Sample records for finite element discretization

  1. The Relation of Finite Element and Finite Difference Methods

    NASA Technical Reports Server (NTRS)

    Vinokur, M.

    1976-01-01

    Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.

  2. Higher-order adaptive finite-element methods for Kohn–Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Motamarri, P.; Nowak, M.R.; Leiter, K.

    2013-11-15

    We present an efficient computational approach to perform real-space electronic structure calculations using an adaptive higher-order finite-element discretization of Kohn–Sham density-functional theory (DFT). To this end, we develop an a priori mesh-adaption technique to construct a close to optimal finite-element discretization of the problem. We further propose an efficient solution strategy for solving the discrete eigenvalue problem by using spectral finite-elements in conjunction with Gauss–Lobatto quadrature, and a Chebyshev acceleration technique for computing the occupied eigenspace. The proposed approach has been observed to provide a staggering 100–200-fold computational advantage over the solution of a generalized eigenvalue problem. Using the proposedmore » solution procedure, we investigate the computational efficiency afforded by higher-order finite-element discretizations of the Kohn–Sham DFT problem. Our studies suggest that staggering computational savings—of the order of 1000-fold—relative to linear finite-elements can be realized, for both all-electron and local pseudopotential calculations, by using higher-order finite-element discretizations. On all the benchmark systems studied, we observe diminishing returns in computational savings beyond the sixth-order for accuracies commensurate with chemical accuracy, suggesting that the hexic spectral-element may be an optimal choice for the finite-element discretization of the Kohn–Sham DFT problem. A comparative study of the computational efficiency of the proposed higher-order finite-element discretizations suggests that the performance of finite-element basis is competing with the plane-wave discretization for non-periodic local pseudopotential calculations, and compares to the Gaussian basis for all-electron calculations to within an order of magnitude. Further, we demonstrate the capability of the proposed approach to compute the electronic structure of a metallic system containing 1688 atoms using modest computational resources, and good scalability of the present implementation up to 192 processors.« less

  3. Vectorial finite elements for solving the radiative transfer equation

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Le Corre, S.; Digonnet, H.; Favennec, Y.

    2018-06-01

    The discrete ordinate method coupled with the finite element method is often used for the spatio-angular discretization of the radiative transfer equation. In this paper we attempt to improve upon such a discretization technique. Instead of using standard finite elements, we reformulate the radiative transfer equation using vectorial finite elements. In comparison to standard finite elements, this reformulation yields faster timings for the linear system assemblies, as well as for the solution phase when using scattering media. The proposed vectorial finite element discretization for solving the radiative transfer equation is cross-validated against a benchmark problem available in literature. In addition, we have used the method of manufactured solutions to verify the order of accuracy for our discretization technique within different absorbing, scattering, and emitting media. For solving large problems of radiation on parallel computers, the vectorial finite element method is parallelized using domain decomposition. The proposed domain decomposition method scales on large number of processes, and its performance is unaffected by the changes in optical thickness of the medium. Our parallel solver is used to solve a large scale radiative transfer problem of the Kelvin-cell radiation.

  4. Vertical discretization with finite elements for a global hydrostatic model on the cubed sphere

    NASA Astrophysics Data System (ADS)

    Yi, Tae-Hyeong; Park, Ja-Rin

    2017-06-01

    A formulation of Galerkin finite element with basis-spline functions on a hybrid sigma-pressure coordinate is presented to discretize the vertical terms of global Eulerian hydrostatic equations employed in a numerical weather prediction system, which is horizontally discretized with high-order spectral elements on a cubed sphere grid. This replaces the vertical discretization of conventional central finite difference that is first-order accurate in non-uniform grids and causes numerical instability in advection-dominant flows. Therefore, a model remains in the framework of Galerkin finite elements for both the horizontal and vertical spatial terms. The basis-spline functions, obtained from the de-Boor algorithm, are employed to derive both the vertical derivative and integral operators, since Eulerian advection terms are involved. These operators are used to discretize the vertical terms of the prognostic and diagnostic equations. To verify the vertical discretization schemes and compare their performance, various two- and three-dimensional idealized cases and a hindcast case with full physics are performed in terms of accuracy and stability. It was shown that the vertical finite element with the cubic basis-spline function is more accurate and stable than that of the vertical finite difference, as indicated by faster residual convergence, fewer statistical errors, and reduction in computational mode. This leads to the general conclusion that the overall performance of a global hydrostatic model might be significantly improved with the vertical finite element.

  5. Finite elements of nonlinear continua.

    NASA Technical Reports Server (NTRS)

    Oden, J. T.

    1972-01-01

    The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.

  6. Discrete maximum principle for the P1 - P0 weak Galerkin finite element approximations

    NASA Astrophysics Data System (ADS)

    Wang, Junping; Ye, Xiu; Zhai, Qilong; Zhang, Ran

    2018-06-01

    This paper presents two discrete maximum principles (DMP) for the numerical solution of second order elliptic equations arising from the weak Galerkin finite element method. The results are established by assuming an h-acute angle condition for the underlying finite element triangulations. The mathematical theory is based on the well-known De Giorgi technique adapted in the finite element context. Some numerical results are reported to validate the theory of DMP.

  7. Finite element solution for energy conservation using a highly stable explicit integration algorithm

    NASA Technical Reports Server (NTRS)

    Baker, A. J.; Manhardt, P. D.

    1972-01-01

    Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.

  8. Applications of discrete element method in modeling of grain postharvest operations

    USDA-ARS?s Scientific Manuscript database

    Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...

  9. GEMPIC: geometric electromagnetic particle-in-cell methods

    NASA Astrophysics Data System (ADS)

    Kraus, Michael; Kormann, Katharina; Morrison, Philip J.; Sonnendrücker, Eric

    2017-08-01

    We present a novel framework for finite element particle-in-cell methods based on the discretization of the underlying Hamiltonian structure of the Vlasov-Maxwell system. We derive a semi-discrete Poisson bracket, which retains the defining properties of a bracket, anti-symmetry and the Jacobi identity, as well as conservation of its Casimir invariants, implying that the semi-discrete system is still a Hamiltonian system. In order to obtain a fully discrete Poisson integrator, the semi-discrete bracket is used in conjunction with Hamiltonian splitting methods for integration in time. Techniques from finite element exterior calculus ensure conservation of the divergence of the magnetic field and Gauss' law as well as stability of the field solver. The resulting methods are gauge invariant, feature exact charge conservation and show excellent long-time energy and momentum behaviour. Due to the generality of our framework, these conservation properties are guaranteed independently of a particular choice of the finite element basis, as long as the corresponding finite element spaces satisfy certain compatibility conditions.

  10. SEACAS Theory Manuals: Part III. Finite Element Analysis in Nonlinear Solid Mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laursen, T.A.; Attaway, S.W.; Zadoks, R.I.

    1999-03-01

    This report outlines the application of finite element methodology to large deformation solid mechanics problems, detailing also some of the key technological issues that effective finite element formulations must address. The presentation is organized into three major portions: first, a discussion of finite element discretization from the global point of view, emphasizing the relationship between a virtual work principle and the associated fully discrete system, second, a discussion of finite element technology, emphasizing the important theoretical and practical features associated with an individual finite element; and third, detailed description of specific elements that enjoy widespread use, providing some examples ofmore » the theoretical ideas already described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear continuum mechanics, and constitutive modeling are given in three companion reports.« less

  11. Conservative discretization of the Landau collision integral

    DOE PAGES

    Hirvijoki, E.; Adams, M. F.

    2017-03-28

    Here we describe a density, momentum-, and energy-conserving discretization of the nonlinear Landau collision integral. The method is suitable for both the finite-element and discontinuous Galerkin methods and does not require structured meshes. The conservation laws for the discretization are proven algebraically and demonstrated numerically for an axially symmetric nonlinear relaxation problem using a finite-element implementation.

  12. Drekar v.2.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seefeldt, Ben; Sondak, David; Hensinger, David M.

    Drekar is an application code that solves partial differential equations for fluids that can be optionally coupled to electromagnetics. Drekar solves low-mach compressible and incompressible computational fluid dynamics (CFD), compressible and incompressible resistive magnetohydrodynamics (MHD), and multiple species plasmas interacting with electromagnetic fields. Drekar discretization technology includes continuous and discontinuous finite element formulations, stabilized finite element formulations, mixed integration finite element bases (nodal, edge, face, volume) and an initial arbitrary Lagrangian Eulerian (ALE) capability. Drekar contains the implementation of the discretized physics and leverages the open source Trilinos project for both parallel solver capabilities and general finite element discretization tools.more » The code will be released open source under a BSD license. The code is used for fundamental research for simulation of fluids and plasmas on high performance computing environments.« less

  13. Numerical computation of transonic flows by finite-element and finite-difference methods

    NASA Technical Reports Server (NTRS)

    Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.

    1978-01-01

    Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.

  14. Stabilized Finite Elements in FUN3D

    NASA Technical Reports Server (NTRS)

    Anderson, W. Kyle; Newman, James C.; Karman, Steve L.

    2017-01-01

    A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.

  15. Exponential convergence through linear finite element discretization of stratified subdomains

    NASA Astrophysics Data System (ADS)

    Guddati, Murthy N.; Druskin, Vladimir; Vaziri Astaneh, Ali

    2016-10-01

    Motivated by problems where the response is needed at select localized regions in a large computational domain, we devise a novel finite element discretization that results in exponential convergence at pre-selected points. The key features of the discretization are (a) use of midpoint integration to evaluate the contribution matrices, and (b) an unconventional mapping of the mesh into complex space. Named complex-length finite element method (CFEM), the technique is linked to Padé approximants that provide exponential convergence of the Dirichlet-to-Neumann maps and thus the solution at specified points in the domain. Exponential convergence facilitates drastic reduction in the number of elements. This, combined with sparse computation associated with linear finite elements, results in significant reduction in the computational cost. The paper presents the basic ideas of the method as well as illustration of its effectiveness for a variety of problems involving Laplace, Helmholtz and elastodynamics equations.

  16. Error analysis and correction of discrete solutions from finite element codes

    NASA Technical Reports Server (NTRS)

    Thurston, G. A.; Stein, P. A.; Knight, N. F., Jr.; Reissner, J. E.

    1984-01-01

    Many structures are an assembly of individual shell components. Therefore, results for stresses and deflections from finite element solutions for each shell component should agree with the equations of shell theory. This paper examines the problem of applying shell theory to the error analysis and the correction of finite element results. The general approach to error analysis and correction is discussed first. Relaxation methods are suggested as one approach to correcting finite element results for all or parts of shell structures. Next, the problem of error analysis of plate structures is examined in more detail. The method of successive approximations is adapted to take discrete finite element solutions and to generate continuous approximate solutions for postbuckled plates. Preliminary numerical results are included.

  17. Application of the Finite Element Method to Rotary Wing Aeroelasticity

    NASA Technical Reports Server (NTRS)

    Straub, F. K.; Friedmann, P. P.

    1982-01-01

    A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.

  18. Stabilization and discontinuity-capturing parameters for space-time flow computations with finite element and isogeometric discretizations

    NASA Astrophysics Data System (ADS)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Otoguro, Yuto

    2018-04-01

    Stabilized methods, which have been very common in flow computations for many years, typically involve stabilization parameters, and discontinuity-capturing (DC) parameters if the method is supplemented with a DC term. Various well-performing stabilization and DC parameters have been introduced for stabilized space-time (ST) computational methods in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible and compressible flows. These parameters were all originally intended for finite element discretization but quite often used also for isogeometric discretization. The stabilization and DC parameters we present here for ST computations are in the context of the advection-diffusion equation and the Navier-Stokes equations of incompressible flows, target isogeometric discretization, and are also applicable to finite element discretization. The parameters are based on a direction-dependent element length expression. The expression is outcome of an easy to understand derivation. The key components of the derivation are mapping the direction vector from the physical ST element to the parent ST element, accounting for the discretization spacing along each of the parametric coordinates, and mapping what we have in the parent element back to the physical element. The test computations we present for pure-advection cases show that the parameters proposed result in good solution profiles.

  19. Nonlinear initial-boundary value solutions by the finite element method. [for Navier-Stokes equations of two dimensional flow

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1974-01-01

    The finite-element method is used to establish a numerical solution algorithm for the Navier-Stokes equations for two-dimensional flows of a viscous compressible fluid. Numerical experiments confirm the advection property for the finite-element equivalent of the nonlinear convection term for both unidirectional and recirculating flowfields. For linear functionals, the algorithm demonstrates good accuracy using coarse discretizations and h squared convergence with discretization refinement.

  20. Investigation into discretization methods of the six-parameter Iwan model

    NASA Astrophysics Data System (ADS)

    Li, Yikun; Hao, Zhiming; Feng, Jiaquan; Zhang, Dingguo

    2017-02-01

    Iwan model is widely applied for the purpose of describing nonlinear mechanisms of jointed structures. In this paper, parameter identification procedures of the six-parameter Iwan model based on joint experiments with different preload techniques are performed. Four kinds of discretization methods deduced from stiffness equation of the six-parameter Iwan model are provided, which can be used to discretize the integral-form Iwan model into a sum of finite Jenkins elements. In finite element simulation, the influences of discretization methods and numbers of Jenkins elements on computing accuracy are discussed. Simulation results indicate that a higher accuracy can be obtained with larger numbers of Jenkins elements. It is also shown that compared with other three kinds of discretization methods, the geometric series discretization based on stiffness provides the highest computing accuracy.

  1. Application of the control volume mixed finite element method to a triangular discretization

    USGS Publications Warehouse

    Naff, R.L.

    2012-01-01

    A two-dimensional control volume mixed finite element method is applied to the elliptic equation. Discretization of the computational domain is based in triangular elements. Shape functions and test functions are formulated on the basis of an equilateral reference triangle with unit edges. A pressure support based on the linear interpolation of elemental edge pressures is used in this formulation. Comparisons are made between results from the standard mixed finite element method and this control volume mixed finite element method. Published 2011. This article is a US Government work and is in the public domain in the USA. ?? 2012 John Wiley & Sons, Ltd. This article is a US Government work and is in the public domain in the USA.

  2. Metriplectic integrators for the Landau collision operator

    DOE PAGES

    Kraus, Michael; Hirvijoki, Eero

    2017-10-02

    Here, we present a novel framework for addressing the nonlinear Landau collision integral in terms of finite element and other subspace projection methods. We employ the underlying metriplectic structure of the Landau collision integral and, using a Galerkin discretization for the velocity space, we transform the infinite-dimensional system into a finite-dimensional, time-continuous metriplectic system. Temporal discretization is accomplished using the concept of discrete gradients. The conservation of energy, momentum, and particle densities, as well as the production of entropy is demonstrated algebraically for the fully discrete system. Due to the generality of our approach, the conservation properties and the monotonicmore » behavior of entropy are guaranteed for finite element discretizations, in general, independently of the mesh configuration.« less

  3. Discontinuous finite element method for vector radiative transfer

    NASA Astrophysics Data System (ADS)

    Wang, Cun-Hai; Yi, Hong-Liang; Tan, He-Ping

    2017-03-01

    The discontinuous finite element method (DFEM) is applied to solve the vector radiative transfer in participating media. The derivation in a discrete form of the vector radiation governing equations is presented, in which the angular space is discretized by the discrete-ordinates approach with a local refined modification, and the spatial domain is discretized into finite non-overlapped discontinuous elements. The elements in the whole solution domain are connected by modelling the boundary numerical flux between adjacent elements, which makes the DFEM numerically stable for solving radiative transfer equations. Several various problems of vector radiative transfer are tested to verify the performance of the developed DFEM, including vector radiative transfer in a one-dimensional parallel slab containing a Mie/Rayleigh/strong forward scattering medium and a two-dimensional square medium. The fact that DFEM results agree very well with the benchmark solutions in published references shows that the developed DFEM in this paper is accurate and effective for solving vector radiative transfer problems.

  4. A New Linearized Crank-Nicolson Mixed Element Scheme for the Extended Fisher-Kolmogorov Equation

    PubMed Central

    Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei

    2013-01-01

    We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L 2(Ω))2 space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L 2 and H 1-norm for both the scalar unknown u and the diffusion term w = −Δu and a priori error estimates in (L 2)2-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes. PMID:23864831

  5. A new linearized Crank-Nicolson mixed element scheme for the extended Fisher-Kolmogorov equation.

    PubMed

    Wang, Jinfeng; Li, Hong; He, Siriguleng; Gao, Wei; Liu, Yang

    2013-01-01

    We present a new mixed finite element method for solving the extended Fisher-Kolmogorov (EFK) equation. We first decompose the EFK equation as the two second-order equations, then deal with a second-order equation employing finite element method, and handle the other second-order equation using a new mixed finite element method. In the new mixed finite element method, the gradient ∇u belongs to the weaker (L²(Ω))² space taking the place of the classical H(div; Ω) space. We prove some a priori bounds for the solution for semidiscrete scheme and derive a fully discrete mixed scheme based on a linearized Crank-Nicolson method. At the same time, we get the optimal a priori error estimates in L² and H¹-norm for both the scalar unknown u and the diffusion term w = -Δu and a priori error estimates in (L²)²-norm for its gradient χ = ∇u for both semi-discrete and fully discrete schemes.

  6. SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications

    NASA Technical Reports Server (NTRS)

    Kirk, Benjamin S.

    2007-01-01

    This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.

  7. Domain decomposition methods for nonconforming finite element spaces of Lagrange-type

    NASA Technical Reports Server (NTRS)

    Cowsar, Lawrence C.

    1993-01-01

    In this article, we consider the application of three popular domain decomposition methods to Lagrange-type nonconforming finite element discretizations of scalar, self-adjoint, second order elliptic equations. The additive Schwarz method of Dryja and Widlund, the vertex space method of Smith, and the balancing method of Mandel applied to nonconforming elements are shown to converge at a rate no worse than their applications to the standard conforming piecewise linear Galerkin discretization. Essentially, the theory for the nonconforming elements is inherited from the existing theory for the conforming elements with only modest modification by constructing an isomorphism between the nonconforming finite element space and a space of continuous piecewise linear functions.

  8. Meshfree Modeling of Munitions Penetration in Soils

    DTIC Science & Technology

    2017-04-01

    discretization ...................... 8 Figure 2. Nodal smoothing domain for the modified stabilized nonconforming nodal integration...projectile ............................................................................................... 36 Figure 17. Discretization for the...List of Acronyms DEM: discrete element methods FEM: finite element methods MSNNI: modified stabilized nonconforming nodal integration RK

  9. Stable finite element approximations of two-phase flow with soluble surfactant

    NASA Astrophysics Data System (ADS)

    Barrett, John W.; Garcke, Harald; Nürnberg, Robert

    2015-09-01

    A parametric finite element approximation of incompressible two-phase flow with soluble surfactants is presented. The Navier-Stokes equations are coupled to bulk and surfaces PDEs for the surfactant concentrations. At the interface adsorption, desorption and stress balances involving curvature effects and Marangoni forces have to be considered. A parametric finite element approximation for the advection of the interface, which maintains good mesh properties, is coupled to the evolving surface finite element method, which is used to discretize the surface PDE for the interface surfactant concentration. The resulting system is solved together with standard finite element approximations of the Navier-Stokes equations and of the bulk parabolic PDE for the surfactant concentration. Semidiscrete and fully discrete approximations are analyzed with respect to stability, conservation and existence/uniqueness issues. The approach is validated for simple test cases and for complex scenarios, including colliding drops in a shear flow, which are computed in two and three space dimensions.

  10. Weak Galerkin method for the Biot’s consolidation model

    DOE PAGES

    Hu, Xiaozhe; Mu, Lin; Ye, Xiu

    2017-08-23

    In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less

  11. Weak Galerkin method for the Biot’s consolidation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Xiaozhe; Mu, Lin; Ye, Xiu

    In this study, we develop a weak Galerkin (WG) finite element method for the Biot’s consolidation model in the classical displacement–pressure two-field formulation. Weak Galerkin linear finite elements are used for both displacement and pressure approximations in spatial discretizations. Backward Euler scheme is used for temporal discretization in order to obtain an implicit fully discretized scheme. We study the well-posedness of the linear system at each time step and also derive the overall optimal-order convergence of the WG formulation. Such WG scheme is designed on general shape regular polytopal meshes and provides stable and oscillation-free approximation for the pressure withoutmore » special treatment. Lastlyl, numerical experiments are presented to demonstrate the efficiency and accuracy of the proposed weak Galerkin finite element method.« less

  12. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE PAGES

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.; ...

    2016-09-22

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  13. Upscaling of Mixed Finite Element Discretization Problems by the Spectral AMGe Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalchev, Delyan Z.; Lee, C. S.; Villa, U.

    Here, we propose two multilevel spectral techniques for constructing coarse discretization spaces for saddle-point problems corresponding to PDEs involving a divergence constraint, with a focus on mixed finite element discretizations of scalar self-adjoint second order elliptic equations on general unstructured grids. We use element agglomeration algebraic multigrid (AMGe), which employs coarse elements that can have nonstandard shape since they are agglomerates of fine-grid elements. The coarse basis associated with each agglomerated coarse element is constructed by solving local eigenvalue problems and local mixed finite element problems. This construction leads to stable upscaled coarse spaces and guarantees the inf-sup compatibility ofmore » the upscaled discretization. Also, the approximation properties of these upscaled spaces improve by adding more local eigenfunctions to the coarse spaces. The higher accuracy comes at the cost of additional computational effort, as the sparsity of the resulting upscaled coarse discretization (referred to as operator complexity) deteriorates when we introduce additional functions in the coarse space. We also provide an efficient solver for the coarse (upscaled) saddle-point system by employing hybridization, which leads to a symmetric positive definite (s.p.d.) reduced system for the Lagrange multipliers, and to solve the latter s.p.d. system, we use our previously developed spectral AMGe solver. Numerical experiments, in both two and three dimensions, are provided to illustrate the efficiency of the proposed upscaling technique.« less

  14. A finite element boundary integral formulation for radiation and scattering by cavity antennas using tetrahedral elements

    NASA Technical Reports Server (NTRS)

    Gong, J.; Volakis, J. L.; Chatterjee, A.; Jin, J. M.

    1992-01-01

    A hybrid finite element boundary integral formulation is developed using tetrahedral and/or triangular elements for discretizing the cavity and/or aperture of microstrip antenna arrays. The tetrahedral elements with edge based linear expansion functions are chosen for modeling the volume region and triangular elements are used for discretizing the aperture. The edge based expansion functions are divergenceless thus removing the requirement to introduce a penalty term and the tetrahedral elements permit greater geometrical adaptability than the rectangular bricks. The underlying theory and resulting expressions are discussed in detail together with some numerical scattering examples for comparison and demonstration.

  15. Solving the incompressible surface Navier-Stokes equation by surface finite elements

    NASA Astrophysics Data System (ADS)

    Reuther, Sebastian; Voigt, Axel

    2018-01-01

    We consider a numerical approach for the incompressible surface Navier-Stokes equation on surfaces with arbitrary genus g (S ) . The approach is based on a reformulation of the equation in Cartesian coordinates of the embedding R3, penalization of the normal component, a Chorin projection method, and discretization in space by surface finite elements for each component. The approach thus requires only standard ingredients which most finite element implementations can offer. We compare computational results with discrete exterior calculus simulations on a torus and demonstrate the interplay of the flow field with the topology by showing realizations of the Poincaré-Hopf theorem on n-tori.

  16. New discretization and solution techniques for incompressible viscous flow problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.

    1983-01-01

    Several topics arising in the finite element solution of the incompressible Navier-Stokes equations are considered. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. The role of artificial viscosity in viscous flow calculations is studied, emphasizing work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some modifications are mentioned.

  17. Quadratic Finite Element Method for 1D Deterministic Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tolar, Jr., D R; Ferguson, J M

    2004-01-06

    In the discrete ordinates, or SN, numerical solution of the transport equation, both the spatial ({und r}) and angular ({und {Omega}}) dependences on the angular flux {psi}{und r},{und {Omega}}are modeled discretely. While significant effort has been devoted toward improving the spatial discretization of the angular flux, we focus on improving the angular discretization of {psi}{und r},{und {Omega}}. Specifically, we employ a Petrov-Galerkin quadratic finite element approximation for the differencing of the angular variable ({mu}) in developing the one-dimensional (1D) spherical geometry S{sub N} equations. We develop an algorithm that shows faster convergence with angular resolution than conventional S{sub N} algorithms.

  18. Dual Formulations of Mixed Finite Element Methods with Applications

    PubMed Central

    Gillette, Andrew; Bajaj, Chandrajit

    2011-01-01

    Mixed finite element methods solve a PDE using two or more variables. The theory of Discrete Exterior Calculus explains why the degrees of freedom associated to the different variables should be stored on both primal and dual domain meshes with a discrete Hodge star used to transfer information between the meshes. We show through analysis and examples that the choice of discrete Hodge star is essential to the numerical stability of the method. Additionally, we define interpolation functions and discrete Hodge stars on dual meshes which can be used to create previously unconsidered mixed methods. Examples from magnetostatics and Darcy flow are examined in detail. PMID:21984841

  19. A Posteriori Bounds for Linear-Functional Outputs of Crouzeix-Raviart Finite Element Discretizations of the Incompressible Stokes Problem

    NASA Technical Reports Server (NTRS)

    Patera, Anthony T.; Paraschivoiu, Marius

    1998-01-01

    We present a finite element technique for the efficient generation of lower and upper bounds to outputs which are linear functionals of the solutions to the incompressible Stokes equations in two space dimensions; the finite element discretization is effected by Crouzeix-Raviart elements, the discontinuous pressure approximation of which is central to our approach. The bounds are based upon the construction of an augmented Lagrangian: the objective is a quadratic "energy" reformulation of the desired output; the constraints are the finite element equilibrium equations (including the incompressibility constraint), and the intersubdomain continuity conditions on velocity. Appeal to the dual max-min problem for appropriately chosen candidate Lagrange multipliers then yields inexpensive bounds for the output associated with a fine-mesh discretization; the Lagrange multipliers are generated by exploiting an associated coarse-mesh approximation. In addition to the requisite coarse-mesh calculations, the bound technique requires solution only of local subdomain Stokes problems on the fine-mesh. The method is illustrated for the Stokes equations, in which the outputs of interest are the flowrate past, and the lift force on, a body immersed in a channel.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiley, J.C.

    The author describes a general `hp` finite element method with adaptive grids. The code was based on the work of Oden, et al. The term `hp` refers to the method of spatial refinement (h), in conjunction with the order of polynomials used as a part of the finite element discretization (p). This finite element code seems to handle well the different mesh grid sizes occuring between abuted grids with different resolutions.

  1. Review of literature on the finite-element solution of the equations of two-dimensional surface-water flow in the horizontal plane

    USGS Publications Warehouse

    Lee, Jonathan K.; Froehlich, David C.

    1987-01-01

    Published literature on the application of the finite-element method to solving the equations of two-dimensional surface-water flow in the horizontal plane is reviewed in this report. The finite-element method is ideally suited to modeling two-dimensional flow over complex topography with spatially variable resistance. A two-dimensional finite-element surface-water flow model with depth and vertically averaged velocity components as dependent variables allows the user great flexibility in defining geometric features such as the boundaries of a water body, channels, islands, dikes, and embankments. The following topics are reviewed in this report: alternative formulations of the equations of two-dimensional surface-water flow in the horizontal plane; basic concepts of the finite-element method; discretization of the flow domain and representation of the dependent flow variables; treatment of boundary conditions; discretization of the time domain; methods for modeling bottom, surface, and lateral stresses; approaches to solving systems of nonlinear equations; techniques for solving systems of linear equations; finite-element alternatives to Galerkin's method of weighted residuals; techniques of model validation; and preparation of model input data. References are listed in the final chapter.

  2. The Effect of Scale Dependent Discretization on the Progressive Failure of Composite Materials Using Multiscale Analyses

    NASA Technical Reports Server (NTRS)

    Ricks, Trenton M.; Lacy, Thomas E., Jr.; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.

    2013-01-01

    A multiscale modeling methodology, which incorporates a statistical distribution of fiber strengths into coupled micromechanics/ finite element analyses, is applied to unidirectional polymer matrix composites (PMCs) to analyze the effect of mesh discretization both at the micro- and macroscales on the predicted ultimate tensile (UTS) strength and failure behavior. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a PMC tensile specimen that initiates at the repeating unit cell (RUC) level. Three different finite element mesh densities were employed and each coupled with an appropriate RUC. Multiple simulations were performed in order to assess the effect of a statistical distribution of fiber strengths on the bulk composite failure and predicted strength. The coupled effects of both the micro- and macroscale discretizations were found to have a noticeable effect on the predicted UTS and computational efficiency of the simulations.

  3. A survey of mixed finite element methods

    NASA Technical Reports Server (NTRS)

    Brezzi, F.

    1987-01-01

    This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.

  4. Probabilistic finite elements for transient analysis in nonlinear continua

    NASA Technical Reports Server (NTRS)

    Liu, W. K.; Belytschko, T.; Mani, A.

    1985-01-01

    The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.

  5. Domain decomposition for a mixed finite element method in three dimensions

    USGS Publications Warehouse

    Cai, Z.; Parashkevov, R.R.; Russell, T.F.; Wilson, J.D.; Ye, X.

    2003-01-01

    We consider the solution of the discrete linear system resulting from a mixed finite element discretization applied to a second-order elliptic boundary value problem in three dimensions. Based on a decomposition of the velocity space, these equations can be reduced to a discrete elliptic problem by eliminating the pressure through the use of substructures of the domain. The practicality of the reduction relies on a local basis, presented here, for the divergence-free subspace of the velocity space. We consider additive and multiplicative domain decomposition methods for solving the reduced elliptic problem, and their uniform convergence is established.

  6. New discretization and solution techniques for incompressible viscous flow problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.; Nicolaides, R. A.; Liu, C. H.

    1983-01-01

    This paper considers several topics arising in the finite element solution of the incompressible Navier-Stokes equations. Specifically, the question of choosing finite element velocity/pressure spaces is addressed, particularly from the viewpoint of achieving stable discretizations leading to convergent pressure approximations. Following this, the role of artificial viscosity in viscous flow calculations is studied, emphasizing recent work by several researchers for the anisotropic case. The last section treats the problem of solving the nonlinear systems of equations which arise from the discretization. Time marching methods and classical iterative techniques, as well as some recent modifications are mentioned.

  7. A finite element-based algorithm for rubbing induced vibration prediction in rotors

    NASA Astrophysics Data System (ADS)

    Behzad, Mehdi; Alvandi, Mehdi; Mba, David; Jamali, Jalil

    2013-10-01

    In this paper, an algorithm is developed for more realistic investigation of rotor-to-stator rubbing vibration, based on finite element theory with unilateral contact and friction conditions. To model the rotor, cross sections are assumed to be radially rigid. A finite element discretization based on traditional beam theories which sufficiently accounts for axial and transversal flexibility of the rotor is used. A general finite element discretization model considering inertial and viscoelastic characteristics of the stator is used for modeling the stator. Therefore, for contact analysis, only the boundary of the stator is discretized. The contact problem is defined as the contact between the circular rigid cross section of the rotor and “nodes” of the stator only. Next, Gap function and contact conditions are described for the contact problem. Two finite element models of the rotor and the stator are coupled via the Lagrange multipliers method in order to obtain the constrained equation of motion. A case study of the partial rubbing is simulated using the algorithm. The synchronous and subsynchronous responses of the partial rubbing are obtained for different rotational speeds. In addition, a sensitivity analysis is carried out with respect to the initial clearance, the stator stiffness, the damping parameter, and the coefficient of friction. There is a good agreement between the result of this research and the experimental result in the literature.

  8. Multigrid finite element method in stress analysis of three-dimensional elastic bodies of heterogeneous structure

    NASA Astrophysics Data System (ADS)

    Matveev, A. D.

    2016-11-01

    To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.

  9. Discontinuous finite volume element discretization for coupled flow-transport problems arising in models of sedimentation

    NASA Astrophysics Data System (ADS)

    Bürger, Raimund; Kumar, Sarvesh; Ruiz-Baier, Ricardo

    2015-10-01

    The sedimentation-consolidation and flow processes of a mixture of small particles dispersed in a viscous fluid at low Reynolds numbers can be described by a nonlinear transport equation for the solids concentration coupled with the Stokes problem written in terms of the mixture flow velocity and the pressure field. Here both the viscosity and the forcing term depend on the local solids concentration. A semi-discrete discontinuous finite volume element (DFVE) scheme is proposed for this model. The numerical method is constructed on a baseline finite element family of linear discontinuous elements for the approximation of velocity components and concentration field, whereas the pressure is approximated by piecewise constant elements. The unique solvability of both the nonlinear continuous problem and the semi-discrete DFVE scheme is discussed, and optimal convergence estimates in several spatial norms are derived. Properties of the model and the predicted space accuracy of the proposed formulation are illustrated by detailed numerical examples, including flows under gravity with changing direction, a secondary settling tank in an axisymmetric setting, and batch sedimentation in a tilted cylindrical vessel.

  10. Solution of elastic-plastic stress analysis problems by the p-version of the finite element method

    NASA Technical Reports Server (NTRS)

    Szabo, Barna A.; Actis, Ricardo L.; Holzer, Stefan M.

    1993-01-01

    The solution of small strain elastic-plastic stress analysis problems by the p-version of the finite element method is discussed. The formulation is based on the deformation theory of plasticity and the displacement method. Practical realization of controlling discretization errors for elastic-plastic problems is the main focus. Numerical examples which include comparisons between the deformation and incremental theories of plasticity under tight control of discretization errors are presented.

  11. Improved finite element methodology for integrated thermal structural analysis

    NASA Technical Reports Server (NTRS)

    Dechaumphai, P.; Thornton, E. A.

    1982-01-01

    An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.

  12. Finite element probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bacvarov, D.C.

    1981-01-01

    A new method for probabilistic risk assessment of transmission line insulation flashovers caused by lightning strokes is presented. The utilized approach of applying the finite element method for probabilistic risk assessment is demonstrated to be very powerful. The reasons for this are two. First, the finite element method is inherently suitable for analysis of three dimensional spaces where the parameters, such as three variate probability densities of the lightning currents, are non-uniformly distributed. Second, the finite element method permits non-uniform discretization of the three dimensional probability spaces thus yielding high accuracy in critical regions, such as the area of themore » low probability events, while at the same time maintaining coarse discretization in the non-critical areas to keep the number of grid points and the size of the problem to a manageable low level. The finite element probabilistic risk assessment method presented here is based on a new multidimensional search algorithm. It utilizes an efficient iterative technique for finite element interpolation of the transmission line insulation flashover criteria computed with an electro-magnetic transients program. Compared to other available methods the new finite element probabilistic risk assessment method is significantly more accurate and approximately two orders of magnitude computationally more efficient. The method is especially suited for accurate assessment of rare, very low probability events.« less

  13. Generalized Fourier analyses of the advection-diffusion equation - Part I: one-dimensional domains

    NASA Astrophysics Data System (ADS)

    Christon, Mark A.; Martinez, Mario J.; Voth, Thomas E.

    2004-07-01

    This paper presents a detailed multi-methods comparison of the spatial errors associated with finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. The errors are reported in terms of non-dimensional phase and group speed, discrete diffusivity, artificial diffusivity, and grid-induced anisotropy. It is demonstrated that Fourier analysis provides an automatic process for separating the discrete advective operator into its symmetric and skew-symmetric components and characterizing the spectral behaviour of each operator. For each of the numerical methods considered, asymptotic truncation error and resolution estimates are presented for the limiting cases of pure advection and pure diffusion. It is demonstrated that streamline upwind Petrov-Galerkin and its control-volume finite element analogue, the streamline upwind control-volume method, produce both an artificial diffusivity and a concomitant phase speed adjustment in addition to the usual semi-discrete artifacts observed in the phase speed, group speed and diffusivity. The Galerkin finite element method and its streamline upwind derivatives are shown to exhibit super-convergent behaviour in terms of phase and group speed when a consistent mass matrix is used in the formulation. In contrast, the CVFEM method and its streamline upwind derivatives yield strictly second-order behaviour. In Part II of this paper, we consider two-dimensional semi-discretizations of the advection-diffusion equation and also assess the affects of grid-induced anisotropy observed in the non-dimensional phase speed, and the discrete and artificial diffusivities. Although this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common analysis framework. Published in 2004 by John Wiley & Sons, Ltd.

  14. Error analysis of finite element method for Poisson–Nernst–Planck equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Yuzhou; Sun, Pengtao; Zheng, Bin

    A priori error estimates of finite element method for time-dependent Poisson-Nernst-Planck equations are studied in this work. We obtain the optimal error estimates in L∞(H1) and L2(H1) norms, and suboptimal error estimates in L∞(L2) norm, with linear element, and optimal error estimates in L∞(L2) norm with quadratic or higher-order element, for both semi- and fully discrete finite element approximations. Numerical experiments are also given to validate the theoretical results.

  15. On conforming mixed finite element methods for incompressible viscous flow problems

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D; Nicolaides, R. A.; Peterson, J. S.

    1982-01-01

    The application of conforming mixed finite element methods to obtain approximate solutions of linearized Navier-Stokes equations is examined. Attention is given to the convergence rates of various finite element approximations of the pressure and the velocity field. The optimality of the convergence rates are addressed in terms of comparisons of the approximation convergence to a smooth solution in relation to the best approximation available for the finite element space used. Consideration is also devoted to techniques for efficient use of a Gaussian elimination algorithm to obtain a solution to a system of linear algebraic equations derived by finite element discretizations of linear partial differential equations.

  16. Ablative Thermal Response Analysis Using the Finite Element Method

    NASA Technical Reports Server (NTRS)

    Dec John A.; Braun, Robert D.

    2009-01-01

    A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.

  17. Coupled NASTRAN/boundary element formulation for acoustic scattering

    NASA Technical Reports Server (NTRS)

    Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.

    1987-01-01

    A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.

  18. Parallel, adaptive finite element methods for conservation laws

    NASA Technical Reports Server (NTRS)

    Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.

    1994-01-01

    We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.

  19. Center for Efficient Exascale Discretizations Software Suite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolev, Tzanio; Dobrev, Veselin; Tomov, Vladimir

    The CEED Software suite is a collection of generally applicable software tools focusing on the following computational motives: PDE discretizations on unstructured meshes, high-order finite element and spectral element methods and unstructured adaptive mesh refinement. All of this software is being developed as part of CEED, a co-design Center for Efficient Exascale Discretizations, within DOE's Exascale Computing Project (ECP) program.

  20. Verification of a non-hydrostatic dynamical core using horizontally spectral element vertically finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-06-01

    The non-hydrostatic (NH) compressible Euler equations of dry atmosphere are solved in a simplified two dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative terms and quadrature. The Euler equations used here are in a flux form based on the hydrostatic pressure vertical coordinate, which are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate is implemented in this model. We verified the model by conducting widely used standard benchmark tests: the inertia-gravity wave, rising thermal bubble, density current wave, and linear hydrostatic mountain wave. The results from those tests demonstrate that the horizontally spectral element vertically finite difference model is accurate and robust. By using the 2-D slice model, we effectively show that the combined spatial discretization method of the spectral element and finite difference method in the horizontal and vertical directions, respectively, offers a viable method for the development of a NH dynamical core.

  1. A Mixed Finite Volume Element Method for Flow Calculations in Porous Media

    NASA Technical Reports Server (NTRS)

    Jones, Jim E.

    1996-01-01

    A key ingredient in the simulation of flow in porous media is the accurate determination of the velocities that drive the flow. The large scale irregularities of the geology, such as faults, fractures, and layers suggest the use of irregular grids in the simulation. Work has been done in applying the finite volume element (FVE) methodology as developed by McCormick in conjunction with mixed methods which were developed by Raviart and Thomas. The resulting mixed finite volume element discretization scheme has the potential to generate more accurate solutions than standard approaches. The focus of this paper is on a multilevel algorithm for solving the discrete mixed FVE equations. The algorithm uses a standard cell centered finite difference scheme as the 'coarse' level and the more accurate mixed FVE scheme as the 'fine' level. The algorithm appears to have potential as a fast solver for large size simulations of flow in porous media.

  2. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-01-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  3. Variational approach to probabilistic finite elements

    NASA Astrophysics Data System (ADS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1991-08-01

    Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  4. Variational approach to probabilistic finite elements

    NASA Technical Reports Server (NTRS)

    Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.

    1987-01-01

    Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.

  5. A three-dimensional FEM-DEM technique for predicting the evolution of fracture in geomaterials and concrete

    NASA Astrophysics Data System (ADS)

    Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio

    2018-07-01

    This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.

  6. Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity

    NASA Astrophysics Data System (ADS)

    Lin, Guang; Liu, Jiangguo; Mu, Lin; Ye, Xiu

    2014-11-01

    This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors. We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.

  7. Mixed finite element - discontinuous finite volume element discretization of a general class of multicontinuum models

    NASA Astrophysics Data System (ADS)

    Ruiz-Baier, Ricardo; Lunati, Ivan

    2016-10-01

    We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation, deformation of a cantilever bracket, and Boycott effects). The applicability of the method is not limited to flow in porous media, but can also be employed to describe many other physical systems governed by a similar set of equations, including e.g. multi-component materials.

  8. Flux-corrected transport algorithms for continuous Galerkin methods based on high order Bernstein finite elements

    NASA Astrophysics Data System (ADS)

    Lohmann, Christoph; Kuzmin, Dmitri; Shadid, John N.; Mabuza, Sibusiso

    2017-09-01

    This work extends the flux-corrected transport (FCT) methodology to arbitrary order continuous finite element discretizations of scalar conservation laws on simplex meshes. Using Bernstein polynomials as local basis functions, we constrain the total variation of the numerical solution by imposing local discrete maximum principles on the Bézier net. The design of accuracy-preserving FCT schemes for high order Bernstein-Bézier finite elements requires the development of new algorithms and/or generalization of limiting techniques tailored for linear and multilinear Lagrange elements. In this paper, we propose (i) a new discrete upwinding strategy leading to local extremum bounded low order approximations with compact stencils, (ii) high order variational stabilization based on the difference between two gradient approximations, and (iii) new localized limiting techniques for antidiffusive element contributions. The optional use of a smoothness indicator, based on a second derivative test, makes it possible to potentially avoid unnecessary limiting at smooth extrema and achieve optimal convergence rates for problems with smooth solutions. The accuracy of the proposed schemes is assessed in numerical studies for the linear transport equation in 1D and 2D.

  9. Finite Elements Analysis of a Composite Semi-Span Test Article With and Without Discrete Damage

    NASA Technical Reports Server (NTRS)

    Lovejoy, Andrew E.; Jegley, Dawn C. (Technical Monitor)

    2000-01-01

    AS&M Inc. performed finite element analysis, with and without discrete damage, of a composite semi-span test article that represents the Boeing 220-passenger transport aircraft composite semi-span test article. A NASTRAN bulk data file and drawings of the test mount fixtures and semi-span components were utilized to generate the baseline finite element model. In this model, the stringer blades are represented by shell elements, and the stringer flanges are combined with the skin. Numerous modeling modifications and discrete source damage scenarios were applied to the test article model throughout the course of the study. This report details the analysis method and results obtained from the composite semi-span study. Analyses were carried out for three load cases: Braked Roll, LOG Down-Bending and 2.5G Up-Bending. These analyses included linear and nonlinear static response, as well as linear and nonlinear buckling response. Results are presented in the form of stress and strain plots. factors of safety for failed elements, buckling loads and modes, deflection prediction tables and plots, and strainage prediction tables and plots. The collected results are presented within this report for comparison to test results.

  10. Applications of algebraic topology to compatible spatial discretizations.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bochev, Pavel Blagoveston; Hyman, James M.

    We provide a common framework for compatible discretizations using algebraic topology to guide our analysis. The main concept is the natural inner product on cochains, which induces a combinatorial Hodge theory. The framework comprises of mutually consistent operations of differentiation and integration, has a discrete Stokes theorem, and preserves the invariants of the DeRham cohomology groups. The latter allows for an elementary calculation of the kernel of the discrete Laplacian. Our framework provides an abstraction that includes examples of compatible finite element, finite volume and finite difference methods. We describe how these methods result from the choice of a reconstructionmore » operator and when they are equivalent.« less

  11. Use of edge-based finite elements for solving three dimensional scattering problems

    NASA Technical Reports Server (NTRS)

    Chatterjee, A.; Jin, J. M.; Volakis, John L.

    1991-01-01

    Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.

  12. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  13. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu

    This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  14. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  15. High-order solution methods for grey discrete ordinates thermal radiative transfer

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-09-29

    This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, J E; Vassilevski, P S; Woodward, C S

    This paper provides extensions of an element agglomeration AMG method to nonlinear elliptic problems discretized by the finite element method on general unstructured meshes. The method constructs coarse discretization spaces and corresponding coarse nonlinear operators as well as their Jacobians. We introduce both standard (fairly quasi-uniformly coarsened) and non-standard (coarsened away) coarse meshes and respective finite element spaces. We use both kind of spaces in FAS type coarse subspace correction (or Schwarz) algorithms. Their performance is illustrated on a number of model problems. The coarsened away spaces seem to perform better than the standard spaces for problems with nonlinearities inmore » the principal part of the elliptic operator.« less

  17. Mathematical aspects of finite element methods for incompressible viscous flows

    NASA Technical Reports Server (NTRS)

    Gunzburger, M. D.

    1986-01-01

    Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.

  18. Weak Galerkin finite element methods for Darcy flow: Anisotropy and heterogeneity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Guang; Liu, Jiangguo; Mu, Lin

    2014-11-01

    This paper presents a family of weak Galerkin finite element methods (WGFEMs) for Darcy flow computation. The WGFEMs are new numerical methods that rely on the novel concept of discrete weak gradients. The WGFEMs solve for pressure unknowns both in element interiors and on the mesh skeleton. The numerical velocity is then obtained from the discrete weak gradient of the numerical pressure. The new methods are quite different than many existing numerical methods in that they are locally conservative by design, the resulting discrete linear systems are symmetric and positive-definite, and there is no need for tuning problem-dependent penalty factors.more » We test the WGFEMs on benchmark problems to demonstrate the strong potential of these new methods in handling strong anisotropy and heterogeneity in Darcy flow.« less

  19. Deformation of two-phase aggregates using standard numerical methods

    NASA Astrophysics Data System (ADS)

    Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.

    2013-04-01

    Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.

  20. Primal-mixed formulations for reaction-diffusion systems on deforming domains

    NASA Astrophysics Data System (ADS)

    Ruiz-Baier, Ricardo

    2015-10-01

    We propose a finite element formulation for a coupled elasticity-reaction-diffusion system written in a fully Lagrangian form and governing the spatio-temporal interaction of species inside an elastic, or hyper-elastic body. A primal weak formulation is the baseline model for the reaction-diffusion system written in the deformed domain, and a finite element method with piecewise linear approximations is employed for its spatial discretization. On the other hand, the strain is introduced as mixed variable in the equations of elastodynamics, which in turn acts as coupling field needed to update the diffusion tensor of the modified reaction-diffusion system written in a deformed domain. The discrete mechanical problem yields a mixed finite element scheme based on row-wise Raviart-Thomas elements for stresses, Brezzi-Douglas-Marini elements for displacements, and piecewise constant pressure approximations. The application of the present framework in the study of several coupled biological systems on deforming geometries in two and three spatial dimensions is discussed, and some illustrative examples are provided and extensively analyzed.

  1. Automated quadrilateral surface discretization method and apparatus usable to generate mesh in a finite element analysis system

    DOEpatents

    Blacker, Teddy D.

    1994-01-01

    An automatic quadrilateral surface discretization method and apparatus is provided for automatically discretizing a geometric region without decomposing the region. The automated quadrilateral surface discretization method and apparatus automatically generates a mesh of all quadrilateral elements which is particularly useful in finite element analysis. The generated mesh of all quadrilateral elements is boundary sensitive, orientation insensitive and has few irregular nodes on the boundary. A permanent boundary of the geometric region is input and rows are iteratively layered toward the interior of the geometric region. Also, an exterior permanent boundary and an interior permanent boundary for a geometric region may be input and the rows are iteratively layered inward from the exterior boundary in a first counter clockwise direction while the rows are iteratively layered from the interior permanent boundary toward the exterior of the region in a second clockwise direction. As a result, a high quality mesh for an arbitrary geometry may be generated with a technique that is robust and fast for complex geometric regions and extreme mesh gradations.

  2. High performance computation of radiative transfer equation using the finite element method

    NASA Astrophysics Data System (ADS)

    Badri, M. A.; Jolivet, P.; Rousseau, B.; Favennec, Y.

    2018-05-01

    This article deals with an efficient strategy for numerically simulating radiative transfer phenomena using distributed computing. The finite element method alongside the discrete ordinate method is used for spatio-angular discretization of the monochromatic steady-state radiative transfer equation in an anisotropically scattering media. Two very different methods of parallelization, angular and spatial decomposition methods, are presented. To do so, the finite element method is used in a vectorial way. A detailed comparison of scalability, performance, and efficiency on thousands of processors is established for two- and three-dimensional heterogeneous test cases. Timings show that both algorithms scale well when using proper preconditioners. It is also observed that our angular decomposition scheme outperforms our domain decomposition method. Overall, we perform numerical simulations at scales that were previously unattainable by standard radiative transfer equation solvers.

