Finite Element Heat & Mass Transfer Code
Trease, Lynn
1996-10-10
FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities.
FEHM. Finite Element Heat & Mass Transfer Code
Zyvoloski, G.A.
1996-10-10
FEHM is a numerical simulation code for subsurface transport processes. It models 3-D, time-dependent, multiphase, multicomponent, non-isothermal, reactive flow through porous and fractured media. It can accurately represent complex 3-D geologic media and structures and their effects on subsurface flow and transport. Its capabilities include flow of gas, water, and heat; flow of air, water, and heat; multiple chemically reactive and sorbing tracers; finite element/finite volume formulation; coupled stress module; saturated and unsaturated media; and double porosity and double porosity/double permeability capabilities.
TACO: a finite element heat transfer code
Mason, W.E. Jr.
1980-02-01
TACO is a two-dimensional implicit finite element code for heat transfer analysis. It can perform both linear and nonlinear analyses and can be used to solve either transient or steady state problems. Either plane or axisymmetric geometries can be analyzed. TACO has the capability to handle time or temperature dependent material properties and materials may be either isotropic or orthotropic. A variety of time and temperature dependent loadings and boundary conditions are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additionally, TACO has some specialized features such as internal surface conditions (e.g., contact resistance), bulk nodes, enclosure radiation with view factor calculations, and chemical reactive kinetics. A user subprogram feature allows for any type of functional representation of any independent variable. A bandwidth and profile minimization option is also available in the code. Graphical representation of data generated by TACO is provided by a companion post-processor named POSTACO. The theory on which TACO is based is outlined, the capabilities of the code are explained, the input data required to perform an analysis with TACO are described. Some simple examples are provided to illustrate the use of the code.
FEHM: finite element heat and mass transfer code
Zyvoloski, G.; Dash, Z.; Kelkar, S.
1988-03-01
The finite element heat and mass (FEHM) transfer code is a computer code developed to simulate geothermal and hot dry rock reservoirs. It is also applicable to natural-state studies of geothermal systems and ground-water flow. It solves the equations of heat and mass transfer for multiphase flow in porous and permeable media using the finite element method. The code also has provisions for a noncoupled tracer; that is, the tracer solutions do not affect the heat and mass transfer solutions. It can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model, the numerical solution procedure, and model verification and validation are provided in this report. A user's guide and sample problems are included in the appendices. 17 refs., 10 figs., 4 tabs.
Finite element analysis of heat transport in a hydrothermal zone
Bixler, N.E.; Carrigan, C.R.
1987-01-01
Two-phase heat transport in the vicinity of a heated, subsurface zone is important for evaluation of nuclear waste repository design and estimation of geothermal energy recovery, as well as prediction of magma solidification rates. Finite element analyses of steady, two-phase, heat and mass transport have been performed to determine the relative importance of conduction and convection in a permeable medium adjacent to a hot, impermeable, vertical surface. The model includes the effects of liquid flow due to capillarity and buoyancy and vapor flow due to pressure gradients. Change of phase, with its associated latent heat effects, is also modeled. The mechanism of capillarity allows for the presence of two-phase zones, where both liquid and vapor can coexist, which has not been considered in previous investigations. The numerical method employs the standard Galerkin/finite element method, using eight-node, subparametric or isoparametric quadrilateral elements. In order to handle the extreme nonlinearities inherent in two-phase, nonisothermal, porous-flow problems, steady-state results are computed by integrating transients out to a long time (a method that is highly robust).
NASA Technical Reports Server (NTRS)
Aguirre-Ramirez, G.; Oden, J. T.
1969-01-01
Finite element method applied to heat conduction in solids with temperature dependent thermal conductivity, using nonlinear constitutive equation for heat ABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGHIABCDEFGH
HIFU Induced Heating Modelling by Using the Finite Element Method
NASA Astrophysics Data System (ADS)
Martínez, R.; Vera, A.; Leija, L.
High intensity focused ultrasound is a thermal therapy method used to treat malignant tumors and other medical conditions. Focused ultrasound concentrates acoustic energy at a focal zone. There, temperature rises rapidly over 56 °C to provoke tissue necrosis. Device performance depends on its fabrication placing computational modeling as a powerful tool to anticipate experimentation results. Finite element method allows modeling of multiphysics systems. Therefore, induced heating was modeled considering the acoustic field produced by a concave radiator excited with electric potentials from 5 V to 20 V. Nonlinear propagation was neglected and a linear response between the acoustic fields and pressure distribution was obtained. Finally, the results showed that acoustic propagation and heating models should be improved and validated with experimental measurements.
A comparison of the finite difference and finite element methods for heat transfer calculations
NASA Technical Reports Server (NTRS)
Emery, A. F.; Mortazavi, H. R.
1982-01-01
The finite difference method and finite element method for heat transfer calculations are compared by describing their bases and their application to some common heat transfer problems. In general it is noted that neither method is clearly superior, and in many instances, the choice is quite arbitrary and depends more upon the codes available and upon the personal preference of the analyst than upon any well defined advantages of one method. Classes of problems for which one method or the other is better suited are defined.
A new finite element model for welding heat sources
NASA Astrophysics Data System (ADS)
Goldak, John; Chakravarti, Aditya; Bibby, Malcolm
1984-06-01
A mathematical model for weld heat sources based on a Gaussian distribution of power density in space is presented. In particular a double ellipsoidal geometry is proposed so that the size and shape of the heat source can be easily changed to model both the shallow penetration arc welding processes and the deeper penetration laser and electron beam processes. In addition, it has the versatility and flexibility to handle non-axisymmetric cases such as strip electrodes or dissimilar metal joining. Previous models assumed circular or spherical symmetry. The computations are performed with ASGARD, a nonlinear transient finite element (FEM) heat flow program developed for the thermal stress analysis of welds.* Computed temperature distributions for submerged arc welds in thick workpieces are compared to the measured values reported by Christensen1 and the FEM calculated values (surface heat source model) of Krutz and Segerlind.2 In addition the computed thermal history of deep penetration electron beam welds are compared to measured values reported by Chong.3 The agreement between the computed and measured values is shown to be excellent.
Finite Element Modelling of the Apollo Heat Flow Experiments
NASA Astrophysics Data System (ADS)
Platt, J.; Siegler, M. A.; Williams, J.
2013-12-01
The heat flow experiments sent on Apollo missions 15 and 17 were designed to measure the temperature gradient of the lunar regolith in order to determine the heat flux of the moon. Major problems in these experiments arose from the fact that the astronauts were not able to insert the probes below the thermal skin depth. Compounding the problem, anomalies in the data have prevented scientists from conclusively determining the temperature dependent conductivity of the soil, which enters as a linear function into the heat flow calculation, thus stymieing them in their primary goal of constraining the global heat production of the Moon. Different methods of determining the thermal conductivity have yielded vastly different results resulting in downward corrections of up to 50% in some cases from the original calculations. Along with problems determining the conductivity, the data was inconsistent with theoretical predictions of the temperature variation over time, leading some to suspect that the Apollo experiment itself changed the thermal properties of the localised area surrounding the probe. The average temperature of the regolith, according to the data, increased over time, a phenomenon that makes calculating the thermal conductivity of the soil and heat flux impossible without knowing the source of error and accounting for it. The changes, possibly resulting from as varied sources as the imprint of the Astronauts boots on the lunar surface, compacted soil around the bore stem of the probe or even heat radiating down the inside of the tube, have convinced many people that the recorded data is unusable. In order to shed some light on the possible causes of this temperature rise, we implemented a finite element model of the probe using the program COMSOL Multi-physics as well as Matlab. Once the cause of the temperature rise is known then steps can be taken to account for the failings of the experiment and increase the data's utility.
TACO3D. 3-D Finite Element Heat Transfer Code
Mason, W.E.
1992-03-04
TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.
Radiation Heat Transfer Between Diffuse-Gray Surfaces Using Higher Order Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2000-01-01
This paper presents recent work on developing methods for analyzing radiation heat transfer between diffuse-gray surfaces using p-version finite elements. The work was motivated by a thermal analysis of a High Speed Civil Transport (HSCT) wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining the finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Traditional methods for calculating surface-to-surface radiation are based on assumptions that are not appropriate for p-version finite elements. Two methods for determining internal radiation heat transfer are developed for one and two-dimensional p-version finite elements. In the first method, higher-order elements are divided into a number of sub-elements. Traditional methods are used to determine radiation heat flux along each sub-element and then mapped back to the parent element. In the second method, the radiation heat transfer equations are numerically integrated over the higher-order element. Comparisons with analytical solutions show that the integration scheme is generally more accurate than the sub-element method. Comparison to results from traditional finite elements shows that significant reduction in the number of elements in the mesh is possible using higher-order (p-version) finite elements.
Finite element methods for integrated aerodynamic heating analysis
NASA Technical Reports Server (NTRS)
Peraire, J.
1990-01-01
Over the past few years finite element based procedures for the solution of high speed viscous compressible flows were developed. The objective of this research is to build upon the finite element concepts which have already been demonstrated and to develop these ideas to produce a method which is applicable to the solution of large scale practical problems. The problems of interest range from three dimensional full vehicle Euler simulations to local analysis of three-dimensional viscous laminar flow. Transient Euler flow simulations involving moving bodies are also to be included. An important feature of the research is to be the coupling of the flow solution methods with thermal/structural modeling techniques to provide an integrated fluid/thermal/structural modeling capability. The progress made towards achieving these goals during the first twelve month period of the research is presented.
Finite element methods for integrated aerodynamic heating analysis
NASA Technical Reports Server (NTRS)
Morgan, K.; Peraire, J.
1991-01-01
This report gives a description of the work which has been undertaken during the second year of a three year research program. The objectives of the program are to produce finite element based procedures for the solution of the large scale practical problems which are of interest to the Aerothermal Loads Branch (ALB) at NASA Langley Research Establishment. The problems of interest range from Euler simulations of full three dimensional vehicle configurations to local analyses of three dimensional viscous laminar flow. Adaptive meshes produced for both steady state and transient problems are to be considered. An important feature of the work is the provision of specialized techniques which can be used at ALB for the development of an integrated fluid/thermal/structural modeling capability.
Finite-element reentry heat-transfer analysis of space shuttle Orbiter
NASA Technical Reports Server (NTRS)
Ko, William L.; Quinn, Robert D.; Gong, Leslie
1986-01-01
A structural performance and resizing (SPAR) finite-element thermal analysis computer program was used in the heat-transfer analysis of the space shuttle orbiter subjected to reentry aerodynamic heating. Three wing cross sections and one midfuselage cross section were selected for the thermal analysis. The predicted thermal protection system temperatures were found to agree well with flight-measured temperatures. The calculated aluminum structural temperatures also agreed reasonably well with the flight data from reentry to touchdown. The effects of internal radiation and of internal convection were found to be significant. The SPAR finite-element solutions agreed reasonably well with those obtained from the conventional finite-difference method.
Heat transfer monitoring by means of the hot wire technique and finite element analysis software.
Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E
2014-01-01
It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances.
Two dimensional finite element heat transfer models for softwood
Hongmei Gu; John F. Hunt
2004-01-01
The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential directions and have not differentiated the effects of cellular alignment, earlywood/latewood...
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
Finite element formulation for transient heat treat problems
NASA Technical Reports Server (NTRS)
Mullen, R. L.; Hendricks, R. C.
1983-01-01
The macrothermomechanical behavior of materials subjected to rapid thermal or mechanical loading such as occurs in most heat treatments is described. The equations are developed for Lagrangian, Eulerian, and intermediary kinematic descriptions and are independent of the constitutive laws and the equation of state; they can be solved numerically for a specified material and boundary conditions. The coupled transport effects between dissipation and energy are included. The conventional linearized stability approach indicates the numerical procedure to be stable, with certain restriction on the time step size.
COYOTE: a finite-element computer program for nonlinear heat-conduction problems
Gartling, D.K.
1982-10-01
COYOTE is a finite element computer program designed for the solution of two-dimensional, nonlinear heat conduction problems. The theoretical and mathematical basis used to develop the code is described. Program capabilities and complete user instructions are presented. Several example problems are described in detail to demonstrate the use of the program.
Finite element procedures for coupled linear analysis of heat transfer, fluid and solid mechanics
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
Coupled finite element formulations for fluid mechanics, heat transfer, and solid mechanics are derived from the conservation laws for energy, mass, and momentum. To model the physics of interactions among the participating disciplines, the linearized equations are coupled by combining domain and boundary coupling procedures. Iterative numerical solution strategy is presented to solve the equations, with the partitioning of temporal discretization implemented.
TOPAZ - a finite element heat conduction code for analyzing 2-D solids
Shapiro, A.B.
1984-03-01
TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.
Gartling, D.K.; Hogan, R.E.
1994-10-01
The theoretical and numerical background for the finite element computer program, COYOTE II, is presented in detail. COYOTE II is designed for the multi-dimensional analysis of nonlinear heat conduction problems and other types of diffusion problems. A general description of the boundary value problems treated by the program is presented. The finite element formulation and the associated numerical methods used in COYOTE II are also outlined. Instructions for use of the code are documented in SAND94-1179; examples of problems analyzed with the code are provided in SAND94-1180.
Finite-element simulation of transient heat response in ultrasonic transducers
NASA Astrophysics Data System (ADS)
Ando, Ei'ichi; Kagawa, Yukio
1992-05-01
The application of the finite-element method to a transient heat response problem in electrostrictive ultrasonic transducers during their pulsed operation is described. The temperature and thermal stress distribution are of practical importance for the design of the ultrasonic transducers when they are operated at intense levels. Mechanical vibratory loss is responsible for heat in the elastic parts while dielectric loss in the ferroelectric parts. A finite-element computer model is proposed for the temperature change evaluation in the transducers with time. Natural and forced cooling convection and heat radiation from the transducers' boundaries are included. Simulation is made for Langevin-type transducer models, for which comparison is made with experimental data.
FEHMN 1.0: Finite element heat and mass transfer code; Revision 1
Zyvoloski, G.; Dash, Z.; Kelkar, S.
1992-05-01
A computer code is described which can simulate non-isothermal multi-phase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and groundwater flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved sing the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user`s guide and sample problems are also included. The FEHMN (Finite Element Heat and Mass Nuclear) code, described in this report, is a version of FEHM (Finite Element Heat and Mass, Zyvoloski et al., 1988) developed for the Yucca Mountain Site Characterization Project (YMP). The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the potential Yucca Mountain repository.
Finite element residual stress analysis of induction heating bended ferritic steel piping
Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae
2014-10-06
Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.
Finite element residual stress analysis of induction heating bended ferritic steel piping
NASA Astrophysics Data System (ADS)
Kima, Jong Sung; Kim, Kyoung-Soo; Oh, Young-Jin; Chang, Hyung-Young; Park, Heung-Bae
2014-10-01
Recently, there is a trend to apply the piping bended by induction heating process to nuclear power plants. Residual stress can be generated due to thermo-mechanical mechanism during the induction heating bending process. It is well-known that the residual stress has important effect on crack initiation and growth. The previous studies have focused on the thickness variation. In part, some studies were performed for residual stress evaluation of the austenitic stainless steel piping bended by induction heating. It is difficult to find the residual stresses of the ferritic steel piping bended by the induction heating. The study assessed the residual stresses of induction heating bended ferriticsteel piping via finite element analysis. As a result, it was identified that high residual stresses are generated on local outersurface region of the induction heating bended ferritic piping.
Two-dimensional finite element heat transfer model of softwood. Part II, Macrostructural effects
Hongmei Gu; John F. Hunt
2006-01-01
A two-dimensional finite element model was used to study the effects of structural features on transient heat transfer in softwood lumber with various orientations. Transient core temperature was modeled for lumber samples âcutâ from various locations within a simulated log. The effects of ring orientation, earlywood to latewood (E/L) ratio, and ring density were...
A p-version finite element method for steady incompressible fluid flow and convective heat transfer
NASA Technical Reports Server (NTRS)
Winterscheidt, Daniel L.
1993-01-01
A new p-version finite element formulation for steady, incompressible fluid flow and convective heat transfer problems is presented. The steady-state residual equations are obtained by considering a limiting case of the least-squares formulation for the transient problem. The method circumvents the Babuska-Brezzi condition, permitting the use of equal-order interpolation for velocity and pressure, without requiring the use of arbitrary parameters. Numerical results are presented to demonstrate the accuracy and generality of the method.
Cochran, R.J.
1992-01-01
A study of the finite element method applied to two-dimensional incompressible fluid flow analysis with heat transfer is performed using a mixed Galerkin finite element method with the primitive variable form of the model equations. Four biquadratic, quadrilateral elements are compared in this study--the serendipity biquadratic element with bilinear continuous pressure interpolation (Q2(8)-Q1) and the Lagrangian biquadratic element with bilinear continuous pressure interpolation (Q2-Q1) of the Taylor-Hood form. A modified form of the Q2-Q1 element is also studied. The pressure interpolation is augmented by a discontinuous constant shape function for pressure (Q2-Q1+). The discontinuous pressure element formulation makes use of biquadratic shape functions and a discontinuous linear interpolation of the pressure (Q2-P1(3)). Laminar flow solutions, with heat transfer, are compared to analytical and computational benchmarks for flat channel, backward-facing step and buoyancy driven flow in a square cavity. It is shown that the discontinuous pressure elements provide superior solution characteristics over the continuous pressure elements. Highly accurate heat transfer solutions are obtained and the Q2-P1(3) element is chosen for extension to turbulent flow simulations. Turbulent flow solutions are presented for both low turbulence Reynolds number and high Reynolds number formulations of two-equation turbulence models. The following three forms of the length scale transport equation are studied; the turbulence energy dissipation rate ([var epsilon]), the turbulence frequency ([omega]) and the turbulence time scale (tau). It is shown that the low turbulence Reynolds number model consisting of the K - [tau] transport equations, coupled with the damping functions of Shih and Hsu, provides an optimal combination of numerical stability and solution accuracy for the flat channel flow.
Aro, C J; Dube, E I; Futral, W S
1999-02-24
This report describes the implementation of a coupled mechanical /heat transfer simulation using a Finite Element Interface (FEI). The FE1 is an abstraction layer, which lies between the application code and its linear solver libraries, controlling the set-up and solution of the linear system arising in the finite element simulation. The performance and scalability of the ISIS++ FE1 is examined on the ASCI Red and Blue machines in the context of the ALE3D finite element simulation code.
Surface chemistry effects in finite element modeling of heat transfer in (micron)-fuel cells
Havstad, M
2000-12-07
Equations for modeling surface chemical kinetics by the interaction of gaseous and surface species are presented. The formulation is embedded in a finite element heat transfer code and an ordinary differential equation package is used to solve the surface system of chemical kinetic equations for each iteration within the heat transfer solver. The method is applied to a flow which includes methane and methanol in a microreactor on a chip. A simpler more conventional method, a plug flow reactor model, is then applied to a similar problem. Initial results for steam reforming of methanol are given.
A finite element analysis of the freeze/thaw behavior of external artery heat pipes
NASA Technical Reports Server (NTRS)
Lu, X. J.; Peterson, G. P.
1993-01-01
A two-dimensional finite element model was used to determine the freeze/thaw characteristics of an external artery heat pipe. During startup, the working fluid, which was located in the liquid channel and the circumferential wall grooves, experienced a phase transformation from a solid to a liquid state. The transient heat conduction equations with moving interfacial conditions were solved using the appropriate initial boundary conditions. The modelling results include the cross-sectional temperature distribution and the interfacial or melt front position as a function of time. A fixed grid approach was adopted in the model for the phase-change process during thawing of frozen working fluid. The interfacial position between the liquid and solid regions was found by balancing the latent heat caused by interfacial movement with the heat addition or extraction at the related grid points.
Finite element method formulation in polar coordinates for transient heat conduction problems
NASA Astrophysics Data System (ADS)
Duda, Piotr
2016-04-01
The aim of this paper is the formulation of the finite element method in polar coordinates to solve transient heat conduction problems. It is hard to find in the literature a formulation of the finite element method (FEM) in polar or cylindrical coordinates for the solution of heat transfer problems. This document shows how to apply the most often used boundary conditions. The global equation system is solved by the Crank-Nicolson method. The proposed algorithm is verified in three numerical tests. In the first example, the obtained transient temperature distribution is compared with the temperature obtained from the presented analytical solution. In the second numerical example, the variable boundary condition is assumed. In the last numerical example the component with the shape different than cylindrical is used. All examples show that the introduction of the polar coordinate system gives better results than in the Cartesian coordinate system. The finite element method formulation in polar coordinates is valuable since it provides a higher accuracy of the calculations without compacting the mesh in cylindrical or similar to tubular components. The proposed method can be applied for circular elements such as boiler drums, outlet headers, flux tubes. This algorithm can be useful during the solution of inverse problems, which do not allow for high density grid. This method can calculate the temperature distribution in the bodies of different properties in the circumferential and the radial direction. The presented algorithm can be developed for other coordinate systems. The examples demonstrate a good accuracy and stability of the proposed method.
Three embedded techniques for finite element heat flow problem with embedded discontinuities
NASA Astrophysics Data System (ADS)
Davari, M.; Rossi, R.; Dadvand, P.
2017-06-01
The present paper explores the solution of a heat conduction problem considering discontinuities embedded within the mesh and aligned at arbitrary angles with respect to the mesh edges. Three alternative approaches are proposed as solutions to the problem. The difference between these approaches compared to alternatives, such as the eXtended Finite Element Method (X-FEM), is that the current proposal attempts to preserve the global matrix graph in order to improve performance. The first two alternatives comprise an enrichment of the Finite Element (FE) space obtained through the addition of some new local degrees of freedom to allow capturing discontinuities within the element. The new degrees of freedom are statically condensed prior to assembly, so that the graph of the final system is not changed. The third approach is based on the use of modified FE-shape functions that substitute the standard ones on the cut elements. The imposition of both Neumann and Dirichlet boundary conditions is considered at the embedded interface. The results of all the proposed methods are then compared with a reference solution obtained using the standard FE on a mesh containing the actual discontinuity.
An h-adaptive finite element method for turbulent heat transfer
Carriington, David B
2009-01-01
A two-equation turbulence closure model (k-{omega}) using an h-adaptive grid technique and finite element method (FEM) has been developed to simulate low Mach flow and heat transfer. These flows are applicable to many flows in engineering and environmental sciences. Of particular interest in the engineering modeling areas are: combustion, solidification, and heat exchanger design. Flows for indoor air quality modeling and atmospheric pollution transport are typical types of environmental flows modeled with this method. The numerical method is based on a hybrid finite element model using an equal-order projection process. The model includes thermal and species transport, localized mesh refinement (h-adaptive) and Petrov-Galerkin weighting for the stabilizing the advection. This work develops the continuum model of a two-equation turbulence closure method. The fractional step solution method is stated along with the h-adaptive grid method (Carrington and Pepper, 2002). Solutions are presented for 2d flow over a backward-facing step.
Viswanathan, H.S.
1995-12-31
The finite element code FEHMN is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developed hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent K{sub d} model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect {sup 14}C transport at Yucca Mountain. The simulations also provide that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies.
NASA Technical Reports Server (NTRS)
Morgan, K.; Thornton, E. A.
1982-01-01
The current capability of the finite element method for solving problems of viscous flow is reviewed. Much work has been directed to the simulation of incompressible flows and the relevant features are described. The methods available for, and the problems associated with, the finite element solution of high speed viscous compressible flows are analyzed. A plan for developing finite element research in this area with experimental support is presented.
Finite element modeling of borehole heat exchanger systems. Part 2. Numerical simulation
NASA Astrophysics Data System (ADS)
Diersch, H.-J. G.; Bauer, D.; Heidemann, W.; Rühaak, W.; Schätzl, P.
2011-08-01
Single borehole heat exchanger (BHE) and arrays of BHE are modeled by using the finite element method. Applying BHE in regional discretizations optimal conditions of mesh spacing around singular BHE nodes are derived. Optimal meshes have shown superior to such discretizations which are either too fine or too coarse. The numerical methods are benchmarked against analytical and numerical reference solutions. Practical application to a borehole thermal energy store (BTES) consisting of 80 BHE is given for the real-site BTES Crailsheim, Germany. The simulations are controlled by the specifically developed FEFLOW-TRNSYS coupling module. Scenarios indicate the effect of the groundwater flow regime on efficiency and reliability of the subsurface heat storage system.
NASA Astrophysics Data System (ADS)
Mehta, R. C.; Jayachandran, T.
1987-06-01
A numerical solution of the nonlinear inverse heat conduction problem is obtained using an in-line method in conjunction with the measured thermocouple temperature history. The deforming finite elements technique is used to treat initial time delay in temperature response due to thermocouple location. In the absence of elements deformation, the method reduces to the conventional Galerkin formulation. A three-time level implicit scheme, which is unconditionally stable and convergent, is employed for the numerical solution. The temperature-dependent thermophysical properties in the matrices are evaluated at the intermediate level. The complication of solving a set of nonlinear algebraic equations at each step is avoided. Illustration of the technique is made on the one-dimensional problem with a thermal radiation boundary condition. The results demonstrate that the method is remarkable in its ability to predict surface condition without debilitation.
