element computations
Jung, M.; Ruede, U.
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
PWSCC Assessment by Using Extended Finite Element Method
NASA Astrophysics Data System (ADS)
Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk
2015-12-01
The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.
Comparison of boundary element and finite element methods in spur gear root stress analysis
NASA Technical Reports Server (NTRS)
Sun, H.; Mavriplis, D.; Huston, R. L.; Oswald, F. B.
1989-01-01
The boundary element method (BEM) is used to compute fillet stress concentration in spur gear teeth. The results are shown to compare favorably with analogous results obtained using the finite element method (FEM). A partially supported thin rim gear is studied. The loading is applied at the pitch point. A three-dimensional analysis is conducted using both the BEM and FEM (NASTRAN). The results are also compared with those of a two-dimensional finite element model. An advantage of the BEM over the FEM is that fewer elements are needed with the BEM. Indeed, in the current study the BEM used 92 elements and 270 nodes whereas the FEM used 320 elements and 2037 nodes. Moreover, since the BEM is especially useful in problems with high stress gradients it is potentially a very useful tool for fillet stress analyses.
Mixed Finite Element Method for Melt Migration
NASA Astrophysics Data System (ADS)
Taicher, A. L.; Hesse, M. A.; Arbogast, T.
2012-12-01
Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium. Therefore, a numerical method must also carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. The finite element framework provides support for additional analysis of error and convergence. Moreover, both mesh refinement and anisotropy are naturally incorporated into finite elements. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. Mixed methods also produce discretely conservative fluxes that are required for the transport problem to remains stable without violating conservation of mass. Based preliminary investigations in 1D and derived energy estimates, we present a mixed formulation for the Darcy-Stokes system. Next, using novel elements of lowest order and
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
NASA Technical Reports Server (NTRS)
Aberson, J. A.; Anderson, J. M.
1973-01-01
The recent introduction of special crack-tip singularity elements, usually referred to as cracked elements, has brought the power and flexibility of the finite-element method to bear much more effectively on fracture mechanics problems. This paper recalls the development of two cracked elements and presents the results of some applications proving their accuracy and economy. Judging from the available literature on numerical methods in fracture mechanics, it seems clear that the elements described have been used more extensively than any others in practical fracture mechanics applications.
Finite element dynamic analysis of finite beams on a bilinear foundation under a moving load
NASA Astrophysics Data System (ADS)
Castro Jorge, P.; Pinto da Costa, A.; Simões, F. M. F.
2015-06-01
The present paper is concerned with the behaviour of finite elastic beams, acted by a moving transverse concentrated load, interacting with elastic foundations of different stiffnesses in compression and in tension. Using finite element analyses, the displacement amplitudes and the critical velocities of the load on a UIC-60 rail are computed and their dependence with respect to the difference between the foundation's moduli in compression and in tension is evaluated. The limit case of a tensionless foundation is as well analyzed. The numerical algorithm relies on the internal force vectors and tangent stiffness matrices computed exactly with automatic symbolic manipulation.
System software for the finite element machine
NASA Technical Reports Server (NTRS)
Crockett, T. W.; Knott, J. D.
1985-01-01
The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
A finite element model of ultrasonic extrusion
NASA Astrophysics Data System (ADS)
Lucas, M.; Daud, Y.
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
Finite Element Modeling of Mitral Valve Repair
Morgan, Ashley E.; Pantoja, Joe Luis; Weinsaft, Jonathan; Grossi, Eugene; Guccione, Julius M.; Ge, Liang; Ratcliffe, Mark
2016-01-01
The mitral valve is a complex structure regulating forward flow of blood between the left atrium and left ventricle (LV). Multiple disease processes can affect its proper function, and when these diseases cause severe mitral regurgitation (MR), optimal treatment is repair of the native valve. The mitral valve (MV) is a dynamic structure with multiple components that have complex interactions. Computational modeling through finite element (FE) analysis is a valuable tool to delineate the biomechanical properties of the mitral valve and understand its diseases and their repairs. In this review, we present an overview of relevant mitral valve diseases, and describe the evolution of FE models of surgical valve repair techniques. PMID:26632260
Algebraic surface design and finite element meshes
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.
1992-01-01
Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.
Chemorheology of reactive systems: Finite element analysis
NASA Technical Reports Server (NTRS)
Douglas, C.; Roylance, D.
1982-01-01
The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.
Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.
2002-01-01
The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.
An algorithm for domain decomposition in finite element analysis
NASA Technical Reports Server (NTRS)
Al-Nasra, M.; Nguyen, D. T.
1991-01-01
A simple and efficient algorithm is described for automatic decomposition of an arbitrary finite element domain into a specified number of subdomains for finite element and substructuring analysis in a multiprocessor computer environment. The algorithm is designed to balance the work loads, to minimize the communication among processors and to minimize the bandwidths of the resulting system of equations. Small- to large-scale finite element models, which have two-node elements (truss, beam element), three-node elements (triangular element) and four-node elements (quadrilateral element), are solved on the Convex computer to illustrate the effectiveness of the proposed algorithm. A FORTRAN computer program is also included.
PC Windows finite element modeling of landfill gas flow
Mull, S.R.; Lang, R.J.; Vigil, S.A.; Cota, H.
1996-09-01
A two dimensional demonstration program, GAS, has been developed for the solution of landfill gas (LFG) flow problems on a personal computer (PC). The program combines a Windows{trademark} graphical user interface, object oriented programming (OOP) techniques, and finite element modeling (FEM) to demonstrate the practicality of performing LFG flow modeling on the PC. GAS is demonstrated on a sample LFG problem consisting of a landfill, one gas extraction well, the landfill liner, cap, and surrounding soil. Analyses of the program results are performed for successively finer grid resolutions. Element flux imbalance, execution time, and required memory are characterized as a function of grid resolution.
Microbuckle initiation in fibre composites : A finite element study
NASA Astrophysics Data System (ADS)
Fleck, Norman A.; Shu, John Y.
1995-12-01
A finite strain continuum theory is presented for unidirectional fibre reinforced composites under in-plane loading. The constitutive response is expressed in terms of couple stress theory, and is deduced from a unit cell of a linear elastic Timoshenko beam embedded in a non-linear elastic-plastic matrix. The continuum theory is implemented within a finite element framework and is used to analyse compressive failure of polymer matrix composites by fibre microbuckling. It is assumed that microbuckling initiates from an imperfection in the form of a finite elliptical region of fibre waviness. The calculations show that the compressive strength decreases with increasing imperfection spatial size from the elastic bifurcation value of Rosen (1965, Fibre Composite Materials, pp. 37-75, American Society Metals Seminar) to the imperfection-sensitive infinite band strength given by Fleck et al. [1995, J. Appl. Mech.62, 329-337.].
Finite Element Analysis of a Floating Microstimulator
Sahin, Mesut; Ur-Rahman, Syed S.
2011-01-01
Analytical solutions for voltage fields in a volume conductor are available only for ideal electrodes with radially symmetric contacts and infinitely extending substrates. Practical electrodes for neural stimulation may have asymmetric contacts and finite substrate dimensions and hence deviate from the ideal geometries. For instance, it needs to be determined if the analytical solutions are adequate for simulations of narrow shank electrodes where the substrate width is comparable to the size of the contacts. As an extension to this problem, a “floating” stimulator can be envisioned where the substrate would be finite in all directions. The question then becomes how small this floating stimulator can be made before its stimulation strength is compromised by the decrease in the medium impedance between the contacts as the contacts are approaching each other. We used finite element modeling to solve the voltage and current profiles generated by these radially asymmetric electrode geometries in a volume conductor. The simulation results suggest that both the substrate size and the bipolar contact separation influence the voltage field when these parameters are as small as a few times the contact size. Both of these effects are larger for increasing elevations from the contact surface, and even stronger for floating electrodes (finite substrate in all directions) than the shank-type electrodes. Location of the contacts on the floating electrode also plays a role in determining the voltage field. The voltage field for any device size and current, and any specific resistance of the volume conductor can be predicted from these results so long as the aspect ratios are preserved. PMID:17601192
Impeller deflection and modal finite element analysis.
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
Finite element analysis of multilayer coextrusion.
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Finite element analysis of bolted flange connections
NASA Astrophysics Data System (ADS)
Hwang, D. Y.; Stallings, J. M.
1994-06-01
A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.
A multigrid solution method for mixed hybrid finite elements
Schmid, W.
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Accurate finite element modeling of acoustic waves
NASA Astrophysics Data System (ADS)
Idesman, A.; Pham, D.
2014-07-01
In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.
Interpreting finite element results for brittle materials in endodontic restorations
2011-01-01
Background Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Methods Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. Conclusions From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test. PMID:21635759
Interpreting finite element results for brittle materials in endodontic restorations.
Pérez-González, Antonio; Iserte-Vilar, José L; González-Lluch, Carmen
2011-06-02
Finite element simulation has been used in last years for analysing the biomechanical performance of post-core restorations in endodontics, but results of these simulations have been interpreted in most of the works using von Mises stress criterion. However, the validity of this failure criterion for brittle materials, which are present in these restorations, is questionable. The objective of the paper is to analyse how finite element results for brittle materials of endodontic restorations should be interpreted to obtain correct conclusions about the possible failure in the restoration. Different failure criteria (Von Mises, Rankine, Coulomb-Mohr, Modified Mohr and Christensen) and material strength data (diametral tensile strength and flexural strength) were considered in the study. Three finite element models (FEM) were developed to simulate an endodontic restoration and two typical material tests: diametral tensile test and flexural test. Results showed that the Christensen criterion predicts similar results as the Von Mises criterion for ductile components, while it predicts similar results to all other criteria for brittle components. The different criteria predict different failure points for the diametral tensile test, all of them under multi-axial stress states. All criteria except Von Mises predict failure for flexural test at the same point of the specimen, with this point under uniaxial tensile stress. From the results it is concluded that the Christensen criterion is recommended for FEM result interpretation in endodontic restorations and that the flexural test is recommended to estimate tensile strength instead of the diametral tensile test.
Compatibility conditions of structural mechanics for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.
1990-01-01
The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.
Compatibility conditions of structural mechanics for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Berke, L.; Gallagher, R. H.
1991-01-01
The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.
Surface subsidence prediction by nonlinear finite-element analysis
Najjar, Y. . Dept. of Civil Engineering); Zaman, M. . School of Civil Engineering and Environmental Science)
1993-11-01
An improved two-dimensional plane-strain numerical procedure based on the incremental-iterative nonlinear finite-element is developed to predict ground subsidence caused by underground mining. The procedure emphasizes the use of the following features: (1) an appropriate constitutive model that can accurately describe the nonlinear behavior of geological strata; and (2) an accurate algorithm for simulation of excavation sequences consistent with the actual underground mining process. The computer code is used to analyze a collapse that occurred in the Blue Goose Lease [number sign]1 Mine in northeastern Oklahoma. A parametric study is conducted to investigate the effects of some selected factors on the shape and extent of subsidence profiles. Analyses of the numerical results indicate that the nonlinear finite-element technique can be employed to meaningfully predict and characterize the potential for ground subsidence due to underground mining.
ORION96. 2-d Finite Element Code Postprocessor
Sanford, L.A.; Hallquist, J.O.
1992-02-02
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Mixed Finite Element Methods for Melt Migration
NASA Astrophysics Data System (ADS)
Taicher, A. L.
2013-12-01
Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium so must carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. We present a mixed formulation for the Darcy-Stokes system. Next, we present novel elements of lowest order and compatible with both Darcy and Stokes flow Finally, we present our 2D mixed FEM code result for solving Stokes and Darcy flow as well as the coupled Darcy-Stokes system the mid-ocean ridge or corner flow problem.
Finite element models and feedback control of flexible aerospace structures
NASA Technical Reports Server (NTRS)
Balas, M. J.
1980-01-01
Large flexible aerospace structures, such as the solar power satellite, are distributed parameter systems with very complex continuum descriptions. This paper investigates the use of finite element methods to produce reduced-order models and finite dimensional feedback controllers for these structures. The main results give conditions under which stable control of the finite element model will produce stable control of the actual structure.
Patient-specific finite element modeling of bones.
Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A
2013-04-01
Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.
Efficient finite element modeling of elastodynamic scattering
NASA Astrophysics Data System (ADS)
Wilcox, Paul D.; Velichko, Alexander
2009-03-01
The scattering of elastic waves by defects is the physical basis of ultrasonic NDE. Although analytical models exist for some canonical problems, the general case of scattering from an arbitrarily-shaped defect requires numerical methods such as finite elements (FE). In this paper, a robust and efficient FE technique is presented that is based on the premise of meshing a relatively small domain sufficient to enclose the scatterer. Plane waves are then excited from a particular direction by a numerical implementation of the Helmholtz-Kirchhoff integral that uses an encircling array of uni-modal point sources. The scattered field displacements are recorded at the same points and the field decomposed into plane waves of different modes at different angles. By repeating this procedure for different incident angles it is possible to generate the scattering- or S-matrix for the scatterer. For a given size of scatterer, all the information in an S-matrix can be represented in the Fourier domain by a limited number of complex coefficients. Thus the complete scattering behavior of an arbitrary-shaped scatterer can be characterized by a finite number of complex coefficients, that can be obtained from a relatively small number of FE model executions.
Immersed molecular electrokinetic finite element method
NASA Astrophysics Data System (ADS)
Kopacz, Adrian M.; Liu, Wing K.
2013-07-01
A unique simulation technique has been developed capable of modeling electric field induced detection of biomolecules such as viruses, at room temperatures where thermal fluctuations must be considered. The proposed immersed molecular electrokinetic finite element method couples electrokinetics with fluctuating hydrodynamics to study the motion and deformation of flexible objects immersed in a suspending medium under an applied electric field. The force induced on an arbitrary object due to an electric field is calculated based on the continuum electromechanics and the Maxwell stress tensor. The thermal fluctuations are included in the Navier-Stokes fluid equations via the stochastic stress tensor. Dielectrophoretic and fluctuating forces acting on the particle are coupled through the fluid-structure interaction force calculated within the surrounding environment. This method was used to perform concentration and retention efficacy analysis of nanoscale biosensors using gold particles of various sizes. The analysis was also applied to a human papillomavirus.
Quality management of finite element analysis
NASA Astrophysics Data System (ADS)
Barlow, John
1991-09-01
A quality management system covering the use of finite element analysis is described. The main topics are as follows: acquisition, development and verification of software (including the software suppliers software quality control system), support, documentation, error control, internal software, software acceptance and release; development and qualification of analysis methods, including software evaluation, analysis procedure qualification and documentation, procedure quality checks, control of analysis procedure errors; product design and integrity analysis, including project quality assurance and analysis planning, task specification and allocation, analysis, execution, results checking and analysis records. Other issues include the commercial and business advantages of quality systems, project and technical management and the training and experience of personnel. The items are correlated with the requirements of International Standard Organization 9001.
Finite element or Galerkin type semidiscrete schemes
NASA Technical Reports Server (NTRS)
Durgun, K.
1983-01-01
A finite element of Galerkin type semidiscrete method is proposed for numerical solution of a linear hyperbolic partial differential equation. The question of stability is reduced to the stability of a system of ordinary differential equations for which Dahlquist theory applied. Results of separating the part of numerical solution which causes the spurious oscillation near shock-like response of semidiscrete scheme to a step function initial condition are presented. In general all methods produce such oscillatory overshoots on either side of shocks. This overshoot pathology, which displays a behavior similar to Gibb's phenomena of Fourier series, is explained on the basis of dispersion of separated Fourier components which relies on linearized theory to be satisfactory. Expository results represented.
Finite-element solutions for geothermal systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Conel, J. E.
1977-01-01
Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.
Finite-element solutions for geothermal systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Conel, J. E.
1977-01-01
Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.
A finite element model with nonviscous damping
NASA Technical Reports Server (NTRS)
Roussos, L. A.; Hyer, M. W.; Thornton, E. A.
1981-01-01
A constitutive law by which structural damping is modeled as a relationship between stress, strain, and strain rate in a material is used in conjunction with the finite element method to develop general integral expressions for viscous and nonviscous damping matrices. To solve the set of nonlinear equations resulting from the presence of nonviscous damping, a solution technique is developed by modifying the Newmark method to accommodate an iterative solution and treat the nonviscous damping as a pseudo-force. The technique is then checked for accuracy and convergence in single- and multi-degree-of-freedom problems, and is found to be accurate and efficient for initial-condition problems with small nonviscous damping.
Adaptive finite element methods in electrochemistry.
Gavaghan, David J; Gillow, Kathryn; Süli, Endre
2006-12-05
In this article, we review some of our previous work that considers the general problem of numerical simulation of the currents at microelectrodes using an adaptive finite element approach. Microelectrodes typically consist of an electrode embedded (or recessed) in an insulating material. For all such electrodes, numerical simulation is made difficult by the presence of a boundary singularity at the electrode edge (where the electrode meets the insulator), manifested by the large increase in the current density at this point, often referred to as the edge effect. Our approach to overcoming this problem has involved the derivation of an a posteriori bound on the error in the numerical approximation for the current that can be used to drive an adaptive mesh-generation algorithm, allowing calculation of the quantity of interest (the current) to within a prescribed tolerance. We illustrate the generic applicability of the approach by considering a broad range of steady-state applications of the technique.