  3. Modelling Dowel Action of Discrete Reinforcing Bars in Cracked Concrete Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwan, A. K. H.; Ng, P. L.; Lam, J. Y. K.

    2010-05-21

    Dowel action is one of the component actions for shear force transfer in cracked reinforced concrete. In finite element analysis of concrete structures, the use of discrete representation of reinforcing bars is considered advantageous over the smeared representation due to the relative ease of modelling the bond-slip behaviour. However, there is very limited research on how to simulate the dowel action of discrete reinforcing bars. Herein, a numerical model for dowel action of discrete reinforcing bars crossing cracks in concrete is developed. The model features the derivation of dowel stiffness matrix based on beam-on-elastic-foundation theory and the direct assemblage ofmore » dowel stiffness into the concrete element stiffness matrices. The dowel action model is incorporated in a nonlinear finite element programme with secant stiffness formulation. Deep beams tested in the literature are analysed and it is found that the incorporation of dowel action model improves the accuracy of analysis.« less

  4. A multigrid solver for the semiconductor equations

    NASA Technical Reports Server (NTRS)

    Bachmann, Bernhard

    1993-01-01

    We present a multigrid solver for the exponential fitting method. The solver is applied to the current continuity equations of semiconductor device simulation in two dimensions. The exponential fitting method is based on a mixed finite element discretization using the lowest-order Raviart-Thomas triangular element. This discretization method yields a good approximation of front layers and guarantees current conservation. The corresponding stiffness matrix is an M-matrix. 'Standard' multigrid solvers, however, cannot be applied to the resulting system, as this is dominated by an unsymmetric part, which is due to the presence of strong convection in part of the domain. To overcome this difficulty, we explore the connection between Raviart-Thomas mixed methods and the nonconforming Crouzeix-Raviart finite element discretization. In this way we can construct nonstandard prolongation and restriction operators using easily computable weighted L(exp 2)-projections based on suitable quadrature rules and the upwind effects of the discretization. The resulting multigrid algorithm shows very good results, even for real-world problems and for locally refined grids.

  5. Dynamic characterization, monitoring and control of rotating flexible beam-mass structures via piezo-embedded techniques

    NASA Technical Reports Server (NTRS)

    Lai, Steven H.-Y.

    1992-01-01

    A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.

  6. Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Wang, Yao; Hei, Baoping

    2013-12-01

    The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.

  7. Coupled discrete element and finite volume solution of two classical soil mechanics problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Feng; Drumm, Eric; Guiochon, Georges A

    One dimensional solutions for the classic critical upward seepage gradient/quick condition and the time rate of consolidation problems are obtained using coupled routines for the finite volume method (FVM) and discrete element method (DEM), and the results compared with the analytical solutions. The two phase flow in a system composed of fluid and solid is simulated with the fluid phase modeled by solving the averaged Navier-Stokes equation using the FVM and the solid phase is modeled using the DEM. A framework is described for the coupling of two open source computer codes: YADE-OpenDEM for the discrete element method and OpenFOAMmore » for the computational fluid dynamics. The particle-fluid interaction is quantified using a semi-empirical relationship proposed by Ergun [12]. The two classical verification problems are used to explore issues encountered when using coupled flow DEM codes, namely, the appropriate time step size for both the fluid and mechanical solution processes, the choice of the viscous damping coefficient, and the number of solid particles per finite fluid volume.« less

  8. Evaluation and optimization of footwear comfort parameters using finite element analysis and a discrete optimization algorithm

    NASA Astrophysics Data System (ADS)

    Papagiannis, P.; Azariadis, P.; Papanikos, P.

    2017-10-01

    Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.

  9. On the existence and stability conditions for mixed-hybrid finite element solutions based on Reissner's variational principle

    NASA Technical Reports Server (NTRS)

    Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.

    1985-01-01

    The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.

  10. Problems with heterogeneous and non-isotropic media or distorted grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hyman, J.; Shashkov, M.; Steinberg, S.

    1996-08-01

    This paper defines discretizations of the divergence and flux operators that produce symmetric, positive-definite, and accurate approximations to steady-state diffusion problems. Because discontinuous material properties and highly distorted grids are allowed, the flux operator, rather than the gradient, is used as a fundamental operator to be discretized. Resulting finite-difference scheme is similar to those obtained from the mixed finite-element method.

  11. A progress report on estuary modeling by the finite-element method

    USGS Publications Warehouse

    Gray, William G.

    1978-01-01

    Various schemes are investigated for finite-element modeling of two-dimensional surface-water flows. The first schemes investigated combine finite-element spatial discretization with split-step time stepping schemes that have been found useful in finite-difference computations. Because of the large number of numerical integrations performed in space and the large sparse matrices solved, these finite-element schemes were found to be economically uncompetitive with finite-difference schemes. A very promising leapfrog scheme is proposed which, when combined with a novel very fast spatial integration procedure, eliminates the need to solve any matrices at all. Additional problems attacked included proper propagation of waves and proper specification of the normal flow-boundary condition. This report indicates work in progress and does not come to a definitive conclusion as to the best approach for finite-element modeling of surface-water problems. The results presented represent findings obtained between September 1973 and July 1976. (Woodard-USGS)

  12. The lowest-order weak Galerkin finite element method for the Darcy equation on quadrilateral and hybrid meshes

    NASA Astrophysics Data System (ADS)

    Liu, Jiangguo; Tavener, Simon; Wang, Zhuoran

    2018-04-01

    This paper investigates the lowest-order weak Galerkin finite element method for solving the Darcy equation on quadrilateral and hybrid meshes consisting of quadrilaterals and triangles. In this approach, the pressure is approximated by constants in element interiors and on edges. The discrete weak gradients of these constant basis functions are specified in local Raviart-Thomas spaces, specifically RT0 for triangles and unmapped RT[0] for quadrilaterals. These discrete weak gradients are used to approximate the classical gradient when solving the Darcy equation. The method produces continuous normal fluxes and is locally mass-conservative, regardless of mesh quality, and has optimal order convergence in pressure, velocity, and normal flux, when the quadrilaterals are asymptotically parallelograms. Implementation is straightforward and results in symmetric positive-definite discrete linear systems. We present numerical experiments and comparisons with other existing methods.

  13. DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems

    NASA Astrophysics Data System (ADS)

    Braun, Jean; Thieulot, Cédric; Fullsack, Philippe; DeKool, Marthijn; Beaumont, Christopher; Huismans, Ritske

    2008-12-01

    We present a new finite element code for the solution of the Stokes and energy (or heat transport) equations that has been purposely designed to address crustal-scale to mantle-scale flow problems in three dimensions. Although it is based on an Eulerian description of deformation and flow, the code, which we named DOUAR ('Earth' in Breton language), has the ability to track interfaces and, in particular, the free surface, by using a dual representation based on a set of particles placed on the interface and the computation of a level set function on the nodes of the finite element grid, thus ensuring accuracy and efficiency. The code also makes use of a new method to compute the dynamic Delaunay triangulation connecting the particles based on non-Euclidian, curvilinear measure of distance, ensuring that the density of particles remains uniform and/or dynamically adapted to the curvature of the interface. The finite element discretization is based on a non-uniform, yet regular octree division of space within a unit cube that allows efficient adaptation of the finite element discretization, i.e. in regions of strong velocity gradient or high interface curvature. The finite elements are cubes (the leaves of the octree) in which a q1- p0 interpolation scheme is used. Nodal incompatibilities across faces separating elements of differing size are dealt with by introducing linear constraints among nodal degrees of freedom. Discontinuities in material properties across the interfaces are accommodated by the use of a novel method (which we called divFEM) to integrate the finite element equations in which the elemental volume is divided by a local octree to an appropriate depth (resolution). A variety of rheologies have been implemented including linear, non-linear and thermally activated creep and brittle (or plastic) frictional deformation. A simple smoothing operator has been defined to avoid checkerboard oscillations in pressure that tend to develop when using a highly irregular octree discretization and the tri-linear (or q1- p0) finite element. A three-dimensional cloud of particles is used to track material properties that depend on the integrated history of deformation (the integrated strain, for example); its density is variable and dynamically adapted to the computed flow. The large system of algebraic equations that results from the finite element discretization and linearization of the basic partial differential equations is solved using a multi-frontal massively parallel direct solver that can efficiently factorize poorly conditioned systems resulting from the highly non-linear rheology and the presence of the free surface. The code is almost entirely parallelized. We present example results including the onset of a Rayleigh-Taylor instability, the indentation of a rigid-plastic material and the formation of a fold beneath a free eroding surface, that demonstrate the accuracy, efficiency and appropriateness of the new code to solve complex geodynamical problems in three dimensions.

  14. Coupling finite element and spectral methods: First results

    NASA Technical Reports Server (NTRS)

    Bernardi, Christine; Debit, Naima; Maday, Yvon

    1987-01-01

    A Poisson equation on a rectangular domain is solved by coupling two methods: the domain is divided in two squares, a finite element approximation is used on the first square and a spectral discretization is used on the second one. Two kinds of matching conditions on the interface are presented and compared. In both cases, error estimates are proved.

  15. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort is to develop a means to use, and to ultimately implement, hp-version finite elements in the numerical solution of optimal control problems. The hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element.

  16. Modeling and design optimization of adhesion between surfaces at the microscale.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sylves, Kevin T.

    2008-08-01

    This research applies design optimization techniques to structures in adhesive contact where the dominant adhesive mechanism is the van der Waals force. Interface finite elements are developed for domains discretized by beam elements, quadrilateral elements or triangular shell elements. Example analysis problems comparing finite element results to analytical solutions are presented. These examples are then optimized, where the objective is matching a force-displacement relationship and the optimization variables are the interface element energy of adhesion or the width of beam elements in the structure. Several parameter studies are conducted and discussed.

  17. A discourse on sensitivity analysis for discretely-modeled structures

    NASA Technical Reports Server (NTRS)

    Adelman, Howard M.; Haftka, Raphael T.

    1991-01-01

    A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.

  18. Analysis of Large Quasistatic Deformations of Inelastic Solids by a New Stress Based Finite Element Method. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Reed, Kenneth W.

    1992-01-01

    A new hybrid stress finite element algorithm suitable for analyses of large quasistatic deformation of inelastic solids is presented. Principal variables in the formulation are the nominal stress rate and spin. The finite element equations which result are discrete versions of the equations of compatibility and angular momentum balance. Consistent reformulation of the constitutive equation and accurate and stable time integration of the stress are discussed at length. Examples which bring out the feasibility and performance of the algorithm conclude the work.

  19. A mesoscopic bridging scale method for fluids and coupling dissipative particle dynamics with continuum finite element method

    PubMed Central

    Kojic, Milos; Filipovic, Nenad; Tsuda, Akira

    2012-01-01

    A multiscale procedure to couple a mesoscale discrete particle model and a macroscale continuum model of incompressible fluid flow is proposed in this study. We call this procedure the mesoscopic bridging scale (MBS) method since it is developed on the basis of the bridging scale method for coupling molecular dynamics and finite element models [G.J. Wagner, W.K. Liu, Coupling of atomistic and continuum simulations using a bridging scale decomposition, J. Comput. Phys. 190 (2003) 249–274]. We derive the governing equations of the MBS method and show that the differential equations of motion of the mesoscale discrete particle model and finite element (FE) model are only coupled through the force terms. Based on this coupling, we express the finite element equations which rely on the Navier–Stokes and continuity equations, in a way that the internal nodal FE forces are evaluated using viscous stresses from the mesoscale model. The dissipative particle dynamics (DPD) method for the discrete particle mesoscale model is employed. The entire fluid domain is divided into a local domain and a global domain. Fluid flow in the local domain is modeled with both DPD and FE method, while fluid flow in the global domain is modeled by the FE method only. The MBS method is suitable for modeling complex (colloidal) fluid flows, where continuum methods are sufficiently accurate only in the large fluid domain, while small, local regions of particular interest require detailed modeling by mesoscopic discrete particles. Solved examples – simple Poiseuille and driven cavity flows illustrate the applicability of the proposed MBS method. PMID:23814322

  20. How does a three-dimensional continuum muscle model affect the kinematics and muscle strains of a finite element neck model compared to a discrete muscle model in rear-end, frontal, and lateral impacts.

    PubMed

    Hedenstierna, Sofia; Halldin, Peter

    2008-04-15

    A finite element (FE) model of the human neck with incorporated continuum or discrete muscles was used to simulate experimental impacts in rear, frontal, and lateral directions. The aim of this study was to determine how a continuum muscle model influences the impact behavior of a FE human neck model compared with a discrete muscle model. Most FE neck models used for impact analysis today include a spring element musculature and are limited to discrete geometries and nodal output results. A solid-element muscle model was thought to improve the behavior of the model by adding properties such as tissue inertia and compressive stiffness and by improving the geometry. It would also predict the strain distribution within the continuum elements. A passive continuum muscle model with nonlinear viscoelastic materials was incorporated into the KTH neck model together with active spring muscles and used in impact simulations. The resulting head and vertebral kinematics was compared with the results from a discrete muscle model as well as volunteer corridors. The muscle strain prediction was compared between the 2 muscle models. The head and vertebral kinematics were within the volunteer corridors for both models when activated. The continuum model behaved more stiffly than the discrete model and needed less active force to fit the experimental results. The largest difference was seen in the rear impact. The strain predicted by the continuum model was lower than for the discrete model. The continuum muscle model stiffened the response of the KTH neck model compared with a discrete model, and the strain prediction in the muscles was improved.

  1. Multi-level adaptive finite element methods. 1: Variation problems

    NASA Technical Reports Server (NTRS)

    Brandt, A.

    1979-01-01

    A general numerical strategy for solving partial differential equations and other functional problems by cycling between coarser and finer levels of discretization is described. Optimal discretization schemes are provided together with very fast general solvers. It is described in terms of finite element discretizations of general nonlinear minimization problems. The basic processes (relaxation sweeps, fine-grid-to-coarse-grid transfers of residuals, coarse-to-fine interpolations of corrections) are directly and naturally determined by the objective functional and the sequence of approximation spaces. The natural processes, however, are not always optimal. Concrete examples are given and some new techniques are reviewed. Including the local truncation extrapolation and a multilevel procedure for inexpensively solving chains of many boundary value problems, such as those arising in the solution of time-dependent problems.

  2. Incompressible Navier-Stokes and parabolized Navier-Stokes solution procedures and computational techniques

    NASA Technical Reports Server (NTRS)

    Rubin, S. G.

    1982-01-01

    Recent developments with finite-difference techniques are emphasized. The quotation marks reflect the fact that any finite discretization procedure can be included in this category. Many so-called finite element collocation and galerkin methods can be reproduced by appropriate forms of the differential equations and discretization formulas. Many of the difficulties encountered in early Navier-Stokes calculations were inherent not only in the choice of the different equations (accuracy), but also in the method of solution or choice of algorithm (convergence and stability, in the manner in which the dependent variables or discretized equations are related (coupling), in the manner that boundary conditions are applied, in the manner that the coordinate mesh is specified (grid generation), and finally, in recognizing that for many high Reynolds number flows not all contributions to the Navier-Stokes equations are necessarily of equal importance (parabolization, preferred direction, pressure interaction, asymptotic and mathematical character). It is these elements that are reviewed. Several Navier-Stokes and parabolized Navier-Stokes formulations are also presented.

  3. Discontinuous Finite Element Quasidiffusion Methods

    DOE PAGES

    Anistratov, Dmitriy Yurievich; Warsa, James S.

    2018-05-21

    Here in this paper, two-level methods for solving transport problems in one-dimensional slab geometry based on the quasi-diffusion (QD) method are developed. A linear discontinuous finite element method (LDFEM) is derived for the spatial discretization of the low-order QD (LOQD) equations. It involves special interface conditions at the cell edges based on the idea of QD boundary conditions (BCs). We consider different kinds of QD BCs to formulate the necessary cell-interface conditions. We develop two-level methods with independent discretization of the high-order transport equation and LOQD equations, where the transport equation is discretized using the method of characteristics and themore » LDFEM is applied to the LOQD equations. We also formulate closures that lead to the discretization consistent with a LDFEM discretization of the transport equation. The proposed methods are studied by means of test problems formulated with the method of manufactured solutions. Numerical experiments are presented demonstrating the performance of the proposed methods. Lastly, we also show that the method with independent discretization has the asymptotic diffusion limit.« less

  4. Discontinuous Finite Element Quasidiffusion Methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anistratov, Dmitriy Yurievich; Warsa, James S.

    Here in this paper, two-level methods for solving transport problems in one-dimensional slab geometry based on the quasi-diffusion (QD) method are developed. A linear discontinuous finite element method (LDFEM) is derived for the spatial discretization of the low-order QD (LOQD) equations. It involves special interface conditions at the cell edges based on the idea of QD boundary conditions (BCs). We consider different kinds of QD BCs to formulate the necessary cell-interface conditions. We develop two-level methods with independent discretization of the high-order transport equation and LOQD equations, where the transport equation is discretized using the method of characteristics and themore » LDFEM is applied to the LOQD equations. We also formulate closures that lead to the discretization consistent with a LDFEM discretization of the transport equation. The proposed methods are studied by means of test problems formulated with the method of manufactured solutions. Numerical experiments are presented demonstrating the performance of the proposed methods. Lastly, we also show that the method with independent discretization has the asymptotic diffusion limit.« less

  5. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications☆

    PubMed Central

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-01-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer. PMID:24829517

  6. Finite element solution of nonlinear eddy current problems with periodic excitation and its industrial applications.

    PubMed

    Bíró, Oszkár; Koczka, Gergely; Preis, Kurt

    2014-05-01

    An efficient finite element method to take account of the nonlinearity of the magnetic materials when analyzing three-dimensional eddy current problems is presented in this paper. The problem is formulated in terms of vector and scalar potentials approximated by edge and node based finite element basis functions. The application of Galerkin techniques leads to a large, nonlinear system of ordinary differential equations in the time domain. The excitations are assumed to be time-periodic and the steady-state periodic solution is of interest only. This is represented either in the frequency domain as a finite Fourier series or in the time domain as a set of discrete time values within one period for each finite element degree of freedom. The former approach is the (continuous) harmonic balance method and, in the latter one, discrete Fourier transformation will be shown to lead to a discrete harmonic balance method. Due to the nonlinearity, all harmonics, both continuous and discrete, are coupled to each other. The harmonics would be decoupled if the problem were linear, therefore, a special nonlinear iteration technique, the fixed-point method is used to linearize the equations by selecting a time-independent permeability distribution, the so-called fixed-point permeability in each nonlinear iteration step. This leads to uncoupled harmonics within these steps. As industrial applications, analyses of large power transformers are presented. The first example is the computation of the electromagnetic field of a single-phase transformer in the time domain with the results compared to those obtained by traditional time-stepping techniques. In the second application, an advanced model of the same transformer is analyzed in the frequency domain by the harmonic balance method with the effect of the presence of higher harmonics on the losses investigated. Finally a third example tackles the case of direct current (DC) bias in the coils of a single-phase transformer.

  7. Iterative methods for elliptic finite element equations on general meshes

    NASA Technical Reports Server (NTRS)

    Nicolaides, R. A.; Choudhury, Shenaz

    1986-01-01

    Iterative methods for arbitrary mesh discretizations of elliptic partial differential equations are surveyed. The methods discussed are preconditioned conjugate gradients, algebraic multigrid, deflated conjugate gradients, an element-by-element techniques, and domain decomposition. Computational results are included.

  8. Finite Volume Element (FVE) discretization and multilevel solution of the axisymmetric heat equation

    NASA Astrophysics Data System (ADS)

    Litaker, Eric T.

    1994-12-01

    The axisymmetric heat equation, resulting from a point-source of heat applied to a metal block, is solved numerically; both iterative and multilevel solutions are computed in order to compare the two processes. The continuum problem is discretized in two stages: finite differences are used to discretize the time derivatives, resulting is a fully implicit backward time-stepping scheme, and the Finite Volume Element (FVE) method is used to discretize the spatial derivatives. The application of the FVE method to a problem in cylindrical coordinates is new, and results in stencils which are analyzed extensively. Several iteration schemes are considered, including both Jacobi and Gauss-Seidel; a thorough analysis of these schemes is done, using both the spectral radii of the iteration matrices and local mode analysis. Using this discretization, a Gauss-Seidel relaxation scheme is used to solve the heat equation iteratively. A multilevel solution process is then constructed, including the development of intergrid transfer and coarse grid operators. Local mode analysis is performed on the components of the amplification matrix, resulting in the two-level convergence factors for various combinations of the operators. A multilevel solution process is implemented by using multigrid V-cycles; the iterative and multilevel results are compared and discussed in detail. The computational savings resulting from the multilevel process are then discussed.

  9. Analysis of passive damping in thick composite structures

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.

    1993-01-01

    Computational mechanics for the prediction of damping and other dynamic characteristics in composite structures of general thicknesses and laminations are presented. Discrete layer damping mechanics that account for the representation of interlaminar shear effects in the material are summarized. Finite element based structural mechanics for the analysis of damping are described, and a specialty finite element is developed. Applications illustrate the quality of the discrete layer damping mechanics in predicting the damped dynamic characteristics of composite structures with thicker sections and/or laminate configurations that induce interlaminar shear. The results also illustrate and quantify the significance of interlaminar shear damping in such composite structures.

  10. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem

    PubMed Central

    2012-01-01

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al. PMID:22338640

  11. Particle-based simulation of charge transport in discrete-charge nano-scale systems: the electrostatic problem.

    PubMed

    Berti, Claudio; Gillespie, Dirk; Eisenberg, Robert S; Fiegna, Claudio

    2012-02-16

    The fast and accurate computation of the electric forces that drive the motion of charged particles at the nanometer scale represents a computational challenge. For this kind of system, where the discrete nature of the charges cannot be neglected, boundary element methods (BEM) represent a better approach than finite differences/finite elements methods. In this article, we compare two different BEM approaches to a canonical electrostatic problem in a three-dimensional space with inhomogeneous dielectrics, emphasizing their suitability for particle-based simulations: the iterative method proposed by Hoyles et al. and the Induced Charge Computation introduced by Boda et al.

  12. A fast solver for the Helmholtz equation based on the generalized multiscale finite-element method

    NASA Astrophysics Data System (ADS)

    Fu, Shubin; Gao, Kai

    2017-11-01

    Conventional finite-element methods for solving the acoustic-wave Helmholtz equation in highly heterogeneous media usually require finely discretized mesh to represent the medium property variations with sufficient accuracy. Computational costs for solving the Helmholtz equation can therefore be considerably expensive for complicated and large geological models. Based on the generalized multiscale finite-element theory, we develop a novel continuous Galerkin method to solve the Helmholtz equation in acoustic media with spatially variable velocity and mass density. Instead of using conventional polynomial basis functions, we use multiscale basis functions to form the approximation space on the coarse mesh. The multiscale basis functions are obtained from multiplying the eigenfunctions of a carefully designed local spectral problem with an appropriate multiscale partition of unity. These multiscale basis functions can effectively incorporate the characteristics of heterogeneous media's fine-scale variations, thus enable us to obtain accurate solution to the Helmholtz equation without directly solving the large discrete system formed on the fine mesh. Numerical results show that our new solver can significantly reduce the dimension of the discrete Helmholtz equation system, and can also obviously reduce the computational time.

  13. Finite Element Analysis of Geodesically Stiffened Cylindrical Composite Shells Using a Layerwise Theory

    NASA Technical Reports Server (NTRS)

    Gerhard, Craig Steven; Gurdal, Zafer; Kapania, Rakesh K.

    1996-01-01

    Layerwise finite element analyses of geodesically stiffened cylindrical shells are presented. The layerwise laminate theory of Reddy (LWTR) is developed and adapted to circular cylindrical shells. The Ritz variational method is used to develop an analytical approach for studying the buckling of simply supported geodesically stiffened shells with discrete stiffeners. This method utilizes a Lagrange multiplier technique to attach the stiffeners to the shell. The development of the layerwise shells couples a one-dimensional finite element through the thickness with a Navier solution that satisfies the boundary conditions. The buckling results from the Ritz discrete analytical method are compared with smeared buckling results and with NASA Testbed finite element results. The development of layerwise shell and beam finite elements is presented and these elements are used to perform the displacement field, stress, and first-ply failure analyses. The layerwise shell elements are used to model the shell skin and the layerwise beam elements are used to model the stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. A series of analytical studies are made to compare the response of geodesically stiffened shells as a function of loading, shell geometry, shell radii, shell laminate thickness, stiffener height, and geometric nonlinearity. Comparisons of the structural response of geodesically stiffened shells, axial and ring stiffened shells, and unstiffened shells are provided. In addition, interlaminar stress results near the stiffener intersection are presented. First-ply failure analyses for geodesically stiffened shells utilizing the Tsai-Wu failure criterion are presented for a few selected cases.

  14. A mimetic finite difference method for the Stokes problem with elected edge bubbles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipnikov, K; Berirao, L

    2009-01-01

    A new mimetic finite difference method for the Stokes problem is proposed and analyzed. The unstable P{sub 1}-P{sub 0} discretization is stabilized by adding a small number of bubble functions to selected mesh edges. A simple strategy for selecting such edges is proposed and verified with numerical experiments. The discretizations schemes for Stokes and Navier-Stokes equations must satisfy the celebrated inf-sup (or the LBB) stability condition. The stability condition implies a balance between discrete spaces for velocity and pressure. In finite elements, this balance is frequently achieved by adding bubble functions to the velocity space. The goal of this articlemore » is to show that the stabilizing edge bubble functions can be added only to a small set of mesh edges. This results in a smaller algebraic system and potentially in a faster calculations. We employ the mimetic finite difference (MFD) discretization technique that works for general polyhedral meshes and can accomodate non-uniform distribution of stabilizing bubbles.« less

  15. Inversion of Robin coefficient by a spectral stochastic finite element approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin Bangti; Zou Jun

    2008-03-01

    This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.

  16. Numerical approximation for the infinite-dimensional discrete-time optimal linear-quadratic regulator problem

    NASA Technical Reports Server (NTRS)

    Gibson, J. S.; Rosen, I. G.

    1986-01-01

    An abstract approximation framework is developed for the finite and infinite time horizon discrete-time linear-quadratic regulator problem for systems whose state dynamics are described by a linear semigroup of operators on an infinite dimensional Hilbert space. The schemes included the framework yield finite dimensional approximations to the linear state feedback gains which determine the optimal control law. Convergence arguments are given. Examples involving hereditary and parabolic systems and the vibration of a flexible beam are considered. Spline-based finite element schemes for these classes of problems, together with numerical results, are presented and discussed.

  17. On the torsional loading of elastoplastic spheres in contact

    NASA Astrophysics Data System (ADS)

    Nadimi, Sadegh; Fonseca, Joana

    2017-06-01

    The mechanical interaction between two bodies involves normal loading in combination with tangential, torsional and rotational loading. This paper focuses on the torsional loading of two spherical bodies which leads to twisting moment. The theoretical approach for calculating twisting moment between two spherical bodies has been proposed by Lubkin [1]. Due to the complexity of the solution, this has been simplified by Deresiewicz for discrete element modelling [2]. Here, the application of a simplified model for elastoplastic spheres is verified using computational modelling. The single grain interaction is simulated in a combined finite discrete element domain. In this domain a grain can deform using a finite element formulation and can interact with other objects based on discrete element principles. For an elastoplastic model, the contact area is larger in comparison with the elastic model, under a given normal force. Therefore, the plastic twisting moment is stiffer. The results presented here are important for describing any granular system involving torsional loading of elastoplastic grains. In particular, recent research on the behaviour of soil has clearly shown the importance of plasticity on grain interaction and rearrangement.

  18. Finite Element Aircraft Simulation of Turbulence

    DOT National Transportation Integrated Search

    1997-02-01

    A Simulation of Rotor Blade Element Turbulence (SORBET) model has been : developed for realtime aircraft simulation that accommodates stochastic : turbulence and distributed discrete gusts as a function of the terrain. This : model is applicable to c...

  19. Nonconforming mortar element methods: Application to spectral discretizations

    NASA Technical Reports Server (NTRS)

    Maday, Yvon; Mavriplis, Cathy; Patera, Anthony

    1988-01-01

    Spectral element methods are p-type weighted residual techniques for partial differential equations that combine the generality of finite element methods with the accuracy of spectral methods. Presented here is a new nonconforming discretization which greatly improves the flexibility of the spectral element approach as regards automatic mesh generation and non-propagating local mesh refinement. The method is based on the introduction of an auxiliary mortar trace space, and constitutes a new approach to discretization-driven domain decomposition characterized by a clean decoupling of the local, structure-preserving residual evaluations and the transmission of boundary and continuity conditions. The flexibility of the mortar method is illustrated by several nonconforming adaptive Navier-Stokes calculations in complex geometry.

  20. High mobility of large mass movements: a study by means of FEM/DEM simulations

    NASA Astrophysics Data System (ADS)

    Manzella, I.; Lisjak, A.; Grasselli, G.

    2013-12-01

    Large mass movements, such as rock avalanches and large volcanic debris avalanches are characterized by extremely long propagation, which cannot be modelled using normal sliding friction law. For this reason several studies and theories derived from field observation, physical theories and laboratory experiments, exist to try to explain their high mobility. In order to investigate more into deep some of the processes recalled by these theories, simulations have been run with a new numerical tool called Y-GUI based on the Finite Element-Discrete Element Method FEM/DEM. The FEM/DEM method is a numerical technique developed by Munjiza et al. (1995) where Discrete Element Method (DEM) algorithms are used to model the interaction between different solids, while Finite Element Method (FEM) principles are used to analyze their deformability being also able to explicitly simulate material sudden loss of cohesion (i.e. brittle failure). In particular numerical tests have been run, inspired by the small-scale experiments done by Manzella and Labiouse (2013). They consist of rectangular blocks released on a slope; each block is a rectangular discrete element made of a mesh of finite elements enabled to fragment. These simulations have highlighted the influence on the propagation of block packing, i.e. whether the elements are piled into geometrical ordinate structure before failure or they are chaotically disposed as a loose material, and of the topography, i.e. whether the slope break is smooth and regular or not. In addition the effect of fracturing, i.e. fragmentation, on the total runout have been studied and highlighted.

  1. Hybrid Discrete Element - Finite Element Simulation for Railway Bridge-Track Interaction

    NASA Astrophysics Data System (ADS)

    Kaewunruen, S.; Mirza, O.

    2017-10-01

    At the transition zone or sometimes called ‘bridge end’ or ‘bridge approach’, the stiffness difference between plain track and track over bridge often causes aggravated impact loading due to uneven train movement onto the area. The differential track settlement over the transition has been a classical problem in railway networks, especially for the aging rail infrastructures around the world. This problem is also additionally worsened by the fact that the construction practice over the area is difficult, resulting in a poor compaction of formation and subgrade. This paper presents an advanced hybrid simulation using coupled discrete elements and finite elements to investigate dynamic interaction at the transition zone. The goal is to evaluate the dynamic stresses and to better understand the impact dynamics redistribution at the bridge end. An existing bridge ‘Salt Pan Creek Railway Bridge’, located between Revesby and Kingsgrove, has been chosen for detailed investigation. The Salt Pan Bridge currently demonstrates crushing of the ballast causing significant deformation and damage. Thus, it’s imperative to assess the behaviours of the ballast under dynamic loads. This can be achieved by modelling the nonlinear interactions between the steel rail and sleeper, and sleeper to ballast. The continuum solid elements of track components have been modelled using finite element approach, while the granular media (i.e. ballast) have been simulated by discrete element method. The hybrid DE/FE model demonstrates that ballast experiences significant stresses at the contacts between the sleeper and concrete section. These overburden stress exists in the regions below the outer rails, identify fouling and permanent deformation of the ballast.

  2. Discontinuous Galerkin Finite Element Method for Parabolic Problems

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    In this paper, we develop a time and its corresponding spatial discretization scheme, based upon the assumption of a certain weak singularity of parallel ut(t) parallel Lz(omega) = parallel ut parallel2, for the discontinuous Galerkin finite element method for one-dimensional parabolic problems. Optimal convergence rates in both time and spatial variables are obtained. A discussion of automatic time-step control method is also included.

  3. A high-order Lagrangian-decoupling method for the incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Ho, Lee-Wing; Maday, Yvon; Patera, Anthony T.; Ronquist, Einar M.

    1989-01-01

    A high-order Lagrangian-decoupling method is presented for the unsteady convection-diffusion and incompressible Navier-Stokes equations. The method is based upon: (1) Lagrangian variational forms that reduce the convection-diffusion equation to a symmetric initial value problem; (2) implicit high-order backward-differentiation finite-difference schemes for integration along characteristics; (3) finite element or spectral element spatial discretizations; and (4) mesh-invariance procedures and high-order explicit time-stepping schemes for deducing function values at convected space-time points. The method improves upon previous finite element characteristic methods through the systematic and efficient extension to high order accuracy, and the introduction of a simple structure-preserving characteristic-foot calculation procedure which is readily implemented on modern architectures. The new method is significantly more efficient than explicit-convection schemes for the Navier-Stokes equations due to the decoupling of the convection and Stokes operators and the attendant increase in temporal stability. Numerous numerical examples are given for the convection-diffusion and Navier-Stokes equations for the particular case of a spectral element spatial discretization.

  4. Geometric Structure-Preserving Discretization Schemes for Nonlinear Elasticity

    DTIC Science & Technology

    2015-08-13

    conditions. 15.  SUBJECT TERMS geometric theory for nonlinear elasticity, discrete exterior calculus 16.  SECURITY CLASSIFICATION OF: 17.  LIMITATION...associated Laplacian. We use the general theory for approximation of Hilbert complexes and the finite element exterior calculus and introduce some stable mixed

  5. A locally refined rectangular grid finite element method - Application to computational fluid dynamics and computational physics

    NASA Technical Reports Server (NTRS)

    Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.

    1991-01-01

    The present FEM technique addresses both linear and nonlinear boundary value problems encountered in computational physics by handling general three-dimensional regions, boundary conditions, and material properties. The box finite elements used are defined by a Cartesian grid independent of the boundary definition, and local refinements proceed by dividing a given box element into eight subelements. Discretization employs trilinear approximations on the box elements; special element stiffness matrices are included for boxes cut by any boundary surface. Illustrative results are presented for representative aerodynamics problems involving up to 400,000 elements.

  6. Numerical treatment of a geometrically nonlinear planar Cosserat shell model

    NASA Astrophysics Data System (ADS)

    Sander, Oliver; Neff, Patrizio; Bîrsan, Mircea

    2016-05-01

    We present a new way to discretize a geometrically nonlinear elastic planar Cosserat shell. The kinematical model is similar to the general six-parameter resultant shell model with drilling rotations. The discretization uses geodesic finite elements (GFEs), which leads to an objective discrete model which naturally allows arbitrarily large rotations. GFEs of any approximation order can be constructed. The resulting algebraic problem is a minimization problem posed on a nonlinear finite-dimensional Riemannian manifold. We solve this problem using a Riemannian trust-region method, which is a generalization of Newton's method that converges globally without intermediate loading steps. We present the continuous model and the discretization, discuss the properties of the discrete model, and show several numerical examples, including wrinkling of thin elastic sheets in shear.

  7. Analysis of Tire Tractive Performance on Deformable Terrain by Finite Element-Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Nakashima, Hiroshi; Takatsu, Yuzuru

    The goal of this study is to develop a practical and fast simulation tool for soil-tire interaction analysis, where finite element method (FEM) and discrete element method (DEM) are coupled together, and which can be realized on a desktop PC. We have extended our formerly proposed dynamic FE-DE method (FE-DEM) to include practical soil-tire system interaction, where not only the vertical sinkage of a tire, but also the travel of a driven tire was considered. Numerical simulation by FE-DEM is stable, and the relationships between variables, such as load-sinkage and sinkage-travel distance, and the gross tractive effort and running resistance characteristics, are obtained. Moreover, the simulation result is accurate enough to predict the maximum drawbar pull for a given tire, once the appropriate parameter values are provided. Therefore, the developed FE-DEM program can be applied with sufficient accuracy to interaction problems in soil-tire systems.

  8. Finite element stress analysis of the human left ventricle whose irregular shape is developed from single plane cineangiocardiogram

    NASA Technical Reports Server (NTRS)

    Ghista, D. N.; Hamid, M. S.

    1977-01-01

    The three-dimensional left ventricular chamber geometrical model is developed from single plane cineangiocardiogram. This left ventricular model is loaded by an internal pressure monitored by cardiac catheterization. The resulting stresses in the left ventricular model chamber's wall are determined by computerized finite element procedure. For the discretization of this left ventricular model structure, a 20-node, isoparametric finite element is employed. The analysis and formulation of the computerised procedure is presented in the paper, along with the detailed algorithms and computer programs. The procedure is applied to determine the stresses in a left ventricle at an instant, during systole. Next, a portion (represented by a finite element) of this left ventricular chamber is simulated as being infarcted by making its active-state modulus value equal to its passive-state value; the neighbouring elements are shown to relieve the 'infarcted' element of stress by themselves taking on more stress.

  9. Radiation and scattering from printed antennas on cylindrically conformal platforms

    NASA Technical Reports Server (NTRS)

    Kempel, Leo C.; Volakis, John L.; Bindiganavale, Sunil

    1994-01-01

    The goal was to develop suitable methods and software for the analysis of antennas on cylindrical coated and uncoated platforms. Specifically, the finite element boundary integral and finite element ABC methods were employed successfully and associated software were developed for the analysis and design of wraparound and discrete cavity-backed arrays situated on cylindrical platforms. This work led to the successful implementation of analysis software for such antennas. Developments which played a role in this respect are the efficient implementation of the 3D Green's function for a metallic cylinder, the incorporation of the fast Fourier transform in computing the matrix-vector products executed in the solver of the finite element-boundary integral system, and the development of a new absorbing boundary condition for terminating the finite element mesh on cylindrical surfaces.

  10. A Second Order Semi-Discrete Cosserat Rod Model Suitable for Dynamic Simulations in Real Time

    NASA Astrophysics Data System (ADS)

    Lang, Holger; Linn, Joachim

    2009-09-01

    We present an alternative approach for a semi-discrete viscoelastic Cosserat rod model that allows both fast dynamic computations within milliseconds and accurate results compared to detailed finite element solutions. The model is able to represent extension, shearing, bending and torsion. For inner dissipation, a consistent damping potential from Antman is chosen. The continuous equations of motion, which consist a system of nonlinear hyperbolic partial differential algebraic equations, are derived from a two dimensional variational principle. The semi-discrete balance equations are obtained by spatial finite difference schemes on a staggered grid and standard index reduction techniques. The right-hand side of the model and its Jacobian can be chosen free of higher algebraic (e.g. root) or transcendent (e.g. trigonometric or exponential) functions and is therefore extremely cheap to evaluate numerically. For the time integration of the system, we use well established stiff solvers. As our model yields computational times within milliseconds, it is suitable for interactive manipulation. It reflects structural mechanics solutions sufficiently correct, as comparison with detailed finite element results shows.

  11. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Various analytical and numerical methods used to evaluate the stress intensity factors for cracks in three-dimensional (3-D) solids are reviewed. Classical exact solutions and many of the approximate methods used in 3-D analyses of cracks are reviewed. The exact solutions for embedded elliptic cracks in infinite solids are discussed. The approximate methods reviewed are the finite element methods, the boundary integral equation (BIE) method, the mixed methods (superposition of analytical and finite element method, stress difference method, discretization-error method, alternating method, finite element-alternating method), and the line-spring model. The finite element method with singularity elements is the most widely used method. The BIE method only needs modeling of the surfaces of the solid and so is gaining popularity. The line-spring model appears to be the quickest way to obtain good estimates of the stress intensity factors. The finite element-alternating method appears to yield the most accurate solution at the minimum cost.

  12. A finite element analysis of viscoelastically damped sandwich plates

    NASA Astrophysics Data System (ADS)

    Ma, B.-A.; He, J.-F.

    1992-01-01

    A finite element analysis associated with an asymptotic solution method for the harmonic flexural vibration of viscoelastically damped unsymmetrical sandwich plates is given. The element formulation is based on generalization of the discrete Kirchhoff theory (DKT) element formulation. The results obtained with the first order approximation of the asymptotic solution presented here are the same as those obtained by means of the modal strain energy (MSE) method. By taking more terms of the asymptotic solution, with successive calculations and use of the Padé approximants method, accuracy can be improved. The finite element computation has been verified by comparison with an analytical exact solution for rectangular plates with simply supported edges. Results for the same plates with clamped edges are also presented.

  13. Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.

  14. Dynamic mortar finite element method for modeling of shear rupture on frictional rough surfaces

    NASA Astrophysics Data System (ADS)

    Tal, Yuval; Hager, Bradford H.

    2017-09-01

    This paper presents a mortar-based finite element formulation for modeling the dynamics of shear rupture on rough interfaces governed by slip-weakening and rate and state (RS) friction laws, focusing on the dynamics of earthquakes. The method utilizes the dual Lagrange multipliers and the primal-dual active set strategy concepts, together with a consistent discretization and linearization of the contact forces and constraints, and the friction laws to obtain a semi-smooth Newton method. The discretization of the RS friction law involves a procedure to condense out the state variables, thus eliminating the addition of another set of unknowns into the system. Several numerical examples of shear rupture on frictional rough interfaces demonstrate the efficiency of the method and examine the effects of the different time discretization schemes on the convergence, energy conservation, and the time evolution of shear traction and slip rate.

  15. Solving ill-posed control problems by stabilized finite element methods: an alternative to Tikhonov regularization

    NASA Astrophysics Data System (ADS)

    Burman, Erik; Hansbo, Peter; Larson, Mats G.

    2018-03-01

    Tikhonov regularization is one of the most commonly used methods for the regularization of ill-posed problems. In the setting of finite element solutions of elliptic partial differential control problems, Tikhonov regularization amounts to adding suitably weighted least squares terms of the control variable, or derivatives thereof, to the Lagrangian determining the optimality system. In this note we show that the stabilization methods for discretely ill-posed problems developed in the setting of convection-dominated convection-diffusion problems, can be highly suitable for stabilizing optimal control problems, and that Tikhonov regularization will lead to less accurate discrete solutions. We consider some inverse problems for Poisson’s equation as an illustration and derive new error estimates both for the reconstruction of the solution from the measured data and reconstruction of the source term from the measured data. These estimates include both the effect of the discretization error and error in the measurements.

  16. The role of continuity in residual-based variational multiscale modeling of turbulence

    NASA Astrophysics Data System (ADS)

    Akkerman, I.; Bazilevs, Y.; Calo, V. M.; Hughes, T. J. R.; Hulshoff, S.

    2008-02-01

    This paper examines the role of continuity of the basis in the computation of turbulent flows. We compare standard finite elements and non-uniform rational B-splines (NURBS) discretizations that are employed in Isogeometric Analysis (Hughes et al. in Comput Methods Appl Mech Eng, 194:4135 4195, 2005). We make use of quadratic discretizations that are C 0-continuous across element boundaries in standard finite elements, and C 1-continuous in the case of NURBS. The variational multiscale residual-based method (Bazilevs in Isogeometric analysis of turbulence and fluid-structure interaction, PhD thesis, ICES, UT Austin, 2006; Bazilevs et al. in Comput Methods Appl Mech Eng, submitted, 2007; Calo in Residual-based multiscale turbulence modeling: finite volume simulation of bypass transition. PhD thesis, Department of Civil and Environmental Engineering, Stanford University, 2004; Hughes et al. in proceedings of the XXI international congress of theoretical and applied mechanics (IUTAM), Kluwer, 2004; Scovazzi in Multiscale methods in science and engineering, PhD thesis, Department of Mechanical Engineering, Stanford Universty, 2004) is employed as a turbulence modeling technique. We find that C 1-continuous discretizations outperform their C 0-continuous counterparts on a per-degree-of-freedom basis. We also find that the effect of continuity is greater for higher Reynolds number flows.

  17. A Linear-Elasticity Solver for Higher-Order Space-Time Mesh Deformation

    NASA Technical Reports Server (NTRS)

    Diosady, Laslo T.; Murman, Scott M.

    2018-01-01

    A linear-elasticity approach is presented for the generation of meshes appropriate for a higher-order space-time discontinuous finite-element method. The equations of linear-elasticity are discretized using a higher-order, spatially-continuous, finite-element method. Given an initial finite-element mesh, and a specified boundary displacement, we solve for the mesh displacements to obtain a higher-order curvilinear mesh. Alternatively, for moving-domain problems we use the linear-elasticity approach to solve for a temporally discontinuous mesh velocity on each time-slab and recover a continuous mesh deformation by integrating the velocity. The applicability of this methodology is presented for several benchmark test cases.

  18. A majorized Newton-CG augmented Lagrangian-based finite element method for 3D restoration of geological models

    NASA Astrophysics Data System (ADS)

    Tang, Peipei; Wang, Chengjing; Dai, Xiaoxia

    2016-04-01

    In this paper, we propose a majorized Newton-CG augmented Lagrangian-based finite element method for 3D elastic frictionless contact problems. In this scheme, we discretize the restoration problem via the finite element method and reformulate it to a constrained optimization problem. Then we apply the majorized Newton-CG augmented Lagrangian method to solve the optimization problem, which is very suitable for the ill-conditioned case. Numerical results demonstrate that the proposed method is a very efficient algorithm for various large-scale 3D restorations of geological models, especially for the restoration of geological models with complicated faults.

  19. Finite Volume Methods: Foundation and Analysis

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Ohlberger, Mario

    2003-01-01

    Finite volume methods are a class of discretization schemes that have proven highly successful in approximating the solution of a wide variety of conservation law systems. They are extensively used in fluid mechanics, porous media flow, meteorology, electromagnetics, models of biological processes, semi-conductor device simulation and many other engineering areas governed by conservative systems that can be written in integral control volume form. This article reviews elements of the foundation and analysis of modern finite volume methods. The primary advantages of these methods are numerical robustness through the obtention of discrete maximum (minimum) principles, applicability on very general unstructured meshes, and the intrinsic local conservation properties of the resulting schemes. Throughout this article, specific attention is given to scalar nonlinear hyperbolic conservation laws and the development of high order accurate schemes for discretizing them. A key tool in the design and analysis of finite volume schemes suitable for non-oscillatory discontinuity capturing is discrete maximum principle analysis. A number of building blocks used in the development of numerical schemes possessing local discrete maximum principles are reviewed in one and several space dimensions, e.g. monotone fluxes, E-fluxes, TVD discretization, non-oscillatory reconstruction, slope limiters, positive coefficient schemes, etc. When available, theoretical results concerning a priori and a posteriori error estimates are given. Further advanced topics are then considered such as high order time integration, discretization of diffusion terms and the extension to systems of nonlinear conservation laws.

  20. Nonlinear finite element formulation for the large displacement analysis in multibody system dynamics

    NASA Technical Reports Server (NTRS)

    Rismantab-Sany, J.; Chang, B.; Shabana, A. A.

    1989-01-01

    A total Lagrangian finite element formulation for the deformable bodies in multibody mechanical systems that undergo finite relative rotations is developed. The deformable bodies are discretized using finite element methods. The shape functions that are used to describe the displacement field are required to include the rigid body modes that describe only large translational displacements. This does not impose any limitations on the technique because most commonly used shape functions satisfy this requirement. The configuration of an element is defined using four sets of coordinate systems: Body, Element, Intermediate element, Global. The body coordinate system serves as a unique standard for the assembly of the elements forming the deformable body. The element coordinate system is rigidly attached to the element and therefore it translates and rotates with the element. The intermediate element coordinate system, whose axes are initially parallel to the element axes, has an origin which is rigidly attached to the origin of the body coordinate system and is used to conveniently describe the configuration of the element in undeformed state with respect to the body coordinate system.

  1. An Optimal Order Nonnested Mixed Multigrid Method for Generalized Stokes Problems

    NASA Technical Reports Server (NTRS)

    Deng, Qingping

    1996-01-01

    A multigrid algorithm is developed and analyzed for generalized Stokes problems discretized by various nonnested mixed finite elements within a unified framework. It is abstractly proved by an element-independent analysis that the multigrid algorithm converges with an optimal order if there exists a 'good' prolongation operator. A technique to construct a 'good' prolongation operator for nonnested multilevel finite element spaces is proposed. Its basic idea is to introduce a sequence of auxiliary nested multilevel finite element spaces and define a prolongation operator as a composite operator of two single grid level operators. This makes not only the construction of a prolongation operator much easier (the final explicit forms of such prolongation operators are fairly simple), but the verification of the approximate properties for prolongation operators is also simplified. Finally, as an application, the framework and technique is applied to seven typical nonnested mixed finite elements.

  2. Multiphysics elastodynamic finite element analysis of space debris deorbit stability and efficiency by electrodynamic tethers

    NASA Astrophysics Data System (ADS)

    Li, Gangqiang; Zhu, Zheng H.; Ruel, Stephane; Meguid, S. A.