NASA Astrophysics Data System (ADS)
Cochran, Robert James
A study of the finite element method applied to two-dimensional incompressible fluid flow analysis with heat transfer is performed using a mixed Galerkin finite element method with the primitive variable form of the model equations. Four biquadratic, quadrilateral elements are compared in this study--the serendipity biquadratic element with bilinear continuous pressure interpolation (Q2(8)-Q1) and the Lagrangian biquadratic element with bilinear continuous pressure interpolation (Q2-Q1) of the Taylor-Hood form. A modified form of the Q-2Q1 element is also studied. The pressure interpolation is augmented by a discontinuous constant shape function for pressure (Q2-Q1+). The discontinuous pressure element formulation makes use of biquadratic shape functions and a discontinuous linear interpolation of the pressure (Q2-P1(3)). Laminar flow solutions, with heat transfer, are compared to analytical and computational benchmarks for flat channel, backward-facing step and buoyancy driven flow in a square cavity. It is shown that the discontinuous pressure elements provide superior solution characteristics over the continuous pressure elements. Highly accurate heat transfer solutions are obtained and the Q2-P1(3) element is chosen for extension to turbulent flow simulations. Turbulent flow solutions are presented for both low turbulence Reynolds number and high Reynolds number formulations of two equation turbulence models. The following three forms of the length scale transport equation are studied: the turbulence energy dissipation rate (epsilon), the turbulence frequency (omega) and the turbulence time scale (tau). It is shown that the low turbulence Reynolds number model consisting of the k-tau transport equations, coupled with the damping functions of Shih and Hsu, provides an optimal combination of numerical stability and solution accuracy for the flat channel flow. Attempts to extend the formulation beyond the flat channel were not successful due to oscillatory
A finite element method based microwave heat transfer modeling of frozen multi-component foods
NASA Astrophysics Data System (ADS)
Pitchai, Krishnamoorthy
Microwave heating is fast and convenient, but is highly non-uniform. Non-uniform heating in microwave cooking affects not only food quality but also food safety. Most food industries develop microwavable food products based on "cook-and-look" approach. This approach is time-consuming, labor intensive and expensive and may not result in optimal food product design that assures food safety and quality. Design of microwavable food can be realized through a simulation model which describes the physical mechanisms of microwave heating in mathematical expressions. The objective of this study was to develop a microwave heat transfer model to predict spatial and temporal profiles of various heterogeneous foods such as multi-component meal (chicken nuggets and mashed potato), multi-component and multi-layered meal (lasagna), and multi-layered food with active packages (pizza) during microwave heating. A microwave heat transfer model was developed by solving electromagnetic and heat transfer equations using finite element method in commercially available COMSOL Multiphysics v4.4 software. The microwave heat transfer model included detailed geometry of the cavity, phase change, and rotation of the food on the turntable. The predicted spatial surface temperature patterns and temporal profiles were validated against the experimental temperature profiles obtained using a thermal imaging camera and fiber-optic sensors. The predicted spatial surface temperature profile of different multi-component foods was in good agreement with the corresponding experimental profiles in terms of hot and cold spot patterns. The root mean square error values of temporal profiles ranged from 5.8 °C to 26.2 °C in chicken nuggets as compared 4.3 °C to 4.7 °C in mashed potatoes. In frozen lasagna, root mean square error values at six locations ranged from 6.6 °C to 20.0 °C for 6 min of heating. A microwave heat transfer model was developed to include susceptor assisted microwave heating of a
Using Finite Element Simulation to Optimize the Heat Treatment of Tire Protection Chains
NASA Astrophysics Data System (ADS)
Eck, S.; Prevedel, P.; Marsoner, S.; Ecker, W.; Illmeier, M.
2014-04-01
The heat treatment of tire protection chains has a major influence on the final product because the high local stresses that arise during quenching may lead to material failure, i.e., quench cracks. The investigations presented in this paper aim at the identification of critical areas in the design of a tire chain link made of 50CrV4 (DIN 1.8159) steel. Parametric studies were conducted by means of finite element (FE) simulation. The FE model enables the calculation of the stress evolution in the chain link during heat treatment. The position of the cracks produced in laboratory quench experiments coincided with the position where the FE simulation model predicted the maximum tensile stress at the end of the quench. Hence, geometry optimization of the chain links is now possible by means of parametric FE studies aiming to minimize these tensile stresses. To identify the influence of the various input parameters on the calculated stress evolution during the quenching, a sensitivity analysis was performed. The influence of the mesh size, the heat transfer at the surface, and the thermo-mechanical properties of the material phases on the stress calculation was evaluated and trends were identified. Temperature measurements during quenching experiments were used to determine the heat transfer parameters. X-ray residual stress measurements on pre-defined positions after an instrumented laboratory quenching were used to validate the simulation results.
Viswanathan, H.S.
1996-08-01
The finite element code FEHMN, developed by scientists at Los Alamos National Laboratory (LANL), is a three-dimensional finite element heat and mass transport simulator that can handle complex stratigraphy and nonlinear processes such as vadose zone flow, heat flow and solute transport. Scientists at LANL have been developing hydrologic flow and transport models of the Yucca Mountain site using FEHMN. Previous FEHMN simulations have used an equivalent Kd model to model solute transport. In this thesis, FEHMN is modified making it possible to simulate the transport of a species with a rigorous chemical model. Including the rigorous chemical equations into FEHMN simulations should provide for more representative transport models for highly reactive chemical species. A fully kinetic formulation is chosen for the FEHMN reactive transport model. Several methods are available to computationally implement a fully kinetic formulation. Different numerical algorithms are investigated in order to optimize computational efficiency and memory requirements of the reactive transport model. The best algorithm of those investigated is then incorporated into FEHMN. The algorithm chosen requires for the user to place strongly coupled species into groups which are then solved for simultaneously using FEHMN. The complete reactive transport model is verified over a wide variety of problems and is shown to be working properly. The new chemical capabilities of FEHMN are illustrated by using Los Alamos National Laboratory`s site scale model of Yucca Mountain to model two-dimensional, vadose zone {sup 14}C transport. The simulations demonstrate that gas flow and carbonate chemistry can significantly affect {sup 14}C transport at Yucca Mountain. The simulations also prove that the new capabilities of FEHMN can be used to refine and buttress already existing Yucca Mountain radionuclide transport studies.
Glass, Micheal W.; Hogan, Roy E., Jr.; Gartling, David K.
2010-03-01
The need for the engineering analysis of systems in which the transport of thermal energy occurs primarily through a conduction process is a common situation. For all but the simplest geometries and boundary conditions, analytic solutions to heat conduction problems are unavailable, thus forcing the analyst to call upon some type of approximate numerical procedure. A wide variety of numerical packages currently exist for such applications, ranging in sophistication from the large, general purpose, commercial codes, such as COMSOL, COSMOSWorks, ABAQUS and TSS to codes written by individuals for specific problem applications. The original purpose for developing the finite element code described here, COYOTE, was to bridge the gap between the complex commercial codes and the more simplistic, individual application programs. COYOTE was designed to treat most of the standard conduction problems of interest with a user-oriented input structure and format that was easily learned and remembered. Because of its architecture, the code has also proved useful for research in numerical algorithms and development of thermal analysis capabilities. This general philosophy has been retained in the current version of the program, COYOTE, Version 5.0, though the capabilities of the code have been significantly expanded. A major change in the code is its availability on parallel computer architectures and the increase in problem complexity and size that this implies. The present document describes the theoretical and numerical background for the COYOTE program. This volume is intended as a background document for the user's manual. Potential users of COYOTE are encouraged to become familiar with the present report and the simple example analyses reported in before using the program. The theoretical and numerical background for the finite element computer program, COYOTE, is presented in detail. COYOTE is designed for the multi-dimensional analysis of nonlinear heat conduction problems
Esfandyarpour, Hesaam; Zheng, Bo; Pease, R. Fabian W.; Davis, Ronald W.
2008-01-01
For the past three decades, Sanger’s method has been the primary DNA sequencing technology; however, inherent limitations in cost and complexity have limited its usage in personalized medicine and ecological studies. A new technology called “thermosequencing” can potentially reduce both the cost and complexity of DNA sequencing by using a microfluidic platform [Esfandyarpour, Pease, and Davis, J. Vac. Sci. Technol. B26, 661 (2008)]. To optimize the efficiency of the technology, finite element analysis was used to model the thermosequencing system by simulating the DNA incorporation reaction series and the resulting product concentration and heat production. Different models of the thermosequencing platform were created to simulate the effects of the materials surrounding the system, to optimize the geometry of the system, and to concentrate reaction heat into specific regions for detection in the real system. The resulting concentrations of reaction products were used to calibrate the reaction speed and to design the heat sensors in the thermosequencing technology. We recommend a modified gated structure for the microfluidic detection platform by using control valves and show how this new platform could dramatically improve the detection efficiency. PMID:19693405
NASA Astrophysics Data System (ADS)
Zulkifli, Muhammad Nubli; Ilias, Izzudin; Abas, Amir; Muhamad, Wan Mansor Wan
2017-09-01
Thermoelectric generator (TEG) is the solid state device that converts the thermal gradient into electrical energy. TEG is widely used as the renewable energy source especially for the electronic equipment that operates with the small amount of electrical power. In the present analysis, the finite element analysis (FEA) using ANSYS is conducted on a model of the TEG attached with the aluminium, Al plate on the hot side of the TEG. This simple construction of TEG model was built in order to be used in the waste heat recovery of solar application. It was shown that the changes of the area and thickness of the Al plate increased the temperature gradient between hot and cold sides of TEG. This directly increase the voltage produced by the TEG based on the Seeback effect. The increase of the thermal gradient due to the increment of thickness and width of Al plate might be because of the increase of thermal resistance of Al plate. This finding provides a valuable data in design process to build a good TEG attached with Al plate for the waste heat recovery of solar application.
FEHMN 1.0: Finite element heat and mass transfer code
Zyvoloski, G.; Dash, Z.; Kelkar, S.
1991-04-01
A computer code is described which can simulate non-isothermal multiphase multicomponent flow in porous media. It is applicable to natural-state studies of geothermal systems and ground-water flow. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved using the finite element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat and mass transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. A summary of the equations in the model and the numerical solution procedure are provided in this report. A user`s guide and sample problems are also included. The main use of FEHMN will be to assist in the understanding of flow fields in the saturated zone below the proposed Yucca Mountain Repository. 33 refs., 27 figs., 12 tabs.
Infinite Possibilities for the Finite Element.
ERIC Educational Resources Information Center
Finlayson, Bruce A.
1981-01-01
Describes the uses of finite element methods in solving problems of heat transfer, fluid flow, etc. Suggests that engineers should know the general concepts and be able to apply the principles of finite element methods. (Author/WB)
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
Finite element computational fluid mechanics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1983-01-01
Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.
NASA Astrophysics Data System (ADS)
Egidi, Nadaniela; Giacomini, Josephin; Maponi, Pierluigi
2016-06-01
Matter of this paper is the study of the flow and the corresponding heat transfer in a U-shaped heat exchanger. We propose a mathematical model that is formulated as a forced convection problem for incompressible and Newtonian fluids and results in the unsteady Navier-Stokes problem. In order to get a solution, we discretise the equations with both the Finite Elements Method and the Finite Volumes Method. These procedures give rise to a non-symmetric indefinite quadratic system of equations. Thus, three regularisation techniques are proposed to make approximations effective and ideas to compare their results are provided.
Three-dimensional finite element heat transfer and thermal stress analysis of rf structures
NASA Astrophysics Data System (ADS)
Tran Ngoc, Truc; Labrie, Jean-Pierre; Baset, Saleh
1987-04-01
Thermal expansion and thermal stress induced strain cause the detuning and limit the power level of radiofrequency (rf) structures. Two-dimensional finite element modeling has been used to determine the operating power limits of coupled cavity systems [1], but for complex high power accelerator structures without axial symmetry, a three-dimensional analysis is necessary. This paper describes results of a three-dimensional finite element temperature and thermal stress analysis. The analysis was performed for a high power coupled cavity linac structure operating at 1350 MHz. The results of the analysis are used to determine changes in the structure rf parameters as a function of power level and cooling water velocity.
Finite elements of nonlinear continua.
NASA Technical Reports Server (NTRS)
Oden, J. T.
1972-01-01
The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.
Finite elements of nonlinear continua.
NASA Technical Reports Server (NTRS)
Oden, J. T.
1972-01-01
The finite element method is extended to a broad class of practical nonlinear problems, treating both theory and applications from a general and unifying point of view. The thermomechanical principles of continuous media and the properties of the finite element method are outlined, and are brought together to produce discrete physical models of nonlinear continua. The mathematical properties of the models are analyzed, and the numerical solution of the equations governing the discrete models is examined. The application of the models to nonlinear problems in finite elasticity, viscoelasticity, heat conduction, and thermoviscoelasticity is discussed. Other specific topics include the topological properties of finite element models, applications to linear and nonlinear boundary value problems, convergence, continuum thermodynamics, finite elasticity, solutions to nonlinear partial differential equations, and discrete models of the nonlinear thermomechanical behavior of dissipative media.
NASA Technical Reports Server (NTRS)
Ko, William L.; Olona, Timothy
1987-01-01
The effect of element size on the solution accuracies of finite-element heat transfer and thermal stress analyses of space shuttle orbiter was investigated. Several structural performance and resizing (SPAR) thermal models and NASA structural analysis (NASTRAN) structural models were set up for the orbiter wing midspan bay 3. The thermal model was found to be the one that determines the limit of finite-element fineness because of the limitation of computational core space required for the radiation view factor calculations. The thermal stresses were found to be extremely sensitive to a slight variation of structural temperature distributions. The minimum degree of element fineness required for the thermal model to yield reasonably accurate solutions was established. The radiation view factor computation time was found to be insignificant compared with the total computer time required for the SPAR transient heat transfer analysis.
Gartling, D.K.; Hogan, R.E.
1994-10-01
User instructions are given for the finite element computer program, COYOTE II. COYOTE II is designed for the multi-dimensional analysis of nonlinear heat conduction problems including the effects of enclosure radiation and chemical reaction. The theoretical background and numerical methods used in the program are documented in SAND94-1173. Examples of the use of the code are presented in SAND94-1180.
NASA Technical Reports Server (NTRS)
Peterson, G. P.
1986-01-01
A model that is currently used to predict the priming and performance limitations of a monogroove heat pipe is expanded to include the boiling limitation and the cross-sectional temperature distribution as determined from a multidimensional finite element analysis technique. The improved model is verified experimentally and shown to accurately predict the cross-sectional temperature distribution when the heat flux distribution is known. The model provides a way to estimate the level at which nucleate boiling and the associated dryout of the capillary wick occurs.
Automatic finite element generators
NASA Technical Reports Server (NTRS)
Wang, P. S.
1984-01-01
The design and implementation of a software system for generating finite elements and related computations are described. Exact symbolic computational techniques are employed to derive strain-displacement matrices and element stiffness matrices. Methods for dealing with the excessive growth of symbolic expressions are discussed. Automatic FORTRAN code generation is described with emphasis on improving the efficiency of the resultant code.
NASA Astrophysics Data System (ADS)
Yonetsu, Daigo; Tanaka, Kazufumi; Hara, Takehisa
In recent years, induction-heating (IH) cookers that can be used to heat nonmagnetic metals such as aluminum have been produced. Occasionally, a light pan moves on a glass plate due to buoyancy when heated by an IH cooker. In some IH cookers, an aluminum plate is mounted between the glass plate and the coil in order to reduce the buoyancy effect. The objective of this research is to evaluate the buoyancy-reduction effect and the heating effect of buoyancy-reduction plates. Eddy current analysis is carried out by 3D finite element method, and the electromagnetic force and the heat distribution on the heating plate are calculated. After this calculation is performed, the temperature distribution of the heating plate is calculated by heat transfer analysis. It is found that the shape, area, and the position of the buoyancy reduction plate strongly affect the buoyancy and the heat distribution. The impact of the shape, area, and position of the buoyancy reduction plate was quantified. The phenomena in the heating were elucidated qualitatively.
Wang, Yu; Cao, Meng; Zhao, Xiangrui; Zhu, Gang; McClean, Colin; Zhao, Yuanyuan; Fan, Yubo
2014-11-01
Heat generated during bone drilling could cause irreversible thermal damage, which can lead to bone necrosis or even osteomyelitis. In this study, vibrational drilling was applied to fresh bovine bones to investigate the cutting heat in comparison with conventional drilling through experimental investigation and finite element analysis (FEA). The influence of vibrational frequency and amplitude on cutting heat generation and conduction were studied. The experimental results showed that, compared with the conventional drilling, vibrational drilling could significantly reduce the cutting temperature in drilling of cortical bone (P<0.05): the cutting temperature tended to decrease with increasing vibrational frequency and amplitude. The FEA results also showed that the vibrational amplitude holds a significant effect on the cutting heat conduction.
Heat analysis of thermal overload relays using 3-D finite element method
Kawase, Yoshihiro; Ichihashi, Takayuki . Dept. of Information Science); Ito, Shokichi . Dept. of Electronics)
1999-05-01
In designing a thermal overload relay, it is necessary to analyze thermal characteristics of several trial models. Up to now, this has been done by measuring the temperatures on a number of positions in the trial models. This experimental method is undoubtedly expensive. In this paper, the temperature distribution of a thermal overload relay is obtained by using 3-D finite element analysis taking into account the current distribution in current-carrying conductors. It is shown that the 3-D analysis is capable of evaluating a new design of thermal overload relays.
NASA Astrophysics Data System (ADS)
Kvíčala, M.; Frydrýšek, K.; Štamborská, M.
2015-03-01
This paper deals with the comparison of experimentally measured temperature gradients and finite-element-method (FEM) simulations of two heating strategies that were used for continuously cast bloom soaking. The temperature gradient between the bloom surface and center was measured by two thermocouples incorporated directly into the bloom. Scanning electron microscopy equipped by energy dispersive X-ray spectroscopy analysis, hot tensile tests, and interdendritic solidification software was used for modeling of steel thermophysical properties with respect to the alloying-elements macrosegregation. The model of the bloom was programmed in the Fortran language. The FEM software MARC/MENTAT 2012 was used for simulation of two heating strategies (plane strain formulation). The first heating model was fitted to the commonly used heating strategy when internal defects grew above the critical limit. The second heating model was a newly proposed strategy that consisted of slower heating up to 1073 K when the first warming-through period occurred. The FEM simulations included determinations of the temperature gradient, the equivalent of stress, the equivalent of elastic strain, the equivalent of plastic strain, and the equivalent of total strain. The simulation results were in good agreement with experimental observations. The new heating strategy based on the FEM simulations led to significantly lower occurrence of internal defects in hot-rolled billets that are used for cylinder production.
Finite Element Analysis for the Verification of Post-Weld Heat Treatment of 9Cr-1Mo Welds
Cheng, W.; Shiwa, M.; Komura, I.; Gotoh, Y.; Takahashi, N.
2005-04-09
The study on the verification of post-weld heat treatment (PWHT) and PWHT temperature assessment by using AC magnetization method was carried out. Simulated specimens of different PWHT conditions were prepared and their bulk electro-magnetic properties were investigated. The finite element analysis incorporating with magnetic hysteresis was carried out for the purpose of finding proper inspection conditions and evaluation parameters. The simulation showed that PWHT can be verified by the AC magnetization method, however, for PWHT temperature assessment, some new parameters should be considered.
NASA Astrophysics Data System (ADS)
Zhang, J.; Xing, H.; Zhang, H.
2009-12-01
Geothermal energy exploitation and carbon dioxide geosequestration are both attractive topics in renewable clean energy for an environmental society. The enhanced geothermal systems (EGS) have been raised both laboratorially and practically, which employ CO2 instead of water as a heat transmission medium. Our research focuses on numerical simulation of groundwater and carbon dioxide dominated geothermal reservoirs and gives a numerical procedure of coupled heat and fluid flow problems with phase changing by means of finite element method. A few of numerical models are carried out to simulate the drainage of a water/vapor dominated reservoir with CO2 injection. The phase changing of water and CO2 are both monitored as volume saturation or mass fraction, which gives a dynamic concept of the multiphase fluid circulation of CO2-EGS system.
NASA Technical Reports Server (NTRS)
Ko, William L.
1988-01-01
Accuracies of solutions (structural temperatures and thermal stresses) obtained from different thermal and structural FEMs set up for the Space Shuttle Orbiter (SSO) are compared and discussed. For studying the effect of element size on the solution accuracies of heat-transfer and thermal-stress analyses of the SSO, five SPAR thermal models and five NASTRAN structural models were set up for wing midspan bay 3. The structural temperature distribution over the wing skin (lower and upper) surface of one bay was dome shaped and induced more severe thermal stresses in the chordwise direction than in the spanwise direction. The induced thermal stresses were extremely sensitive to slight variation in structural temperature distributions. Both internal convention and internal radiation were found to have equal effects on the SSO.
NASA Astrophysics Data System (ADS)
Cao, Liu; Liao, Dunming; Lu, Yuzhang; Chen, Tao
2016-09-01
With the rapid development of the aviation industry, the turbine blade, a critical component of the aeronautical engine, has come to be widely produced by liquid-metal cooling (LMC) process. A temperature- and time-dependent heat transfer coefficient was used to represent the heat convection between the shell and the cooling liquid, and an improved Monte Carlo ray-tracing approach was adopted to handle the boundary of radiation heat transfer. Unstructured mesh was used to fit the irregular shell boundary, and the heat transfer model of directional solidification by LMC process based on finite element method (FEM) was established. The concept of local matrix was here proposed to guarantee computational efficiency. The pouring experiments of directional solidification by LMC process were carried out, then simulation and experimental results were compared here. The accuracy of the heat transfer model was validated by the cooling curves and grain morphology, and the maximum relative error between simulation and experimental cooling curve was 2 pct. The withdrawal rate showed an important influence on the shape of solidification interface, and stray grain is liable to be generated on the bottom of platform at an excessive withdrawal rate.
NASA Astrophysics Data System (ADS)
García, Alberto J.; Órpez, Antonio J.; Cruz-Peragón, Fernando
2013-09-01
A novel FEM thermal model for photovoltaic (PV) and concentrated photovoltaics (CPV) technologies is presented in order to improve fluid-mechanic studies for heat-sink design and thermal behavior of components in solar industry, reducing lead time from design to results. This is achieved by implementing the finite element software ABAQUS through a user defined subroutine and taking into account all the environmental requirements, and through the all known fluid-dynamics magnitude relations, as semi empirical equations. This new approach is completely novel and means that it is not necessary to make a complex CFD at early stages of design, but a simplified uncoupled non-linear thermal FEM simulation, reducing a great amount of time and costs, as it is only necessary few time to change design and to reanalyze. The results have been compared with a thermal imaging camera in real operating conditions.
User's Manual for the FEHM Application-A Finite-Element Heat- and Mass-Transfer Code
George A. Zyvoloski; Bruce A. Robinson; Zora V. Dash; Lynn L. Trease
1997-07-07
This document is a manual for the use of the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. The code is also capable of incorporating the various adsorption mechanisms, ranging from simple linear relations to nonlinear isotherms, needed to describe the very complex transport processes at Yucca Mountain. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data
John F. Hunt; Hongmei Gu
2006-01-01
The anisotropy of wood complicates solution of heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment, earlywood/latewood differences, or...
Chan, T V Chow Ting; Tang, J; Younce, F
2004-01-01
This paper presents a new, yet simple and effective approach to modeling industrial Radio Frequency heating systems, using the wave equation applied in three dimensions instead of the conventional electrostatics method. The central idea is that the tank oscillatory circuit is excited using an external source. This then excites the applicator circuit which is then used to heat or dry the processed load. Good agreement was obtained between the experimental and numerical data, namely the S11-parameter, phase, and heating patterns for different sized loads and positions.
Finite Element Analysis of Three Methods for Microwave Heating of Planetary Surfaces
NASA Technical Reports Server (NTRS)
Ethridge, Edwin; Kaukler, William
2012-01-01
In-Situ Resource Utilization will be Ground Breaking technology for sustained exploration of space. Volatiles are present in planetary regolith, but water by far has the most potential for effective utilization. The presence of water at the lunar poles and Mars opens the possibility of using the hydrogen for propellant on missions beyond Earth orbit. Likewise, the oxygen could be used for in-space propulsion for lunar ascent/descent and for space tugs from low lunar orbit to low Earth orbit. Water is also an effective radiation shielding material as well as a valuable expendable (water and oxygen) required for habitation in space. Because of the strong function of water vapor pressure with temperature, heating regolith effectively liberates water vapor by sublimation. Microwave energy will penetrate soil and heat from within, much more efficiently than heating from the surface with radiant heat. This is especially true under vacuum conditions since the heat transfer rate is very low. The depth of microwave penetration is a strong function of the microwave frequency and to a lesser extent on regolith dielectric properties. New methods for delivery of microwaves into lunar and planetary surfaces is being prototyped with laboratory experiments and modeled with COMSOL MultiPhysics. Recent results are discussed.
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The mathematical models and numerical methods employed by the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multi-component flow in porous media, are described. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The component models of FEHM are discussed. The first major component, Flow- and Energy-Transport Equations, deals with heat conduction; heat and mass transfer with pressure- and temperature-dependent properties, relative permeabilities and capillary pressures; isothermal air-water transport; and heat and mass transfer with noncondensible gas. The second component, Dual-Porosity and Double-Porosity/Double-Permeability Formulation, is designed for problems dominated by fracture flow. Another component, The Solute-Transport Models, includes both a reactive-transport model that simulates transport of multiple solutes with chemical reaction and a particle-tracking model. Finally, the component, Constitutive Relationships, deals with pressure- and temperature-dependent fluid/air/gas properties, relative permeabilities and capillary pressures, stress dependencies, and reactive and sorbing solutes. Each of these components is discussed in detail, including purpose, assumptions and limitations, derivation, applications, numerical method type, derivation of numerical model, location in the FEHM code flow, numerical stability and accuracy, and alternative approaches to modeling the component.
Finite element analyses of two dimensional, anisotropic heat transfer in wood
John F. Hunt; Hongmei Gu
2004-01-01
The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Inputting basic orthogonal properties of the wood material alone are not sufficient for accurate modeling because wood is a combination of porous fiber cells that are aligned and mis-...
NASA Astrophysics Data System (ADS)
Zanchini, E.; Jahanbin, A.
2016-09-01
In the evaluation of Thermal Response Tests (TRTs) and in the design of Borehole Heat Exchanger (BHE) fields, the mean temperature of the fluid Tm is usually approximated by the arithmetic mean Tave of inlet and outlet temperatures. This approximation can yield errors in the estimation of the thermal conductivity of the ground, of the BHE thermal resistance, and of the heat pump performance. An expression for the evaluation of Tm has been proposed by Marcotte and Pasquier (Marcotte D, Pasquier P 2008, Renewable Energy, 33 2407) for single U-tube BHEs. In this paper, the difference between Tm and Tave is determined by 3D finite- element simulations for a typical double U-tube BHE in 6 unsteady working conditions. The results are validated qualitatively through an approximate analytical method, and show that the expression proposed by Marcotte and Pasquier underestimates the difference between Tm and Tave when applied to a typical double U-tube BHE. Therefore, new relations to evaluate this difference for double U-tube BHEs would be useful.
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An appproach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions. Previously announced in STAR as N81-31507
Exact finite elements for conduction and convection
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Tamma, K. K.
1981-01-01
An approach for developing exact one dimensional conduction-convection finite elements is presented. Exact interpolation functions are derived based on solutions to the governing differential equations by employing a nodeless parameter. Exact interpolation functions are presented for combined heat transfer in several solids of different shapes, and for combined heat transfer in a flow passage. Numerical results demonstrate that exact one dimensional elements offer advantages over elements based on approximate interpolation functions.
User`s manual for the FEHM application -- A finite-element heat- and mass-transfer code
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions.
Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell
NASA Astrophysics Data System (ADS)
Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.
2017-04-01
The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.
Dash, Z.V.; Robinson, B.A.; Zyvoloski, G.A.
1997-07-01
The requirements, design, and verification and validation of the software used in the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media, are described. The test of the DOE Code Comparison Project, Problem Five, Case A, which verifies that FEHM has correctly implemented heat and mass transfer and phase partitioning, is also covered.