Finite element methods for the nonlinear motion of flexible aircraft
NASA Astrophysics Data System (ADS)
Yang, Victor P.
Conventional strategies in aeroelasticity and flight dynamics for studying aircraft involve making broad assumptions based more on analytical or computational convenience rather than on physical reality. Typically in aeroelastic analyses, the study of the interaction between aircraft flexibility and aerodynamic forces, the aircraft or structural component in question is constrained in a way that is not representative of realistic flight conditions. In flight dynamics, the study of the maneuvering of aircraft, it is common to consider the vehicle as perfectly rigid. In both disciplines it is well known that such contrivances can produce incorrect results. To address these shortcomings, a finite element formulation is developed for analyzing the dynamics of flexible aircraft undergoing arbitrarily large rotation and translation. The formulation is derived in a set of body-attached axes, a frame of reference conducive to analyzing the motion and control of aircraft, and considers the structure as a whole. Several implementation issues are addressed and mitigated, including finite element interpolating functions, the use of eigenvectors as the basis for nonlinear deformation, inclusion of geometrically nonlinear effects in the strain energy, and enforcement of kinematic constraints. Numerical examples illustrate the capabilities of the latter two aspects, and a free-flying aeroelastic model problem demonstrates the overall potential of the proposed formulation. The development is approached in a general way so that the methodology can be applied to any structure that may be modeled by finite elements.
Automated Finite Element Modeling of Wing Structures for Shape Optimization
NASA Technical Reports Server (NTRS)
Harvey, Michael Stephen
1993-01-01
The displacement formulation of the finite element method is the most general and most widely used technique for structural analysis of airplane configurations. Modem structural synthesis techniques based on the finite element method have reached a certain maturity in recent years, and large airplane structures can now be optimized with respect to sizing type design variables for many load cases subject to a rich variety of constraints including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3). These structural synthesis capabilities use gradient based nonlinear programming techniques to search for improved designs. For these techniques to be practical a major improvement was required in computational cost of finite element analyses (needed repeatedly in the optimization process). Thus, associated with the progress in structural optimization, a new perspective of structural analysis has emerged, namely, structural analysis specialized for design optimization application, or.what is known as "design oriented structural analysis" (Ref. 4). This discipline includes approximation concepts and methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the optimization of large structural systems (modeled by thousands of degrees of freedom and thousands of design variables) practical and cost effective.
[Three dimensional mathematical model of tooth for finite element analysis].
Puskar, Tatjana; Vasiljević, Darko; Marković, Dubravka; Jevremović, Danimir; Pantelić, Dejan; Savić-Sević, Svetlana; Murić, Branka
2010-01-01
The mathematical model of the abutment tooth is the starting point of the finite element analysis of stress and deformation of dental structures. The simplest and easiest way is to form a model according to the literature data of dimensions and morphological characteristics of teeth. Our method is based on forming 3D models using standard geometrical forms (objects) in programmes for solid modeling. Forming the mathematical model of abutment of the second upper premolar for finite element analysis of stress and deformation of dental structures. The abutment tooth has a form of a complex geometric object. It is suitable for modeling in programs for solid modeling SolidWorks. After analysing the literature data about the morphological characteristics of teeth, we started the modeling dividing the tooth (complex geometric body) into simple geometric bodies (cylinder, cone, pyramid,...). Connecting simple geometric bodies together or substricting bodies from the basic body, we formed complex geometric body, tooth. The model is then transferred into Abaqus, a computational programme for finite element analysis. Transferring the data was done by standard file format for transferring 3D models ACIS SAT. Using the programme for solid modeling SolidWorks, we developed three models of abutment of the second maxillary premolar: the model of the intact abutment, the model of the endodontically treated tooth with two remaining cavity walls and the model of the endodontically treated tooth with two remaining walls and inserted post. Mathematical models of the abutment made according to the literature data are very similar with the real abutment and the simplifications are minimal. These models enable calculations of stress and deformation of the dental structures. The finite element analysis provides useful information in understanding biomechanical problems and gives guidance for clinical research.
Improved finite-element methods for rotorcraft structures
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1991-01-01
An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.
Impact of new computing systems on finite element computations
NASA Technical Reports Server (NTRS)
Noor, A. K.; Storassili, O. O.; Fulton, R. E.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.
Beam and Truss Finite Element Verification for DYNA3D
Rathbun, H J
2007-07-16
The explicit finite element (FE) software program DYNA3D has been developed at Lawrence Livermore National Laboratory (LLNL) to simulate the dynamic behavior of structures, systems, and components. This report focuses on verification of beam and truss element formulations in DYNA3D. An efficient protocol has been developed to verify the accuracy of these structural elements by generating a set of representative problems for which closed-form quasi-static steady-state analytical reference solutions exist. To provide as complete coverage as practically achievable, problem sets are developed for each beam and truss element formulation (and their variants) in all modes of loading and physical orientation. Analyses with loading in the elastic and elastic-plastic regimes are performed. For elastic loading, the FE results are within 1% of the reference solutions for all cases. For beam element bending and torsion loading in the plastic regime, the response is heavily dependent on the numerical integration rule chosen, with higher refinement yielding greater accuracy (agreement to within 1%). Axial loading in the plastic regime produces accurate results (agreement to within 0.01%) for all integration rules and element formulations. Truss elements are also verified to provide accurate results (within 0.01%) for elastic and elastic-plastic loading. A sample problem to verify beam element response in ParaDyn, the parallel version DYNA3D, is also presented.
NASA Technical Reports Server (NTRS)
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
NASA Technical Reports Server (NTRS)
1976-01-01
The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
Leapfrog/Finite Element Method for Fractional Diffusion Equation
Zhao, Zhengang; Zheng, Yunying
2014-01-01
We analyze a fully discrete leapfrog/Galerkin finite element method for the numerical solution of the space fractional order (fractional for simplicity) diffusion equation. The generalized fractional derivative spaces are defined in a bounded interval. And some related properties are further discussed for the following finite element analysis. Then the fractional diffusion equation is discretized in space by the finite element method and in time by the explicit leapfrog scheme. For the resulting fully discrete, conditionally stable scheme, we prove an L 2-error bound of finite element accuracy and of second order in time. Numerical examples are included to confirm our theoretical analysis. PMID:24955431
Kim, S.
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
NASA Astrophysics Data System (ADS)
Watanabe, Ikumu; Terada, Kenjiro; Neto, Eduardo Alberto de Souza; Perić, Djordje
The objective of this contribution is to develop an elastic-plastic-damage constitutive model for crystal grain and to incorporate it with two-scale finite element analyses based on mathematical homogenization method, in order to characterize the macroscopic tensile strength of polycrystalline metals. More specifically, the constitutive model for single crystal is obtained by combining hyperelasticity, a rate-independent single crystal plasticity and a continuum damage model. The evolution equations, stress update algorithm and consistent tangent are derived within the framework of standard elastoplasticity at finite strain. By employing two-scale finite element analysis, the ductile behaviour of polycrystalline metals and corresponding tensile strength are evaluated. The importance of finite element formulation is examined by comparing performance of several finite elements and their convergence behaviour is assessed with mesh refinement. Finally, the grain size effect on yield and tensile strength is analysed in order to illustrate the versatility of the proposed two-scale model.
Edge-based finite element method for shallow water equations
NASA Astrophysics Data System (ADS)
Ribeiro, F. L. B.; Galeão, A. C.; Landau, L.
2001-07-01
This paper describes an edge-based implementation of the generalized residual minimum (GMRES) solver for the fully coupled solution of non-linear systems arising from finite element discretization of shallow water equations (SWEs). The gain in terms of memory, floating point operations and indirect addressing is quantified for semi-discrete and space-time analyses. Stabilized formulations, including Petrov-Galerkin models and discontinuity-capturing operators, are also discussed for both types of discretization. Results illustrating the quality of the stabilized solutions and the advantages of using the edge-based approach are presented at the end of the paper. Copyright
Finite element analysis of advanced neutron source fuel plates
Luttrell, C.R.
1995-08-01
The proposed design for the Advanced Neutron Source reactor core consists of closely spaced involute fuel plates. Coolant flows between the plates at high velocities. It is vital that adjacent plates do not come in contact and that the coolant channels between the plates remain open. Several scenarios that could result in problems with the fuel plates are studied. Finite element analyses are performed on fuel plates under pressure from the coolant flowing between the plates at a high velocity, under pressure because of a partial flow blockage in one of the channels, and with different temperature profiles.
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Decahaumphai, P.; Wieting, A. R.
1980-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. An integrated thermal-structural rod element is developed and used in four thermal-structural applications; the accuracy of this integrated approach is illustrated by comparisons with the customary approach of finite difference thermal-finite element structural analyses. Results show that integrated thermal-structural analysis of structures modeled with rod elements is more accurate than conventional analysis, and that its further development promises significant results.
Shear deformable finite beam elements for composite box beams
NASA Astrophysics Data System (ADS)
Kim, Nam-Il; Choi, Dong-Ho
2014-04-01
The shear deformable thin-walled composite beams with closed cross-sections have been developed for coupled flexural, torsional, and buckling analyses. A theoretical model applicable to the thin-walled laminated composite box beams is presented by taking into account all the structural couplings coming from the material anisotropy and the shear deformation effects. The current composite beam includes the transverse shear and the restrained warping induced shear deformation by using the first-order shear deformation beam theory. Seven governing equations are derived for the coupled axial-flexural-torsional-shearing buckling based on the principle of minimum total potential energy. Based on the present analytical model, three different types of finite composite beam elements, namely, linear, quadratic and cubic elements are developed to analyze the flexural, torsional, and buckling problems. In order to demonstrate the accuracy and superiority of the beam theory and the finite beam elements developed by this study, numerical solutions are presented and compared with the results obtained by other researchers and the detailed three-dimensional analysis results using the shell elements of ABAQUS. Especially, the influences of the modulus ratio and the simplified assumptions in stress-strain relations on the deflection, twisting angle, and critical buckling loads of composite box beams are investigated. [Figure not available: see fulltext.
Multiphase poroelastic finite element models for soft tissue structure
Simon, B.R.
1992-06-01
During the last two decades. biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains-, and may swell or shrink when tissue ionic concentrations are altered. Given the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law and a total Lagrangian view for the formulation. The associated FEMS are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested.
Multiphase poroelastic finite element models for soft tissue structures
Simon, B.R.
1992-12-01
During the last two decades, biological structures with soft tissue components have been modeled using poroelastic or mixture-based constitutive laws, i.e., the material is viewed as a deformable (porous) solid matrix that is saturated by mobile tissue fluid. These structures exhibit a highly nonlinear, history-dependent material behavior; undergo finite strains; and may swell or shrink when tissue ionic concentrations are altered. Give the geometric and material complexity of soft tissue structures and that they are subjected to complicated initial and boundary conditions, finite element models (FEMs) have been very useful for quantitative structural analyses. This paper surveys recent applications of poroelastic and mixture-based theories and the associated FEMs for the study of the biomechanics of soft tissues, and indicates future directions for research in this area. Equivalent finite-strain poroelastic and mixture continuum biomechanical models are presented. Special attention is given to the identification of material properties using a porohyperelastic constitutive law ans a total Lagrangian view for the formulation. The associated FEMs are then formulated to include this porohyperelastic material response and finite strains. Extensions of the theory are suggested in order to include inherent viscoelasticity, transport phenomena, and swelling in soft tissue structures. A number of biomechanical research areas are identified, and possible applications of the porohyperelastic and mixture-based FEMs are suggested. 62 refs., 11 figs., 3 tabs.
An efficient finite element solution for gear dynamics
NASA Astrophysics Data System (ADS)
Cooley, C. G.; Parker, R. G.; Vijayakar, S. M.
2010-06-01
A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.
Finite Element Analysis (FEA) in Design and Production.
ERIC Educational Resources Information Center
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
Finite Element Analysis (FEA) in Design and Production.
ERIC Educational Resources Information Center
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.
2000-01-01
Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.
A composite nodal finite element for hexagons
Hennart, J.P.; Mund, E.H. |; Valle, E. Del
1997-10-01
A nodal algorithm for the solution of the multigroup diffusion equations in hexagonal arrays is analyzed. Basically, the method consists of dividing each hexagon into four quarters and mapping the hexagon quarters onto squares. The resulting boundary value problem on a quadrangular domain is solved in primal weak formulation. Nodal finite element methods like the Raviart-Thomas RTk schemes provide accurate analytical expansions of the solution in the hexagons. Transverse integration cannot be performed on the equations in the quadrangular domain as simply as it is usually done on squares because these equations have essentially variable coefficients. However, by considering an auxiliary problem with constant coefficients (on the same quadrangular domain) and by using a preconditioning approach, transverse integration can be performed as for rectangular geometry. A description of the algorithm is given for a one-group diffusion equation. Numerical results are presented for a simple model problem with a known analytical solution and for k{sub eff} evaluations of some benchmark problems proposed in the literature. For the analytical problem, the results indicate that the theoretical convergence orders of RTk schemes (k = 0,1) are obtained, yielding accurate solutions at the expense of a few preconditioning iterations.
Finite element modelling of fabric shear
NASA Astrophysics Data System (ADS)
Lin, Hua; Clifford, Mike J.; Long, Andrew C.; Sherburn, Martin
2009-01-01
In this study, a finite element model to predict shear force versus shear angle for woven fabrics is developed. The model is based on the TexGen geometric modelling schema, developed at the University of Nottingham and orthotropic constitutive models for yarn behaviour, coupled with a unified displacement-difference periodic boundary condition. A major distinction from prior modelling of fabric shear is that the details of picture frame kinematics are included in the model, which allows the mechanisms of fabric shear to be represented more accurately. Meso- and micro-mechanisms of deformation are modelled to determine their contributions to energy dissipation during shear. The model is evaluated using results obtained for a glass fibre plain woven fabric, and the importance of boundary conditions in the analysis of deformation mechanisms is highlighted. The simulation results show that the simple rotation boundary condition is adequate for predicting shear force at large deformations, with most of the energy being dissipated at higher shear angles due to yarn compaction. For small deformations, a detailed kinematic analysis is needed, enabling the yarn shear and rotation deformation mechanisms to be modelled accurately.
Finite element analysis of arc welding
Friedman, E.
1980-01-01
Analytical models of the gas tungsten-arc welding process into finite element computer programs provides a valuable tool for determining the welding thermal cycle, weld bead shape, and penetration characteristics, as well as for evaluating the stresses and distortions generated as a result of the temperature transients. The analysis procedures are applicable to planar or axisymmetric welds with arbitrary cross-sectional geometries, under quasistationary conditions. The method used for determining temperatures features an iteration procedure to accurately account for the latent heat absorbed during melting and liberated during solidification of the weld. By simulating the heat input from the arc to the workpiece by a normal distribution function, temperature transients, weld bead dimensions, and cooling rates are evaluated as functions of both the magnitude and distribution of heat input, weldment geometry, and weld speed (or duration of heating for stationary arcs). Modeling of the welding thermal cycle is a prerequisite to analytical treatments of metallurgical changes in weld metal and heat-affected zone material, residual stresses and distortions, and weld defects. A quasistationary formulation for moving welds enables temperatures to be calculated using a two-dimensional heat conduction computer program. The present limitation of high welding speed can, however, be relaxed without altering the two-dimensional framework of the procedure.
An iterative algorithm for finite element analysis
NASA Astrophysics Data System (ADS)
Laouafa, F.; Royis, P.
2004-03-01
In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
Intra Plate Stresses Using Finite Element Modelling
NASA Astrophysics Data System (ADS)
Jayalakshmi, S.; Raghukanth, S. T. G.
2016-10-01
One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo- Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma).
NASA Technical Reports Server (NTRS)
Arya, V. K.
1990-01-01
The viability of advanced viscoplastic models for nonlinear finite element analyses of structural components is investigated. Several uniaxial and a multiaxial problem are analyzed using the finite element implementation of Freed's viscoplastic model. Good agreement between the experimental and calculated uniaxial results validates the finite element implementation and gives confidence to apply it to more complex multiaxial problems. A comparison of results for a sample structural component (the cowl lip of a hypersonic engine inlet) with the earlier elastic, elastic-plastic, and elastic-plastic-creep analyses available in the literature shows that the elastic-viscoplastic analyses yield more reasonable stress and strain distributions. Finally, the versatility of the finite-element-based solution technology presented herein is demonstrated by applying it to another viscoplastic model.
Thermal-structural finite element analysis using linear flux formulation
NASA Technical Reports Server (NTRS)
Pandey, Ajay K.; Dechaumphai, Pramote; Wieting, Allan R.
1990-01-01
A linear flux approach is developed for a finite element thermal-structural analysis of steady state thermal and structural problems. The element fluxes are assumed to vary linearly in the same form as the element unknown variables, and the finite element matrices are evaluated in closed form. Since numerical integration is avoided, significant computational time saving is achieved. Solution accuracy and computational speed improvements are demonstrated by solving several two and three dimensional thermal-structural examples.