    2017-08-01

    This paper developed a new multiphysics finite element method for the elastodynamic analysis of space debris deorbit by a bare flexible electrodynamic tether. Orbital motion limited theory and dynamics of flexible electrodynamic tethers are discretized by the finite element method, where the motional electric field is variant along the tether and coupled with tether deflection and motion. Accordingly, the electrical current and potential bias profiles of tether are solved together with the tether dynamics by the nodal position finite element method. The newly proposed multiphysics finite element method is applied to analyze the deorbit dynamics of space debris by electrodynamic tethers with a two-stage energy control strategy to ensure an efficient and stable deorbit process. Numerical simulations are conducted to study the coupled effect between the motional electric field and the tether dynamics. The results reveal that the coupling effect has a significant influence on the tether stability and the deorbit performance. It cannot be ignored when the libration and deflection of the tether are significant.

  3. A Multifunctional Interface Method for Coupling Finite Element and Finite Difference Methods: Two-Dimensional Scalar-Field Problems

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2002-01-01

    A multifunctional interface method with capabilities for variable-fidelity modeling and multiple method analysis is presented. The methodology provides an effective capability by which domains with diverse idealizations can be modeled independently to exploit the advantages of one approach over another. The multifunctional method is used to couple independently discretized subdomains, and it is used to couple the finite element and the finite difference methods. The method is based on a weighted residual variational method and is presented for two-dimensional scalar-field problems. A verification test problem and a benchmark application are presented, and the computational implications are discussed.

  4. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE PAGES

    Guerra, Jorge E.; Ullrich, Paul A.

    2016-06-01

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  5. A high-order staggered finite-element vertical discretization for non-hydrostatic atmospheric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerra, Jorge E.; Ullrich, Paul A.

    Atmospheric modeling systems require economical methods to solve the non-hydrostatic Euler equations. Two major differences between hydrostatic models and a full non-hydrostatic description lies in the vertical velocity tendency and numerical stiffness associated with sound waves. In this work we introduce a new arbitrary-order vertical discretization entitled the staggered nodal finite-element method (SNFEM). Our method uses a generalized discrete derivative that consistently combines the discontinuous Galerkin and spectral element methods on a staggered grid. Our combined method leverages the accurate wave propagation and conservation properties of spectral elements with staggered methods that eliminate stationary (2Δ x) modes. Furthermore, high-order accuracymore » also eliminates the need for a reference state to maintain hydrostatic balance. In this work we demonstrate the use of high vertical order as a means of improving simulation quality at relatively coarse resolution. We choose a test case suite that spans the range of atmospheric flows from predominantly hydrostatic to nonlinear in the large-eddy regime. Lastly, our results show that there is a distinct benefit in using the high-order vertical coordinate at low resolutions with the same robust properties as the low-order alternative.« less

  6. Existence and stability, and discrete BB and rank conditions, for general mixed-hybrid finite elements in elasticity

    NASA Technical Reports Server (NTRS)

    Xue, W.-M.; Atluri, S. N.

    1985-01-01

    In this paper, all possible forms of mixed-hybrid finite element methods that are based on multi-field variational principles are examined as to the conditions for existence, stability, and uniqueness of their solutions. The reasons as to why certain 'simplified hybrid-mixed methods' in general, and the so-called 'simplified hybrid-displacement method' in particular (based on the so-called simplified variational principles), become unstable, are discussed. A comprehensive discussion of the 'discrete' BB-conditions, and the rank conditions, of the matrices arising in mixed-hybrid methods, is given. Some recent studies aimed at the assurance of such rank conditions, and the related problem of the avoidance of spurious kinematic modes, are presented.

  7. A framework for grand scale parallelization of the combined finite discrete element method in 2d

    NASA Astrophysics Data System (ADS)

    Lei, Z.; Rougier, E.; Knight, E. E.; Munjiza, A.

    2014-09-01

    Within the context of rock mechanics, the Combined Finite-Discrete Element Method (FDEM) has been applied to many complex industrial problems such as block caving, deep mining techniques (tunneling, pillar strength, etc.), rock blasting, seismic wave propagation, packing problems, dam stability, rock slope stability, rock mass strength characterization problems, etc. The reality is that most of these were accomplished in a 2D and/or single processor realm. In this work a hardware independent FDEM parallelization framework has been developed using the Virtual Parallel Machine for FDEM, (V-FDEM). With V-FDEM, a parallel FDEM software can be adapted to different parallel architecture systems ranging from just a few to thousands of cores.

  8. A Unique Finite Element Modeling of the Periodic Wave Transformation over Sloping and Barred Beaches by Beji and Nadaoka's Extended Boussinesq Equations

    PubMed Central

    Jabbari, Mohammad Hadi; Sayehbani, Mesbah; Reisinezhad, Arsham

    2013-01-01

    This paper presents a numerical model based on one-dimensional Beji and Nadaoka's Extended Boussinesq equations for simulation of periodic wave shoaling and its decomposition over morphological beaches. A unique Galerkin finite element and Adams-Bashforth-Moulton predictor-corrector methods are employed for spatial and temporal discretization, respectively. For direct application of linear finite element method in spatial discretization, an auxiliary variable is hereby introduced, and a particular numerical scheme is offered to rewrite the equations in lower-order form. Stability of the suggested numerical method is also analyzed. Subsequently, in order to display the ability of the presented model, four different test cases are considered. In these test cases, dispersive and nonlinearity effects of the periodic waves over sloping beaches and barred beaches, which are the common coastal profiles, are investigated. Outputs are compared with other existing numerical and experimental data. Finally, it is concluded that the current model can be further developed to model any morphological development of coastal profiles. PMID:23853534

  9. Semi-automatic sparse preconditioners for high-order finite element methods on non-uniform meshes

    NASA Astrophysics Data System (ADS)

    Austin, Travis M.; Brezina, Marian; Jamroz, Ben; Jhurani, Chetan; Manteuffel, Thomas A.; Ruge, John

    2012-05-01

    High-order finite elements often have a higher accuracy per degree of freedom than the classical low-order finite elements. However, in the context of implicit time-stepping methods, high-order finite elements present challenges to the construction of efficient simulations due to the high cost of inverting the denser finite element matrix. There are many cases where simulations are limited by the memory required to store the matrix and/or the algorithmic components of the linear solver. We are particularly interested in preconditioned Krylov methods for linear systems generated by discretization of elliptic partial differential equations with high-order finite elements. Using a preconditioner like Algebraic Multigrid can be costly in terms of memory due to the need to store matrix information at the various levels. We present a novel method for defining a preconditioner for systems generated by high-order finite elements that is based on a much sparser system than the original high-order finite element system. We investigate the performance for non-uniform meshes on a cube and a cubed sphere mesh, showing that the sparser preconditioner is more efficient and uses significantly less memory. Finally, we explore new methods to construct the sparse preconditioner and examine their effectiveness for non-uniform meshes. We compare results to a direct use of Algebraic Multigrid as a preconditioner and to a two-level additive Schwarz method.

  10. Finite element concepts in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.

  11. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  12. A Least-Squares-Based Weak Galerkin Finite Element Method for Second Order Elliptic Equations

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2017-08-17

    Here, in this article, we introduce a least-squares-based weak Galerkin finite element method for the second order elliptic equation. This new method is shown to provide very accurate numerical approximations for both the primal and the flux variables. In contrast to other existing least-squares finite element methods, this new method allows us to use discontinuous approximating functions on finite element partitions consisting of arbitrary polygon/polyhedron shapes. We also develop a Schur complement algorithm for the resulting discretization problem by eliminating all the unknowns that represent the solution information in the interior of each element. Optimal order error estimates for bothmore » the primal and the flux variables are established. An extensive set of numerical experiments are conducted to demonstrate the robustness, reliability, flexibility, and accuracy of the least-squares-based weak Galerkin finite element method. Finally, the numerical examples cover a wide range of applied problems, including singularly perturbed reaction-diffusion equations and the flow of fluid in porous media with strong anisotropy and heterogeneity.« less

  13. Finite Element in Angle Unit Sphere Meshing for Charged Particle Transport.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortega, Mario Ivan; Drumm, Clifton R.

    Finite element in angle formulations of the charged particle transport equation require the discretization of the unit sphere. In Sceptre, a three-dimensional surface mesh of a sphere is transformed into a two-dimensional mesh. Projection of a sphere onto a two-dimensional surface is well studied with map makers spending the last few centuries attempting to create maps that preserve proportion and area. Using these techniques, various meshing schemes for the unit sphere were investigated.

  14. Vectorization and parallelization of the finite strip method for dynamic Mindlin plate problems

    NASA Technical Reports Server (NTRS)

    Chen, Hsin-Chu; He, Ai-Fang

    1993-01-01

    The finite strip method is a semi-analytical finite element process which allows for a discrete analysis of certain types of physical problems by discretizing the domain of the problem into finite strips. This method decomposes a single large problem into m smaller independent subproblems when m harmonic functions are employed, thus yielding natural parallelism at a very high level. In this paper we address vectorization and parallelization strategies for the dynamic analysis of simply-supported Mindlin plate bending problems and show how to prevent potential conflicts in memory access during the assemblage process. The vector and parallel implementations of this method and the performance results of a test problem under scalar, vector, and vector-concurrent execution modes on the Alliant FX/80 are also presented.

  15. Generalized fourier analyses of the advection-diffusion equation - Part II: two-dimensional domains

    NASA Astrophysics Data System (ADS)

    Voth, Thomas E.; Martinez, Mario J.; Christon, Mark A.

    2004-07-01

    Part I of this work presents a detailed multi-methods comparison of the spatial errors associated with the one-dimensional finite difference, finite element and finite volume semi-discretizations of the scalar advection-diffusion equation. In Part II we extend the analysis to two-dimensional domains and also consider the effects of wave propagation direction and grid aspect ratio on the phase speed, and the discrete and artificial diffusivities. The observed dependence of dispersive and diffusive behaviour on propagation direction makes comparison of methods more difficult relative to the one-dimensional results. For this reason, integrated (over propagation direction and wave number) error and anisotropy metrics are introduced to facilitate comparison among the various methods. With respect to these metrics, the consistent mass Galerkin and consistent mass control-volume finite element methods, and their streamline upwind derivatives, exhibit comparable accuracy, and generally out-perform their lumped mass counterparts and finite-difference based schemes. While this work can only be considered a first step in a comprehensive multi-methods analysis and comparison, it serves to identify some of the relative strengths and weaknesses of multiple numerical methods in a common mathematical framework. Published in 2004 by John Wiley & Sons, Ltd.

  16. Wavelet-based spectral finite element dynamic analysis for an axially moving Timoshenko beam

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Mirdamadi, Hamid Reza; Ghayour, Mostafa

    2017-08-01

    In this article, wavelet-based spectral finite element (WSFE) model is formulated for time domain and wave domain dynamic analysis of an axially moving Timoshenko beam subjected to axial pretension. The formulation is similar to conventional FFT-based spectral finite element (SFE) model except that Daubechies wavelet basis functions are used for temporal discretization of the governing partial differential equations into a set of ordinary differential equations. The localized nature of Daubechies wavelet basis functions helps to rule out problems of SFE model due to periodicity assumption, especially during inverse Fourier transformation and back to time domain. The high accuracy of WSFE model is then evaluated by comparing its results with those of conventional finite element and SFE results. The effects of moving beam speed and axial tensile force on vibration and wave characteristics, and static and dynamic stabilities of moving beam are investigated.

  17. Adaptive mixed finite element methods for Darcy flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Chen, Huangxin; Salama, Amgad; Sun, Shuyu

    2016-10-01

    In this paper, we propose adaptive mixed finite element methods for simulating the single-phase Darcy flow in two-dimensional fractured porous media. The reduced model that we use for the simulation is a discrete fracture model coupling Darcy flows in the matrix and the fractures, and the fractures are modeled by one-dimensional entities. The Raviart-Thomas mixed finite element methods are utilized for the solution of the coupled Darcy flows in the matrix and the fractures. In order to improve the efficiency of the simulation, we use adaptive mixed finite element methods based on novel residual-based a posteriori error estimators. In addition, we develop an efficient upscaling algorithm to compute the effective permeability of the fractured porous media. Several interesting examples of Darcy flow in the fractured porous media are presented to demonstrate the robustness of the algorithm.

  18. Multi-scale and multi-physics simulations using the multi-fluid plasma model

    DTIC Science & Technology

    2017-04-25

    small The simulation uses 512 second-order elements Bz = 1.0, Te = Ti = 0.01, ui = ue = 0 ne = ni = 1.0 + e−10(x−6) 2 Baboolal, Math . and Comp. Sim. 55...DISTRIBUTION Clearance No. 17211 23 / 31 SUMMARY The blended finite element method (BFEM) is presented DG spatial discretization with explicit Runge...Kutta (i+, n) CG spatial discretization with implicit Crank-Nicolson (e−, fileds) DG captures shocks and discontinuities CG is efficient and robust for

  19. A quasi-Lagrangian finite element method for the Navier-Stokes equations in a time-dependent domain

    NASA Astrophysics Data System (ADS)

    Lozovskiy, Alexander; Olshanskii, Maxim A.; Vassilevski, Yuri V.

    2018-05-01

    The paper develops a finite element method for the Navier-Stokes equations of incompressible viscous fluid in a time-dependent domain. The method builds on a quasi-Lagrangian formulation of the problem. The paper provides stability and convergence analysis of the fully discrete (finite-difference in time and finite-element in space) method. The analysis does not assume any CFL time-step restriction, it rather needs mild conditions of the form $\\Delta t\\le C$, where $C$ depends only on problem data, and $h^{2m_u+2}\\le c\\,\\Delta t$, $m_u$ is polynomial degree of velocity finite element space. Both conditions result from a numerical treatment of practically important non-homogeneous boundary conditions. The theoretically predicted convergence rate is confirmed by a set of numerical experiments. Further we apply the method to simulate a flow in a simplified model of the left ventricle of a human heart, where the ventricle wall dynamics is reconstructed from a sequence of contrast enhanced Computed Tomography images.

  20. Hybrid finite difference/finite element immersed boundary method.

    PubMed

    E Griffith, Boyce; Luo, Xiaoyu

    2017-12-01

    The immersed boundary method is an approach to fluid-structure interaction that uses a Lagrangian description of the structural deformations, stresses, and forces along with an Eulerian description of the momentum, viscosity, and incompressibility of the fluid-structure system. The original immersed boundary methods described immersed elastic structures using systems of flexible fibers, and even now, most immersed boundary methods still require Lagrangian meshes that are finer than the Eulerian grid. This work introduces a coupling scheme for the immersed boundary method to link the Lagrangian and Eulerian variables that facilitates independent spatial discretizations for the structure and background grid. This approach uses a finite element discretization of the structure while retaining a finite difference scheme for the Eulerian variables. We apply this method to benchmark problems involving elastic, rigid, and actively contracting structures, including an idealized model of the left ventricle of the heart. Our tests include cases in which, for a fixed Eulerian grid spacing, coarser Lagrangian structural meshes yield discretization errors that are as much as several orders of magnitude smaller than errors obtained using finer structural meshes. The Lagrangian-Eulerian coupling approach developed in this work enables the effective use of these coarse structural meshes with the immersed boundary method. This work also contrasts two different weak forms of the equations, one of which is demonstrated to be more effective for the coarse structural discretizations facilitated by our coupling approach. © 2017 The Authors International  Journal  for  Numerical  Methods  in  Biomedical  Engineering Published by John Wiley & Sons Ltd.

  1. Overset meshing coupled with hybridizable discontinuous Galerkin finite elements

    DOE PAGES

    Kauffman, Justin A.; Sheldon, Jason P.; Miller, Scott T.

    2017-03-01

    We introduce the use of hybridizable discontinuous Galerkin (HDG) finite element methods on overlapping (overset) meshes. Overset mesh methods are advantageous for solving problems on complex geometrical domains. We also combine geometric flexibility of overset methods with the advantages of HDG methods: arbitrarily high-order accuracy, reduced size of the global discrete problem, and the ability to solve elliptic, parabolic, and/or hyperbolic problems with a unified form of discretization. This approach to developing the ‘overset HDG’ method is to couple the global solution from one mesh to the local solution on the overset mesh. We present numerical examples for steady convection–diffusionmore » and static elasticity problems. The examples demonstrate optimal order convergence in all primal fields for an arbitrary amount of overlap of the underlying meshes.« less

  2. Adaptive Shape Functions and Internal Mesh Adaptation for Modelling Progressive Failure in Adhesively Bonded Joints

    NASA Technical Reports Server (NTRS)

    Stapleton, Scott; Gries, Thomas; Waas, Anthony M.; Pineda, Evan J.

    2014-01-01

    Enhanced finite elements are elements with an embedded analytical solution that can capture detailed local fields, enabling more efficient, mesh independent finite element analysis. The shape functions are determined based on the analytical model rather than prescribed. This method was applied to adhesively bonded joints to model joint behavior with one element through the thickness. This study demonstrates two methods of maintaining the fidelity of such elements during adhesive non-linearity and cracking without increasing the mesh needed for an accurate solution. The first method uses adaptive shape functions, where the shape functions are recalculated at each load step based on the softening of the adhesive. The second method is internal mesh adaption, where cracking of the adhesive within an element is captured by further discretizing the element internally to represent the partially cracked geometry. By keeping mesh adaptations within an element, a finer mesh can be used during the analysis without affecting the global finite element model mesh. Examples are shown which highlight when each method is most effective in reducing the number of elements needed to capture adhesive nonlinearity and cracking. These methods are validated against analogous finite element models utilizing cohesive zone elements.

  3. Approaches to the automatic generation and control of finite element meshes

    NASA Technical Reports Server (NTRS)

    Shephard, Mark S.

    1987-01-01

    The algorithmic approaches being taken to the development of finite element mesh generators capable of automatically discretizing general domains without the need for user intervention are discussed. It is demonstrated that because of the modeling demands placed on a automatic mesh generator, all the approaches taken to date produce unstructured meshes. Consideration is also given to both a priori and a posteriori mesh control devices for automatic mesh generators as well as their integration with geometric modeling and adaptive analysis procedures.

  4. Lagrangian continuum dynamics in ALEGRA.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, Michael K. W.; Love, Edward

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  5. Three dimensional flow computations in a turbine scroll

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Ghantous, C. A.

    1982-01-01

    The compressible three dimensional inviscid flow in the scroll and vaneless nozzle of radial inflow turbines is analyzed. A FORTRAN computer program for the numerical solution of this complex flow field using the finite element method is presented. The program input consists of the mass flow rate and stagnation conditions at the scroll inlet and of the finite element discretization parameters and nodal coordinates. The output includes the pressure, Mach number and velocity magnitude and direction at all the nodal points.

  6. A mixed parallel strategy for the solution of coupled multi-scale problems at finite strains

    NASA Astrophysics Data System (ADS)

    Lopes, I. A. Rodrigues; Pires, F. M. Andrade; Reis, F. J. P.

    2018-02-01

    A mixed parallel strategy for the solution of homogenization-based multi-scale constitutive problems undergoing finite strains is proposed. The approach aims to reduce the computational time and memory requirements of non-linear coupled simulations that use finite element discretization at both scales (FE^2). In the first level of the algorithm, a non-conforming domain decomposition technique, based on the FETI method combined with a mortar discretization at the interface of macroscopic subdomains, is employed. A master-slave scheme, which distributes tasks by macroscopic element and adopts dynamic scheduling, is then used for each macroscopic subdomain composing the second level of the algorithm. This strategy allows the parallelization of FE^2 simulations in computers with either shared memory or distributed memory architectures. The proposed strategy preserves the quadratic rates of asymptotic convergence that characterize the Newton-Raphson scheme. Several examples are presented to demonstrate the robustness and efficiency of the proposed parallel strategy.

  7. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anninos, Peter; Lau, Cheuk; Bryant, Colton

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performedmore » separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.« less

  8. CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    NASA Astrophysics Data System (ADS)

    Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  9. The Mimetic Finite Element Method and the Virtual Element Method for elliptic problems with arbitrary regularity.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzini, Gianmarco

    2012-07-13

    We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.

  10. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ke; Euser, Bryan J.; Rougier, Esteban

    Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less

  11. Modeling of Stick-Slip Behavior in Sheared Granular Fault Gouge Using the Combined Finite-Discrete Element Method

    DOE PAGES

    Gao, Ke; Euser, Bryan J.; Rougier, Esteban; ...

    2018-06-20

    Sheared granular layers undergoing stick-slip behavior are broadly employed to study the physics and dynamics of earthquakes. In this paper, a two-dimensional implementation of the combined finite-discrete element method (FDEM), which merges the finite element method (FEM) and the discrete element method (DEM), is used to explicitly simulate a sheared granular fault system including both gouge and plate, and to investigate the influence of different normal loads on seismic moment, macroscopic friction coefficient, kinetic energy, gouge layer thickness, and recurrence time between slips. In the FDEM model, the deformation of plates and particles is simulated using the FEM formulation whilemore » particle-particle and particle-plate interactions are modeled using DEM-derived techniques. The simulated seismic moment distributions are generally consistent with those obtained from the laboratory experiments. In addition, the simulation results demonstrate that with increasing normal load, (i) the kinetic energy of the granular fault system increases; (ii) the gouge layer thickness shows a decreasing trend; and (iii) the macroscopic friction coefficient does not experience much change. Analyses of the slip events reveal that, as the normal load increases, more slip events with large kinetic energy release and longer recurrence time occur, and the magnitude of gouge layer thickness decrease also tends to be larger; while the macroscopic friction coefficient drop decreases. Finally, the simulations not only reveal the influence of normal loads on the dynamics of sheared granular fault gouge, but also demonstrate the capabilities of FDEM for studying stick-slip dynamic behavior of granular fault systems.« less

  12. Comparison of radiated noise from shrouded and unshrouded propellers

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1992-01-01

    The ducted propeller in a free field is modeled using the finite element method. The generation, propagation, and radiation of sound from a ducted fan is described by the convened wave equation with volumetric body forces. Body forces are used to introduce the blade loading for rotating blades and stationary exit guide vanes. For an axisymmetric nacelle or shroud, the problem is formulated in cylindrical coordinates. For a specified angular harmonic, the angular coordinate is eliminated, resulting in a two-dimensional representation. A finite element discretization based on nine-node quadratic isoparametric elements is used.

  13. New Multigrid Method Including Elimination Algolithm Based on High-Order Vector Finite Elements in Three Dimensional Magnetostatic Field Analysis

    NASA Astrophysics Data System (ADS)

    Hano, Mitsuo; Hotta, Masashi

    A new multigrid method based on high-order vector finite elements is proposed in this paper. Low level discretizations in this method are obtained by using low-order vector finite elements for the same mesh. Gauss-Seidel method is used as a smoother, and a linear equation of lowest level is solved by ICCG method. But it is often found that multigrid solutions do not converge into ICCG solutions. An elimination algolithm of constant term using a null space of the coefficient matrix is also described. In three dimensional magnetostatic field analysis, convergence time and number of iteration of this multigrid method are discussed with the convectional ICCG method.

  14. Computer-Aided Transformation of PDE Models: Languages, Representations, and a Calculus of Operations

    DTIC Science & Technology

    2016-01-05

    discretizations . We maintain that what is clear at the mathematical level should be equally clear in computation. In this small STIR project, we separate the...concerns of describing and discretizing such models by defining an input language representing PDE, including steady-state and tran- sient, linear and...solvers, such as [8, 9], focused on the solvers themselves and particular families of discretizations (e. g. finite elements), and now it is natural to

  15. A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions

    NASA Astrophysics Data System (ADS)

    Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.

    2014-01-01

    We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.

  16. Phase-space finite elements in a least-squares solution of the transport equation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drumm, C.; Fan, W.; Pautz, S.

    2013-07-01

    The linear Boltzmann transport equation is solved using a least-squares finite element approximation in the space, angular and energy phase-space variables. The method is applied to both neutral particle transport and also to charged particle transport in the presence of an electric field, where the angular and energy derivative terms are handled with the energy/angular finite elements approximation, in a manner analogous to the way the spatial streaming term is handled. For multi-dimensional problems, a novel approach is used for the angular finite elements: mapping the surface of a unit sphere to a two-dimensional planar region and using a meshingmore » tool to generate a mesh. In this manner, much of the spatial finite-elements machinery can be easily adapted to handle the angular variable. The energy variable and the angular variable for one-dimensional problems make use of edge/beam elements, also building upon the spatial finite elements capabilities. The methods described here can make use of either continuous or discontinuous finite elements in space, angle and/or energy, with the use of continuous finite elements resulting in a smaller problem size and the use of discontinuous finite elements resulting in more accurate solutions for certain types of problems. The work described in this paper makes use of continuous finite elements, so that the resulting linear system is symmetric positive definite and can be solved with a highly efficient parallel preconditioned conjugate gradients algorithm. The phase-space finite elements capability has been built into the Sceptre code and applied to several test problems, including a simple one-dimensional problem with an analytic solution available, a two-dimensional problem with an isolated source term, showing how the method essentially eliminates ray effects encountered with discrete ordinates, and a simple one-dimensional charged-particle transport problem in the presence of an electric field. (authors)« less

  17. Finite element analysis of TAVI: Impact of native aortic root computational modeling strategies on simulation outcomes.

    PubMed

    Finotello, Alice; Morganti, Simone; Auricchio, Ferdinando

    2017-09-01

    In the last few years, several studies, each with different aim and modeling detail, have been proposed to investigate transcatheter aortic valve implantation (TAVI) with finite elements. The present work focuses on the patient-specific finite element modeling of the aortic valve complex. In particular, we aim at investigating how different modeling strategies in terms of material models/properties and discretization procedures can impact analysis results. Four different choices both for the mesh size (from  20 k elements to  200 k elements) and for the material model (from rigid to hyperelastic anisotropic) are considered. Different approaches for modeling calcifications are also taken into account. Post-operative CT data of the real implant are used as reference solution with the aim of outlining a trade-off between computational model complexity and reliability of the results. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mu, Lin; Wang, Junping; Ye, Xiu

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  19. A hybridized formulation for the weak Galerkin mixed finite element method

    DOE PAGES

    Mu, Lin; Wang, Junping; Ye, Xiu

    2016-01-14

    This paper presents a hybridized formulation for the weak Galerkin mixed finite element method (WG-MFEM) which was introduced and analyzed in Wang and Ye (2014) for second order elliptic equations. The WG-MFEM method was designed by using discontinuous piecewise polynomials on finite element partitions consisting of polygonal or polyhedral elements of arbitrary shape. The key to WG-MFEM is the use of a discrete weak divergence operator which is defined and computed by solving inexpensive problems locally on each element. The hybridized formulation of this paper leads to a significantly reduced system of linear equations involving only the unknowns arising frommore » the Lagrange multiplier in hybridization. Optimal-order error estimates are derived for the hybridized WG-MFEM approximations. In conclusion, some numerical results are reported to confirm the theory and a superconvergence for the Lagrange multiplier.« less

  20. DOMAIN DECOMPOSITION METHOD APPLIED TO A FLOW PROBLEM Norberto C. Vera Guzmán Institute of Geophysics, UNAM

    NASA Astrophysics Data System (ADS)

    Vera, N. C.; GMMC

    2013-05-01

    In this paper we present the results of macrohybrid mixed Darcian flow in porous media in a general three-dimensional domain. The global problem is solved as a set of local subproblems which are posed using a domain decomposition method. Unknown fields of local problems, velocity and pressure are approximated using mixed finite elements. For this application, a general three-dimensional domain is considered which is discretized using tetrahedra. The discrete domain is decomposed into subdomains and reformulated the original problem as a set of subproblems, communicated through their interfaces. To solve this set of subproblems, we use finite element mixed and parallel computing. The parallelization of a problem using this methodology can, in principle, to fully exploit a computer equipment and also provides results in less time, two very important elements in modeling. Referencias G.Alduncin and N.Vera-Guzmán Parallel proximal-point algorithms for mixed _nite element models of _ow in the subsurface, Commun. Numer. Meth. Engng 2004; 20:83-104 (DOI: 10.1002/cnm.647) Z. Chen, G.Huan and Y. Ma Computational Methods for Multiphase Flows in Porous Media, SIAM, Society for Industrial and Applied Mathematics, Philadelphia, 2006. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, 1994. Brezzi F, Fortin M. Mixed and Hybrid Finite Element Methods. Springer: New York, 1991.

  1. Accurate interlaminar stress recovery from finite element analysis

    NASA Technical Reports Server (NTRS)

    Tessler, Alexander; Riggs, H. Ronald

    1994-01-01

    The accuracy and robustness of a two-dimensional smoothing methodology is examined for the problem of recovering accurate interlaminar shear stress distributions in laminated composite and sandwich plates. The smoothing methodology is based on a variational formulation which combines discrete least-squares and penalty-constraint functionals in a single variational form. The smoothing analysis utilizes optimal strains computed at discrete locations in a finite element analysis. These discrete strain data are smoothed with a smoothing element discretization, producing superior accuracy strains and their first gradients. The approach enables the resulting smooth strain field to be practically C1-continuous throughout the domain of smoothing, exhibiting superconvergent properties of the smoothed quantity. The continuous strain gradients are also obtained directly from the solution. The recovered strain gradients are subsequently employed in the integration o equilibrium equations to obtain accurate interlaminar shear stresses. The problem is a simply-supported rectangular plate under a doubly sinusoidal load. The problem has an exact analytic solution which serves as a measure of goodness of the recovered interlaminar shear stresses. The method has the versatility of being applicable to the analysis of rather general and complex structures built of distinct components and materials, such as found in aircraft design. For these types of structures, the smoothing is achieved with 'patches', each patch covering the domain in which the smoothed quantity is physically continuous.

  2. The Programming Language Python In Earth System Simulations

    NASA Astrophysics Data System (ADS)

    Gross, L.; Imranullah, A.; Mora, P.; Saez, E.; Smillie, J.; Wang, C.

    2004-12-01

    Mathematical models in earth sciences base on the solution of systems of coupled, non-linear, time-dependent partial differential equations (PDEs). The spatial and time-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.

  3. Finite-element lattice Boltzmann simulations of contact line dynamics

    NASA Astrophysics Data System (ADS)

    Matin, Rastin; Krzysztof Misztal, Marek; Hernández-García, Anier; Mathiesen, Joachim

    2018-01-01

    The lattice Boltzmann method has become one of the standard techniques for simulating a wide range of fluid flows. However, the intrinsic coupling of momentum and space discretization restricts the traditional lattice Boltzmann method to regular lattices. Alternative off-lattice Boltzmann schemes exist for both single- and multiphase flows that decouple the velocity discretization from the underlying spatial grid. The current study extends the applicability of these off-lattice methods by introducing a finite element formulation that enables simulating contact line dynamics for partially wetting fluids. This work exemplifies the implementation of the scheme and furthermore presents benchmark experiments that show the scheme reduces spurious currents at the liquid-vapor interface by at least two orders of magnitude compared to a nodal implementation and allows for predicting the equilibrium states accurately in the range of moderate contact angles.

  4. Guided wave mode selection for inhomogeneous elastic waveguides using frequency domain finite element approach.

    PubMed

    Chillara, Vamshi Krishna; Ren, Baiyang; Lissenden, Cliff J

    2016-04-01

    This article describes the use of the frequency domain finite element (FDFE) technique for guided wave mode selection in inhomogeneous waveguides. Problems with Rayleigh-Lamb and Shear-Horizontal mode excitation in isotropic homogeneous plates are first studied to demonstrate the application of the approach. Then, two specific cases of inhomogeneous waveguides are studied using FDFE. Finally, an example of guided wave mode selection for inspecting disbonds in composites is presented. Identification of sensitive and insensitive modes for defect inspection is demonstrated. As the discretization parameters affect the accuracy of the results obtained from FDFE, effect of spatial discretization and the length of the domain used for the spatial fast Fourier transform are studied. Some recommendations with regard to the choice of the above parameters are provided. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. An iterative truncation method for unbounded electromagnetic problems using varying order finite elements

    NASA Astrophysics Data System (ADS)

    Paul, Prakash

    2009-12-01

    The finite element method (FEM) is used to solve three-dimensional electromagnetic scattering and radiation problems. Finite element (FE) solutions of this kind contain two main types of error: discretization error and boundary error. Discretization error depends on the number of free parameters used to model the problem, and on how effectively these parameters are distributed throughout the problem space. To reduce the discretization error, the polynomial order of the finite elements is increased, either uniformly over the problem domain or selectively in those areas with the poorest solution quality. Boundary error arises from the condition applied to the boundary that is used to truncate the computational domain. To reduce the boundary error, an iterative absorbing boundary condition (IABC) is implemented. The IABC starts with an inexpensive boundary condition and gradually improves the quality of the boundary condition as the iteration continues. An automatic error control (AEC) is implemented to balance the two types of error. With the AEC, the boundary condition is improved when the discretization error has fallen to a low enough level to make this worth doing. The AEC has these characteristics: (i) it uses a very inexpensive truncation method initially; (ii) it allows the truncation boundary to be very close to the scatterer/radiator; (iii) it puts more computational effort on the parts of the problem domain where it is most needed; and (iv) it can provide as accurate a solution as needed depending on the computational price one is willing to pay. To further reduce the computational cost, disjoint scatterers and radiators that are relatively far from each other are bounded separately and solved using a multi-region method (MRM), which leads to savings in computational cost. A simple analytical way to decide whether the MRM or the single region method will be computationally cheaper is also described. To validate the accuracy and savings in computation time, different shaped metallic and dielectric obstacles (spheres, ogives, cube, flat plate, multi-layer slab etc.) are used for the scattering problems. For the radiation problems, waveguide excited antennas (horn antenna, waveguide with flange, microstrip patch antenna) are used. Using the AEC the peak reduction in computation time during the iteration is typically a factor of 2, compared to the IABC using the same element orders throughout. In some cases, it can be as high as a factor of 4.

  6. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less

  7. A flexible nonlinear diffusion acceleration method for the S N transport equations discretized with discontinuous finite elements

    DOE PAGES

    Schunert, Sebastian; Wang, Yaqi; Gleicher, Frederick; ...

    2017-02-21

    This paper presents a flexible nonlinear diffusion acceleration (NDA) method that discretizes both the S N transport equation and the diffusion equation using the discontinuous finite element method (DFEM). The method is flexible in that the diffusion equation can be discretized on a coarser mesh with the only restriction that it is nested within the transport mesh and the FEM shape function orders of the two equations can be different. The consistency of the transport and diffusion solutions at convergence is defined by using a projection operator mapping the transport into the diffusion FEM space. The diffusion weak form ismore » based on the modified incomplete interior penalty (MIP) diffusion DFEM discretization that is extended by volumetric drift, interior face, and boundary closure terms. In contrast to commonly used coarse mesh finite difference (CMFD) methods, the presented NDA method uses a full FEM discretized diffusion equation for acceleration. Suitable projection and prolongation operators arise naturally from the FEM framework. Via Fourier analysis and numerical experiments for a one-group, fixed source problem the following properties of the NDA method are established for structured quadrilateral meshes: (1) the presented method is unconditionally stable and effective in the presence of mild material heterogeneities if the same mesh and identical shape functions either of the bilinear or biquadratic type are used, (2) the NDA method remains unconditionally stable in the presence of strong heterogeneities, (3) the NDA method with bilinear elements extends the range of effectiveness and stability by a factor of two when compared to CMFD if a coarser diffusion mesh is selected. In addition, the method is tested for solving the C5G7 multigroup, eigenvalue problem using coarse and fine mesh acceleration. Finally, while NDA does not offer an advantage over CMFD for fine mesh acceleration, it reduces the iteration count required for convergence by almost a factor of two in the case of coarse mesh acceleration.« less

  8. The semi-discrete Galerkin finite element modelling of compressible viscous flow past an airfoil

    NASA Technical Reports Server (NTRS)

    Meade, Andrew J., Jr.

    1992-01-01

    A method is developed to solve the two-dimensional, steady, compressible, turbulent boundary-layer equations and is coupled to an existing Euler solver for attached transonic airfoil analysis problems. The boundary-layer formulation utilizes the semi-discrete Galerkin (SDG) method to model the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby permitting the use of a uniform finite element grid which provides high resolution near the wall and automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes, through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past NACA 0012 and RAE 2822 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack. All results show good agreement with experiment, and the coupled code proved to be a computationally-efficient and accurate airfoil analysis tool.

  9. The p-version of the finite element method in incremental elasto-plastic analysis

    NASA Technical Reports Server (NTRS)

    Holzer, Stefan M.; Yosibash, Zohar

    1993-01-01

    Whereas the higher-order versions of the finite elements method (the p- and hp-version) are fairly well established as highly efficient methods for monitoring and controlling the discretization error in linear problems, little has been done to exploit their benefits in elasto-plastic structural analysis. Aspects of incremental elasto-plastic finite element analysis which are particularly amenable to improvements by the p-version is discussed. These theoretical considerations are supported by several numerical experiments. First, an example for which an analytical solution is available is studied. It is demonstrated that the p-version performs very well even in cycles of elasto-plastic loading and unloading, not only as compared to the traditional h-version but also in respect to the exact solution. Finally, an example of considerable practical importance - the analysis of a cold-worked lug - is presented which demonstrates how the modeling tools offered by higher-order finite element techniques can contribute to an improved approximation of practical problems.

  10. Definition of NASTRAN sets by use of parametric geometry

    NASA Technical Reports Server (NTRS)

    Baughn, Terry V.; Tiv, Mehran

    1989-01-01

    Many finite element preprocessors describe finite element model geometry with points, lines, surfaces and volumes. One method for describing these basic geometric entities is by use of parametric cubics which are useful for representing complex shapes. The lines, surfaces and volumes may be discretized for follow on finite element analysis. The ability to limit or selectively recover results from the finite element model is extremely important to the analyst. Equally important is the ability to easily apply boundary conditions. Although graphical preprocessors have made these tasks easier, model complexity may not lend itself to easily identify a group of grid points desired for data recovery or application of constraints. A methodology is presented which makes use of the assignment of grid point locations in parametric coordinates. The parametric coordinates provide a convenient ordering of the grid point locations and a method for retrieving the grid point ID's from the parent geometry. The selected grid points may then be used for the generation of the appropriate set and constraint cards.

  11. Methods for analysis of cracks in three-dimensional solids

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1984-01-01

    Analytical and numerical methods evaluating the stress-intensity factors for three-dimensional cracks in solids are presented, with reference to fatigue failure in aerospace structures. The exact solutions for embedded elliptical and circular cracks in infinite solids, and the approximate methods, including the finite-element, the boundary-integral equation, the line-spring models, and the mixed methods are discussed. Among the mixed methods, the superposition of analytical and finite element methods, the stress-difference, the discretization-error, the alternating, and the finite element-alternating methods are reviewed. Comparison of the stress-intensity factor solutions for some three-dimensional crack configurations showed good agreement. Thus, the choice of a particular method in evaluating the stress-intensity factor is limited only to the availability of resources and computer programs.

  12. Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members.

    PubMed

    Ann, Ki Yong; Cho, Chang-Geun

    2013-09-10

    The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test.

  13. A domain decomposition approach to implementing fault slip in finite-element models of quasi-static and dynamic crustal deformation

    USGS Publications Warehouse

    Aagaard, Brad T.; Knepley, M.G.; Williams, C.A.

    2013-01-01

    We employ a domain decomposition approach with Lagrange multipliers to implement fault slip in a finite-element code, PyLith, for use in both quasi-static and dynamic crustal deformation applications. This integrated approach to solving both quasi-static and dynamic simulations leverages common finite-element data structures and implementations of various boundary conditions, discretization schemes, and bulk and fault rheologies. We have developed a custom preconditioner for the Lagrange multiplier portion of the system of equations that provides excellent scalability with problem size compared to conventional additive Schwarz methods. We demonstrate application of this approach using benchmarks for both quasi-static viscoelastic deformation and dynamic spontaneous rupture propagation that verify the numerical implementation in PyLith.

  14. Stress Recovery and Error Estimation for 3-D Shell Structures

    NASA Technical Reports Server (NTRS)

    Riggs, H. R.

    2000-01-01

    The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).

  15. The Crank Nicolson Time Integrator for EMPHASIS.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGregor, Duncan Alisdair Odum; Love, Edward; Kramer, Richard Michael Jack

    2018-03-01

    We investigate the use of implicit time integrators for finite element time domain approxi- mations of Maxwell's equations in vacuum. We discretize Maxwell's equations in time using Crank-Nicolson and in 3D space using compatible finite elements. We solve the system by taking a single step of Newton's method and inverting the Eddy-Current Schur complement allowing for the use of standard preconditioning techniques. This approach also generalizes to more complex material models that can include the Unsplit PML. We present verification results and demonstrate performance at CFL numbers up to 1000.

  16. Weak form of Stokes-Dirac structures and geometric discretization of port-Hamiltonian systems

    NASA Astrophysics Data System (ADS)

    Kotyczka, Paul; Maschke, Bernhard; Lefèvre, Laurent

    2018-05-01

    We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems. On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric (Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between centered approximations and upwinding. We illustrate the method on the example of Whitney finite elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a related approach.

  17. Finite Element Modeling of the Buckling Response of Sandwich Panels

    NASA Technical Reports Server (NTRS)

    Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.

    2002-01-01

    A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.

  18. Compatible Spatial Discretizations for Partial Differential Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnold, Douglas, N, ed.

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide varietymore » of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical simulations. + Identification and design of compatible spatial discretizations of PDEs, their classification, analysis, and relations. + Relationships between different compatible spatial discretization methods and concepts which have been developed; + Impact of compatible spatial discretizations upon physical fidelity, verification and validation of simulations, especially in large-scale, multiphysics settings. + How solvers address the demands placed upon them by compatible spatial discretizations. This report provides information about the program and abstracts of all the presentations.« less

  19. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields.

    PubMed

    Yang, R; Zelyak, O; Fallone, B G; St-Aubin, J

    2018-01-30

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  20. A novel upwind stabilized discontinuous finite element angular framework for deterministic dose calculations in magnetic fields

    NASA Astrophysics Data System (ADS)

    Yang, R.; Zelyak, O.; Fallone, B. G.; St-Aubin, J.

    2018-02-01

    Angular discretization impacts nearly every aspect of a deterministic solution to the linear Boltzmann transport equation, especially in the presence of magnetic fields, as modeled by a streaming operator in angle. In this work a novel stabilization treatment of the magnetic field term is developed for an angular finite element discretization on the unit sphere, specifically involving piecewise partitioning of path integrals along curved element edges into uninterrupted segments of incoming and outgoing flux, with outgoing components updated iteratively. Correct order-of-accuracy for this angular framework is verified using the method of manufactured solutions for linear, quadratic, and cubic basis functions in angle. Higher order basis functions were found to reduce the error especially in strong magnetic fields and low density media. We combine an angular finite element mesh respecting octant boundaries on the unit sphere to spatial Cartesian voxel elements to guarantee an unambiguous transport sweep ordering in space. Accuracy for a dosimetrically challenging scenario involving bone and air in the presence of a 1.5 T parallel magnetic field is validated against the Monte Carlo package GEANT4. Accuracy and relative computational efficiency were investigated for various angular discretization parameters. 32 angular elements with quadratic basis functions yielded a reasonable compromise, with gamma passing rates of 99.96% (96.22%) for a 2%/2 mm (1%/1 mm) criterion. A rotational transformation of the spatial calculation geometry is performed to orient an arbitrary magnetic field vector to be along the z-axis, a requirement for a constant azimuthal angular sweep ordering. Working on the unit sphere, we apply the same rotational transformation to the angular domain to align its octants with the rotated Cartesian mesh. Simulating an oblique 1.5 T magnetic field against GEANT4 yielded gamma passing rates of 99.42% (95.45%) for a 2%/2 mm (1%/1 mm) criterion.

  1. Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barker, Andrew T.; Benson, Thomas R.; Lee, Chak Shing

    ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.

  2. High Order Approximations for Compressible Fluid Dynamics on Unstructured and Cartesian Meshes

    NASA Technical Reports Server (NTRS)

    Barth, Timothy (Editor); Deconinck, Herman (Editor)

    1999-01-01

    The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining challenges facing the field of computational fluid dynamics. In structural mechanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the computation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order accuracy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence suggests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Center. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18, 1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25, 1998 at the NASA Ames Research Center in the United States. During this special course, lecturers from Europe and the United States gave a series of comprehensive lectures on advanced topics related to the high-order numerical discretization of partial differential equations with primary emphasis given to computational fluid dynamics (CFD). Additional consideration was given to topics in computational physics such as the high-order discretization of the Hamilton-Jacobi, Helmholtz, and elasticity equations. This volume consists of five articles prepared by the special course lecturers. These articles should be of particular relevance to those readers with an interest in numerical discretization techniques which generalize to very high-order accuracy. The articles of Professors Abgrall and Shu consider the mathematical formulation of high-order accurate finite volume schemes utilizing essentially non-oscillatory (ENO) and weighted essentially non-oscillatory (WENO) reconstruction together with upwind flux evaluation. These formulations are particularly effective in computing numerical solutions of conservation laws containing solution discontinuities. Careful attention is given by the authors to implementational issues and techniques for improving the overall efficiency of these methods. The article of Professor Cockburn discusses the discontinuous Galerkin finite element method. This method naturally extends to high-order accuracy and has an interpretation as a finite volume method. Cockburn addresses two important issues associated with the discontinuous Galerkin method: controlling spurious extrema near solution discontinuities via "limiting" and the extension to second order advective-diffusive equations (joint work with Shu). The articles of Dr. Henderson and Professor Schwab consider the mathematical formulation and implementation of the h-p finite element methods using hierarchical basis functions and adaptive mesh refinement. These methods are particularly useful in computing high-order accurate solutions containing perturbative layers and corner singularities. Additional flexibility is obtained using a mortar FEM technique whereby nonconforming elements are interfaced together. Numerous examples are given by Henderson applying the h-p FEM method to the simulation of turbulence and turbulence transition.

  3. A finite volume method for trace element diffusion and partitioning during crystal growth

    NASA Astrophysics Data System (ADS)

    Hesse, Marc A.

    2012-09-01

    A finite volume method on a uniform grid is presented to compute the polythermal diffusion and partitioning of a trace element during the growth of a porphyroblast crystal in a uniform matrix and in linear, cylindrical and spherical geometry. The motion of the crystal-matrix interface and the thermal evolution are prescribed functions of time. The motion of the interface is discretized and it advances from one cell boundary to next as the prescribed interface position passes the cell center. The appropriate conditions for the flux across the crystal-matrix interface are derived from discrete mass conservation. Numerical results are benchmarked against steady and transient analytic solutions for isothermal diffusion with partitioning and growth. Two applications illustrate the ability of the model to reproduce observed rare-earth element patterns in garnets (Skora et al., 2006) and water concentration profiles around spherulites in obsidian (Watkins et al., 2009). Simulations with diffusion inside the growing crystal show complex concentration evolutions for trace elements with high diffusion coefficients, such as argon or hydrogen, but demonstrate that rare-earth element concentrations in typical metamorphic garnets are not affected by intracrystalline diffusion.

  4. From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure.

    PubMed

    Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro

    2015-07-28

    In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.

  5. Two-Level Hierarchical FEM Method for Modeling Passive Microwave Devices

    NASA Astrophysics Data System (ADS)

    Polstyanko, Sergey V.; Lee, Jin-Fa

    1998-03-01

    In recent years multigrid methods have been proven to be very efficient for solving large systems of linear equations resulting from the discretization of positive definite differential equations by either the finite difference method or theh-version of the finite element method. In this paper an iterative method of the multiple level type is proposed for solving systems of algebraic equations which arise from thep-version of the finite element analysis applied to indefinite problems. A two-levelV-cycle algorithm has been implemented and studied with a Gauss-Seidel iterative scheme used as a smoother. The convergence of the method has been investigated, and numerical results for a number of numerical examples are presented.

  6. Variational coarse-graining procedure for dynamic homogenization

    NASA Astrophysics Data System (ADS)

    Liu, Chenchen; Reina, Celia

    2017-07-01

    We present a variational coarse-graining framework for heterogeneous media in the spirit of FE2 methods, that allows for a seamless transition from the traditional static scenario to dynamic loading conditions, while being applicable to general material behavior as well as to discrete or continuous representations of the material and its deformation, e.g., finite element discretizations or atomistic systems. The method automatically delivers the macroscopic equations of motion together with the generalization of Hill's averaging relations to the dynamic setting. These include the expression of the macroscopic stresses and linear momentum as a function of the microscopic fields. We further demonstrate with a proof of concept example, that the proposed theoretical framework can be used to perform multiscale numerical simulations. The results are compared with standard single-scale finite element simulations, showcasing the capability of the method to capture the dispersive nature of the medium in the range of frequencies permitted by the multiscale strategy.

  7. A Least-Squares Finite Element Method for Electromagnetic Scattering Problems

    NASA Technical Reports Server (NTRS)

    Wu, Jie; Jiang, Bo-nan

    1996-01-01

    The least-squares finite element method (LSFEM) is applied to electromagnetic scattering and radar cross section (RCS) calculations. In contrast to most existing numerical approaches, in which divergence-free constraints are omitted, the LSFF-M directly incorporates two divergence equations in the discretization process. The importance of including the divergence equations is demonstrated by showing that otherwise spurious solutions with large divergence occur near the scatterers. The LSFEM is based on unstructured grids and possesses full flexibility in handling complex geometry and local refinement Moreover, the LSFEM does not require any special handling, such as upwinding, staggered grids, artificial dissipation, flux-differencing, etc. Implicit time discretization is used and the scheme is unconditionally stable. By using a matrix-free iterative method, the computational cost and memory requirement for the present scheme is competitive with other approaches. The accuracy of the LSFEM is verified by several benchmark test problems.