Toward automatic finite element analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Perucchio, Renato; Voelcker, Herbert
1987-01-01
Two problems must be solved if the finite element method is to become a reliable and affordable blackbox engineering tool. Finite element meshes must be generated automatically from computer aided design databases and mesh analysis must be made self-adaptive. The experimental system described solves both problems in 2-D through spatial and analytical substructuring techniques that are now being extended into 3-D.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Finite element shell instability analysis
NASA Technical Reports Server (NTRS)
1975-01-01
Formulation procedures and the associated computer program for finite element thin shell instability analysis are discussed. Data cover: (1) formulation of basic element relationships, (2) construction of solution algorithms on both the conceptual and algorithmic levels, and (3) conduction of numerical analyses to verify the accuracy and efficiency of the theory and related programs therein are described.
NASA Astrophysics Data System (ADS)
Li, Zhi-Ming; Hao, Yue; Zhang, Jin-Cheng; Xu, Sheng-Rui; Ni, Jin-Yu; Zhou, Xiao-Wei
2009-11-01
Electromagnetic field distribution in the vertical metal organic chemical vapour deposition (MOCVD) reactor is simulated by using the finite element method (FEM). The effects of alternating current frequency, intensity, coil turn number and the distance between the coil turns on the distribution of the Joule heat are analysed separately, and their relations to the value of Joule heat are also investigated. The temperature distribution on the susceptor is also obtained. It is observed that the results of the simulation are in good agreement with previous measurements.
Finite element modeling of nonisothermal polymer flows
NASA Technical Reports Server (NTRS)
Roylance, D.
1981-01-01
A finite element formulation designed to simulate polymer melt flows in which both conductive and convective heat transfer are important is described, and the numerical model is illustrated by means of computer experiments using extruder drag flow and entry flow as trial problems. Fluid incompressibility is enforced by a penalty treatment of the element pressures, and the thermal convective transport is modeled by conventional Galerkin and optimal upwind treatments.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analyses is presented. New thermal finite elements which yield exact nodal and element temperature for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal-structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
Finite elements: Theory and application
NASA Technical Reports Server (NTRS)
Dwoyer, D. L. (Editor); Hussaini, M. Y. (Editor); Voigt, R. G. (Editor)
1988-01-01
Recent advances in FEM techniques and applications are discussed in reviews and reports presented at the ICASE/LaRC workshop held in Hampton, VA in July 1986. Topics addressed include FEM approaches for partial differential equations, mixed FEMs, singular FEMs, FEMs for hyperbolic systems, iterative methods for elliptic finite-element equations on general meshes, mathematical aspects of FEMS for incompressible viscous flows, and gradient weighted moving finite elements in two dimensions. Consideration is given to adaptive flux-corrected FEM transport techniques for CFD, mixed and singular finite elements and the field BEM, p and h-p versions of the FEM, transient analysis methods in computational dynamics, and FEMs for integrated flow/thermal/structural analysis.
NASA Astrophysics Data System (ADS)
Reddy, G. J.; Raju, R. S.; Rao, J. A.; Gorla, R. S. R.
2017-02-01
An unsteady magnetohydromagnetic natural convection on the Couette flow of electrically conducting water at 4°C (Pr = 11.40) in a rotating system has been considered. A Finite Element Method (FEM) was employed to find the numerical solutions of the dimensionless governing coupled boundary layer partial differential equations. The primary velocity, secondary velocity and temperature of water at 4°C as well as shear stresses and rate of heat transfer have been obtained for both ramped temperature and isothermal plates. The results are independent of the mesh (grid) size and the present numerical solutions through the Finite Element Method (FEM) are in good agreement with the existing analytical solutions by the Laplace Transform Technique (LTT). These are shown in tabular and graphical forms.
Parallel, Implicit, Finite Element Solver
NASA Astrophysics Data System (ADS)
Lowrie, Weston; Shumlak, Uri; Meier, Eric; Marklin, George
2007-11-01
A parallel, implicit, finite element solver is described for solutions to the ideal MHD equations and the Pseudo-1D Euler equations. The solver uses the conservative flux source form of the equations. This helps simplify the discretization of the finite element method by keeping the specification of the physics separate. An implicit time advance is used to allow sufficiently large time steps. The Portable Extensible Toolkit for Scientific Computation (PETSc) is implemented for parallel matrix solvers and parallel data structures. Results for several test cases are described as well as accuracy of the method.
On numerically accurate finite element
NASA Technical Reports Server (NTRS)
Nagtegaal, J. C.; Parks, D. M.; Rice, J. R.
1974-01-01
A general criterion for testing a mesh with topologically similar repeat units is given, and the analysis shows that only a few conventional element types and arrangements are, or can be made suitable for computations in the fully plastic range. Further, a new variational principle, which can easily and simply be incorporated into an existing finite element program, is presented. This allows accurate computations to be made even for element designs that would not normally be suitable. Numerical results are given for three plane strain problems, namely pure bending of a beam, a thick-walled tube under pressure, and a deep double edge cracked tensile specimen. The effects of various element designs and of the new variational procedure are illustrated. Elastic-plastic computation at finite strain are discussed.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
NASA Astrophysics Data System (ADS)
Shaidurov, V.; Shchepanovskaya, G.; Yakubovich, M.
2014-11-01
The approach is proposed for the numerical solution of the Navier-Stokes equations for the two-dimensional motion of viscous heat-conducting gas. The discretization of equations is performed by a combination of a special semi-Lagrangian approximation for transport derivatives and the conforming finite element method with piecewise linear or bilinear basis functions for other terms. This approach gives a simpler structure of the discrete system of algebraic equations and does not involve the Courant-Friedrichs-Lewy restriction on the relation between temporal and spatial steps. Numerical results for a supersonic flow around an obstacle for some Mach and Reynolds numbers are presented.
Nonlinear, finite deformation, finite element analysis
NASA Astrophysics Data System (ADS)
Nguyen, Nhung; Waas, Anthony M.
2016-06-01
The roles of the consistent Jacobian matrix and the material tangent moduli, which are used in nonlinear incremental finite deformation mechanics problems solved using the finite element method, are emphasized in this paper, and demonstrated using the commercial software ABAQUS standard. In doing so, the necessity for correctly employing user material subroutines to solve nonlinear problems involving large deformation and/or large rotation is clarified. Starting with the rate form of the principle of virtual work, the derivations of the material tangent moduli, the consistent Jacobian matrix, the stress/strain measures, and the objective stress rates are discussed and clarified. The difference between the consistent Jacobian matrix (which, in the ABAQUS UMAT user material subroutine is referred to as DDSDDE) and the material tangent moduli ( C e ) needed for the stress update is pointed out and emphasized in this paper. While the former is derived based on the Jaumann rate of the Kirchhoff stress, the latter is derived using the Jaumann rate of the Cauchy stress. Understanding the difference between these two objective stress rates is crucial for correctly implementing a constitutive model, especially a rate form constitutive relation, and for ensuring fast convergence. Specifically, the implementation requires the stresses to be updated correctly. For this, the strains must be computed directly from the deformation gradient and corresponding strain measure (for a total form model). Alternatively, the material tangent moduli derived from the corresponding Jaumann rate of the Cauchy stress of the constitutive relation (for a rate form model) should be used. Given that this requirement is satisfied, the consistent Jacobian matrix only influences the rate of convergence. Its derivation should be based on the Jaumann rate of the Kirchhoff stress to ensure fast convergence; however, the use of a different objective stress rate may also be possible. The error associated
NASA Astrophysics Data System (ADS)
Li, Yuan
2017-07-01
The special using condition of high-power three-level explosion-proof inverter limits its cooling system within heat pipe and water-cooled cooling systems. How to calculate these two systems quantitatively to provide references for engineering application becomes one of the critical problems. In this paper, the principle of three-level explosion-proof was introduced first, and the power-loss generation theory was described and deduced into equations. Secondly, the heat pipe cooling system theory calculation was conducted based on the power losses of power devices, and the whole cooling system model was built by using finite element analysis. Finally, the temperature rise experiment was carried out on a 1 MW high-power three-level explosion-proof inverter, and the results proved the feasibility of this theory and its accuracy of analysis.
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Wieting, A. R.
1979-01-01
Conventional versus upwind convective finite elements, and lumped versus consistent formulations for practical conduction/forced convection analysis are evaluated on the basis of numerical studies, with finite element and finite difference lumped-parameter temperatures compared to closed-form analytical solutions for convection problems. Attention is given to two practical combined conduction and forced convection applications, stressing that the finite element method, showing superior accuracy, is competitive with the finite difference lumped-parameter method. Also considered are the computational time savings offered by the zero capacitance nodes procedure and comparative finite element and finite difference lumped-parameter computer times. The present study has reference to the design of actively cooled engine and airframe structures for hypersonic flight.
SUPG Finite Element Simulations of Compressible Flows
NASA Technical Reports Server (NTRS)
Kirk, Brnjamin, S.
2006-01-01
The Streamline-Upwind Petrov-Galerkin (SUPG) finite element simulations of compressible flows is presented. The topics include: 1) Introduction; 2) SUPG Galerkin Finite Element Methods; 3) Applications; and 4) Bibliography.
Gauge finite element method for incompressible flows
NASA Astrophysics Data System (ADS)
E, Weinan; Liu, Jian-Guo
2000-12-01
A finite element method for computing viscous incompressible flows based on the gauge formulation introduced in [Weinan E, Liu J-G. Gauge method for viscous incompressible flows. Journal of Computational Physics (submitted)] is presented. This formulation replaces the pressure by a gauge variable. This new gauge variable is a numerical tool and differs from the standard gauge variable that arises from decomposing a compressible velocity field. It has the advantage that an additional boundary condition can be assigned to the gauge variable, thus eliminating the issue of a pressure boundary condition associated with the original primitive variable formulation. The computational task is then reduced to solving standard heat and Poisson equations, which are approximated by straightforward, piecewise linear (or higher-order) finite elements. This method can achieve high-order accuracy at a cost comparable with that of solving standard heat and Poisson equations. It is naturally adapted to complex geometry and it is much simpler than traditional finite element methods for incompressible flows. Several numerical examples on both structured and unstructured grids are presented. Copyright
Peridynamic Multiscale Finite Element Methods
Costa, Timothy; Bond, Stephen D.; Littlewood, David John; Moore, Stan Gerald
2015-12-01
The problem of computing quantum-accurate design-scale solutions to mechanics problems is rich with applications and serves as the background to modern multiscale science research. The prob- lem can be broken into component problems comprised of communicating across adjacent scales, which when strung together create a pipeline for information to travel from quantum scales to design scales. Traditionally, this involves connections between a) quantum electronic structure calculations and molecular dynamics and between b) molecular dynamics and local partial differ- ential equation models at the design scale. The second step, b), is particularly challenging since the appropriate scales of molecular dynamic and local partial differential equation models do not overlap. The peridynamic model for continuum mechanics provides an advantage in this endeavor, as the basic equations of peridynamics are valid at a wide range of scales limiting from the classical partial differential equation models valid at the design scale to the scale of molecular dynamics. In this work we focus on the development of multiscale finite element methods for the peridynamic model, in an effort to create a mathematically consistent channel for microscale information to travel from the upper limits of the molecular dynamics scale to the design scale. In particular, we first develop a Nonlocal Multiscale Finite Element Method which solves the peridynamic model at multiple scales to include microscale information at the coarse-scale. We then consider a method that solves a fine-scale peridynamic model to build element-support basis functions for a coarse- scale local partial differential equation model, called the Mixed Locality Multiscale Finite Element Method. Given decades of research and development into finite element codes for the local partial differential equation models of continuum mechanics there is a strong desire to couple local and nonlocal models to leverage the speed and state of the
Finite element model and identification procedure
NASA Technical Reports Server (NTRS)
How, Jonathan P.; Blackwood, Gary; Anderson, Eric; Balmes, Etienne
1992-01-01
Viewgraphs on finite element model and identification procedure are presented. Topics covered include: interferometer finite element model; testbed mode shapes; finite element model update; identification procedure; shaker locations; data analysis; modal frequency and damping comparison; computational procedure; fit comparison; residue analysis; typical residues; identification/FEM residual comparison; and pathlength control using isolation mounts.
2-d Finite Element Code Postprocessor
Sanford, L. A.; Hallquist, J. O.
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Resistance heating elements with specific heating profiles
NASA Technical Reports Server (NTRS)
Hirschberg, M. H.
1976-01-01
Bundled, interrupted, resistance heating elements provide specific heating profiles. Design allows for easily tailored lengths and locations of "hot sections" and larger surface areas for heat radiation.
Finite element simulation of microindentation
NASA Astrophysics Data System (ADS)
Zhuk, D. I.; Isaenkova, M. G.; Perlovich, Yu. A.; Krymskaya, O. A.
2017-05-01
Finite element models are created to describe the testing of a material by a Berkovich indenter. The results of calculations by these models are compared to experimental data on indentation of the same material (grade 10 steel). The experimental and calculated data agree well with each other. The developed models for an indenter and the material to be tested are used to find the laws of behavior of a material during indentation. The state of stress in the material under an indenter is studied by various methods. The indentation results are plotted versus the mechanical properties of a material.
Algebraic surface design and finite element meshes
NASA Technical Reports Server (NTRS)
Bajaj, Chandrajit L.
1992-01-01
Some of the techniques are summarized which are used in constructing C sup 0 and C sup 1 continuous meshes of low degree, implicitly defined, algebraic surface patches in three dimensional space. These meshes of low degree algebraic surface patches are used to construct accurate computer models of physical objects. These meshes are also used in the finite element simulation of physical phenomena (e.g., heat dissipation, stress/strain distributions, fluid flow characteristics) required in the computer prototyping of both the manufacturability and functionality of the geometric design.
Chowdhury, Raju; Parvin, Salma; Khan, Md Abdul Hakim
2016-08-01
The problem of double-diffusive natural convection of Al2O3 -water nanofluid in a porous triangular enclosure in presence of heat generation has been studied numerically in this paper. The bottom wall of the cavity is heated isothermally, the left inclined wall is non-isothermal and the right inclined wall is considered to be cold. The concentration is higher at bottom wall, lower at right inclined wall and non-isoconcentration at left inclined wall of the cavity. The governing equations are transformed to the dimensionless form and solved numerically using Galerkin weighted residual technique of finite element method. The results are obtained in terms of streamlines, isotherms, isoconcentrations, average Nueeslt number (Nu) and average Sherwood number (Sh) for the parameters thermal Rayleigh number (RaT ), dimensionless heat generation parameter (λ), solid volume fraction (ϕ) and Lewis number (Le) while Prandtl number (Pr), Buoyancy ratio (N) and Darcy number (Da) are considered to be fixed. It is observed that flow pattern, temperature fields and concentration fields are affected by the variation of above considered parameters.
Hongmei Gu; John F. Hunt
2007-01-01
The anisotropy of wood creates a complex problem for solving heat and mass transfer problems that require analyses be based on fundamental material properties of the wood structure. Most heat transfer models for softwood use average thermal properties across either the radial or tangential direction and do not differentiate the effects of cellular alignment or...
Higher-Order Finite Elements for Computing Thermal Radiation
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2004-01-01
Two variants of the finite-element method have been developed for use in computational simulations of radiative transfers of heat among diffuse gray surfaces. Both variants involve the use of higher-order finite elements, across which temperatures and radiative quantities are assumed to vary according to certain approximations. In this and other applications, higher-order finite elements are used to increase (relative to classical finite elements, which are assumed to be isothermal) the accuracies of final numerical results without having to refine computational meshes excessively and thereby incur excessive computation times. One of the variants is termed the radiation sub-element (RSE) method, which, itself, is subject to a number of variations. This is the simplest and most straightforward approach to representation of spatially variable surface radiation. Any computer code that, heretofore, could model surface-to-surface radiation can incorporate the RSE method without major modifications. In the basic form of the RSE method, each finite element selected for use in computing radiative heat transfer is considered to be a parent element and is divided into sub-elements for the purpose of solving the surface-to-surface radiation-exchange problem. The sub-elements are then treated as classical finite elements; that is, they are assumed to be isothermal, and their view factors and absorbed heat fluxes are calculated accordingly. The heat fluxes absorbed by the sub-elements are then transferred back to the parent element to obtain a radiative heat flux that varies spatially across the parent element. Variants of the RSE method involve the use of polynomials to interpolate and/or extrapolate to approximate spatial variations of physical quantities. The other variant of the finite-element method is termed the integration method (IM). Unlike in the RSE methods, the parent finite elements are not subdivided into smaller elements, and neither isothermality nor other
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1979-01-01
Three practical problems in conduction/forced convection heat transfer are analyzed using a simplified engineering formulation of convective finite elements. Upwind and conventional finite element solutions are compared for steady-state and transient applications.
Finite element analysis of arc welding
Friedman, E.
1980-01-01
Analytical models of the gas tungsten-arc welding process into finite element computer programs provides a valuable tool for determining the welding thermal cycle, weld bead shape, and penetration characteristics, as well as for evaluating the stresses and distortions generated as a result of the temperature transients. The analysis procedures are applicable to planar or axisymmetric welds with arbitrary cross-sectional geometries, under quasistationary conditions. The method used for determining temperatures features an iteration procedure to accurately account for the latent heat absorbed during melting and liberated during solidification of the weld. By simulating the heat input from the arc to the workpiece by a normal distribution function, temperature transients, weld bead dimensions, and cooling rates are evaluated as functions of both the magnitude and distribution of heat input, weldment geometry, and weld speed (or duration of heating for stationary arcs). Modeling of the welding thermal cycle is a prerequisite to analytical treatments of metallurgical changes in weld metal and heat-affected zone material, residual stresses and distortions, and weld defects. A quasistationary formulation for moving welds enables temperatures to be calculated using a two-dimensional heat conduction computer program. The present limitation of high welding speed can, however, be relaxed without altering the two-dimensional framework of the procedure.
Domain decomposition methods for mortar finite elements
Widlund, O.
1996-12-31
In the last few years, domain decomposition methods, previously developed and tested for standard finite element methods and elliptic problems, have been extended and modified to work for mortar and other nonconforming finite element methods. A survey will be given of work carried out jointly with Yves Achdou, Mario Casarin, Maksymilian Dryja and Yvon Maday. Results on the p- and h-p-version finite elements will also be discussed.
Finite-element solutions for geothermal systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Conel, J. E.
1977-01-01
Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.
Finite-element solutions for geothermal systems
NASA Technical Reports Server (NTRS)
Chen, J. C.; Conel, J. E.
1977-01-01
Vector potential and scalar potential are used to formulate the governing equations for a single-component and single-phase geothermal system. By assuming an initial temperature field, the fluid velocity can be determined which, in turn, is used to calculate the convective heat transfer. The energy equation is then solved by considering convected heat as a distributed source. Using the resulting temperature to compute new source terms, the final results are obtained by iterations of the procedure. Finite-element methods are proposed for modeling of realistic geothermal systems; the advantages of such methods are discussed. The developed methodology is then applied to a sample problem. Favorable agreement is obtained by comparisons with a previous study.
George A. Zyvoloski; Bruce A. Robinson; Zora V. Dash; Lynn L. Trease
1997-07-01
The mathematical models and numerical methods employed by the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multi-component flow in porous media, are described. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The component models of FEHM are discussed. The first major component, Flow- and Energy-Transport Equations, deals with heat conduction; heat and mass transfer with pressure- and temperature-dependent properties, relative permeabilities and capillary pressures; isothermal air-water transport; and heat and mass transfer with noncondensible gas. The second component, Dual-Porosity and Double-Porosity/Double-Permeability Formulation, is designed for problems dominated by fracture flow. Another component, The Solute-Transport Models, includes both a reactive-transport model that simulates transport of multiple solutes with chemical reaction and a particle-tracking model. Finally, the component, Constitutive Relationships, deals with pressure- and temperature-dependent fluid/air/gas properties, relative permeabilities and capillary pressures, stress dependencies, and reactive and sorbing solutes. Each of these components is discussed in detail, including purpose, assumptions and limitations, derivation, applications, numerical method type, derivation of numerical model, location in the FEHM code flow, numerical stability and accuracy, and alternative approaches to modeling the component.
Cook, S.J.; Bowman, J.R.; Forster, C.B.
1997-01-01
Results of calcite-dolomite geothermometry and oxygen isotope studies of marbles in the southern portion of the contact aureole surrounding the Alta stock (Utah) provide evidence for extensive hydrothermal metamorphism in this part of the aureole. Simulation of these two independent data sets with two-dimensional, finite element fluid flow and heat transport models constrains the pattern of fluid flow, minimum permeability, and the permeability structure in this part of the aureole. Model results demonstrate that intrusion of the stock into a homogeneous, isotropic permeability medium yields peak metamorphic temperatures significantly lower than those measured in the marbles and significant {sup 18}O depletions both above and below the Alta-Grizzly thrust system. The latter contradicts the observations in the south aureole that {sup 18}O depletions in the marbles are restricted to marbles below the Alta-Grizzly thrust; dolomitic marbles above the thrust retain original sedimentary values up to the intrusive contact. Models with horizontal permeability barriers above the Alta-Grizzly thrust and extending over the top of the Alta stock are capable of reproducing the observed thermal and {delta}{sup 18}O profiles in the southern aureole. The presence of such horizontal barriers reduces the predominantly vertical fluid flow and heat transfer that would occur in a homogeneous and isotropic permeability medium, forcing fluid flow and heat transfer laterally away from the upper flanks of the stock. Such horizontal flow patterns are necessary to produce significant {sup 18}O depletion above the thrust, and to provide the necessary lateral heat transfer to duplicate the observed temperature profile. Best fit model results to the observed thermal and {delta}{sup 18}O profiles provide several new insights into the dynamics of fluid circulation and hydrogeologic characteristics of the southern Alta aureole during prograde metamorphism.
Çelik Köycü, Berrak; İmirzalıoğlu, Pervin
2017-07-01
Daily consumption of food and drink creates rapid temperature changes in the oral cavity. Heat transfer and thermal stress caused by temperature changes in restored teeth may damage the hard and soft tissue components, resulting in restoration failure. This study evaluates the temperature distribution and related thermal stress on mandibular molar teeth restored via three indirect restorations using three-dimensional (3D) finite element analysis (FEA). A 3D finite element model was constructed of a mandibular first molar and included enamel, dentin, pulp, surrounding bone, and indirect class 2 restorations of type 2 dental gold alloy, ceramic, and composite resin. A transient thermal FEA was performed to investigate the temperature distribution and the resulting thermal stress after simulated temperature changes from 36°C to 4 or 60°C for a 2-second time period. The restoration models had similar temperature distributions at 2 seconds in both the thermal conditions. Compared with 60°C exposure, the 4°C condition resulted in thermal stress values of higher magnitudes. At 4ºC, the highest stress value observed was tensile stress (56 to 57 MPa), whereas at 60°C, the highest stress value observed was compressive stress (42 to 43 MPa). These stresses appeared at the cervical region of the lingual enamel. The thermal stress at the restoration surface and resin cement showed decreasing order of magnitude as follows: composite > gold > ceramic, in both thermal conditions. The properties of the restorative materials do not affect temperature distribution at 2 seconds in restored teeth. The pulpal temperature is below the threshold for vital pulp tissue (42ºC). Temperature changes generate maximum thermal stress at the cervical region of the enamel. With the highest thermal expansion coefficient, composite resin restorations exhibit higher stress patterns than ceramic and gold restorations. © 2015 by the American College of Prosthodontists.
Sawyer, W.C.
1995-08-15
An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum. 6 figs.
Sawyer, William C.
1995-01-01
An apparatus for supporting a heating element in a channel formed in a heater base is disclosed. A preferred embodiment includes a substantially U-shaped tantalum member. The U-shape is characterized by two substantially parallel portions of tantalum that each have an end connected to opposite ends of a base portion of tantalum. The parallel portions are each substantially perpendicular to the base portion and spaced apart a distance not larger than a width of the channel and not smaller than a width of a graphite heating element. The parallel portions each have a hole therein, and the centers of the holes define an axis that is substantially parallel to the base portion. An aluminum oxide ceramic retaining pin extends through the holes in the parallel portions and into a hole in a wall of the channel to retain the U-shaped member in the channel and to support the graphite heating element. The graphite heating element is confined by the parallel portions of tantalum, the base portion of tantalum, and the retaining pin. A tantalum tube surrounds the retaining pin between the parallel portions of tantalum.
Finite element coiled cochlea model
NASA Astrophysics Data System (ADS)
Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad
2015-12-01
Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.
Finite elements and finite differences for transonic flow calculations
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.; Wellford, L. C.
1978-01-01
The paper reviews the chief finite difference and finite element techniques used for numerical solution of nonlinear mixed elliptic-hyperbolic equations governing transonic flow. The forms of the governing equations for unsteady two-dimensional transonic flow considered are the Euler equation, the full potential equation in both conservative and nonconservative form, the transonic small-disturbance equation in both conservative and nonconservative form, and the hodograph equations for the small-disturbance case and the full-potential case. Finite difference methods considered include time-dependent methods, relaxation methods, semidirect methods, and hybrid methods. Finite element methods include finite element Lax-Wendroff schemes, implicit Galerkin method, mixed variational principles, dual iterative procedures, optimal control methods and least squares.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Element-topology-independent preconditioners for parallel finite element computations
NASA Technical Reports Server (NTRS)
Park, K. C.; Alexander, Scott
1992-01-01
A family of preconditioners for the solution of finite element equations are presented, which are element-topology independent and thus can be applicable to element order-free parallel computations. A key feature of the present preconditioners is the repeated use of element connectivity matrices and their left and right inverses. The properties and performance of the present preconditioners are demonstrated via beam and two-dimensional finite element matrices for implicit time integration computations.
Finite-Element Composite-Analysis Program
NASA Technical Reports Server (NTRS)
Bowles, David E.
1990-01-01
Finite Element Composite Analysis Program, FECAP, special-purpose finite-element program for analyzing behavior of composite material with microcomputer. Procedure leads to set of linear simultaneous equations relating unknown nodal displacement to applied loads. Written in HP BASIC 3.0.
Finite element analysis of helicopter structures
NASA Technical Reports Server (NTRS)
Rich, M. J.
1978-01-01
Application of the finite element analysis is now being expanded to three dimensional analysis of mechanical components. Examples are presented for airframe, mechanical components, and composite structure calculations. Data are detailed on the increase of model size, computer usage, and the effect on reducing stress analysis costs. Future applications for use of finite element analysis for helicopter structures are projected.
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
3-D Finite Element Code Postprocessor
1996-07-15
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Books and monographs on finite element technology
NASA Technical Reports Server (NTRS)
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Books and monographs on finite element technology
NASA Technical Reports Server (NTRS)
Noor, A. K.