TRACE ELEMENT ANALYSES OF URANIUM MATERIALS
Beals, D; Charles Shick, C
2008-06-09
The Savannah River National Laboratory (SRNL) has developed an analytical method to measure many trace elements in a variety of uranium materials at the high part-per-billion (ppb) to low part-per-million (ppm) levels using matrix removal and analysis by quadrapole ICP-MS. Over 35 elements were measured in uranium oxides, acetate, ore and metal. Replicate analyses of samples did provide precise results however none of the materials was certified for trace element content thus no measure of the accuracy could be made. The DOE New Brunswick Laboratory (NBL) does provide a Certified Reference Material (CRM) that has provisional values for a series of trace elements. The NBL CRM were purchased and analyzed to determine the accuracy of the method for the analysis of trace elements in uranium oxide. These results are presented and discussed in the following paper.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Modular Finite Element Methods Library Version: 1.0
2010-06-22
MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.
Generating Finite-Element Models Of Composite Materials
NASA Technical Reports Server (NTRS)
Melis, M. E.
1993-01-01
Program starts at micromechanical level, from simple inputs supplied by user. COMGEN, COmposite Model GENerator, is interactive FORTRAN program used to create wide variety of finite-element models of continuous-fiber composite materials at micromechanical level. Quickly generates batch or "session files" to be submitted to finite-element preprocessor and postprocessor program, PATRAN. COMGEN requires PATRAN to complete model.
Large Scale Finite Element Modeling Using Scalable Parallel Processing
NASA Technical Reports Server (NTRS)
Cwik, T.; Katz, D.; Zuffada, C.; Jamnejad, V.
1995-01-01
An iterative solver for use with finite element codes was developed for the Cray T3D massively parallel processor at the Jet Propulsion Laboratory. Finite element modeling is useful for simulating scattered or radiated electromagnetic fields from complex three-dimensional objects with geometry variations smaller than an electrical wavelength.
Finite element meshing of ANSYS (trademark) solid models
NASA Technical Reports Server (NTRS)
Kelley, F. S.
1987-01-01
A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.
TAURUS96. 3-D Finite Element Code Postprocessor
Brown, B.; Hallquist, J.O.; Spelce, T.E.
1993-11-30
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Finite-element analysis of a weld-penetration problem
NASA Technical Reports Server (NTRS)
Rogge, T. R.
1977-01-01
The stress concentration factor for a weld penetration defect is calculated by the finite-element method. A stress intensity factor is computed by use of the finite-element solution and the J-integral. The results are compared with experimental results.
Practical Application of Finite Element Analysis to Aircraft Structural Design
1986-08-01
t] Cook, Robert D., "Concepts and Applications of Finite element Analysis," John Wiley & Sons, Inc., New York, 1981. [5] Rao, S. S., "The Finite...generation large-scale computer programs is discussed. V.P. Analysis of aircraft structure using applied fracture mechanics (AA) WILHEM , D. P. Northrop...Analytical, finite element for surface flaws, holes (AA) WILHEM , D. P. Northrop Corp., Hawthorne, Calif. (N5631231) Aircraft Group. In AGARD Fracture
Finite Element Analysis of a NASA National Transonic Facility Wide Tunnel Balance
NASA Technical Reports Server (NTRS)
Lindell, Michael C. (Editor)
1999-01-01
This paper presents the results of finite element analyses and correlation studies performed on a NASA National Transonic Facility (NTF) Wind Tunnel balance. In the past NASA has relied primarily on classical hand analyses, coupled with relatively large safety factors, for predicting maximum stresses in wind tunnel balances. Now, with the significant advancements in computer technology and sophistication of general purpose analysis codes, it is more reasonable to pursue finite element analyses of these balances. The correlation studies of the present analyses show very good agreement between the analyses and data measured with strain gages and therefore the studies give higher confidence for using finite element analyses to analyze and optimize balance designs in the future.
Finite element analysis of heat transport in a hydrothermal zone
Bixler, N.E.; Carrigan, C.R.
1987-01-01
Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).
Finite Element Analysis for Turbine Blades with Contact Problems
NASA Astrophysics Data System (ADS)
Yang, Yuan-Jian; Yang, Liang; Wang, Hai-Kun; Zhu, Shun-Peng; Huang, Hong-Zhong
2016-12-01
Turbine blades are one of the key components in a typical turbofan engine, which plays an important role in flight safety. In this paper, we establish a establishes a three-dimensional finite element model of the turbine blades, then analyses the strength of the blade in complicated conditions under the joint function of temperature load, centrifugal load, and aerodynamic load. Furthermore, contact analysis of blade tenon and dovetail slot is also carried out to study the stress based on the contact elements. Finally, the Von Mises stress-strain distributions are obtained to acquire the several dangerous points and maximum Von Mises stress, which provide the basis for life prediction of turbine blade.
Finite element simulation of thick sheet thermoforming
NASA Astrophysics Data System (ADS)
Mercier, Daniel
This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.
Finite element analysis of posterior cervical fixation.
Duan, Y; Wang, H H; Jin, A M; Zhang, L; Min, S X; Liu, C L; Qiu, S J; Shu, X Q
2015-02-01
Despite largely, used in the past, biomechanical test, to investigate the fixation techniques of subaxial cervical spine, information is lacking about the internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI). The different posterior cervical fixation techniques (pedicle screw PS, lateral mass screw LS, and transarticular screw TS) have respective indications. A detailed, geometrically accurate, nonlinear C3-C7 finite element model (FEM) had been successfully developed and validated. Then three FEMs were reconstructed from different fixation techniques after C4-C6 TCI. A compressive preload of 74N combined with a pure moment of 1.8 Nm in flexion, extension, left-right lateral bending, and left-right axial rotation was applied to the FEMs. The ROM results showed that there were obvious significant differences when comparing the different fixation techniques. PS and TS techniques can provide better immediate stabilization, compared to LS technique. The stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Furthermore, the screws inserted by TS technique had high stress concentration at the middle part of the screws. Screw inserted by PS and LS techniques had higher stress concentration at the actual cap-rod-screw interface. The research considers that spinal surgeon should first consider using the TS technique to treat cervical TCI. If PS technique is used, we should eventually prolong the need for external bracing in order to reduce the higher risk of fracture on fixation devices. If LS technique is used, we should add anterior cervical operation for acquire a better immediate stabilization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Ateshian, Gerard A.; Maas, Steve; Weiss, Jeffrey A.
2010-01-01
Background This study formulates and implements a finite element contact algorithm for solid-fluid (biphasic) mixtures, accommodating both finite deformation and sliding. The finite element source code is made available to the general public. Methods The algorithm uses a penalty method regularized with an augmented Lagrangian method to enforce the continuity of contact traction and normal component of fluid flux across the contact interface. The formulation addresses the need to automatically enforce free-draining conditions outside of the contact interface. The formulation addresses the need to automatically enforce free-draining conditions outside of the contact interface. Results The accuracy of the implementation is verified using contact problems for which exact solutions are obtained by alternative analyses. Illustrations are also provided that demonstrate large deformations and sliding under configurations relevant to biomechanical applications such as articular contact. Conclusions This study addresses an important computational need in the biomechanics of porous-permeable soft tissues. Placing the source code in the public domain provides a useful resource to the biomechanics community. PMID:20887031
DYNA3D Finite Element Analysis of Steam Explosion Loads on a Pedestal Wall Design
Noble, C R
2007-01-18
The objective of this brief report is to document the ESBWR pedestal wall finite element analyses that were performed as a quick turnaround effort in July 2005 at Lawrence Livermore National Laboratory and describe the assumptions and failure criteria used for these analyses [Ref 4]. The analyses described within are for the pedestal wall design that included an internal steel liner. The goal of the finite element analyses was to assist in determining the load carrying capacity of the ESBWR pedestal wall subjected to an impulsive pressure generated by a steam explosion.
Singularity-free finite element model of bone through automated voxel-based reconstruction.
Esposito, L; Bifulco, P; Gargiulo, P; Fraldi, M
2016-02-01
Computed tomography (CT) provides both anatomical and density information about tissues. Bone is segmented by raw images and Finite Element Method (FEM) voxel-based meshing technique is achieved by matching each CT voxel to a single finite element (FE). As a consequence of the automated model reconstruction, unstable elements - i.e. elements insufficiently anchored to the whole model and thus potentially involved in partial rigid body motion - can be generated, a crucial problem in obtaining consistent FE models, hindering mechanical analyses. Through the classification of instabilities on topological connections between elements, a numerical procedure is proposed in order to avoid unconstrained models.
A viscoelastic higher-order beam finite element
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tressler, Alexander
1996-01-01
A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.
NASA Astrophysics Data System (ADS)
Reed, Kenneth W.
1992-09-01
A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.
Discontinuous Galerkin finite element solution for poromechanics
NASA Astrophysics Data System (ADS)
Liu, Ruijie
This dissertation focuses on applying discontinuous Galerkin (DG) methods to poromechanics problems. A few challenges have been presented in traditional and popular continuous Galerkin (CG) finite element methods for solving complex coupled thermal, flow and solid mechanics. For example, nonphysical pore pressure oscillations often occur in CG solutions for poroelasticity problems with low permeability. A robust and practical numerical scheme for removing or alleviating the oscillation is not available. In modeling thermoporoelastoplasticity, CG methods require the use of very small time steps to obtain a convergent solution. The temperature profile predicted by CG methods in the fine mesh zones is often seriously polluted by large errors produced in coarse mesh zones in the case where the convection dominates the thermal process. The nonphysical oscillations in pore pressure and temperature solutions induced by CG methods at very early time stages seriously corrupt the solutions at longer time. We propose DG methods to handle these challenges because they are physics driven, provide local conservation of mass and momentum, have high stability and robustness, are locking-free, and because of their meshing and implementation capabilities. We first apply a family of DG methods, including Oden-Babuska-Baumann (OBB), Nonsymmetric Interior Penalty Galerkin (NIPG), Symmetric Interior Penalty Galerkin (SIPG) and Incomplete Interior Penalty Galerkin (IIPG), to 3D linear elasticity problems. This family of DG methods is tested and evaluated by using a cantilever beam problem with nearly incompressible materials. It is shown that DG methods are simple, robust and locking-free in dealing with nearly incompressible materials. Based on the success of DG methods in elasticity, we extend the DG theory into plasticity problems. A DG formulation has been implemented for solving 3D poroelasticity problems with low permeability. Numerical examples solved by DG methods demonstrate
Gonzales, C.R.; Salami, M.R.
1995-06-01
Two-dimensional finite element analysis of a flexible pavement section was performed using a special purpose finite element method (FEM) code and a commercial general purpose FEM. Viscoelastic, plastic, and hyperbolic-elastic materials models were used in the analyses. One-dimensional interface elements were used in both analyses. The results of the analyses were compared with predictions using current evaluation/design models.
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
Finite-element mesh generation from mappable features
Kuniansky, Eve L.; Lowther, Robert A.
1993-01-01
A vector-based geographical information system (GIS) is used to generate a variably-sized triangular element finite-element mesh from mappable features. Important digitally-mapped features are automatically linked to nodes in the finite-element model, ensuring an efficient, virtually error-free alternative to the tedious process of mesh design and data-input preparation by other methods. The procedure permits the user to work interactively with graphically-displayed hydrologic information about the study area allowing different mesh sizes to be used as needed, based on hydrologic complexity. The mesh-generaiion programs are stand-alone macros within the GIS that set up the basic data defining a finite-element mesh for many different finite-element model programs.
Adaptive Finite Element Methods for Continuum Damage Modeling
NASA Technical Reports Server (NTRS)
Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.
1995-01-01
The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2011-01-01
Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.
Validation of a finite element model of the human metacarpal.
Barker, D S; Netherway, D J; Krishnan, J; Hearn, T C
2005-03-01
Implant loosening and mechanical failure of components are frequently reported following metacarpophalangeal (MCP) joint replacement. Studies of the mechanical environment of the MCP implant-bone construct are rare. The objective of this study was to evaluate the predictive ability of a finite element model of the intact second human metacarpal to provide a validated baseline for further mechanical studies. A right index human metacarpal was subjected to torsion and combined axial/bending loading using strain gauge (SG) and 3D finite element (FE) analysis. Four different representations of bone material properties were considered. Regression analyses were performed comparing maximum and minimum principal surface strains taken from the SG and FE models. Regression slopes close to unity and high correlation coefficients were found when the diaphyseal cortical shell was modelled as anisotropic and cancellous bone properties were derived from quantitative computed tomography. The inclusion of anisotropy for cortical bone was strongly influential in producing high model validity whereas variation in methods of assigning stiffness to cancellous bone had only a minor influence. The validated FE model provides a tool for future investigations of current and novel MCP joint prostheses.
Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector
NASA Technical Reports Server (NTRS)
Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)
2001-01-01
Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2011-01-01
Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.
Geometrically Nonlinear Finite Element Analysis of a Composite Space Reflector
NASA Technical Reports Server (NTRS)
Lee, Kee-Joo; Leet, Sung W.; Clark, Greg; Broduer, Steve (Technical Monitor)
2001-01-01
Lightweight aerospace structures, such as low areal density composite space reflectors, are highly flexible and may undergo large deflection under applied loading, especially during the launch phase. Accordingly, geometrically nonlinear analysis that takes into account the effect of finite rotation may be needed to determine the deformed shape for a clearance check and the stress and strain state to ensure structural integrity. In this study, deformation of the space reflector is determined under static conditions using a geometrically nonlinear solid shell finite element model. For the solid shell element formulation, the kinematics of deformation is described by six variables that are purely vector components. Because rotational angles are not used, this approach is free of the limitations of small angle increments. This also allows easy connections between substructures and large load increments with respect to the conventional shell formulation using rotational parameters. Geometrically nonlinear analyses were carried out for three cases of static point loads applied at selected points. A chart shows results for a case when the load is applied at the center point of the reflector dish. The computed results capture the nonlinear behavior of the composite reflector as the applied load increases. Also, they are in good agreement with the data obtained by experiments.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Anisotropic adaptive finite element method for modelling blood flow.
Müller, J; Sahni, O; Li, X; Jansen, K E; Shephard, M S; Taylor, C A
2005-10-01
In this study, we present an adaptive anisotropic finite element method (FEM) and demonstrate how computational efficiency can be increased when applying the method to the simulation of blood flow in the cardiovascular system. We use the SUPG formulation for the transient 3D incompressible Navier-Stokes equations which are discretised by linear finite elements for both the pressure and the velocity field. Given the pulsatile nature of the flow in blood vessels we have pursued adaptivity based on the average flow over a cardiac cycle. Error indicators are derived to define an anisotropic mesh metric field. Mesh modification algorithms are used to anisotropically adapt the mesh according to the desired size field. We demonstrate the efficiency of the method by first applying it to pulsatile flow in a straight cylindrical vessel and then to a porcine aorta with a stenosis bypassed by a graft. We demonstrate that the use of an anisotropic adaptive FEM can result in an order of magnitude reduction in computing time with no loss of accuracy compared to analyses obtained with uniform meshes.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Quality assessment and control of finite element solutions
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Babuska, Ivo
1987-01-01
Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.
Higher-Order Finite Elements for Computing Thermal Radiation
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2004-01-01
Two variants of the finite-element method have been developed for use in computational simulations of radiative transfers of heat among diffuse gray surfaces. Both variants involve the use of higher-order finite elements, across which temperatures and radiative quantities are assumed to vary according to certain approximations. In this and other applications, higher-order finite elements are used to increase (relative to classical finite elements, which are assumed to be isothermal) the accuracies of final numerical results without having to refine computational meshes excessively and thereby incur excessive computation times. One of the variants is termed the radiation sub-element (RSE) method, which, itself, is subject to a number of variations. This is the simplest and most straightforward approach to representation of spatially variable surface radiation. Any computer code that, heretofore, could model surface-to-surface radiation can incorporate the RSE method without major modifications. In the basic form of the RSE method, each finite element selected for use in computing radiative heat transfer is considered to be a parent element and is divided into sub-elements for the purpose of solving the surface-to-surface radiation-exchange problem. The sub-elements are then treated as classical finite elements; that is, they are assumed to be isothermal, and their view factors and absorbed heat fluxes are calculated accordingly. The heat fluxes absorbed by the sub-elements are then transferred back to the parent element to obtain a radiative heat flux that varies spatially across the parent element. Variants of the RSE method involve the use of polynomials to interpolate and/or extrapolate to approximate spatial variations of physical quantities. The other variant of the finite-element method is termed the integration method (IM). Unlike in the RSE methods, the parent finite elements are not subdivided into smaller elements, and neither isothermality nor other
Finite Element Anlaysis of Laminated Composite Plates
1988-09-01
4.2, results depicting maximum displacement obtained using 2 x 2 integration points, 3 x 3 integration points and ’ heterosis ’ [Ref. 4] elements are...thick and thin plates. This element gives better predictions for thick plates than heterosis ele- ment, however, for thin plates, heterosis element...results showing the normalized maximum displacements are shown in Figure 4.8. The heterosis element results in about ten percent error while the
Validating Finite Element Models of Assembled Shell Structures
NASA Technical Reports Server (NTRS)
Hoff, Claus
2006-01-01
The validation of finite element models of assembled shell elements is presented. The topics include: 1) Problems with membrane rotations in assembled shell models; 2) Penalty stiffness for membrane rotations; 3) Physical stiffness for membrane rotations using shell elements with 6 dof per node; and 4) Connections avoiding rotations.