  8. Modelling crystal plasticity by 3D dislocation dynamics and the finite element method: The Discrete-Continuous Model revisited

    NASA Astrophysics Data System (ADS)

    Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.

    2014-02-01

    A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.

  9. The solution of non-linear hyperbolic equation systems by the finite element method

    NASA Technical Reports Server (NTRS)

    Loehner, R.; Morgan, K.; Zienkiewicz, O. C.

    1984-01-01

    A finite-element method for the solution of nonlinear hyperbolic systems of equations, such as those encountered in non-self-adjoint problems of transient phenomena in convection-diffusion or in the mixed representation of wave problems, is developed and demonstrated. The problem is rewritten in moving coordinates and reinterpolated to the original mesh by a Taylor expansion prior to a standard Galerkin spatial discretization, and it is shown that this procedure is equivalent to the time-discretization approach of Donea (1984). Numerical results for sample problems are presented graphically, including such shallow-water problems as the breaking of a dam, the shoaling of a wave, and the outflow of a river; compressible flows such as the isothermal flow in a nozzle and the Riemann shock-tube problem; and the two-dimensional scalar-advection, nonlinear-shallow-water, and Euler equations.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Z.; Department of Applied Mathematics and Mechanics, University of Science and Technology Beijing, Beijing 100083; Lin, P.

    In this paper, we investigate numerically a diffuse interface model for the Navier–Stokes equation with fluid–fluid interface when the fluids have different densities [48]. Under minor reformulation of the system, we show that there is a continuous energy law underlying the system, assuming that all variables have reasonable regularities. It is shown in the literature that an energy law preserving method will perform better for multiphase problems. Thus for the reformulated system, we design a C{sup 0} finite element method and a special temporal scheme where the energy law is preserved at the discrete level. Such a discrete energy lawmore » (almost the same as the continuous energy law) for this variable density two-phase flow model has never been established before with C{sup 0} finite element. A Newton method is introduced to linearise the highly non-linear system of our discretization scheme. Some numerical experiments are carried out using the adaptive mesh to investigate the scenario of coalescing and rising drops with differing density ratio. The snapshots for the evolution of the interface together with the adaptive mesh at different times are presented to show that the evolution, including the break-up/pinch-off of the drop, can be handled smoothly by our numerical scheme. The discrete energy functional for the system is examined to show that the energy law at the discrete level is preserved by our scheme.« less

  11. Vibration Transmission through Rolling Element Bearings in Geared Rotor Systems

    DTIC Science & Technology

    1990-11-01

    147 4.8 Concluding Remarks ........................................................... 153 V STATISTICAL ENERGY ANALYSIS ............................................ 155...and dynamic finite element techniques are used to develop the discrete vibration models while statistical energy analysis method is used for the broad...bearing system studies, geared rotor system studies, and statistical energy analysis . Each chapter is self sufficient since it is written in a

  12. Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter

    2018-01-01

    This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks. Regarding the time discretization, a fourth order strong stability preserving Runge-Kutta method is used. In the proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge-Kutta stage in order to flag those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient and robust manner.

  13. Verification of a neutronic code for transient analysis in reactors with Hex-z geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez-Pintor, S.; Verdu, G.; Ginestar, D.

    Due to the geometry of the fuel bundles, to simulate reactors such as VVER reactors it is necessary to develop methods that can deal with hexagonal prisms as basic elements of the spatial discretization. The main features of a code based on a high order finite element method for the spatial discretization of the neutron diffusion equation and an implicit difference method for the time discretization of this equation are presented and the performance of the code is tested solving the first exercise of the AER transient benchmark. The obtained results are compared with the reference results of the benchmarkmore » and with the results provided by PARCS code. (authors)« less

  14. A discrete element and ray framework for rapid simulation of acoustical dispersion of microscale particulate agglomerations

    NASA Astrophysics Data System (ADS)

    Zohdi, T. I.

    2016-03-01

    In industry, particle-laden fluids, such as particle-functionalized inks, are constructed by adding fine-scale particles to a liquid solution, in order to achieve desired overall properties in both liquid and (cured) solid states. However, oftentimes undesirable particulate agglomerations arise due to some form of mutual-attraction stemming from near-field forces, stray electrostatic charges, process ionization and mechanical adhesion. For proper operation of industrial processes involving particle-laden fluids, it is important to carefully breakup and disperse these agglomerations. One approach is to target high-frequency acoustical pressure-pulses to breakup such agglomerations. The objective of this paper is to develop a computational model and corresponding solution algorithm to enable rapid simulation of the effect of acoustical pulses on an agglomeration composed of a collection of discrete particles. Because of the complex agglomeration microstructure, containing gaps and interfaces, this type of system is extremely difficult to mesh and simulate using continuum-based methods, such as the finite difference time domain or the finite element method. Accordingly, a computationally-amenable discrete element/discrete ray model is developed which captures the primary physical events in this process, such as the reflection and absorption of acoustical energy, and the induced forces on the particulate microstructure. The approach utilizes a staggered, iterative solution scheme to calculate the power transfer from the acoustical pulse to the particles and the subsequent changes (breakup) of the pulse due to the particles. Three-dimensional examples are provided to illustrate the approach.

  15. Comparison between results of solution of Burgers' equation and Laplace's equation by Galerkin and least-square finite element methods

    NASA Astrophysics Data System (ADS)

    Adib, Arash; Poorveis, Davood; Mehraban, Farid

    2018-03-01

    In this research, two equations are considered as examples of hyperbolic and elliptic equations. In addition, two finite element methods are applied for solving of these equations. The purpose of this research is the selection of suitable method for solving each of two equations. Burgers' equation is a hyperbolic equation. This equation is a pure advection (without diffusion) equation. This equation is one-dimensional and unsteady. A sudden shock wave is introduced to the model. This wave moves without deformation. In addition, Laplace's equation is an elliptical equation. This equation is steady and two-dimensional. The solution of Laplace's equation in an earth dam is considered. By solution of Laplace's equation, head pressure and the value of seepage in the directions X and Y are calculated in different points of earth dam. At the end, water table is shown in the earth dam. For Burgers' equation, least-square method can show movement of wave with oscillation but Galerkin method can not show it correctly (the best method for solving of the Burgers' equation is discrete space by least-square finite element method and discrete time by forward difference.). For Laplace's equation, Galerkin and least square methods can show water table correctly in earth dam.

  16. Solution algorithms for nonlinear transient heat conduction analysis employing element-by-element iterative strategies

    NASA Technical Reports Server (NTRS)

    Winget, J. M.; Hughes, T. J. R.

    1985-01-01

    The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.

  17. Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method

    NASA Astrophysics Data System (ADS)

    Sistaninia, M.; Phillion, A. B.; Drezet, J.-M.; Rappaz, M.

    2011-01-01

    As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional stress-strain simulation based on a combined finite element (FE)/discrete element method (DEM) has been developed that is capable of predicting the mechanical behavior of semisolid metallic alloys during solidification. The solidification model used for generating the initial solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation centers and a solute diffusion model for each element of this tessellation. At a given fraction of solid, the deformation is then simulated with the solid grains being modeled using an elastoviscoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are approximated by flexible connectors, each consisting of a spring element and a damper element acting in parallel. The model predictions have been validated against Al-Cu alloy experimental data from the literature. The results show that a combined FE/DEM approach is able to express the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology of the grain structure. For the first time, the localization of strain in the intergranular regions is taken into account. Thus, this approach constitutes an indispensible step towards the development of a comprehensive model of hot tearing.

  18. Numerical evaluation of discontinuous and nonconforming finite element methods in nonlinear solid mechanics

    NASA Astrophysics Data System (ADS)

    Bayat, Hamid Reza; Krämer, Julian; Wunderlich, Linus; Wulfinghoff, Stephan; Reese, Stefanie; Wohlmuth, Barbara; Wieners, Christian

    2018-03-01

    This work presents a systematic study of discontinuous and nonconforming finite element methods for linear elasticity, finite elasticity, and small strain plasticity. In particular, we consider new hybrid methods with additional degrees of freedom on the skeleton of the mesh and allowing for a local elimination of the element-wise degrees of freedom. We show that this process leads to a well-posed approximation scheme. The quality of the new methods with respect to locking and anisotropy is compared with standard and in addition locking-free conforming methods as well as established (non-) symmetric discontinuous Galerkin methods with interior penalty. For several benchmark configurations, we show that all methods converge asymptotically for fine meshes and that in many cases the hybrid methods are more accurate for a fixed size of the discrete system.

  19. Constitutive Behavior and Finite Element Analysis of FRP Composite and Concrete Members

    PubMed Central

    Ann, Ki Yong; Cho, Chang-Geun

    2013-01-01

    The present study concerns compressive and flexural constitutive models incorporated into an isoparametric beam finite element scheme for fiber reinforced polymer (FRP) and concrete composites, using their multi-axial constitutive behavior. The constitutive behavior of concrete was treated in triaxial stress states as an orthotropic hypoelasticity-based formulation to determine the confinement effect of concrete from a three-dimensional failure surface in triaxial stress states. The constitutive behavior of the FRP composite was formulated from the two-dimensional classical lamination theory. To predict the flexural behavior of circular cross-section with FRP sheet and concrete composite, a layered discretization of cross-sections was incorporated into nonlinear isoparametric beam finite elements. The predicted constitutive behavior was validated by a comparison to available experimental results in the compressive and flexural beam loading test. PMID:28788312

  20. Dynamic Shape Reconstruction of Three-Dimensional Frame Structures Using the Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Gherlone, Marco; Cerracchio, Priscilla; Mattone, Massimiliano; Di Sciuva, Marco; Tessler, Alexander

    2011-01-01

    A robust and efficient computational method for reconstructing the three-dimensional displacement field of truss, beam, and frame structures, using measured surface-strain data, is presented. Known as shape sensing , this inverse problem has important implications for real-time actuation and control of smart structures, and for monitoring of structural integrity. The present formulation, based on the inverse Finite Element Method (iFEM), uses a least-squares variational principle involving strain measures of Timoshenko theory for stretching, torsion, bending, and transverse shear. Two inverse-frame finite elements are derived using interdependent interpolations whose interior degrees-of-freedom are condensed out at the element level. In addition, relationships between the order of kinematic-element interpolations and the number of required strain gauges are established. As an example problem, a thin-walled, circular cross-section cantilevered beam subjected to harmonic excitations in the presence of structural damping is modeled using iFEM; where, to simulate strain-gauge values and to provide reference displacements, a high-fidelity MSC/NASTRAN shell finite element model is used. Examples of low and high-frequency dynamic motion are analyzed and the solution accuracy examined with respect to various levels of discretization and the number of strain gauges.

  1. Finite element techniques for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation

    NASA Technical Reports Server (NTRS)

    Glaisner, F.; Tezduyar, T. E.

    1987-01-01

    Finite element procedures for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation have been implemented. For both formulations, streamline-upwind/Petrov-Galerkin techniques are used for the discretization of the transport equations. The main problem associated with the vorticity stream-function formulation is the lack of boundary conditions for vorticity at solid surfaces. Here an implicit treatment of the vorticity at no-slip boundaries is incorporated in a predictor-multicorrector time integration scheme. For the primitive variable formulation, mixed finite-element approximations are used. A nine-node element and a four-node + bubble element have been implemented. The latter is shown to exhibit a checkerboard pressure mode and a numerical treatment for this spurious pressure mode is proposed. The two methods are compared from the points of view of simulating internal and external flows and the possibilities of extensions to three dimensions.

  2. Development of an adaptive hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1994-01-01

    In this research effort, the usefulness of hp-version finite elements and adaptive solution-refinement techniques in generating numerical solutions to optimal control problems has been investigated. Under NAG-939, a general FORTRAN code was developed which approximated solutions to optimal control problems with control constraints and state constraints. Within that methodology, to get high-order accuracy in solutions, the finite element mesh would have to be refined repeatedly through bisection of the entire mesh in a given phase. In the current research effort, the order of the shape functions in each element has been made a variable, giving more flexibility in error reduction and smoothing. Similarly, individual elements can each be subdivided into many pieces, depending on the local error indicator, while other parts of the mesh remain coarsely discretized. The problem remains to reduce and smooth the error while still keeping computational effort reasonable enough to calculate time histories in a short enough time for on-board applications.

  3. TECHNICAL NOTE: Direct finite-element analysis of the frequency response of a Y-Z lithium niobate SAW filter

    NASA Astrophysics Data System (ADS)

    Xu, Guanshui

    2000-12-01

    A direct finite-element model is developed for the full-scale analysis of the electromechanical phenomena involved in surface acoustic wave (SAW) devices. The equations of wave propagation in piezoelectric materials are discretized using the Galerkin method, in which an implicit algorithm of the Newmark family with unconditional stability is implemented. The Rayleigh damping coefficients are included in the elements near the boundary to reduce the influence of the reflection of waves. The performance of the model is demonstrated by the analysis of the frequency response of a Y-Z lithium niobate filter with two uniform ports, with emphasis on the influence of the number of electrodes. The frequency response of the filter is obtained through the Fourier transform of the impulse response, which is solved directly from the finite-element simulation. It shows that the finite-element results are in good agreement with the characteristic frequency response of the filter predicted by the simple phase-matching argument. The ability of the method to evaluate the influence of the bulk waves at the high-frequency end of the filter passband and the influence of the number of electrodes on insertion loss is noteworthy. We conclude that the direct finite-element analysis of SAW devices can be used as an effective tool for the design of high-performance SAW devices. Some practical computational challenges of finite-element modeling of SAW devices are discussed.

  4. Greek Cosmology and Cosmogony

    NASA Astrophysics Data System (ADS)

    Jones, Alexander

    The structure, composition, and long-term history of the cosmos were prominent topics in many ancient Greek philosophical systems. Philosophers and philosophically informed astronomers differed over whether the cosmos was finite or infinite, eternal or transient, and composed of discrete particles or continuous, homogeneous elements. The Aristotelian cosmology preferred by astronomers following Ptolemy assumed a finite, spherical shell of eternally unalterable matter enclosing a terrestrial globe composed of earth, water, air, and fire.

  5. A Discontinuous Galerkin Method for Parabolic Problems with Modified hp-Finite Element Approximation Technique

    NASA Technical Reports Server (NTRS)

    Kaneko, Hideaki; Bey, Kim S.; Hou, Gene J. W.

    2004-01-01

    A recent paper is generalized to a case where the spatial region is taken in R(sup 3). The region is assumed to be a thin body, such as a panel on the wing or fuselage of an aerospace vehicle. The traditional h- as well as hp-finite element methods are applied to the surface defined in the x - y variables, while, through the thickness, the technique of the p-element is employed. Time and spatial discretization scheme based upon an assumption of certain weak singularity of double vertical line u(sub t) double vertical line 2, is used to derive an optimal a priori error estimate for the current method.

  6. Thermal modeling of cogging process using finite element method

    NASA Astrophysics Data System (ADS)

    Khaled, Mahmoud; Ramadan, Mohamad; Fourment, Lionel

    2016-10-01

    Among forging processes, incremental processes are those where the work piece undergoes several thermal and deformation steps with small increment of deformation. They offer high flexibility in terms of the work piece size since they allow shaping wide range of parts from small to large size. Since thermal treatment is essential to obtain the required shape and quality, this paper presents the thermal modeling of incremental processes. The finite element discretization, spatial and temporal, is exposed. Simulation is performed using commercial software Forge 3. Results show the thermal behavior at the beginning and at the end of the process.

  7. Sampling Versus Filtering in Large-Eddy Simulations

    NASA Technical Reports Server (NTRS)

    Debliquy, O.; Knaepen, B.; Carati, D.; Wray, A. A.

    2004-01-01

    A LES formalism in which the filter operator is replaced by a sampling operator is proposed. The unknown quantities that appear in the LES equations originate only from inadequate resolution (Discretization errors). The resulting viewpoint seems to make a link between finite difference approaches and finite element methods. Sampling operators are shown to commute with nonlinearities and to be purely projective. Moreover, their use allows an unambiguous definition of the LES numerical grid. The price to pay is that sampling never commutes with spatial derivatives and the commutation errors must be modeled. It is shown that models for the discretization errors may be treated using the dynamic procedure. Preliminary results, using the Smagorinsky model, are very encouraging.

  8. Discrete and continuum modelling of soil cutting

    NASA Astrophysics Data System (ADS)

    Coetzee, C. J.

    2014-12-01

    Both continuum and discrete methods are used to investigate the soil cutting process. The Discrete Element Method ( dem) is used for the discrete modelling and the Material-Point Method ( mpm) is used for continuum modelling. M pmis a so-called particle method or meshless finite element method. Standard finite element methods have difficulty in modelling the entire cutting process due to large displacements and deformation of the mesh. The use of meshless methods overcomes this problem. M pm can model large deformations, frictional contact at the soil-tool interface, and dynamic effects (inertia forces). In granular materials the discreteness of the system is often important and rotational degrees of freedom are active, which might require enhanced theoretical approaches like polar continua. In polar continuum theories, the material points are considered to possess orientations. A material point has three degrees-of-freedom for rigid rotations, in addition to the three classic translational degrees-of-freedom. The Cosserat continuum is the most transparent and straightforward extension of the nonpolar (classic) continuum. Two-dimensional dem and mpm (polar and nonpolar) simulations of the cutting problem are compared to experiments. The drag force and flow patterns are compared using cohesionless corn grains as material. The corn macro (continuum) and micro ( dem) properties were obtained from shear and oedometer tests. Results show that the dilatancy angle plays a significant role in the flow of material but has less of an influence on the draft force. Nonpolar mpm is the most accurate in predicting blade forces, blade-soil interface stresses and the position and orientation of shear bands. Polar mpm fails in predicting the orientation of the shear band, but is less sensitive to mesh size and mesh orientation compared to nonpolar mpm. dem simulations show less material dilation than observed during experiments.

  9. Parallel 3D Finite Element Numerical Modelling of DC Electron Guns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prudencio, E.; Candel, A.; Ge, L.

    2008-02-04

    In this paper we present Gun3P, a parallel 3D finite element application that the Advanced Computations Department at the Stanford Linear Accelerator Center is developing for the analysis of beam formation in DC guns and beam transport in klystrons. Gun3P is targeted specially to complex geometries that cannot be described by 2D models and cannot be easily handled by finite difference discretizations. Its parallel capability allows simulations with more accuracy and less processing time than packages currently available. We present simulation results for the L-band Sheet Beam Klystron DC gun, in which case Gun3P is able to reduce simulation timemore » from days to some hours.« less

  10. Progressive Failure of a Unidirectional Fiber-Reinforced Composite Using the Method of Cells: Discretization Objective Computational Results

    NASA Technical Reports Server (NTRS)

    Pineda, Evan J.; Bednarcyk, Brett A.; Waas, Anthony M.; Arnold, Steven M.

    2012-01-01

    The smeared crack band theory is implemented within the generalized method of cells and high-fidelity generalized method of cells micromechanics models to capture progressive failure within the constituents of a composite material while retaining objectivity with respect to the size of the discretization elements used in the model. An repeating unit cell containing 13 randomly arranged fibers is modeled and subjected to a combination of transverse tension/compression and transverse shear loading. The implementation is verified against experimental data (where available), and an equivalent finite element model utilizing the same implementation of the crack band theory. To evaluate the performance of the crack band theory within a repeating unit cell that is more amenable to a multiscale implementation, a single fiber is modeled with generalized method of cells and high-fidelity generalized method of cells using a relatively coarse subcell mesh which is subjected to the same loading scenarios as the multiple fiber repeating unit cell. The generalized method of cells and high-fidelity generalized method of cells models are validated against a very refined finite element model.

  11. Flux-Based Finite Volume representations for general thermal problems

    NASA Technical Reports Server (NTRS)

    Mohan, Ram V.; Tamma, Kumar K.

    1993-01-01

    Flux-Based Finite Volume (FV) element representations for general thermal problems are given in conjunction with a generalized trapezoidal gamma-T family of algorithms, formulated following the spirit of what we term as the Lax-Wendroff based FV formulations. The new flux-based representations introduced offer an improved physical interpretation of the problem along with computationally convenient and attractive features. The space and time discretization emanate from a conservation form of the governing equation for thermal problems, and in conjunction with the flux-based element representations give rise to a physically improved and locally conservative numerical formulations. The present representations seek to involve improved locally conservative properties, improved physical representations and computational features; these are based on a 2D, bilinear FV element and can be extended for other cases. Time discretization based on a gamma-T family of algorithms in the spirit of a Lax-Wendroff based FV formulations are employed. Numerical examples involving linear/nonlinear steady and transient situations are shown to demonstrate the applicability of the present representations for thermal analysis situations.

  12. A 2D multi-term time and space fractional Bloch-Torrey model based on bilinear rectangular finite elements

    NASA Astrophysics Data System (ADS)

    Qin, Shanlin; Liu, Fawang; Turner, Ian W.

    2018-03-01

    The consideration of diffusion processes in magnetic resonance imaging (MRI) signal attenuation is classically described by the Bloch-Torrey equation. However, many recent works highlight the distinct deviation in MRI signal decay due to anomalous diffusion, which motivates the fractional order generalization of the Bloch-Torrey equation. In this work, we study the two-dimensional multi-term time and space fractional diffusion equation generalized from the time and space fractional Bloch-Torrey equation. By using the Galerkin finite element method with a structured mesh consisting of rectangular elements to discretize in space and the L1 approximation of the Caputo fractional derivative in time, a fully discrete numerical scheme is derived. A rigorous analysis of stability and error estimation is provided. Numerical experiments in the square and L-shaped domains are performed to give an insight into the efficiency and reliability of our method. Then the scheme is applied to solve the multi-term time and space fractional Bloch-Torrey equation, which shows that the extra time derivative terms impact the relaxation process.

  13. A collocation--Galerkin finite element model of cardiac action potential propagation.

    PubMed

    Rogers, J M; McCulloch, A D

    1994-08-01

    A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.

  14. Entropy stable discontinuous interfaces coupling for the three-dimensional compressible Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-06-01

    Non-linear entropy stability and a summation-by-parts (SBP) framework are used to derive entropy stable interior interface coupling for the semi-discretized three-dimensional (3D) compressible Navier-Stokes equations. A complete semi-discrete entropy estimate for the interior domain is achieved combining a discontinuous entropy conservative operator of any order [1,2] with an entropy stable coupling condition for the inviscid terms, and a local discontinuous Galerkin (LDG) approach with an interior penalty (IP) procedure for the viscous terms. The viscous penalty contributions scale with the inverse of the Reynolds number (Re) so that for Re → ∞ their contributions vanish and only the entropy stable inviscid interface penalty term is recovered. This paper extends the interface couplings presented [1,2] and provides a simple and automatic way to compute the magnitude of the viscous IP term. The approach presented herein is compatible with any diagonal norm summation-by-parts (SBP) spatial operator, including finite element, finite volume, finite difference schemes and the class of high-order accurate methods which include the large family of discontinuous Galerkin discretizations and flux reconstruction schemes.

  15. From Laser Scanning to Finite Element Analysis of Complex Buildings by Using a Semi-Automatic Procedure

    PubMed Central

    Castellazzi, Giovanni; D’Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro

    2015-01-01

    In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation. PMID:26225978

  16. Development of an hp-version finite element method for computational optimal control

    NASA Technical Reports Server (NTRS)

    Hodges, Dewey H.; Warner, Michael S.

    1993-01-01

    The purpose of this research effort was to begin the study of the application of hp-version finite elements to the numerical solution of optimal control problems. Under NAG-939, the hybrid MACSYMA/FORTRAN code GENCODE was developed which utilized h-version finite elements to successfully approximate solutions to a wide class of optimal control problems. In that code the means for improvement of the solution was the refinement of the time-discretization mesh. With the extension to hp-version finite elements, the degrees of freedom include both nodal values and extra interior values associated with the unknown states, co-states, and controls, the number of which depends on the order of the shape functions in each element. One possible drawback is the increased computational effort within each element required in implementing hp-version finite elements. We are trying to determine whether this computational effort is sufficiently offset by the reduction in the number of time elements used and improved Newton-Raphson convergence so as to be useful in solving optimal control problems in real time. Because certain of the element interior unknowns can be eliminated at the element level by solving a small set of nonlinear algebraic equations in which the nodal values are taken as given, the scheme may turn out to be especially powerful in a parallel computing environment. A different processor could be assigned to each element. The number of processors, strictly speaking, is not required to be any larger than the number of sub-regions which are free of discontinuities of any kind.

  17. Benchmarks for single-phase flow in fractured porous media

    NASA Astrophysics Data System (ADS)

    Flemisch, Bernd; Berre, Inga; Boon, Wietse; Fumagalli, Alessio; Schwenck, Nicolas; Scotti, Anna; Stefansson, Ivar; Tatomir, Alexandru

    2018-01-01

    This paper presents several test cases intended to be benchmarks for numerical schemes for single-phase fluid flow in fractured porous media. A number of solution strategies are compared, including a vertex and two cell-centred finite volume methods, a non-conforming embedded discrete fracture model, a primal and a dual extended finite element formulation, and a mortar discrete fracture model. The proposed benchmarks test the schemes by increasing the difficulties in terms of network geometry, e.g. intersecting fractures, and physical parameters, e.g. low and high fracture-matrix permeability ratio as well as heterogeneous fracture permeabilities. For each problem, the results presented are the number of unknowns, the approximation errors in the porous matrix and in the fractures with respect to a reference solution, and the sparsity and condition number of the discretized linear system. All data and meshes used in this study are publicly available for further comparisons.

  18. Two-dimensional HID light source radiative transfer using discrete ordinates method

    NASA Astrophysics Data System (ADS)

    Ghrib, Basma; Bouaoun, Mohamed; Elloumi, Hatem

    2016-08-01

    This paper shows the implementation of the Discrete Ordinates Method for handling radiation problems in High Intensity Discharge (HID) lamps. Therefore, we start with presenting this rigorous method for treatment of radiation transfer in a two-dimensional, axisymmetric HID lamp. Furthermore, the finite volume method is used for the spatial discretization of the Radiative Transfer Equation. The atom and electron densities were calculated using temperature profiles established by a 2D semi-implicit finite-element scheme for the solution of conservation equations relative to energy, momentum, and mass. Spectral intensities as a function of position and direction are first calculated, and then axial and radial radiative fluxes are evaluated as well as the net emission coefficient. The results are given for a HID mercury lamp on a line-by-line basis. A particular attention is paid on the 253.7 nm resonance and 546.1 nm green lines.

  19. A finite element formulation preserving symmetric and banded diffusion stiffness matrix characteristics for fractional differential equations

    NASA Astrophysics Data System (ADS)

    Lin, Zeng; Wang, Dongdong

    2017-10-01

    Due to the nonlocal property of the fractional derivative, the finite element analysis of fractional diffusion equation often leads to a dense and non-symmetric stiffness matrix, in contrast to the conventional finite element formulation with a particularly desirable symmetric and banded stiffness matrix structure for the typical diffusion equation. This work first proposes a finite element formulation that preserves the symmetry and banded stiffness matrix characteristics for the fractional diffusion equation. The key point of the proposed formulation is the symmetric weak form construction through introducing a fractional weight function. It turns out that the stiffness part of the present formulation is identical to its counterpart of the finite element method for the conventional diffusion equation and thus the stiffness matrix formulation becomes trivial. Meanwhile, the fractional derivative effect in the discrete formulation is completely transferred to the force vector, which is obviously much easier and efficient to compute than the dense fractional derivative stiffness matrix. Subsequently, it is further shown that for the general fractional advection-diffusion-reaction equation, the symmetric and banded structure can also be maintained for the diffusion stiffness matrix, although the total stiffness matrix is not symmetric in this case. More importantly, it is demonstrated that under certain conditions this symmetric diffusion stiffness matrix formulation is capable of producing very favorable numerical solutions in comparison with the conventional non-symmetric diffusion stiffness matrix finite element formulation. The effectiveness of the proposed methodology is illustrated through a series of numerical examples.

  20. Analysis and computation of a least-squares method for consistent mesh tying

    DOE PAGES

    Day, David; Bochev, Pavel

    2007-07-10

    We report in the finite element method, a standard approach to mesh tying is to apply Lagrange multipliers. If the interface is curved, however, discretization generally leads to adjoining surfaces that do not coincide spatially. Straightforward Lagrange multiplier methods lead to discrete formulations failing a first-order patch test [T.A. Laursen, M.W. Heinstein, Consistent mesh-tying methods for topologically distinct discretized surfaces in non-linear solid mechanics, Internat. J. Numer. Methods Eng. 57 (2003) 1197–1242]. This paper presents a theoretical and computational study of a least-squares method for mesh tying [P. Bochev, D.M. Day, A least-squares method for consistent mesh tying, Internat. J.more » Numer. Anal. Modeling 4 (2007) 342–352], applied to the partial differential equation -∇ 2φ+αφ=f. We prove optimal convergence rates for domains represented as overlapping subdomains and show that the least-squares method passes a patch test of the order of the finite element space by construction. To apply the method to subdomain configurations with gaps and overlaps we use interface perturbations to eliminate the gaps. Finally, theoretical error estimates are illustrated by numerical experiments.« less

  1. Bridges for Pedestrians with Random Parameters using the Stochastic Finite Elements Analysis

    NASA Astrophysics Data System (ADS)

    Szafran, J.; Kamiński, M.

    2017-02-01

    The main aim of this paper is to present a Stochastic Finite Element Method analysis with reference to principal design parameters of bridges for pedestrians: eigenfrequency and deflection of bridge span. They are considered with respect to random thickness of plates in boxed-section bridge platform, Young modulus of structural steel and static load resulting from crowd of pedestrians. The influence of the quality of the numerical model in the context of traditional FEM is shown also on the example of a simple steel shield. Steel structures with random parameters are discretized in exactly the same way as for the needs of traditional Finite Element Method. Its probabilistic version is provided thanks to the Response Function Method, where several numerical tests with random parameter values varying around its mean value enable the determination of the structural response and, thanks to the Least Squares Method, its final probabilistic moments.

  2. Novel numerical techniques for magma dynamics

    NASA Astrophysics Data System (ADS)

    Rhebergen, S.; Katz, R. F.; Wathen, A.; Alisic, L.; Rudge, J. F.; Wells, G.

    2013-12-01

    We discuss the development of finite element techniques and solvers for magma dynamics computations. These are implemented within the FEniCS framework. This approach allows for user-friendly, expressive, high-level code development, but also provides access to powerful, scalable numerical solvers and a large family of finite element discretisations. With the recent addition of dolfin-adjoint, FeniCS supports automated adjoint and tangent-linear models, enabling the rapid development of Generalised Stability Analysis. The ability to easily scale codes to three dimensions with large meshes, and/or to apply intricate adjoint calculations means that efficiency of the numerical algorithms is vital. We therefore describe our development and analysis of preconditioners designed specifically for finite element discretizations of equations governing magma dynamics. The preconditioners are based on Elman-Silvester-Wathen methods for the Stokes equation, and we extend these to flows with compaction. Our simulations are validated by comparison of results with laboratory experiments on partially molten aggregates.

  3. Finite cover method with mortar elements for elastoplasticity problems

    NASA Astrophysics Data System (ADS)

    Kurumatani, M.; Terada, K.

    2005-06-01

    Finite cover method (FCM) is extended to elastoplasticity problems. The FCM, which was originally developed under the name of manifold method, has recently been recognized as one of the generalized versions of finite element methods (FEM). Since the mesh for the FCM can be regular and squared regardless of the geometry of structures to be analyzed, structural analysts are released from a burdensome task of generating meshes conforming to physical boundaries. Numerical experiments are carried out to assess the performance of the FCM with such discretization in elastoplasticity problems. Particularly to achieve this accurately, the so-called mortar elements are introduced to impose displacement boundary conditions on the essential boundaries, and displacement compatibility conditions on material interfaces of two-phase materials or on joint surfaces between mutually incompatible meshes. The validity of the mortar approximation is also demonstrated in the elastic-plastic FCM.

  4. ADAPTIVE FINITE ELEMENT MODELING TECHNIQUES FOR THE POISSON-BOLTZMANN EQUATION

    PubMed Central

    HOLST, MICHAEL; MCCAMMON, JAMES ANDREW; YU, ZEYUN; ZHOU, YOUNGCHENG; ZHU, YUNRONG

    2011-01-01

    We consider the design of an effective and reliable adaptive finite element method (AFEM) for the nonlinear Poisson-Boltzmann equation (PBE). We first examine the two-term regularization technique for the continuous problem recently proposed by Chen, Holst, and Xu based on the removal of the singular electrostatic potential inside biomolecules; this technique made possible the development of the first complete solution and approximation theory for the Poisson-Boltzmann equation, the first provably convergent discretization, and also allowed for the development of a provably convergent AFEM. However, in practical implementation, this two-term regularization exhibits numerical instability. Therefore, we examine a variation of this regularization technique which can be shown to be less susceptible to such instability. We establish a priori estimates and other basic results for the continuous regularized problem, as well as for Galerkin finite element approximations. We show that the new approach produces regularized continuous and discrete problems with the same mathematical advantages of the original regularization. We then design an AFEM scheme for the new regularized problem, and show that the resulting AFEM scheme is accurate and reliable, by proving a contraction result for the error. This result, which is one of the first results of this type for nonlinear elliptic problems, is based on using continuous and discrete a priori L∞ estimates to establish quasi-orthogonality. To provide a high-quality geometric model as input to the AFEM algorithm, we also describe a class of feature-preserving adaptive mesh generation algorithms designed specifically for constructing meshes of biomolecular structures, based on the intrinsic local structure tensor of the molecular surface. All of the algorithms described in the article are implemented in the Finite Element Toolkit (FETK), developed and maintained at UCSD. The stability advantages of the new regularization scheme are demonstrated with FETK through comparisons with the original regularization approach for a model problem. The convergence and accuracy of the overall AFEM algorithm is also illustrated by numerical approximation of electrostatic solvation energy for an insulin protein. PMID:21949541

  5. Entropy Stable Wall Boundary Conditions for the Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2014-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite volume, finite difference, discontinuous Galerkin, and flux reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  6. Entropy Stable Wall Boundary Conditions for the Three-Dimensional Compressible Navier-Stokes Equations

    NASA Technical Reports Server (NTRS)

    Parsani, Matteo; Carpenter, Mark H.; Nielsen, Eric J.

    2015-01-01

    Non-linear entropy stability and a summation-by-parts framework are used to derive entropy stable wall boundary conditions for the three-dimensional compressible Navier-Stokes equations. A semi-discrete entropy estimate for the entire domain is achieved when the new boundary conditions are coupled with an entropy stable discrete interior operator. The data at the boundary are weakly imposed using a penalty flux approach and a simultaneous-approximation-term penalty technique. Although discontinuous spectral collocation operators on unstructured grids are used herein for the purpose of demonstrating their robustness and efficacy, the new boundary conditions are compatible with any diagonal norm summation-by-parts spatial operator, including finite element, finite difference, finite volume, discontinuous Galerkin, and flux reconstruction/correction procedure via reconstruction schemes. The proposed boundary treatment is tested for three-dimensional subsonic and supersonic flows. The numerical computations corroborate the non-linear stability (entropy stability) and accuracy of the boundary conditions.

  7. 3D Finite Element Analysis of Yixing CFRD Built on Inclined Mountain Slope

    NASA Astrophysics Data System (ADS)

    Sun, Da Wei; Zhang, Liang; Qing Yao, Hui; Wang, Kang Ping

    2018-05-01

    There are few CFRDs built on steep slope with dam height more than 50 m. So does the relative design and construction experience. The 75 m-high Yixing CFRD was built on steep mountain slope and the 45.9m-high gravity retaining wall was used to against dam sliding. Since the excessive deformation of dam body and perimetric joints would lead to failure of seal materials and cause water leakage, 3D nonlinear finite element stress-deformation analysis was carried out. 3D finite element mesh with 63875 elements including retaining wall and surrounding mountain was established by use of advanced grid discreteness technique. Large scales of equations solving method were adopted in the computer procedure and the calculation time was greatly reduced from former 40 hours to now 45 minutes. Therefore the behavior of the dam, retaining wall and the joint was obtained in a short time, and the results would be helpful to the design and construction of Yixing dam.

  8. A locally conservative stabilized continuous Galerkin finite element method for two-phase flow in poroelastic subsurfaces

    NASA Astrophysics Data System (ADS)

    Deng, Q.; Ginting, V.; McCaskill, B.; Torsu, P.

    2017-10-01

    We study the application of a stabilized continuous Galerkin finite element method (CGFEM) in the simulation of multiphase flow in poroelastic subsurfaces. The system involves a nonlinear coupling between the fluid pressure, subsurface's deformation, and the fluid phase saturation, and as such, we represent this coupling through an iterative procedure. Spatial discretization of the poroelastic system employs the standard linear finite element in combination with a numerical diffusion term to maintain stability of the algebraic system. Furthermore, direct calculation of the normal velocities from pressure and deformation does not entail a locally conservative field. To alleviate this drawback, we propose an element based post-processing technique through which local conservation can be established. The performance of the method is validated through several examples illustrating the convergence of the method, the effectivity of the stabilization term, and the ability to achieve locally conservative normal velocities. Finally, the efficacy of the method is demonstrated through simulations of realistic multiphase flow in poroelastic subsurfaces.

  9. Numerical modeling of guided ultrasonic waves generated and received by piezoelectric wafer in a Delaminated composite beam

    NASA Astrophysics Data System (ADS)

    Xu, G. D.; Xu, B. Q.; Xu, C. G.; Luo, Y.

    2017-05-01

    A spectral finite element method (SFEM) is developed to analyze guided ultrasonic waves in a delaminated composite beam excited and received by a pair of surface-bonded piezoelectric wafers. The displacements of the composite beam and the piezoelectric wafer are represented by Timoshenko beam and Euler Bernoulli theory respectively. The linear piezoelectricity is used to model the electrical-mechanical coupling between the piezoelectric wafer and the beam. The coupled governing equations and the boundary conditions in time domain are obtained by using the Hamilton's principle, and then the SFEM are formulated by transforming the coupled governing equations into frequency domain via the discrete Fourier transform. The guided waves are analyzed while the interaction of waves with delamination is also discussed. The elements needed in SFEM is far fewer than those for finite element method (FEM), which result in a much faster solution speed in this study. The high accuracy of the present SFEM is verified by comparing with the finite element results.

  10. Efficient and robust compositional two-phase reservoir simulation in fractured media

    NASA Astrophysics Data System (ADS)

    Zidane, A.; Firoozabadi, A.

    2015-12-01

    Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.

  11. Semi-discrete Galerkin solution of the compressible boundary-layer equations with viscous-inviscid interaction

    NASA Technical Reports Server (NTRS)

    Day, Brad A.; Meade, Andrew J., Jr.

    1993-01-01

    A semi-discrete Galerkin (SDG) method is under development to model attached, turbulent, and compressible boundary layers for transonic airfoil analysis problems. For the boundary-layer formulation the method models the spatial variable normal to the surface with linear finite elements and the time-like variable with finite differences. A Dorodnitsyn transformed system of equations is used to bound the infinite spatial domain thereby providing high resolution near the wall and permitting the use of a uniform finite element grid which automatically follows boundary-layer growth. The second-order accurate Crank-Nicholson scheme is applied along with a linearization method to take advantage of the parabolic nature of the boundary-layer equations and generate a non-iterative marching routine. The SDG code can be applied to any smoothly-connected airfoil shape without modification and can be coupled to any inviscid flow solver. In this analysis, a direct viscous-inviscid interaction is accomplished between the Euler and boundary-layer codes through the application of a transpiration velocity boundary condition. Results are presented for compressible turbulent flow past RAE 2822 and NACA 0012 airfoils at various freestream Mach numbers, Reynolds numbers, and angles of attack.

  12. Computational Overlap Coupling Between Micropolar Linear Elastic Continuum Finite Elements and Nonlinear Elastic Spherical Discrete Elements in One Dimension

    DTIC Science & Technology

    2013-01-01

    Cracking in asphalt pavement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Figure 2. 2D...metallic binder, figure 1(b)), particulate energetic materials (explosive crystalline grains with polymeric binder, figure 1(c)), asphalt pavement (stone...explosive HMX grains and at grain-matrix interfaces (2). (d) Cracking in asphalt pavement . 2 (i) it is limited by current computing power (even

  13. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of themore » cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to model stress concentrations induced by fuel fractures at the fuel/cladding interface during pellet cladding mechanical interaction (PCMI). This is accomplished by enhancing the thermal and mechanical contact enforcement algorithms employed by BISON to permit their use in conjunction with XFEM. The results from this methodology are demonstrated to be equivalent to those from using meshed discrete cracks. While the results of the two methods are equivalent for the case of a stationary crack, it is demonstrated that XFEM provides the additional flexibility of allowing arbitrary crack initiation and propagation during the analysis, and minimizes model setup effort for cases with stationary cracks.« less

  14. Errors due to the truncation of the computational domain in static three-dimensional electrical impedance tomography.

    PubMed

    Vauhkonen, P J; Vauhkonen, M; Kaipio, J P

    2000-02-01

    In electrical impedance tomography (EIT), an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. The currents spread out in three dimensions and therefore off-plane structures have a significant effect on the reconstructed images. A question arises: how far from the current carrying electrodes should the discretized model of the object be extended? If the model is truncated too near the electrodes, errors are produced in the reconstructed images. On the other hand if the model is extended very far from the electrodes the computational time may become too long in practice. In this paper the model truncation problem is studied with the extended finite element method. Forward solutions obtained using so-called infinite elements, long finite elements and separable long finite elements are compared to the correct solution. The effects of the truncation of the computational domain on the reconstructed images are also discussed and results from the three-dimensional (3D) sensitivity analysis are given. We show that if the finite element method with ordinary elements is used in static 3D EIT, the dimension of the problem can become fairly large if the errors associated with the domain truncation are to be avoided.

  15. A finite element method for solving the shallow water equations on the sphere

    NASA Astrophysics Data System (ADS)

    Comblen, Richard; Legrand, Sébastien; Deleersnijder, Eric; Legat, Vincent

    Within the framework of ocean general circulation modeling, the present paper describes an efficient way to discretize partial differential equations on curved surfaces by means of the finite element method on triangular meshes. Our approach benefits from the inherent flexibility of the finite element method. The key idea consists in a dialog between a local coordinate system defined for each element in which integration takes place, and a nodal coordinate system in which all local contributions related to a vectorial degree of freedom are assembled. Since each element of the mesh and each degree of freedom are treated in the same way, the so-called pole singularity issue is fully circumvented. Applied to the shallow water equations expressed in primitive variables, this new approach has been validated against the standard test set defined by [Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N., 1992. A standard test set for numerical approximations to the shallow water equations in spherical geometry. Journal of Computational Physics 102, 211-224]. Optimal rates of convergence for the P1NC-P1 finite element pair are obtained, for both global and local quantities of interest. Finally, the approach can be extended to three-dimensional thin-layer flows in a straightforward manner.

  16. A fast linearized conservative finite element method for the strongly coupled nonlinear fractional Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Li, Meng; Gu, Xian-Ming; Huang, Chengming; Fei, Mingfa; Zhang, Guoyu

    2018-04-01

    In this paper, a fast linearized conservative finite element method is studied for solving the strongly coupled nonlinear fractional Schrödinger equations. We prove that the scheme preserves both the mass and energy, which are defined by virtue of some recursion relationships. Using the Sobolev inequalities and then employing the mathematical induction, the discrete scheme is proved to be unconditionally convergent in the sense of L2-norm and H α / 2-norm, which means that there are no any constraints on the grid ratios. Then, the prior bound of the discrete solution in L2-norm and L∞-norm are also obtained. Moreover, we propose an iterative algorithm, by which the coefficient matrix is independent of the time level, and thus it leads to Toeplitz-like linear systems that can be efficiently solved by Krylov subspace solvers with circulant preconditioners. This method can reduce the memory requirement of the proposed linearized finite element scheme from O (M2) to O (M) and the computational complexity from O (M3) to O (Mlog ⁡ M) in each iterative step, where M is the number of grid nodes. Finally, numerical results are carried out to verify the correction of the theoretical analysis, simulate the collision of two solitary waves, and show the utility of the fast numerical solution techniques.

  17. A 3-D turbulent flow analysis using finite elements with k-ɛ model

    NASA Astrophysics Data System (ADS)

    Okuda, H.; Yagawa, G.; Eguchi, Y.

    1989-03-01

    This paper describes the finite element turbulent flow analysis, which is suitable for three-dimensional large scale problems. The k-ɛ turbulence model as well as the conservation equations of mass and momentum are discretized in space using rather low order elements. Resulting coefficient matrices are evaluated by one-point quadrature in order to reduce the computational storage and the CPU cost. The time integration scheme based on the velocity correction method is employed to obtain steady state solutions. For the verification of this FEM program, two-dimensional plenum flow is simulated and compared with experiment. As the application to three-dimensional practical problems, the turbulent flows in the upper plenum of the fast breeder reactor are calculated for various boundary conditions.

  18. Hybrid High-Order methods for finite deformations of hyperelastic materials

    NASA Astrophysics Data System (ADS)

    Abbas, Mickaël; Ern, Alexandre; Pignet, Nicolas

    2018-01-01

    We devise and evaluate numerically Hybrid High-Order (HHO) methods for hyperelastic materials undergoing finite deformations. The HHO methods use as discrete unknowns piecewise polynomials of order k≥1 on the mesh skeleton, together with cell-based polynomials that can be eliminated locally by static condensation. The discrete problem is written as the minimization of a broken nonlinear elastic energy where a local reconstruction of the displacement gradient is used. Two HHO methods are considered: a stabilized method where the gradient is reconstructed as a tensor-valued polynomial of order k and a stabilization is added to the discrete energy functional, and an unstabilized method which reconstructs a stable higher-order gradient and circumvents the need for stabilization. Both methods satisfy the principle of virtual work locally with equilibrated tractions. We present a numerical study of the two HHO methods on test cases with known solution and on more challenging three-dimensional test cases including finite deformations with strong shear layers and cavitating voids. We assess the computational efficiency of both methods, and we compare our results to those obtained with an industrial software using conforming finite elements and to results from the literature. The two HHO methods exhibit robust behavior in the quasi-incompressible regime.

  19. Subresolution Displacements in Finite Difference Simulations of Ultrasound Propagation and Imaging.

    PubMed

    Pinton, Gianmarco F

    2017-03-01

    Time domain finite difference simulations are used extensively to simulate wave propagation. They approximate the wave field on a discrete domain with a grid spacing that is typically on the order of a tenth of a wavelength. The smallest displacements that can be modeled by this type of simulation are thus limited to discrete values that are integer multiples of the grid spacing. This paper presents a method to represent continuous and subresolution displacements by varying the impedance of individual elements in a multielement scatterer. It is demonstrated that this method removes the limitations imposed by the discrete grid spacing by generating a continuum of displacements as measured by the backscattered signal. The method is first validated on an ideal perfect correlation case with a single scatterer. It is subsequently applied to a more complex case with a field of scatterers that model an acoustic radiation force-induced displacement used in ultrasound elasticity imaging. A custom finite difference simulation tool is used to simulate propagation from ultrasound imaging pulses in the scatterer field. These simulated transmit-receive events are then beamformed into images, which are tracked with a correlation-based algorithm to determine the displacement. A linear predictive model is developed to analytically describe the relationship between element impedance and backscattered phase shift. The error between model and simulation is λ/ 1364 , where λ is the acoustical wavelength. An iterative method is also presented that reduces the simulation error to λ/ 5556 over one iteration. The proposed technique therefore offers a computationally efficient method to model continuous subresolution displacements of a scattering medium in ultrasound imaging. This method has applications that include ultrasound elastography, blood flow, and motion tracking. This method also extends generally to finite difference simulations of wave propagation, such as electromagnetic or seismic waves.

  20. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  1. Relaxation and Preconditioning for High Order Discontinuous Galerkin Methods with Applications to Aeroacoustics and High Speed Flows

    NASA Technical Reports Server (NTRS)

    Shu, Chi-Wang

    2004-01-01

    This project is about the investigation of the development of the discontinuous Galerkin finite element methods, for general geometry and triangulations, for solving convection dominated problems, with applications to aeroacoustics. Other related issues in high order WENO finite difference and finite volume methods have also been investigated. methods are two classes of high order, high resolution methods suitable for convection dominated simulations with possible discontinuous or sharp gradient solutions. In [18], we first review these two classes of methods, pointing out their similarities and differences in algorithm formulation, theoretical properties, implementation issues, applicability, and relative advantages. We then present some quantitative comparisons of the third order finite volume WENO methods and discontinuous Galerkin methods for a series of test problems to assess their relative merits in accuracy and CPU timing. In [3], we review the development of the Runge-Kutta discontinuous Galerkin (RKDG) methods for non-linear convection-dominated problems. These robust and accurate methods have made their way into the main stream of computational fluid dynamics and are quickly finding use in a wide variety of applications. They combine a special class of Runge-Kutta time discretizations, that allows the method to be non-linearly stable regardless of its accuracy, with a finite element space discretization by discontinuous approximations, that incorporates the ideas of numerical fluxes and slope limiters coined during the remarkable development of the high-resolution finite difference and finite volume schemes. The resulting RKDG methods are stable, high-order accurate, and highly parallelizable schemes that can easily handle complicated geometries and boundary conditions. We review the theoretical and algorithmic aspects of these methods and show several applications including nonlinear conservation laws, the compressible and incompressible Navier-Stokes equations, and Hamilton-Jacobi-like equations.