1985-01-01
The present paper proviees a listing of all of the English books and some of the foreign books on finite element technology, taking into account also a list of the conference proceedings devoted solely to finite elements. The references are divided into categories. Attention is given to fundamentals, mathematical foundations, structural and solid mechanics applications, fluid mechanics applications, other applied science and engineering applications, computer implementation and software systems, computational and modeling aspects, special topics, boundary element methods, proceedings of symmposia and conferences on finite element technology, bibliographies, handbooks, and historical accounts.
Reynoso, Francisco J; Lee, Chae-Deok; Cheong, Seong-Kyun; Cho, Sang Hyun
2013-07-01
The use of optically tunable gold nanoparticles (GNPs) in conjunction with near-infrared (NIR) laser has emerged as an attractive option for laser-induced thermal therapy (LITT), as it capitalizes on plasmonic heating of GNPs tuned to absorb light strongly in the NIR region. Previously, the authors developed a multisource model to predict the temperature change in a GNP-laden tissue-like medium illuminated by NIR laser and implemented it by a linear superposition (LS) method combining analytic and finite element method (FEM) solutions. While it is intuitive and straightforward, the LS approach might be somewhat cumbersome to implement for realistic LITT cases because it requires separate calculations of the temperature change due to individual GNP heat sources and the laser heat source. Therefore, the current investigation aimed to develop a simpler yet mathematically more elegant and computationally more efficient method solely based on FEM to implement the authors' multisource model. A multisource FEM model was developed to calculate the full spatiotemporal temperature distribution due to all heat sources (i.e., individual GNPs and the laser heat source) by solving the heat diffusion equation with multiple heat sources using FEM. This model was tested for its validity using two computational phantoms, a two-layer GNP-laden cylindrical phantom and a breast phantom with a GNP-laden microcavity. For comparison, the results for the two phantom cases were also obtained from the LS method. For the two-layer phantom case, the FEM approach resulted in a maximum temperature increase of 16.4 °C at a depth of 1.35 cm, 2.5 mm below the interface between the two layers, while the LS method produced a maximum temperature increase of 16.7 °C at a depth of 1.3 cm, 2 mm below the interface between the two layers. A comparison of the depth versus temperature changes obtained from the two approaches showed reasonably good agreement within 6%. In the breast phantom case, the LS
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Assignment Of Finite Elements To Parallel Processors
NASA Technical Reports Server (NTRS)
Salama, Moktar A.; Flower, Jon W.; Otto, Steve W.
1990-01-01
Elements assigned approximately optimally to subdomains. Mapping algorithm based on simulated-annealing concept used to minimize approximate time required to perform finite-element computation on hypercube computer or other network of parallel data processors. Mapping algorithm needed when shape of domain complicated or otherwise not obvious what allocation of elements to subdomains minimizes cost of computation.
Optimizing header strength utilizing finite element analyses
NASA Astrophysics Data System (ADS)
Burchett, S. N.
Finite element techniques have been successfully applied as a design tool in the optimization of high strength headers for pyrotechnic-driven actuators. These techniques have been applied to three aspects of the design process of a high strength header. The design process was a joint effort of experts from several disciplines including design engineers, material scientists, test engineers, manufacturing engineers, and structural analysts. Following material selection, finite element techniques were applied to evaluate the residual stresses due to manufacturing which were developed in the high strength glass ceramic-to-metal seal headers. Results from these finite element analyses were used to identify header designs which were manufacturable and had a minimum residual stress state. Finite element techniques were than applied to obtain the response of the header due to pyrotechnic burn. The results provided realistic upper bounds on the pressure containment ability of various preliminary header designs and provided a quick and inexpensive method of strengthening and refining the designs. Since testing of the headers was difficult and sometimes destructive, results of the analyses were also used to interpret test results and identify failure modes. In this paper, details of the finite element element techniques including the models used, material properties, material failure models, and loading will be presented. Results from the analyses showing the header failure process will also be presented. This paper will show that significant gains in capability and understanding can result when finite element techniques are included as an integral part of the design process of complicated high strength headers.
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Winget, J.; Levit, I.; Tezduyar, T. E.
1983-01-01
Element-by-element approximate factorization procedures are proposed for solving the large finite element equation systems which arise in computational mechanics. A variety of techniques are compared on problems of structural mechanics, heat conduction and fluid mechanics. The results obtained suggest considerable potential for the methods described.
Visualization of higher order finite elements.
Thompson, David C.; Pebay, Philippe Pierre; Crawford, Richard H.; Khardekar, Rahul Vinay
2004-04-01
Finite element meshes are used to approximate the solution to some differential equation when no exact solution exists. A finite element mesh consists of many small (but finite, not infinitesimal or differential) regions of space that partition the problem domain, {Omega}. Each region, or element, or cell has an associated polynomial map, {Phi}, that converts the coordinates of any point, x = ( x y z ), in the element into another value, f(x), that is an approximate solution to the differential equation, as in Figure 1(a). This representation works quite well for axis-aligned regions of space, but when there are curved boundaries on the problem domain, {Omega}, it becomes algorithmically much more difficult to define {Phi} in terms of x. Rather, we define an archetypal element in a new coordinate space, r = ( r s t ), which has a simple, axis-aligned boundary (see Figure 1(b)) and place two maps onto our archetypal element:
A survey of mixed finite element methods
NASA Technical Reports Server (NTRS)
Brezzi, F.
1987-01-01
This paper is an introduction to and an overview of mixed finite element methods. It discusses the mixed formulation of certain basic problems in elasticity and hydrodynamics. It also discusses special techniques for solving the discrete problem.
Finite element schemes for Fermi equation
NASA Astrophysics Data System (ADS)
Asadzadeh, M.; Beilina, L.; Naseer, M.; Standar, C.
2017-07-01
A priori error estimates are derived for the streamline diffusion (SD) finite element methods for the Fermi pencil-beam equation. Two-dimensional numerical examples confirm our theoretical investigations.
Finite element modeling of the human pelvis
Carlson, B.
1995-11-01
A finite element model of the human pelvis was created using a commercial wire frame image as a template. To test the final mesh, the model`s mechanical behavior was analyzed through finite element analysis and the results were displayed graphically as stress concentrations. In the future, this grid of the pelvis will be integrated with a full leg model and used in side-impact car collision simulations.
Quadratic finite elements and incompressible viscous flows.
Dohrmann, Clark R.; Gartling, David K.
2005-01-01
Pressure stabilization methods are applied to higher-order velocity finite elements for application to viscous incompressible flows. Both a standard pressure stabilizing Petrov-Galerkin (PSPG) method and a new polynomial pressure projection stabilization (PPPS) method have been implemented and tested for various quadratic elements in two dimensions. A preconditioner based on relaxing the incompressibility constraint is also tested for the iterative solution of saddle point problems arising from mixed Galerkin finite element approximations to the Navier-Stokes equations. The preconditioner is demonstrated for BB stable elements with discontinuous pressure approximations in two and three dimensions.
Finite element analysis of flexible, rotating blades
NASA Technical Reports Server (NTRS)
Mcgee, Oliver G.
1987-01-01
A reference guide that can be used when using the finite element method to approximate the static and dynamic behavior of flexible, rotating blades is given. Important parameters such as twist, sweep, camber, co-planar shell elements, centrifugal loads, and inertia properties are studied. Comparisons are made between NASTRAN elements through published benchmark tests. The main purpose is to summarize blade modeling strategies and to document capabilities and limitations (for flexible, rotating blades) of various NASTRAN elements.
Finite-Element Analysis of Forced Convection and Conduction
NASA Technical Reports Server (NTRS)
Wieting, A. R.
1982-01-01
TAP2 thermal-analysis program was developed as part of research on finite element methodology for thermal analysis of convectively cooled structures, such as scramjet engines and hypersonic aircraft. Program simplifies computations when both structural and thermal analyses are required and is suited for thermal analysis of nuclear reactors and solar-panel heating systems.
A finite element approach for prediction of aerothermal loads
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Vemaganti, G.
1986-01-01
A Taylor-Galerkin finite element approach is presented for analysis of high speed viscous flows with an emphasis on predicting heating rates. Five computational issues relevant to the computation of steady flows are examined. Numerical results for supersonic and hypersonic problems address the computational issues and demonstrate the validity for the approach for analysis of high speed flows.
Stabilized Finite Elements in FUN3D
NASA Technical Reports Server (NTRS)
Anderson, W. Kyle; Newman, James C.; Karman, Steve L.
2017-01-01
A Streamlined Upwind Petrov-Galerkin (SUPG) stabilized finite-element discretization has been implemented as a library into the FUN3D unstructured-grid flow solver. Motivation for the selection of this methodology is given, details of the implementation are provided, and the discretization for the interior scheme is verified for linear and quadratic elements by using the method of manufactured solutions. A methodology is also described for capturing shocks, and simulation results are compared to the finite-volume formulation that is currently the primary method employed for routine engineering applications. The finite-element methodology is demonstrated to be more accurate than the finite-volume technology, particularly on tetrahedral meshes where the solutions obtained using the finite-volume scheme can suffer from adverse effects caused by bias in the grid. Although no effort has been made to date to optimize computational efficiency, the finite-element scheme is competitive with the finite-volume scheme in terms of computer time to reach convergence.
Wave dispersion properties of compound finite elements
NASA Astrophysics Data System (ADS)
Melvin, Thomas; Thuburn, John
2017-06-01
Mixed finite elements use different approximation spaces for different dependent variables. Certain classes of mixed finite elements, called compatible finite elements, have been shown to exhibit a number of desirable properties for a numerical weather prediction model. In two-dimensions the lowest order element of the Raviart-Thomas based mixed element is the finite element equivalent of the widely used C-grid staggering, which is known to possess good wave dispersion properties, at least for quadrilateral grids. It has recently been proposed that building compound elements from a number of triangular Raviart-Thomas sub-elements, such that both the primal and (implied) dual grid are constructed from the same sub-elements, would allow greater flexibility in the use of different advection schemes along with the ability to build arbitrary polygonal elements. Although the wave dispersion properties of the triangular sub-elements are well understood, those of the compound elements are unknown. It would be useful to know how they compare with the non-compound elements and what properties of the triangular sub-grid elements are inherited? Here a numerical dispersion analysis is presented for the linear shallow water equations in two dimensions discretised using the lowest order compound Raviart-Thomas finite elements on regular quadrilateral and hexagonal grids. It is found that, in comparison with the well known C-grid scheme, the compound elements exhibit a more isotropic dispersion relation, with a small over estimation of the frequency for short waves compared with the relatively large underestimation for the C-grid. On a quadrilateral grid the compound elements are found to differ from the non-compound Raviart-Thomas quadrilateral elements even for uniform elements, exhibiting the influence of the underlying sub-elements. This is shown to lead to small improvements in the accuracy of the dispersion relation: the compound quadrilateral element is slightly better for
Finite Element Interface to Linear Solvers
Williams, Alan
2005-03-18
Sparse systems of linear equations arise in many engineering applications, including finite elements, finite volumes, and others. The solution of linear systems is often the most computationally intensive portion of the application. Depending on the complexity of problems addressed by the application, there may be no single solver capable of solving all of the linear systems that arise. This motivates the desire to switch an application from one solver librwy to another, depending on the problem being solved. The interfaces provided by solver libraries differ greatly, making it difficult to switch an application code from one library to another. The amount of library-specific code in an application Can be greatly reduced by having an abstraction layer between solver libraries and the application, putting a common "face" on various solver libraries. One such abstraction layer is the Finite Element Interface to Linear Solvers (EEl), which has seen significant use by finite element applications at Sandia National Laboratories and Lawrence Livermore National Laboratory.
Model Reduction of Viscoelastic Finite Element Models
NASA Astrophysics Data System (ADS)
Park, C. H.; Inman, D. J.; Lam, M. J.
1999-01-01
This paper examines a method of adding viscoelastic properties to finite element models by using additional co-ordinates to account for the frequency dependence usually associated with such damping materials. Several such methods exist and all suffer from an increase in order of the final finite model which is undesirable in many applications. Here we propose to combine one of these methods, the GHM (Golla-Hughes-McTavish) method, with model reduction techniques to remove the objection of increased model order. The result of combining several methods is an ability to add the effects of visoelastic components to finite element or other analytical models without increasing the order of the system. The procedure is illustrated by a numerical example. The method proposed here results in a viscoelastic finite element of a structure without increasing the order of the original model.
NASA Technical Reports Server (NTRS)
Rubin, C. A.; Hahn, G. T.; Kulkarni, S. M.
1991-01-01
The present paper describes a transient translating elastoplastic thermomechanical finite element model to study two-dimensional frictional rolling contact. Frictional two-dimensional contact is simulated by repeatedly translating a nonuniform thermomechanical distribution across the surface of an elastoplastic half space. The half space is represented by a two-dimensional finite element mesh with appropriate boundaries. Calculations are for an elastic-perfectly plastic material and the selected thermophysical properties are assumed to be temperature independent. The paper presents temperature variations, stress and plastic strain distributions and deformations. Residual tensile stresses are observed. The magnitude and depth of these stresses depends on (1) the temperature gradients and (2) the magnitudes of the normal and tangential tractions.
Finite-element models of continental extension
NASA Technical Reports Server (NTRS)
Lynch, H. David; Morgan, Paul
1990-01-01
Numerical models of the initial deformation of extending continental lithosphere, computed to investigate the control of preexisting thermal and mechanical heterogeneities on the style of deformation, are presented. The finite element method is used to calculate deformation with a viscoelastic-plastic model for the lithosphere. Comparisons of the results of analytic models and finite-element models using this method show that good results may be obtained by the numerical technique, even with elements containing both brittle and viscoelastic sampling points. It is shown that the gross style of initial extensional deformation is controlled by the depth and width of the initial heterogeneity which localizes deformation.
Optimization of thermographic NDT using finite element analysis
Lulay, K.E.; Safai, M.
1994-12-31
Experimental and analytical methods were used to study heating techniques for infrared thermography inspection of superplastic formed/diffusion bonded (SPF/DB) structural components. Various thermal loads were investigated to determine the parameters required for highest flaw detection sensitivity. Finite element analysis was used to determine optimal heating techniques. According to the analysis, short burst, high intensity heating on the inspection side of the part is required for the highest flaw detection sensitivity. The analytical results were verified using an infrared camera and heat lamps to detect unbonds in four-sheet SPF/DB panels. Good quantitative agreement between the analysis and laboratory experiments was obtained.
The GPRIME approach to finite element modeling
NASA Technical Reports Server (NTRS)
Wallace, D. R.; Mckee, J. H.; Hurwitz, M. M.
1983-01-01
GPRIME, an interactive modeling system, runs on the CDC 6000 computers and the DEC VAX 11/780 minicomputer. This system includes three components: (1) GPRIME, a user friendly geometric language and a processor to translate that language into geometric entities, (2) GGEN, an interactive data generator for 2-D models; and (3) SOLIDGEN, a 3-D solid modeling program. Each component has a computer user interface of an extensive command set. All of these programs make use of a comprehensive B-spline mathematics subroutine library, which can be used for a wide variety of interpolation problems and other geometric calculations. Many other user aids, such as automatic saving of the geometric and finite element data bases and hidden line removal, are available. This interactive finite element modeling capability can produce a complete finite element model, producing an output file of grid and element data.
Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
Waveguide finite elements for curved structures
NASA Astrophysics Data System (ADS)
Finnveden, Svante; Fraggstedt, Martin
2008-05-01
A waveguide finite element formulation for the analysis of curved structures is introduced. The formulation is valid for structures that along one axis have constant properties. It is based on a modified Hamilton's principle valid for general linear viscoelastic motion, which is derived here. Using this principle, material properties such as losses may be distributed in the system and may vary with frequency. Element formulations for isoparametric solid elements and deep shell elements are presented for curved waveguides as well as for straight waveguides. In earlier works, the curved elements have successfully been used to model a passenger car tyre. Here a simple validation example and convergence study is presented, which considers a finite length circular cylinder and all four elements presented are used, in turn, to model this structure. Calculated results compare favourably to those in the literature.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
NASA Astrophysics Data System (ADS)
Smith, N. A. S.; Rokosz, M. K.; Correia, T. M.
2014-07-01
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Experimentally validated finite element model of electrocaloric multilayer ceramic structures
Smith, N. A. S. E-mail: maciej.rokosz@npl.co.uk Correia, T. M. E-mail: maciej.rokosz@npl.co.uk; Rokosz, M. K. E-mail: maciej.rokosz@npl.co.uk
2014-07-28
A novel finite element model to simulate the electrocaloric response of a multilayer ceramic capacitor (MLCC) under real environment and operational conditions has been developed. The two-dimensional transient conductive heat transfer model presented includes the electrocaloric effect as a source term, as well as accounting for radiative and convective effects. The model has been validated with experimental data obtained from the direct imaging of MLCC transient temperature variation under application of an electric field. The good agreement between simulated and experimental data, suggests that the novel experimental direct measurement methodology and the finite element model could be used to support the design of optimised electrocaloric units and operating conditions.
Finite element modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, A. K.; Andersen, C. M.
1983-01-01
Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included.
VALIDATION OF ANSYS FINITE ELEMENT ANALYSIS SOFTWARE
HAMM, E.R.
2003-06-27
This document provides a record of the verification and Validation of the ANSYS Version 7.0 software that is installed on selected CH2M HILL computers. The issues addressed include: Software verification, installation, validation, configuration management and error reporting. The ANSYS{reg_sign} computer program is a large scale multi-purpose finite element program which may be used for solving several classes of engineering analysis. The analysis capabilities of ANSYS Full Mechanical Version 7.0 installed on selected CH2M Hill Hanford Group (CH2M HILL) Intel processor based computers include the ability to solve static and dynamic structural analyses, steady-state and transient heat transfer problems, mode-frequency and buckling eigenvalue problems, static or time-varying magnetic analyses and various types of field and coupled-field applications. The program contains many special features which allow nonlinearities or secondary effects to be included in the solution, such as plasticity, large strain, hyperelasticity, creep, swelling, large deflections, contact, stress stiffening, temperature dependency, material anisotropy, and thermal radiation. The ANSYS program has been in commercial use since 1970, and has been used extensively in the aerospace, automotive, construction, electronic, energy services, manufacturing, nuclear, plastics, oil and steel industries.
Visualizing higher order finite elements. Final report
Thompson, David C; Pebay, Philippe Pierre
2005-11-01
This report contains an algorithm for decomposing higher-order finite elements into regions appropriate for isosurfacing and proves the conditions under which the algorithm will terminate. Finite elements are used to create piecewise polynomial approximants to the solution of partial differential equations for which no analytical solution exists. These polynomials represent fields such as pressure, stress, and momentum. In the past, these polynomials have been linear in each parametric coordinate. Each polynomial coefficient must be uniquely determined by a simulation, and these coefficients are called degrees of freedom. When there are not enough degrees of freedom, simulations will typically fail to produce a valid approximation to the solution. Recent work has shown that increasing the number of degrees of freedom by increasing the order of the polynomial approximation (instead of increasing the number of finite elements, each of which has its own set of coefficients) can allow some types of simulations to produce a valid approximation with many fewer degrees of freedom than increasing the number of finite elements alone. However, once the simulation has determined the values of all the coefficients in a higher-order approximant, tools do not exist for visual inspection of the solution. This report focuses on a technique for the visual inspection of higher-order finite element simulation results based on decomposing each finite element into simplicial regions where existing visualization algorithms such as isosurfacing will work. The requirements of the isosurfacing algorithm are enumerated and related to the places where the partial derivatives of the polynomial become zero. The original isosurfacing algorithm is then applied to each of these regions in turn.
Thermoelectric heat exchange element
Callas, James J.; Taher, Mahmoud A.
2007-08-14
A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.
NASA Astrophysics Data System (ADS)
Ball, J. L.; Stauffer, P. H.; Calder, E. S.
2012-12-01
Lava domes have been well-characterized in terms of their surface structure and activity, but there is much to be learned about their internal structure and geothermal systems. Even when a lava dome is no longer actively erupting, subsurface studies are often difficult to conduct; lava domes are highly complex structures, but their rugged nature often precludes systematic drilling and/or geophysical surveys. Because of this, we know little about the internal geothermal activity that may still contribute to both hazards and opportunities for exploitation of mineral deposits and hot groundwater. Despite the difficulty of studying the interior of lava domes directly, numerical modeling can still provide insights into the behavior of their geothermal systems. Lava domes have the potential to be highly transmissive structures, and the presence of hot springs in the vicinity of lava domes (Santiaguito in Guatemala, La Soufriere on Guadeloupe) suggests that water circulation may be an important process in post-eruptive dome evolution. FEHM, a heat and mass transfer modeling code developed at Los Alamos National Laboratory (fehm.lanl.gov) is an ideal tool to study fluid and gas circulation in geologic structures. FEHM was developed for subsurface reservoir modeling (originally for the Hot Dry Rock geothermal project) and is capable of dealing with both high- (magmatic) and low-temperature fluids. In this study, FEHM has been used in combination with a LANL-developed grid-generating utility (LaGriT) to create an idealized model of water circulation in a saturated lava dome. Multiple material regions are used to represent the dome core, outer talus layer, conduit, and volcanic substrate. Material properties (such as permeability, porosity, density, etc.) were chosen from a combination of literature review and sensitivity testing using a simplified dome geometry and a continuum modeling approach that accounts for fractures (Equivalent Porous Medium) was used when applying
Finite Element Analysis of Pipe Elbows.
1980-02-01
AD-AO81 077 DAVD TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/B 13/11 FINITE ELEMENT ANALYSIS OF PIPE ELBOWS .(U) FE SO M S MARCUS, B C...TAYLOR NAVAL SHIP i RESEARCH AND DEVELOPMENT CENTER Bethesda, Md. 20084 4 FINITE ELEMENT ANALYSIS OF PIPE ELBOWS by 0 Melvyn S. Marcus and Gordon C...a 90-degree pipe elbow to determine principal stresses due to internal pressure, inplane bending, out-of-plane bending, and torsion moment loadings
Finite element methods for high speed flows
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.; Peraire, J.; Zienkiewicz, O. C.
1985-01-01
An explicit finite element based solution procedure for solving the equations of compressible viscous high speed flow is presented. The method uses domain splitting to advance the solution with different timesteps on different portions of the mesh. For steady inviscid flows, adaptive mesh refinement procedures are successfully employed to enhance the definition of discontinuities. Preliminary ideas on the application of adaptive mesh refinement to the solution of problems involving steady viscous flow are presented. Sample timings are given for the performance of the finite element code on modern supercomputers.
Studies of finite element analysis of composite material structures
NASA Technical Reports Server (NTRS)
Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.
1975-01-01
Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.
Finite element modelling of buried structures
NASA Technical Reports Server (NTRS)
Playdon, D. K.; Simmonds, S. H.
1984-01-01
In many structures the final stress states are dependent on the sequence of construction or the stress states at various stages of construction are of interest. Such problems can be analyzed using finite element programs that have the capability of adding (birthing) elements to simulate the progress of construction. However, the usual procedure of assembling elements may lead to numerical instabilities or stress states that are unrealistic. Both problems are demonstrated in the analysis of a structure using the program ADINA. A technique which combines application of a preload with element birthing to overcome these problems is described and illustrated.
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
Finite element wavelets with improved quantitative properties
NASA Astrophysics Data System (ADS)
Nguyen, Hoang; Stevenson, Rob
2009-08-01
In [W. Dahmen, R. Stevenson, Element-by-element construction of wavelets satisfying stability and moment conditions, SIAM J. Numer. Anal. 37 (1) (1999) 319-352 (electronic)], finite element wavelets were constructed on polygonal domains or Lipschitz manifolds that are piecewise parametrized by mappings with constant Jacobian determinants. The wavelets could be arranged to have any desired order of cancellation properties, and they generated stable bases for the Sobolev spaces Hs for (or s<=1 on manifolds). Unfortunately, it appears that the quantitative properties of these wavelets are rather disappointing. In this paper, we modify the construction from the above-mentioned work to obtain finite element wavelets which are much better conditioned.
Finite Element Simulation of Smart Structures
NASA Technical Reports Server (NTRS)
Cui, Y. Lawrence; Panahandeh, M.
1996-01-01
Finite element equations representing the behavior of piezoelectric materials when bounded to a typical structure and used as sensors and actuators were developed. Emphasis was placed on generating sensor output equations of piezoelectric sensors and responses of a typical structure bonded with piezoelectric sensors and actuators on the basis of finite element formulation. The model can predict not only structural responses due to both mechanical and electrical loading but also electrical potential due to mechanical or thermal effects. The resulted finite element equations were then used for simple control design and performance evaluation. In the control algorithm, voltages coming out from piezoelectric sensors, which are proportional to strains at sensing locations, are taken as input. The voltages applied to the piezoelectric actuators are used as output. The feasibility of integrating control algorithm with the element routine developed herein and FEAP was demonstrated. In particular, optimal independent modal space control was implemented in a software package on the basis of finite element formulation. A rudimentary finite element-control algorithm package was also developed to evaluate the performance of candidate control laws. A few numerical simulations using the software package developed herein were given. The integrated software package will provide a design tool to address issues such as how adaptive smart systems will scale to a full size aircraft, the amount of piezoelectric materials and the powers needed to actuate it for desired performance. It will also provide a viable new structural control design concept for practical applications in large flexible structures such as aerospace vehicles and aircraft.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
Adaptive finite element strategies for shell structures
NASA Technical Reports Server (NTRS)
Stanley, G.; Levit, I.; Stehlin, B.; Hurlbut, B.
1992-01-01
The present paper extends existing finite element adaptive refinement (AR) techniques to shell structures, which have heretofore been neglected in the AR literature. Specific challenges in applying AR to shell structures include: (1) physical discontinuities (e.g., stiffener intersections); (2) boundary layers; (3) sensitivity to geometric imperfections; (4) the sensitivity of most shell elements to mesh distortion, constraint definition and/or thinness; and (5) intrinsic geometric nonlinearity. All of these challenges but (5) are addressed here.
Finite element analysis applied to cornea reshaping.
Cabrera Fernández, Delia; Niazy, A M; Kurtz, R M; Djotyan, G P; Juhasz, T
2005-01-01
A 2-D finite element model of the cornea is developed to simulate corneal reshaping and the resulting deformation induced by refractive surgery. In the numerical simulations, linear and nonlinear elastic models are applied when stiffness inhomogeneities varying with depth are considered. Multiple simulations are created that employ different geometric configurations for the removal of the corneal tissue. Side-by-side comparisons of the different constitutive laws are also performed. To facilitate the comparison, the material property constants are identified from the same experimental data, which are obtained from mechanical tests on corneal strips and membrane inflation experiments. We then validate the resulting models by comparing computed refractive power changes with clinical results. Tissue deformations created by simulated corneal tissue removal using finite elements are consistent with clinically observed postsurgical results. The model developed provides a much more predictable refractive outcome when the stiffness inhomogeneities of the cornea and nonlinearities of the deformations are included in the simulations. Finite element analysis is a useful tool for modeling surgical effects on the cornea and developing a better understanding of the biomechanics of the cornea. The creation of patient-specific simulations would allow surgical outcomes to be predicted based on individualized finite element models.