Finite element analysis of (SA) mechanoreceptors in tactile sensing application
NASA Astrophysics Data System (ADS)
N, Syamimi; Yahud, S.
2015-05-01
This paper addresses the structural design of a fingertip model in order to analyse the sensory function of slow adapting (SA) mechanoreceptors by using the finite element analysis (FEA) method. A biologically inspired tactile sensor was designed to mimic a similar response of the human mechanoreceptors in the human glabrous skin. The simulation work was done by using COMSOL Multiphysics. The artificial skin was modelled as a solid square block of silicone elastomer with a semi cylinder protrusion on top. It was modelled as a nearly incompressible and linear hyperelastic material defined by Neo Hookean constitutive law. The sensing element on the other hand was modelled by using constantan alloy mimicking the SA1 receptor. Boundary loads of 1 N/m² to 4 N/m² with the increment of 1 N/m² were applied to the top surface of the protrusion in z and x-direction for normal and shear stress, respectively. The epidermal model base was constrained to maintain the same boundary conditions throughout all simulations. The changes of length experienced by the sensing element were calculated. The simulations result in terms of strain was identified. The simulated result was plotted in terms of sensing element strain against the boundary load and the graph should produce a linear response.
Thermal finite-element analysis of space shuttle main engine turbine blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert
1987-01-01
Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.
Evaluation of the use of a singularity element in finite element analysis of center-cracked plates
NASA Technical Reports Server (NTRS)
Mendelson, A.; Gross, B.; Srawley, J., E.
1972-01-01
Two different methods are applied to the analyses of finite width linear elastic plates with central cracks. Both methods give displacements as a primary part of the solution. One method makes use of Fourier transforms. The second method employs a coarse mesh of triangular second-order finite elements in conjunction with a single singularity element subjected to appropriate additional constraints. The displacements obtained by these two methods are in very good agreement. The results suggest considerable potential for the use of a cracked element for related crack problems, particularly in connection with the extension to nonlinear material behavior.
North Atlantic Finite Element Ocean Modeling
NASA Astrophysics Data System (ADS)
Veluthedathekuzhiyil, Praveen
This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this
Superconvergence in the Generalized Finite Element Method
2005-01-01
Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal. Numer., 8:61– 66, 1974. [19] M. Kř́ıžek...London, 1986. [22] P. Lesaint and M. Zlámal. Superconvergence of the gradient of finite ele- ment solutions. RAIRO Anal. Numer., 13:139–166, 1979. [23] Q
Application of Mass Lumped Higher Order Finite Elements
Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.
2005-11-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.
NASA Astrophysics Data System (ADS)
Kanber, Bahattin; Bozkurt, O. Yavuz
2006-08-01
In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
Finite element analysis to evaluate optical mirror deformations
NASA Astrophysics Data System (ADS)
Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Villalobos-Mendoza, B.
2015-10-01
In this work we describe the use of Finite Element Analysis software to simulate the deformations of an optical mirror. We use Finite Element Method software as a tool to simulate the mirror deformations assuming that it is a thin plate that can be mechanically tensed or compressed; the Finite Element Analysis give us information about the displacements of the mirror from an initial position and the tensions that remains in the surface. The information obtained by means of Finite Element Analysis can be easily exported to a coordinate system and processed in a simulation environment. Finally, a ray-tracing subroutine is used in the obtained data giving us information in terms of aberration coefficients. We present some results of the simulations describing the followed procedure.
Adaptive Finite-Element Computation In Fracture Mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1995-01-01
Report discusses recent progress in use of solution-adaptive finite-element computational methods to solve two-dimensional problems in linear elastic fracture mechanics. Method also shown extensible to three-dimensional problems.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Error analysis of finite element solutions for postbuckled cylinders
NASA Technical Reports Server (NTRS)
Sistla, Rajaram; Thurston, Gaylen A.
1989-01-01
A general method of error analysis and correction is investigated for the discrete finite-element results for cylindrical shell structures. The method for error analysis is an adaptation of the method of successive approximation. When applied to the equilibrium equations of shell theory, successive approximations derive an approximate continuous solution from the discrete finite-element results. The advantage of this continuous solution is that it contains continuous partial derivatives of an order higher than the basis functions of the finite-element solution. Preliminary numerical results are presented in this paper for the error analysis of finite-element results for a postbuckled stiffened cylindrical panel modeled by a general purpose shell code. Numerical results from the method have previously been reported for postbuckled stiffened plates. A procedure for correcting the continuous approximate solution by Newton's method is outlined.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
The finite element machine: An experiment in parallel processing
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Peebles, S. W.; Crockett, T. W.; Knott, J. D.; Adams, L.
1982-01-01
The finite element machine is a prototype computer designed to support parallel solutions to structural analysis problems. The hardware architecture and support software for the machine, initial solution algorithms and test applications, and preliminary results are described.
Validation of high displacement piezoelectric actuator finite element models
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.
2000-08-01
The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
Simple bounds on limit loads by elastic finite element analysis
Mackenzie, D.; Nadarajah, C.; Shi, J.; Boyle, J.T. . Dept. of Mechanical Engineering)
1993-02-01
A method for bounding limit loads by an iterative elastic continuum finite element analysis procedure, referred to as the elastic compensation method, is proposed. A number of sample problems are considered, based on both exact solutions and finite element analysis, and it is concluded that the method may be used to obtain limit-load bounds for pressure vessel design by analysis applications with useful accuracy.
Examples of finite element mesh generation using SDRC IDEAS
NASA Technical Reports Server (NTRS)
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
Integration of geometric modeling and advanced finite element preprocessing
NASA Technical Reports Server (NTRS)
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Global/local finite element analysis of composite materials
NASA Technical Reports Server (NTRS)
Griffin, O. Hayden, Jr.; Vidussoni, M. A.
1988-01-01
The motivation for performing global/local finite element analysis in composite materials is described. An example of such an analysis of a composite plate with a central circular hole is presented. Deformed finite element grids and interlaminar normal stress distributions are presented to aid understanding of the plate response. Such distribution at the plate edge is shown to be basically unaffected, although transverse displacements of the edge were slightly different from an analysis of a similar plate with no hole.
Finite element analysis to model complex mitral valve repair.
Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent
2016-01-01
Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.
Finite element analysis of a composite wheelchair wheel design
NASA Technical Reports Server (NTRS)
Ortega, Rene
1994-01-01
The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.
An Adaptive Multiscale Finite Element Method for Large Scale Simulations
2015-09-28
the method . Using the above definitions , the weak statement of the non-linear local problem at the kth 4 DISTRIBUTION A: Distribution approved for...AFRL-AFOSR-VA-TR-2015-0305 An Adaptive Multiscale Finite Element Method for Large Scale Simulations Carlos Duarte UNIVERSITY OF ILLINOIS CHAMPAIGN...14-07-2015 4. TITLE AND SUBTITLE An Adaptive Multiscale Generalized Finite Element Method for Large Scale Simulations 5a. CONTRACT NUMBER 5b
Nonlinear Finite Element Analysis of Composite Flextensional Transducer Shell
1993-03-01
4 TITLE AND SUBTITLE s FUNDING NUMbE;h NONLINEAR FINITE ELEMENT ANALYSIS OF COMPOSITE FLEXTENSIONAL PR: SV70 TRANSDUCER SHELL PE: 020431 IN 6 AUFTHOA...D NSN 7540-01-280-5500 ,ssard tr,298 IBACI UiNCLA-SSIFlED NONLINEAR FINITE ELEMENT ANALYSIS OF COMPOSITE FLEXTENSIONAL TRANSDUCER SHELL R. C. SliAW...its correlation with test data for a Class IV flextensional underwater acoustic transducer . The thick. elliptical fiberglass/epoxy shell of the
Finite element modeling of electromagnetic propagation in composite structures
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1987-01-01
A finite element Galerkin formulation has been developed to study electromagnetic propagation in complex two-dimensional absorbing ducts. The reflection and transmission at entrance and exit boundaries are determined by coupling the finite element solutions at the entrance and exit to the eigenfunctions of an infinite uniform perfect conducting duct. Example solutions are presented for electromagnetic propagation with absorbing duct walls and propagating through dielectric-metallic matrix materials.
Mathematical aspects of finite element methods for incompressible viscous flows
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
Finite element based optimization study on hydroformed stepped tube
NASA Astrophysics Data System (ADS)
Harisankar, K. R.; Omar, A.; Narasimhan, K.
2016-08-01
Tube hydroforming process is an advanced manufacturing process in which tube is placed in between the dies and deformed with the help of hydraulic pressure. A sound tube hydroformed part depends upon die conditions, material properties and process conditions. In this work, a finite element study, along with response surface methodology (RSM) for designing the simulation, has been used to construct models with loading path, friction, anisotropic index, strain hardening exponent and tube thickness. The responses studied are the die corner radius filling and strain non-uniformity index (SNI) chosen in each step of the tube with maximum 30% thinning as stopping criteria. The factors effect and their interactions on each response were determined and analysed.
Application of physical parameter identification to finite element models
NASA Technical Reports Server (NTRS)
Bronowicki, Allen J.; Lukich, Michael S.; Kuritz, Steven P.
1986-01-01
A time domain technique for matching response predictions of a structural dynamic model to test measurements is developed. Significance is attached to prior estimates of physical model parameters and to experimental data. The Bayesian estimation procedure allows confidence levels in predicted physical and modal parameters to be obtained. Structural optimization procedures are employed to minimize an error functional with physical model parameters describing the finite element model as design variables. The number of complete FEM analyses are reduced using approximation concepts, including the recently developed convoluted Taylor series approach. The error function is represented in closed form by converting free decay test data to a time series model using Prony' method. The technique is demonstrated on simulated response of a simple truss structure.
FINITE ELEMENT ANALYSIS OF BULK TRITIUM SHIPPING PACKAGE
Jordan, J.
2010-06-02
The Bulk Tritium Shipping Package was designed by Savannah River National Laboratory. This package will be used to transport tritium. As part of the requirements for certification, the package must be shown to meet the scenarios of the Hypothetical Accident Conditions (HAC) defined in Code of Federal Regulations Title 10 Part 71 (10CFR71). The conditions include a sequential 30-foot drop event, 30-foot dynamic crush event, and a 40-inch puncture event. Finite Element analyses were performed to support and expand upon prototype testing. Cases similar to the tests were evaluated. Additional temperatures and orientations were also examined to determine their impact on the results. The peak stress on the package was shown to be acceptable. In addition, the strain on the outer drum as well as the inner containment boundary was shown to be acceptable. In conjunction with the prototype tests, the package was shown to meet its confinement requirements.
Finite element methods for integrated aerodynamic heating analysis
NASA Technical Reports Server (NTRS)
Morgan, K.; Peraire, J.
1991-01-01
This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)
2006-01-01
Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.
Dynamic finite element analysis of third size charpy specimens of V-4Cr-4Ti
Lansberry, M.R.; Kumar, A.S.; Mueller, G.E.; Kurtz, R.J.
1997-04-01
A 2-D finite element analysis was performed on precracked, one third scale CVN specimens to investigate the sensitivity of model results to key material parameters such as yield strength, failure strain and work hardening characteristics. Calculations were carried out at temperatures of -196{degree}C and 50{degree}C. The dynamic finite element analyses were conducted using ABAQUS/Explicit V5.4. The finite element results were compared to experimental results for the production-scale heat of V-4Cr-4Ti (ANL Heat No. 832665) as a benchmark. Agreement between the finite element model and experimental data was very good at -196{degree}C, whereas at 50{degree}C the model predicted a slightly lower absorbed energy than actually measured.
Finite element simulations of wrinkling in large diameter corroded pipes
Smith, M.Q.; Nicolella, D.P.; Waldhart, C.J.
1998-12-31
The integrity analysis of degraded pipelines is attracting an increasing amount of attention from operators faced with making a repair/replace decision with regard to the maintenance and operation of aging pipelines within their system. Although many recent studies on the burst capacity of corroded pipelines have yielded useful pressure-based prediction tools such as B31-G and RSTRENG (Battelle, 1989), guidelines for the prediction of wrinkling in such pipes are virtually non-existent. This paper discusses the development and application of a non-linear finite element procedure used to simulate wrinkling of full-scale sections of the Trans-Alaska Pipeline with artificial corrosion. During the tests and analyses, 48-inch diameter X65 steel pipes are subjected to simulated in-service loads from internal pressure, axial compression from thermal differences, and longitudinal bending from settlement. Corrosion is represented in each as a region of thinner wall thickness, the size and shape of which attempt to bound the dimensions of general corrosion found in service. Material behavior of the pipe steel in the wrinkling simulations is represented through a multilinear anisotropic and kinematic hardening plasticity model embedded in the commercially available ABAQUS{reg_sign} finite element program. Accuracy of the procedure is determined by a comparison of the numerically predicted pipe structural behavior and that measured in the tests throughout the loading path and at wrinkling. Results of the comparisons show that the deflection, curvature, and mid-span moment capacity of the pipe predicted by the analyses compare well with those observed in the full-scale tests.
An adaptive discontinuous finite element method for the transport equation
Lang, J.; Walter, A.
1995-03-01
In this paper we introduce a discontinuous finite element method. In our approach, it is possible to combine the advantages of finite element and finite difference methods. The main ingredients are numerical flux approximation and local orthogonal basis functions. The scheme is defined on arbitrary triangulations and two different error indicators are derived. Especially the second one is closely connected to our approach and able to handle arbitrary varying flow directions. Numerical results are given for boundary value problems in two dimensions. They demonstrate the performance of the scheme, combined with the two error indicators.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
Finite element models of wire rope for vibration analysis
NASA Technical Reports Server (NTRS)
Cochran, J. E., Jr.; Fitz-Coy, N. G.; Cutchins, M. A.
1987-01-01
The usefulness of wire rope in shock and vibration isolation is briefly reviewed and its modeling for the purpose of vibration analysis is addressed. A model of a nominally straight segment of wire rope is described in which the rope structure is represented by a maiden, or central, strand of wire with one (or more) strand(s) wrapped around it in a helix (helices). The individual strands are modeled using finite elements and MSC NASTRAN. Small linear segments of each wire are modeled mathematically by dividing them lengthwise into triangular prisms representing each prism by a solid NASTRAN element. To model pretensioning and allow for extraction of internal force information from the NASTRAN model, the wound strands are connected to the maiden strand and each other using spring (scalar elastic) elements. Mode shapes for a length of wire rope with one and fixed to a moving base and the other attached to a point mass, are presented. The use of the NASTRAN derived mode shapes to approximate internal normal forces in equations of motion for vibration analyses is considered.
Nonlinear finite element analysis: An alternative formulation
NASA Technical Reports Server (NTRS)
Merazzi, S.; Stehlin, P.
1980-01-01
A geometrical nonlinear analysis based on an alternative definition of strain is presented. Expressions for strain are obtained by computing the change in length of the base vectors in the curvilinear element coordinate system. The isoparametric element formulation is assumed in the global Cartesian coordinate system. The approach is based on the minimization of the strain energy, and the resulting nonlinear equations are solved by the modified Newton method. Integration of the first and second variation of the strain energy is performed numerically in the case of two and three dimensional elements. Application is made to a simple long cantilever beam.
Recent developments in finite element analysis for transonic airfoils
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.
1979-01-01
The prediction of aerodynamic forces in the transonic regime generally requires a flow field calculation to solve the governing non-linear mixed elliptic-hyperbolic partial differential equations. Finite difference techniques were developed to the point that design and analysis application are routine, and continual improvements are being made by various research groups. The principal limitation in extending finite difference methods to complex three-dimensional geometries is the construction of a suitable mesh system. Finite element techniques are attractive since their application to other problems have permitted irregular mesh elements to be employed. The purpose of this paper is to review the recent developments in the application of finite element methods to transonic flow problems and to report some recent results.
Dynamical observer for a flexible beam via finite element approximations
NASA Technical Reports Server (NTRS)
Manitius, Andre; Xia, Hong-Xing
1994-01-01
The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.
Nonlinear Finite Element Analysis of Sandwich Composites.
1981-03-01
to the element midsurface z - z(x,y) at all points. An additional coordinate r is used to describe the distance away from the midsurface at any point...It is assumed that on the element level, the shell is shallow, so that z2 2 (56) ,y everywhere. The unit vector normal to the shell midsurface at a...relations above do not involve the orientation of the displaced midsurface normal, and, therefore, apply to arbitrarily large displacements and rotations
Finite element modelling and analysis of composites toecaps
NASA Astrophysics Data System (ADS)
Yang, C. C.; Duhovic, M.; Lin, R. J. T.; Bhattacharyya, D.