  2. A microstructural lattice model for strain oriented problems: A combined Monte Carlo finite element technique

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Srolovitz, D. J.

    1987-01-01

    A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.

  3. Dynamic analysis of suspension cable based on vector form intrinsic finite element method

    NASA Astrophysics Data System (ADS)

    Qin, Jian; Qiao, Liang; Wan, Jiancheng; Jiang, Ming; Xia, Yongjun

    2017-10-01

    A vector finite element method is presented for the dynamic analysis of cable structures based on the vector form intrinsic finite element (VFIFE) and mechanical properties of suspension cable. Firstly, the suspension cable is discretized into different elements by space points, the mass and external forces of suspension cable are transformed into space points. The structural form of cable is described by the space points at different time. The equations of motion for the space points are established according to the Newton’s second law. Then, the element internal forces between the space points are derived from the flexible truss structure. Finally, the motion equations of space points are solved by the central difference method with reasonable time integration step. The tangential tension of the bearing rope in a test ropeway with the moving concentrated loads is calculated and compared with the experimental data. The results show that the tangential tension of suspension cable with moving loads is consistent with the experimental data. This method has high calculated precision and meets the requirements of engineering application.

  4. Iterative algorithms for large sparse linear systems on parallel computers

    NASA Technical Reports Server (NTRS)

    Adams, L. M.

    1982-01-01

    Algorithms for assembling in parallel the sparse system of linear equations that result from finite difference or finite element discretizations of elliptic partial differential equations, such as those that arise in structural engineering are developed. Parallel linear stationary iterative algorithms and parallel preconditioned conjugate gradient algorithms are developed for solving these systems. In addition, a model for comparing parallel algorithms on array architectures is developed and results of this model for the algorithms are given.

  5. 3D unstructured-mesh radiation transport codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morel, J.

    1997-12-31

    Three unstructured-mesh radiation transport codes are currently being developed at Los Alamos National Laboratory. The first code is ATTILA, which uses an unstructured tetrahedral mesh in conjunction with standard Sn (discrete-ordinates) angular discretization, standard multigroup energy discretization, and linear-discontinuous spatial differencing. ATTILA solves the standard first-order form of the transport equation using source iteration in conjunction with diffusion-synthetic acceleration of the within-group source iterations. DANTE is designed to run primarily on workstations. The second code is DANTE, which uses a hybrid finite-element mesh consisting of arbitrary combinations of hexahedra, wedges, pyramids, and tetrahedra. DANTE solves several second-order self-adjoint forms of the transport equation including the even-parity equation, the odd-parity equation, and a new equation called the self-adjoint angular flux equation. DANTE also offers three angular discretization options:more » $$S{_}n$$ (discrete-ordinates), $$P{_}n$$ (spherical harmonics), and $$SP{_}n$$ (simplified spherical harmonics). DANTE is designed to run primarily on massively parallel message-passing machines, such as the ASCI-Blue machines at LANL and LLNL. The third code is PERICLES, which uses the same hybrid finite-element mesh as DANTE, but solves the standard first-order form of the transport equation rather than a second-order self-adjoint form. DANTE uses a standard $$S{_}n$$ discretization in angle in conjunction with trilinear-discontinuous spatial differencing, and diffusion-synthetic acceleration of the within-group source iterations. PERICLES was initially designed to run on workstations, but a version for massively parallel message-passing machines will be built. The three codes will be described in detail and computational results will be presented.« less

  6. High-Order Entropy Stable Formulations for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Fisher, Travis C.

    2013-01-01

    A systematic approach is presented for developing entropy stable (SS) formulations of any order for the Navier-Stokes equations. These SS formulations discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality. They are valid for smooth as well as discontinuous flows provided sufficient dissipation is added at shocks and discontinuities. Entropy stable formulations exist for all diagonal norm, summation-by-parts (SBP) operators, including all centered finite-difference operators, Legendre collocation finite-element operators, and certain finite-volume operators. Examples are presented using various entropy stable formulations that demonstrate the current state-of-the-art of these schemes.

  7. A finite element method to compute three-dimensional equilibrium configurations of fluid membranes: Optimal parameterization, variational formulation and applications

    NASA Astrophysics Data System (ADS)

    Rangarajan, Ramsharan; Gao, Huajian

    2015-09-01

    We introduce a finite element method to compute equilibrium configurations of fluid membranes, identified as stationary points of a curvature-dependent bending energy functional under certain geometric constraints. The reparameterization symmetries in the problem pose a challenge in designing parametric finite element methods, and existing methods commonly resort to Lagrange multipliers or penalty parameters. In contrast, we exploit these symmetries by representing solution surfaces as normal offsets of given reference surfaces and entirely bypass the need for artificial constraints. We then resort to a Galerkin finite element method to compute discrete C1 approximations of the normal offset coordinate. The variational framework presented is suitable for computing deformations of three-dimensional membranes subject to a broad range of external interactions. We provide a systematic algorithm for computing large deformations, wherein solutions at subsequent load steps are identified as perturbations of previously computed ones. We discuss the numerical implementation of the method in detail and demonstrate its optimal convergence properties using examples. We discuss applications of the method to studying adhesive interactions of fluid membranes with rigid substrates and to investigate the influence of membrane tension in tether formation.

  8. Numerical investigation of nonlinear fluid-structure interaction dynamic behaviors under a general Immersed Boundary-Lattice Boltzmann-Finite Element method

    NASA Astrophysics Data System (ADS)

    Gong, Chun-Lin; Fang, Zhe; Chen, Gang

    A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid-structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.

  9. A Minimum-Residual Finite Element Method for the Convection-Diffusion Equation

    DTIC Science & Technology

    2013-05-01

    4p . We note that these two choices of discretization for V are not mutually exclusive, and that novel choices for Vh are likely the key to yielding...the inside with the positive- definite operator A, which is precisely the discrete system that arises under the optimal test function framework of DPG...converts the fine-scale problem into a symmetric-positive definite one, allowing for a well-behaved subgrid model of fine scale behavior. We begin again

  10. Flexural waves induced by electro-impulse deicing forces

    NASA Technical Reports Server (NTRS)

    Gien, P. H.

    1990-01-01

    The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.

  11. kappa-Version of Finite Element Method: A New Mathematical and Computational Framework for BVP and IVP

    DTIC Science & Technology

    2007-01-01

    differentiability, fluid-solid interaction, error estimation, re-discretization, moving meshes 16. SECURITY CLASSIFICATION OF: 17 . LIMITATION OF 18. NUMBER...method the weight function is an indepen- dent function v = 0 6 4Ph , with v = 0 on F, if W = W0 on F1. 2. Galerkin method (GM): If Wh is an approximation...This can be demonstrated by considering a simple I-D case (like described above) in which the discretization 17 is uniform with characteristic length

  12. The Overshoot Phenomenon in Geodynamics Codes

    NASA Astrophysics Data System (ADS)

    Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.

    2013-12-01

    The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.

  13. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method.

    PubMed

    Deng, Yongbo; Korvink, Jan G

    2016-05-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.

  14. Topology optimization for three-dimensional electromagnetic waves using an edge element-based finite-element method

    PubMed Central

    Korvink, Jan G.

    2016-01-01

    This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766

  15. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    NASA Astrophysics Data System (ADS)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-05-01

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructs high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss-Lobatto-Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.

  16. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  17. Shape and Stress Sensing of Multilayered Composite and Sandwich Structures Using an Inverse Finite Element Method

    NASA Technical Reports Server (NTRS)

    Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander

    2013-01-01

    The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.

  18. A high-order multiscale finite-element method for time-domain acoustic-wave modeling

    DOE PAGES

    Gao, Kai; Fu, Shubin; Chung, Eric T.

    2018-02-04

    Accurate and efficient wave equation modeling is vital for many applications in such as acoustics, electromagnetics, and seismology. However, solving the wave equation in large-scale and highly heterogeneous models is usually computationally expensive because the computational cost is directly proportional to the number of grids in the model. We develop a novel high-order multiscale finite-element method to reduce the computational cost of time-domain acoustic-wave equation numerical modeling by solving the wave equation on a coarse mesh based on the multiscale finite-element theory. In contrast to existing multiscale finite-element methods that use only first-order multiscale basis functions, our new method constructsmore » high-order multiscale basis functions from local elliptic problems which are closely related to the Gauss–Lobatto–Legendre quadrature points in a coarse element. Essentially, these basis functions are not only determined by the order of Legendre polynomials, but also by local medium properties, and therefore can effectively convey the fine-scale information to the coarse-scale solution with high-order accuracy. Numerical tests show that our method can significantly reduce the computation time while maintain high accuracy for wave equation modeling in highly heterogeneous media by solving the corresponding discrete system only on the coarse mesh with the new high-order multiscale basis functions.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, M.K.; Kershaw, D.S.; Shaw, M.J.

    The authors present detailed features of the ICF3D hydrodynamics code used for inertial fusion simulations. This code is intended to be a state-of-the-art upgrade of the well-known fluid code, LASNEX. ICF3D employs discontinuous finite elements on a discrete unstructured mesh consisting of a variety of 3D polyhedra including tetrahedra, prisms, and hexahedra. The authors discussed details of how the ROE-averaged second-order convection was applied on the discrete elements, and how the C++ coding interface has helped to simplify implementing the many physics and numerics modules within the code package. The author emphasized the virtues of object-oriented design in large scalemore » projects such as ICF3D.« less

  20. An optimization-based approach for high-order accurate discretization of conservation laws with discontinuous solutions

    NASA Astrophysics Data System (ADS)

    Zahr, M. J.; Persson, P.-O.

    2018-07-01

    This work introduces a novel discontinuity-tracking framework for resolving discontinuous solutions of conservation laws with high-order numerical discretizations that support inter-element solution discontinuities, such as discontinuous Galerkin or finite volume methods. The proposed method aims to align inter-element boundaries with discontinuities in the solution by deforming the computational mesh. A discontinuity-aligned mesh ensures the discontinuity is represented through inter-element jumps while smooth basis functions interior to elements are only used to approximate smooth regions of the solution, thereby avoiding Gibbs' phenomena that create well-known stability issues. Therefore, very coarse high-order discretizations accurately resolve the piecewise smooth solution throughout the domain, provided the discontinuity is tracked. Central to the proposed discontinuity-tracking framework is a discrete PDE-constrained optimization formulation that simultaneously aligns the computational mesh with discontinuities in the solution and solves the discretized conservation law on this mesh. The optimization objective is taken as a combination of the deviation of the finite-dimensional solution from its element-wise average and a mesh distortion metric to simultaneously penalize Gibbs' phenomena and distorted meshes. It will be shown that our objective function satisfies two critical properties that are required for this discontinuity-tracking framework to be practical: (1) possesses a local minima at a discontinuity-aligned mesh and (2) decreases monotonically to this minimum in a neighborhood of radius approximately h / 2, whereas other popular discontinuity indicators fail to satisfy the latter. Another important contribution of this work is the observation that traditional reduced space PDE-constrained optimization solvers that repeatedly solve the conservation law at various mesh configurations are not viable in this context since severe overshoot and undershoot in the solution, i.e., Gibbs' phenomena, may make it impossible to solve the discrete conservation law on non-aligned meshes. Therefore, we advocate a gradient-based, full space solver where the mesh and conservation law solution converge to their optimal values simultaneously and therefore never require the solution of the discrete conservation law on a non-aligned mesh. The merit of the proposed method is demonstrated on a number of one- and two-dimensional model problems including the L2 projection of discontinuous functions, Burgers' equation with a discontinuous source term, transonic flow through a nozzle, and supersonic flow around a bluff body. We demonstrate optimal O (h p + 1) convergence rates in the L1 norm for up to polynomial order p = 6 and show that accurate solutions can be obtained on extremely coarse meshes.

  1. A symplectic integration method for elastic filaments

    NASA Astrophysics Data System (ADS)

    Ladd, Tony; Misra, Gaurav

    2009-03-01

    Elastic rods are a ubiquitous coarse-grained model of semi-flexible biopolymers such as DNA, actin, and microtubules. The Worm-Like Chain (WLC) is the standard numerical model for semi-flexible polymers, but it is only a linearized approximation to the dynamics of an elastic rod, valid for small deflections; typically the torsional motion is neglected as well. In the standard finite-difference and finite-element formulations of an elastic rod, the continuum equations of motion are discretized in space and time, but it is then difficult to ensure that the Hamiltonian structure of the exact equations is preserved. Here we discretize the Hamiltonian itself, expressed as a line integral over the contour of the filament. This discrete representation of the continuum filament can then be integrated by one of the explicit symplectic integrators frequently used in molecular dynamics. The model systematically approximates the continuum partial differential equations, but has the same level of computational complexity as molecular dynamics and is constraint free. Numerical tests show that the algorithm is much more stable than a finite-difference formulation and can be used for high aspect ratio filaments, such as actin. We present numerical results for the deterministic and stochastic motion of single filaments.

  2. Reconstruction of finite-valued sparse signals

    NASA Astrophysics Data System (ADS)

    Keiper, Sandra; Kutyniok, Gitta; Lee, Dae Gwan; Pfander, Götz

    2017-08-01

    The need of reconstructing discrete-valued sparse signals from few measurements, that is solving an undetermined system of linear equations, appears frequently in science and engineering. Those signals appear, for example, in error correcting codes as well as massive Multiple-Input Multiple-Output (MIMO) channel and wideband spectrum sensing. A particular example is given by wireless communications, where the transmitted signals are sequences of bits, i.e., with entries in f0; 1g. Whereas classical compressed sensing algorithms do not incorporate the additional knowledge of the discrete nature of the signal, classical lattice decoding approaches do not utilize sparsity constraints. In this talk, we present an approach that incorporates a discrete values prior into basis pursuit. In particular, we address finite-valued sparse signals, i.e., sparse signals with entries in a finite alphabet. We will introduce an equivalent null space characterization and show that phase transition takes place earlier than when using the classical basis pursuit approach. We will further discuss robustness of the algorithm and show that the nonnegative case is very different from the bipolar one. One of our findings is that the positioning of the zero in the alphabet - i.e., whether it is a boundary element or not - is crucial.

  3. Effect of joint spacing and joint dip on the stress distribution around tunnels using different numerical methods

    NASA Astrophysics Data System (ADS)

    Nikadat, Nooraddin; Fatehi Marji, Mohammad; Rahmannejad, Reza; Yarahmadi Bafghi, Alireza

    2016-11-01

    Different conditions may affect the stability of tunnels by the geometry (spacing and orientation) of joints in the surrounded rock mass. In this study, by comparing the results obtained by the three novel numerical methods i.e. finite element method (Phase2), discrete element method (UDEC) and indirect boundary element method (TFSDDM), the effects of joint spacing and joint dips on the stress distribution around rock tunnels are numerically studied. These comparisons indicate the validity of the stress analyses around circular rock tunnels. These analyses also reveal that for a semi-continuous environment, boundary element method gives more accurate results compared to the results of finite element and distinct element methods. In the indirect boundary element method, the displacements due to joints of different spacing and dips are estimated by using displacement discontinuity (DD) formulations and the total stress distribution around the tunnel are obtained by using fictitious stress (FS) formulations.

  4. A three-dimensional nonlinear Timoshenko beam based on the core-congruential formulation

    NASA Technical Reports Server (NTRS)

    Crivelli, Luis A.; Felippa, Carlos A.

    1992-01-01

    A three-dimensional, geometrically nonlinear two-node Timoshenkoo beam element based on the total Larangrian description is derived. The element behavior is assumed to be linear elastic, but no restrictions are placed on magnitude of finite rotations. The resulting element has twelve degrees of freedom: six translational components and six rotational-vector components. The formulation uses the Green-Lagrange strains and second Piola-Kirchhoff stresses as energy-conjugate variables and accounts for the bending-stretching and bending-torsional coupling effects without special provisions. The core-congruential formulation (CCF) is used to derived the discrete equations in a staged manner. Core equations involving the internal force vector and tangent stiffness matrix are developed at the particle level. A sequence of matrix transformations carries these equations to beam cross-sections and finally to the element nodal degrees of freedom. The choice of finite rotation measure is made in the next-to-last transformation stage, and the choice of over-the-element interpolation in the last one. The tangent stiffness matrix is found to retain symmetry if the rotational vector is chosen to measure finite rotations. An extensive set of numerical examples is presented to test and validate the present element.

  5. Implementation of Hybrid V-Cycle Multilevel Methods for Mixed Finite Element Systems with Penalty

    NASA Technical Reports Server (NTRS)

    Lai, Chen-Yao G.

    1996-01-01

    The goal of this paper is the implementation of hybrid V-cycle hierarchical multilevel methods for the indefinite discrete systems which arise when a mixed finite element approximation is used to solve elliptic boundary value problems. By introducing a penalty parameter, the perturbed indefinite system can be reduced to a symmetric positive definite system containing the small penalty parameter for the velocity unknown alone. We stabilize the hierarchical spatial decomposition approach proposed by Cai, Goldstein, and Pasciak for the reduced system. We demonstrate that the relative condition number of the preconditioner is bounded uniformly with respect to the penalty parameter, the number of levels and possible jumps of the coefficients as long as they occur only across the edges of the coarsest elements.

  6. High-order local maximum principle preserving (MPP) discontinuous Galerkin finite element method for the transport equation

    NASA Astrophysics Data System (ADS)

    Anderson, R.; Dobrev, V.; Kolev, Tz.; Kuzmin, D.; Quezada de Luna, M.; Rieben, R.; Tomov, V.

    2017-04-01

    In this work we present a FCT-like Maximum-Principle Preserving (MPP) method to solve the transport equation. We use high-order polynomial spaces; in particular, we consider up to 5th order spaces in two and three dimensions and 23rd order spaces in one dimension. The method combines the concepts of positive basis functions for discontinuous Galerkin finite element spatial discretization, locally defined solution bounds, element-based flux correction, and non-linear local mass redistribution. We consider a simple 1D problem with non-smooth initial data to explain and understand the behavior of different parts of the method. Convergence tests in space indicate that high-order accuracy is achieved. Numerical results from several benchmarks in two and three dimensions are also reported.

  7. Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling

    NASA Astrophysics Data System (ADS)

    Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen

    2018-04-01

    This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.

  8. Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs

    NASA Astrophysics Data System (ADS)

    Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan

    2016-04-01

    This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.

  9. A comparison of the lattice discrete particle method to the finite-element method and the K&C material model for simulating the static and dynamic response of concrete.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Jovanca J.; Bishop, Joseph E.

    2013-11-01

    This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed atmore » Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.« less

  10. The finite cell method for polygonal meshes: poly-FCM

    NASA Astrophysics Data System (ADS)

    Duczek, Sascha; Gabbert, Ulrich

    2016-10-01

    In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.

  11. Mathematical construction and perturbation analysis of Zernike discrete orthogonal points.

    PubMed

    Shi, Zhenguang; Sui, Yongxin; Liu, Zhenyu; Peng, Ji; Yang, Huaijiang

    2012-06-20

    Zernike functions are orthogonal within the unit circle, but they are not over the discrete points such as CCD arrays or finite element grids. This will result in reconstruction errors for loss of orthogonality. By using roots of Legendre polynomials, a set of points within the unit circle can be constructed so that Zernike functions over the set are discretely orthogonal. Besides that, the location tolerances of the points are studied by perturbation analysis, and the requirements of the positioning precision are not very strict. Computer simulations show that this approach provides a very accurate wavefront reconstruction with the proposed sampling set.

  12. Modeling and Control of the Redundant Parallel Adjustment Mechanism on a Deployable Antenna Panel

    PubMed Central

    Tian, Lili; Bao, Hong; Wang, Meng; Duan, Xuechao

    2016-01-01

    With the aim of developing multiple input and multiple output (MIMO) coupling systems with a redundant parallel adjustment mechanism on the deployable antenna panel, a structural control integrated design methodology is proposed in this paper. Firstly, the modal information from the finite element model of the structure of the antenna panel is extracted, and then the mathematical model is established with the Hamilton principle; Secondly, the discrete Linear Quadratic Regulator (LQR) controller is added to the model in order to control the actuators and adjust the shape of the panel. Finally, the engineering practicality of the modeling and control method based on finite element analysis simulation is verified. PMID:27706076

  13. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    NASA Astrophysics Data System (ADS)

    Regnier, D.; Verrière, M.; Dubray, N.; Schunck, N.

    2016-03-01

    We describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in N-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank-Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle a realistic calculation of fission dynamics.

  14. Finite Element Analysis and Test Results Comparison for the Hybrid Wing Body Center Section Test Article

    NASA Technical Reports Server (NTRS)

    Przekop, Adam; Jegley, Dawn C.; Rouse, Marshall; Lovejoy, Andrew E.

    2016-01-01

    This report documents the comparison of test measurements and predictive finite element analysis results for a hybrid wing body center section test article. The testing and analysis efforts were part of the Airframe Technology subproject within the NASA Environmentally Responsible Aviation project. Test results include full field displacement measurements obtained from digital image correlation systems and discrete strain measurements obtained using both unidirectional and rosette resistive gauges. Most significant results are presented for the critical five load cases exercised during the test. Final test to failure after inflicting severe damage to the test article is also documented. Overall, good comparison between predicted and actual behavior of the test article is found.

  15. Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Bin; Chen, Luoping; Hu, Xiaozhe

    2016-03-05

    In this paper, we study fast iterative solvers for the solution of fourth order parabolic equations discretized by mixed finite element methods. We propose to use consistent mass matrix in the discretization and use lumped mass matrix to construct efficient preconditioners. We provide eigenvalue analysis for the preconditioned system and estimate the convergence rate of the preconditioned GMRes method. Furthermore, we show that these preconditioners only need to be solved inexactly by optimal multigrid algorithms. Our numerical examples indicate that the proposed preconditioners are very efficient and robust with respect to both discretization parameters and diffusion coefficients. We also investigatemore » the performance of multigrid algorithms with either collective smoothers or distributive smoothers when solving the preconditioner systems.« less

  16. An implicit numerical model for multicomponent compressible two-phase flow in porous media

    NASA Astrophysics Data System (ADS)

    Zidane, Ali; Firoozabadi, Abbas

    2015-11-01

    We introduce a new implicit approach to model multicomponent compressible two-phase flow in porous media with species transfer between the phases. In the implicit discretization of the species transport equation in our formulation we calculate for the first time the derivative of the molar concentration of component i in phase α (cα, i) with respect to the total molar concentration (ci) under the conditions of a constant volume V and temperature T. The species transport equation is discretized by the finite volume (FV) method. The fluxes are calculated based on powerful features of the mixed finite element (MFE) method which provides the pressure at grid-cell interfaces in addition to the pressure at the grid-cell center. The efficiency of the proposed model is demonstrated by comparing our results with three existing implicit compositional models. Our algorithm has low numerical dispersion despite the fact it is based on first-order space discretization. The proposed algorithm is very robust.

  17. The optimal design support system for shell components of vehicles using the methods of artificial intelligence

    NASA Astrophysics Data System (ADS)

    Szczepanik, M.; Poteralski, A.

    2016-11-01

    The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.

  18. Evaluation of Transverse Thermal Stresses in Composite Plates Based on First-Order Shear Deformation Theory

    NASA Technical Reports Server (NTRS)

    Rolfes, R.; Noor, A. K.; Sparr, H.

    1998-01-01

    A postprocessing procedure is presented for the evaluation of the transverse thermal stresses in laminated plates. The analytical formulation is based on the first-order shear deformation theory and the plate is discretized by using a single-field displacement finite element model. The procedure is based on neglecting the derivatives of the in-plane forces and the twisting moments, as well as the mixed derivatives of the bending moments, with respect to the in-plane coordinates. The calculated transverse shear stiffnesses reflect the actual stacking sequence of the composite plate. The distributions of the transverse stresses through-the-thickness are evaluated by using only the transverse shear forces and the thermal effects resulting from the finite element analysis. The procedure is implemented into a postprocessing routine which can be easily incorporated into existing commercial finite element codes. Numerical results are presented for four- and ten-layer cross-ply laminates subjected to mechanical and thermal loads.

  19. Real-time adaptive finite element solution of time-dependent Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Liu, Di

    2015-01-01

    In our previous paper (Bao et al., 2012 [1]), a general framework of using adaptive finite element methods to solve the Kohn-Sham equation has been presented. This work is concerned with solving the time-dependent Kohn-Sham equations. The numerical methods are studied in the time domain, which can be employed to explain both the linear and the nonlinear effects. A Crank-Nicolson scheme and linear finite element space are employed for the temporal and spatial discretizations, respectively. To resolve the trouble regions in the time-dependent simulations, a heuristic error indicator is introduced for the mesh adaptive methods. An algebraic multigrid solver is developed to efficiently solve the complex-valued system derived from the semi-implicit scheme. A mask function is employed to remove or reduce the boundary reflection of the wavefunction. The effectiveness of our method is verified by numerical simulations for both linear and nonlinear phenomena, in which the effectiveness of the mesh adaptive methods is clearly demonstrated.

  20. Application of Dynamic Analysis in Semi-Analytical Finite Element Method.

    PubMed

    Liu, Pengfei; Xing, Qinyan; Wang, Dawei; Oeser, Markus

    2017-08-30

    Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement's state.

  1. A high order accurate finite element algorithm for high Reynolds number flow prediction

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1978-01-01

    A Galerkin-weighted residuals formulation is employed to establish an implicit finite element solution algorithm for generally nonlinear initial-boundary value problems. Solution accuracy, and convergence rate with discretization refinement, are quantized in several error norms, by a systematic study of numerical solutions to several nonlinear parabolic and a hyperbolic partial differential equation characteristic of the equations governing fluid flows. Solutions are generated using selective linear, quadratic and cubic basis functions. Richardson extrapolation is employed to generate a higher-order accurate solution to facilitate isolation of truncation error in all norms. Extension of the mathematical theory underlying accuracy and convergence concepts for linear elliptic equations is predicted for equations characteristic of laminar and turbulent fluid flows at nonmodest Reynolds number. The nondiagonal initial-value matrix structure introduced by the finite element theory is determined intrinsic to improved solution accuracy and convergence. A factored Jacobian iteration algorithm is derived and evaluated to yield a consequential reduction in both computer storage and execution CPU requirements while retaining solution accuracy.

  2. Stress analysis of rotating propellers subject to forced excitations

    NASA Astrophysics Data System (ADS)

    Akgun, Ulas

    Turbine blades experience vibrations due to the flow disturbances. These vibrations are the leading cause for fatigue failure in turbine blades. This thesis presents the finite element analysis methods to estimate the maximum vibrational stresses of rotating structures under forced excitation. The presentation included starts with the derived equations of motion for vibration of rotating beams using energy methods under the Euler Bernoulli beam assumptions. The nonlinear large displacement formulation captures the centrifugal stiffening and gyroscopic effects. The weak form of the equations and their finite element discretization are shown. The methods implemented were used for normal modes analyses and forced vibration analyses of rotating beam structures. The prediction of peak stresses under simultaneous multi-mode excitation show that the maximum vibrational stresses estimated using the linear superposition of the stresses can greatly overestimate the stresses if the phase information due to damping (physical and gyroscopic effects) are neglected. The last section of this thesis also presents the results of a practical study that involves finite element analysis and redesign of a composite propeller.

  3. Computational modeling of chemo-electro-mechanical coupling: A novel implicit monolithic finite element approach

    PubMed Central

    Wong, J.; Göktepe, S.; Kuhl, E.

    2014-01-01

    Summary Computational modeling of the human heart allows us to predict how chemical, electrical, and mechanical fields interact throughout a cardiac cycle. Pharmacological treatment of cardiac disease has advanced significantly over the past decades, yet it remains unclear how the local biochemistry of an individual heart cell translates into global cardiac function. Here we propose a novel, unified strategy to simulate excitable biological systems across three biological scales. To discretize the governing chemical, electrical, and mechanical equations in space, we propose a monolithic finite element scheme. We apply a highly efficient and inherently modular global-local split, in which the deformation and the transmembrane potential are introduced globally as nodal degrees of freedom, while the chemical state variables are treated locally as internal variables. To ensure unconditional algorithmic stability, we apply an implicit backward Euler finite difference scheme to discretize the resulting system in time. To increase algorithmic robustness and guarantee optimal quadratic convergence, we suggest an incremental iterative Newton-Raphson scheme. The proposed algorithm allows us to simulate the interaction of chemical, electrical, and mechanical fields during a representative cardiac cycle on a patient-specific geometry, robust and stable, with calculation times on the order of four days on a standard desktop computer. PMID:23798328

  4. Development and Application of Compatible Discretizations of Maxwell's Equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    White, D; Koning, J; Rieben, R

    We present the development and application of compatible finite element discretizations of electromagnetics problems derived from the time dependent, full wave Maxwell equations. We review the H(curl)-conforming finite element method, using the concepts and notations of differential forms as a theoretical framework. We chose this approach because it can handle complex geometries, it is free of spurious modes, it is numerically stable without the need for filtering or artificial diffusion, it correctly models the discontinuity of fields across material boundaries, and it can be very high order. Higher-order H(curl) and H(div) conforming basis functions are not unique and we havemore » designed an extensible C++ framework that supports a variety of specific instantiations of these such as standard interpolatory bases, spectral bases, hierarchical bases, and semi-orthogonal bases. Virtually any electromagnetics problem that can be cast in the language of differential forms can be solved using our framework. For time dependent problems a method-of-lines scheme is used where the Galerkin method reduces the PDE to a semi-discrete system of ODE's, which are then integrated in time using finite difference methods. For time integration of wave equations we employ the unconditionally stable implicit Newmark-Beta method, as well as the high order energy conserving explicit Maxwell Symplectic method; for diffusion equations, we employ a generalized Crank-Nicholson method. We conclude with computational examples from resonant cavity problems, time-dependent wave propagation problems, and transient eddy current problems, all obtained using the authors massively parallel computational electromagnetics code EMSolve.« less

  5. On Dynamics of Spinning Structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Ibrahim, A.

    2012-01-01

    This paper provides details of developments pertaining to vibration analysis of gyroscopic systems, that involves a finite element structural discretization followed by the solution of the resulting matrix eigenvalue problem by a progressive, accelerated simultaneous iteration technique. Thus Coriolis, centrifugal and geometrical stiffness matrices are derived for shell and line elements, followed by the eigensolution details as well as solution of representative problems that demonstrates the efficacy of the currently developed numerical procedures and tools.

  6. Molecular dynamics simulation of propagating cracks

    NASA Technical Reports Server (NTRS)

    Mullins, M.

    1982-01-01

    Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.

  7. Slip Continuity in Explicit Crystal Plasticity Simulations Using Nonlocal Continuum and Semi-discrete Approaches

    DTIC Science & Technology

    2013-01-01

    Based Micropolar Single Crystal Plasticity: Comparison of Multi - and Single Criterion Theories. J. Mech. Phys. Solids 2011, 59, 398–422. ALE3D ...element boundaries in a multi -step constitutive evaluation (Becker, 2011). The results showed the desired effects of smoothing the deformation field...Implementation The model was implemented in the large-scale parallel, explicit finite element code ALE3D (2012). The crystal plasticity

  8. A robust, finite element model for hydrostatic surface water flows

    USGS Publications Warehouse

    Walters, R.A.; Casulli, V.

    1998-01-01

    A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.A finite element scheme is introduced for the 2-dimensional shallow water equations using semi-implicit methods in time. A semi-Lagrangian method is used to approximate the effects of advection. A wave equation is formed at the discrete level such that the equations decouple into an equation for surface elevation and a momentum equation for the horizontal velocity. The convergence rates and relative computational efficiency are examined with the use of three test cases representing various degrees of difficulty. A test with a polar-quadrant grid investigates the response to local grid-scale forcing and the presence of spurious modes, a channel test case establishes convergence rates, and a field-scale test case examines problems with highly irregular grids.

  9. A simple and efficient shear-flexible plate bending element

    NASA Technical Reports Server (NTRS)

    Chaudhuri, Reaz A.

    1987-01-01

    A shear-flexible triangular element formulation, which utilizes an assumed quadratic displacement potential energy approach and is numerically integrated using Gauss quadrature, is presented. The Reissner/Mindlin hypothesis of constant cross-sectional warping is directly applied to the three-dimensional elasticity theory to obtain a moderately thick-plate theory or constant shear-angle theory (CST), wherein the middle surface is no longer considered to be the reference surface and the two rotations are replaced by the two in-plane displacements as nodal variables. The resulting finite-element possesses 18 degrees of freedom (DOF). Numerical results are obtained for two different numerical integration schemes and a wide range of meshes and span-to-thickness ratios. These, when compared with available exact, series or finite-element solutions, demonstrate accuracy and rapid convergence characteristics of the present element. This is especially true in the case of thin to very thin plates, when the present element, used in conjunction with the reduced integration scheme, outperforms its counterpart, based on discrete Kirchhoff constraint theory (DKT).

  10. A least-squares finite element method for 3D incompressible Navier-Stokes equations

    NASA Technical Reports Server (NTRS)

    Jiang, Bo-Nan; Lin, T. L.; Hou, Lin-Jun; Povinelli, Louis A.

    1993-01-01

    The least-squares finite element method (LSFEM) based on the velocity-pressure-vorticity formulation is applied to three-dimensional steady incompressible Navier-Stokes problems. This method can accommodate equal-order interpolations, and results in symmetric, positive definite algebraic system. An additional compatibility equation, i.e., the divergence of vorticity vector should be zero, is included to make the first-order system elliptic. The Newton's method is employed to linearize the partial differential equations, the LSFEM is used to obtain discretized equations, and the system of algebraic equations is solved using the Jacobi preconditioned conjugate gradient method which avoids formation of either element or global matrices (matrix-free) to achieve high efficiency. The flow in a half of 3D cubic cavity is calculated at Re = 100, 400, and 1,000 with 50 x 52 x 25 trilinear elements. The Taylor-Gortler-like vortices are observed at Re = 1,000.

  11. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial discretization method of the spectral element and finite difference methods in the horizontal and vertical directions, respectively, offers a viable method for development of an NH dynamical core.

  12. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    ERIC Educational Resources Information Center

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  13. Shale Fracture Analysis using the Combined Finite-Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.

    2014-12-01

    Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.

  14. Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals

    DOE PAGES

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    2016-12-22

    Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less

  15. A finite element code for modelling tracer transport in a non-isothermal two-phase flow system for CO2 geological storage characterization

    NASA Astrophysics Data System (ADS)

    Tong, F.; Niemi, A. P.; Yang, Z.; Fagerlund, F.; Licha, T.; Sauter, M.

    2011-12-01

    This paper presents a new finite element method (FEM) code for modeling tracer transport in a non-isothermal two-phase flow system. The main intended application is simulation of the movement of so-called novel tracers for the purpose of characterization of geologically stored CO2 and its phase partitioning and migration in deep saline formations. The governing equations are based on the conservation of mass and energy. Among the phenomena accounted for are liquid-phase flow, gas flow, heat transport and the movement of the novel tracers. The movement of tracers includes diffusion and the advection associated with the gas and liquid flow. The temperature, gas pressure, suction, concentration of tracer in liquid phase and concentration of tracer in gas phase are chosen as the five primary variables. Parameters such as the density, viscosity, thermal expansion coefficient are expressed in terms of the primary variables. The governing equations are discretized in space using the Galerkin finite element formulation, and are discretized in time by one-dimensional finite difference scheme. This leads to an ill-conditioned FEM equation that has many small entries along the diagonal of the non-symmetric coefficient matrix. In order to deal with the problem of non-symmetric ill-conditioned matrix equation, special techniques are introduced . Firstly, only nonzero elements of the matrix need to be stored. Secondly, it is avoided to directly solve the whole large matrix. Thirdly, a strategy has been used to keep the diversity of solution methods in the calculation process. Additionally, an efficient adaptive mesh technique is included in the code in order to track the wetting front. The code has been validated against several classical analytical solutions, and will be applied for simulating the CO2 injection experiment to be carried out at the Heletz site, Israel, as part of the EU FP7 project MUSTANG.

  16. Nonnegative methods for bilinear discontinuous differencing of the S N equations on quadrilaterals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.

    Historically, matrix lumping and ad hoc flux fixups have been the only methods used to eliminate or suppress negative angular flux solutions associated with the unlumped bilinear discontinuous (UBLD) finite element spatial discretization of the two-dimensional S N equations. Though matrix lumping inhibits negative angular flux solutions of the S N equations, it does not guarantee strictly positive solutions. In this paper, we develop and define a strictly nonnegative, nonlinear, Petrov-Galerkin finite element method that fully preserves the bilinear discontinuous spatial moments of the transport equation. Additionally, we define two ad hoc fixups that maintain particle balance and explicitly setmore » negative nodes of the UBLD finite element solution to zero but use different auxiliary equations to fully define their respective solutions. We assess the ability to inhibit negative angular flux solutions and the accuracy of every spatial discretization that we consider using a glancing void test problem with a discontinuous solution known to stress numerical methods. Though significantly more computationally intense, the nonlinear Petrov-Galerkin scheme results in a strictly nonnegative solution and is a more accurate solution than all the other methods considered. One fixup, based on shape preserving, results in a strictly nonnegative final solution but has increased numerical diffusion relative to the Petrov-Galerkin scheme and is less accurate than the UBLD solution. The second fixup, which preserves as many spatial moments as possible while setting negative values of the unlumped solution to zero, is less accurate than the Petrov-Galerkin scheme but is more accurate than the other fixup. However, it fails to guarantee a strictly nonnegative final solution. As a result, the fully lumped bilinear discontinuous finite element solution is the least accurate method, with significantly more numerical diffusion than the Petrov-Galerkin scheme and both fixups.« less

  17. Modeling 3D PCMI using the Extended Finite Element Method with higher order elements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, W.; Spencer, Benjamin W.

    2017-03-31

    This report documents the recent development to enable XFEM to work with higher order elements. It also demonstrates the application of higher order (quadratic) elements to both 2D and 3D models of PCMI problems, where discrete fractures in the fuel are represented using XFEM. The modeling results demonstrate the ability of the higher order XFEM to accurately capture the effects of a crack on the response in the vicinity of the intersecting surfaces of cracked fuel and cladding, as well as represent smooth responses in the regions away from the crack.

  18. Energy Stable Flux Formulas For The Discontinuous Galerkin Discretization Of First Order Nonlinear Conservation Laws

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Charrier, Pierre; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    We consider the discontinuous Galerkin (DG) finite element discretization of first order systems of conservation laws derivable as moments of the kinetic Boltzmann equation. This includes well known conservation law systems such as the Euler For the class of first order nonlinear conservation laws equipped with an entropy extension, an energy analysis of the DG method for the Cauchy initial value problem is developed. Using this DG energy analysis, several new variants of existing numerical flux functions are derived and shown to be energy stable.

  19. Analysis of Discrete-Source Damage Progression in a Tensile Stiffened Composite Panel

    NASA Technical Reports Server (NTRS)

    Wang, John T.; Lotts, Christine G.; Sleight, David W.

    1999-01-01

    This paper demonstrates the progressive failure analysis capability in NASA Langley s COMET-AR finite element analysis code on a large-scale built-up composite structure. A large-scale five stringer composite panel with a 7-in. long discrete source damage was analyzed from initial loading to final failure including the geometric and material nonlinearities. Predictions using different mesh sizes, different saw cut modeling approaches, and different failure criteria were performed and assessed. All failure predictions have a reasonably good correlation with the test result.

  20. Geometry and dynamics in the fractional discrete Fourier transform.

    PubMed

    Wolf, Kurt Bernardo; Krötzsch, Guillermo

    2007-03-01

    The N x N Fourier matrix is one distinguished element within the group U(N) of all N x N unitary matrices. It has the geometric property of being a fourth root of unity and is close to the dynamics of harmonic oscillators. The dynamical correspondence is exact only in the N-->infinity contraction limit for the integral Fourier transform and its fractional powers. In the finite-N case, several options have been considered in the literature. We compare their fidelity in reproducing the classical harmonic motion of discrete coherent states.

  1. Blasim: A computational tool to assess ice impact damage on engine blades

    NASA Astrophysics Data System (ADS)

    Reddy, E. S.; Abumeri, G. H.; Chamis, C. C.

    1993-04-01

    A portable computer called BLASIM was developed at NASA LeRC to assess ice impact damage on aircraft engine blades. In addition to ice impact analyses, the code also contains static, dynamic, resonance margin, and supersonic flutter analysis capabilities. Solid, hollow, superhybrid, and composite blades are supported. An optional preprocessor (input generator) was also developed to interactively generate input for BLASIM. The blade geometry can be defined using a series of airfoils at discrete input stations or by a finite element grid. The code employs a coarse, fixed finite element mesh containing triangular plate finite elements to minimize program execution time. Ice piece is modeled using an equivalent spherical objective that has a high velocity opposite that of the aircraft and parallel to the engine axis. For local impact damage assessment, the impact load is considered as a distributed force acting over a region around the impact point. The average radial strain of the finite elements along the leading edge is used as a measure of the local damage. To estimate damage at the blade root, the impact is treated as an impulse and a combined stress failure criteria is employed. Parametric studies of local and root ice impact damage, and post-impact dynamics are discussed for solid and composite blades.

  2. Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends

    NASA Astrophysics Data System (ADS)

    Kakihara, Kuniaki; Kono, Naoya; Saitoh, Kunimasa; Koshiba, Masanori

    2006-11-01

    This paper presents a new full-vectorial finite-element method in a local cylindrical coordinate system, to effectively analyze bending losses in photonic wires. The discretization is performed in the cross section of a three-dimensional curved waveguide, using hybrid edge/nodal elements. The solution region is truncated by anisotropic, perfectly matched layers in the cylindrical coordinate system, to deal properly with leaky modes of the waveguide. This approach is used to evaluate bending losses in silicon wire waveguides. The numerical results of the present approach are compared with results calculated with an equivalent straight waveguide approach and with reported experimental data. These comparisons together demonstrate the validity of the present approach based on the cylindrical coordinate system and also clarifies the limited validity of the equivalent straight waveguide approximation.

  3. Performance analysis of smart laminated composite plate integrated with distributed AFC material undergoing geometrically nonlinear transient vibrations

    NASA Astrophysics Data System (ADS)

    Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh

    2018-02-01

    The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.

  4. Computer-aided modeling and prediction of performance of the modified Lundell class of alternators in space station solar dynamic power systems

    NASA Technical Reports Server (NTRS)

    Demerdash, Nabeel A. O.; Wang, Ren-Hong

    1988-01-01

    The main purpose of this project is the development of computer-aided models for purposes of studying the effects of various design changes on the parameters and performance characteristics of the modified Lundell class of alternators (MLA) as components of a solar dynamic power system supplying electric energy needs in the forthcoming space station. Key to this modeling effort is the computation of magnetic field distribution in MLAs. Since the nature of the magnetic field is three-dimensional, the first step in the investigation was to apply the finite element method to discretize volume, using the tetrahedron as the basic 3-D element. Details of the stator 3-D finite element grid are given. A preliminary look at the early stage of a 3-D rotor grid is presented.

  5. On Multifunctional Collaborative Methods in Engineering Science

    NASA Technical Reports Server (NTRS)

    Ransom, Jonathan B.

    2001-01-01

    Multifunctional methodologies and analysis procedures are formulated for interfacing diverse subdomain idealizations including multi-fidelity modeling methods and multi-discipline analysis methods. These methods, based on the method of weighted residuals, ensure accurate compatibility of primary and secondary variables across the subdomain interfaces. Methods are developed using diverse mathematical modeling (i.e., finite difference and finite element methods) and multi-fidelity modeling among the subdomains. Several benchmark scalar-field and vector-field problems in engineering science are presented with extensions to multidisciplinary problems. Results for all problems presented are in overall good agreement with the exact analytical solution or the reference numerical solution. Based on the results, the integrated modeling approach using the finite element method for multi-fidelity discretization among the subdomains is identified as most robust. The multiple method approach is advantageous when interfacing diverse disciplines in which each of the method's strengths are utilized.

  6. A projection hybrid high order finite volume/finite element method for incompressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Busto, S.; Ferrín, J. L.; Toro, E. F.; Vázquez-Cendón, M. E.

    2018-01-01

    In this paper the projection hybrid FV/FE method presented in [1] is extended to account for species transport equations. Furthermore, turbulent regimes are also considered thanks to the k-ε model. Regarding the transport diffusion stage new schemes of high order of accuracy are developed. The CVC Kolgan-type scheme and ADER methodology are extended to 3D. The latter is modified in order to profit from the dual mesh employed by the projection algorithm and the derivatives involved in the diffusion term are discretized using a Galerkin approach. The accuracy and stability analysis of the new method are carried out for the advection-diffusion-reaction equation. Within the projection stage the pressure correction is computed by a piecewise linear finite element method. Numerical results are presented, aimed at verifying the formal order of accuracy of the scheme and to assess the performance of the method on several realistic test problems.

  7. Semidiscrete Galerkin modelling of compressible viscous flow past a circular cone at incidence. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Meade, Andrew James, Jr.

    1989-01-01

    A numerical study of the laminar and compressible boundary layer, about a circular cone in a supersonic free stream, is presented. It is thought that if accurate and efficient numerical schemes can be produced to solve the boundary layer equations, they can be joined to numerical codes that solve the inviscid outer flow. The combination of these numerical codes is competitive with the accurate, but computationally expensive, Navier-Stokes schemes. The primary goal is to develop a finite element method for the calculation of 3-D compressible laminar boundary layer about a yawed cone. The proposed method can, in principle, be extended to apply to the 3-D boundary layer of pointed bodies of arbitrary cross section. The 3-D boundary layer equations governing supersonic free stream flow about a cone are examined. The 3-D partial differential equations are reduced to 2-D integral equations by applying the Howarth, Mangler, Crocco transformations, a linear relation between viscosity, and a Blasius-type of similarity variable. This is equivalent to a Dorodnitsyn-type formulation. The reduced equations are independent of density and curvature effects, and resemble the weak form of the 2-D incompressible boundary layer equations in Cartesian coordinates. In addition the coordinate normal to the wall has been stretched, which reduces the gradients across the layer and provides high resolution near the surface. Utilizing the parabolic nature of the boundary layer equations, a finite element method is applied to the Dorodnitsyn formulation. The formulation is presented in a Petrov-Galerkin finite element form and discretized across the layer using linear interpolation functions. The finite element discretization yields a system of ordinary differential equations in the circumferential direction. The circumferential derivatives are solved by an implicit and noniterative finite difference marching scheme. Solutions are presented for a 15 deg half angle cone at angles of attack of 5 and 10 deg. The numerical solutions assume a laminar boundary layer with free stream Mach number of 7. Results include circumferential distribution of skin friction and surface heat transfer, and cross flow velocity distributions across the layer.

  8. Nonlinear thermo-mechanical analysis of stiffened composite laminates by a new finite element

    NASA Astrophysics Data System (ADS)

    Barut, Atila

    A new stiffened shell element combining shallow beam and shallow shell elements is developed for geometrically nonlinear analysis of stiffened composite laminates under thermal and/or mechanical loading. The formulation of this element is based on the principal of virtual displacements in conjunction with the co-rotational form of the total Lagrangian description of motion. In the finite element formulation, both the shell and the beam (stiffener) elements account for transverse shear deformations and material anisotropy. The cross-section of the stiffener (beam) can be arbitrary in geometry and lamination. In order to combine the stiffener with the shell element, constraint conditions are applied to the displacement and rotation fields of the stiffener. These constraint conditions ensure that the cross-section of the stiffener remains co-planar with the shell section after deformation. The resulting expressions for the displacement and rotation fields of the stiffener involve only the nodal unknowns of the shell element, thus reducing the total number of degrees of freedom. Also, the discretization of the entire stiffened shell structure becomes more flexible.

  9. Calculations of axisymmetric vortex sheet roll-up using a panel and a filament model

    NASA Technical Reports Server (NTRS)

    Kantelis, J. P.; Widnall, S. E.

    1986-01-01

    A method for calculating the self-induced motion of a vortex sheet using discrete vortex elements is presented. Vortex panels and vortex filaments are used to simulate two-dimensional and axisymmetric vortex sheet roll-up. A straight forward application using vortex elements to simulate the motion of a disk of vorticity with an elliptic circulation distribution yields unsatisfactroy results where the vortex elements move in a chaotic manner. The difficulty is assumed to be due to the inability of a finite number of discrete vortex elements to model the singularity at the sheet edge and due to large velocity calculation errors which result from uneven sheet stretching. A model of the inner portion of the spiral is introduced to eliminate the difficulty with the sheet edge singularity. The model replaces the outermost portion of the sheet with a single vortex of equivalent circulation and a number of higher order terms which account for the asymmetry of the spiral. The resulting discrete vortex model is applied to both two-dimensional and axisymmetric sheets. The two-dimensional roll-up is compared to the solution for a semi-infinite sheet with good results.

  10. Evaluation of a transfinite element numerical solution method for nonlinear heat transfer problems

    NASA Technical Reports Server (NTRS)

    Cerro, J. A.; Scotti, S. J.