Finite element displacement analysis of a lung.
NASA Technical Reports Server (NTRS)
Matthews, F. L.; West, J. B.
1972-01-01
A method is given based on the technique of finite elements which determines theoretically the mechanical behavior of a lung-shaped body loaded by its own weight. The results of this theoretical analysis have been compared with actual measurements of alveolar size and pleural pressures in animal lungs.
Finite element modelling of acoustic emission sensor
NASA Astrophysics Data System (ADS)
Gerasimov, S. I.; Sych, T. V.
2017-08-01
With a validated finite element system COSMOS/M, the out-of-plane displacements corresponding to model sources of acoustic emission (AE) were calculated in three-dimensional samples. The displacement signals were calculated for positions of the receiver on the top plate surface at several different distances (in the far-field) from the source’s epicenter.
Hybrid finite element-finite difference method for thermal analysis of blood vessels.
Blanchard, C H; Gutierrez, G; White, J A; Roemer, R B
2000-01-01
A hybrid finite-difference/finite-element technique for the thermal analysis of blood vessels embedded in perfused tissue has been developed and evaluated. This method provides efficient and accurate solutions to the conjugated heat transfer problem of convection by blood coupled to conduction in the tissue. The technique uses a previously developed 3D automatic meshing method for creating a finite element mesh in the tissue surrounding the vessels, coupled iteratively with a 1-D marching finite difference method for the interior of the vessels. This hybrid technique retains the flexibility and ease of automated finite-element meshing techniques for modelling the complex geometry of blood vessels and irregularly shaped tissues, and speeds the solution time by using a simple finite-difference method to calculate the bulk mean temperatures within all blood vessels. The use of the 1D finite-difference technique in the blood vessels also eliminates the large computer memory requirements needed to accurately solve large vessel network problems when fine FE meshes are used in the interior of vessels. The accuracy of the hybrid technique has been verified against previously verified numerical solutions. In summary, the hybrid technique combines the accuracy and flexibility found in automated finite-element techniques, with the speed and reduction of computational memory requirements associated with the 1D finite-difference technique, something which has not been done before. This method, thus, has the potential to provide accurate, flexible and relatively fast solutions for the thermal analysis of coupled perfusion/blood vessel problems, and large vessel network problems.
On Hybrid and mixed finite element methods
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1981-01-01
Three versions of the assumed stress hybrid model in finite element methods and the corresponding variational principles for the formulation are presented. Examples of rank deficiency for stiffness matrices by the hybrid stress model are given and their corresponding kinematic deformation modes are identified. A discussion of the derivation of general semi-Loof elements for plates and shells by the hybrid stress method is given. It is shown that the equilibrium model by Fraeijs de Veubeke can be derived by the approach of the hybrid stress model as a special case of semi-Loof elements.
Revolution in Orthodontics: Finite element analysis
Singh, Johar Rajvinder; Kambalyal, Prabhuraj; Jain, Megha; Khandelwal, Piyush
2016-01-01
Engineering has not only developed in the field of medicine but has also become quite established in the field of dentistry, especially Orthodontics. Finite element analysis (FEA) is a computational procedure to calculate the stress in an element, which performs a model solution. This structural analysis allows the determination of stress resulting from external force, pressure, thermal change, and other factors. This method is extremely useful for indicating mechanical aspects of biomaterials and human tissues that can hardly be measured in vivo. The results obtained can then be studied using visualization software within the finite element method (FEM) to view a variety of parameters, and to fully identify implications of the analysis. This is a review to show the applications of FEM in Orthodontics. It is extremely important to verify what the purpose of the study is in order to correctly apply FEM. PMID:27114948
Finite element thermo-viscoplastic analysis of aerospace structures
NASA Technical Reports Server (NTRS)
Pandey, Ajay K.; Dechaumphai, Pramote; Thornton, Earl A.
1990-01-01
The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.
Finite Element Analysis of Piping Tees.
1980-06-01
Combustion Engineering, Inc., performed an experimental stress analysis3 on an ANSI B16.9 carbon steelt tee designated T-12. Pipe extensions were welded to...AD-ASS? 353 DAVID If TAYLOR NAVAL SHIP RESEARCH AND DEVELOPMENT CE--ETC F/S 13/11 FINITE ELEENT ANALYSIS OF PIPING TEES.(U) JUN 8 A J QUEZON. S C...DAVID W. TAYLOR NAVAL SHIP SRESEARCH AND DEVELOPMENT CENTER Bethesa Md. 20084 FINITE ELEMENT ANALYSIS OF PIPING TEES by Antonio J. Quezon, Gordon C
Finite element simulation of thick sheet thermoforming
NASA Astrophysics Data System (ADS)
Mercier, Daniel
This PhD was organized as collaboration between Lehigh University and the Ecole des Mines d'Albi on the subject: "Numerical simulation of thick sheet thermoforming". The research applications cover a wide range of products from thermoforming, e.g., packaging, automobile parts, appliance parts, large-scale panels and covers. Due to the special nature of this PhD, and the requirements of each hosting institutes, the research was split accordingly into two parts: At Lehigh University, under the supervision of Prof. Herman F. Nied, a full three-dimensional finite element program was developed in order to simulate the mechanical deformation during the process of thermoforming. The material behavior is considered hyperelastic with the property of incompressibility. The deformed structure may exhibit symmetries and may use a large choice of boundary conditions. A contact procedure for molds and/or displacements caused by a plug was implemented to complete the similarity with the thermoforming process. The research focused on simulating the observed nonlinear behaviors and their instabilities. The author emphasized the impact of large deformation on the numerical results and demonstrated the need for a remeshing capability. At the Ecole des Mines d'Albi, under the supervision of Prof. Fabrice Schmidt, an equi-biaxial rheometer was developed and built in order to determine the material properties during the process of thermoforming. Thermoplastic materials consist of long macromolecular chains that when stretched, during the process of sheet extrusion, exhibit a transversal isotropic behavior. The rheometer technique is the inflation of a circular membrane made of extruded thermoplastics. The resulting strain is identified by video analysis during the membrane inflation. This dissertation focused on technical issues related to heating with the goal of overcoming the difficulty of producing a homogeneous temperature distribution.
Finite Element Analysis of Cross-Wedge Rolling Process
NASA Astrophysics Data System (ADS)
Hai, Dinh Van; Ngung, Dao Minh; Giang, Nguyen Trong
2010-06-01
In this study, a non-isothermal simulation model for flat-wedged cross-wedge rolling (CWR) to fabricate a bullet was presented by using three-dimensional thermo-rigid-plastic finite element method (FEM). Both deformation behavior and heat transfer of the process were taken into account. Based on the simulation results, the distributions of temperature, stress, strain areas were analyzed. These results could provide theoretical guidance for net shape and reasonable design of tools.
Finite element simulations of stacked crystal filters
NASA Astrophysics Data System (ADS)
Lee, Jiunn-Horng; Tzeng, Kung-Yu; Cheng, Chih-Wei; Shih, Yu-Ching; Yao, Chih-Min
2004-03-01
Wireless networks are growing rapidly. Their applications include cellular phone, satellite communication and wireless local area networks. In order to avoid interference between all these applications, high selectivity RF filters are essential. The stacked crystal filter (SCF) is a useful configuration when low insertion loss is desired and the near-in skirt selectivity requirement is not as high as that produced by ladder filters. A SCF is an acoustically coupled resonator filter which includes a pair of thickness mode piezoelectric plates attached to each other. Mounted between adjacent sides of the two plates is a shared electrode. The common ways to model the SCF are mason model and lumped element equivalent circuit method. To accommodate complicated geometries, we need to use the other kinds of numerical analysis techniques. Finite element methods have been applied to the modeling of thin film bulk acoustic wave resonator in recent years. Advanced FEM software has the capability to do a coupled piezoelectric-circuit analysis that can connect electrical circuits directly to the piezoelectric finite element models. In this work, we integrate the SCF two-dimensional piezoelectric finite element models and electrical circuits together to simulate the performance of SCF. The influences of electrode property and acoustic loss to the performance of filter are also investigated. The results of simulation are verified by mason model. This methodology can be applied to more complicated geometry models and other types of filters simulation such as coupled resonator filters (CRF) and ladder filters.
Finite element modelling of SAW correlator
NASA Astrophysics Data System (ADS)
Tikka, Ajay C.; Al-Sarawi, Said F.; Abbott, Derek
2007-12-01
Numerical simulations of SAW correlators so far are limited to delta function and equivalent circuit models. These models are not accurate as they do not replicate the actual behaviour of the device. Manufacturing a correlator to specifically realise a different configuration is both expensive and time consuming. With the continuous improvement in computing capacity, switching to finite element modelling would be more appropriate. In this paper a novel way of modelling a SAW correlator using finite element analysis is presented. This modelling approach allows the consideration of different code implementation and device structures. This is demonstrated through simulation results for a 5×2-bit Barker sequence encoded SAW correlator. These results show the effect of both bulk and leaky modes on the device performance at various operating frequencies. Moreover, the ways in which the gain of the correlator can be optimised though variation of design parameters will also be outlined.
EC Vacuum Vessel Finite Element Analysis
Rudland, D.; Luther, R.; /Fermilab
1992-02-04
This Note contains a summary of the results of the finite element analysis of the EC Cryostat vacuum vessel performed by Dave Rudland in 1987. The results are used in the structural evaluation of the EC cryostats presented in Engineering Note 194. It should also be noted that the adequacy of the design of the vacuum vessels was reviewed and verified by the Battelle Memorial Institute. Battelle used a shell of revolution program to essentially duplicate the FEA analysis with similar results. It should be noted that no plots of the finite element mesh were retained from the analysis, and these can not be easily reproduced due to a change in the version of the ANSYS computer program shortly after the analysis was completed.
Finite element substructuring methods for composite mechanics
NASA Technical Reports Server (NTRS)
Murthy, Pappu L. N.; Chamis, Christos C.
1988-01-01
Finite element substructuring strategies are presented to obtain numerical solutions for three typical problems of interest to the composites community: (1) impact and toughness characterization of composites using Charpy's impact test specimen; (2) free-edge stress analysis of composite laminates; and (3) fracture toughness predictions of composites for individual and combined fracture of modes I, II, and III. The key issue common to these problems is the presence of singular or near singular stress fields. The regions prone to see steep stress gradients are substructured with progressively refined meshes to study the local response simultaneously with the global response. The results from the select examples indicate that finite element substructuring methods are computationally effective for composite singularity mechanics.
Finite element modeling of permanent magnet devices
NASA Astrophysics Data System (ADS)
Brauer, J. R.; Larkin, L. A.; Overbye, V. D.
1984-03-01
New techniques are presented for finite element modeling of permanent magnets in magnetic devices such as motors and generators. These techniques extend a previous sheet-current permanent magnet model that applies only for straight line B-H loops and rectangular-shaped magnets. Here Maxwell's equations are used to derive the model of a permanent magnet having a general curved B-H loop and any geometric shape. The model enables a nonlinear magnetic finite element program to use Newton-Raphson iteration to solve for saturable magnetic fields in a wide variety of devices containing permanent magnets and steels. The techniques are applied to a brushless dc motor with irregular-shaped permanent magnets. The calculated motor torque agrees well with measured torque.
Finite element analysis of human joints
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiring data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.
Finite element concepts in computational aerodynamics
NASA Technical Reports Server (NTRS)
Baker, A. J.
1978-01-01
Finite element theory was employed to establish an implicit numerical solution algorithm for the time averaged unsteady Navier-Stokes equations. Both the multidimensional and a time-split form of the algorithm were considered, the latter of particular interest for problem specification on a regular mesh. A Newton matrix iteration procedure is outlined for solving the resultant nonlinear algebraic equation systems. Multidimensional discretization procedures are discussed with emphasis on automated generation of specific nonuniform solution grids and accounting of curved surfaces. The time-split algorithm was evaluated with regards to accuracy and convergence properties for hyperbolic equations on rectangular coordinates. An overall assessment of the viability of the finite element concept for computational aerodynamics is made.
Finite heat-capacity effects in regenerators
NASA Astrophysics Data System (ADS)
de Waele, A. T. A. M.
2012-01-01
This paper deals with the influence the finite heat capacity of the matrix of regenerators on the performance of cryocoolers. The dynamics of the various parameters is treated in the harmonic approximation focussing on the finite heat-capacity effects, real-gas effects, and heat conduction. It is assumed that the flow resistance is zero, that the heat contact between the gas and the matrix is perfect, and that there is no mass storage in the matrix. Based on an energy-flow analysis, the limiting temperature, temperature profiles in the regenerator, and cooling powers are calculated. The discussion refers to pulse-tube refrigerators, but it is equally relevant for Stirling coolers and GM-coolers.
Finite element analysis of wrinkling membranes
NASA Technical Reports Server (NTRS)
Miller, R. K.; Hedgepeth, J. M.; Weingarten, V. I.; Das, P.; Kahyai, S.
1984-01-01
The development of a nonlinear numerical algorithm for the analysis of stresses and displacements in partly wrinkled flat membranes, and its implementation on the SAP VII finite-element code are described. A comparison of numerical results with exact solutions of two benchmark problems reveals excellent agreement, with good convergence of the required iterative procedure. An exact solution of a problem involving axisymmetric deformations of a partly wrinkled shallow curved membrane is also reported.
Finite element methods in fracture mechanics
NASA Technical Reports Server (NTRS)
Liebowitz, H.; Moyer, E. T., Jr.
1989-01-01
Finite-element methodology specific to the analysis of fracture mechanics problems is reviewed. Primary emphasis is on the important algorithmic developments which have enhanced the numerical modeling of fracture processes. Methodologies to address elastostatic problems in two and three dimensions, elastodynamic problems, elastoplastic problems, special considerations for three-dimensional nonlinear problems, and the modeling of stable crack growth are reviewed. In addition, the future needs of the fracture community are discussed and open questions are identified.
Finite Element Output Bounds for Hyperbolic Problems
Machiels, L.
2000-03-27
We propose a Neumann-subproblem a posteriori finite element error bound technique for linear stationary scalar advection problems. The method is similar in many respects to the previous output bound technique developed for elliptic problems. In the new approach, however, the primal residual is enhanced with a streamline diffusion term. We first formulate the bound algorithm, with particular emphasis on the proof of the bounding properties; then, we provide numerical results for an illustrative example.
Finite Element Methods: Principles for Their Selection.
1983-02-01
the finite element methods. 39 Various statements in the literature that certain mixed methods work well inspite of the fact that the LBB (BB...method, displacement and mixed methods , various adaptive approaches, etc. The examples discussed in Sections 2 and 3 show that the same computational...performance and their relation to mixed methods , SIAM J. Num. Anal., to appear. 5. F. Brezzi, On the existence uniqueness and approximation of saddle-point
EXODUS II: A finite element data model
Schoof, L.A.; Yarberry, V.R.
1994-09-01
EXODUS II is a model developed to store and retrieve data for finite element analyses. It is used for preprocessing (problem definition), postprocessing (results visualization), as well as code to code data transfer. An EXODUS II data file is a random access, machine independent, binary file that is written and read via C, C++, or Fortran library routines which comprise the Application Programming Interface (API).
Finite Element Analysis of Reverberation Chambers
NASA Technical Reports Server (NTRS)
Bunting, Charles F.; Nguyen, Duc T.
2000-01-01
The primary motivating factor behind the initiation of this work was to provide a deterministic means of establishing the validity of the statistical methods that are recommended for the determination of fields that interact in -an avionics system. The application of finite element analysis to reverberation chambers is the initial step required to establish a reasonable course of inquiry in this particularly data-intensive study. The use of computational electromagnetics provides a high degree of control of the "experimental" parameters that can be utilized in a simulation of reverberating structures. As the work evolved there were four primary focus areas they are: 1. The eigenvalue problem for the source free problem. 2. The development of a complex efficient eigensolver. 3. The application of a source for the TE and TM fields for statistical characterization. 4. The examination of shielding effectiveness in a reverberating environment. One early purpose of this work was to establish the utility of finite element techniques in the development of an extended low frequency statistical model for reverberation phenomena. By employing finite element techniques, structures of arbitrary complexity can be analyzed due to the use of triangular shape functions in the spatial discretization. The effects of both frequency stirring and mechanical stirring are presented. It is suggested that for the low frequency operation the typical tuner size is inadequate to provide a sufficiently random field and that frequency stirring should be used. The results of the finite element analysis of the reverberation chamber illustrate io-W the potential utility of a 2D representation for enhancing the basic statistical characteristics of the chamber when operating in a low frequency regime. The basic field statistics are verified for frequency stirring over a wide range of frequencies. Mechanical stirring is shown to provide an effective frequency deviation.
Finite element based electric motor design optimization
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1993-01-01
The purpose of this effort was to develop a finite element code for the analysis and design of permanent magnet electric motors. These motors would drive electromechanical actuators in advanced rocket engines. The actuators would control fuel valves and thrust vector control systems. Refurbishing the hydraulic systems of the Space Shuttle after each flight is costly and time consuming. Electromechanical actuators could replace hydraulics, improve system reliability, and reduce down time.
Finite Element Results Visualization for Unstructured Grids
Speck, Douglas E.; Dovey, Donald J.
1996-07-15
GRIZ is a general-purpose post-processing application supporting interactive visualization of finite element analysis results on unstructured grids. In addition to basic pseudocolor renderings of state variables over the mesh surface, GRIZ provides modern visualization techniques such as isocontours and isosurfaces, cutting planes, vector field display, and particle traces. GRIZ accepts both command-line and mouse-driven input, and is portable to virtually any UNIX platform which provides Motif and OpenGl libraries.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1984-05-01
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Kennedy, T.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories, and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1993-11-30
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-d Finite Element Code Postprocessor
Whirley, R.G.
1991-05-01
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-d Finite Element Code Postprocessor
Whirley, R.G.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D (ESTSC 139), DYNA3D (ESTSC 138), TACO3D (ESTSC 287), TOPAZ3D (ESTSC 231), and GEMINI (ESTSC 455) and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
TAURUS. 3-D Finite Element Code Postprocessor
Whirley, R.G.
1992-03-03
TAURUS reads the binary plot files generated by the LLNL three-dimensional finite element analysis codes, NIKE3D, DYNA3D, TACO3D, TOPAZ3D, and GEMINI and plots contours, time histories,and deformed shapes. Contours of a large number of quantities may be plotted on meshes consisting of plate, shell, and solid type elements. TAURUS can compute a variety of strain measures, reaction forces along constrained boundaries, and momentum. TAURUS has three phases: initialization, geometry display with contouring, and time history processing.
Transient finite element method using edge elements for moving conductor
Tani, Koji; Nishio, Takayuki; Yamada, Takashi ); Kawase, Yoshihiro . Dept. of Information Science)
1999-05-01
For the next generation of high speed railway systems and automobiles new braking systems are currently under development. These braking systems take into account the eddy currents, which are produced by the movement of the conductor in the magnetic field. For their optimum design, it is necessary to know the distribution of eddy currents in the moving conductor. The finite element method (FEM) is often used to simulate them. Here, transient finite element method using edge elements for moving conductor is presented. Here the magnetic vector potential is interpolated at the upwind position and the time derivative term is discretized by the backward difference method. As a result, the system matrix becomes symmetric and the ICCG method is applicable to solve the matrix. This method is used to solve an eddy current rail brake system. The results demonstrate that this approach is suitable to solve transient problems involving movement.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Finite element modeling of lipid bilayer membranes
NASA Astrophysics Data System (ADS)
Feng, Feng; Klug, William S.
2006-12-01
A numerical simulation framework is presented for the study of biological membranes composed of lipid bilayers based on the finite element method. The classic model for these membranes employs a two-dimensional-fluid-like elastic constitutive law which is sensitive to curvature, and subjects vesicles to physically imposed constraints on surface area and volume. This model is implemented numerically via the use of C1-conforming triangular Loop subdivision finite elements. The validity of the framework is tested by computing equilibrium shapes from previously-determined axisymmetric shape-phase diagram of lipid bilayer vesicles with homogeneous material properties. Some of the benefits and challenges of finite element modeling of lipid bilayer systems are discussed, and it is indicated how this framework is natural for future investigation of biologically realistic bilayer structures involving nonaxisymmetric geometries, binding and adhesive interactions, heterogeneous mechanical properties, cytoskeletal interactions, and complex loading arrangements. These biologically relevant features have important consequences for the shape mechanics of nonidealized vesicles and cells, and their study requires not simply advances in theory, but also advances in numerical simulation techniques, such as those presented here.
FESDIF -- Finite Element Scalar Diffraction theory code
Kraus, H.G.
1992-09-01
This document describes the theory and use of a powerful scalar diffraction theory based computer code for calculation of intensity fields due to diffraction of optical waves by two-dimensional planar apertures and lenses. This code is called FESDIF (Finite Element Scalar Diffraction). It is based upon both Fraunhofer and Kirchhoff scalar diffraction theories. Simplified routines for circular apertures are included. However, the real power of the code comes from its basis in finite element methods. These methods allow the diffracting aperture to be virtually any geometric shape, including the various secondary aperture obstructions present in telescope systems. Aperture functions, with virtually any phase and amplitude variations, are allowed in the aperture openings. Step change aperture functions are accommodated. The incident waves are considered to be monochromatic. Plane waves, spherical waves, or Gaussian laser beams may be incident upon the apertures. Both area and line integral transformations were developed for the finite element based diffraction transformations. There is some loss of aperture function generality in the line integral transformations which are typically many times more computationally efficient than the area integral transformations when applicable to a particular problem.
Finite Element Modeling of Transient Thermography Inspection of Composite Materials
NASA Technical Reports Server (NTRS)
Chu, Tsuchin Philip
1998-01-01
Several finite element models of defects such as debond and void have been developed for composite panels subjected to transient thermography inspection. Since the exact nature of the heat generated from the flash lamps is unknown, direct comparison between FEA and experimental results is not possible. However, some similarity of the results has been observed. The shape of the time curve that simulates the heat flux from the flash lamps has minimal effect on the temperature profiles. Double the number of flash lamps could increase the contrast of thermal image and define the shape of defect better.
Finite Element Method for Thermal Analysis. [with computer program
NASA Technical Reports Server (NTRS)
Heuser, J.
1973-01-01
A two- and three-dimensional, finite-element thermal-analysis program which handles conduction with internal heat generation, convection, radiation, specified flux, and specified temperature boundary conditions is presented. Elements used in the program are the triangle and tetrahedron for two- and three-dimensional analysis, respectively. The theory used in the program is developed, and several sample problems demonstrating the capability and reliability of the program are presented. A guide to using the program, description of the input cards, and program listing are included.
NASA Astrophysics Data System (ADS)
Bag, S.; de, A.
2008-11-01
An accurate estimation of the temperature field in weld pool and its surrounding area is important for a priori determination of the weld-pool dimensions and the weld thermal cycles. A finite element based three-dimensional (3-D) quasi-steady heat-transfer model is developed in the present work to compute temperature field in gas tungsten arc welding (GTAW) process. The numerical model considers temperature-dependent material properties and latent heat of melting and solidification. A novelty of the numerical model is that the welding heat source is considered in the form of an adaptive volumetric heat source that confirms to the size and the shape of the weld pool. The need to predefine the dimensions of the volumetric heat source is thus overcome. The numerical model is further integrated with a parent-centric recombination (PCX) operated generalized generation gap (G3) model based genetic algorithm to identify the magnitudes of process efficiency and arc radius that are usually unknown but required for the accurate estimation of the net heat input into the workpiece. The complete numerical model and the genetic algorithm based optimization code are developed indigenously using an Intel Fortran Compiler. The integrated model is validated further with a number of experimentally measured weld dimensions in GTA-welded samples in stainless steels.
Mixed Finite Element Method for Melt Migration
NASA Astrophysics Data System (ADS)
Taicher, A. L.; Hesse, M. A.; Arbogast, T.
2012-12-01
Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium. Therefore, a numerical method must also carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. The finite element framework provides support for additional analysis of error and convergence. Moreover, both mesh refinement and anisotropy are naturally incorporated into finite elements. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. Mixed methods also produce discretely conservative fluxes that are required for the transport problem to remains stable without violating conservation of mass. Based preliminary investigations in 1D and derived energy estimates, we present a mixed formulation for the Darcy-Stokes system. Next, using novel elements of lowest order and
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the
Total quality management of forged products through finite element simulation
NASA Astrophysics Data System (ADS)
Chandra, U.; Rachakonda, S.; Chandrasekharan, S.
The paper reviews the entire thermo-mechanical history experienced by a complex shaped, high strength forged part during all stages of its manufacturing process, i.e. forging, heat treatment, and machining. It examines the current practice of selecting the process parameters using finite element simulation of forging and quenching operations on an individual basis. Some recent work related to the simulation of aging and machining operations is summarized. The capabilities of several well-known finite element codes for these individual simulations are compared. Then, an integrated simulation approach is presented which will permit the optimization of process parameters for all operations, as opposed to a single operation. This approach will ensure a total quality management of forged products by avoiding costly problems which, under the current practice, are detected only at the end of the manufacturing cycle, i.e. after final machining.
ORION96. 2-d Finite Element Code Postprocessor
Sanford, L.A.; Hallquist, J.O.
1992-02-02
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forces along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
NASA Technical Reports Server (NTRS)
Chung, T. J. (Editor); Karr, Gerald R. (Editor)
1989-01-01
Recent advances in computational fluid dynamics are examined in reviews and reports, with an emphasis on finite-element methods. Sections are devoted to adaptive meshes, atmospheric dynamics, combustion, compressible flows, control-volume finite elements, crystal growth, domain decomposition, EM-field problems, FDM/FEM, and fluid-structure interactions. Consideration is given to free-boundary problems with heat transfer, free surface flow, geophysical flow problems, heat and mass transfer, high-speed flow, incompressible flow, inverse design methods, MHD problems, the mathematics of finite elements, and mesh generation. Also discussed are mixed finite elements, multigrid methods, non-Newtonian fluids, numerical dissipation, parallel vector processing, reservoir simulation, seepage, shallow-water problems, spectral methods, supercomputer architectures, three-dimensional problems, and turbulent flows.
NASA Technical Reports Server (NTRS)
Aberson, J. A.; Anderson, J. M.
1973-01-01
The recent introduction of special crack-tip singularity elements, usually referred to as cracked elements, has brought the power and flexibility of the finite-element method to bear much more effectively on fracture mechanics problems. This paper recalls the development of two cracked elements and presents the results of some applications proving their accuracy and economy. Judging from the available literature on numerical methods in fracture mechanics, it seems clear that the elements described have been used more extensively than any others in practical fracture mechanics applications.