2009-08-01
Composite toe-caps have attracted considerable attention due to their advantageous properties over traditional metallic toe-caps. However, the anisotropic properties of composite materials also make the toe-cap performance more complex to analyse. This project aims at developing a Finite Element (FE) model for composite toe-caps with the aid of compression testing data. The geometry of the toe-cap was first scanned and imported into an FEA software package to create a workable FE model. The method was then validated by comparing the FE model with experimental results of steel toe-caps. Manufacturing, modelling and testing of custom-made composite toe-cap samples were then carried out. Modelling outputs of composite toe-caps were compared with compression test data for validation. The stress distributions and deformations of the toe-caps were also analysed. Modelling of the steel and composite toe-caps was realized using LS-DYNA Solver and PrePost®. All FE analyses were modelled with reference to European Standards. The developed FE models can in the future be used to model toe-caps with various materials to determine the effects of fibre orientation relating to structural strength, and to achieve structural optimisation.
Geometrical nonlinearity of 14-node brick finite element
NASA Astrophysics Data System (ADS)
Chandan, Swet; Chauhan, Alok P. S.
2017-01-01
The present work depicts the geometrical nonlinearity analysis for the finite element, PN5X1. Here, the general problem of elasticity is numerically solved using iteration method. The proposed element is passed through different tests in order to prove that it works not only for modeling sheet metal forming process but also for other large deformation problems.
Large deformations of reconfigurable active membranes: a finite element model
NASA Astrophysics Data System (ADS)
Son, Seyul; Goulbourne, N. C.
2010-04-01
In this paper, a finite element model is used to describe the inhomogeneous deformations of dielectric elastomers (DE). In our previous work, inhomogeneous deformations of the DE with simple boundary conditions represented by a system of highly nonlinear coupled differential equations (ordinary and partial) were solved using numerical approaches [1-3]. To solve for the electromechanical response for complex shapes (asymmetric), nonuniform loading, and complex boundary conditions a finite element scheme is required. This paper describes a finite element implementation of the DE material model proposed in our previous work in a commercial FE code (ABAQUS 6.8-1, PAWTUCKET, R.I, USA). The total stress is postulated as the summation of the elastic stress tensor and the Maxwell stress tensor, or more generally the electrostatic stress tensor. The finite element model is verified by analytical solutions and experimental results for planar membrane extensions subject to mechanical loads and an electric field: (i) equibiaxial extension and (ii) generalized biaxial extension. Specifically, the analytical solutions for equibiaxial extension of the DE is obtained by combining a modified large deformation membrane theory that accounts for the electromechanical coupling effect in actuation commonly referred to as the Maxwell stress [4]. A Mooney-Rivlin strain energy function is employed to describe the constitutive stress strain behavior of the DE. For the finite element implementation, the constitutive relationships from our previously proposed mathematical model [4] are implemented into the finite element code. Experimentally, a 250% equibiaxially prestretched DE sample is attached to a rigid joint frame and inhomogeneous deformations of the reconfigurable DE are observed with respect to mechanical loads and an applied electric field. The computational result for the reconfigurable DE is compared with the test result to validate the accuracy and robustness of the finite
Finite Element Model Development For Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.
Preconditioned CG-solvers and finite element grids
Bauer, R.; Selberherr, S.
1994-12-31
To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.
Radiosity algorithms using higher order finite element methods
Troutman, R.; Max, N.
1993-08-01
Many of the current radiosity algorithms create a piecewise constant approximation to the actual radiosity. Through interpolation and extrapolation, a continuous solution is obtained. An accurate solution is found by increasing the number of patches which describe the scene. This has the effect of increasing the computation time as well as the memory requirements. By using techniques found in the finite element method, we can incorporate an interpolation function directly into our form factor computation. We can then use less elements to achieve a more accurate solution. Two algorithms, derived from the finite element method, are described and analyzed.
Finite element analysis of two disk rotor system
Dixit, Harsh Kumar
2016-05-06
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Finite element analysis of shear deformable laminated composite plates
Kam, T.Y.; Chang, R.R. )
1993-03-01
A shear deformable finite element is developed for the analysis of thick laminated composite plates. The finite element formulation is based on Mindlin's plate theory in which shear correction factors are derived from the exact expressions for orthotropic materials. The element is used to solve a variety of problems on deflection, stress distribution, natural frequency and buckling of laminated composite plates. The effects of material properties, plate aspect ratio, length-to-thickness ratio, number of layers and lamination angle on the mechanical behaviors of laminated composite plates are investigated. Optimal lamination arrangements of layers for laminated composite plates of particular applications are determined.
Time domain finite element analysis of multimode microwave applicators
Dibben, D.C.; Metaxas, R.
1996-05-01
Analysis of multimode applicators in the frequency domain via the finite element technique produces a set of very ill-conditioned equations. This paper outlines a time domain finite element method (TDFE) for analyzing three dimensional microwave applicators where this ill-conditioning is avoided. Edge elements are used in order to handle sharp metal edges and to avoid spurious solutions. Analysis in the time domain allows field distributions at a range of different frequencies to be obtained with a single calculation. Lumping is investigated as a means of reducing the time taken for the calculation. The reflection coefficient is also obtained.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1992-01-01
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Adaptive grid finite element model of the tokamak scrapeoff layer
Kuprat, A.P.; Glasser, A.H.
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
Finite element analysis of two disk rotor system
NASA Astrophysics Data System (ADS)
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
A finite element method to study multimaterial wind towers
NASA Astrophysics Data System (ADS)
Pascoal-Faria, P.; Dias, C.; Oliveira, M.; Alves, N.
2017-07-01
Wind towers are used to produce electrical energy from the wind. A significant number of towers is manufactured using tubular separately steel or concrete, having limitations such as maximum diameter and height imposed essentially by transportation limitations. Developed computational studies on structural design of towers have been mainly focused on a single material. This investigation aims to develop a finite element method able to study structural design of wind towers combining different materials. The finite element model combines solid and shell elements encompassing different geometries. Several case studies are considered to validate the proposed method and accurate results are obtained.
Numerical Differentiation for Adaptively Refined Finite Element Meshes
NASA Technical Reports Server (NTRS)
Borgioli, Andrea; Cwik, Tom
1998-01-01
Postprocessing of point-wise data is a fundamental process in many fields of research. Numerical differentiation is a key operation in computational electromagnetics. In the case of data obtained from a finite element method with automatic mesh refinement much work needs still to be done. This paper addresses some issues in differentiating data obtained from a finite element electromagnetic code with adaptive mesh refinement, and it proposes a methodology for deriving the electric field given the magnetic field on a mesh of linear triangular elements. The procedure itself is nevertheless more general and might be extended for numerically differentiating any point-wise solution based on triangular meshes.
Footbridge between finite volumes and finite elements with applications to CFD
NASA Astrophysics Data System (ADS)
Pascal, Frédéric; Ghidaglia, Jean-Michel
2001-12-01
The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier-Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright
Design and finite element analysis of oval man way
Hari, Y.; Gryder, B.
1996-12-01
This paper presents the design of an oval man way in the side wall of a cylindrical pressure vessel. ASME Code Section 8 is used to obtain the design parameters of the oval man way, man way cover and bolts. The code calculations require some assumptions which may not be valid. A typical design example is taken. STAAD III finite element code with plate elements is used to model the oval man way, man way cover and bolts. The stresses calculated using ASME Code Section 8 and other analytical formulas for plate and shells are compared with the stresses obtained by Finite Element Modeling. This paper gives the designer of oval man way the ability to perform a finite element analysis and compare it with the analytical calculations and assumptions made. This gives added confidence to the designer as to the validity of his calculations and assumptions.
A finite element simulation scheme for biological muscular hydrostats.
Liang, Y; McMeeking, R M; Evans, A G
2006-09-07
An explicit finite element scheme is developed for biological muscular hydrostats such as squid tentacles, octopus arms and elephant trunks. The scheme is implemented by embedding muscle fibers in finite elements. In any given element, the fiber orientation can be assigned arbitrarily and multiple muscle directions can be simulated. The mechanical stress in each muscle fiber is the sum of active and passive parts. The active stress is taken to be a function of activation state, muscle fiber shortening velocity and fiber strain; while the passive stress depends only on the strain. This scheme is tested by simulating extension of a squid tentacle during prey capture; our numerical predictions are in close correspondence with existing experimental results. It is shown that the present finite element scheme can successfully simulate more complex behaviors such as torsion of a squid tentacle and the bending behavior of octopus arms or elephant trunks.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Finite element analysis for acoustic characteristics of a magnetostrictive transducer
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Jung, Eunmi
2005-12-01
This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.
Finite element large-amplitude free and forced vibrations of rectangular thin composite plates
NASA Technical Reports Server (NTRS)
Chiang, C. K.; Mei, C.; Gray, C. E., Jr.
1989-01-01
A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite rectangular thin plates. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite rectangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, different boundary conditions, aspect ratios, lamination angles and number of plies are presented. The finite element results are compared with available approximate continuum solutions.
Solution Techniques in Finite Element Analysis.
1983-05-01
7. we show a plane strain rubber block subjected to large deforma- tion. We employ a 4-node element and a Mooney - Rivlin material as described in...0 Rubber Block U: 0.30 Figure 7. Large Deformation Analysis of the R ubber Block with Mooney - Rivlin Material Model. GEOMETRY node iE 10 4 -0.3 1.0 1
A Finite Element Analysis of Medial Patellofemoral Ligament Reconstruction
DeVries Watson, Nicole A.; Duchman, Kyle R.; Bollier, Matthew J.; Grosland, Nicole M.
2015-01-01
Background The medial patellofemoral ligament is the primary soft-tissue restraint to lateral patella translation. Medial patellofemoral ligament reconstruction has become a viable surgical option to provide patellar stability in patients with recurrent instability. The primary goal of this study was to determine the effect of medial patellofemoral ligament reconstruction on the lateral force-displacement behavior of the patella using finite element analyses. Methods A finite element model of the knee was created using cadaveric image data. Experimental testing was performed to validate the computational model. After validation, the model was modified to study the effect of various medial patellofemoral ligament reconstruction insertion sites, allowing comparison of patellofemoral contact force and pressure. Results For the intact anatomic model, the lateral restraining force was 80.0 N with a corresponding patellar contact area of 54.97 mm2. For the anatomic reconstructed medial patellofemoral ligament model, the lateral restraining force increased to 148.9 N with a contact area of 71.78 mm2. This compared favorably to the corresponding experimental study. The force required to laterally displace the patella increased when the femoral insertion site was moved anteriorly or distally. The lateral restraining force decreased when the femoral insertion site moved proximally and the patellar insertion site moved either proximal or distal by 5 mm. Conclusion The line of action was altered with insertion site position, which in turn changed the amount of force it took to displace the patella laterally. Considering the model constraints, an anterior femoral attachment may over constrain the patella and increase cartilage wear due to increase contact area and restraining force. Clinical Relevance A malpositioned femoral tunnel in MPFL reconstruction could increase restraining forces and PF contact pressure, thus it is suggested to use intra-operative fluoroscopy to confirm
Finite element analysis of osteoporosis models based on synchrotron radiation
NASA Astrophysics Data System (ADS)
Xu, W.; Xu, J.; Zhao, J.; Sun, J.
2016-04-01
With growing pressure of social aging, China has to face the increasing population of osteoporosis patients as well as the whole world. Recently synchrotron radiation has become an essential tool for biomedical exploration with advantage of high resolution and high stability. In order to study characteristic changes in different stages of primary osteoporosis, this research focused on the different periods of osteoporosis of rats based on synchrotron radiation. Both bone histomorphometry analysis and finite element analysis were then carried on according to the reconstructed three dimensional models. Finally, the changes of bone tissue in different periods were compared quantitatively. Histomorphometry analysis showed that the structure of the trabecular in osteoporosis degraded as the bone volume decreased. For femurs, the bone volume fraction (Bone volume/ Total volume, BV/TV) decreased from 69% to 43%. That led to the increase of the thickness of trabecular separation (from 45.05μ m to 97.09μ m) and the reduction of the number of trabecular (from 7.99 mm-1 to 5.97mm-1). Simulation of various mechanical tests with finite element analysis (FEA) indicated that, with the exacerbation of osteoporosis, the bones' ability of resistance to compression, bending and torsion gradually became weaker. The compression stiffness of femurs decreased from 1770.96 Fμ m-1 to 697.41 Fμ m-1, the bending and torsion stiffness were from 1390.80 Fμ m-1 to 566.11 Fμ m-1 and from 2957.28N.m/o to 691.31 N.m/o respectively, indicated the decrease of bone strength, and it matched the histomorphometry analysis. This study suggested that FEA and synchrotron radiation were excellent methods for analysing bone strength conbined with histomorphometry analysis.
Coupled finite-difference/finite-element approach for wing-body aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
1992-01-01
Computational methods using finite-difference approaches for fluids and finite-element approaches for structures have individually advanced to solve almost full-aircraft configurations. However, coupled approaches to solve fluid/structural interaction problems are still in their early stages of development, particularly for complex geometries using complete equations such as the Euler/Navier-Stokes equations. Earlier work demonstrated the success of coupling finite-difference and finite-element methods for simple wing configurations using the Euler/Navier-Stokes equations. In this paper, the same approach is extended for general wing-body configurations. The structural properties are represented by beam-type finite elements. The flow is modeled using the Euler/Navier-Stokes equations. A general procedure to fully couple structural finite-element boundary conditions with fluid finite-difference boundary conditions is developed for wing-body configurations. Computations are made using moving grids that adapt to wing-body structural deformations. Results are illustrated for a typical wing-body configuration.
Thermal Analysis of a High-Speed Aircraft Wing Using p-Version Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2001-01-01
This paper presents the results of conceptual level thermal analyses of a High Speed Civil Transport (HSCT) wing using p-version finite elements. The work was motivated by a thermal analysis of a HSCT wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining a traditional finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Further study indicated using p-version finite elements might improve computation performance for this class of problem. Methods for determining internal radiation heat transfer were then developed and demonstrated on test problems representative of the geometry found in an aircraft wing structure. This paper presents the results of the application of these new methods to the analysis of a high speed aircraft wing. Results for both a wing box model as well as a full wing model are presented. 'Me reduced wing box model allows for a comparison of the traditional finite element method with mesh refinement (h-refinement) to the new p-version finite elements while the full wing model demonstrates the applicability and efficiency of p-version finite elements for large models.
Yoshida, Hiroaki; Tada, Mitsunori; Mochimaru, Masaaki
2011-03-01
Since the tactile perception detects skin deformation due to the contact of an object, it is important to understand contact mechanics, especially, frictional behavior of the human fingertip. The coefficient of friction is recently modeled as a function of the applied normal load in which case the traditional Coulomb's law does not provide a description for the skin surface. When a surface is a rubber-like material, the frictional behavior follows the frictional law of the rubber-like material. Therefore, we developed a three-dimensional Finite Element model of the fingertip and analyzed frictional behavior based on the frictional law of rubber-like material. We proposed a combined technique using both experimental and Finite Element analyses in order to investigate the frictional property of the fingertip. A three-dimensional Finite Element model of the fingertip was developed using MRI images. We hypothesized a frictional equation of the critical shear stress. Squared differences between equivalent coefficient of friction of the FE analysis and the coefficient of kinetic friction of the experiment while sliding was decreased and the Finite Element analysis iterated until the error was minimized, and thus the frictional equation was determined. We obtained the equation of the critical shear stress and simulated kinetic friction of the fingertip while sliding under arbitrary normal loading condition by using the Finite Element analysis. We think this study is an appropriate method for understanding the frictional property of the human fingertip using the Finite Element analysis.
Richins, W.D.; Miller, G.K.
1995-12-01
Large displacement, non-linear finite element analyses were performed to evaluate a swaging process used to fabricate connections between plates in the fuel elements for a test reactor at the Idaho National Engineering Laboratory. The force required to pull the fuel plate from the connection is referred to as the strength of the connection. Assurance that the integrity of the connections is maintained through reactor operation is provided by establishing a minimum acceptance requirement for this strength. Analysis results were used to assess the sensitivity of the strength of the swaged connections to variations in several manufacturing process parameters. The predicted strengths correlated well with results from tests where sample swaged connections were loaded to failure. Results from these investigations were used to assess the adequacy and need for various fabrication, testing, and quality control requirements.
New triangular and quadrilateral plate-bending finite elements
NASA Technical Reports Server (NTRS)
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
NASA Astrophysics Data System (ADS)
Nilsson, Karl-Fredrik; Giannakopoulos, Antonios E.
1995-12-01
A theoretical study of a budding-driven, initially circular, delaminated thin film loaded in equal bi-axial compression is presented. The main objective of this investigation is to study the configurational instability phenomena frequently observed for thin debonded coatings loaded in compression. The analyses are done with the aid of a kinematically non-linear finite element formulation of the plate problem to model the film, supplemented with a method to account automatically for the redistribution of the stress field as the shape of the advancing delamination is changing. By this procedure, not only the shape of the delaminated film but also the stability properties of the growth follow automatically. The configurational stability properties of the initially circular delamination are assessed by slightly perturbing the delamination front. The configurational instability is strongly related to the fracture mode dependence in the crack growth law. Finite growth of the buckling-driven thin film was also investigated. A load perturbation was employed as well as a front perturbation. It was found that the two perturbation methods can result in quite different shapes of the advancing buckled thin film. A few examples of extensive growth are also presented, and in some cases it was observed that a part of the delamination front may start tunnelling in the interface.