    1991-01-01

    Laplace transform techniques have been widely used to solve linear, transient field problems. A transform-based algorithm enables calculation of the response at selected times of interest without the need for stepping in time as required by conventional time integration schemes. The elimination of time stepping can substantially reduce computer time when transform techniques are implemented in a numerical finite element program. The coupling of transform techniques with spatial discretization techniques such as the finite element method has resulted in what are known as transfinite element methods. Recently attempts have been made to extend the transfinite element method to solve nonlinear, transient field problems. This paper examines the theoretical basis and numerical implementation of one such algorithm, applied to nonlinear heat transfer problems. The problem is linearized and solved by requiring a numerical iteration at selected times of interest. While shown to be acceptable for weakly nonlinear problems, this algorithm is ineffective as a general nonlinear solution method.

  11. Global Sensitivity Applied to Dynamic Combined Finite Discrete Element Methods for Fracture Simulation

    NASA Astrophysics Data System (ADS)

    Godinez, H. C.; Rougier, E.; Osthus, D.; Srinivasan, G.

    2017-12-01

    Fracture propagation play a key role for a number of application of interest to the scientific community. From dynamic fracture processes like spall and fragmentation in metals and detection of gas flow in static fractures in rock and the subsurface, the dynamics of fracture propagation is important to various engineering and scientific disciplines. In this work we implement a global sensitivity analysis test to the Hybrid Optimization Software Suite (HOSS), a multi-physics software tool based on the combined finite-discrete element method, that is used to describe material deformation and failure (i.e., fracture and fragmentation) under a number of user-prescribed boundary conditions. We explore the sensitivity of HOSS for various model parameters that influence how fracture are propagated through a material of interest. The parameters control the softening curve that the model relies to determine fractures within each element in the mesh, as well a other internal parameters which influence fracture behavior. The sensitivity method we apply is the Fourier Amplitude Sensitivity Test (FAST), which is a global sensitivity method to explore how each parameter influence the model fracture and to determine the key model parameters that have the most impact on the model. We present several sensitivity experiments for different combination of model parameters and compare against experimental data for verification.

  12. Development of Finite Elements for Two-Dimensional Structural Analysis Using the Integrated Force Method

    NASA Technical Reports Server (NTRS)

    Kaljevic, Igor; Patnaik, Surya N.; Hopkins, Dale A.

    1996-01-01

    The Integrated Force Method has been developed in recent years for the analysis of structural mechanics problems. This method treats all independent internal forces as unknown variables that can be calculated by simultaneously imposing equations of equilibrium and compatibility conditions. In this paper a finite element library for analyzing two-dimensional problems by the Integrated Force Method is presented. Triangular- and quadrilateral-shaped elements capable of modeling arbitrary domain configurations are presented. The element equilibrium and flexibility matrices are derived by discretizing the expressions for potential and complementary energies, respectively. The displacement and stress fields within the finite elements are independently approximated. The displacement field is interpolated as it is in the standard displacement method, and the stress field is approximated by using complete polynomials of the correct order. A procedure that uses the definitions of stress components in terms of an Airy stress function is developed to derive the stress interpolation polynomials. Such derived stress fields identically satisfy the equations of equilibrium. Moreover, the resulting element matrices are insensitive to the orientation of local coordinate systems. A method is devised to calculate the number of rigid body modes, and the present elements are shown to be free of spurious zero-energy modes. A number of example problems are solved by using the present library, and the results are compared with corresponding analytical solutions and with results from the standard displacement finite element method. The Integrated Force Method not only gives results that agree well with analytical and displacement method results but also outperforms the displacement method in stress calculations.

  13. Full Wave Analysis of RF Signal Attenuation in a Lossy Cave using a High Order Time Domain Vector Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pingenot, J; Rieben, R; White, D

    2004-12-06

    We present a computational study of signal propagation and attenuation of a 200 MHz dipole antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The simulation is performed for a series of random meshes in order to generate statistical data for the propagation and attenuation properties of the cave environment. Results for the power spectral density and phase ofmore » the electric field vector components are presented and discussed.« less

  14. On approximation of non-Newtonian fluid flow by the finite element method

    NASA Astrophysics Data System (ADS)

    Svácek, Petr

    2008-08-01

    In this paper the problem of numerical approximation of non-Newtonian fluid flow with free surface is considered. Namely, the flow of fresh concrete is addressed. Industrial mixtures often behaves like non-Newtonian fluids exhibiting a yield stress that needs to be overcome for the flow to take place, cf. [R.B. Bird, R.C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, vol. 1, Fluid Mechanics, Wiley, New York, 1987; R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow in the Process Industries, Butterworth-Heinemann, London, 1999]. The main interest is paid to the mathematical formulation of the problem and to discretization with the aid of finite element method. The described numerical procedure is applied onto the solution of several problems.

  15. FELIX-1.0: A finite element solver for the time dependent generator coordinate method with the Gaussian overlap approximation

    DOE PAGES

    Regnier, D.; Verriere, M.; Dubray, N.; ...

    2015-11-30

    In this study, we describe the software package FELIX that solves the equations of the time-dependent generator coordinate method (TDGCM) in NN-dimensions (N ≥ 1) under the Gaussian overlap approximation. The numerical resolution is based on the Galerkin finite element discretization of the collective space and the Crank–Nicolson scheme for time integration. The TDGCM solver is implemented entirely in C++. Several additional tools written in C++, Python or bash scripting language are also included for convenience. In this paper, the solver is tested with a series of benchmarks calculations. We also demonstrate the ability of our code to handle amore » realistic calculation of fission dynamics.« less

  16. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDECmore » now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.« less

  17. Particle Shape Effect on Macroscopic Behaviour of Underground Structures: Numerical and Experimental Study

    NASA Astrophysics Data System (ADS)

    Szarf, Krzysztof; Combe, Gael; Villard, Pascal

    2015-02-01

    The mechanical performance of underground flexible structures such as buried pipes or culverts made of plastics depend not only on the properties of the structure, but also on the material surrounding it. Flexible drains can deflect by 30% with the joints staying tight, or even invert. Large deformations of the structure are difficult to model in the framework of Finite Element Method, but straightforward in Discrete Element Methods. Moreover, Discrete Element approach is able to provide information about the grain-grain and grain-structure interactions at the microscale. This paper presents numerical and experimental investigations of flexible buried pipe behaviour with focus placed on load transfer above the buried structure. Numerical modeling was able to reproduce the experimental results. Load repartition was observed, being affected by a number of factors such as particle shape, pipe friction and pipe stiffness.

  18. Parallel Solver for H(div) Problems Using Hybridization and AMG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Chak S.; Vassilevski, Panayot S.

    2016-01-15

    In this paper, a scalable parallel solver is proposed for H(div) problems discretized by arbitrary order finite elements on general unstructured meshes. The solver is based on hybridization and algebraic multigrid (AMG). Unlike some previously studied H(div) solvers, the hybridization solver does not require discrete curl and gradient operators as additional input from the user. Instead, only some element information is needed in the construction of the solver. The hybridization results in a H1-equivalent symmetric positive definite system, which is then rescaled and solved by AMG solvers designed for H1 problems. Weak and strong scaling of the method are examinedmore » through several numerical tests. Our numerical results show that the proposed solver provides a promising alternative to ADS, a state-of-the-art solver [12], for H(div) problems. In fact, it outperforms ADS for higher order elements.« less

  19. Finite element methods for the biomechanics of soft hydrated tissues: nonlinear analysis and adaptive control of meshes.

    PubMed

    Spilker, R L; de Almeida, E S; Donzelli, P S

    1992-01-01

    This chapter addresses computationally demanding numerical formulations in the biomechanics of soft tissues. The theory of mixtures can be used to represent soft hydrated tissues in the human musculoskeletal system as a two-phase continuum consisting of an incompressible solid phase (collagen and proteoglycan) and an incompressible fluid phase (interstitial water). We first consider the finite deformation of soft hydrated tissues in which the solid phase is represented as hyperelastic. A finite element formulation of the governing nonlinear biphasic equations is presented based on a mixed-penalty approach and derived using the weighted residual method. Fluid and solid phase deformation, velocity, and pressure are interpolated within each element, and the pressure variables within each element are eliminated at the element level. A system of nonlinear, first-order differential equations in the fluid and solid phase deformation and velocity is obtained. In order to solve these equations, the contributions of the hyperelastic solid phase are incrementally linearized, a finite difference rule is introduced for temporal discretization, and an iterative scheme is adopted to achieve equilibrium at the end of each time increment. We demonstrate the accuracy and adequacy of the procedure using a six-node, isoparametric axisymmetric element, and we present an example problem for which independent numerical solution is available. Next, we present an automated, adaptive environment for the simulation of soft tissue continua in which the finite element analysis is coupled with automatic mesh generation, error indicators, and projection methods. Mesh generation and updating, including both refinement and coarsening, for the two-dimensional examples examined in this study are performed using the finite quadtree approach. The adaptive analysis is based on an error indicator which is the L2 norm of the difference between the finite element solution and a projected finite element solution. Total stress, calculated as the sum of the solid and fluid phase stresses, is used in the error indicator. To allow the finite difference algorithm to proceed in time using an updated mesh, solution values must be transferred to the new nodal locations. This rezoning is accomplished using a projected field for the primary variables. The accuracy and effectiveness of this adaptive finite element analysis is demonstrated using a linear, two-dimensional, axisymmetric problem corresponding to the indentation of a thin sheet of soft tissue. The method is shown to effectively capture the steep gradients and to produce solutions in good agreement with independent, converged, numerical solutions.

  20. An Analysis of Statements of the Multiplication Principle in Combinatorics, Discrete, and Finite Mathematics Textbooks

    ERIC Educational Resources Information Center

    Lockwood, Elise; Reed, Zackery; Caughman, John S.

    2017-01-01

    The multiplication principle serves as a cornerstone in enumerative combinatorics. The principle underpins many basic counting formulas and provides students with a critical element of combinatorial justification. Given its importance, the way in which it is presented in textbooks is surprisingly varied. In this paper, we analyze a number of…

  1. A hybrid incremental projection method for thermal-hydraulics applications

    NASA Astrophysics Data System (ADS)

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; Berndt, Markus; Francois, Marianne M.; Stagg, Alan K.; Xia, Yidong; Luo, Hong

    2016-07-01

    A new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya-Babuška-Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie-Chow interpolation or by using a Petrov-Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes, and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.

  2. A hybrid incremental projection method for thermal-hydraulics applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less

  3. A hybrid incremental projection method for thermal-hydraulics applications

    DOE PAGES

    Christon, Mark A.; Bakosi, Jozsef; Nadiga, Balasubramanya T.; ...

    2016-07-01

    In this paper, a new second-order accurate, hybrid, incremental projection method for time-dependent incompressible viscous flow is introduced in this paper. The hybrid finite-element/finite-volume discretization circumvents the well-known Ladyzhenskaya–Babuška–Brezzi conditions for stability, and does not require special treatment to filter pressure modes by either Rhie–Chow interpolation or by using a Petrov–Galerkin finite element formulation. The use of a co-velocity with a high-resolution advection method and a linearly consistent edge-based treatment of viscous/diffusive terms yields a robust algorithm for a broad spectrum of incompressible flows. The high-resolution advection method is shown to deliver second-order spatial convergence on mixed element topology meshes,more » and the implicit advective treatment significantly increases the stable time-step size. The algorithm is robust and extensible, permitting the incorporation of features such as porous media flow, RANS and LES turbulence models, and semi-/fully-implicit time stepping. A series of verification and validation problems are used to illustrate the convergence properties of the algorithm. The temporal stability properties are demonstrated on a range of problems with 2 ≤ CFL ≤ 100. The new flow solver is built using the Hydra multiphysics toolkit. The Hydra toolkit is written in C++ and provides a rich suite of extensible and fully-parallel components that permit rapid application development, supports multiple discretization techniques, provides I/O interfaces, dynamic run-time load balancing and data migration, and interfaces to scalable popular linear solvers, e.g., in open-source packages such as HYPRE, PETSc, and Trilinos.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manzini, Gianmarco

    This document contains working annotations on the Virtual Element Method (VEM) for the approximate solution of diffusion problems with variable coefficients. To read this document you are assumed to have familiarity with concepts from the numerical discretization of Partial Differential Equations (PDEs) and, in particular, the Finite Element Method (FEM). This document is not an introduction to the FEM, for which many textbooks (also free on the internet) are available. Eventually, this document is intended to evolve into a tutorial introduction to the VEM (but this is really a long-term goal).

  5. Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements

    PubMed Central

    Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.

    2016-01-01

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037

  6. A variational numerical method based on finite elements for the nonlinear solution characteristics of the periodically forced Chen system

    NASA Astrophysics Data System (ADS)

    Khan, Sabeel M.; Sunny, D. A.; Aqeel, M.

    2017-09-01

    Nonlinear dynamical systems and their solutions are very sensitive to initial conditions and therefore need to be approximated carefully. In this article, we present and analyze nonlinear solution characteristics of the periodically forced Chen system with the application of a variational method based on the concept of finite time-elements. Our approach is based on the discretization of physical time space into finite elements where each time-element is mapped to a natural time space. The solution of the system is then determined in natural time space using a set of suitable basis functions. The numerical algorithm is presented and implemented to compute and analyze nonlinear behavior at different time-step sizes. The obtained results show an excellent agreement with the classical RK-4 and RK-5 methods. The accuracy and convergence of the method is shown by comparing numerically computed results with the exact solution for a test problem. The presented method has shown a great potential in dealing with the solutions of nonlinear dynamical systems and thus can be utilized in delineating different features and characteristics of their solutions.

  7. A finite element method with overlapping meshes for free-boundary axisymmetric plasma equilibria in realistic geometries

    NASA Astrophysics Data System (ADS)

    Heumann, Holger; Rapetti, Francesca

    2017-04-01

    Existing finite element implementations for the computation of free-boundary axisymmetric plasma equilibria approximate the unknown poloidal flux function by standard lowest order continuous finite elements with discontinuous gradients. As a consequence, the location of critical points of the poloidal flux, that are of paramount importance in tokamak engineering, is constrained to nodes of the mesh leading to undesired jumps in transient problems. Moreover, recent numerical results for the self-consistent coupling of equilibrium with resistive diffusion and transport suggest the necessity of higher regularity when approximating the flux map. In this work we propose a mortar element method that employs two overlapping meshes. One mesh with Cartesian quadrilaterals covers the vacuum chamber domain accessible by the plasma and one mesh with triangles discretizes the region outside. The two meshes overlap in a narrow region. This approach gives the flexibility to achieve easily and at low cost higher order regularity for the approximation of the flux function in the domain covered by the plasma, while preserving accurate meshing of the geometric details outside this region. The continuity of the numerical solution in the region of overlap is weakly enforced by a mortar-like mapping.

  8. Mixed models and reduction method for dynamic analysis of anisotropic shells

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A time-domain computational procedure is presented for predicting the dynamic response of laminated anisotropic shells. The two key elements of the procedure are: (1) use of mixed finite element models having independent interpolation (shape) functions for stress resultants and generalized displacements for the spatial discretization of the shell, with the stress resultants allowed to be discontinuous at interelement boundaries; and (2) use of a dynamic reduction method, with the global approximation vectors consisting of the static solution and an orthogonal set of Lanczos vectors. The dynamic reduction is accomplished by means of successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate the global approximation vectors. Then the Rayleigh-Ritz technique is used to generate a reduced system of ordinary differential equations in the amplitudes of these modes. The temporal integration of the reduced differential equations is performed by using an explicit half-station central difference scheme (Leap-frog method). The effectiveness of the proposed procedure is demonstrated by means of a numerical example and its advantages over reduction methods used with the displacement formulation are discussed.

  9. Finite-element time-domain modeling of electromagnetic data in general dispersive medium using adaptive Padé series

    NASA Astrophysics Data System (ADS)

    Cai, Hongzhu; Hu, Xiangyun; Xiong, Bin; Zhdanov, Michael S.

    2017-12-01

    The induced polarization (IP) method has been widely used in geophysical exploration to identify the chargeable targets such as mineral deposits. The inversion of the IP data requires modeling the IP response of 3D dispersive conductive structures. We have developed an edge-based finite-element time-domain (FETD) modeling method to simulate the electromagnetic (EM) fields in 3D dispersive medium. We solve the vector Helmholtz equation for total electric field using the edge-based finite-element method with an unstructured tetrahedral mesh. We adopt the backward propagation Euler method, which is unconditionally stable, with semi-adaptive time stepping for the time domain discretization. We use the direct solver based on a sparse LU decomposition to solve the system of equations. We consider the Cole-Cole model in order to take into account the frequency-dependent conductivity dispersion. The Cole-Cole conductivity model in frequency domain is expanded using a truncated Padé series with adaptive selection of the center frequency of the series for early and late time. This approach can significantly increase the accuracy of FETD modeling.

  10. Application of Dynamic Analysis in Semi-Analytical Finite Element Method

    PubMed Central

    Oeser, Markus

    2017-01-01

    Analyses of dynamic responses are significantly important for the design, maintenance and rehabilitation of asphalt pavement. In order to evaluate the dynamic responses of asphalt pavement under moving loads, a specific computational program, SAFEM, was developed based on a semi-analytical finite element method. This method is three-dimensional and only requires a two-dimensional FE discretization by incorporating Fourier series in the third dimension. In this paper, the algorithm to apply the dynamic analysis to SAFEM was introduced in detail. Asphalt pavement models under moving loads were built in the SAFEM and commercial finite element software ABAQUS to verify the accuracy and efficiency of the SAFEM. The verification shows that the computational accuracy of SAFEM is high enough and its computational time is much shorter than ABAQUS. Moreover, experimental verification was carried out and the prediction derived from SAFEM is consistent with the measurement. Therefore, the SAFEM is feasible to reliably predict the dynamic response of asphalt pavement under moving loads, thus proving beneficial to road administration in assessing the pavement’s state. PMID:28867813

  11. Calculation of reaction forces in the boiler supports using the method of equivalent stiffness of membrane wall.

    PubMed

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of "Milano" boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized.

  12. Adaptive Finite Element Methods for Continuum Damage Modeling

    NASA Technical Reports Server (NTRS)

    Min, J. B.; Tworzydlo, W. W.; Xiques, K. E.

    1995-01-01

    The paper presents an application of adaptive finite element methods to the modeling of low-cycle continuum damage and life prediction of high-temperature components. The major objective is to provide automated and accurate modeling of damaged zones through adaptive mesh refinement and adaptive time-stepping methods. The damage modeling methodology is implemented in an usual way by embedding damage evolution in the transient nonlinear solution of elasto-viscoplastic deformation problems. This nonlinear boundary-value problem is discretized by adaptive finite element methods. The automated h-adaptive mesh refinements are driven by error indicators, based on selected principal variables in the problem (stresses, non-elastic strains, damage, etc.). In the time domain, adaptive time-stepping is used, combined with a predictor-corrector time marching algorithm. The time selection is controlled by required time accuracy. In order to take into account strong temperature dependency of material parameters, the nonlinear structural solution a coupled with thermal analyses (one-way coupling). Several test examples illustrate the importance and benefits of adaptive mesh refinements in accurate prediction of damage levels and failure time.

  13. The Mixed Finite Element Multigrid Method for Stokes Equations

    PubMed Central

    Muzhinji, K.; Shateyi, S.; Motsa, S. S.

    2015-01-01

    The stable finite element discretization of the Stokes problem produces a symmetric indefinite system of linear algebraic equations. A variety of iterative solvers have been proposed for such systems in an attempt to construct efficient, fast, and robust solution techniques. This paper investigates one of such iterative solvers, the geometric multigrid solver, to find the approximate solution of the indefinite systems. The main ingredient of the multigrid method is the choice of an appropriate smoothing strategy. This study considers the application of different smoothers and compares their effects in the overall performance of the multigrid solver. We study the multigrid method with the following smoothers: distributed Gauss Seidel, inexact Uzawa, preconditioned MINRES, and Braess-Sarazin type smoothers. A comparative study of the smoothers shows that the Braess-Sarazin smoothers enhance good performance of the multigrid method. We study the problem in a two-dimensional domain using stable Hood-Taylor Q 2-Q 1 pair of finite rectangular elements. We also give the main theoretical convergence results. We present the numerical results to demonstrate the efficiency and robustness of the multigrid method and confirm the theoretical results. PMID:25945361

  14. Probabilistic finite elements for fatigue and fracture analysis

    NASA Astrophysics Data System (ADS)

    Belytschko, Ted; Liu, Wing Kam

    1993-04-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  15. Three-dimensional finite elements for the analysis of soil contamination using a multiple-porosity approach

    NASA Astrophysics Data System (ADS)

    El-Zein, Abbas; Carter, John P.; Airey, David W.

    2006-06-01

    A three-dimensional finite-element model of contaminant migration in fissured clays or contaminated sand which includes multiple sources of non-equilibrium processes is proposed. The conceptual framework can accommodate a regular network of fissures in 1D, 2D or 3D and immobile solutions in the macro-pores of aggregated topsoils, as well as non-equilibrium sorption. A Galerkin weighted-residual statement for the three-dimensional form of the equations in the Laplace domain is formulated. Equations are discretized using linear and quadratic prism elements. The system of algebraic equations is solved in the Laplace domain and solution is inverted to the time domain numerically. The model is validated and its scope is illustrated through the analysis of three problems: a waste repository deeply buried in fissured clay, a storage tank leaking into sand and a sanitary landfill leaching into fissured clay over a sand aquifer.

  16. State-constrained booster trajectory solutions via finite elements and shooting

    NASA Technical Reports Server (NTRS)

    Bless, Robert R.; Hodges, Dewey H.; Seywald, Hans

    1993-01-01

    This paper presents an extension of a FEM formulation based on variational principles. A general formulation for handling internal boundary conditions and discontinuities in the state equations is presented, and the general formulation is modified for optimal control problems subject to state-variable inequality constraints. Solutions which only touch the state constraint and solutions which have a boundary arc of finite length are considered. Suitable shape and test functions are chosen for a FEM discretization. All element quadrature (equivalent to one-point Gaussian quadrature over each element) may be done in closed form. The final form of the algebraic equations is then derived. A simple state-constrained problem is solved. Then, for a practical application of the use of the FEM formulation, a launch vehicle subject to a dynamic pressure constraint (a first-order state inequality constraint) is solved. The results presented for the launch-vehicle trajectory have some interesting features, including a touch-point solution.

  17. Computational plasticity algorithm for particle dynamics simulations

    NASA Astrophysics Data System (ADS)

    Krabbenhoft, K.; Lyamin, A. V.; Vignes, C.

    2018-01-01

    The problem of particle dynamics simulation is interpreted in the framework of computational plasticity leading to an algorithm which is mathematically indistinguishable from the common implicit scheme widely used in the finite element analysis of elastoplastic boundary value problems. This algorithm provides somewhat of a unification of two particle methods, the discrete element method and the contact dynamics method, which usually are thought of as being quite disparate. In particular, it is shown that the former appears as the special case where the time stepping is explicit while the use of implicit time stepping leads to the kind of schemes usually labelled contact dynamics methods. The framing of particle dynamics simulation within computational plasticity paves the way for new approaches similar (or identical) to those frequently employed in nonlinear finite element analysis. These include mixed implicit-explicit time stepping, dynamic relaxation and domain decomposition schemes.

  18. Probabilistic finite elements for fatigue and fracture analysis

    NASA Technical Reports Server (NTRS)

    Belytschko, Ted; Liu, Wing Kam

    1993-01-01

    An overview of the probabilistic finite element method (PFEM) developed by the authors and their colleagues in recent years is presented. The primary focus is placed on the development of PFEM for both structural mechanics problems and fracture mechanics problems. The perturbation techniques are used as major tools for the analytical derivation. The following topics are covered: (1) representation and discretization of random fields; (2) development of PFEM for the general linear transient problem and nonlinear elasticity using Hu-Washizu variational principle; (3) computational aspects; (4) discussions of the application of PFEM to the reliability analysis of both brittle fracture and fatigue; and (5) a stochastic computational tool based on stochastic boundary element (SBEM). Results are obtained for the reliability index and corresponding probability of failure for: (1) fatigue crack growth; (2) defect geometry; (3) fatigue parameters; and (4) applied loads. These results show that initial defect is a critical parameter.

  19. A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators

    NASA Astrophysics Data System (ADS)

    Rouzegar, J.; Abbasi, A.

    2018-03-01

    This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.

  20. Partitioning strategy for efficient nonlinear finite element dynamic analysis on multiprocessor computers

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, Jeanne M.

    1989-01-01

    A computational procedure is presented for the nonlinear dynamic analysis of unsymmetric structures on vector multiprocessor systems. The procedure is based on a novel hierarchical partitioning strategy in which the response of the unsymmetric and antisymmetric response vectors (modes), each obtained by using only a fraction of the degrees of freedom of the original finite element model. The three key elements of the procedure which result in high degree of concurrency throughout the solution process are: (1) mixed (or primitive variable) formulation with independent shape functions for the different fields; (2) operator splitting or restructuring of the discrete equations at each time step to delineate the symmetric and antisymmetric vectors constituting the response; and (3) two level iterative process for generating the response of the structure. An assessment is made of the effectiveness of the procedure on the CRAY X-MP/4 computers.

  1. Spectral Upscaling for Graph Laplacian Problems with Application to Reservoir Simulation

    DOE PAGES

    Barker, Andrew T.; Lee, Chak S.; Vassilevski, Panayot S.

    2017-10-26

    Here, we consider coarsening procedures for graph Laplacian problems written in a mixed saddle-point form. In that form, in addition to the original (vertex) degrees of freedom (dofs), we also have edge degrees of freedom. We extend previously developed aggregation-based coarsening procedures applied to both sets of dofs to now allow more than one coarse vertex dof per aggregate. Those dofs are selected as certain eigenvectors of local graph Laplacians associated with each aggregate. Additionally, we coarsen the edge dofs by using traces of the discrete gradients of the already constructed coarse vertex dofs. These traces are defined on themore » interface edges that connect any two adjacent aggregates. The overall procedure is a modification of the spectral upscaling procedure developed in for the mixed finite element discretization of diffusion type PDEs which has the important property of maintaining inf-sup stability on coarse levels and having provable approximation properties. We consider applications to partitioning a general graph and to a finite volume discretization interpreted as a graph Laplacian, developing consistent and accurate coarse-scale models of a fine-scale problem.« less

  2. A proposed method for enhanced eigen-pair extraction using finite element methods: Theory and application

    NASA Technical Reports Server (NTRS)

    Jara-Almonte, J.; Mitchell, L. D.

    1988-01-01

    The paper covers two distinct parts: theory and application. The goal of this work was the reduction of model size with an increase in eigenvalue/vector accuracy. This method is ideal for the condensation of large truss- or beam-type structures. The theoretical approach involves the conversion of a continuum transfer matrix beam element into an 'Exact' dynamic stiffness element. This formulation is implemented in a finite element environment. This results in the need to solve a transcendental eigenvalue problem. Once the eigenvalue is determined the eigenvectors can be reconstructed with any desired spatial precision. No discretization limitations are imposed on the reconstruction. The results of such a combined finite element and transfer matrix formulation is a much smaller FEM eigenvalue problem. This formulation has the ability to extract higher eigenvalues as easily and as accurately as lower eigenvalues. Moreover, one can extract many more eigenvalues/vectors from the model than the number of degrees of freedom in the FEM formulation. Typically, the number of eigenvalues accurately extractable via the 'Exact' element method are at least 8 times the number of degrees of freedom. In contrast, the FEM usually extracts one accurate (within 5 percent) eigenvalue for each 3-4 degrees of freedom. The 'Exact' element results in a 20-30 improvement in the number of accurately extractable eigenvalues and eigenvectors.

  3. Modelling of high-frequency structure-borne sound transmission on FEM grids using the Discrete Flow Mapping technique

    NASA Astrophysics Data System (ADS)

    Hartmann, Timo; Tanner, Gregor; Xie, Gang; Chappell, David; Bajars, Janis

    2016-09-01

    Dynamical Energy Analysis (DEA) combined with the Discrete Flow Mapping technique (DFM) has recently been introduced as a mesh-based high frequency method modelling structure borne sound for complex built-up structures. This has proven to enhance vibro-acoustic simulations considerably by making it possible to work directly on existing finite element meshes circumventing time-consuming and costly re-modelling strategies. In addition, DFM provides detailed spatial information about the vibrational energy distribution within a complex structure in the mid-to-high frequency range. We will present here progress in the development of the DEA method towards handling complex FEM-meshes including Rigid Body Elements. In addition, structure borne transmission paths due to spot welds are considered. We will present applications for a car floor structure.

  4. Nonlinear vibrations of thin arbitrarily laminated composite plates subjected to harmonic excitations using DKT elements

    NASA Astrophysics Data System (ADS)

    Chiang, C. K.; Xue, David Y.; Mei, Chuh

    1993-04-01

    A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.

  5. Nonlinear vibrations of thin arbitrarily laminated composite plates subjected to harmonic excitations using DKT elements

    NASA Technical Reports Server (NTRS)

    Chiang, C. K.; Xue, David Y.; Mei, Chuh

    1993-01-01

    A finite element formulation is presented for determining the large-amplitude free and steady-state forced vibration response of arbitrarily laminated anisotropic composite thin plates using the Discrete Kirchhoff Theory (DKT) triangular elements. The nonlinear stiffness and harmonic force matrices of an arbitrarily laminated composite triangular plate element are developed for nonlinear free and forced vibration analyses. The linearized updated-mode method with nonlinear time function approximation is employed for the solution of the system nonlinear eigenvalue equations. The amplitude-frequency relations for convergence with gridwork refinement, triangular plates, different boundary conditions, lamination angles, number of plies, and uniform versus concentrated loads are presented.

  6. Multiscale Concrete Modeling of Aging Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammi, Yousseff; Gullett, Philipp; Horstemeyer, Mark F.

    In this work a numerical finite element framework is implemented to enable the integration of coupled multiscale and multiphysics transport processes. A User Element subroutine (UEL) in Abaqus is used to simultaneously solve stress equilibrium, heat conduction, and multiple diffusion equations for 2D and 3D linear and quadratic elements. Transport processes in concrete structures and their degradation mechanisms are presented along with the discretization of the governing equations. The multiphysics modeling framework is theoretically extended to the linear elastic fracture mechanics (LEFM) by introducing the eXtended Finite Element Method (XFEM) and based on the XFEM user element implementation of Ginermore » et al. [2009]. A damage model that takes into account the damage contribution from the different degradation mechanisms is theoretically developed. The total contribution of damage is forwarded to a Multi-Stage Fatigue (MSF) model to enable the assessment of the fatigue life and the deterioration of reinforced concrete structures in a nuclear power plant. Finally, two examples are presented to illustrate the developed multiphysics user element implementation and the XFEM implementation of Giner et al. [2009].« less

  7. A Three-Dimensional Finite-Element Model for Simulating Water Flow in Variably Saturated Porous Media

    NASA Astrophysics Data System (ADS)

    Huyakorn, Peter S.; Springer, Everett P.; Guvanasen, Varut; Wadsworth, Terry D.

    1986-12-01

    A three-dimensional finite-element model for simulating water flow in variably saturated porous media is presented. The model formulation is general and capable of accommodating complex boundary conditions associated with seepage faces and infiltration or evaporation on the soil surface. Included in this formulation is an improved Picard algorithm designed to cope with severely nonlinear soil moisture relations. The algorithm is formulated for both rectangular and triangular prism elements. The element matrices are evaluated using an "influence coefficient" technique that avoids costly numerical integration. Spatial discretization of a three-dimensional region is performed using a vertical slicing approach designed to accommodate complex geometry with irregular boundaries, layering, and/or lateral discontinuities. Matrix solution is achieved using a slice successive overrelaxation scheme that permits a fairly large number of nodal unknowns (on the order of several thousand) to be handled efficiently on small minicomputers. Six examples are presented to verify and demonstrate the utility of the proposed finite-element model. The first four examples concern one- and two-dimensional flow problems used as sample problems to benchmark the code. The remaining examples concern three-dimensional problems. These problems are used to illustrate the performance of the proposed algorithm in three-dimensional situations involving seepage faces and anisotropic soil media.

  8. Partitioned fluid-solid coupling for cardiovascular blood flow: left-ventricular fluid mechanics.

    PubMed

    Krittian, Sebastian; Janoske, Uwe; Oertel, Herbert; Böhlke, Thomas

    2010-04-01

    We present a 3D code-coupling approach which has been specialized towards cardiovascular blood flow. For the first time, the prescribed geometry movement of the cardiovascular flow model KaHMo (Karlsruhe Heart Model) has been replaced by a myocardial composite model. Deformation is driven by fluid forces and myocardial response, i.e., both its contractile and constitutive behavior. Whereas the arbitrary Lagrangian-Eulerian formulation (ALE) of the Navier-Stokes equations is discretized by finite volumes (FVM), the solid mechanical finite elasticity equations are discretized by a finite element (FEM) approach. Taking advantage of specialized numerical solution strategies for non-matching fluid and solid domain meshes, an iterative data-exchange guarantees the interface equilibrium of the underlying governing equations. The focus of this work is on left-ventricular fluid-structure interaction based on patient-specific magnetic resonance imaging datasets. Multi-physical phenomena are described by temporal visualization and characteristic FSI numbers. The results gained show flow patterns that are in good agreement with previous observations. A deeper understanding of cavity deformation, blood flow, and their vital interaction can help to improve surgical treatment and clinical therapy planning.

  9. A mass-energy preserving Galerkin FEM for the coupled nonlinear fractional Schrödinger equations

    NASA Astrophysics Data System (ADS)

    Zhang, Guoyu; Huang, Chengming; Li, Meng

    2018-04-01

    We consider the numerical simulation of the coupled nonlinear space fractional Schrödinger equations. Based on the Galerkin finite element method in space and the Crank-Nicolson (CN) difference method in time, a fully discrete scheme is constructed. Firstly, we focus on a rigorous analysis of conservation laws for the discrete system. The definitions of discrete mass and energy here correspond with the original ones in physics. Then, we prove that the fully discrete system is uniquely solvable. Moreover, we consider the unconditionally convergent properties (that is to say, we complete the error estimates without any mesh ratio restriction). We derive L2-norm error estimates for the nonlinear equations and L^{∞}-norm error estimates for the linear equations. Finally, some numerical experiments are included showing results in agreement with the theoretical predictions.

  10. Residual-based Methods for Controlling Discretization Error in CFD

    DTIC Science & Technology

    2015-08-24

    discrete equations uh into Equation (3), then subtracting the original (continuous) governing equation 0)~( uL gives 0)()~()(  hhh uuLuL  . If...error from Equation (1) results in )()( hhh uL   (4) which for Burgers’ equation becomes  4 2 4 42 3 3 2 2 126 xO x dx udx dx ud u dx d dx d u...GTEE given in Equation (3) gives the continuous residual )()( hhh uuL  (8) which is analogous to the finite element residual (Ainsworth and

  11. 3D modelling of non-linear visco-elasto-plastic crustal and lithospheric processes using LaMEM

    NASA Astrophysics Data System (ADS)

    Popov, Anton; Kaus, Boris

    2016-04-01

    LaMEM (Lithosphere and Mantle Evolution Model) is a three-dimensional thermo-mechanical numerical code to simulate crustal and lithospheric deformation. The code is based on a staggered finite difference (FDSTAG) discretization in space, which is a stable and very efficient technique to solve the (nearly) incompressible Stokes equations that does not suffer from spurious pressure modes or artificial compressibility (a typical feature of low-order finite element techniques). Higher order finite element methods are more accurate than FDSTAG methods under idealized test cases where the jump in viscosity is exactly aligned with the boundaries of the elements. Yet, geodynamically more realistic cases involve evolving subduction zones, nonlinear rheologies or localized plastic shear bands. In these cases, the viscosity pattern evolves spontaneously during a simulation or even during nonlinear iterations, and the advantages of higher order methods disappear and they all converge with approximately first order accuracy, similar to that of FDSTAG [1]. Yet, since FDSTAG methods have considerably less degrees of freedom than quadratic finite element methods, they require about an order of magnitude less memory for the same number of nodes in 3D which also implies that every matrix-vector multiplication is significantly faster. LaMEM is build on top of the PETSc library and uses the particle-in-cell technique to track material properties, history variables which makes it straightforward to incorporate effects like phase changes or chemistry. An internal free surface is present, together with (simple) erosion and sedimentation processes, and a number of methods are available to import complex geometries into the code (e.g, http://geomio.bitbucket.org). Customized Galerkin coupled geometric multigrid preconditioners are implemented which resulted in a good parallel scalability of the code (we have tested LaMEM on 458'752 cores [2]). Yet, the drawback of using FDSTAG discretizations is that the Jacobian, which is a key component for fast and robust convergence of Newton-Raphson nonlinear iterative solvers, is more difficult to implement than in FE codes and actually results in a larger stencil. Rather than discretizing it explicitly, we therefore developed a matrix-free analytical Jacobian implementation for the coupled sets of momentum, mass, and energy conservation equations, combined with visco-elasto-plastic rheologies. Tests show that for simple nonlinear viscous rheologies there is little advantage of the MF approach over the standard MFFD PETSc approach, but that iterations converge slightly faster if plasticity is present. Results also show that the Newton solver usually converges in a quadratic manner even for pressure-dependent Drucker-Prager rheologies and without harmonic viscosity averaging of plastic and viscous rheologies. Yet, if the timestep is too large (and the model becomes effectively viscoplastic), or if the shear band pattern changes dramatically, stagnation of iterations might occur. This can be remedied with an appropriate regularization, which we discuss. LaMEM is available as open source software. [1] Thielmann, M., May, D.A., and Kaus, B., 2014, Discretization Errors in the Hybrid Finite Element Particle-in-cell Method: Pure and Applied Geophysics,, doi: 10.1007/s00024-014-0808-9. [2] Kaus B.J.P., Popov A.A., Baumann T.S., Püsök A.E., Bauville A., Fernandez N., Collignon M. (2015) Forward and inverse modelling of lithospheric deformation on geological timescales. NIC Symposium 2016 - Proceedings. NIC Series. Vol. 48.

  12. A discrete fibre dispersion method for excluding fibres under compression in the modelling of fibrous tissues.

    PubMed

    Li, Kewei; Ogden, Ray W; Holzapfel, Gerhard A

    2018-01-01

    Recently, micro-sphere-based methods derived from the angular integration approach have been used for excluding fibres under compression in the modelling of soft biological tissues. However, recent studies have revealed that many of the widely used numerical integration schemes over the unit sphere are inaccurate for large deformation problems even without excluding fibres under compression. Thus, in this study, we propose a discrete fibre dispersion model based on a systematic method for discretizing a unit hemisphere into a finite number of elementary areas, such as spherical triangles. Over each elementary area, we define a representative fibre direction and a discrete fibre density. Then, the strain energy of all the fibres distributed over each elementary area is approximated based on the deformation of the representative fibre direction weighted by the corresponding discrete fibre density. A summation of fibre contributions over all elementary areas then yields the resultant fibre strain energy. This treatment allows us to exclude fibres under compression in a discrete manner by evaluating the tension-compression status of the representative fibre directions only. We have implemented this model in a finite-element programme and illustrate it with three representative examples, including simple tension and simple shear of a unit cube, and non-homogeneous uniaxial extension of a rectangular strip. The results of all three examples are consistent and accurate compared with the previously developed continuous fibre dispersion model, and that is achieved with a substantial reduction of computational cost. © 2018 The Author(s).

  13. A Finite Element Theory for Predicting the Attenuation of Extended-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Watson, W. R.; Jones, M. G.

    2009-01-01

    A non-modal finite element theory for predicting the attenuation of an extended-reacting liner containing a porous facesheet and located in a no-flow duct is presented. The mathematical approach is to solve separate wave equations in the liner and duct airway and to couple these two solutions by invoking kinematic constraints at the facesheet that are consistent with a continuum theory of fluid motion. Given the liner intrinsic properties, a weak Galerkin finite element formulation with cubic polynomial basis functions is used as the basis for generating a discrete system of acoustic equations that are solved to obtain the coupled acoustic field. A state-of-the-art, asymmetric, parallel, sparse equation solver is implemented that allows tens of thousands of grid points to be analyzed. A grid refinement study is presented to show that the predicted attenuation converges. Excellent comparison of the numerically predicted attenuation to that of a mode theory (using a Haynes 25 metal foam liner) is used to validate the computational approach. Simulations are also presented for fifteen porous plate, extended-reacting liners. The construction of some of the porous plate liners suggest that they should behave as resonant liners while the construction of others suggest that they should behave as broadband attenuators. In each case the finite element theory is observed to predict the proper attenuation trend.

  14. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE PAGES

    Grayver, Alexander V.; Kolev, Tzanio V.

    2015-11-01

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  15. Large-scale 3D geoelectromagnetic modeling using parallel adaptive high-order finite element method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grayver, Alexander V.; Kolev, Tzanio V.

    Here, we have investigated the use of the adaptive high-order finite-element method (FEM) for geoelectromagnetic modeling. Because high-order FEM is challenging from the numerical and computational points of view, most published finite-element studies in geoelectromagnetics use the lowest order formulation. Solution of the resulting large system of linear equations poses the main practical challenge. We have developed a fully parallel and distributed robust and scalable linear solver based on the optimal block-diagonal and auxiliary space preconditioners. The solver was found to be efficient for high finite element orders, unstructured and nonconforming locally refined meshes, a wide range of frequencies, largemore » conductivity contrasts, and number of degrees of freedom (DoFs). Furthermore, the presented linear solver is in essence algebraic; i.e., it acts on the matrix-vector level and thus requires no information about the discretization, boundary conditions, or physical source used, making it readily efficient for a wide range of electromagnetic modeling problems. To get accurate solutions at reduced computational cost, we have also implemented goal-oriented adaptive mesh refinement. The numerical tests indicated that if highly accurate modeling results were required, the high-order FEM in combination with the goal-oriented local mesh refinement required less computational time and DoFs than the lowest order adaptive FEM.« less

  16. An Enriched Shell Element for Delamination Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark

    2015-01-01

    A formulation is presented for an enriched shell finite element capable of delamination simulation in composite laminates. The element uses an adaptive splitting approach for damage characterization that allows for straightforward low-fidelity model creation and a numerically efficient solution. The Floating Node Method is used in conjunction with the Virtual Crack Closure Technique to predict delamination growth and represent it discretely at an arbitrary ply interface. The enriched element is verified for Mode I delamination simulation using numerical benchmark data. After determining important mesh configuration guidelines for the vicinity of the delamination front in the model, a good correlation was found between the enriched shell element model results and the benchmark data set.

  17. Analysis of spurious oscillation modes for the shallow water and Navier-Stokes equations

    USGS Publications Warehouse

    Walters, R.A.; Carey, G.F.

    1983-01-01

    The origin and nature of spurious oscillation modes that appear in mixed finite element methods are examined. In particular, the shallow water equations are considered and a modal analysis for the one-dimensional problem is developed. From the resulting dispersion relations we find that the spurious modes in elevation are associated with zero frequency and large wave number (wavelengths of the order of the nodal spacing) and consequently are zero-velocity modes. The spurious modal behavior is the result of the finite spatial discretization. By means of an artificial compressibility and limiting argument we are able to resolve the similar problem for the Navier-Stokes equations. The relationship of this simpler analysis to alternative consistency arguments is explained. This modal approach provides an explanation of the phenomenon in question and permits us to deduce the cause of the very complex behavior of spurious modes observed in numerical experiments with the shallow water equations and Navier-Stokes equations. Furthermore, this analysis is not limited to finite element formulations, but is also applicable to finite difference formulations. ?? 1983.

  18. Edge-based nonlinear diffusion for finite element approximations of convection-diffusion equations and its relation to algebraic flux-correction schemes.

    PubMed

    Barrenechea, Gabriel R; Burman, Erik; Karakatsani, Fotini

    2017-01-01

    For the case of approximation of convection-diffusion equations using piecewise affine continuous finite elements a new edge-based nonlinear diffusion operator is proposed that makes the scheme satisfy a discrete maximum principle. The diffusion operator is shown to be Lipschitz continuous and linearity preserving. Using these properties we provide a full stability and error analysis, which, in the diffusion dominated regime, shows existence, uniqueness and optimal convergence. Then the algebraic flux correction method is recalled and we show that the present method can be interpreted as an algebraic flux correction method for a particular definition of the flux limiters. The performance of the method is illustrated on some numerical test cases in two space dimensions.

  19. The finite element model for the propagation of light in scattering media: a direct method for domains with nonscattering regions.

    PubMed

    Arridge, S R; Dehghani, H; Schweiger, M; Okada, E

    2000-01-01

    We present a method for handling nonscattering regions within diffusing domains. The method develops from an iterative radiosity-diffusion approach using Green's functions that was computationally slow. Here we present an improved implementation using a finite element method (FEM) that is direct. The fundamental idea is to introduce extra equations into the standard diffusion FEM to represent nondiffusive light propagation across a nonscattering region. By appropriate mesh node ordering the computational time is not much greater than for diffusion alone. We compare results from this method with those from a discrete ordinate transport code, and with Monte Carlo calculations. The agreement is very good, and, in addition, our scheme allows us to easily model time-dependent and frequency domain problems.

  20. Coupled mixed-field laminate theory and finite element for smart piezoelectric composite shell structures

    NASA Technical Reports Server (NTRS)

    Saravanos, Dimitris A.

    1996-01-01

    Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.

  1. Numerical solution of quadratic matrix equations for free vibration analysis of structures

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.

    1975-01-01

    This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.

  2. Efficient Computation of Atmospheric Flows with Tempest: Development of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, J. E.; Ullrich, P. A.

    2015-12-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods at very high spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At global horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of meso-scale test cases to validate the performance of the SNFEM applied in the vertical. Internal gravity wave, mountain wave, convective, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  3. Numerical calculations of velocity and pressure distribution around oscillating airfoils

    NASA Technical Reports Server (NTRS)

    Bratanow, T.; Ecer, A.; Kobiske, M.

    1974-01-01

    An analytical procedure based on the Navier-Stokes equations was developed for analyzing and representing properties of unsteady viscous flow around oscillating obstacles. A variational formulation of the vorticity transport equation was discretized in finite element form and integrated numerically. At each time step of the numerical integration, the velocity field around the obstacle was determined for the instantaneous vorticity distribution from the finite element solution of Poisson's equation. The time-dependent boundary conditions around the oscillating obstacle were introduced as external constraints, using the Lagrangian Multiplier Technique, at each time step of the numerical integration. The procedure was then applied for determining pressures around obstacles oscillating in unsteady flow. The obtained results for a cylinder and an airfoil were illustrated in the form of streamlines and vorticity and pressure distributions.

  4. Duality and Unified Analysis of Discrete Approximations in Structural Dynamics and Wave Propagation: Comparison of rho-method Finite Elements with kappa-method NURBS (Preprint)

    DTIC Science & Technology

    2007-10-10

    Dipartimento di Meccanica Strutturale, Università degli Studi di Pavia cDipartimento di Matematica , Università degli Studi di Pavia dEuropean Centre...for Training and Research in Earthquake Engineering, Pavia eIstituto di Matematica Applicata e Tecnologie Informatiche del CNR, Pavia “Comparisons

  5. Development of an integrated BEM approach for hot fluid structure interaction: BEST-FSI: Boundary Element Solution Technique for Fluid Structure Interaction

    NASA Technical Reports Server (NTRS)

    Dargush, G. F.; Banerjee, P. K.; Shi, Y.

    1992-01-01

    As part of the continuing effort at NASA LeRC to improve both the durability and reliability of hot section Earth-to-orbit engine components, significant enhancements must be made in existing finite element and finite difference methods, and advanced techniques, such as the boundary element method (BEM), must be explored. The BEM was chosen as the basic analysis tool because the critical variables (temperature, flux, displacement, and traction) can be very precisely determined with a boundary-based discretization scheme. Additionally, model preparation is considerably simplified compared to the more familiar domain-based methods. Furthermore, the hyperbolic character of high speed flow is captured through the use of an analytical fundamental solution, eliminating the dependence of the solution on the discretization pattern. The price that must be paid in order to realize these advantages is that any BEM formulation requires a considerable amount of analytical work, which is typically absent in the other numerical methods. All of the research accomplishments of a multi-year program aimed toward the development of a boundary element formulation for the study of hot fluid-structure interaction in Earth-to-orbit engine hot section components are detailed. Most of the effort was directed toward the examination of fluid flow, since BEM's for fluids are at a much less developed state. However, significant strides were made, not only in the analysis of thermoviscous fluids, but also in the solution of the fluid-structure interaction problem.

  6. Inversion of potential field data using the finite element method on parallel computers

    NASA Astrophysics Data System (ADS)

    Gross, L.; Altinay, C.; Shaw, S.

    2015-11-01

    In this paper we present a formulation of the joint inversion of potential field anomaly data as an optimization problem with partial differential equation (PDE) constraints. The problem is solved using the iterative Broyden-Fletcher-Goldfarb-Shanno (BFGS) method with the Hessian operator of the regularization and cross-gradient component of the cost function as preconditioner. We will show that each iterative step requires the solution of several PDEs namely for the potential fields, for the adjoint defects and for the application of the preconditioner. In extension to the traditional discrete formulation the BFGS method is applied to continuous descriptions of the unknown physical properties in combination with an appropriate integral form of the dot product. The PDEs can easily be solved using standard conforming finite element methods (FEMs) with potentially different resolutions. For two examples we demonstrate that the number of PDE solutions required to reach a given tolerance in the BFGS iteration is controlled by weighting regularization and cross-gradient but is independent of the resolution of PDE discretization and that as a consequence the method is weakly scalable with the number of cells on parallel computers. We also show a comparison with the UBC-GIF GRAV3D code.