System software for the finite element machine
NASA Technical Reports Server (NTRS)
Crockett, T. W.; Knott, J. D.
1985-01-01
The Finite Element Machine is an experimental parallel computer developed at Langley Research Center to investigate the application of concurrent processing to structural engineering analysis. This report describes system-level software which has been developed to facilitate use of the machine by applications researchers. The overall software design is outlined, and several important parallel processing issues are discussed in detail, including processor management, communication, synchronization, and input/output. Based on experience using the system, the hardware architecture and software design are critiqued, and areas for further work are suggested.
Iterative methods for mixed finite element equations
NASA Technical Reports Server (NTRS)
Nakazawa, S.; Nagtegaal, J. C.; Zienkiewicz, O. C.
1985-01-01
Iterative strategies for the solution of indefinite system of equations arising from the mixed finite element method are investigated in this paper with application to linear and nonlinear problems in solid and structural mechanics. The augmented Hu-Washizu form is derived, which is then utilized to construct a family of iterative algorithms using the displacement method as the preconditioner. Two types of iterative algorithms are implemented. Those are: constant metric iterations which does not involve the update of preconditioner; variable metric iterations, in which the inverse of the preconditioning matrix is updated. A series of numerical experiments is conducted to evaluate the numerical performance with application to linear and nonlinear model problems.
A finite element model of ultrasonic extrusion
NASA Astrophysics Data System (ADS)
Lucas, M.; Daud, Y.
2009-08-01
Since the 1950's researchers have carried out investigations into the effects of applying ultrasonic excitation to metals undergoing elastic and plastic deformation. Experiments have been conducted where ultrasonic excitation is superimposed in complex metalworking operations such as wire drawing and extrusion, to identify the benefits of ultrasonic vibrations. This study presents a finite element analysis of ultrasonic excitation applied to the extrusion of a cylindrical aluminium bar. The effects of friction on the extrusion load are reported for the two excitation configurations of radially and axially applied ultrasonic vibrations and the results are compared with experimental data reported in the literature.
Finite Element Modeling of Mitral Valve Repair
Morgan, Ashley E.; Pantoja, Joe Luis; Weinsaft, Jonathan; Grossi, Eugene; Guccione, Julius M.; Ge, Liang; Ratcliffe, Mark
2016-01-01
The mitral valve is a complex structure regulating forward flow of blood between the left atrium and left ventricle (LV). Multiple disease processes can affect its proper function, and when these diseases cause severe mitral regurgitation (MR), optimal treatment is repair of the native valve. The mitral valve (MV) is a dynamic structure with multiple components that have complex interactions. Computational modeling through finite element (FE) analysis is a valuable tool to delineate the biomechanical properties of the mitral valve and understand its diseases and their repairs. In this review, we present an overview of relevant mitral valve diseases, and describe the evolution of FE models of surgical valve repair techniques. PMID:26632260
Chemorheology of reactive systems: Finite element analysis
NASA Technical Reports Server (NTRS)
Douglas, C.; Roylance, D.
1982-01-01
The equations which govern the nonisothermal flow of reactive fluids are outlined, and the means by which finite element analysis is used to solve these equations for the sort of arbitrary boundary conditions encountered in industrial practice are described. The performance of the computer code is illustrated by several trial problems, selected more for their value in providing insight to polymer processing flows than as practical production problems. Although a good deal remains to be learned as to the performance and proper use of this numerical technique, it is undeniably useful in providing better understanding of today's complicated polymer processing problems.
An algorithm for domain decomposition in finite element analysis
NASA Technical Reports Server (NTRS)
Al-Nasra, M.; Nguyen, D. T.
1991-01-01
A simple and efficient algorithm is described for automatic decomposition of an arbitrary finite element domain into a specified number of subdomains for finite element and substructuring analysis in a multiprocessor computer environment. The algorithm is designed to balance the work loads, to minimize the communication among processors and to minimize the bandwidths of the resulting system of equations. Small- to large-scale finite element models, which have two-node elements (truss, beam element), three-node elements (triangular element) and four-node elements (quadrilateral element), are solved on the Convex computer to illustrate the effectiveness of the proposed algorithm. A FORTRAN computer program is also included.
Finite Element Analysis of a Floating Microstimulator
Sahin, Mesut; Ur-Rahman, Syed S.
2011-01-01
Analytical solutions for voltage fields in a volume conductor are available only for ideal electrodes with radially symmetric contacts and infinitely extending substrates. Practical electrodes for neural stimulation may have asymmetric contacts and finite substrate dimensions and hence deviate from the ideal geometries. For instance, it needs to be determined if the analytical solutions are adequate for simulations of narrow shank electrodes where the substrate width is comparable to the size of the contacts. As an extension to this problem, a “floating” stimulator can be envisioned where the substrate would be finite in all directions. The question then becomes how small this floating stimulator can be made before its stimulation strength is compromised by the decrease in the medium impedance between the contacts as the contacts are approaching each other. We used finite element modeling to solve the voltage and current profiles generated by these radially asymmetric electrode geometries in a volume conductor. The simulation results suggest that both the substrate size and the bipolar contact separation influence the voltage field when these parameters are as small as a few times the contact size. Both of these effects are larger for increasing elevations from the contact surface, and even stronger for floating electrodes (finite substrate in all directions) than the shank-type electrodes. Location of the contacts on the floating electrode also plays a role in determining the voltage field. The voltage field for any device size and current, and any specific resistance of the volume conductor can be predicted from these results so long as the aspect ratios are preserved. PMID:17601192
Impeller deflection and modal finite element analysis.
Spencer, Nathan A.
2013-10-01
Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.
Finite element analysis of multilayer coextrusion.
Hopkins, Matthew Morgan; Schunk, Peter Randall; Baer, Thomas A.; Mrozek, Randy A.; Lenhart, Joseph Ludlow; Rao, Rekha Ranjana; Collins, Robert; Mondy, Lisa Ann
2011-09-01
Multilayer coextrusion has become a popular commercial process for producing complex polymeric products from soda bottles to reflective coatings. A numerical model of a multilayer coextrusion process is developed based on a finite element discretization and two different free-surface methods, an arbitrary-Lagrangian-Eulerian (ALE) moving mesh implementation and an Eulerian level set method, to understand the moving boundary problem associated with the polymer-polymer interface. The goal of this work is to have a numerical capability suitable for optimizing and troubleshooting the coextrusion process, circumventing flow instabilities such as ribbing and barring, and reducing variability in layer thickness. Though these instabilities can be both viscous and elastic in nature, for this work a generalized Newtonian description of the fluid is used. Models of varying degrees of complexity are investigated including stability analysis and direct three-dimensional finite element free surface approaches. The results of this work show how critical modeling can be to reduce build test cycles, improve material choices, and guide mold design.
Finite element analysis of bolted flange connections
NASA Astrophysics Data System (ADS)
Hwang, D. Y.; Stallings, J. M.
1994-06-01
A 2-D axisymmetric finite element model and a 3-D solid finite element model of a high pressure bolted flange joint were generated to investigate the stress behaviors. This investigation includes comparisons for axisymmetric loading of both the 2-D and 3-D models, the effects of non-axisymmetric bolt pretensions in the 3-D models, and the differences between 2-D and 3-D models subjected to non-axisymmetric loading. Comparisons indicated differences in von Mises stress up to 12% at various points due to the non-axisymmetric bolt pretensions. Applied bending moments were converted to equivalent axial forces for use in the 2-D model. It was found that the largest von Mises stresses in 3-D model did not occur on the side of the connection where the bending stresses and applied axial stresses were additive. Hence, in the 2-D model where the equivalent axial force (for bending moment) and applied axial forces were added, the 2-D model under estimated the maximum von Mises stress obtained from the 3-D model by 30%.
A multigrid solution method for mixed hybrid finite elements
Schmid, W.
1996-12-31
We consider the multigrid solution of linear equations arising within the discretization of elliptic second order boundary value problems of the form by mixed hybrid finite elements. Using the equivalence of mixed hybrid finite elements and non-conforming nodal finite elements, we construct a multigrid scheme for the corresponding non-conforming finite elements, and, by this equivalence, for the mixed hybrid finite elements, following guidelines from Arbogast/Chen. For a rectangular triangulation of the computational domain, this non-conforming schemes are the so-called nodal finite elements. We explicitly construct prolongation and restriction operators for this type of non-conforming finite elements. We discuss the use of plain multigrid and the multilevel-preconditioned cg-method and compare their efficiency in numerical tests.
Accurate finite element modeling of acoustic waves
NASA Astrophysics Data System (ADS)
Idesman, A.; Pham, D.
2014-07-01
In the paper we suggest an accurate finite element approach for the modeling of acoustic waves under a suddenly applied load. We consider the standard linear elements and the linear elements with reduced dispersion for the space discretization as well as the explicit central-difference method for time integration. The analytical study of the numerical dispersion shows that the most accurate results can be obtained with the time increments close to the stability limit. However, even in this case and the use of the linear elements with reduced dispersion, mesh refinement leads to divergent numerical results for acoustic waves under a suddenly applied load. This is explained by large spurious high-frequency oscillations. For the quantification and the suppression of spurious oscillations, we have modified and applied a two-stage time-integration technique that includes the stage of basic computations and the filtering stage. This technique allows accurate convergent results at mesh refinement as well as significantly reduces the numerical anisotropy of solutions. We should mention that the approach suggested is very general and can be equally applied to any loading as well as for any space-discretization technique and any explicit or implicit time-integration method.
TAP 1: A Finite Element Program for Steady-State Thermal Analysis of Convectively Cooled Structures
NASA Technical Reports Server (NTRS)
Thornton, E. A.
1976-01-01
The program has a finite element library of six elements: two conduction/convection elements to model heat transfer in a solid, two convection elements to model heat transfer in a fluid, and two integrated conduction/convection elements to represent combined heat transfer in tubular and plate/fin fluid passages. Nonlinear thermal analysis due to temperature dependent thermal parameters is performed using the Newton-Raphson iteration method. Program output includes nodal temperatures and element heat fluxes. Pressure drops in fluid passages may be computed as an option. A companion plotting program for displaying the finite element model and predicted temperature distributions is presented. User instructions and sample problems are presented in appendixes.
Finite element analysis enhancement of cryogenic testing
NASA Astrophysics Data System (ADS)
Thiem, Clare D.; Norton, Douglas A.
1991-12-01
Finite element analysis (FEA) of large space optics enhances cryogenic testing by providing an analytical method by which to ensure that a test article survives proposed testing. The analyses presented in this paper were concerned with determining the reliability of a half meter mirror in an environment where the exact environmental profile was unknown. FEA allows the interaction between the test object and the environment to be simulated to detect potential problems prior to actual testing. These analyses examined worse case scenerios related to cooling the mirror, its structural integrity for the proposed test environment, and deformation of the reflective surface. The FEA was conducted in-house on the System's Reliability Division's VAX 11-750 and Decstation 3100 using Engineering Mechanics Research Corporation's numerically integrated elements for systems analysis finite element software. The results of the analyses showed that it would take at least 48 hours to cool the mirror to its desired testing temperature. It was also determined that the proposed mirror mount would not cause critical concentrated thermal stresses that would fracture the mirror. FEA and actual measurements of the front reflective face were compared and good agreement between computer simulation and physical tests were seen. Space deployment of large optics requires lightweight mirrors which can perform under the harsh conditions of space. The physical characteristics of these mirrors must be well understood in order that their deployment and operation are successful. Evaluating design approaches by analytical simulation, like FEA, verifies the reliability and structural integrity of a space optic during design prior to prototyping and testing. Eliminating an optic's poor design early in its life saves money, materials, and human resources while ensuring performance.
Mixed Finite Element Methods for Melt Migration
NASA Astrophysics Data System (ADS)
Taicher, A. L.
2013-12-01
Multi-phase flow arises during partial melting in the earth mantle, where the porosity is small and material has the characteristics of a compacting porous medium. The equations governing multi-phase flow have been specialized to partially molten materials by McKenzie and Fowler. Their model, also called a Darcy-Stokes system, is highly coupled and non-linear. Melt flow is governed by Darcy's Law while the high temperature, ductile creep of the solid matrix is modeled using viscous non-Newtonian Stokes rheology. In addition, the melt and solid pressures are related through a compaction relation. This nearly elliptic mechanical problem is then coupled with both solute transport and thermal evolution according to the enthalpy method developed by Katz. A suitable numerical method must solve the Darcy-Stokes problem in a manner compatible with the transport problem. Moreover, unlike most porous media problems, partially molten materials transition dynamically from non-porous solid to porous medium so must carefully account for the limit of zero porosity. The Darcy-Stokes system for modeling partial melting in the mantle is a novel problem. As far as we know, there currently does not exist a finite element solution in the literature solving these coupled equations. In particular, the mixed finite element method presents a good candidate because it works in both limiting cases: Darcy and incompressible Stokes flow. We present a mixed formulation for the Darcy-Stokes system. Next, we present novel elements of lowest order and compatible with both Darcy and Stokes flow Finally, we present our 2D mixed FEM code result for solving Stokes and Darcy flow as well as the coupled Darcy-Stokes system the mid-ocean ridge or corner flow problem.
North Atlantic Finite Element Ocean Modeling
NASA Astrophysics Data System (ADS)
Veluthedathekuzhiyil, Praveen
This thesis presents a modified version of the Finite Element Ocean Model (FEOM) developed at Alfred Wegener Institute for Polar and Marine Research (AWI) for the North Atlantic Ocean. A reasonable North Atlantic Ocean simulation is obtained against the observational data sets in a Control simulation (CS) where the surface boundary conditions are relaxed to a climatology. The vertical mixing in the model was tuned to represent convection in the model, also the horizontal mixing and diffusion coefficients to represent the changes in the resolution of the model’s unstructured grid. In addition, the open boundaries in the model are treated with a sponge layer where tracers are relaxed to climatology. The model is then further modified to accept the atmospheric flux forcing at the surface boundary with an added net heat flux correction and freshwater forcing from major rivers that are flowing into the North Atlantic Ocean. The impact of this boundary condition on the simulation results is then analyzed and shows many improvements albeit the drift in tracer properties around the Gulf Stream region remains as that of the CS case. However a comparison of the vertical sections at Cape Desolation and Cape Farewell with the available observational data sets shows many improvements in this simulation compared to that of the CS case. But the freshwater content in the Labrador Sea interior shows a continued drift as that of the CS case with an improvement towards the 10th model year. A detailed analysis of the boundary currents around the Labrador Sea shows the weak offshore transport of freshwater from the West Greenland Current (WGC) as one of the causes. To further improve the model and reasonably represent the boundary currents and associated sub-grid scale eddies in the model, a modified sub-grid scale parameterization based on Gent and McWilliams, (1990) is adopted. The sensitivity of using various approaches in the thickness diffusion parameter ( Kgm) for this
Finite element models and feedback control of flexible aerospace structures
NASA Technical Reports Server (NTRS)
Balas, M. J.
1980-01-01
Large flexible aerospace structures, such as the solar power satellite, are distributed parameter systems with very complex continuum descriptions. This paper investigates the use of finite element methods to produce reduced-order models and finite dimensional feedback controllers for these structures. The main results give conditions under which stable control of the finite element model will produce stable control of the actual structure.
Finite element modeling and experimentation of bone drilling forces
NASA Astrophysics Data System (ADS)
Lughmani, W. A.; Bouazza-Marouf, K.; Ashcroft, I.
2013-07-01
Bone drilling is an essential part of many orthopaedic surgery procedures, including those for internal fixation and for attaching prosthetics. Estimation and control of bone drilling forces are critical to prevent drill breakthrough, excessive heat generation, and mechanical damage to the bone. This paper presents a 3D finite element (FE) model for prediction of thrust forces experienced during bone drilling. The model incorporates the dynamic characteristics involved in the process along with the accurate geometrical considerations. The average critical thrust forces and torques obtained using FE analysis, for set of machining parameters are found to be in good agreement with the experimental results.
Surface temperatures in sliding systems - A finite element analysis
NASA Technical Reports Server (NTRS)
Kennedy, F. E., Jr.
1980-01-01
Finite element equations are developed for studying surface temperatures resulting from frictional heating in sliding systems. The equations include the effect of velocity of moving components, an effect which is found to be quite significant, even at low sliding velocities. A program was written using the equations and it was applied to the study of surface temperatures in two different sliding systems: dry or boundary lubricated sleeve bearings and a labyrinth gas path seal configuration. Very good agreement was achieved between analytical predictions using the program and experimental temperature measurements. The program was used to study the influence of various material parameters on surface temperatures in the two sliding systems.
Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics
Brunt, Lucy H.; Roddy, Karen A.; Rayfield, Emily J.; Hammond, Chrissy L.
2016-01-01
Skeletal morphogenesis occurs through tightly regulated cell behaviors during development; many cell types alter their behavior in response to mechanical strain. Skeletal joints are subjected to dynamic mechanical loading. Finite element analysis (FEA) is a computational method, frequently used in engineering that can predict how a material or structure will respond to mechanical input. By dividing a whole system (in this case the zebrafish jaw skeleton) into a mesh of smaller 'finite elements', FEA can be used to calculate the mechanical response of the structure to external loads. The results can be visualized in many ways including as a 'heat map' showing the position of maximum and minimum principal strains (a positive principal strain indicates tension while a negative indicates compression. The maximum and minimum refer the largest and smallest strain). These can be used to identify which regions of the jaw and therefore which cells are likely to be under particularly high tensional or compressional loads during jaw movement and can therefore be used to identify relationships between mechanical strain and cell behavior. This protocol describes the steps to generate Finite Element models from confocal image data on the musculoskeletal system, using the zebrafish lower jaw as a practical example. The protocol leads the reader through a series of steps: 1) staining of the musculoskeletal components, 2) imaging the musculoskeletal components, 3) building a 3 dimensional (3D) surface, 4) generating a mesh of Finite Elements, 5) solving the FEA and finally 6) validating the results by comparison to real displacements seen in movements of the fish jaw. PMID:28060270
Patient-specific finite element modeling of bones.
Poelert, Sander; Valstar, Edward; Weinans, Harrie; Zadpoor, Amir A
2013-04-01
Finite element modeling is an engineering tool for structural analysis that has been used for many years to assess the relationship between load transfer and bone morphology and to optimize the design and fixation of orthopedic implants. Due to recent developments in finite element model generation, for example, improved computed tomography imaging quality, improved segmentation algorithms, and faster computers, the accuracy of finite element modeling has increased vastly and finite element models simulating the anatomy and properties of an individual patient can be constructed. Such so-called patient-specific finite element models are potentially valuable tools for orthopedic surgeons in fracture risk assessment or pre- and intraoperative planning of implant placement. The aim of this article is to provide a critical overview of current themes in patient-specific finite element modeling of bones. In addition, the state-of-the-art in patient-specific modeling of bones is compared with the requirements for a clinically applicable patient-specific finite element method, and judgment is passed on the feasibility of application of patient-specific finite element modeling as a part of clinical orthopedic routine. It is concluded that further development in certain aspects of patient-specific finite element modeling are needed before finite element modeling can be used as a routine clinical tool.
Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurindranath; Natesan, Krishnamurti
2015-12-15
This paper discusses a system-level finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent sequentially coupled thermal-mechanical stress analysis were performed for typical thermal-mechanical fatigue cycles. The in-air fatigue lives of example components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in US-NRC report: NUREG-6909.
Generalized Transition Finite-Boundary Elements for high speed flight structures
NASA Technical Reports Server (NTRS)
Sarigul-Klijn, Nesrin; Odabas, Onur
1990-01-01
A new class of 'Generalized Transition Finite-Boundary Elements' formulation is presented to predict temperature and/or stress distribution of flight structures at high speeds. A tweleve-noded three-dimensional transition element and a variable degree of freedom eight-noded element are formulated. These elements are incorporated into the formulation of the heat transfer and structural analysis problems by utilizing a newly introduced 'material approximation functions' concept. Results obtained from limited examples compared with the solutions from analytical and other finite element analysis solution. Numerical examples presented illustrate the effectiveness of these elements.
Efficient finite element modeling of elastodynamic scattering
NASA Astrophysics Data System (ADS)
Wilcox, Paul D.; Velichko, Alexander
2009-03-01
The scattering of elastic waves by defects is the physical basis of ultrasonic NDE. Although analytical models exist for some canonical problems, the general case of scattering from an arbitrarily-shaped defect requires numerical methods such as finite elements (FE). In this paper, a robust and efficient FE technique is presented that is based on the premise of meshing a relatively small domain sufficient to enclose the scatterer. Plane waves are then excited from a particular direction by a numerical implementation of the Helmholtz-Kirchhoff integral that uses an encircling array of uni-modal point sources. The scattered field displacements are recorded at the same points and the field decomposed into plane waves of different modes at different angles. By repeating this procedure for different incident angles it is possible to generate the scattering- or S-matrix for the scatterer. For a given size of scatterer, all the information in an S-matrix can be represented in the Fourier domain by a limited number of complex coefficients. Thus the complete scattering behavior of an arbitrary-shaped scatterer can be characterized by a finite number of complex coefficients, that can be obtained from a relatively small number of FE model executions.
Immersed molecular electrokinetic finite element method
NASA Astrophysics Data System (ADS)
Kopacz, Adrian M.; Liu, Wing K.
2013-07-01
A unique simulation technique has been developed capable of modeling electric field induced detection of biomolecules such as viruses, at room temperatures where thermal fluctuations must be considered. The proposed immersed molecular electrokinetic finite element method couples electrokinetics with fluctuating hydrodynamics to study the motion and deformation of flexible objects immersed in a suspending medium under an applied electric field. The force induced on an arbitrary object due to an electric field is calculated based on the continuum electromechanics and the Maxwell stress tensor. The thermal fluctuations are included in the Navier-Stokes fluid equations via the stochastic stress tensor. Dielectrophoretic and fluctuating forces acting on the particle are coupled through the fluid-structure interaction force calculated within the surrounding environment. This method was used to perform concentration and retention efficacy analysis of nanoscale biosensors using gold particles of various sizes. The analysis was also applied to a human papillomavirus.
Quality management of finite element analysis
NASA Astrophysics Data System (ADS)
Barlow, John
1991-09-01
A quality management system covering the use of finite element analysis is described. The main topics are as follows: acquisition, development and verification of software (including the software suppliers software quality control system), support, documentation, error control, internal software, software acceptance and release; development and qualification of analysis methods, including software evaluation, analysis procedure qualification and documentation, procedure quality checks, control of analysis procedure errors; product design and integrity analysis, including project quality assurance and analysis planning, task specification and allocation, analysis, execution, results checking and analysis records. Other issues include the commercial and business advantages of quality systems, project and technical management and the training and experience of personnel. The items are correlated with the requirements of International Standard Organization 9001.
Finite element or Galerkin type semidiscrete schemes
NASA Technical Reports Server (NTRS)
Durgun, K.
1983-01-01
A finite element of Galerkin type semidiscrete method is proposed for numerical solution of a linear hyperbolic partial differential equation. The question of stability is reduced to the stability of a system of ordinary differential equations for which Dahlquist theory applied. Results of separating the part of numerical solution which causes the spurious oscillation near shock-like response of semidiscrete scheme to a step function initial condition are presented. In general all methods produce such oscillatory overshoots on either side of shocks. This overshoot pathology, which displays a behavior similar to Gibb's phenomena of Fourier series, is explained on the basis of dispersion of separated Fourier components which relies on linearized theory to be satisfactory. Expository results represented.
A finite element model with nonviscous damping
NASA Technical Reports Server (NTRS)
Roussos, L. A.; Hyer, M. W.; Thornton, E. A.
1981-01-01
A constitutive law by which structural damping is modeled as a relationship between stress, strain, and strain rate in a material is used in conjunction with the finite element method to develop general integral expressions for viscous and nonviscous damping matrices. To solve the set of nonlinear equations resulting from the presence of nonviscous damping, a solution technique is developed by modifying the Newmark method to accommodate an iterative solution and treat the nonviscous damping as a pseudo-force. The technique is then checked for accuracy and convergence in single- and multi-degree-of-freedom problems, and is found to be accurate and efficient for initial-condition problems with small nonviscous damping.
Adaptive finite element methods in electrochemistry.
Gavaghan, David J; Gillow, Kathryn; Süli, Endre
2006-12-05
In this article, we review some of our previous work that considers the general problem of numerical simulation of the currents at microelectrodes using an adaptive finite element approach. Microelectrodes typically consist of an electrode embedded (or recessed) in an insulating material. For all such electrodes, numerical simulation is made difficult by the presence of a boundary singularity at the electrode edge (where the electrode meets the insulator), manifested by the large increase in the current density at this point, often referred to as the edge effect. Our approach to overcoming this problem has involved the derivation of an a posteriori bound on the error in the numerical approximation for the current that can be used to drive an adaptive mesh-generation algorithm, allowing calculation of the quantity of interest (the current) to within a prescribed tolerance. We illustrate the generic applicability of the approach by considering a broad range of steady-state applications of the technique.
A finite-element model predicts thermal damage in cutaneous contact burns.
Orgill, D P; Solari, M G; Barlow, M S; O'Connor, N E
1998-01-01
Thermal injury results from exposure of skin elements to an externally applied heat source. Finite-element analysis of heat transfer in cutaneous burns allows for an accurate prediction of tissue time-temperature relationships throughout the exposed tissue. A two-dimensional, axisymmetric, finite-element model of a contact burn was constructed, and damage integrals were calculated by applying the Arrhenius equation to the time-temperature profiles at each point. The epidermis, dermis, and subcutaneous fat were modeled as uniform elements with distinct thermal properties. Heated aluminum blocks were applied to Yorkshire pigs for 10 to 80 seconds to produce contact burns. Wound biopsies taken at 1, 24, and 48 hours were examined histologically and measured for the depth of burn. A significant deepening of the gelatinized tissue was observed in tissue taken from 1 hour to 24 hours. The finite-element prediction of cutaneous contact burn damage correlated well with histologic observations in this porcine model.
Simulating Space Capsule Water Landing with Explicit Finite Element Method
NASA Technical Reports Server (NTRS)
Wang, John T.; Lyle, Karen H.
2007-01-01
A study of using an explicit nonlinear dynamic finite element code for simulating the water landing of a space capsule was performed. The finite element model contains Lagrangian shell elements for the space capsule and Eulerian solid elements for the water and air. An Arbitrary Lagrangian Eulerian (ALE) solver and a penalty coupling method were used for predicting the fluid and structure interaction forces. The space capsule was first assumed to be rigid, so the numerical results could be correlated with closed form solutions. The water and air meshes were continuously refined until the solution was converged. The converged maximum deceleration predicted is bounded by the classical von Karman and Wagner solutions and is considered to be an adequate solution. The refined water and air meshes were then used in the models for simulating the water landing of a capsule model that has a flexible bottom. For small pitch angle cases, the maximum deceleration from the flexible capsule model was found to be significantly greater than the maximum deceleration obtained from the corresponding rigid model. For large pitch angle cases, the difference between the maximum deceleration of the flexible model and that of its corresponding rigid model is smaller. Test data of Apollo space capsules with a flexible heat shield qualitatively support the findings presented in this paper.