Effective Finite Elements for Shell Analysis.
1984-02-20
important mode of deformation , and when an element is not capable of representing inextensional bending, parasitic membrane energy is generated in many modes...of deformation . In the same manner that parasitic shear causes shear locking, this spurious membrane energy causes membrane locking. Membrane locking...dominant mode of deformation . (cont.) 20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIEO/UNLIMITEO X SAME AS
The Mathematics of Finite Elements and Applications
1993-04-30
suitable geometrical mapping between the parametric u,v-plane and the physical xy- plane. In the u,v-plane the geometry of the elements is linear. In...the plate. For thin plates there may be a boundary layer, the existence and structure of which depends on the boundary conditions, the plate geometry ...exhibits a boundary layer except for very special data or plate geometry . The bending moment tensor and shear force vector have more pronounced boundary
Spectral finite-element methods for parametric constrained optimization problems.
Anitescu, M.; Mathematics and Computer Science
2009-01-01
We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
3-d finite element model development for biomechanics: a software demonstration
Hollerbach, K.; Hollister, A.M.; Ashby, E.
1997-03-01
Finite element analysis is becoming an increasingly important part of biomechanics and orthopedic research, as computational resources become more powerful, and data handling algorithms become more sophisticated. Until recently, tools with sufficient power did not exist or were not accessible to adequately model complicated, three-dimensional, nonlinear biomechanical systems. In the past, finite element analyses in biomechanics have often been limited to two-dimensional approaches, linear analyses, or simulations of single tissue types. Today, we have the resources to model fully three-dimensional, nonlinear, multi-tissue, and even multi-joint systems. The authors will present the process of developing these kinds of finite element models, using human hand and knee examples, and will demonstrate their software tools.
The Constraint Method for Solid Finite Elements.
1982-11-30
Sciences 13 . NUMBER S Bolling Air Force Base, DC 20332 - -Jfi’ 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CVASS...1- 4)Q2 (n) (’+C) Higher degree elements add edge modes, face modes and internal modes. More details are given in [12, 13 ]. triangular prism A...23) N2 (L2 , L3)(l-z) edge u (31) N2 (L3 ’ L)(1-z) nodes s u s (45). N2 (L1, L2 )z uso (56) N2 (L2, L3 )z K - 13 - nodal variable shape function u
Finite element analysis of a composite crash box subjected to low velocity impact
NASA Astrophysics Data System (ADS)
Shaik Dawood, M. S. I.; Ghazilan, A. L. Ahmad; Shah, Q. H.
2017-03-01
In this work, finite element analyses using LS-DYNA had been carried out to investigate the energy absorption capability of a composite crash box. The analysed design incorporates grooves to the cross sectional shape and E-Glass/Epoxy as design material. The effects of groove depth, ridge lines, plane width, material properties, wall thickness and fibre orientation had been quantitatively analysed and found to significantly enhance the energy absorption capability of the crash box.
Finite Element Method for Capturing Ultra-relativistic Shocks
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2003-01-01
While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.
Hybrid finite element-finite difference method for thermal analysis of blood vessels.
Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B
2000-01-01
A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Finite element methods for nonlinear acoustics in fluids.
Walsh, Timothy Francis
2005-06-01
In this paper, weak formulations and finite element discretizations of the governing partial differential equations of three-dimensional nonlinear acoustics in absorbing fluids are presented. The fluid equations are considered in an Eulerian framework, rather than a displacement framework, since in the latter case the corresponding finite element formulations suffer from spurious modes and numerical instabilities. When taken with the governing partial differential equations of a solid body and the continuity conditions, a coupled formulation is derived. The change in solid/fluid interface conditions when going from a linear acoustic fluid to a nonlinear acoustic fluid is demonstrated. Finite element discretizations of the coupled problem are then derived, and verification examples are presented that demonstrate the correctness of the implementations. We demonstrate that the time step size necessary to resolve the wave decreases as steepening occurs. Finally, simulation results are presented on a resonating acoustic cavity, and a coupled elastic/acoustic system consisting of a fluid-filled spherical tank.
Finite element methods on supercomputers - The scatter-problem
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.
1985-01-01
Certain problems arise in connection with the use of supercomputers for the implementation of finite-element methods. These problems are related to the desirability of utilizing the power of the supercomputer as fully as possible for the rapid execution of the required computations, taking into account the gain in speed possible with the aid of pipelining operations. For the finite-element method, the time-consuming operations may be divided into three categories. The first two present no problems, while the third type of operation can be a reason for the inefficient performance of finite-element programs. Two possibilities for overcoming certain difficulties are proposed, giving attention to a scatter-process.
Finite element method for eigenvalue problems in electromagnetics
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.
1994-01-01
Finite element method (FEM) has been a very powerful tool to solve many complex problems in electromagnetics. The goal of the current research at the Langley Research Center is to develop a combined FEM/method of moments approach to three-dimensional scattering/radiation problem for objects with arbitrary shape and filled with complex materials. As a first step toward that goal, an exercise is taken to establish the power of FEM, through closed boundary problems. This paper demonstrates the developed of FEM tools for two- and three-dimensional eigenvalue problems in electromagnetics. In section 2, both the scalar and vector finite elements have been used for various waveguide problems to demonstrate the flexibility of FEM. In section 3, vector finite element method has been extended to three-dimensional eigenvalue problems.
An Object Oriented, Finite Element Framework for Linear Wave Equations
Koning, Joseph M.
2004-03-01
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Probabilistic finite elements for transient analysis in nonlinear continua
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Finite element method for non-linear dispersive wave analysis
NASA Astrophysics Data System (ADS)
Cheng, Jung-Yu; Kawahara, Mutsuto
1993-09-01
This report presents the finite element method for the analysis of the short wave problem expressed by the Boussinesq equation. The Boussinesq equation considers the effect of wave crest curvature. The standard Galerkin finite element method is employed for the spatial discretization using the triangular finite element based on the linear interpolation function. The combination of the explicit and the quasi-explicit schemes-- i.e., the explicit scheme for the continuum equation and the quasi-explicit scheme for the momentum equation--is employed for the discretization in time. To show the applicability of the present method to the practical problem, the simulation of wave propagation in one-dimensional and two-dimensional channel flows is carried out. The numerical results are in good agreement with the experimental results being. The practical example for Miyako Bay is presented.
Derivation of a Tappered p-Version Beam Finite Element
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1989-01-01
A tapered p-version beam finite element suitable for dynamic applications is derived. The taper in the element is represented by allowing the area moments of inertia to vary as quartic polynomials along the length of the beam, and the cross-sectional area to vary as a quadratic polynomial. The p-version finite-element characteristics are implemented through a set of polynomial shape functions. The lower-order shape functions are identical to the classical cubic and linear shape functions normally associated with a beam element. The higher-order shape functions are a hierarchical set of polynomials that are integrals of orthogonal polynomials. Explicit expressions for the mass and stiffness matrices are presented for an arbitrary value of p. The element has been verified to be numerically stable using shape functions through 22nd order.
Finite and Boundary Element Modeling of the NASA Langley Aluminum Testbed Cylinder (ATC)
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.
2006-01-01
The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC arrangements were in good agreement with experimental modal survey data. Finite element modal analyses were performed for 3 psi and 6 psi internal pressurization conditions. Acoustic cylinder modes for the interior of the ATC were calculated with an acoustic finite element model. Frequency transfer functions between a unit force on the structure and the acoustic response inside the ATC cylinder were measured and were compared with predictions based on a boundary element model. Comparisons between predicted and experimental results are presented and discussed.
Finite Element Modelling and Analysis of Conventional Pultrusion Processes
NASA Astrophysics Data System (ADS)
Akishin, P.; Barkanov, E.; Bondarchuk, A.
2015-11-01
Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.
Predicting Rediated Noise With Power Flow Finite Element Analysis
2007-02-01
Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated
Correlation of composite material test results with finite element analysis
NASA Astrophysics Data System (ADS)
Guƫu, M.
2016-08-01
In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.
Finite element models of the space shuttle main engine
NASA Technical Reports Server (NTRS)
Muller, G. R.
1980-01-01
Finite element models were developed as input to dynamic simulations of the high pressure fuel turbopump (HPFTP), the high pressure oxidizer turbopump (HPOTP), and the space shuttle main engine (SSME). Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps). Modal results are presented for the HPFTP rotor, HPFTP case, HPOTP rotor, coupled HPFTP rotor and case, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps). Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey.
Development of non-linear finite element computer code
NASA Technical Reports Server (NTRS)
Becker, E. B.; Miller, T.
1985-01-01
Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.
Finite element methods for nonlinear elastostatic problems in rubber elasticity
NASA Technical Reports Server (NTRS)
Oden, J. T.; Becker, E. B.; Miller, T. H.; Endo, T.; Pires, E. B.
1983-01-01
A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws.
Engineering and Design: Geotechnical Analysis by the Finite Element Method
2007-11-02
used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element...SM4), 1,435-1,457. Fernando Dams During the Earthquakes of February Davis, E. H., and Poulos, H. G. (1972). “Rate of Report EERC-73-2, Berkeley, CA
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
NASA Astrophysics Data System (ADS)
Smith, N. A. S.; Rokosz, M. K.; Correia, T. M.
2014-07-01
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Discontinuous Galerkin finite element methods for gradient plasticity.
Garikipati, Krishna.; Ostien, Jakob T.
2010-10-01
In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.
Verification of a Finite Element Model for Pyrolyzing Ablative Materials
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2017-01-01
Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.
Error analysis of finite element solutions for postbuckled plates
NASA Technical Reports Server (NTRS)
Sistla, Rajaram; Thurston, Gaylen A.
1988-01-01
An error analysis of results from finite-element solutions of problems in shell structures is further developed, incorporating the results of an additional numerical analysis by which oscillatory behavior is eliminated. The theory is extended to plates with initial geometric imperfections, and this novel analysis is programmed as a postprocessor for a general-purpose finite-element code. Numerical results are given for the case of a stiffened panel in compression and a plate loaded in shear by a 'picture-frame' test fixture.
Differentiating a Finite Element Biodegradation Simulation Model for Optimal Control
NASA Astrophysics Data System (ADS)
Minsker, Barbara S.; Shoemaker, Christine A.
1996-01-01
An optimal control model for improving the design of in situ bioremediation of groundwater has been developed. The model uses a finite element biodegradation simulation model called Bio2D to find optimal pumping strategies. Analytical derivatives of the bioremediation finite element model are derived; these derivatives must be computed for the optimal control algorithm. The derivatives are complex and nonlinear; the bulk of the computational effort in solving the optimal control problem is required to calculate the derivatives. An overview of the optimal control and simulation model formulations is also given.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Analysis of the Performance of Mixed Finite Element Methods.
1986-10-01
October 1986 SUMMARY The initial goal of this project is to analyze various mixed methods based on the p- and h-p versions of the finite element methods...The convergence of mixed methods depends on two factors: (1) Approximability of polynomial spaces used (2) Stability. In the past year, the question...significant portion of the research is geared towards the investigation of mixed methods based on the ’p’ and ’h-p’ versions of the finite element method
Chemically pre-strained dielectric elastomers finite element analysis
NASA Astrophysics Data System (ADS)
Newell, Brittany; Krutz, Gary; Stewart, Frank; Pascal, Kevin
2017-04-01
The applications and feasibility of utilizing dielectric elastomer electroactive polymers in the industrial and medical sectors has drastically increased in recent years due to significant improvements in actuation potential, manufacturing, the introduction of new materials and modeling capabilities. One such development is the introduction of chemical pre-strain as a method of providing enhanced actuation. The purpose of this study was to utilize finite element analysis to analyze the mechanical actuation of an industrial fluoropolymer with chemical induced pre-strain and validate the model with experiential results. Results generated from the finite element analysis showed similar trends to results produced experimentally.
Convergence of finite element approximations of large eddy motion.
Iliescu, T.; John, V.; Layton, W. J.; Mathematics and Computer Science; Otto-von-Guericke Univ.; Univ. of Pittsburgh
2002-11-01
This report considers 'numerical errors' in LES. Specifically, for one family of space filtered flow models, we show convergence of the finite element approximation of the model and give an estimate of the error. Keywords: Navier Stokes equations, large eddy simulation, finite element method I. INTRODUCTION Consider the (turbulent) flow of an incompressible fluid. One promising and common approach to the simulation of the motion of the large fluid structures is Large Eddy Simulation (LES). Various models are used in LES; a common one is to find (w, q), where w : {Omega}
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
Using Finite-Element Analysis In Estimating Reliability
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; August, Richard
1994-01-01
Method of estimating design survivability of structural component incorporates finite-element and probabilistic properties of materials. Involves evaluation of design parameters through direct comparisons of survivability of component expressed in terms of percentages of like components that survive at various lifetimes. Probabilistic properties of materials, given in terms of Weibull parameters, coupled with stress field computed by finite-element analysis to determine fatigue life based on initiation of cracks. Method applied to rotating disk containing bolt holes, representative of disks used in aerospace propulsion turbines. Also used in early stages of design process to optimize life-based designs, reducing testing of full-sized components needed to validate designs.
Substructure System Identification for Finite Element Model Updating
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
NASA Technical Reports Server (NTRS)
1976-01-01
A survey of research efforts in the area of geometrically nonlinear finite elements is presented. The survey is intended to serve as a guide in the choice of nonlinear elements for specific problems, and as background to provide directions for new element developments. The elements are presented in a handbook format and are separated by type as beams, plates (or shallow shells), shells, and other elements. Within a given type, the elements are identified by the assumed displacement shapes and the forms of the nonlinear strain equations. Solution procedures are not discussed except when a particular element formulation poses special problems or capabilities in this regard. The main goal of the format is to provide quick access to a wide variety of element types, in a consistent presentation format, and to facilitate comparison and evaluation of different elements with regard to features, probable accuracy, and complexity.
A transputer based finite element solver
NASA Technical Reports Server (NTRS)
Favenesi, J. A.; Danial, A. N.; Bower, M. V.
1987-01-01
The feasibility of performing FEM structural-mechanics analyses on transputer systems is investigated experimentally. Transputers are programmable microprocessors equipped with local memory and point-to-point communication links; they can be joined in a large concurrent system via a programming language which supports distributed processing; this permits parallel processing at relatively low hardware cost. The computational tasks required by FEM programs are reviewed; the hardware (one PC, one master transputer, and 12 slave transputers) employed in the test calculations is described; and results demonstrating the speed and efficiency of the transputer array in assembling a global stiffness matrix and performing Gauss-Jordan matrix inversion are presented in graphs. It is predicted that larger transputer networks could approach the power of supercomputers at minicomputer costs.
Finite Element Model Development and Validation for Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2015-12-21
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying a series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2015-12-21
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Rapid mesh generation for finite element analysis of investment castings
Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.
1992-11-01
FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.
Rapid mesh generation for finite element analysis of investment castings
Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.
1992-01-01
FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.
Finite Element Aircraft Simulation of Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E.
1997-01-01
A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.
New hybrid quadrilateral finite element for Mindlin plate
NASA Astrophysics Data System (ADS)
Chin, Yi; Zhang, Jingyu
1994-02-01
A new quadrilateral plate element concerning the effect of transverse shear strain was presented. It was derived from the hybrid finite element model based on the principles of virtual work. The outstanding advantage of this element was to use more rational trial functions of the displacements. For this reason, every variety of plate deformation can be simulated really while the least degrees of freedom was employed. A wide range of numerical tests was conducted and the results illustrate that this element has a very wide application scope to the thickness of plates and satisfactory accuracy can be obtained by coarse mesh for all kinds of examples.
Finite element approach for transient analysis of multibody systems
NASA Technical Reports Server (NTRS)
Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.
1992-01-01
A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.
A new formulation of hybrid/mixed finite element
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Kang, D.; Chen, D.-P.
1983-01-01
A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.
NASA Technical Reports Server (NTRS)
Atluri, S. N.
1986-01-01
Computational finite-element and boundary-element methods are reviewed, and their application to the mechanics of solids is discussed. Stability conditions for general FEMs are considered in addition to the use of least-order, stable, invariant, or hybrid/mixed isoparametric elements as alternatives to the displacement-based isoparametric elements. The use of symbolic manipulation, adaptive mesh refinement, transient dynamic response, and boundary-element methods for linear elaslticity and finite-strain problems of inelastic materials are also discussed.