  7. A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors

    DOE PAGES

    Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...

    2017-04-18

    A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less

  8. TranAir: A full-potential, solution-adaptive, rectangular grid code for predicting subsonic, transonic, and supersonic flows about arbitrary configurations. Theory document

    NASA Technical Reports Server (NTRS)

    Johnson, F. T.; Samant, S. S.; Bieterman, M. B.; Melvin, R. G.; Young, D. P.; Bussoletti, J. E.; Hilmes, C. L.

    1992-01-01

    A new computer program, called TranAir, for analyzing complex configurations in transonic flow (with subsonic or supersonic freestream) was developed. This program provides accurate and efficient simulations of nonlinear aerodynamic flows about arbitrary geometries with the ease and flexibility of a typical panel method program. The numerical method implemented in TranAir is described. The method solves the full potential equation subject to a set of general boundary conditions and can handle regions with differing total pressure and temperature. The boundary value problem is discretized using the finite element method on a locally refined rectangular grid. The grid is automatically constructed by the code and is superimposed on the boundary described by networks of panels; thus no surface fitted grid generation is required. The nonlinear discrete system arising from the finite element method is solved using a preconditioned Krylov subspace method embedded in an inexact Newton method. The solution is obtained on a sequence of successively refined grids which are either constructed adaptively based on estimated solution errors or are predetermined based on user inputs. Many results obtained by using TranAir to analyze aerodynamic configurations are presented.

  9. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE PAGES

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...

    2016-04-27

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  10. A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Tengfei; Lewis, E. E.; Smith, M. A.

    A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less

  11. Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.

    We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less

  12. A locally conservative non-negative finite element formulation for anisotropic advective-diffusive-reactive systems

    NASA Astrophysics Data System (ADS)

    Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.

    2015-12-01

    Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties. Several representative numerical examples are discussed to illustrate the importance of the proposed numerical formulations to accurately describe various aspects of mixing process in chaotic flows and to simulate transport in highly heterogeneous anisotropic media.

  13. Adaptive Wavelet Modeling of Geophysical Data

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H.; Dahmen, W.; Vorloeper, J.

    2009-12-01

    Despite the ever-increasing power of modern computers, realistic modeling of complex three-dimensional Earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modeling approaches includes either finite difference or non-adaptive finite element algorithms, and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behavior of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modeled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet based approach that is applicable to a large scope of problems, also including nonlinear problems. To the best of our knowledge such algorithms have not yet been applied in geophysics. Adaptive wavelet algorithms offer several attractive features: (i) for a given subsurface model, they allow the forward modeling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient, and (iii) the modeling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving three-dimensional geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best fit subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectrical modeling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with spatially highly variable electrical conductivities. The linear dependency of the modeling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  14. Revisiting and Extending Interface Penalties for Multi-Domain Summation-by-Parts Operators

    NASA Technical Reports Server (NTRS)

    Carpenter, Mark H.; Nordstrom, Jan; Gottlieb, David

    2007-01-01

    General interface coupling conditions are presented for multi-domain collocation methods, which satisfy the summation-by-parts (SBP) spatial discretization convention. The combined interior/interface operators are proven to be L2 stable, pointwise stable, and conservative, while maintaining the underlying accuracy of the interior SBP operator. The new interface conditions resemble (and were motivated by) those used in the discontinuous Galerkin finite element community, and maintain many of the same properties. Extensive validation studies are presented using two classes of high-order SBP operators: 1) central finite difference, and 2) Legendre spectral collocation.

  15. Exploration of Toeplitz-like matrices with unbounded symbols is not a purely academic journey

    NASA Astrophysics Data System (ADS)

    Böttcher, A.; Garoni, C.; Serra-Capizzano, S.

    2017-11-01

    It is often asked why Toeplitz-like matrices with unbounded symbols are worth studying. This paper gives an answer by presenting several concrete problems that motivate such studies. It surveys the central results of the theory of Generalized Locally Toeplitz (GLT) sequences in a self-contained tool-kit fashion, and gives a new extension from bounded Riemann integrable functions to unbounded almost everywhere continuous functions. The emergence of unbounded symbols is illustrated by local grid refinements in finite difference and finite element discretizations and also by preconditioning strategies. Bibliography: 40 titles.

  16. Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations.

    PubMed

    Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K

    2011-11-01

    A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.

  17. Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.

    PubMed

    Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A

    2016-03-21

    Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Finite Element Analysis of Reverberation Chambers

    NASA Technical Reports Server (NTRS)

    Bunting, Charles F.; Nguyen, Duc T.

    2000-01-01

    The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.

  19. Compatible-strain mixed finite element methods for incompressible nonlinear elasticity

    NASA Astrophysics Data System (ADS)

    Faghih Shojaei, Mostafa; Yavari, Arash

    2018-05-01

    We introduce a new family of mixed finite elements for incompressible nonlinear elasticity - compatible-strain mixed finite element methods (CSFEMs). Based on a Hu-Washizu-type functional, we write a four-field mixed formulation with the displacement, the displacement gradient, the first Piola-Kirchhoff stress, and a pressure-like field as the four independent unknowns. Using the Hilbert complexes of nonlinear elasticity, which describe the kinematics and the kinetics of motion, we identify the solution spaces of the independent unknown fields. In particular, we define the displacement in H1, the displacement gradient in H (curl), the stress in H (div), and the pressure field in L2. The test spaces of the mixed formulations are chosen to be the same as the corresponding solution spaces. Next, in a conforming setting, we approximate the solution and the test spaces with some piecewise polynomial subspaces of them. Among these approximation spaces are the tensorial analogues of the Nédélec and Raviart-Thomas finite element spaces of vector fields. This approach results in compatible-strain mixed finite element methods that satisfy both the Hadamard compatibility condition and the continuity of traction at the discrete level independently of the refinement level of the mesh. By considering several numerical examples, we demonstrate that CSFEMs have a good performance for bending problems and for bodies with complex geometries. CSFEMs are capable of capturing very large strains and accurately approximating stress and pressure fields. Using CSFEMs, we do not observe any numerical artifacts, e.g., checkerboarding of pressure, hourglass instability, or locking in our numerical examples. Moreover, CSFEMs provide an efficient framework for modeling heterogeneous solids.

  20. Second order accurate finite difference approximations for the transonic small disturbance equation and the full potential equation

    NASA Technical Reports Server (NTRS)

    Mostrel, M. M.

    1988-01-01

    New shock-capturing finite difference approximations for solving two scalar conservation law nonlinear partial differential equations describing inviscid, isentropic, compressible flows of aerodynamics at transonic speeds are presented. A global linear stability theorem is applied to these schemes in order to derive a necessary and sufficient condition for the finite element method. A technique is proposed to render the described approximations total variation-stable by applying the flux limiters to the nonlinear terms of the difference equation dimension by dimension. An entropy theorem applying to the approximations is proved, and an implicit, forward Euler-type time discretization of the approximation is presented. Results of some numerical experiments using the approximations are reported.

  1. Tempest - Efficient Computation of Atmospheric Flows Using High-Order Local Discretization Methods

    NASA Astrophysics Data System (ADS)

    Ullrich, P. A.; Guerra, J. E.

    2014-12-01

    The Tempest Framework composes several compact numerical methods to easily facilitate intercomparison of atmospheric flow calculations on the sphere and in rectangular domains. This framework includes the implementations of Spectral Elements, Discontinuous Galerkin, Flux Reconstruction, and Hybrid Finite Element methods with the goal of achieving optimal accuracy in the solution of atmospheric problems. Several advantages of this approach are discussed such as: improved pressure gradient calculation, numerical stability by vertical/horizontal splitting, arbitrary order of accuracy, etc. The local numerical discretization allows for high performance parallel computation and efficient inclusion of parameterizations. These techniques are used in conjunction with a non-conformal, locally refined, cubed-sphere grid for global simulations and standard Cartesian grids for simulations at the mesoscale. A complete implementation of the methods described is demonstrated in a non-hydrostatic setting.

  2. Three-dimensional flat shell-to-shell coupling: numerical challenges

    NASA Astrophysics Data System (ADS)

    Guo, Kuo; Haikal, Ghadir

    2017-11-01

    The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.

  3. Analyses for Debonding of Stitched Composite Sandwich Structures Using Improved Constitutive Models

    NASA Technical Reports Server (NTRS)

    Glaessgen, E. H.; Sleight, D. W.; Krishnamurthy, T.; Raju, I. S.

    2001-01-01

    A fracture mechanics analysis based on strain energy release rates is used to study the effect of stitching in bonded sandwich beam configurations. Finite elements are used to model the configurations. The stitches were modeled as discrete nonlinear spring elements with a compliance determined by experiment. The constitutive models were developed using the results of flatwise tension tests from sandwich material rather than monolithic material. The analyses show that increasing stitch stiffness, stitch density and debond length decrease strain energy release rates for a fixed applied load.

  4. Local-Mesh, Local-Order, Adaptive Finite Element Methods with a Posteriori Error Estimators for Elliptic Partial Differential Equations.

    DTIC Science & Technology

    1981-12-01

    I I I I I o-F--o -- oIl lI I I 0--0------0I Im I I o--G--o ] II I I ...C-0076, the Department of Energy (DOE Grant DE-AC02-77ET53053), The National Science Foundation (Graduate Fellowship), and Yale University. " i o V.IM...element method, the choice of discretization i eft to the user, who must base his decision on experience with similar equations. - In recent years,

  5. Advanced graphical user interface for multi-physics simulations using AMST

    NASA Astrophysics Data System (ADS)

    Hoffmann, Florian; Vogel, Frank

    2017-07-01

    Numerical modelling of particulate matter has gained much popularity in recent decades. Advanced Multi-physics Simulation Technology (AMST) is a state-of-the-art three dimensional numerical modelling technique combining the eX-tended Discrete Element Method (XDEM) with Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) [1]. One major limitation of this code is the lack of a graphical user interface (GUI) meaning that all pre-processing has to be made directly in a HDF5-file. This contribution presents the first graphical pre-processor developed for AMST.

  6. A fast numerical method for the valuation of American lookback put options

    NASA Astrophysics Data System (ADS)

    Song, Haiming; Zhang, Qi; Zhang, Ran

    2015-10-01

    A fast and efficient numerical method is proposed and analyzed for the valuation of American lookback options. American lookback option pricing problem is essentially a two-dimensional unbounded nonlinear parabolic problem. We reformulate it into a two-dimensional parabolic linear complementary problem (LCP) on an unbounded domain. The numeraire transformation and domain truncation technique are employed to convert the two-dimensional unbounded LCP into a one-dimensional bounded one. Furthermore, the variational inequality (VI) form corresponding to the one-dimensional bounded LCP is obtained skillfully by some discussions. The resulting bounded VI is discretized by a finite element method. Meanwhile, the stability of the semi-discrete solution and the symmetric positive definiteness of the full-discrete matrix are established for the bounded VI. The discretized VI related to options is solved by a projection and contraction method. Numerical experiments are conducted to test the performance of the proposed method.

  7. Inversion of geophysical potential field data using the finite element method

    NASA Astrophysics Data System (ADS)

    Lamichhane, Bishnu P.; Gross, Lutz

    2017-12-01

    The inversion of geophysical potential field data can be formulated as an optimization problem with a constraint in the form of a partial differential equation (PDE). It is common practice, if possible, to provide an analytical solution for the forward problem and to reduce the problem to a finite dimensional optimization problem. In an alternative approach the optimization is applied to the problem and the resulting continuous problem which is defined by a set of coupled PDEs is subsequently solved using a standard PDE discretization method, such as the finite element method (FEM). In this paper, we show that under very mild conditions on the data misfit functional and the forward problem in the three-dimensional space, the continuous optimization problem and its FEM discretization are well-posed including the existence and uniqueness of respective solutions. We provide error estimates for the FEM solution. A main result of the paper is that the FEM spaces used for the forward problem and the Lagrange multiplier need to be identical but can be chosen independently from the FEM space used to represent the unknown physical property. We will demonstrate the convergence of the solution approximations in a numerical example. The second numerical example which investigates the selection of FEM spaces, shows that from the perspective of computational efficiency one should use 2 to 4 times finer mesh for the forward problem in comparison to the mesh of the physical property.

  8. COMPARISONS OF THE FINITE-ELEMENT-WITH-DISCONTIGUOUS-SUPPORT METHOD TO CONTINUOUS-ENERGY MONTE CARLO FOR PIN-CELL PROBLEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    A. T. Till; M. Hanuš; J. Lou

    The standard multigroup (MG) method for energy discretization of the transport equation can be sensitive to approximations in the weighting spectrum chosen for cross-section averaging. As a result, MG often inaccurately treats important phenomena such as self-shielding variations across a material. From a finite-element viewpoint, MG uses a single fixed basis function (the pre-selected spectrum) within each group, with no mechanism to adapt to local solution behavior. In this work, we introduce the Finite-Element-with-Discontiguous-Support (FEDS) method, whose only approximation with respect to energy is that the angular flux is a linear combination of unknowns multiplied by basis functions. A basismore » function is non-zero only in the discontiguous set of energy intervals associated with its energy element. Discontiguous energy elements are generalizations of bands and are determined by minimizing a norm of the difference between snapshot spectra and their averages over the energy elements. We begin by presenting the theory of the FEDS method. We then compare to continuous-energy Monte Carlo for one-dimensional slab and two-dimensional pin-cell problem. We find FEDS to be accurate and efficient at producing quantities of interest such as reaction rates and eigenvalues. Results show that FEDS converges at a rate that is approximately first-order in the number of energy elements and that FEDS is less sensitive to weighting spectrum than standard MG.« less

  9. Numerical solution of the Saint-Venant equations by an efficient hybrid finite-volume/finite-difference method

    NASA Astrophysics Data System (ADS)

    Lai, Wencong; Khan, Abdul A.

    2018-04-01

    A computationally efficient hybrid finite-volume/finite-difference method is proposed for the numerical solution of Saint-Venant equations in one-dimensional open channel flows. The method adopts a mass-conservative finite volume discretization for the continuity equation and a semi-implicit finite difference discretization for the dynamic-wave momentum equation. The spatial discretization of the convective flux term in the momentum equation employs an upwind scheme and the water-surface gradient term is discretized using three different schemes. The performance of the numerical method is investigated in terms of efficiency and accuracy using various examples, including steady flow over a bump, dam-break flow over wet and dry downstream channels, wetting and drying in a parabolic bowl, and dam-break floods in laboratory physical models. Numerical solutions from the hybrid method are compared with solutions from a finite volume method along with analytic solutions or experimental measurements. Comparisons demonstrates that the hybrid method is efficient, accurate, and robust in modeling various flow scenarios, including subcritical, supercritical, and transcritical flows. In this method, the QUICK scheme for the surface slope discretization is more accurate and less diffusive than the center difference and the weighted average schemes.

  10. Development and applications of a flat triangular element for thin laminated shells

    NASA Astrophysics Data System (ADS)

    Mohan, P.

    Finite element analysis of thin laminated shells using a three-noded flat triangular shell element is presented. The flat shell element is obtained by combining the Discrete Kirchhoff Theory (DKT) plate bending element and a membrane element similar to the Allman element, but derived from the Linear Strain Triangular (LST) element. The major drawback of the DKT plate bending element is that the transverse displacement is not explicitly defined within the interior of the element. In the present research, free vibration analysis is performed both by using a lumped mass matrix and a so called consistent mass matrix, obtained by borrowing shape functions from an existing element, in order to compare the performance of the two methods. Several numerical examples are solved to demonstrate the accuracy of the formulation for both small and large rotation analysis of laminated plates and shells. The results are compared with those available in the existing literature and those obtained using the commercial finite element package ABAQUS and are found to be in good agreement. The element is employed for two main applications involving large flexible structures. The first application is the control of thermal deformations of a spherical mirror segment, which is a segment of a multi-segmented primary mirror used in a space telescope. The feasibility of controlling the surface distortions of the mirror segment due to arbitrary thermal fields, using discrete and distributed actuators, is studied. The second application is the analysis of an inflatable structure, being considered by the US Army for housing vehicles and personnel. The updated Lagrangian formulation of the flat shell element has been developed primarily for the nonlinear analysis of the tent structure, since such a structure is expected to undergo large deformations and rotations under the action of environmental loads like the wind and snow loads. The follower effects of the pressure load have been included in the updated Lagrangian formulation of the flat shell element and have been validated using standard examples in the literature involving deformation-dependent pressure loads. The element can be used to obtain the nonlinear response of the tent structure under wind and snow loads. (Abstract shortened by UMI.)

  11. Electromagnetic scattering and radiation from microstrip patch antennas and spirals residing in a cavity

    NASA Technical Reports Server (NTRS)

    Volakis, J. L.; Gong, J.; Alexanian, A.; Woo, A.

    1992-01-01

    A new hybrid method is presented for the analysis of the scattering and radiation by conformal antennas and arrays comprised of circular or rectangular elements. In addition, calculations for cavity-backed spiral antennas are given. The method employs a finite element formulation within the cavity and the boundary integral (exact boundary condition) for terminating the mesh. By virtue of the finite element discretization, the method has no restrictions on the geometry and composition of the cavity or its termination. Furthermore, because of the convolutional nature of the boundary integral and the inherent sparseness of the finite element matrix, the storage requirement is kept very low at O(n). These unique features of the method have already been exploited in other scattering applications and have permitted the analysis of large-size structures with remarkable efficiency. In this report, we describe the method's formulation and implementation for circular and rectangular patch antennas in different superstrate and substrate configurations which may also include the presence of lumped loads and resistive sheets/cards. Also, various modelling approaches are investigated and implemented for characterizing a variety of feed structures to permit the computation of the input impedance and radiation pattern. Many computational examples for rectangular and circular patch configurations are presented which demonstrate the method's versatility, modeling capability and accuracy.

  12. Optimization of the sources in local hyperthermia using a combined finite element-genetic algorithm method.

    PubMed

    Siauve, N; Nicolas, L; Vollaire, C; Marchal, C

    2004-12-01

    This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.

  13. Stencil computations for PDE-based applications with examples from DUNE and hypre

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engwer, C.; Falgout, R. D.; Yang, U. M.

    Here, stencils are commonly used to implement efficient on–the–fly computations of linear operators arising from partial differential equations. At the same time the term “stencil” is not fully defined and can be interpreted differently depending on the application domain and the background of the software developers. Common features in stencil codes are the preservation of the structure given by the discretization of the partial differential equation and the benefit of minimal data storage. We discuss stencil concepts of different complexity, show how they are used in modern software packages like hypre and DUNE, and discuss recent efforts to extend themore » software to enable stencil computations of more complex problems and methods such as inf–sup–stable Stokes discretizations and mixed finite element discretizations.« less

  14. Efficient numerical method for investigating diatomic molecules with single active electron subjected to intense and ultrashort laser fields

    NASA Astrophysics Data System (ADS)

    Kiss, Gellért Zsolt; Borbély, Sándor; Nagy, Ladislau

    2017-12-01

    We have presented here an efficient numerical approach for the ab initio numerical solution of the time-dependent Schrödinger Equation describing diatomic molecules, which interact with ultrafast laser pulses. During the construction of the model we have assumed a frozen nuclear configuration and a single active electron. In order to increase efficiency our system was described using prolate spheroidal coordinates, where the wave function was discretized using the finite-element discrete variable representation (FE-DVR) method. The discretized wave functions were efficiently propagated in time using the short-iterative Lanczos algorithm. As a first test we have studied here how the laser induced bound state dynamics in H2+ is influenced by the strength of the driving laser field.

  15. Stencil computations for PDE-based applications with examples from DUNE and hypre

    DOE PAGES

    Engwer, C.; Falgout, R. D.; Yang, U. M.

    2017-02-24

    Here, stencils are commonly used to implement efficient on–the–fly computations of linear operators arising from partial differential equations. At the same time the term “stencil” is not fully defined and can be interpreted differently depending on the application domain and the background of the software developers. Common features in stencil codes are the preservation of the structure given by the discretization of the partial differential equation and the benefit of minimal data storage. We discuss stencil concepts of different complexity, show how they are used in modern software packages like hypre and DUNE, and discuss recent efforts to extend themore » software to enable stencil computations of more complex problems and methods such as inf–sup–stable Stokes discretizations and mixed finite element discretizations.« less

  16. The Spectral Element Method for Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Taylor, Mark

    1998-11-01

    We will describe SEAM, a Spectral Element Atmospheric Model. SEAM solves the 3D primitive equations used in climate modeling and medium range forecasting. SEAM uses a spectral element discretization for the surface of the globe and finite differences in the vertical direction. The model is spectrally accurate, as demonstrated by a variety of test cases. It is well suited for modern distributed-shared memory computers, sustaining over 24 GFLOPS on a 240 processor HP Exemplar. This performance has allowed us to run several interesting simulations in full spherical geometry at high resolution (over 22 million grid points).

  17. Domain Decomposition Algorithms for First-Order System Least Squares Methods

    NASA Technical Reports Server (NTRS)

    Pavarino, Luca F.

    1996-01-01

    Least squares methods based on first-order systems have been recently proposed and analyzed for second-order elliptic equations and systems. They produce symmetric and positive definite discrete systems by using standard finite element spaces, which are not required to satisfy the inf-sup condition. In this paper, several domain decomposition algorithms for these first-order least squares methods are studied. Some representative overlapping and substructuring algorithms are considered in their additive and multiplicative variants. The theoretical and numerical results obtained show that the classical convergence bounds (on the iteration operator) for standard Galerkin discretizations are also valid for least squares methods.

  18. Density of convex intersections and applications

    PubMed Central

    Rautenberg, C. N.; Rösel, S.

    2017-01-01

    In this paper, we address density properties of intersections of convex sets in several function spaces. Using the concept of Γ-convergence, it is shown in a general framework, how these density issues naturally arise from the regularization, discretization or dualization of constrained optimization problems and from perturbed variational inequalities. A variety of density results (and counterexamples) for pointwise constraints in Sobolev spaces are presented and the corresponding regularity requirements on the upper bound are identified. The results are further discussed in the context of finite-element discretizations of sets associated with convex constraints. Finally, two applications are provided, which include elasto-plasticity and image restoration problems. PMID:28989301

  19. Parallel Newton-Krylov-Schwarz algorithms for the transonic full potential equation

    NASA Technical Reports Server (NTRS)

    Cai, Xiao-Chuan; Gropp, William D.; Keyes, David E.; Melvin, Robin G.; Young, David P.

    1996-01-01

    We study parallel two-level overlapping Schwarz algorithms for solving nonlinear finite element problems, in particular, for the full potential equation of aerodynamics discretized in two dimensions with bilinear elements. The overall algorithm, Newton-Krylov-Schwarz (NKS), employs an inexact finite-difference Newton method and a Krylov space iterative method, with a two-level overlapping Schwarz method as a preconditioner. We demonstrate that NKS, combined with a density upwinding continuation strategy for problems with weak shocks, is robust and, economical for this class of mixed elliptic-hyperbolic nonlinear partial differential equations, with proper specification of several parameters. We study upwinding parameters, inner convergence tolerance, coarse grid density, subdomain overlap, and the level of fill-in in the incomplete factorization, and report their effect on numerical convergence rate, overall execution time, and parallel efficiency on a distributed-memory parallel computer.

  20. A three-dimensional, finite element model for coastal and estuarine circulation

    USGS Publications Warehouse

    Walters, R.A.

    1992-01-01

    This paper describes the development and application of a three-dimensional model for coastal and estuarine circulation. The model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for salt so that density gradient forcing is included in the momentum equations. The model is applied to a study of Delaware Bay, U.S.A., where salinity intrusion is the primary focus. ?? 1991.

  1. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Vonriesemann, W. A.; Leick, R. D.; Hunsaker, B.; Saczalski, K. J.

    1972-01-01

    The formulation and check out porblems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution, are presented. The formulation for special discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check out porblems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings, conical and cylindrical shells and a curved panel. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  2. A contact algorithm for shell problems via Delaunay-based meshing of the contact domain

    NASA Astrophysics Data System (ADS)

    Kamran, K.; Rossi, R.; Oñate, E.

    2013-07-01

    The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.

  3. Isogeometric analysis and harmonic stator-rotor coupling for simulating electric machines

    NASA Astrophysics Data System (ADS)

    Bontinck, Zeger; Corno, Jacopo; Schöps, Sebastian; De Gersem, Herbert

    2018-06-01

    This work proposes Isogeometric Analysis as an alternative to classical finite elements for simulating electric machines. Through the spline-based Isogeometric discretization it is possible to parametrize the circular arcs exactly, thereby avoiding any geometrical error in the representation of the air gap where a high accuracy is mandatory. To increase the generality of the method, and to allow rotation, the rotor and the stator computational domains are constructed independently as multipatch entities. The two subdomains are then coupled using harmonic basis functions at the interface which gives rise to a saddle-point problem. The properties of Isogeometric Analysis combined with harmonic stator-rotor coupling are presented. The results and performance of the new approach are compared to the ones for a classical finite element method using a permanent magnet synchronous machine as an example.

  4. Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method

    NASA Astrophysics Data System (ADS)

    Klimczak, Marek; Cecot, Witold

    2018-01-01

    We present an enhancement of the multiscale finite element method (MsFEM) by combining it with the hp-adaptive FEM. Such a discretization-based homogenization technique is a versatile tool for modeling heterogeneous materials with fast oscillating elasticity coefficients. No assumption on periodicity of the domain is required. In order to avoid direct, so-called overkill mesh computations, a coarse mesh with effective stiffness matrices is used and special shape functions are constructed to account for the local heterogeneities at the micro resolution. The automatic adaptivity (hp-type at the macro resolution and h-type at the micro resolution) increases efficiency of computation. In this paper details of the modified MsFEM are presented and a numerical test performed on a Fichera corner domain is presented in order to validate the proposed approach.

  5. Efficient Computation of Atmospheric Flows with Tempest: Validation of Next-Generation Climate and Weather Prediction Algorithms at Non-Hydrostatic Scales

    NASA Astrophysics Data System (ADS)

    Guerra, Jorge; Ullrich, Paul

    2016-04-01

    Tempest is a next-generation global climate and weather simulation platform designed to allow experimentation with numerical methods for a wide range of spatial resolutions. The atmospheric fluid equations are discretized by continuous / discontinuous finite elements in the horizontal and by a staggered nodal finite element method (SNFEM) in the vertical, coupled with implicit/explicit time integration. At horizontal resolutions below 10km, many important questions remain on optimal techniques for solving the fluid equations. We present results from a suite of idealized test cases to validate the performance of the SNFEM applied in the vertical with an emphasis on flow features and dynamic behavior. Internal gravity wave, mountain wave, convective bubble, and Cartesian baroclinic instability tests will be shown at various vertical orders of accuracy and compared with known results.

  6. A structure-exploiting numbering algorithm for finite elements on extruded meshes, and its performance evaluation in Firedrake

    NASA Astrophysics Data System (ADS)

    Bercea, Gheorghe-Teodor; McRae, Andrew T. T.; Ham, David A.; Mitchell, Lawrence; Rathgeber, Florian; Nardi, Luigi; Luporini, Fabio; Kelly, Paul H. J.

    2016-10-01

    We present a generic algorithm for numbering and then efficiently iterating over the data values attached to an extruded mesh. An extruded mesh is formed by replicating an existing mesh, assumed to be unstructured, to form layers of prismatic cells. Applications of extruded meshes include, but are not limited to, the representation of three-dimensional high aspect ratio domains employed by geophysical finite element simulations. These meshes are structured in the extruded direction. The algorithm presented here exploits this structure to avoid the performance penalty traditionally associated with unstructured meshes. We evaluate the implementation of this algorithm in the Firedrake finite element system on a range of low compute intensity operations which constitute worst cases for data layout performance exploration. The experiments show that having structure along the extruded direction enables the cost of the indirect data accesses to be amortized after 10-20 layers as long as the underlying mesh is well ordered. We characterize the resulting spatial and temporal reuse in a representative set of both continuous-Galerkin and discontinuous-Galerkin discretizations. On meshes with realistic numbers of layers the performance achieved is between 70 and 90 % of a theoretical hardware-specific limit.

  7. Finite element modeling of borehole heat exchanger systems. Part 1. Fundamentals

    NASA Astrophysics Data System (ADS)

    Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.

    2011-08-01

    Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. The first part of the paper derives the fundamental equations for BHE systems and their finite element representations, where the thermal exchange between the borehole components is modeled via thermal transfer relations. For this purpose improved relationships for thermal resistances and capacities of BHE are introduced. Pipe-to-grout thermal transfer possesses multiple grout points for double U-shape and single U-shape BHE to attain a more accurate modeling. The numerical solution of the final 3D problems is performed via a widely non-sequential (essentially non-iterative) coupling strategy for the BHE and porous medium discretization. Four types of vertical BHE are supported: double U-shape (2U) pipe, single U-shape (1U) pipe, coaxial pipe with annular (CXA) and centred (CXC) inlet. Two computational strategies are used: (1) The analytical BHE method based on Eskilson and Claesson's (1988) solution, (2) numerical BHE method based on Al-Khoury et al.'s (2005) solution. The second part of the paper focusses on BHE meshing aspects, the validation of BHE solutions and practical applications for borehole thermal energy store systems.

  8. Finite element formulation of fluctuating hydrodynamics for fluids filled with rigid particles using boundary fitted meshes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Corato, M., E-mail: marco.decorato@unina.it; Slot, J.J.M., E-mail: j.j.m.slot@tue.nl; Hütter, M., E-mail: m.huetter@tue.nl

    In this paper, we present a finite element implementation of fluctuating hydrodynamics with a moving boundary fitted mesh for treating the suspended particles. The thermal fluctuations are incorporated into the continuum equations using the Landau and Lifshitz approach [1]. The proposed implementation fulfills the fluctuation–dissipation theorem exactly at the discrete level. Since we restrict the equations to the creeping flow case, this takes the form of a relation between the diffusion coefficient matrix and friction matrix both at the particle and nodal level of the finite elements. Brownian motion of arbitrarily shaped particles in complex confinements can be considered withinmore » the present formulation. A multi-step time integration scheme is developed to correctly capture the drift term required in the stochastic differential equation (SDE) describing the evolution of the positions of the particles. The proposed approach is validated by simulating the Brownian motion of a sphere between two parallel plates and the motion of a spherical particle in a cylindrical cavity. The time integration algorithm and the fluctuating hydrodynamics implementation are then applied to study the diffusion and the equilibrium probability distribution of a confined circle under an external harmonic potential.« less

  9. Calculation of Reaction Forces in the Boiler Supports Using the Method of Equivalent Stiffness of Membrane Wall

    PubMed Central

    Sertić, Josip; Kozak, Dražan; Samardžić, Ivan

    2014-01-01

    The values of reaction forces in the boiler supports are the basis for the dimensioning of bearing steel structure of steam boiler. In this paper, the application of the method of equivalent stiffness of membrane wall is proposed for the calculation of reaction forces. The method of equalizing displacement, as the method of homogenization of membrane wall stiffness, was applied. On the example of “Milano” boiler, using the finite element method, the calculation of reactions in the supports for the real geometry discretized by the shell finite element was made. The second calculation was performed with the assumption of ideal stiffness of membrane walls and the third using the method of equivalent stiffness of membrane wall. In the third case, the membrane walls are approximated by the equivalent orthotropic plate. The approximation of membrane wall stiffness is achieved using the elasticity matrix of equivalent orthotropic plate at the level of finite element. The obtained results were compared, and the advantages of using the method of equivalent stiffness of membrane wall for the calculation of reactions in the boiler supports were emphasized. PMID:24959612

  10. Soft tissue deformation estimation by spatio-temporal Kalman filter finite element method.

    PubMed

    Yarahmadian, Mehran; Zhong, Yongmin; Gu, Chengfan; Shin, Jaehyun

    2018-01-01

    Soft tissue modeling plays an important role in the development of surgical training simulators as well as in robot-assisted minimally invasive surgeries. It has been known that while the traditional Finite Element Method (FEM) promises the accurate modeling of soft tissue deformation, it still suffers from a slow computational process. This paper presents a Kalman filter finite element method to model soft tissue deformation in real time without sacrificing the traditional FEM accuracy. The proposed method employs the FEM equilibrium equation and formulates it as a filtering process to estimate soft tissue behavior using real-time measurement data. The model is temporally discretized using the Newmark method and further formulated as the system state equation. Simulation results demonstrate that the computational time of KF-FEM is approximately 10 times shorter than the traditional FEM and it is still as accurate as the traditional FEM. The normalized root-mean-square error of the proposed KF-FEM in reference to the traditional FEM is computed as 0.0116. It is concluded that the proposed method significantly improves the computational performance of the traditional FEM without sacrificing FEM accuracy. The proposed method also filters noises involved in system state and measurement data.

  11. Real-time haptic cutting of high-resolution soft tissues.

    PubMed

    Wu, Jun; Westermann, Rüdiger; Dick, Christian

    2014-01-01

    We present our systematic efforts in advancing the computational performance of physically accurate soft tissue cutting simulation, which is at the core of surgery simulators in general. We demonstrate a real-time performance of 15 simulation frames per second for haptic soft tissue cutting of a deformable body at an effective resolution of 170,000 finite elements. This is achieved by the following innovative components: (1) a linked octree discretization of the deformable body, which allows for fast and robust topological modifications of the simulation domain, (2) a composite finite element formulation, which thoroughly reduces the number of simulation degrees of freedom and thus enables to carefully balance simulation performance and accuracy, (3) a highly efficient geometric multigrid solver for solving the linear systems of equations arising from implicit time integration, (4) an efficient collision detection algorithm that effectively exploits the composition structure, and (5) a stable haptic rendering algorithm for computing the feedback forces. Considering that our method increases the finite element resolution for physically accurate real-time soft tissue cutting simulation by an order of magnitude, our technique has a high potential to significantly advance the realism of surgery simulators.

  12. Efficient evaluation of the Coulomb force in the Gaussian and finite-element Coulomb method.

    PubMed

    Kurashige, Yuki; Nakajima, Takahito; Sato, Takeshi; Hirao, Kimihiko

    2010-06-28

    We propose an efficient method for evaluating the Coulomb force in the Gaussian and finite-element Coulomb (GFC) method, which is a linear-scaling approach for evaluating the Coulomb matrix and energy in large molecular systems. The efficient evaluation of the analytical gradient in the GFC is not straightforward as well as the evaluation of the energy because the SCF procedure with the Coulomb matrix does not give a variational solution for the Coulomb energy. Thus, an efficient approximate method is alternatively proposed, in which the Coulomb potential is expanded in the Gaussian and finite-element auxiliary functions as done in the GFC. To minimize the error in the gradient not just in the energy, the derived functions of the original auxiliary functions of the GFC are used additionally for the evaluation of the Coulomb gradient. In fact, the use of the derived functions significantly improves the accuracy of this approach. Although these additional auxiliary functions enlarge the size of the discretized Poisson equation and thereby increase the computational cost, it maintains the near linear scaling as the GFC and does not affects the overall efficiency of the GFC approach.

  13. Simulation-aided constitutive law development - Assessment of low triaxiality void nucleation models via extended finite element method

    NASA Astrophysics Data System (ADS)

    Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob

    2017-05-01

    In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.

  14. A forward-advancing wave expansion method for numerical solution of large-scale sound propagation problems

    NASA Astrophysics Data System (ADS)

    Rolla, L. Barrera; Rice, H. J.

    2006-09-01

    In this paper a "forward-advancing" field discretization method suitable for solving the Helmholtz equation in large-scale problems is proposed. The forward wave expansion method (FWEM) is derived from a highly efficient discretization procedure based on interpolation of wave functions known as the wave expansion method (WEM). The FWEM computes the propagated sound field by means of an exclusively forward advancing solution, neglecting the backscattered field. It is thus analogous to methods such as the (one way) parabolic equation method (PEM) (usually discretized using standard finite difference or finite element methods). These techniques do not require the inversion of large system matrices and thus enable the solution of large-scale acoustic problems where backscatter is not of interest. Calculations using FWEM are presented for two propagation problems and comparisons to data computed with analytical and theoretical solutions and show this forward approximation to be highly accurate. Examples of sound propagation over a screen in upwind and downwind refracting atmospheric conditions at low nodal spacings (0.2 per wavelength in the propagation direction) are also included to demonstrate the flexibility and efficiency of the method.

  15. CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dennis, John; Edwards, Jim; Evans, Kate J

    2012-01-01

    The Community Atmosphere Model (CAM) version 5 includes a spectral element dynamical core option from NCAR's High-Order Method Modeling Environment. It is a continuous Galerkin spectral finite element method designed for fully unstructured quadrilateral meshes. The current configurations in CAM are based on the cubed-sphere grid. The main motivation for including a spectral element dynamical core is to improve the scalability of CAM by allowing quasi-uniform grids for the sphere that do not require polar filters. In addition, the approach provides other state-of-the-art capabilities such as improved conservation properties. Spectral elements are used for the horizontal discretization, while most othermore » aspects of the dynamical core are a hybrid of well tested techniques from CAM's finite volume and global spectral dynamical core options. Here we first give a overview of the spectral element dynamical core as used in CAM. We then give scalability and performance results from CAM running with three different dynamical core options within the Community Earth System Model, using a pre-industrial time-slice configuration. We focus on high resolution simulations of 1/4 degree, 1/8 degree, and T340 spectral truncation.« less

  16. Discrete-Layer Piezoelectric Plate and Shell Models for Active Tip-Clearance Control

    NASA Technical Reports Server (NTRS)

    Heyliger, P. R.; Ramirez, G.; Pei, K. C.

    1994-01-01

    The objectives of this work were to develop computational tools for the analysis of active-sensory composite structures with added or embedded piezoelectric layers. The targeted application for this class of smart composite laminates and the analytical development is the accomplishment of active tip-clearance control in turbomachinery components. Two distinct theories and analytical models were developed and explored under this contract: (1) a discrete-layer plate theory and corresponding computational models, and (2) a three dimensional general discrete-layer element generated in curvilinear coordinates for modeling laminated composite piezoelectric shells. Both models were developed from the complete electromechanical constitutive relations of piezoelectric materials, and incorporate both displacements and potentials as state variables. This report describes the development and results of these models. The discrete-layer theories imply that the displacement field and electrostatic potential through-the-thickness of the laminate are described over an individual layer rather than as a smeared function over the thickness of the entire plate or shell thickness. This is especially crucial for composites with embedded piezoelectric layers, as the actuating and sensing elements within these layers are poorly represented by effective or smeared properties. Linear Lagrange interpolation polynomials were used to describe the through-thickness laminate behavior. Both analytic and finite element approximations were used in the plane or surface of the structure. In this context, theoretical developments are presented for the discrete-layer plate theory, the discrete-layer shell theory, and the formulation of an exact solution for simply-supported piezoelectric plates. Finally, evaluations and results from a number of separate examples are presented for the static and dynamic analysis of the plate geometry. Comparisons between the different approaches are provided when possible, and initial conclusions regarding the accuracy and limitations of these models are given.

  17. An Enriched Shell Finite Element for Progressive Damage Simulation in Composite Laminates

    NASA Technical Reports Server (NTRS)

    McElroy, Mark W.

    2016-01-01

    A formulation is presented for an enriched shell nite element capable of progressive damage simulation in composite laminates. The element uses a discrete adaptive splitting approach for damage representation that allows for a straightforward model creation procedure based on an initially low delity mesh. The enriched element is veri ed for Mode I, Mode II, and mixed Mode I/II delamination simulation using numerical benchmark data. Experimental validation is performed using test data from a delamination-migration experiment. Good correlation was found between the enriched shell element model results and the numerical and experimental data sets. The work presented in this paper is meant to serve as a rst milestone in the enriched element's development with an ultimate goal of simulating three-dimensional progressive damage processes in multidirectional laminates.

  18. Mesh Convergence Requirements for Composite Damage Models

    NASA Technical Reports Server (NTRS)

    Davila, Carlos G.

    2016-01-01

    The ability of the finite element method to accurately represent the response of objects with intricate geometry and loading renders the finite element method as an extremely versatile analysis technique for structural analysis. Finite element analysis is routinely used in industry to calculate deflections, stress concentrations, natural frequencies, buckling loads, and much more. The method works by discretizing complex problems into smaller, simpler approximations that are valid over small uniform domains. For common analyses, the maximum size of the elements that can be used is often be determined by experience. However, to verify the quality of a solution, analyses with several levels of mesh refinement should be performed to ensure that the solution has converged. In recent years, the finite element method has been used to calculate the resistance of structures, and in particular that of composite structures. A number of techniques such as cohesive zone modeling, the virtual crack closure technique, and continuum damage modeling have emerged that can be used to predict cracking, delaminations, fiber failure, and other composite damage modes that lead to structural collapse. However, damage models present mesh refinement requirements that are not well understood. In this presentation, we examine different mesh refinement issues related to the representation of damage in composite materials. Damage process zone sizes and their corresponding mesh requirements will be discussed. The difficulties of modeling discontinuities and the associated need for regularization techniques will be illustrated, and some unexpected element size constraints will be presented. Finally, some of the difficulties in constructing models of composite structures capable of predicting transverse matrix cracking will be discussed. It will be shown that to predict the initiation and propagation of transverse matrix cracks, their density, and their saturation may require models that are significantly more refined than those that have been contemplated in the past.

  19. Gauss-Kronrod-Trapezoidal Integration Scheme for Modeling Biological Tissues with Continuous Fiber Distributions

    PubMed Central

    Hou, Chieh; Ateshian, Gerard A.

    2015-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation. PMID:26291492

  20. A Gauss-Kronrod-Trapezoidal integration scheme for modeling biological tissues with continuous fiber distributions.

    PubMed

    Hou, Chieh; Ateshian, Gerard A

    2016-01-01

    Fibrous biological tissues may be modeled using a continuous fiber distribution (CFD) to capture tension-compression nonlinearity, anisotropic fiber distributions, and load-induced anisotropy. The CFD framework requires spherical integration of weighted individual fiber responses, with fibers contributing to the stress response only when they are in tension. The common method for performing this integration employs the discretization of the unit sphere into a polyhedron with nearly uniform triangular faces (finite element integration or FEI scheme). Although FEI has proven to be more accurate and efficient than integration using spherical coordinates, it presents three major drawbacks: First, the number of elements on the unit sphere needed to achieve satisfactory accuracy becomes a significant computational cost in a finite element (FE) analysis. Second, fibers may not be in tension in some regions on the unit sphere, where the integration becomes a waste. Third, if tensed fiber bundles span a small region compared to the area of the elements on the sphere, a significant discretization error arises. This study presents an integration scheme specialized to the CFD framework, which significantly mitigates the first drawback of the FEI scheme, while eliminating the second and third completely. Here, integration is performed only over the regions of the unit sphere where fibers are in tension. Gauss-Kronrod quadrature is used across latitudes and the trapezoidal scheme across longitudes. Over a wide range of strain states, fiber material properties, and fiber angular distributions, results demonstrate that this new scheme always outperforms FEI, sometimes by orders of magnitude in the number of computational steps and relative accuracy of the stress calculation.

  1. A stabilized element-based finite volume method for poroelastic problems

    NASA Astrophysics Data System (ADS)

    Honório, Hermínio T.; Maliska, Clovis R.; Ferronato, Massimiliano; Janna, Carlo

    2018-07-01

    The coupled equations of Biot's poroelasticity, consisting of stress equilibrium and fluid mass balance in deforming porous media, are numerically solved. The governing partial differential equations are discretized by an Element-based Finite Volume Method (EbFVM), which can be used in three dimensional unstructured grids composed of elements of different types. One of the difficulties for solving these equations is the numerical pressure instability that can arise when undrained conditions take place. In this paper, a stabilization technique is developed to overcome this problem by employing an interpolation function for displacements that considers also the pressure gradient effect. The interpolation function is obtained by the so-called Physical Influence Scheme (PIS), typically employed for solving incompressible fluid flows governed by the Navier-Stokes equations. Classical problems with analytical solutions, as well as three-dimensional realistic cases are addressed. The results reveal that the proposed stabilization technique is able to eliminate the spurious pressure instabilities arising under undrained conditions at a low computational cost.

  2. Finite Element Modeling of Laminated Composite Plates with Locally Delaminated Interface Subjected to Impact Loading

    PubMed Central

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state. PMID:24696668

  3. Finite element modeling of laminated composite plates with locally delaminated interface subjected to impact loading.

    PubMed

    Abo Sabah, Saddam Hussein; Kueh, Ahmad Beng Hong

    2014-01-01

    This paper investigates the effects of localized interface progressive delamination on the behavior of two-layer laminated composite plates when subjected to low velocity impact loading for various fiber orientations. By means of finite element approach, the laminae stiffnesses are constructed independently from their interface, where a well-defined virtually zero-thickness interface element is discreetly adopted for delamination simulation. The present model has the advantage of simulating a localized interfacial condition at arbitrary locations, for various degeneration areas and intensities, under the influence of numerous boundary conditions since the interfacial description is expressed discretely. In comparison, the model shows good agreement with existing results from the literature when modeled in a perfectly bonded state. It is found that as the local delamination area increases, so does the magnitude of the maximum displacement history. Also, as top and bottom fiber orientations deviation increases, both central deflection and energy absorption increase although the relative maximum displacement correspondingly decreases when in contrast to the laminates perfectly bonded state.

  4. A Finite Layer Formulation for Groundwater Flow to Horizontal Wells.

    PubMed

    Xu, Jin; Wang, Xudong

    2016-09-01

    A finite layer approach for the general problem of three-dimensional (3D) flow to horizontal wells in multilayered aquifer systems is presented, in which the unconfined flow can be taken into account. The flow is approximated by an integration of the standard finite element method in vertical direction and the analytical techniques in the other spatial directions. Because only the vertical discretization is involved, the horizontal wells can be completely contained in one specific nodal plane without discretization. Moreover, due to the analytical eigenfunctions introduced in the formulation, the weighted residual equations can be decoupled, and the formulas for the global matrices and flow vector corresponding to horizontal wells can be obtained explicitly. Consequently, the bandwidth of the global matrices and computational cost rising from 3D analysis can be significantly reduced. Two comparisons to the existing solutions are made to verify the validity of the formulation, including transient flow to horizontal wells in confined and unconfined aquifers. Furthermore, an additional numerical application to horizontal wells in three-layered systems is presented to demonstrate the applicability of the present method in modeling flow in more complex aquifer systems. © 2016, National Ground Water Association.

  5. Influence of muscle-tendon complex geometrical parameters on modeling passive stretch behavior with the Discrete Element Method.

    PubMed

    Roux, A; Laporte, S; Lecompte, J; Gras, L-L; Iordanoff, I

    2016-01-25

    The muscle-tendon complex (MTC) is a multi-scale, anisotropic, non-homogeneous structure. It is composed of fascicles, gathered together in a conjunctive aponeurosis. Fibers are oriented into the MTC with a pennation angle. Many MTC models use the Finite Element Method (FEM) to simulate the behavior of the MTC as a hyper-viscoelastic material. The Discrete Element Method (DEM) could be adapted to model fibrous materials, such as the MTC. DEM could capture the complex behavior of a material with a simple discretization scheme and help in understanding the influence of the orientation of fibers on the MTC׳s behavior. The aims of this study were to model the MTC in DEM at the macroscopic scale and to obtain the force/displacement curve during a non-destructive passive tensile test. Another aim was to highlight the influence of the geometrical parameters of the MTC on the global mechanical behavior. A geometrical construction of the MTC was done using discrete element linked by springs. Young׳s modulus values of the MTC׳s components were retrieved from the literature to model the microscopic stiffness of each spring. Alignment and re-orientation of all of the muscle׳s fibers with the tensile axis were observed numerically. The hyper-elastic behavior of the MTC was pointed out. The structure׳s effects, added to the geometrical parameters, highlight the MTC׳s mechanical behavior. It is also highlighted by the heterogeneity of the strain of the MTC׳s components. DEM seems to be a promising method to model the hyper-elastic macroscopic behavior of the MTC with simple elastic microscopic elements. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Arbitrary Order Mixed Mimetic Finite Differences Method with Nodal Degrees of Freedom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iaroshenko, Oleksandr; Gyrya, Vitaliy; Manzini, Gianmarco

    2016-09-01

    In this work we consider a modification to an arbitrary order mixed mimetic finite difference method (MFD) for a diffusion equation on general polygonal meshes [1]. The modification is based on moving some degrees of freedom (DoF) for a flux variable from edges to vertices. We showed that for a non-degenerate element this transformation is locally equivalent, i.e. there is a one-to-one map between the new and the old DoF. Globally, on the other hand, this transformation leads to a reduction of the total number of degrees of freedom (by up to 40%) and additional continuity of the discrete flux.

  7. Transport of phase space densities through tetrahedral meshes using discrete flow mapping

    NASA Astrophysics Data System (ADS)

    Bajars, Janis; Chappell, David J.; Søndergaard, Niels; Tanner, Gregor

    2017-01-01

    Discrete flow mapping was recently introduced as an efficient ray based method determining wave energy distributions in complex built up structures. Wave energy densities are transported along ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined over meshed surfaces. Many applications require the resolution of wave energy distributions in three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture of analytic and spectrally accurate numerical integration. The important issue of how to choose a suitable basis approximation in phase space whilst maintaining a reasonable computational cost is addressed via low order local approximations on tetrahedral faces in the position coordinate and high order orthogonal polynomial expansions in momentum space.