Finite Element Modeling of Magnetically-Damped Convection during Solidification
NASA Technical Reports Server (NTRS)
deGroh, H. C.; Li, B. Q.; Lu, X.
1998-01-01
A fully 3-D, transient finite element model is developed to represent the magnetic damping effects on complex fluid flow, heat transfer and electromagnetic field distributions in a Sn- 35.5%Pb melt undergoing unidirectional solidification. The model is developed based on our in- house finite element code for the fluid flow, heat transfer and electromagnetic field calculations. The numerical model is tested against numerical and experimental results for water as reported in literature. Various numerical simulations are carried out for the melt convection and temperature distribution with and without the presence of a transverse magnetic field. Numerical results show that magnetic damping can be effectively applied to stabilize melt flow, reduce turbulence and flow levels in the melt and over a certain threshold value a higher magnetic field resulted in a greater reduction in velocity. Also, for the study of melt flow instability, a long enough running time is needed to ensure the final fluid flow recirculation pattern. Moreover, numerical results suggest that there seems to exist a threshold value of applied magnetic field, above which magnetic damping becomes possible and below which the 0 convection in the melt is actually enhanced.
Improved finite-element methods for rotorcraft structures
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1991-01-01
An overview of the research directed at improving finite-element methods for rotorcraft airframes is presented. The development of a modification to the finite element method which eliminates interelement discontinuities is covered. The following subject areas are discussed: geometric entities, interelement continuity, dependent rotational degrees of freedom, and adaptive numerical integration. This new methodology is being implemented as an anisotropic, curvilinear, p-version, beam, shell, and brick finite element program.
Impact of new computing systems on finite element computations
NASA Technical Reports Server (NTRS)
Noor, A. K.; Storassili, O. O.; Fulton, R. E.
1983-01-01
Recent advances in computer technology that are likely to impact finite element computations are reviewed. The characteristics of supersystems, highly parallel systems, and small systems (mini and microcomputers) are summarized. The interrelations of numerical algorithms and software with parallel architectures are discussed. A scenario is presented for future hardware/software environment and finite element systems. A number of research areas which have high potential for improving the effectiveness of finite element analysis in the new environment are identified.
NASA Technical Reports Server (NTRS)
Fix, G. J.; Rose, M. E.
1983-01-01
A least squares formulation of the system divu = rho, curlu = zeta is surveyed from the viewpoint of both finite element and finite difference methods. Closely related arguments are shown to establish convergence estimates.
NASA Technical Reports Server (NTRS)
1976-01-01
The development of two new shell finite elements for applications to large deflection problems is considered. The elements in question are doubly curved and of triangular and quadrilateral planform. They are restricted to small strains of elastic materials, and can accommodate large rotations. The elements described, which are based on relatively simple linear elements, make use of a new displacement function approach specifically designed for strongly nonlinear problems. The displacement function development for nonlinear applications is based on certain beam element formulations, and the strain-displacement equations are of a shallow shell type. Additional terms were included in these equations in an attempt to avoid the large errors characteristic of shallow shell elements in certain types of problems. An incremental nonlinear solution procedure specifically adopted to the element formulation was developed. The solution procedure is of combined incremental and total Lagrangian type, and uses a new updating scheme. A computer program was written to evaluate the developed formulations. This program can accommodate small element groups in arbitrary arrangements. Two simple programs were successfully solved. The results indicate that this new type of element has definite promise and should be a fruitful area for further research.
Ablative Thermal Response Analysis Using the Finite Element Method
NASA Technical Reports Server (NTRS)
Dec John A.; Braun, Robert D.
2009-01-01
A review of the classic techniques used to solve ablative thermal response problems is presented. The advantages and disadvantages of both the finite element and finite difference methods are described. As a first step in developing a three dimensional finite element based ablative thermal response capability, a one dimensional computer tool has been developed. The finite element method is used to discretize the governing differential equations and Galerkin's method of weighted residuals is used to derive the element equations. A code to code comparison between the current 1-D tool and the 1-D Fully Implicit Ablation and Thermal Response Program (FIAT) has been performed.
Leapfrog/Finite Element Method for Fractional Diffusion Equation
Zhao, Zhengang; Zheng, Yunying
2014-01-01
We analyze a fully discrete leapfrog/Galerkin finite element method for the numerical solution of the space fractional order (fractional for simplicity) diffusion equation. The generalized fractional derivative spaces are defined in a bounded interval. And some related properties are further discussed for the following finite element analysis. Then the fractional diffusion equation is discretized in space by the finite element method and in time by the explicit leapfrog scheme. For the resulting fully discrete, conditionally stable scheme, we prove an L 2-error bound of finite element accuracy and of second order in time. Numerical examples are included to confirm our theoretical analysis. PMID:24955431
Dynamic finite element analysis of third size charpy specimens of V-4Cr-4Ti
Lansberry, M.R.; Kumar, A.S.; Mueller, G.E.; Kurtz, R.J.
1997-04-01
A 2-D finite element analysis was performed on precracked, one third scale CVN specimens to investigate the sensitivity of model results to key material parameters such as yield strength, failure strain and work hardening characteristics. Calculations were carried out at temperatures of -196{degree}C and 50{degree}C. The dynamic finite element analyses were conducted using ABAQUS/Explicit V5.4. The finite element results were compared to experimental results for the production-scale heat of V-4Cr-4Ti (ANL Heat No. 832665) as a benchmark. Agreement between the finite element model and experimental data was very good at -196{degree}C, whereas at 50{degree}C the model predicted a slightly lower absorbed energy than actually measured.
Prediction of the bulk temperature in spur gears based on finite element temperature analysis
NASA Technical Reports Server (NTRS)
Patir, N.; Cheng, H. S.
1977-01-01
The temperature distribution in spur gears operating in a state of thermal equilibrium is solved by using a finite element method. The effects of various dimensionless parameters on bulk temperature are shown. A table is provided which can be used to predict the bulk temperature on gear teeth, once the heat transfer coefficients and frictional heat input is estimated. Theoretical results for estimating heat transfer coefficients and frictional heat are also summarized.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Namburu, Raju R.
1989-01-01
Numerical simulations are presented for hyperbolic heat-conduction problems that involve non-Fourier effects, using explicit, Lax-Wendroff/Taylor-Galerkin FEM formulations as the principal computational tool. Also employed are smoothing techniques which stabilize the numerical noise and accurately predict the propagating thermal disturbances. The accurate capture of propagating thermal disturbances at characteristic time-step values is achieved; numerical test cases are presented which validate the proposed hyperbolic heat-conduction problem concepts.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Namburu, Raju R.
1989-01-01
Numerical simulations are presented for hyperbolic heat-conduction problems that involve non-Fourier effects, using explicit, Lax-Wendroff/Taylor-Galerkin FEM formulations as the principal computational tool. Also employed are smoothing techniques which stabilize the numerical noise and accurately predict the propagating thermal disturbances. The accurate capture of propagating thermal disturbances at characteristic time-step values is achieved; numerical test cases are presented which validate the proposed hyperbolic heat-conduction problem concepts.
Kim, S.
1994-12-31
Parallel iterative procedures based on domain decomposition techniques are defined and analyzed for the numerical solution of wave propagation by finite element and finite difference methods. For finite element methods, in a Lagrangian framework, an efficient way for choosing the algorithm parameter as well as the algorithm convergence are indicated. Some heuristic arguments for finding the algorithm parameter for finite difference schemes are addressed. Numerical results are presented to indicate the effectiveness of the methods.
Thermal finite-element analysis of space shuttle main engine turbine blade
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Tong, Michael T.; Kaufman, Albert
1987-01-01
Finite-element, transient heat transfer analyses were performed for the first-stage blades of the space shuttle main engine (SSME) high-pressure fuel turbopump. The analyses were based on test engine data provided by Rocketdyne. Heat transfer coefficients were predicted by performing a boundary-layer analysis at steady-state conditions with the STAN5 boundary-layer code. Two different peak-temperature overshoots were evaluated for the startup transient. Cutoff transient conditions were also analyzed. A reduced gas temperature profile based on actual thermocouple data was also considered. Transient heat transfer analyses were conducted with the MARC finite-element computer code.
A Mechanical Power Flow Capability for the Finite Element Code NASTRAN
1989-07-01
perimental methods. statistical energy analysis , the finite element method, and a finite element analog-,y using heat conduction equations. Experimental...weights and inertias of the transducers attached to an experimental structure may produce accuracy problems. Statistical energy analysis (SEA) is a...405-422 (1987). 8. Lyon, R.L., Statistical Energy Analysis of Dynamical Sistems, The M.I.T. Press, (1975). 9. Mickol, J.D., and R.J. Bernhard, "An
Finite element thermal-structural analyses of a cable-stiffened orbiting antenna
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Dechaumphai, P.; Pandey, A. K.
1985-01-01
Finite element thermal-structural analyses of a cable-stiffened orbiting antenna are presented. The determination of prestresses in the antenna is described first. Heating and thermal analyses for orbiting space structures are then discussed briefly. Structural deformations and stresses are presented for three finite element structural analysis approaches: (1) small deflections, (2) stress-stiffening, and (3) large deflections. The accuracy of the three analysis approaches is evaluated for the orbiting antenna at different prestress levels.
NASA Astrophysics Data System (ADS)
Gartling, D. K.; Hickox, C. E.
1982-10-01
The theoretical background for the finite element computer program MARIAH is presented. The MARIAH code is designed for the analysis of incompressible fluid flow and heat transfer in saturated porous media. A description of the fluid/thermal boundary value problem treated by the program is presented and the finite element method and associated numerical methods used in MARIAH are discussed. Instructions for use of the program are documented in the Sandia National Laboratories report, SAND79-1623.
Thermal analysis of disc brakes using finite element method
NASA Astrophysics Data System (ADS)
Jaenudin, Jamari, J.; Tauviqirrahman, M.
2017-01-01
Disc brakes are components of a vehicle that serve to slow or stop the rotation of the wheel. This paper discusses the phenomenon of heat distribution on the brake disc during braking. Heat distribution on the brake disc is caused by kinetic energy changing into mechanical energy. Energy changes occur during the braking process due to friction between the surface of the disc and a disc pad. The temperature resulting from this friction rises high. This thermal analysis on brake discs is aimed to evaluate the performance of an electric car in the braking process. The aim of this study is to analyze the thermal behavior of the brake discs using the Finite Element Method (FEM) through examining the heat distribution on the brake disc using 3-D modeling. Results obtained from the FEM reflect the effects of high heat due to the friction between the disc pad with the disc rotor. Results of the simulation study are used to identify the effect of the heat distribution that occurred during the braking process.
Finite-element analysis of nonlinear conduction problems subject to moving fields
NASA Technical Reports Server (NTRS)
Padovan, J.
1980-01-01
Through the use of a space-time warp, specialized moving finite elements are developed that can be employed to generate a nonlinear heat conduction model for situations involving traveling boundary and heat generation fields superposed on an initial state. To facilitate the solution of the resulting nonlinear finite-element formulation, a multilevel heuristic iterative solution strategy is developed. In order to demonstrate the versatility and accuracy of the moving elements and their associated nonlinear solution strategy, the results of several numerical experiments are presented.
NASA Astrophysics Data System (ADS)
Bielert, E. R.; Verweij, A. P.; Ten Kate, H. H. J.
2013-01-01
In the thermal design of high magnetic field superconducting accelerator magnets, the emphasis is on the use of superfluid helium as a coolant and stabilizing medium. The very high effective thermal conductivity of helium below the lambda transition temperature significantly helps to extract heat from the coil windings during steady state and transient heat deposition. The layout and size of the helium channels have a strong effect on the maximum amount of heat that can be extracted from the porously insulated superconducting cables. To better understand the behavior of superfluid helium penetrating the magnet structure and coil windings, simulation based on a three dimensional finite element model can give valuable insight. The 3D geometries of interest can be regarded as a complex network of coupled 1D geometries. The governing physics is thus similar for both geometries and therefore validation of several and different 1D models is performed. Numerically obtained results and published experimental data are compared. Once the viability of the applied methods is proven, they can be incorporated into the 3D geometries. Not only the transport properties in the bulk of the helium are of interest, but also the strong non-linear behavior at the interfaces between solids and superfluid helium (Kapitza conductance) is important from an engineering point of view, since relatively large temperature jumps may occur here. In this work it is shown how He-II behavior in magnet windings can be simulated using COMSOL Multiphysics. 1D models are validated by experimental results taken from literature in order to improve existing 2D and 3D models with more complete physics. The examples discussed include transient heat transfer in 1D channels, Kapitza conductance and sub-cooling of normal liquid helium to temperatures below the lambda transition in long channels (phase front movement).
An efficient finite element solution for gear dynamics
NASA Astrophysics Data System (ADS)
Cooley, C. G.; Parker, R. G.; Vijayakar, S. M.
2010-06-01
A finite element formulation for the dynamic response of gear pairs is proposed. Following an established approach in lumped parameter gear dynamic models, the static solution is used as the excitation in a frequency domain solution of the finite element vibration model. The nonlinear finite element/contact mechanics formulation provides accurate calculation of the static solution and average mesh stiffness that are used in the dynamic simulation. The frequency domain finite element calculation of dynamic response compares well with numerically integrated (time domain) finite element dynamic results and previously published experimental results. Simulation time with the proposed formulation is two orders of magnitude lower than numerically integrated dynamic results. This formulation admits system level dynamic gearbox response, which may include multiple gear meshes, flexible shafts, rolling element bearings, housing structures, and other deformable components.
Finite Element Analysis (FEA) in Design and Production.
ERIC Educational Resources Information Center
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
Finite Element Analysis (FEA) in Design and Production.
ERIC Educational Resources Information Center
Waggoner, Todd C.; And Others
1995-01-01
Finite element analysis (FEA) enables industrial designers to analyze complex components by dividing them into smaller elements, then assessing stress and strain characteristics. Traditionally mainframe based, FEA is being increasingly used in microcomputers. (SK)
A composite nodal finite element for hexagons
Hennart, J.P.; Mund, E.H. |; Valle, E. Del
1997-10-01
A nodal algorithm for the solution of the multigroup diffusion equations in hexagonal arrays is analyzed. Basically, the method consists of dividing each hexagon into four quarters and mapping the hexagon quarters onto squares. The resulting boundary value problem on a quadrangular domain is solved in primal weak formulation. Nodal finite element methods like the Raviart-Thomas RTk schemes provide accurate analytical expansions of the solution in the hexagons. Transverse integration cannot be performed on the equations in the quadrangular domain as simply as it is usually done on squares because these equations have essentially variable coefficients. However, by considering an auxiliary problem with constant coefficients (on the same quadrangular domain) and by using a preconditioning approach, transverse integration can be performed as for rectangular geometry. A description of the algorithm is given for a one-group diffusion equation. Numerical results are presented for a simple model problem with a known analytical solution and for k{sub eff} evaluations of some benchmark problems proposed in the literature. For the analytical problem, the results indicate that the theoretical convergence orders of RTk schemes (k = 0,1) are obtained, yielding accurate solutions at the expense of a few preconditioning iterations.
Finite element modelling of fabric shear
NASA Astrophysics Data System (ADS)
Lin, Hua; Clifford, Mike J.; Long, Andrew C.; Sherburn, Martin
2009-01-01
In this study, a finite element model to predict shear force versus shear angle for woven fabrics is developed. The model is based on the TexGen geometric modelling schema, developed at the University of Nottingham and orthotropic constitutive models for yarn behaviour, coupled with a unified displacement-difference periodic boundary condition. A major distinction from prior modelling of fabric shear is that the details of picture frame kinematics are included in the model, which allows the mechanisms of fabric shear to be represented more accurately. Meso- and micro-mechanisms of deformation are modelled to determine their contributions to energy dissipation during shear. The model is evaluated using results obtained for a glass fibre plain woven fabric, and the importance of boundary conditions in the analysis of deformation mechanisms is highlighted. The simulation results show that the simple rotation boundary condition is adequate for predicting shear force at large deformations, with most of the energy being dissipated at higher shear angles due to yarn compaction. For small deformations, a detailed kinematic analysis is needed, enabling the yarn shear and rotation deformation mechanisms to be modelled accurately.
An iterative algorithm for finite element analysis
NASA Astrophysics Data System (ADS)
Laouafa, F.; Royis, P.
2004-03-01
In this paper, we state in a new form the algebraic problem arising from the one-field displacement finite element method (FEM). The displacement approach, in this discrete form, can be considered as the dual approach (force or equilibrium) with subsidiary constraints. This approach dissociates the nonlinear operator to the linear ones and their sizes are linear functions of integration rule which is of interest in the case of reduced integration. This new form of the problem leads to an inexpensive improvement of FEM computations, which acts at local, elementary and global levels. We demonstrate the numerical performances of this approach which is independent of the mesh structure. Using the GMRES algorithm we build, for nonsymmetric problems, a new algorithm based upon the discretized field of strain. The new algorithms proposed are more closer to the mechanical problem than the classical ones because all fields appear during the resolution process. The sizes of the different operators arising in these new forms are linear functions of integration rule, which is of great interest in the case of reduced integration.
Intra Plate Stresses Using Finite Element Modelling
NASA Astrophysics Data System (ADS)
Jayalakshmi, S.; Raghukanth, S. T. G.
2016-10-01
One of the most challenging problems in the estimation of seismic hazard is the ability to quantify seismic activity. Empirical models based on the available earthquake catalogue are often used to obtain activity of source regions. The major limitation with this approach is the lack of sufficient data near a specified source. The non-availability of data poses difficulties in obtaining distribution of earthquakes with large return periods. Such events recur over geological time scales during which tectonic processes, including mantle convection, formation of faults and new plate boundaries, are likely to take place. The availability of geometries of plate boundaries, plate driving forces, lithospheric stress field and GPS measurements has provided numerous insights on the mechanics of tectonic plates. In this article, a 2D finite element model of Indo-Australian plate is developed with the focus of representing seismic activity in India. The effect of large scale geological features including sedimentary basins, fold belts and cratons on the stress field in India is explored in this study. In order to address long term behaviour, the orientation of stress field and tectonic faults of the present Indo- Australian plate are compared with a reconstructed stress field from the early Miocene (20 Ma).
Thermal-structural finite element analysis using linear flux formulation
NASA Technical Reports Server (NTRS)
Pandey, Ajay K.; Dechaumphai, Pramote; Wieting, Allan R.
1990-01-01
A linear flux approach is developed for a finite element thermal-structural analysis of steady state thermal and structural problems. The element fluxes are assumed to vary linearly in the same form as the element unknown variables, and the finite element matrices are evaluated in closed form. Since numerical integration is avoided, significant computational time saving is achieved. Solution accuracy and computational speed improvements are demonstrated by solving several two and three dimensional thermal-structural examples.
Finite element solution for energy conservation using a highly stable explicit integration algorithm
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1972-01-01
Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.
Solution-adaptive finite element method in computational fracture mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1993-01-01
Some recent results obtained using solution-adaptive finite element method in linear elastic two-dimensional fracture mechanics problems are presented. The focus is on the basic issue of adaptive finite element method for validating the applications of new methodology to fracture mechanics problems by computing demonstration problems and comparing the stress intensity factors to analytical results.
Modular Finite Element Methods Library Version: 1.0
2010-06-22
MFEM is a general, modular library for finite element methods. It provides a variety of finite element spaces and bilinear/linear forms in 2D and 3D. MFEM also includes classes for dealing with various types of meshes and their refinement.
Generating Finite-Element Models Of Composite Materials
NASA Technical Reports Server (NTRS)
Melis, M. E.
1993-01-01
Program starts at micromechanical level, from simple inputs supplied by user. COMGEN, COmposite Model GENerator, is interactive FORTRAN program used to create wide variety of finite-element models of continuous-fiber composite materials at micromechanical level. Quickly generates batch or "session files" to be submitted to finite-element preprocessor and postprocessor program, PATRAN. COMGEN requires PATRAN to complete model.
A computer graphics program for general finite element analyses
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Sawyer, L. M.
1978-01-01
Documentation for a computer graphics program for displays from general finite element analyses is presented. A general description of display options and detailed user instructions are given. Several plots made in structural, thermal and fluid finite element analyses are included to illustrate program options. Sample data files are given to illustrate use of the program.
Large Scale Finite Element Modeling Using Scalable Parallel Processing
NASA Technical Reports Server (NTRS)
Cwik, T.; Katz, D.; Zuffada, C.; Jamnejad, V.
1995-01-01
An iterative solver for use with finite element codes was developed for the Cray T3D massively parallel processor at the Jet Propulsion Laboratory. Finite element modeling is useful for simulating scattered or radiated electromagnetic fields from complex three-dimensional objects with geometry variations smaller than an electrical wavelength.
Finite element meshing of ANSYS (trademark) solid models
NASA Technical Reports Server (NTRS)
Kelley, F. S.
1987-01-01
A large scale, general purpose finite element computer program, ANSYS, developed and marketed by Swanson Analysis Systems, Inc. is discussed. ANSYS was perhaps the first commercially available program to offer truly interactive finite element model generation. ANSYS's purpose is for solid modeling. This application is briefly discussed and illustrated.
TAURUS96. 3-D Finite Element Code Postprocessor
Brown, B.; Hallquist, J.O.; Spelce, T.E.
1993-11-30
TAURUS is an interactive post-processing application supporting visualization of finite element analysis results on unstructured grids. TAURUS provides the ability to display deformed geometries and contours or fringes of a large number of derived results on meshes consisting of beam, plate, shell, and solid type finite elements. Time history plotting is also available.
Finite-element analysis of a weld-penetration problem
NASA Technical Reports Server (NTRS)
Rogge, T. R.
1977-01-01
The stress concentration factor for a weld penetration defect is calculated by the finite-element method. A stress intensity factor is computed by use of the finite-element solution and the J-integral. The results are compared with experimental results.
Self supporting heat transfer element
Story, Grosvenor Cook; Baldonado, Ray Orico
2002-01-01
The present invention provides an improved internal heat exchange element arranged so as to traverse the inside diameter of a container vessel such that it makes good mechanical contact with the interior wall of that vessel. The mechanical element is fabricated from a material having a coefficient of thermal conductivity above about 0.8 W cm.sup.-1.degree. K.sup.-1 and is designed to function as a simple spring member when that member has been cooled to reduce its diameter to just below that of a cylindrical container or vessel into which it is placed and then allowed to warm to room temperature. A particularly important application of this invention is directed to a providing a simple compartmented storage container for accommodating a hydrogen absorbing alloy.
Practical Application of Finite Element Analysis to Aircraft Structural Design
1986-08-01
t] Cook, Robert D., "Concepts and Applications of Finite element Analysis," John Wiley & Sons, Inc., New York, 1981. [5] Rao, S. S., "The Finite...generation large-scale computer programs is discussed. V.P. Analysis of aircraft structure using applied fracture mechanics (AA) WILHEM , D. P. Northrop...Analytical, finite element for surface flaws, holes (AA) WILHEM , D. P. Northrop Corp., Hawthorne, Calif. (N5631231) Aircraft Group. In AGARD Fracture
Efficient linear and nonlinear heat conduction with a quadrilateral element
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.
1984-01-01
A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2 and 1 for the normalized stabilization parameter lead to the 5-point finite difference, 9-point finite difference and fully integrated finite element operators, respectively, for rectangular meshes; numerical experiments reported here show that the three have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.
Various finite-difference schemes for transient three-dimensional heat conduction
Yalamanchili, R.; Yalamanchili, S.R.
1992-03-01
The motivation for this task comes from the needs of future hypervelocity projectile surrounded by asymmetric flow due to angle of attack and/or fins in case of kinetic energy projectile. In either case, unsteady and three-dimensional effects, large and nonuniform heat fluxes, tedious and repetitive number crunching capabilities of supercomputers dictate optimum numerical techniques and predictive critical time steps for successful and practical solutions. Finite element modeling is ideal whenever there is geometrical complexity, coatings, composite and multi materials. However, classical finite element technique yields a particular equation. There may be some finite difference schemes superior to classical finite element technique. Therefore, various finite difference schemes are derived and their characteristics are discussed applicable to transient three dimensional heat conduction problems.
Finite Element Modeling for Infrared Thermography of Gfrp Bridge Decks
NASA Astrophysics Data System (ADS)
Hing, Cheng L.; Halabe, Udaya B.
2008-02-01
Glass Fiber Reinforced Polymer (GFRP) composite bridge decks are increasingly being used as replacements for old concrete decks and for new construction. The service performance of the GFRP bridge decks can be adversely affected by the formation of debonds between the wearing surface and the underlying bridge deck. Past experimental studies by the authors have shown the usefulness of the infrared thermography technique in detecting the subsurface debonds prior to maintenance and rehabilitation work. This paper investigates the use of finite element (FE) heat transfer modeling to predict infrared thermography images from GFRP bridge decks with subsurface debonds. The paper includes measurement of thermal properties of the GFRP bridge deck and the wearing surface, and heat transfer FE modeling of decks with debonds of different thicknesses. The results show that FE modeling can be a useful tool for predicting surface temperature profile under different heating conditions and debond sizes. Such predictions can help determine the required heat intensity and detectable debond sizes prior to experimental data acquisition in the field using an infrared camera.
Analysis of finite deformations of elastic solids by the finite element method.
NASA Technical Reports Server (NTRS)
Oden, J. T.; Key, J. E.
1971-01-01
Finite element applications, particularly to analyses of finite deformations in elastic solids, are reviewed, along with the difficulties encountered in the formulation of certain problems and in their numerical solution. Various approaches are discussed for overcoming these and other difficulties. A computer program designed for finite elasticity problems is described, and several numerical examples are presented.
Nondestructive Evaluation Correlated with Finite Element Analysis
NASA Technical Reports Server (NTRS)
Abdul-Azid, Ali; Baaklini, George Y.