Mathieu, Pattie S; Bodle, Josephine C; Loboa, Elizabeth G
2014-06-27
Human adipose-derived stem cells (hASC) exhibit multilineage differentiation potential with lineage specification that is dictated by both the chemical and mechanical stimuli to which they are exposed. We have previously shown that 10% cyclic tensile strain increases hASC osteogenesis and cell-mediated calcium accretion. We have also recently shown that primary cilia are present on hASC and that chemically-induced lineage specification of hASC concurrently results in length and conformation changes of the primary cilia. Further, we have observed cilia length changes in hASC cultured within a collagen I gel in response to 10% cyclic tensile strain. We therefore hypothesize that primary cilia may play a key mechanotransduction role for hASC exposed to tensile strain. The goal of this study was to use finite element analysis (FEA) to determine strains occurring within the ciliary membrane in response to 10% tensile strain applied parallel, or perpendicular, to cilia orientation. To elucidate the mechanical environment experienced by the cilium, several lengths were modeled and evaluated based on cilia lengths measured on hASC grown under varied culture conditions. Principal tensile strains in both hASC and ciliary membranes were calculated using FEA, and the magnitude and location of maximum principal tensile strain determined. We found that maximum principal tensile strain was concentrated at the base of the cilium. In the linear elastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane from 150% to 200%, while applying strain parallel to the cilium resulted in much higher strains, approximately 400%. In the hyperelastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane around 30%, while applying strain parallel to the cilium resulted in much higher strains ranging from 50% to 70%. Interestingly, FEA results indicated that primary cilium length was not
Mathieu, Pattie S.; Bodle, Josephine C.; Loboa, Elizabeth G.
2014-01-01
Human adipose-derived stem cells (hASC) exhibit multilineage differentiation potential with lineage specification that is dictated by both the chemical and mechanical stimuli to which they are exposed. We have previously shown that 10% cyclic tensile strain increases hASC osteogenesis and cell-mediated calcium accretion. We have also recently shown that primary cilia are present on hASC and that chemically-induced lineage specification of hASC concurrently results in length and conformation changes of the primary cilia. Further, we have observed cilia length changes on hASC cultured within a collagen I gel in response to 10% cyclic tensile strain. We therefore hypothesize that primary cilia may play a key mechanotransduction role for hASC exposed to tensile strain. The goal of this study was to use finite element analysis (FEA) to determine strains occurring within the ciliary membrane in response to 10% tensile strain applied parallel, or perpendicular, to cilia orientation. To elucidate the mechanical environment experienced by the cilium, several lengths were modeled and evaluated based on cilia lengths measured on hASC grown under varied culture conditions. Principal tensile strains in both hASC and ciliary membranes were calculated using FEA, and the magnitude and location of maximum principal tensile strain determined. We found that maximum principal tensile strain was concentrated at the base of the cilium. In the linear elastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane from 150 to 200%, while applying strain parallel to the cilium resulted in much higher strains, approximately 400%. In the hyperelastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane around 30%, while applying strain parallel to the cilium resulted in much higher strains ranging from 50% to 70% . Interestingly, FEA results indicated that primary cilium length was not
3D engineered fiberboard : finite element analysis of a new building product
John F. Hunt
2004-01-01
This paper presents finite element analyses that are being used to analyze and estimate the structural performance of a new product called 3D engineered fiberboard in bending and flat-wise compression applications. A 3x3x2 split-plot experimental design was used to vary geometry configurations to determine their effect on performance properties. The models are based on...
A Demonstration of the Method of Stochastic Finite Element Analysis
1989-03-01
Lfl A DENONSTATION OF THE METHO -D OF DTIC STOCHASTIC FINITE ELEMENT ANALYSIS At LECTE S APR 0418 THESIS Paul R. Bryant Captain, USAF - AFIT/GA/A.A...Sample ASTROS Output) ....................... 78 Appendix D (Random Element Selection) .................... 83 Appendix E ( Weight Estimation...ensuring satisfactory performance? If weight is a concern, then the answer is yes. In the quest for higher performance aircraft and greater useful
A finite element code for electric motor design
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1994-01-01
FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.
Finite Element Modeling of the Buckling Response of Sandwich Panels
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.
2002-01-01
A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.
Finite Element Analysis of MEMS Devices
NASA Technical Reports Server (NTRS)
Corrigan, Jennifer
2004-01-01
A side-slide actuator and a corrugated diaphragm actuator will be analyzed and optimized this summer. Coupled electrostatic and fluid analyses will also be initiated. Both the side-slide actuator and the corrugated diaphragm actuator will be used to regulate the flow of fuel in a jet engine. Many of the side-slide actuators will be placed on top of a fuel injector that is still in the developmental stage as well. The corrugated diaphragm actuator will also be used to regulate the flow of fuel in fuel injectors. A comparative analysis of the performance matrix of both actuators will be conducted. The side-slide actuator uses the concept of mechanical advantage to regulate the flow of fuel using electrostatic forces. It is made from Nickel, Silicon Carbide, and thin layers of Oxide. The slider will have a hole in the middle that will allow fuel to pass through the hole underneath it. The goal is to regulate the flow of fuel through the inlet. This means that the actuator needs to be designed so that when a voltage is applied to the push rod, the slider will deflect in the x-direction and be able to completely block the inlet and no fuel can pass through. Different voltage levels will be tested. The parameters that are being optimized are the thickness of the diaphragm, what kind of corrugation the diaphragm should have, the length, width, and thickness of the push rod, and what design should be used to return the slider. The current possibilities for a return rod are a built in spring on the slider, a return rod that acts like a spring, or a return rod that is identical to the push rod. The final actuator design should have a push rod that has rotational motion and no translation motion, a push rod thickness that prevents warping due to the slider, and a large ratio of the displacement on the bottom of the push rod to displacement on the top of the push rod. The corrugated diaphragm actuator was optimized last winter and this summer will be spent completing the
Finite Element Analysis of MEMS Devices
NASA Technical Reports Server (NTRS)
Corrigan, Jennifer
2004-01-01
A side-slide actuator and a corrugated diaphragm actuator will be analyzed and optimized this summer. Coupled electrostatic and fluid analyses will also be initiated. Both the side-slide actuator and the corrugated diaphragm actuator will be used to regulate the flow of fuel in a jet engine. Many of the side-slide actuators will be placed on top of a fuel injector that is still in the developmental stage as well. The corrugated diaphragm actuator will also be used to regulate the flow of fuel in fuel injectors. A comparative analysis of the performance matrix of both actuators will be conducted. The side-slide actuator uses the concept of mechanical advantage to regulate the flow of fuel using electrostatic forces. It is made from Nickel, Silicon Carbide, and thin layers of Oxide. The slider will have a hole in the middle that will allow fuel to pass through the hole underneath it. The goal is to regulate the flow of fuel through the inlet. This means that the actuator needs to be designed so that when a voltage is applied to the push rod, the slider will deflect in the x-direction and be able to completely block the inlet and no fuel can pass through. Different voltage levels will be tested. The parameters that are being optimized are the thickness of the diaphragm, what kind of corrugation the diaphragm should have, the length, width, and thickness of the push rod, and what design should be used to return the slider. The current possibilities for a return rod are a built in spring on the slider, a return rod that acts like a spring, or a return rod that is identical to the push rod. The final actuator design should have a push rod that has rotational motion and no translation motion, a push rod thickness that prevents warping due to the slider, and a large ratio of the displacement on the bottom of the push rod to displacement on the top of the push rod. The corrugated diaphragm actuator was optimized last winter and this summer will be spent completing the
Finite element modeling of the deformation of magnetoelastic film
Barham, Matthew I.; White, Daniel A.; Steigmann, David J.
2010-09-01
Recently a new class of biocompatible elastic polymers loaded with small ferrous particles, a magnetoelastic polymer, has been developed. This engineered material is formed into a thin film using spin casting. An applied magnetic field will deform the film. The magnetic deformation of this film has many possible applications, particularly in microfluidic pumps and pressure regulators. In this paper a finite element method suitable for the transient simulation of arbitrarily shaped three-dimensional magnetoelastic polymers subjected to time-varying magnetic fields is developed. The approach is similar to that employed in finite elment magnetohydrodynamic simulations, the key difference is a more complex hyperelastic material model. In order to confirm the validity of the approach, finite element solutions for an axially symmetric thin film are compared to an analytical solution based on the membrane (infinitely thin) approximation. For this particular problem the two approaches give qualitatively similar results and converge as the film thickness approaches zero.
Dedicated finite elements for electrode thin films on quartz resonators.
Srivastava, Sonal A; Yong, Yook-Kong; Tanaka, Masako; Imai, Tsutomu
2008-08-01
The accuracy of the finite element analysis for thickness shear quartz resonators is a function of the mesh resolution; the finer the mesh resolution, the more accurate the finite element solution. A certain minimum number of elements are required in each direction for the solution to converge. This places a high demand on memory for computation, and often the available memory is insufficient. Typically the thickness of the electrode films is very small compared with the thickness of the resonator itself; as a result, electrode elements have very poor aspect ratios, and this is detrimental to the accuracy of the result. In this paper, we propose special methods to model the electrodes at the crystal interface of an AT cut crystal. This reduces the overall problem size and eliminates electrode elements having poor aspect ratios. First, experimental data are presented to demonstrate the effects of electrode film boundary conditions on the frequency-temperature curves of an AT cut plate. Finite element analysis is performed on a mesh representing the resonator, and the results are compared for testing the accuracy of the analysis itself and thus validating the results of analysis. Approximations such as lumping and Guyan reduction are then used to model the electrode thin films at the electrode interface and their results are studied. In addition, a new approximation called merging is proposed to model electrodes at the electrode interface.
Finite-element analysis of end-notch flexure specimens
NASA Technical Reports Server (NTRS)
Mall, S.; Kochhar, N. K.
1986-01-01
A finite-element analysis of the end-notch flexure specimen for Mode II interlaminar fracture toughness measurement was conducted. The effects of friction between the crack faces and large deflection on the evaluation of G(IIc) from this specimen were investigated. Results of this study are presented in this paper.
Finite element analysis of end notch flexure specimen
NASA Technical Reports Server (NTRS)
Mall, S.; Kochhar, N. K.
1986-01-01
A finite element analysis of the end notch flexure specimen for mode II interlaminar fracture toughness measurement was conducted. The effect of friction between the crack faces and large deflection on the evaluation of G sub IIc from this specimen were investigated. Results of this study are presented in this paper.
Finite element corroboration of buckling phenomena observed in corrugated boxes
Thomas J. Urbanik; Edmond P. Saliklis
2003-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study combines a finite element model with a parametric design of the...
Design, development and use of the finite element machine
NASA Technical Reports Server (NTRS)
Adams, L. M.; Voigt, R. C.
1983-01-01
Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.
Modeling of resistive sheets in finite element solutions
NASA Astrophysics Data System (ADS)
Jin, J. M.; Volakis, John L.; Yu, C. L.; Woo, Alex C.
1992-01-01
A formulation is presented for modeling a resistive card in the context of the finite element method. The appropriate variational function is derived and for variational purposes results are presented for the scattering by a metal-backed cavity loaded with a resistive card.
Modeling of resistive sheets in finite element solutions
NASA Astrophysics Data System (ADS)
Jin, J. M.; Volakis, J. L.; Yu, C. L.; Woo, A. C.
1992-06-01
A formulation is presented for modeling a resistive card in the context of the finite element method. The appropriate variational function is derived and for variational purposes results are presented for the scattering by metal-backed cavity loaded with a resistive card.
Finite element analysis of aeroelasticity of plates and shells
Bismarck-Nasr, M.N.
1992-12-01
A review of the finite element method applied to the problem of supersonic aeroelastic stability of plates and shells is presented. The review is limited to linear models. Some new contributions in the field are presented and future trends are discussed. 105 refs., 18 figs., 6 tabs.
Finite-Element Analysis of Multiphase Immiscible Flow Through Soils
NASA Astrophysics Data System (ADS)
Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.
1987-04-01
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.
Coupling finite element and spectral methods: First results
NASA Technical Reports Server (NTRS)
Bernardi, Christine; Debit, Naima; Maday, Yvon
1987-01-01
A Poisson equation on a rectangular domain is solved by coupling two methods: the domain is divided in two squares, a finite element approximation is used on the first square and a spectral discretization is used on the second one. Two kinds of matching conditions on the interface are presented and compared. In both cases, error estimates are proved.
2-D Finite Element Cable and Box IEMP Analysis
Scivner, G.J.; Turner, C.D.
1998-12-17
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
Finite-element analysis of an epoxy-curing process
Gartling, D K; Hickox, C E; Nunziato, J W
1983-01-01
A finite element numerical procedure is used to study the curing of an epoxy compound. The problem involves the gelation of an incompressible liquid due to an exothermic chemical reaction. Nonuniform temperature fields produce buoyancy-driven fluid motions that interact with the solidifying material. The numerical simulations provide temperature histories and the progression of the gel front that are compared with experimental data.
A finite element approach for prediction of aerothermal loads
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Vemaganti, G.
1986-01-01
A Taylor-Galerkin finite element approach is presented for analysis of high speed viscous flows with an emphasis on predicting heating rates. Five computational issues relevant to the computation of steady flows are examined. Numerical results for supersonic and hypersonic problems address the computational issues and demonstrate the validity for the approach for analysis of high speed flows.
SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2007-01-01
This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.
Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations
2012-10-16
state-based peridynamic method, Warren et al. [46] studied the elastic deformation and fracture of a bar. Littlewood [47] presented fragmentation of an...Journal of Solids and Structures 46 (2009) 1186-1195. [47] D. J. Littlewood , Simulation of dynamic fracture using peridynamics, finite element modeling
Finite-Element Fracture Analysis of Pins and Bolts
NASA Technical Reports Server (NTRS)
Nord, K. J.
1986-01-01
Stress intensities calculated in bending and tension. Finite-element stress-analysis method gives stress-intensity estimates for surface flaws on smooth and threaded round bars. Calculations done for purely tensile and purely bending loads. Results, presented in dimensionless form, useful for determining fatigue lives of bolts and pins.
Numerical approximation of head and flux covariances in three dimensions using mixed finite elements
NASA Astrophysics Data System (ADS)
James, Andrew I.; Graham, Wendy D.
A numerical method is developed for accurately approximating head and flux covariances and cross-covariances in finite two- and three-dimensional domains using the mixed finite element method. The method is useful for determining head and flux covariances for non-stationary flow fields, for example those induced by injection or extraction wells, impermeable subsurface barriers, or non-stationary hydraulic conductivity fields. Because the numerical approximations to the flux covariances are obtained directly from the solution to the coupled problem rather than having to differentiate head covariances, the approximations are in general more accurate than those obtained from conventional finite difference or finite element methods. Results for uniform flow example problems are consistent with results from previously published finite domain analyses and demonstrate that head variances and covariances are quite sensitive to boundary conditions and the size of the bounded domain. Flux variances and covariances are less sensitive to boundary conditions and domain size. Results comparing approximations from lower-order Raviart-Thomas-Nedelec and higher order Brezzi-Douglas-Marini [9] finite element spaces indicate that higher order element space improve the estimate of the flux covariances, but do not significantly affect the estimate of the head covariances.
NASA Technical Reports Server (NTRS)
Giles, G. L.; Rogers, J. L., Jr.
1982-01-01
The implementation includes a generalized method for specifying element cross-sectional dimensions as design variables that can be used in analytically calculating derivatives of output quantities from static stress, vibration, and buckling analyses for both membrane and bending elements. Limited sample results for static displacements and stresses are presented to indicate the advantages of analytically calclating response derivatives compared to finite difference methods. Continuing developments to implement these procedures into an enhanced version of the system are also discussed.
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
Finite Element Analysis of Wrinkled Membrane Structures for Sunshield Applications
NASA Technical Reports Server (NTRS)
Johnston, John D.; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
The deployable sunshield is an example of a gossamer structure envisioned for use on future space telescopes. The basic structure consists of multiple layers of pretensioned, thin-film membranes supported by deployable booms. The prediction and verification of sunshield dynamics has been identified as an area in need of technology development due to the difficulties inherent in predicting nonlinear structural behavior of the membranes and because of the challenges involved. in ground testing of the full-scale structure. This paper describes a finite element analysis of a subscale sunshield that has been subjected to ground testing in support of the Next Generation Space Telescope (NGST) program. The analysis utilizes a nonlinear material model that accounts for wrinkling of the membranes. Results are presented from a nonlinear static preloading analysis and subsequent dynamics analyses to illustrate baseline sunshield structural characteristics. Studies are then described which provide further insight into the effect of membrane. preload on sunshield dynamics and the performance of different membrane modeling techniques. Lastly, a comparison of analytical predictions and ground test results is presented.
Calibration under uncertainty for finite element models of masonry monuments
Atamturktur, Sezer,; Hemez, Francois,; Unal, Cetin
2010-02-01
Historical unreinforced masonry buildings often include features such as load bearing unreinforced masonry vaults and their supporting framework of piers, fill, buttresses, and walls. The masonry vaults of such buildings are among the most vulnerable structural components and certainly among the most challenging to analyze. The versatility of finite element (FE) analyses in incorporating various constitutive laws, as well as practically all geometric configurations, has resulted in the widespread use of the FE method for the analysis of complex unreinforced masonry structures over the last three decades. However, an FE model is only as accurate as its input parameters, and there are two fundamental challenges while defining FE model input parameters: (1) material properties and (2) support conditions. The difficulties in defining these two aspects of the FE model arise from the lack of knowledge in the common engineering understanding of masonry behavior. As a result, engineers are unable to define these FE model input parameters with certainty, and, inevitably, uncertainties are introduced to the FE model.