  8. A proof of the Woodward-Lawson sampling method for a finite linear array

    NASA Technical Reports Server (NTRS)

    Somers, Gary A.

    1993-01-01

    An extension of the continuous aperture Woodward-Lawson sampling theorem has been developed for a finite linear array of equidistant identical elements with arbitrary excitations. It is shown that by sampling the array factor at a finite number of specified points in the far field, the exact array factor over all space can be efficiently reconstructed in closed form. The specified sample points lie in real space and hence are measurable provided that the interelement spacing is greater than approximately one half of a wavelength. This paper provides insight as to why the length parameter used in the sampling formulas for discrete arrays is larger than the physical span of the lattice points in contrast with the continuous aperture case where the length parameter is precisely the physical aperture length.

  9. Efficient stabilization and acceleration of numerical simulation of fluid flows by residual recombination

    NASA Astrophysics Data System (ADS)

    Citro, V.; Luchini, P.; Giannetti, F.; Auteri, F.

    2017-09-01

    The study of the stability of a dynamical system described by a set of partial differential equations (PDEs) requires the computation of unstable states as the control parameter exceeds its critical threshold. Unfortunately, the discretization of the governing equations, especially for fluid dynamic applications, often leads to very large discrete systems. As a consequence, matrix based methods, like for example the Newton-Raphson algorithm coupled with a direct inversion of the Jacobian matrix, lead to computational costs too large in terms of both memory and execution time. We present a novel iterative algorithm, inspired by Krylov-subspace methods, which is able to compute unstable steady states and/or accelerate the convergence to stable configurations. Our new algorithm is based on the minimization of the residual norm at each iteration step with a projection basis updated at each iteration rather than at periodic restarts like in the classical GMRES method. The algorithm is able to stabilize any dynamical system without increasing the computational time of the original numerical procedure used to solve the governing equations. Moreover, it can be easily inserted into a pre-existing relaxation (integration) procedure with a call to a single black-box subroutine. The procedure is discussed for problems of different sizes, ranging from a small two-dimensional system to a large three-dimensional problem involving the Navier-Stokes equations. We show that the proposed algorithm is able to improve the convergence of existing iterative schemes. In particular, the procedure is applied to the subcritical flow inside a lid-driven cavity. We also discuss the application of Boostconv to compute the unstable steady flow past a fixed circular cylinder (2D) and boundary-layer flow over a hemispherical roughness element (3D) for supercritical values of the Reynolds number. We show that Boostconv can be used effectively with any spatial discretization, be it a finite-difference, finite-volume, finite-element or spectral method.

  10. Efficient techniques for forced response involving linear modal components interconnected by discrete nonlinear connection elements

    NASA Astrophysics Data System (ADS)

    Avitabile, Peter; O'Callahan, John

    2009-01-01

    Generally, response analysis of systems containing discrete nonlinear connection elements such as typical mounting connections require the physical finite element system matrices to be used in a direct integration algorithm to compute the nonlinear response analysis solution. Due to the large size of these physical matrices, forced nonlinear response analysis requires significant computational resources. Usually, the individual components of the system are analyzed and tested as separate components and their individual behavior may essentially be linear when compared to the total assembled system. However, the joining of these linear subsystems using highly nonlinear connection elements causes the entire system to become nonlinear. It would be advantageous if these linear modal subsystems could be utilized in the forced nonlinear response analysis since much effort has usually been expended in fine tuning and adjusting the analytical models to reflect the tested subsystem configuration. Several more efficient techniques have been developed to address this class of problem. Three of these techniques given as: equivalent reduced model technique (ERMT);modal modification response technique (MMRT); andcomponent element method (CEM); are presented in this paper and are compared to traditional methods.

  11. Crack Turning and Arrest Mechanisms for Integral Structure

    NASA Technical Reports Server (NTRS)

    Pettit, Richard; Ingraffea, Anthony

    1999-01-01

    In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate quarter-point scheme to obtain stress intensity factors.

  12. On sound transmission into a stiffened cylindrical shell with rings and stringers treated as discrete elements

    NASA Technical Reports Server (NTRS)

    Koval, L. R.

    1980-01-01

    In the context of the transmission of airborne noise into an aircraft fuselage, a mathematical model is presented for the transmission of an oblique plane sound wave into a finite cylindrical shell stiffened by stringers and ring frames. The rings and stringers are modeled as discrete structural elements. The numerical case studied was typical of a narrow-bodied jet transport fuselage. The numerical results show that the ring-frequency dip in the transmission loss curve that is present for a monocoque shell is still present in the case of a stiffened shell. The ring frequency effect is a result of the cylindrical geometry of the shell. Below the ring frequency, stiffening does not appear to have any significant effect on transmission loss, but above the ring frequency, stiffeners can enhance the transmission loss of a cylindrical shell.

  13. Improved Subcell Model for the Prediction of Braided Composite Response

    NASA Technical Reports Server (NTRS)

    Cater, Christopher R.; Xinran, Xiao; Goldberg, Robert K.; Kohlman, Lee W.

    2013-01-01

    In this work, the modeling of triaxially braided composites was explored through a semi-analytical discretization. Four unique subcells, each approximated by a "mosaic" stacking of unidirectional composite plies, were modeled through the use of layered-shell elements within the explicit finite element code LS-DYNA. Two subcell discretizations were investigated: a model explicitly capturing pure matrix regions, and a novel model which absorbed pure matrix pockets into neighboring tow plies. The in-plane stiffness properties of both models, computed using bottom-up micromechanics, correlated well to experimental data. The absorbed matrix model, however, was found to best capture out-of- plane flexural properties by comparing numerical simulations of the out-of-plane displacements from single-ply tension tests to experimental full field data. This strong correlation of out-of-plane characteristics supports the current modeling approach as a viable candidate for future work involving impact simulations.

  14. Heat transfer at microscopic level in a MHD fractional inertial flow confined between non-isothermal boundaries

    NASA Astrophysics Data System (ADS)

    Shoaib Anwar, Muhammad; Rasheed, Amer

    2017-07-01

    Heat transfer through a Forchheimer medium in an unsteady magnetohydrodynamic (MHD) developed differential-type fluid flow is analyzed numerically in this study. The boundary layer flow is modeled with the help of the fractional calculus approach. The fluid is confined between infinite parallel plates and flows by motion of the plates in their own plane. Both the plates have variable surface temperature. Governing partial differential equations with appropriate initial and boundary conditions are solved by employing a finite-difference scheme to discretize the fractional time derivative and finite-element discretization for spatial variables. Coefficients of skin friction and local Nusselt numbers are computed for the fractional model. The flow behavior is presented for various values of the involved parameters. The influence of different dimensionless numbers on skin friction and Nusselt number is discussed by tabular results. Forchheimer medium flows that involve catalytic converters and gas turbines can be modeled in a similar manner.

  15. Subspace-based optimization method for inverse scattering problems with an inhomogeneous background medium

    NASA Astrophysics Data System (ADS)

    Chen, Xudong

    2010-07-01

    This paper proposes a version of the subspace-based optimization method to solve the inverse scattering problem with an inhomogeneous background medium where the known inhomogeneities are bounded in a finite domain. Although the background Green's function at each discrete point in the computational domain is not directly available in an inhomogeneous background scenario, the paper uses the finite element method to simultaneously obtain the Green's function at all discrete points. The essence of the subspace-based optimization method is that part of the contrast source is determined from the spectrum analysis without using any optimization, whereas the orthogonally complementary part is determined by solving a lower dimension optimization problem. This feature significantly speeds up the convergence of the algorithm and at the same time makes it robust against noise. Numerical simulations illustrate the efficacy of the proposed algorithm. The algorithm presented in this paper finds wide applications in nondestructive evaluation, such as through-wall imaging.

  16. Coupled Finite Element and Cellular Automata Methods for Analysis of Composite Structures in an Acoustic Domain

    DTIC Science & Technology

    2012-09-01

    the geometry and constraints of the structure with the material properties of its components to generate a response (e.g., displacement, stress, and...phenomena with relative simplicity. Generally, both space and time are treated discretely and the value of the quantity in question is limited to a ...Feit [45] was used. Consider a semi- infinite fluid-filled space with a given uniform

  17. Incomplete augmented Lagrangian preconditioner for steady incompressible Navier-Stokes equations.

    PubMed

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids.

  18. A Physics Based Vehicle Terrain Interaction Model for Soft Soil off-Road Vehicle Simulations

    DTIC Science & Technology

    2012-01-01

    assumed terrain deformation, use of empirical relationships for the deformation, or finite/discrete element approaches for the terrain. A real-time...vertical columns of soil, and the deformation of each is modeled using visco-elasto-plastic compressibility relationships that relate subsoil pressures to...produced by tractive and turning forces will also be incorporated into the model. Both the vertical and horizontal force/displacement relationships

  19. Finite Element Modeling of Coupled Flexible Multibody Dynamics and Liquid Sloshing

    DTIC Science & Technology

    2006-09-01

    tanks is presented. The semi-discrete combined solid and fluid equations of motions are integrated using a time- accurate parallel explicit solver...Incompressible fluid flow in a moving/deforming container including accurate modeling of the free-surface, turbulence, and viscous effects ...paper, a single computational code which uses a time- accurate explicit solution procedure is used to solve both the solid and fluid equations of

  20. Application of the Galerkin/least-squares formulation to the analysis of hypersonic flows. II - Flow past a double ellipse

    NASA Technical Reports Server (NTRS)

    Chalot, F.; Hughes, T. J. R.; Johan, Z.; Shakib, F.

    1991-01-01

    A finite element method for the compressible Navier-Stokes equations is introduced. The discretization is based on entropy variables. The methodology is developed within the framework of a Galerkin/least-squares formulation to which a discontinuity-capturing operator is added. Results for four test cases selected among those of the Workshop on Hypersonic Flows for Reentry Problems are presented.

  1. An Approach To Using All Location Tagged Numerical Data Sets As Continuous Fields With User-Assigned Continuity As A Basis For User-Driven Data Assimilation

    NASA Astrophysics Data System (ADS)

    Vernon, F.; Arrott, M.; Orcutt, J. A.; Mueller, C.; Case, J.; De Wardener, G.; Kerfoot, J.; Schofield, O.

    2013-12-01

    Any approach sophisticated enough to handle a variety of data sources and scale, yet easy enough to promote wide use and mainstream adoption is required to address the following mappings: - From the authored domain of observation to the requested domain of interest; - From the authored spatiotemporal resolution to the requested resolution; and - From the representation of data placed on wide variety of discrete mesh types to the use of that data as a continuos field with a selectable continuity. The Open Geospatial Consortium's (OGC) Reference Model[1] with its direct association with the ISO 19000 series standards provides a comprehensive foundation to represent all data on any type of mesh structure, aka "Discrete Coverages". The Reference Model also provides the specification for the core operations required to utilize any Discrete Coverage. The FEniCS Project[2] provides a comprehensive model for how to represent the Basis Functions on mesh structures as "Degrees of Freedom" to present discrete data as continuous fields with variable continuity. In this talk, we will present the research and development the OOI Cyberinfrastructure Project is pursuing to integrate these approaches into a comprehensive Application Programming Interface (API) to author, acquire and operate on the broad range of data formulation from time series, trajectories and tables through to time variant finite difference grids and finite element meshes.

  2. Practical Aspects of Stabilized FEM Discretizations of Nonlinear Conservation Law Systems with Convex Extension

    NASA Technical Reports Server (NTRS)

    Barth, Timothy; Saini, Subhash (Technical Monitor)

    1999-01-01

    This talk considers simplified finite element discretization techniques for first-order systems of conservation laws equipped with a convex (entropy) extension. Using newly developed techniques in entropy symmetrization theory, simplified forms of the Galerkin least-squares (GLS) and the discontinuous Galerkin (DG) finite element method have been developed and analyzed. The use of symmetrization variables yields numerical schemes which inherit global entropy stability properties of the POE system. Central to the development of the simplified GLS and DG methods is the Degenerative Scaling Theorem which characterizes right symmetrizes of an arbitrary first-order hyperbolic system in terms of scaled eigenvectors of the corresponding flux Jacobean matrices. A constructive proof is provided for the Eigenvalue Scaling Theorem with detailed consideration given to the Euler, Navier-Stokes, and magnetohydrodynamic (MHD) equations. Linear and nonlinear energy stability is proven for the simplified GLS and DG methods. Spatial convergence properties of the simplified GLS and DO methods are numerical evaluated via the computation of Ringleb flow on a sequence of successively refined triangulations. Finally, we consider a posteriori error estimates for the GLS and DG demoralization assuming error functionals related to the integrated lift and drag of a body. Sample calculations in 20 are shown to validate the theory and implementation.

  3. Variable-Domain Displacement Transfer Functions for Converting Surface Strains into Deflections for Structural Deformed Shape Predictions

    NASA Technical Reports Server (NTRS)

    Ko, William L.; Fleischer, Van Tran

    2015-01-01

    Variable-Domain Displacement Transfer Functions were formulated for shape predictions of complex wing structures, for which surface strain-sensing stations must be properly distributed to avoid jointed junctures, and must be increased in the high strain gradient region. Each embedded beam (depth-wise cross section of structure along a surface strain-sensing line) was discretized into small variable domains. Thus, the surface strain distribution can be described with a piecewise linear or a piecewise nonlinear function. Through discretization, the embedded beam curvature equation can be piece-wisely integrated to obtain the Variable-Domain Displacement Transfer Functions (for each embedded beam), which are expressed in terms of geometrical parameters of the embedded beam and the surface strains along the strain-sensing line. By inputting the surface strain data into the Displacement Transfer Functions, slopes and deflections along each embedded beam can be calculated for mapping out overall structural deformed shapes. A long tapered cantilever tubular beam was chosen for shape prediction analysis. The input surface strains were analytically generated from finite-element analysis. The shape prediction accuracies of the Variable- Domain Displacement Transfer Functions were then determined in light of the finite-element generated slopes and deflections, and were fofound to be comparable to the accuracies of the constant-domain Displacement Transfer Functions

  4. Performance of a parallel algebraic multilevel preconditioner for stabilized finite element semiconductor device modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Paul T.; Shadid, John N.; Sala, Marzio

    In this study results are presented for the large-scale parallel performance of an algebraic multilevel preconditioner for solution of the drift-diffusion model for semiconductor devices. The preconditioner is the key numerical procedure determining the robustness, efficiency and scalability of the fully-coupled Newton-Krylov based, nonlinear solution method that is employed for this system of equations. The coupled system is comprised of a source term dominated Poisson equation for the electric potential, and two convection-diffusion-reaction type equations for the electron and hole concentration. The governing PDEs are discretized in space by a stabilized finite element method. Solution of the discrete system ismore » obtained through a fully-implicit time integrator, a fully-coupled Newton-based nonlinear solver, and a restarted GMRES Krylov linear system solver. The algebraic multilevel preconditioner is based on an aggressive coarsening graph partitioning of the nonzero block structure of the Jacobian matrix. Representative performance results are presented for various choices of multigrid V-cycles and W-cycles and parameter variations for smoothers based on incomplete factorizations. Parallel scalability results are presented for solution of up to 10{sup 8} unknowns on 4096 processors of a Cray XT3/4 and an IBM POWER eServer system.« less

  5. An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Saether, E.; Glaessgen, E.H.; Yamakov, V.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  6. A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses

    NASA Technical Reports Server (NTRS)

    Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.

    2008-01-01

    The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.

  7. Hierarchical Material Properties in Finite Element Analysis: The Oilfield Infrastructure Problem.

    NASA Astrophysics Data System (ADS)

    Weiss, C. J.; Wilson, G. A.

    2017-12-01

    Geophysical simulation of low-frequency electromagnetic signals within built environments such as urban centers and industrial landscapes facilities is a challenging computational problem because strong conductors (e.g., pipes, fences, rail lines, rebar, etc.) are not only highly conductive and/or magnetic relative to the surrounding geology, but they are very small in one or more of their physical length coordinates. Realistic modeling of such structures as idealized conductors has long been the standard approach; however this strategy carries with it computational burdens such as cumbersome implementation of internal boundary conditions, and limited flexibility for accommodating realistic geometries. Another standard approach is "brute force" discretization (often coupled with an equivalent medium model) whereby 100's of millions of voxels are used to represent these strong conductors, but at the cost of extreme computation times (and mesh design) for a simulation result when possible. To minimize these burdens, a new finite element scheme (Weiss, Geophysics, 2017) has been developed in which the material properties reside on a hierarchy of geometric simplicies (i.e., edges, facets and volumes) within an unstructured tetrahedral mesh. This allows thin sheet—like structures, such as subsurface fractures, to be economically represented by a connected set of triangular facets, for example, that freely conform to arbitrary "real world" geometries. The same holds thin pipe/wire-like structures, such as casings or pipelines. The hierarchical finite element scheme has been applied to problems in electro- and magnetostatics for oilfield problems where the elevated, but finite, conductivity and permeability of the steel-cased oil wells must be properly accounted for, yielding results that are otherwise unobtainable, with run times as low as a few 10s of seconds. Extension of the hierarchical finite element concept to broadband electromagnetics is presently underway, as are its implications for geophysical inversion.

  8. Numerical stability analysis of two-dimensional solute transport along a discrete fracture in a porous rock matrix

    NASA Astrophysics Data System (ADS)

    Watanabe, Norihiro; Kolditz, Olaf

    2015-07-01

    This work reports numerical stability conditions in two-dimensional solute transport simulations including discrete fractures surrounded by an impermeable rock matrix. We use an advective-dispersive problem described in Tang et al. (1981) and examine the stability of the Crank-Nicolson Galerkin finite element method (CN-GFEM). The stability conditions are analyzed in terms of the spatial discretization length perpendicular to the fracture, the flow velocity, the diffusion coefficient, the matrix porosity, the fracture aperture, and the fracture longitudinal dispersivity. In addition, we verify applicability of the recently developed finite element method-flux corrected transport (FEM-FCT) method by Kuzmin () to suppress oscillations in the hybrid system, with a comparison to the commonly utilized Streamline Upwinding/Petrov-Galerkin (SUPG) method. Major findings of this study are (1) the mesh von Neumann number (Fo) ≥ 0.373 must be satisfied to avoid undershooting in the matrix, (2) in addition to an upper bound, the Courant number also has a lower bound in the fracture in cases of low dispersivity, and (3) the FEM-FCT method can effectively suppress the oscillations in both the fracture and the matrix. The results imply that, in cases of low dispersivity, prerefinement of a numerical mesh is not sufficient to avoid the instability in the hybrid system if a problem involves evolutionary flow fields and dynamic material parameters. Applying the FEM-FCT method to such problems is recommended if negative concentrations cannot be tolerated and computing time is not a strong issue.

  9. Reversible dilatancy in entangled single-wire materials.

    PubMed

    Rodney, David; Gadot, Benjamin; Martinez, Oriol Riu; du Roscoat, Sabine Rolland; Orgéas, Laurent

    2016-01-01

    Designing structures that dilate rapidly in both tension and compression would benefit devices such as smart filters, actuators or fasteners. This property however requires an unusual Poisson ratio, or Poisson function at finite strains, which has to vary with applied strain and exceed the familiar bounds: less than 0 in tension and above 1/2 in compression. Here, by combining mechanical tests and discrete element simulations, we show that a simple three-dimensional architected material, made of a self-entangled single long coiled wire, behaves in between discrete and continuum media, with a large and reversible dilatancy in both tension and compression. This unusual behaviour arises from an interplay between the elongation of the coiled wire and rearrangements due to steric effects, which, unlike in traditional discrete media, are hysteretically reversible when the architecture is made of an elastic fibre.

  10. Engine structures modeling software system: Computer code. User's manual

    NASA Technical Reports Server (NTRS)

    1992-01-01

    ESMOSS is a specialized software system for the construction of geometric descriptive and discrete analytical models of engine parts, components and substructures which can be transferred to finite element analysis programs such as NASTRAN. The software architecture of ESMOSS is designed in modular form with a central executive module through which the user controls and directs the development of the analytical model. Modules consist of a geometric shape generator, a library of discretization procedures, interfacing modules to join both geometric and discrete models, a deck generator to produce input for NASTRAN and a 'recipe' processor which generates geometric models from parametric definitions. ESMOSS can be executed both in interactive and batch modes. Interactive mode is considered to be the default mode and that mode will be assumed in the discussion in this document unless stated otherwise.

  11. A dynamic model of the piezoelectric traveling wave rotary ultrasonic motor stator with the finite volume method.

    PubMed

    Renteria Marquez, I A; Bolborici, V

    2017-05-01

    This manuscript presents a method to model in detail the piezoelectric traveling wave rotary ultrasonic motor (PTRUSM) stator response under the action of DC and AC voltages. The stator is modeled with a discrete two dimensional system of equations using the finite volume method (FVM). In order to obtain accurate results, a model of the stator bridge is included into the stator model. The model of the stator under the action of DC voltage is presented first, and the results of the model are compared versus a similar model using the commercial finite element software COMSOL Multiphysics. One can observe that there is a difference of less than 5% between the displacements of the stator using the proposed model and the one with COMSOL Multiphysics. After that, the model of the stator under the action of AC voltages is presented. The time domain analysis shows the generation of the traveling wave in the stator surface. One can use this model to accurately calculate the stator surface velocities, elliptical motion of the stator surface and the amplitude and shape of the stator traveling wave. A system of equations discretized with the finite volume method can easily be transformed into electrical circuits, because of that, FVM may be a better choice to develop a model-based control strategy for the PTRUSM. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Asphalt pavement aging and temperature dependent properties using functionally graded viscoelastic model

    NASA Astrophysics Data System (ADS)

    Dave, Eshan V.

    Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional finite-element modeling (FEM) technique discretizes the problem domain into smaller elements, each with a unique constitutive property. However the assignment of unique material property description to an element in the FEM approach makes it an unattractive choice for simulation of problems with material non-homogeneities. Specialized elements such as "graded elements" allow for non-homogenous material property definitions within an element. This dissertation describes the development of graded viscoelastic finite element analysis method and its application for analysis of asphalt concrete pavements. Results show that the present research improves efficiency and accuracy of simulations for asphalt pavement systems. Some of the practical implications of this work include the new technique's capability for accurate analysis and design of asphalt pavements and overlay systems and for the determination of pavement performance with varying climatic conditions and amount of in-service age. Other application areas include simulation of functionally graded fiber-reinforced concrete, geotechnical materials, metal and metal composites at high temperatures, polymers, and several other naturally existing and engineered materials.

  13. Simulation results for a finite element-based cumulative reconstructor

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Neubauer, Andreas; Ramlau, Ronny

    2017-10-01

    Modern ground-based telescopes rely on adaptive optics (AO) systems for the compensation of image degradation caused by atmospheric turbulences. Within an AO system, measurements of incoming light from guide stars are used to adjust deformable mirror(s) in real time that correct for atmospheric distortions. The incoming wavefront has to be derived from sensor measurements, and this intermediate result is then translated into the shape(s) of the deformable mirror(s). Rapid changes of the atmosphere lead to the need for fast wavefront reconstruction algorithms. We review a fast matrix-free algorithm that was developed by Neubauer to reconstruct the incoming wavefront from Shack-Hartmann measurements based on a finite element discretization of the telescope aperture. The method is enhanced by a domain decomposition ansatz. We show that this algorithm reaches the quality of standard approaches in end-to-end simulation while at the same time maintaining the speed of recently introduced solvers with linear order speed.

  14. The DANTE Boltzmann transport solver: An unstructured mesh, 3-D, spherical harmonics algorithm compatible with parallel computer architectures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGhee, J.M.; Roberts, R.M.; Morel, J.E.

    1997-06-01

    A spherical harmonics research code (DANTE) has been developed which is compatible with parallel computer architectures. DANTE provides 3-D, multi-material, deterministic, transport capabilities using an arbitrary finite element mesh. The linearized Boltzmann transport equation is solved in a second order self-adjoint form utilizing a Galerkin finite element spatial differencing scheme. The core solver utilizes a preconditioned conjugate gradient algorithm. Other distinguishing features of the code include options for discrete-ordinates and simplified spherical harmonics angular differencing, an exact Marshak boundary treatment for arbitrarily oriented boundary faces, in-line matrix construction techniques to minimize memory consumption, and an effective diffusion based preconditioner formore » scattering dominated problems. Algorithm efficiency is demonstrated for a massively parallel SIMD architecture (CM-5), and compatibility with MPP multiprocessor platforms or workstation clusters is anticipated.« less

  15. Finite element method for viscoelastic medium with damage and the application to structural analysis of solid rocket motor grain

    NASA Astrophysics Data System (ADS)

    Deng, Bin; Shen, ZhiBin; Duan, JingBo; Tang, GuoJin

    2014-05-01

    This paper studies the damage-viscoelastic behavior of composite solid propellants of solid rocket motors (SRM). Based on viscoelastic theories and strain equivalent hypothesis in damage mechanics, a three-dimensional (3-D) nonlinear viscoelastic constitutive model incorporating with damage is developed. The resulting viscoelastic constitutive equations are numerically discretized by integration algorithm, and a stress-updating method is presented by solving nonlinear equations according to the Newton-Raphson method. A material subroutine of stress-updating is made up and embedded into commercial code of Abaqus. The material subroutine is validated through typical examples. Our results indicate that the finite element results are in good agreement with the analytical ones and have high accuracy, and the suggested method and designed subroutine are efficient and can be further applied to damage-coupling structural analysis of practical SRM grain.

  16. Full Wave Analysis of RF Signal Attenuation in a Lossy Rough Surface Cave using a High Order Time Domain Vector Finite Element Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pingenot, J; Rieben, R; White, D

    2005-10-31

    We present a computational study of signal propagation and attenuation of a 200 MHz planar loop antenna in a cave environment. The cave is modeled as a straight and lossy random rough wall. To simulate a broad frequency band, the full wave Maxwell equations are solved directly in the time domain via a high order vector finite element discretization using the massively parallel CEM code EMSolve. The numerical technique is first verified against theoretical results for a planar loop antenna in a smooth lossy cave. The simulation is then performed for a series of random rough surface meshes in ordermore » to generate statistical data for the propagation and attenuation properties of the antenna in a cave environment. Results for the mean and variance of the power spectral density of the electric field are presented and discussed.« less

  17. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  18. Toward performance portability of the Albany finite element analysis code using the Kokkos library

    DOE PAGES

    Demeshko, Irina; Watkins, Jerry; Tezaur, Irina K.; ...

    2018-02-05

    Performance portability on heterogeneous high-performance computing (HPC) systems is a major challenge faced today by code developers: parallel code needs to be executed correctly as well as with high performance on machines with different architectures, operating systems, and software libraries. The finite element method (FEM) is a popular and flexible method for discretizing partial differential equations arising in a wide variety of scientific, engineering, and industrial applications that require HPC. This paper presents some preliminary results pertaining to our development of a performance portable implementation of the FEM-based Albany code. Performance portability is achieved using the Kokkos library. We presentmore » performance results for the Aeras global atmosphere dynamical core module in Albany. Finally, numerical experiments show that our single code implementation gives reasonable performance across three multicore/many-core architectures: NVIDIA General Processing Units (GPU’s), Intel Xeon Phis, and multicore CPUs.« less

  19. Modeling Ductile-Phase Toughened Tungsten for Plasma-Facing Materials: Progress in Damage Finite Element Analysis of the Tungsten-Copper Bend Bar Tests

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.

    The objective of this study is to investigate the deformation behavior of ductile phase toughened W-composites such as W-Cu and W-Ni-Fe by means of a multiscale finite element model that involves a microstructural dual-phase model where the constituent phases (i.e., W, Cu, Ni-Fe) are finely discretized and are described by a continuum damage model. Such a model is suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system. Our current work focuses on simulatingmore » the response and damage development of the W-Cu specimen subjected to three-point bending.« less

  20. Analysis of temperature rise for piezoelectric transformer using finite-element method.

    PubMed

    Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo

    2006-08-01

    Analysis of heat problem and temperature field of a piezoelectric transformer, operated at steady-state conditions, is described. The resonance frequency of the transformer is calculated from impedance and electrical gain analysis using a finite-element method. Mechanical displacement and electric potential of the transformer at the calculated resonance frequency are used to calculate the loss distribution of the transformer. Temperature distribution using discretized heat transfer equation is calculated from the obtained losses of the transformer. Properties of the piezoelectric material, dependent on the temperature field, are measured to recalculate the losses, temperature distribution, and new resonance characteristics of the transformer. Iterative method is adopted to recalculate the losses and resonance frequency due to the changes of the material constants from temperature increase. Computed temperature distributions and new resonance characteristics of the transformer at steady-state temperature are verified by comparison with experimental results.

  1. A discontinuous control volume finite element method for multi-phase flow in heterogeneous porous media

    NASA Astrophysics Data System (ADS)

    Salinas, P.; Pavlidis, D.; Xie, Z.; Osman, H.; Pain, C. C.; Jackson, M. D.

    2018-01-01

    We present a new, high-order, control-volume-finite-element (CVFE) method for multiphase porous media flow with discontinuous 1st-order representation for pressure and discontinuous 2nd-order representation for velocity. The method has been implemented using unstructured tetrahedral meshes to discretize space. The method locally and globally conserves mass. However, unlike conventional CVFE formulations, the method presented here does not require the use of control volumes (CVs) that span the boundaries between domains with differing material properties. We demonstrate that the approach accurately preserves discontinuous saturation changes caused by permeability variations across such boundaries, allowing efficient simulation of flow in highly heterogeneous models. Moreover, accurate solutions are obtained at significantly lower computational cost than using conventional CVFE methods. We resolve a long-standing problem associated with the use of classical CVFE methods to model flow in highly heterogeneous porous media.

  2. Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.; Nguyen, Duc T.

    2008-01-01

    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method.

  3. Comparative study of two approaches to model the offshore fish cages

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-peng; Wang, Xin-xin; Decew, Jud; Tsukrov, Igor; Bai, Xiao-dong; Bi, Chun-wei

    2015-06-01

    The goal of this paper is to provide a comparative analysis of two commonly used approaches to discretize offshore fish cages: the lumped-mass approach and the finite element technique. Two case studies are chosen to compare predictions of the LMA (lumped-mass approach) and FEA (finite element analysis) based numerical modeling techniques. In both case studies, we consider several loading conditions consisting of different uniform currents and monochromatic waves. We investigate motion of the cage, its deformation, and the resultant tension in the mooring lines. Both model predictions are sufficient close to the experimental data, but for the first experiment, the DUT-FlexSim predictions are slightly more accurate than the ones provided by Aqua-FE™. According to the comparisons, both models can be successfully utilized to the design and analysis of the offshore fish cages provided that an appropriate safety factor is chosen.

  4. Parallel goal-oriented adaptive finite element modeling for 3D electromagnetic exploration

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Key, K.; Ovall, J.; Holst, M.

    2014-12-01

    We present a parallel goal-oriented adaptive finite element method for accurate and efficient electromagnetic (EM) modeling of complex 3D structures. An unstructured tetrahedral mesh allows this approach to accommodate arbitrarily complex 3D conductivity variations and a priori known boundaries. The total electric field is approximated by the lowest order linear curl-conforming shape functions and the discretized finite element equations are solved by a sparse LU factorization. Accuracy of the finite element solution is achieved through adaptive mesh refinement that is performed iteratively until the solution converges to the desired accuracy tolerance. Refinement is guided by a goal-oriented error estimator that uses a dual-weighted residual method to optimize the mesh for accurate EM responses at the locations of the EM receivers. As a result, the mesh refinement is highly efficient since it only targets the elements where the inaccuracy of the solution corrupts the response at the possibly distant locations of the EM receivers. We compare the accuracy and efficiency of two approaches for estimating the primary residual error required at the core of this method: one uses local element and inter-element residuals and the other relies on solving a global residual system using a hierarchical basis. For computational efficiency our method follows the Bank-Holst algorithm for parallelization, where solutions are computed in subdomains of the original model. To resolve the load-balancing problem, this approach applies a spectral bisection method to divide the entire model into subdomains that have approximately equal error and the same number of receivers. The finite element solutions are then computed in parallel with each subdomain carrying out goal-oriented adaptive mesh refinement independently. We validate the newly developed algorithm by comparison with controlled-source EM solutions for 1D layered models and with 2D results from our earlier 2D goal oriented adaptive refinement code named MARE2DEM. We demonstrate the performance and parallel scaling of this algorithm on a medium-scale computing cluster with a marine controlled-source EM example that includes a 3D array of receivers located over a 3D model that includes significant seafloor bathymetry variations and a heterogeneous subsurface.

  5. Three-dimensional geoelectric modelling with optimal work/accuracy rate using an adaptive wavelet algorithm

    NASA Astrophysics Data System (ADS)

    Plattner, A.; Maurer, H. R.; Vorloeper, J.; Dahmen, W.

    2010-08-01

    Despite the ever-increasing power of modern computers, realistic modelling of complex 3-D earth models is still a challenging task and requires substantial computing resources. The overwhelming majority of current geophysical modelling approaches includes either finite difference or non-adaptive finite element algorithms and variants thereof. These numerical methods usually require the subsurface to be discretized with a fine mesh to accurately capture the behaviour of the physical fields. However, this may result in excessive memory consumption and computing times. A common feature of most of these algorithms is that the modelled data discretizations are independent of the model complexity, which may be wasteful when there are only minor to moderate spatial variations in the subsurface parameters. Recent developments in the theory of adaptive numerical solvers have the potential to overcome this problem. Here, we consider an adaptive wavelet-based approach that is applicable to a large range of problems, also including nonlinear problems. In comparison with earlier applications of adaptive solvers to geophysical problems we employ here a new adaptive scheme whose core ingredients arose from a rigorous analysis of the overall asymptotically optimal computational complexity, including in particular, an optimal work/accuracy rate. Our adaptive wavelet algorithm offers several attractive features: (i) for a given subsurface model, it allows the forward modelling domain to be discretized with a quasi minimal number of degrees of freedom, (ii) sparsity of the associated system matrices is guaranteed, which makes the algorithm memory efficient and (iii) the modelling accuracy scales linearly with computing time. We have implemented the adaptive wavelet algorithm for solving 3-D geoelectric problems. To test its performance, numerical experiments were conducted with a series of conductivity models exhibiting varying degrees of structural complexity. Results were compared with a non-adaptive finite element algorithm, which incorporates an unstructured mesh to best-fitting subsurface boundaries. Such algorithms represent the current state-of-the-art in geoelectric modelling. An analysis of the numerical accuracy as a function of the number of degrees of freedom revealed that the adaptive wavelet algorithm outperforms the finite element solver for simple and moderately complex models, whereas the results become comparable for models with high spatial variability of electrical conductivities. The linear dependence of the modelling error and the computing time proved to be model-independent. This feature will allow very efficient computations using large-scale models as soon as our experimental code is optimized in terms of its implementation.

  6. Possibilities of the particle finite element method for fluid-soil-structure interaction problems

    NASA Astrophysics Data System (ADS)

    Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín

    2011-09-01

    We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.

  7. Numerical Analysis of an H 1-Galerkin Mixed Finite Element Method for Time Fractional Telegraph Equation

    PubMed Central

    Wang, Jinfeng; Zhao, Meng; Zhang, Min; Liu, Yang; Li, Hong

    2014-01-01

    We discuss and analyze an H 1-Galerkin mixed finite element (H 1-GMFE) method to look for the numerical solution of time fractional telegraph equation. We introduce an auxiliary variable to reduce the original equation into lower-order coupled equations and then formulate an H 1-GMFE scheme with two important variables. We discretize the Caputo time fractional derivatives using the finite difference methods and approximate the spatial direction by applying the H 1-GMFE method. Based on the discussion on the theoretical error analysis in L 2-norm for the scalar unknown and its gradient in one dimensional case, we obtain the optimal order of convergence in space-time direction. Further, we also derive the optimal error results for the scalar unknown in H 1-norm. Moreover, we derive and analyze the stability of H 1-GMFE scheme and give the results of a priori error estimates in two- or three-dimensional cases. In order to verify our theoretical analysis, we give some results of numerical calculation by using the Matlab procedure. PMID:25184148

  8. Coupling continuous damage and debris fragmentation for energy absorption prediction by cfrp structures during crushing

    NASA Astrophysics Data System (ADS)

    Espinosa, Christine; Lachaud, Frédéric; Limido, Jérome; Lacome, Jean-Luc; Bisson, Antoine; Charlotte, Miguel

    2015-05-01

    Energy absorption during crushing is evaluated using a thermodynamic based continuum damage model inspired from the Matzenmiller-Lubliner-Taylors model. It was found that for crash-worthiness applications, it is necessary to couple the progressive ruin of the material to a representation of the matter openings and debris generation. Element kill technique (erosion) and/or cohesive elements are efficient but not predictive. A technique switching finite elements into discrete particles at rupture is used to create debris and accumulated mater during the crushing of the structure. Switching criteria are evaluated using the contribution of the different ruin modes in the damage evolution, energy absorption, and reaction force generation.

  9. Finite Volume Algorithms for Heat Conduction

    DTIC Science & Technology

    2010-05-01

    scalar quantity). Although (3) is relatively easy to discretize by using finite differences , its form in generalized coordinates is not. Later, we...familiar with the finite difference method for discretizing differential equations. In fact, the Newton divided difference is the numerical analog for a...expression (8) for the average derivative matches the Newton divided difference formula, so for uniform one-dimensional meshes, the finite volume and

  10. Error analysis of multipoint flux domain decomposition methods for evolutionary diffusion problems

    NASA Astrophysics Data System (ADS)

    Arrarás, A.; Portero, L.; Yotov, I.

    2014-01-01

    We study space and time discretizations for mixed formulations of parabolic problems. The spatial approximation is based on the multipoint flux mixed finite element method, which reduces to an efficient cell-centered pressure system on general grids, including triangles, quadrilaterals, tetrahedra, and hexahedra. The time integration is performed by using a domain decomposition time-splitting technique combined with multiterm fractional step diagonally implicit Runge-Kutta methods. The resulting scheme is unconditionally stable and computationally efficient, as it reduces the global system to a collection of uncoupled subdomain problems that can be solved in parallel without the need for Schwarz-type iteration. Convergence analysis for both the semidiscrete and fully discrete schemes is presented.

  11. Introduction to COFFE: The Next-Generation HPCMP CREATE-AV CFD Solver

    NASA Technical Reports Server (NTRS)

    Glasby, Ryan S.; Erwin, J. Taylor; Stefanski, Douglas L.; Allmaras, Steven R.; Galbraith, Marshall C.; Anderson, W. Kyle; Nichols, Robert H.

    2016-01-01

    HPCMP CREATE-AV Conservative Field Finite Element (COFFE) is a modular, extensible, robust numerical solver for the Navier-Stokes equations that invokes modularity and extensibility from its first principles. COFFE implores a flexible, class-based hierarchy that provides a modular approach consisting of discretization, physics, parallelization, and linear algebra components. These components are developed with modern software engineering principles to ensure ease of uptake from a user's or developer's perspective. The Streamwise Upwind/Petrov-Galerkin (SU/PG) method is utilized to discretize the compressible Reynolds-Averaged Navier-Stokes (RANS) equations tightly coupled with a variety of turbulence models. The mathematics and the philosophy of the methodology that makes up COFFE are presented.

  12. Face-based smoothed finite element method for real-time simulation of soft tissue

    NASA Astrophysics Data System (ADS)

    Mendizabal, Andrea; Bessard Duparc, Rémi; Bui, Huu Phuoc; Paulus, Christoph J.; Peterlik, Igor; Cotin, Stéphane

    2017-03-01

    In soft tissue surgery, a tumor and other anatomical structures are usually located using the preoperative CT or MR images. However, due to the deformation of the concerned tissues, this information suffers from inaccuracy when employed directly during the surgery. In order to account for these deformations in the planning process, the use of a bio-mechanical model of the tissues is needed. Such models are often designed using the finite element method (FEM), which is, however, computationally expensive, in particular when a high accuracy of the simulation is required. In our work, we propose to use a smoothed finite element method (S-FEM) in the context of modeling of the soft tissue deformation. This numerical technique has been introduced recently to overcome the overly stiff behavior of the standard FEM and to improve the solution accuracy and the convergence rate in solid mechanics problems. In this paper, a face-based smoothed finite element method (FS-FEM) using 4-node tetrahedral elements is presented. We show that in some cases, the method allows for reducing the number of degrees of freedom, while preserving the accuracy of the discretization. The method is evaluated on a simulation of a cantilever beam loaded at the free end and on a simulation of a 3D cube under traction and compression forces. Further, it is applied to the simulation of the brain shift and of the kidney's deformation. The results demonstrate that the method outperforms the standard FEM in a bending scenario and that has similar accuracy as the standard FEM in the simulations of the brain-shift and of the kidney's deformation.

  13. Incomplete Augmented Lagrangian Preconditioner for Steady Incompressible Navier-Stokes Equations

    PubMed Central

    Tan, Ning-Bo; Huang, Ting-Zhu; Hu, Ze-Jun

    2013-01-01

    An incomplete augmented Lagrangian preconditioner, for the steady incompressible Navier-Stokes equations discretized by stable finite elements, is proposed. The eigenvalues of the preconditioned matrix are analyzed. Numerical experiments show that the incomplete augmented Lagrangian-based preconditioner proposed is very robust and performs quite well by the Picard linearization or the Newton linearization over a wide range of values of the viscosity on both uniform and stretched grids. PMID:24235888

  14. Finite element methods and Navier-Stokes equations

    NASA Astrophysics Data System (ADS)

    Cuvelier, C.; Segal, A.; van Steenhoven, A. A.

    This book is devoted to two and three-dimensional FEM analysis of the Navier-Stokes (NS) equations describing one flow of a viscous incompressible fluid. Three different approaches to the NS equations are described: a direct method, a penalty method, and a method that constructs discrete solenoidal vector fields. Subjects of current research which are important from the industrial/technological viewpoint are considered, including capillary-free boundaries, nonisothermal flows, turbulence, and non-Newtonian fluids.

  15. An Astronomical Test of CCD Photometric Precision

    NASA Technical Reports Server (NTRS)

    Koch, David; Dunham, Edward; Borucki, William; Jenkins, Jon; DeVingenzi, D. (Technical Monitor)

    1998-01-01

    This article considers a posteriori error estimation of specified functionals for first-order systems of conservation laws discretized using the discontinuous Galerkin (DG) finite element method. Using duality techniques. we derive exact error representation formulas for both linear and nonlinear functionals given an associated bilinear or nonlinear variational form. Weighted residual approximations of the exact error representation formula are then proposed and numerically evaluated for Ringleb flow, an exact solution of the 2-D Euler equations.

  16. Surface Abrasive Torsion for Improved Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Moon, Ji Hyun; Baek, Seung Mi; Lee, Seok Gyu; Yoon, Jae Ik; Lee, Sunghak; Kim, Hyoung Seop

    2018-05-01

    A novel process of discrete surface abrasion during simple torsion (ST), named "surface abrasive torsion (SAT)," is proposed to overcome the limitation of ST, i.e., insufficient strain for severe plastic deformation (SPD) due to cracks initiated on the surface, by removing the roughened surface region. The effect of SAT on delayed crack initiation was explained using finite element simulations. Larger shear deformation applicable to the specimen in SAT than ST was demonstrated experimentally.

  17. Arbitrary-Lagrangian-Eulerian Discontinuous Galerkin schemes with a posteriori subcell finite volume limiting on moving unstructured meshes

    NASA Astrophysics Data System (ADS)

    Boscheri, Walter; Dumbser, Michael

    2017-10-01

    We present a new family of high order accurate fully discrete one-step Discontinuous Galerkin (DG) finite element schemes on moving unstructured meshes for the solution of nonlinear hyperbolic PDE in multiple space dimensions, which may also include parabolic terms in order to model dissipative transport processes, like molecular viscosity or heat conduction. High order piecewise polynomials of degree N are adopted to represent the discrete solution at each time level and within each spatial control volume of the computational grid, while high order of accuracy in time is achieved by the ADER approach, making use of an element-local space-time Galerkin finite element predictor. A novel nodal solver algorithm based on the HLL flux is derived to compute the velocity for each nodal degree of freedom that describes the current mesh geometry. In our algorithm the spatial mesh configuration can be defined in two different ways: either by an isoparametric approach that generates curved control volumes, or by a piecewise linear decomposition of each spatial control volume into simplex sub-elements. Each technique generates a corresponding number of geometrical degrees of freedom needed to describe the current mesh configuration and which must be considered by the nodal solver for determining the grid velocity. The connection of the old mesh configuration at time tn with the new one at time t n + 1 provides the space-time control volumes on which the governing equations have to be integrated in order to obtain the time evolution of the discrete solution. Our numerical method belongs to the category of so-called direct Arbitrary-Lagrangian-Eulerian (ALE) schemes, where a space-time conservation formulation of the governing PDE system is considered and which already takes into account the new grid geometry (including a possible rezoning step) directly during the computation of the numerical fluxes. We emphasize that our method is a moving mesh method, as opposed to total Lagrangian formulations that are based on a fixed computational grid and which instead evolve the mapping of the reference configuration to the current one. Our new Lagrangian-type DG scheme adopts the novel a posteriori sub-cell finite volume limiter method recently developed in [62] for fixed unstructured grids. In this approach, the validity of the candidate solution produced in each cell by an unlimited ADER-DG scheme is verified against a set of physical and numerical detection criteria, such as the positivity of pressure and density, the absence of floating point errors (NaN) and the satisfaction of a relaxed discrete maximum principle (DMP) in the sense of polynomials. Those cells which do not satisfy all of the above criteria are flagged as troubled cells and are recomputed at the aid of a more robust second order TVD finite volume scheme. To preserve the subcell resolution capability of the original DG scheme, the FV limiter is run on a sub-grid that is 2 N + 1 times finer compared to the mesh of the original unlimited DG scheme. The new subcell averages are then gathered back into a high order DG polynomial by a usual conservative finite volume reconstruction operator. The numerical convergence rates of the new ALE ADER-DG schemes are studied up to fourth order in space and time and several test problems are simulated in order to check the accuracy and the robustness of the proposed numerical method in the context of the Euler and Navier-Stokes equations for compressible gas dynamics, considering both inviscid and viscous fluids. Finally, an application inspired by Inertial Confinement Fusion (ICF) type flows is considered by solving the Euler equations and the PDE of viscous and resistive magnetohydrodynamics (VRMHD).

  18. Plane stress problems using hysteretic rigid body spring network models

    NASA Astrophysics Data System (ADS)

    Christos, Sofianos D.; Vlasis, Koumousis K.

    2017-10-01

    In this work, a discrete numerical scheme is presented capable of modeling the hysteretic behavior of 2D structures. Rigid Body Spring Network (RBSN) models that were first proposed by Kawai (Nucl Eng Des 48(1):29-207, 1978) are extended to account for hysteretic elastoplastic behavior. Discretization is based on Voronoi tessellation, as proposed specifically for RBSN models to ensure uniformity. As a result, the structure is discretized into convex polygons that form the discrete rigid bodies of the model. These are connected with three zero length, i.e., single-node springs in the middle of their common facets. The springs follow the smooth hysteretic Bouc-Wen model which efficiently incorporates classical plasticity with no direct reference to a yield surface. Numerical results for both static and dynamic loadings are presented, which validate the proposed simplified spring-mass formulation. In addition, they verify the model's applicability on determining primarily the displacement field and plastic zones compared to the standard elastoplastic finite element method.

  19. Weighted interior penalty discretization of fully nonlinear and weakly dispersive free surface shallow water flows

    NASA Astrophysics Data System (ADS)

    Di Pietro, Daniele A.; Marche, Fabien

    2018-02-01

    In this paper, we further investigate the use of a fully discontinuous Finite Element discrete formulation for the study of shallow water free surface flows in the fully nonlinear and weakly dispersive flow regime. We consider a decoupling strategy in which we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects. This source term can be computed through the resolution of elliptic second-order linear sub-problems, which only involve second order partial derivatives in space. We then introduce an associated Symmetric Weighted Internal Penalty discrete bilinear form, allowing to deal with the discontinuous nature of the elliptic problem's coefficients in a stable and consistent way. Similar discrete formulations are also introduced for several recent optimized fully nonlinear and weakly dispersive models. These formulations are validated again several benchmarks involving h-convergence, p-convergence and comparisons with experimental data, showing optimal convergence properties.

  20. 3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers

    NASA Astrophysics Data System (ADS)

    Wu, X.; Yang, T.

    2013-12-01

    In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney vector basis functions are used for spatial discretization within the finite element approach to approximate the electric field. A horizontal electric dipole was used as a source, and an array of the receiver located at the seabed. To capture the presence of the hydrocarbon layer, the forward responses at water depths from 100m to 3000m are calculated. The normalized Magnitude Versus Offset (N-MVO) and Phase Versus Offset (PVO) curve can reflect resistive characteristics of hydrocarbon layers. For future work, Graphics Process Unit (GPU) acceleration algorithm would be carried out to multiply the calculation efficiency greatly.

Top