Three dimensional inelastic finite element analysis of laminated composites
NASA Technical Reports Server (NTRS)
Griffin, O. H., Jr.; Kamat, M. P.
1980-01-01
Formulations of the inelastic response of laminated composites to thermal and mechanical loading are used as the basis for development of the computer NALCOM (Nonlinear Analysis of Laminated Composites) computer program which uses a fully three dimensional isoparametric finite element with 24 nodes and 72 degrees of freedom. An incremental solution is performed with nonlinearities introduced as pseudoloads computed for initial strains. Equilibrium iteration may be performed at every step. Elastic and elastic-plastic response of boron/epoxy and graphite/epoxy graphite/epoxy and problems of curing 0/90 sub s Gr/Ep laminates with and without circular holes are analyzed. Mechanical loading of + or - 45sub s Gr/Ep laminates is modeled and symmetry conditions which exist in angle-ply laminates are discussed. Results are compared to experiments and other analytical models when possible. All models are seen to agree reasonably well with experimetnal results for off-axis tensile coupons. The laminate analyses show the three dimensional effects which are present near holes and free corners.
Modelling of orbital deformation using finite-element analysis
Al-Sukhun, Jehad; Lindqvist, Christian; Kontio, Risto
2005-01-01
The purpose of this study was to develop a three-dimensional finite-element model (FEM) of the human orbit, containing the globe, to predict orbital deformation in subjects following a blunt injury. This study investigated the hypothesis that such deformation could be modelled using finite-element techniques. One patient who had CT-scan examination to the maxillofacial skeleton including the orbits, as part of her treatment, was selected for this study. A FEM of one of the orbits containing the globe was constructed, based on CT-scan images. Simulations were performed with a computer using the finite-element software NISA (EMRC, Troy, USA). The orbit was subjected to a blunt injury of a 0.5 kg missile with 30 m s−1 velocity. The FEM was then used to predict principal and shear stresses or strains at each node position. Two types of orbital deformation were predicted during different impact simulations: (i) horizontal distortion and (ii) rotational distortion. Stress values ranged from 213.4 to 363.3 MPa for the maximum principal stress, from −327.8 to −653.1 MPa for the minimum principal stress, and from 212.3 to 444.3 MPa for the maximum shear stress. This is the first finite-element study, which demonstrates different and concurrent patterns of orbital deformation in a subject following a blunt injury. Finite element modelling is a powerful and invaluable tool to study the multifaceted phenomenon of orbital deformation. PMID:16849235
NASA Astrophysics Data System (ADS)
Jacob, Anaïs; Mehmanparast, Ali
2016-07-01
The effects of microstructure, grain and grain boundary (GB) properties on predicted damage paths and indicative crack propagation direction have been examined for a polycrystalline material using mesoscale finite element simulations. Numerical analyses were carried out on a compact tension specimen geometry containing granular mesh structures with random grain shapes and sizes of average diameter 100μm. Nanoindentation tests were performed to investigate the dependency of mesoscale hardness measurements on the indentation location with respect to grain and GB regions. Finite element results have shown that under tensile loading conditions, the predicted damage paths are very sensitive to the granular mesh structure, GB properties and individual grain properties. Furthermore, finite element results have revealed that the cracking mode (i.e., transgranular/intergranular) and maximum crack deviation angle are strongly dependent on the material microstructures employed in simulations.
NASA Astrophysics Data System (ADS)
Fisher, Aaron C.
We have developed a mixed Vector Finite Element Method (VFEM) for Maxwell's equations with third order polarization terms. The method allows for discretization of complicated device geometries with arbitrary order representations of the B and E fields, and up to 4th order accurate time discretization. Additionally we have implemented a series of computational optimizations that significantly increase the scale of simulations that can be performed with this method. Among these optimizations is a new generalized mass lumping method that we developed which reduces the computational cost of the finite element system solve by a factor of 10x. In this dissertation we will present the Vector Finite Element Method, and the computational optimizations that we employed. Additionally, we will present a series of analyses and simulations that were performed to validate the method. Finally, we will present some production runs using this method, including nonlinear mode mixing in waveguides and supercontinuum generation in a photonic crystal fiber.
A finite element study of the EIDI system. [Electro-Impulse De-Icing System
NASA Technical Reports Server (NTRS)
Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.
1988-01-01
This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.
Advance finite element modeling of rotor blade aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Sangha, K. B.; Panda, B.
1994-01-01
An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.
High-order Finite Element Analysis of Boundary Layer Flows
NASA Astrophysics Data System (ADS)
Zhang, Alvin; Sahni, Onkar
2014-11-01
Numerical analysis of boundary layer flows requires careful approximations, specifically the use of a mesh with layered and graded elements near the (viscous) walls. This is referred to as a boundary layer mesh, which for complex geometries is composed of triangular elements on the walls that are inflated or extruded into the volume along the wall-normal direction up to a desired height while the rest of the domain is filled with unstructured tetrahedral elements. Linear elements with C0 inter-element continuity are employed and in some situations higher order C0 elements are also used. However, these elements only enforce continuity whereas high-order smoothness is not attained as will be the case with C1 inter-element continuity and higher. As a result, C0 elements result in a poor approximation of the high-order boundary layer behavior. To achieve greater inter-element continuity in boundary layer region, we employ B-spline basis functions along the wall-normal direction (i.e., only in the layered portion of the mesh). In the rest of the fully unstructured mesh, linear or higher order C0 elements are used as appropriate. In this study we demonstrate the benefits of finite-element analysis based on such higher order and continuity basis functions for boundary layer flows.
Finite element methods of studying mechanical factors in blood flow.
Davids, N
1981-01-01
This paper reviews some biomechanical analyses of blood flow in large arteries based on a general computer modeling using the finite element method. We study the following question: What is the role played by the interrelated factors of mechanical stress, flow irregularities, and diffusion through the endothelium on the etiology of atherosclerosis or the aggravation of vascular injury. It presents the computational features of the method and stresses the physiological significance of the results, such as the effect of geometric complexities, material nonlinearities, and non-Newtonian rheology of the blood. The specific mechanical and fluid dynamic factors analyzed are wall shear stress, flow profiles, and pressure variations. After simulating tubes of circular cross section, we apply the analysis to a number of physiological situations of significance, including blood flow in the entrance region, at bifurcations, in the annular region between an inserted catheter of varying diameter and the vessel. A model study of pulsatile flow in a 60 degree bifurcated channel of velocity profiles provided corroborative measurements of these processes with special emphasis on reversed or distributed flow conditions. The corresponding analysis was extended to the situation in which flow separates and reverses in the neighborhood of stagnation points. This required developing the nonlinear expression for the convective velocity change in the medium. A computer algorithm was developed to handle simultaneous effects of pressure and viscous forces on velocity change across the element and applied to the canine prebranch arterial segment. For mean physiological flow conditions, low shear stresses (0-10 dynes/cm2) are predicted near the wall in the diverging plane, higher values (50 dynes/cm2) along the converging sides of the wall. Backflow is predicted along the outer wall, pressure recovery prior to and into the branches, and a peak shear at the divider lip.
Evaluation of the finite element software ABAQUS for biomechanical modelling of biphasic tissues.
Wu, J Z; Herzog, W; Epstein, M
1998-02-01
The biphasic cartilage model proposed by Mow et al. (1980) has proven successful to capture the essential mechanical features of articular cartilage. In order to analyse the joint contact mechanics in real, anatomical joints, the cartilage model needs to be implemented into a suitable finite element code to approximate the irregular surface geometries of such joints. However, systematic and extensive evaluation of the capacity of commercial software for modelling the contact mechanics with biphasic cartilage layers has not been made. This research was aimed at evaluating the commercial finite element software ABAQUS for analysing biphasic soft tissues. The solutions obtained using ABAQUS were compared with those obtained using other finite element models and analytical solutions for three numerical tests: an unconfined indentation test, a test with the contact of a spherical cartilage surface with a rigid plate, and an axi-symmetric joint contact test. It was concluded that the biphasic cartilage model can be implemented into the commercial finite element software ABAQUS to analyse practical joint contact problems with biphasic articular cartilage layers.
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Dynamic quasistatic characterization of finite elements for shell structures.
Thomas, Jesse David
2010-11-01
Finite elements for shell structures have been investigated extensively, with numerous formulations offered in the literature. These elements are vital in modern computational solid mechanics due to their computational efficiency and accuracy for thin and moderately thick shell structures, allowing larger and more comprehensive (e.g. multi-scale and multi-physics) simulations. Problems now of interest in the research and development community are routinely pushing our computational capabilities, and thus shell finite elements are being used to deliver efficient yet high quality computations. Much work in the literature is devoted to the formulation of shell elements and their numerical accuracy, but there is little published work on the computational characterization and comparison of shell elements for modern solid mechanics problems. The present study is a comparison of three disparate shell element formulations in the Sandia National Laboratories massively parallel Sierra Solid Mechanics code. A constant membrane and bending stress shell element (Key and Hoff, 1995), a thick shell hex element (Key et al., 2004) and a 7-parameter shell element (Buechter et al., 1994) are available in Sierra Solid Mechanics for explicit transient dynamic, implicit transient dynamic and quasistatic calculations. Herein these three elements are applied to a set of canonical dynamic and quasistatic problems, and their numerical accuracy, computational efficiency and scalability are investigated. The results show the trade-off between the relative inefficiency and improved accuracy of the latter two high quality element types when compared with the highly optimized and more widely used constant membrane and bending stress shell element.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
Finite Element Modelling of Fluid Coupling in the Coiled Cochlea
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Elliott, S. J.; Lineton, B.; Saba, R.
2011-11-01
A finite element model is first used to calculate the modal pressure difference for a box model of the cochlea, which shows that the number of fluid elements across the width of the cochlea determines the accuracy with which the near field, or short wavenumber, component of the fluid coupling is reproduced. Then results are compared with the analytic results to validate the accuracy of the FE model. It is, however, the far field, or long wavelength, component of the fluid coupling that is most affected by the geometry. A finite element model of the coiled cochlea is then used to calculate fluid coupling in this case, which has similar characteristics to the uncoiled model.
Edge-based finite element scheme for the Euler equations
NASA Astrophysics Data System (ADS)
Luo, Hong; Baum, Joseph D.; Loehner, Rainald
1994-06-01
This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of the upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.
Edge-based finite element scheme for the Euler equations
NASA Astrophysics Data System (ADS)
Luo, Hong; Baum, Joseph D.; Lohner, Rainald
1994-06-01
This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more traditional element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well-documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.
NASA Technical Reports Server (NTRS)
Seybert, A. F.; Wu, T. W.; Wu, X. F.
1994-01-01
This research report is presented in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing and the radiation efficiency of each mode. The radiation efficiency of each of the transmission housing modes was then compared to theoretical results for a finite baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis; noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: sound power predicted by the BEM model using vibration data measured on the surface of the box; sound power predicted by the FEM/BEM model; and sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.
NASA Astrophysics Data System (ADS)
Wu, Xuefeng
1992-01-01
The research presented in this dissertation is reported in three parts. In the first part, acoustical analyses were performed on modes of vibration of the housing of a transmission of a gear test rig developed by NASA. The modes of vibration of the transmission housing were measured using experimental modal analysis. The boundary element method (BEM) was used to calculate the sound pressure and sound intensity on the surface of the housing, and the radiation efficiency of each mode. The radiation efficiency of the transmission housing modes was then compared to theoretical results for finite, baffled plate. In the second part, analytical and experimental validation of methods to predict structural vibration and radiated noise are presented. A rectangular box excited by a mechanical shaker was used as a vibrating structure. Combined finite element method (FEM) and boundary element method (BEM) models of the apparatus were used to predict the noise level expected to be radiated from the box. The FEM was used to predict the vibration, while the BEM was used to predict the sound intensity and total radiated sound power using surface vibration as the input data. Vibration predicted by the FEM model was validated by experimental modal analysis, noise predicted by the BEM was validated by measurements of sound intensity. Three types of results are presented for the total radiated sound power: (1) sound power predicted by the BEM model using vibration data measured on the surface of the box; (2) sound power predicted by the FEM/BEM model; and (3) sound power measured by an acoustic intensity scan. In the third part, the structure used in part two was modified. A rib was attached to the top plate of the structure. The FEM and BEM were then used to predict structural vibration and radiated noise respectively. The predicted vibration and radiated noise were then validated through experimentation.
Finite element analysis of inviscid subsonic boattail flow
NASA Technical Reports Server (NTRS)
Chima, R. V.; Gerhart, P. M.
1981-01-01
A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.
Finite-size scaling for quantum criticality using the finite-element method.
Antillon, Edwin; Wehefritz-Kaufmann, Birgit; Kais, Sabre
2012-03-01
Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an "exact" formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.
Error Analysis In Explicit Finite Element Analysis Of Incremental Sheet Forming
Bambach, M.; Hirt, G.
2007-05-17
Asymmetric incremental sheet forming (AISF) is a relatively new manufacturing process for the production of low volumes of sheet metal parts. Forming is accomplished by the CNC controlled movements of a simple ball-headed tool that follows a 3D trajectory to gradually shape a sheet metal blank. The local plastic deformation under the tool leads to a number of challenges for the Finite Element Modeling. Previous work indicates that implicit finite element methods are at present not efficient enough to allow for the simulation of AISF for industrially relevant parts, mostly due to the fact that the moving contact requires a very small time step. Explicit Finite Element methods can be speeded up by means of mass or load scaling to enable the simulation of large scale sheet metal forming problems, even for AISF. However, it is well known that the methods used to speed up the FE calculations can entail poor results when dynamic effects start to dominate the solution. Typically, the ratio of kinetic to internal energy is used as an assessment of the influence of dynamical effects. It has already been shown in the past that this global criterion can easily be violated locally for a patch of elements of the finite element mesh. This is particularly important for AISF with its highly localised loading and complex tool kinematics. The present paper details an investigation of dynamical effects in explicit Finite Element analysis of AISF. The interplay of mass or time scaling scheme and the smoothness of the tool trajectory is analysed with respect to the resulting errors. Models for tool path generation will be presented allowing for a generation of tool trajectories with predefined maximum speed and acceleration. Based on this, a strategy for error control is proposed which helps reduce the time for setting up reliable explicit finite element models for AISF.
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Winget, J.; Levit, I.; Tezduyar, T. E.
1983-01-01
Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in computational mechanics. A variety of techniques are compared on problems of structural mechanics, heat conduction and fluid mechanics. The results obtained suggest considerable potential for the methods described.
A nonlinear viscoelastic finite element model of polyethylene.
Chen, P C; Colwell, C W; D'Lima, D D
2011-06-01
A nonlinear viscoelastic finite element model of ultra-high molecular weight polyethylene (UHMWPE) was developed in this study. Eight cylindrical specimens were machined from ram extruded UHMWPE bar stock (GUR 1020) and tested under constant compression at 7% strain for 100 sec. The stress strain data during the initial ramp up to 7% strain was utilized to model the "instantaneous" stress-strain response using a Mooney-Rivlin material model. The viscoelastic behavior was modeled using the time-dependent relaxation in stress seen after the initial maximum stress was achieved using a stored energy formulation. A cylindrical model of similar dimensions was created using a finite element analysis software program. The cylinder was made up of hexahedral elements, which were given the material properties utilizing the "instantaneous" stress-strain curve and the energy-relaxation curve obtained from the experimental data. The cylinder was compressed between two flat rigid bodies that simulated the fixtures of the testing machine. Experimental stress-relaxation, creep and dynamic testing data were then used to validate the model. The mean error for predicted versus experimental data for stress relaxation at different strain levels was 4.2%. The mean error for the creep test was 7% and for dynamic test was 5.4%. Finally, dynamic loading in a hip arthroplasty was modeled and validated experimentally with an error of 8%. This study establishes a working finite element material model of UHMWPE that can be utilized to simulate a variety of postoperative arthroplasty conditions.
FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER
NASA Technical Reports Server (NTRS)
Bowles, D. E.
1994-01-01
Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.
Finite element structural redesign by large admissible perturbations
NASA Technical Reports Server (NTRS)
Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.
1991-01-01
In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.
Integrated Nondestructive Evaluation and Finite Element Analysis Predicts Crack Location and Shape
NASA Technical Reports Server (NTRS)
Abdul-Azia, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2002-01-01
This study describes the finite-element analyses and the NDE modality undertaken on two flywheel rotors that were spun to burst speed. Computed tomography and dimensional measurements were used to nondestructively evaluate the rotors before and/or after they were spun to the first crack detection. Computed tomography data findings of two- and three-dimensional crack formation were used to conduct finite-element (FEA) and fracture mechanics analyses. A procedure to extend these analyses to estimate the life of these components is also outlined. NDE-FEA results for one of the rotors are presented in the figures. The stress results, which represent the radial stresses in the rim, clearly indicate that the maximum stress region is within the section defined by the computed tomography scan. Furthermore, the NDE data correlate well with the FEA results. In addition, the measurements reported show that the NDE and FEA data are in parallel.