1999-01-01
Advanced materials are being developed for use in high-temperature gas turbine applications. For these new materials to be fully utilized, their deformation properties, their nondestructive evaluation (NDE) quality and material durability, and their creep and fatigue fracture characteristics need to be determined by suitable experiments. The experimental findings must be analyzed, characterized, modeled and translated into constitutive equations for stress analysis and life prediction. Only when these ingredients - together with the appropriate computational tools - are available, can durability analysis be performed in the design stage, long before the component is built. One of the many structural components being evaluated by the NDE group at the NASA Lewis Research Center is the flywheel system. It is being considered as an energy storage device for advanced space vehicles. Such devices offer advantages over electrochemical batteries in situations demanding high power delivery and high energy storage per unit weight. In addition, flywheels have potentially higher efficiency and longer lifetimes with proper motor-generator and rotor design. Flywheels made of fiber-reinforced polymer composite material show great promise for energy applications because of the high energy and power densities that they can achieve along with a burst failure mode that is relatively benign in comparison to those of flywheels made of metallic materials Therefore, to help improve durability and reduce structural uncertainties, we are developing a comprehensive analytical approach to predict the reliability and life of these components under these harsh loading conditions. The combination of NDE and two- and three-dimensional finite element analyses (e.g., stress analyses and fracture mechanics) is expected to set a standardized procedure to accurately assess the applicability of using various composite materials to design a suitable rotor/flywheel assembly.
Finite Element analyses of soil bioengineered slopes
NASA Astrophysics Data System (ADS)
Tamagnini, Roberto; Switala, Barbara Maria; Sudan Acharya, Madhu; Wu, Wei; Graf, Frank; Auer, Michael; te Kamp, Lothar
2014-05-01
Soil Bioengineering methods are not only effective from an economical point of view, but they are also interesting as fully ecological solutions. The presented project is aimed to define a numerical model which includes the impact of vegetation on slope stability, considering both mechanical and hydrological effects. In this project, a constitutive model has been developed that accounts for the multi-phase nature of the soil, namely the partly saturated condition and it also includes the effects of a biological component. The constitutive equation is implemented in the Finite Element (FE) software Comes-Geo with an implicit integration scheme that accounts for the collapse of the soils structure due to wetting. The mathematical formulation of the constitutive equations is introduced by means of thermodynamics and it simulates the growth of the biological system during the time. The numerical code is then applied in the analysis of an ideal rainfall induced landslide. The slope is analyzed for vegetated and non-vegetated conditions. The final results allow to quantitatively assessing the impact of vegetation on slope stability. This allows drawing conclusions and choosing whenever it is worthful to use soil bioengineering methods in slope stabilization instead of traditional approaches. The application of the FE methods show some advantages with respect to the commonly used limit equilibrium analyses, because it can account for the real coupled strain-diffusion nature of the problem. The mechanical strength of roots is in fact influenced by the stress evolution into the slope. Moreover, FE method does not need a pre-definition of any failure surface. FE method can also be used in monitoring the progressive failure of the soil bio-engineered system as it calculates the amount of displacements and strains of the model slope. The preliminary study results show that the formulated equations can be useful for analysis and evaluation of different soil bio
Finite element analysis of posterior cervical fixation.
Duan, Y; Wang, H H; Jin, A M; Zhang, L; Min, S X; Liu, C L; Qiu, S J; Shu, X Q
2015-02-01
Despite largely, used in the past, biomechanical test, to investigate the fixation techniques of subaxial cervical spine, information is lacking about the internal structural response to external loading. It is not yet clear which technique represents the best choice and whether stabilization devices can be efficient and beneficial for three-column injuries (TCI). The different posterior cervical fixation techniques (pedicle screw PS, lateral mass screw LS, and transarticular screw TS) have respective indications. A detailed, geometrically accurate, nonlinear C3-C7 finite element model (FEM) had been successfully developed and validated. Then three FEMs were reconstructed from different fixation techniques after C4-C6 TCI. A compressive preload of 74N combined with a pure moment of 1.8 Nm in flexion, extension, left-right lateral bending, and left-right axial rotation was applied to the FEMs. The ROM results showed that there were obvious significant differences when comparing the different fixation techniques. PS and TS techniques can provide better immediate stabilization, compared to LS technique. The stress results showed that the variability of von Mises stress in the TS fixation device was minimum and LS fixation device was maximum. Furthermore, the screws inserted by TS technique had high stress concentration at the middle part of the screws. Screw inserted by PS and LS techniques had higher stress concentration at the actual cap-rod-screw interface. The research considers that spinal surgeon should first consider using the TS technique to treat cervical TCI. If PS technique is used, we should eventually prolong the need for external bracing in order to reduce the higher risk of fracture on fixation devices. If LS technique is used, we should add anterior cervical operation for acquire a better immediate stabilization. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Thermal Analysis of a High-Speed Aircraft Wing Using p-Version Finite Elements
NASA Technical Reports Server (NTRS)
Gould, Dana C.
2001-01-01
This paper presents the results of conceptual level thermal analyses of a High Speed Civil Transport (HSCT) wing using p-version finite elements. The work was motivated by a thermal analysis of a HSCT wing structure which showed the importance of radiation heat transfer throughout the structure. The analysis also showed that refining a traditional finite element mesh to accurately capture the temperature distribution on the internal structure led to very large meshes with unacceptably long execution times. Further study indicated using p-version finite elements might improve computation performance for this class of problem. Methods for determining internal radiation heat transfer were then developed and demonstrated on test problems representative of the geometry found in an aircraft wing structure. This paper presents the results of the application of these new methods to the analysis of a high speed aircraft wing. Results for both a wing box model as well as a full wing model are presented. 'Me reduced wing box model allows for a comparison of the traditional finite element method with mesh refinement (h-refinement) to the new p-version finite elements while the full wing model demonstrates the applicability and efficiency of p-version finite elements for large models.
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
Discontinuous Galerkin finite element solution for poromechanics
NASA Astrophysics Data System (ADS)
Liu, Ruijie
This dissertation focuses on applying discontinuous Galerkin (DG) methods to poromechanics problems. A few challenges have been presented in traditional and popular continuous Galerkin (CG) finite element methods for solving complex coupled thermal, flow and solid mechanics. For example, nonphysical pore pressure oscillations often occur in CG solutions for poroelasticity problems with low permeability. A robust and practical numerical scheme for removing or alleviating the oscillation is not available. In modeling thermoporoelastoplasticity, CG methods require the use of very small time steps to obtain a convergent solution. The temperature profile predicted by CG methods in the fine mesh zones is often seriously polluted by large errors produced in coarse mesh zones in the case where the convection dominates the thermal process. The nonphysical oscillations in pore pressure and temperature solutions induced by CG methods at very early time stages seriously corrupt the solutions at longer time. We propose DG methods to handle these challenges because they are physics driven, provide local conservation of mass and momentum, have high stability and robustness, are locking-free, and because of their meshing and implementation capabilities. We first apply a family of DG methods, including Oden-Babuska-Baumann (OBB), Nonsymmetric Interior Penalty Galerkin (NIPG), Symmetric Interior Penalty Galerkin (SIPG) and Incomplete Interior Penalty Galerkin (IIPG), to 3D linear elasticity problems. This family of DG methods is tested and evaluated by using a cantilever beam problem with nearly incompressible materials. It is shown that DG methods are simple, robust and locking-free in dealing with nearly incompressible materials. Based on the success of DG methods in elasticity, we extend the DG theory into plasticity problems. A DG formulation has been implemented for solving 3D poroelasticity problems with low permeability. Numerical examples solved by DG methods demonstrate
NASA Astrophysics Data System (ADS)
Ruiz-Baier, Ricardo; Lunati, Ivan
2016-10-01
We present a novel discretization scheme tailored to a class of multiphase models that regard the physical system as consisting of multiple interacting continua. In the framework of mixture theory, we consider a general mathematical model that entails solving a system of mass and momentum equations for both the mixture and one of the phases. The model results in a strongly coupled and nonlinear system of partial differential equations that are written in terms of phase and mixture (barycentric) velocities, phase pressure, and saturation. We construct an accurate, robust and reliable hybrid method that combines a mixed finite element discretization of the momentum equations with a primal discontinuous finite volume-element discretization of the mass (or transport) equations. The scheme is devised for unstructured meshes and relies on mixed Brezzi-Douglas-Marini approximations of phase and total velocities, on piecewise constant elements for the approximation of phase or total pressures, as well as on a primal formulation that employs discontinuous finite volume elements defined on a dual diamond mesh to approximate scalar fields of interest (such as volume fraction, total density, saturation, etc.). As the discretization scheme is derived for a general formulation of multicontinuum physical systems, it can be readily applied to a large class of simplified multiphase models; on the other, the approach can be seen as a generalization of these models that are commonly encountered in the literature and employed when the latter are not sufficiently accurate. An extensive set of numerical test cases involving two- and three-dimensional porous media are presented to demonstrate the accuracy of the method (displaying an optimal convergence rate), the physics-preserving properties of the mixed-primal scheme, as well as the robustness of the method (which is successfully used to simulate diverse physical phenomena such as density fingering, Terzaghi's consolidation
Application of the Finite Element Method to Rotary Wing Aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Friedmann, P. P.
1982-01-01
A finite element method for the spatial discretization of the dynamic equations of equilibrium governing rotary-wing aeroelastic problems is presented. Formulation of the finite element equations is based on weighted Galerkin residuals. This Galerkin finite element method reduces algebraic manipulative labor significantly, when compared to the application of the global Galerkin method in similar problems. The coupled flap-lag aeroelastic stability boundaries of hingeless helicopter rotor blades in hover are calculated. The linearized dynamic equations are reduced to the standard eigenvalue problem from which the aeroelastic stability boundaries are obtained. The convergence properties of the Galerkin finite element method are studied numerically by refining the discretization process. Results indicate that four or five elements suffice to capture the dynamics of the blade with the same accuracy as the global Galerkin method.
Finite-element mesh generation from mappable features
Kuniansky, Eve L.; Lowther, Robert A.
1993-01-01
A vector-based geographical information system (GIS) is used to generate a variably-sized triangular element finite-element mesh from mappable features. Important digitally-mapped features are automatically linked to nodes in the finite-element model, ensuring an efficient, virtually error-free alternative to the tedious process of mesh design and data-input preparation by other methods. The procedure permits the user to work interactively with graphically-displayed hydrologic information about the study area allowing different mesh sizes to be used as needed, based on hydrologic complexity. The mesh-generaiion programs are stand-alone macros within the GIS that set up the basic data defining a finite-element mesh for many different finite-element model programs.
A finite element conjugate gradient FFT method for scattering
NASA Technical Reports Server (NTRS)
Collins, Jeffery D.; Ross, Dan; Jin, J.-M.; Chatterjee, A.; Volakis, John L.
1991-01-01
Validated results are presented for the new 3D body of revolution finite element boundary integral code. A Fourier series expansion of the vector electric and mangnetic fields is employed to reduce the dimensionality of the system, and the exact boundary condition is employed to terminate the finite element mesh. The mesh termination boundary is chosen such that is leads to convolutional boundary operatores of low O(n) memory demand. Improvements of this code are discussed along with the proposed formulation for a full 3D implementation of the finite element boundary integral method in conjunction with a conjugate gradiant fast Fourier transformation (CGFFT) solution.
Hybrid stress finite elements for large deformations of inelastic solids
NASA Technical Reports Server (NTRS)
Reed, K. W.; Atluri, S. N.
1984-01-01
A new hybrid stress finite element algorithm, based on a generalization of Fraeijs de Veubeke's complementary energy principle is presented. Analyses of large quasistatic deformation of inelastic solids (hypoelastic, plastic, viscoplastic) are within its capability. Principle variables in the formulation are the nominal stress rate and spin. A brief account is given of the boundary value problem in these variables, and the 'equivalent' variational principle. The finite element equation, along with initial positions and stresses, comprise an initial value problem. Factors affecting the choice of time integration schemes are discussed. Results found by application of the new algorithm are compared to those obtained by a velocity based finite element algorithm.
Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms
NASA Technical Reports Server (NTRS)
Kurdila, Andrew J.; Sharpley, Robert C.
1999-01-01
This paper presents a final report on Wavelet and Multiresolution Analysis for Finite Element Networking Paradigms. The focus of this research is to derive and implement: 1) Wavelet based methodologies for the compression, transmission, decoding, and visualization of three dimensional finite element geometry and simulation data in a network environment; 2) methodologies for interactive algorithm monitoring and tracking in computational mechanics; and 3) Methodologies for interactive algorithm steering for the acceleration of large scale finite element simulations. Also included in this report are appendices describing the derivation of wavelet based Particle Image Velocity algorithms and reduced order input-output models for nonlinear systems by utilizing wavelet approximations.
Non-Linear Finite Element Modeling of THUNDER Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Taleghani, Barmac K.; Campbell, Joel F.
1999-01-01
A NASTRAN non-linear finite element model has been developed for predicting the dome heights of THUNDER (THin Layer UNimorph Ferroelectric DrivER) piezoelectric actuators. To analytically validate the finite element model, a comparison was made with a non-linear plate solution using Von Karmen's approximation. A 500 volt input was used to examine the actuator deformation. The NASTRAN finite element model was also compared with experimental results. Four groups of specimens were fabricated and tested. Four different input voltages, which included 120, 160, 200, and 240 Vp-p with a 0 volts offset, were used for this comparison.
Quality assessment and control of finite element solutions
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Babuska, Ivo
1987-01-01
Status and some recent developments in the techniques for assessing the reliability of finite element solutions are summarized. Discussion focuses on a number of aspects including: the major types of errors in the finite element solutions; techniques used for a posteriori error estimation and the reliability of these estimators; the feedback and adaptive strategies for improving the finite element solutions; and postprocessing approaches used for improving the accuracy of stresses and other important engineering data. Also, future directions for research needed to make error estimation and adaptive movement practical are identified.
Finite Element Anlaysis of Laminated Composite Plates
1988-09-01
4.2, results depicting maximum displacement obtained using 2 x 2 integration points, 3 x 3 integration points and ’ heterosis ’ [Ref. 4] elements are...thick and thin plates. This element gives better predictions for thick plates than heterosis ele- ment, however, for thin plates, heterosis element...results showing the normalized maximum displacements are shown in Figure 4.8. The heterosis element results in about ten percent error while the
Validating Finite Element Models of Assembled Shell Structures
NASA Technical Reports Server (NTRS)
Hoff, Claus
2006-01-01
The validation of finite element models of assembled shell elements is presented. The topics include: 1) Problems with membrane rotations in assembled shell models; 2) Penalty stiffness for membrane rotations; 3) Physical stiffness for membrane rotations using shell elements with 6 dof per node; and 4) Connections avoiding rotations.
Superconvergence in the Generalized Finite Element Method
2005-01-01
Galerkin method for elliptic equations based on tensor products of piecewise polynomials. RAIRO Anal. Numer., 8:61– 66, 1974. [19] M. Kř́ıžek...London, 1986. [22] P. Lesaint and M. Zlámal. Superconvergence of the gradient of finite ele- ment solutions. RAIRO Anal. Numer., 13:139–166, 1979. [23] Q
Application of Mass Lumped Higher Order Finite Elements
Chen, J.; Strauss, H. R.; Jardin, S. C.; Park, W.; Sugiyama, L. E.; G. Fu; Breslau, J.
2005-11-01
There are many interesting phenomena in extended-MHD such as anisotropic transport, mhd, 2-fluid effects stellarator and hot particles. Any one of them challenges numerical analysts, and researchers are seeking for higher order methods, such as higher order finite difference, higher order finite elements and hp/spectral elements. It is true that these methods give more accurate solution than their linear counterparts. However, numerically they are prohibitively expensive. Here we give a successful solution of this conflict by applying mass lumped higher order finite elements. This type of elements not only keep second/third order accuracy but also scale closely to linear elements by doing mass lumping. This is especially true for second order lump elements. Full M3D and anisotropic transport models are studied.
NASA Astrophysics Data System (ADS)
Kanber, Bahattin; Bozkurt, O. Yavuz
2006-08-01
In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
Finite element analysis to evaluate optical mirror deformations
NASA Astrophysics Data System (ADS)
Izazaga-Pérez, R.; Aguirre-Aguirre, D.; Villalobos-Mendoza, B.
2015-10-01
In this work we describe the use of Finite Element Analysis software to simulate the deformations of an optical mirror. We use Finite Element Method software as a tool to simulate the mirror deformations assuming that it is a thin plate that can be mechanically tensed or compressed; the Finite Element Analysis give us information about the displacements of the mirror from an initial position and the tensions that remains in the surface. The information obtained by means of Finite Element Analysis can be easily exported to a coordinate system and processed in a simulation environment. Finally, a ray-tracing subroutine is used in the obtained data giving us information in terms of aberration coefficients. We present some results of the simulations describing the followed procedure.
Adaptive Finite-Element Computation In Fracture Mechanics
NASA Technical Reports Server (NTRS)
Min, J. B.; Bass, J. M.; Spradley, L. W.
1995-01-01
Report discusses recent progress in use of solution-adaptive finite-element computational methods to solve two-dimensional problems in linear elastic fracture mechanics. Method also shown extensible to three-dimensional problems.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
Comparison of different precondtioners for nonsymmtric finite volume element methods
Mishev, I.D.
1996-12-31
We consider a few different preconditioners for the linear systems arising from the discretization of 3-D convection-diffusion problems with the finite volume element method. Their theoretical and computational convergence rates are compared and discussed.
Error analysis of finite element solutions for postbuckled cylinders
NASA Technical Reports Server (NTRS)
Sistla, Rajaram; Thurston, Gaylen A.
1989-01-01
A general method of error analysis and correction is investigated for the discrete finite-element results for cylindrical shell structures. The method for error analysis is an adaptation of the method of successive approximation. When applied to the equilibrium equations of shell theory, successive approximations derive an approximate continuous solution from the discrete finite-element results. The advantage of this continuous solution is that it contains continuous partial derivatives of an order higher than the basis functions of the finite-element solution. Preliminary numerical results are presented in this paper for the error analysis of finite-element results for a postbuckled stiffened cylindrical panel modeled by a general purpose shell code. Numerical results from the method have previously been reported for postbuckled stiffened plates. A procedure for correcting the continuous approximate solution by Newton's method is outlined.
Scalable, Finite Element Analysis of Electromagnetic Scattering and Radiation
NASA Technical Reports Server (NTRS)
Cwik, T.; Lou, J.; Katz, D.
1997-01-01
In this paper a method for simulating electromagnetic fields scattered from complex objects is reviewed; namely, an unstructured finite element code that does not use traditional mesh partitioning algorithms.
The finite element machine: An experiment in parallel processing
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Peebles, S. W.; Crockett, T. W.; Knott, J. D.; Adams, L.
1982-01-01
The finite element machine is a prototype computer designed to support parallel solutions to structural analysis problems. The hardware architecture and support software for the machine, initial solution algorithms and test applications, and preliminary results are described.
Validation of high displacement piezoelectric actuator finite element models
NASA Astrophysics Data System (ADS)
Taleghani, Barmac K.
2000-08-01
The paper presents the results obtained by using NASTRAN and ANSYS finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness and important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN and ANSYS used different methods for modeling piezoelectric effects. In NASTRAN, a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
Optimal least-squares finite element method for elliptic problems
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Povinelli, Louis A.
1991-01-01
An optimal least squares finite element method is proposed for two dimensional and three dimensional elliptic problems and its advantages are discussed over the mixed Galerkin method and the usual least squares finite element method. In the usual least squares finite element method, the second order equation (-Delta x (Delta u) + u = f) is recast as a first order system (-Delta x p + u = f, Delta u - p = 0). The error analysis and numerical experiment show that, in this usual least squares finite element method, the rate of convergence for flux p is one order lower than optimal. In order to get an optimal least squares method, the irrotationality Delta x p = 0 should be included in the first order system.
Efficient linear and nonlinear heat conduction with a quadrilateral element
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.
1983-01-01
A method is presented for performing efficient and stable finite element calculations of heat conduction with quadrilaterals using one-point quadrature. The stability in space is obtained by using a stabilization matrix which is orthogonal to all linear fields and its magnitude is determined by a stabilization parameter. It is shown that the accuracy is almost independent of the value of the stabilization parameter over a wide range of values; in fact, the values 3, 2, and 1 for the normalized stabilization parameter lead to the 5-point, 9-point finite difference, and fully integrated finite element operators, respectively, for rectangular meshes and have identical rates of convergence in the L2 norm. Eigenvalues of the element matrices, which are needed for stability limits, are also given. Numerical applications are used to show that the method yields accurate solutions with large increases in efficiency, particularly in nonlinear problems.
Simple bounds on limit loads by elastic finite element analysis
Mackenzie, D.; Nadarajah, C.; Shi, J.; Boyle, J.T. . Dept. of Mechanical Engineering)
1993-02-01
A method for bounding limit loads by an iterative elastic continuum finite element analysis procedure, referred to as the elastic compensation method, is proposed. A number of sample problems are considered, based on both exact solutions and finite element analysis, and it is concluded that the method may be used to obtain limit-load bounds for pressure vessel design by analysis applications with useful accuracy.
Examples of finite element mesh generation using SDRC IDEAS
NASA Technical Reports Server (NTRS)
Zapp, John; Volakis, John L.
1990-01-01
IDEAS (Integrated Design Engineering Analysis Software) offers a comprehensive package for mechanical design engineers. Due to its multifaceted capabilities, however, it can be manipulated to serve the needs of electrical engineers, also. IDEAS can be used to perform the following tasks: system modeling, system assembly, kinematics, finite element pre/post processing, finite element solution, system dynamics, drafting, test data analysis, and project relational database.
Integration of geometric modeling and advanced finite element preprocessing
NASA Technical Reports Server (NTRS)
Shephard, Mark S.; Finnigan, Peter M.
1987-01-01
The structure to a geometry based finite element preprocessing system is presented. The key features of the system are the use of geometric operators to support all geometric calculations required for analysis model generation, and the use of a hierarchic boundary based data structure for the major data sets within the system. The approach presented can support the finite element modeling procedures used today as well as the fully automated procedures under development.
Global/local finite element analysis of composite materials
NASA Technical Reports Server (NTRS)
Griffin, O. Hayden, Jr.; Vidussoni, M. A.
1988-01-01
The motivation for performing global/local finite element analysis in composite materials is described. An example of such an analysis of a composite plate with a central circular hole is presented. Deformed finite element grids and interlaminar normal stress distributions are presented to aid understanding of the plate response. Such distribution at the plate edge is shown to be basically unaffected, although transverse displacements of the edge were slightly different from an analysis of a similar plate with no hole.
Finite element analysis to model complex mitral valve repair.
Labrosse, Michel; Mesana, Thierry; Baxter, Ian; Chan, Vincent
2016-01-01
Although finite element analysis has been used to model simple mitral repair, it has not been used to model complex repair. A virtual mitral valve model was successful in simulating normal and abnormal valve function. Models were then developed to simulate an edge-to-edge repair and repair employing quadrangular resection. Stress contour plots demonstrated increased stresses along the mitral annulus, corresponding to the annuloplasty. The role of finite element analysis in guiding clinical practice remains undetermined.
Finite element analysis of a composite wheelchair wheel design
NASA Technical Reports Server (NTRS)
Ortega, Rene
1994-01-01
The finite element analysis of a composite wheelchair wheel design is presented. The design is the result of a technology utilization request. The designer's intent is to soften the riding feeling by incorporating a mechanism attaching the wheel rim to the spokes that would allow considerable deflection upon compressive loads. A finite element analysis was conducted to verify proper structural function. Displacement and stress results are presented and conclusions are provided.
An Adaptive Multiscale Finite Element Method for Large Scale Simulations
2015-09-28
the method . Using the above definitions , the weak statement of the non-linear local problem at the kth 4 DISTRIBUTION A: Distribution approved for...AFRL-AFOSR-VA-TR-2015-0305 An Adaptive Multiscale Finite Element Method for Large Scale Simulations Carlos Duarte UNIVERSITY OF ILLINOIS CHAMPAIGN...14-07-2015 4. TITLE AND SUBTITLE An Adaptive Multiscale Generalized Finite Element Method for Large Scale Simulations 5a. CONTRACT NUMBER 5b
Nonlinear Finite Element Analysis of Composite Flextensional Transducer Shell
1993-03-01
4 TITLE AND SUBTITLE s FUNDING NUMbE;h NONLINEAR FINITE ELEMENT ANALYSIS OF COMPOSITE FLEXTENSIONAL PR: SV70 TRANSDUCER SHELL PE: 020431 IN 6 AUFTHOA...D NSN 7540-01-280-5500 ,ssard tr,298 IBACI UiNCLA-SSIFlED NONLINEAR FINITE ELEMENT ANALYSIS OF COMPOSITE FLEXTENSIONAL TRANSDUCER SHELL R. C. SliAW...its correlation with test data for a Class IV flextensional underwater acoustic transducer . The thick. elliptical fiberglass/epoxy shell of the
Finite element modeling of electromagnetic propagation in composite structures
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1987-01-01
A finite element Galerkin formulation has been developed to study electromagnetic propagation in complex two-dimensional absorbing ducts. The reflection and transmission at entrance and exit boundaries are determined by coupling the finite element solutions at the entrance and exit to the eigenfunctions of an infinite uniform perfect conducting duct. Example solutions are presented for electromagnetic propagation with absorbing duct walls and propagating through dielectric-metallic matrix materials.
Mathematical aspects of finite element methods for incompressible viscous flows
NASA Technical Reports Server (NTRS)
Gunzburger, M. D.
1986-01-01
Mathematical aspects of finite element methods are surveyed for incompressible viscous flows, concentrating on the steady primitive variable formulation. The discretization of a weak formulation of the Navier-Stokes equations are addressed, then the stability condition is considered, the satisfaction of which insures the stability of the approximation. Specific choices of finite element spaces for the velocity and pressure are then discussed. Finally, the connection between different weak formulations and a variety of boundary conditions is explored.
Evaluation of a hybrid, anisotropic, multilayered, quadrilateral finite element
NASA Technical Reports Server (NTRS)
Robinson, J. C.; Blackburn, C. L.
1978-01-01
A multilayered finite element with bending-extensional coupling is evaluated for: (1) buckling of general laminated plates; (2) thermal stresses of laminated plates cured at elevated temperatures; (3) displacements of a bimetallic beam; and (4) displacement and stresses of a single-cell box beam with warped cover panels. Also, displacements and stresses for flat and spherical orthotropic and anisotropic segments are compared with results from higher order plate and shell finite-element analyses.
Finite Element Methods for Heat Transfer Problems.
1980-04-02
v are-c all positive are (1 +.( v) )6 + h(v1 -v1s)62 + .(lc-vld)63 = l k(c-w6 + (1 + l(v2 Mva +6 hf (v cv~ )63 = k(v3c-v 3 w)6 1 + hk(v 3c-v 3 s...is a three-level, explicit, central difference scheme. It has solutions of the form ’ k = k Xk xo ’ Pk PoX (16) where B4 X2_-1 2hX =0. (17) 2h X 2_
Finite Element Modeling of the Thermographic Inspection for Composite Materials
NASA Technical Reports Server (NTRS)
Bucinell, Ronald B.
1996-01-01
The performance of composite materials is dependent on the constituent materials selected, material structural geometry, and the fabrication process. Flaws can form in composite materials as a result of the fabrication process, handling in the manufacturing environment, and exposure in the service environment to anomalous activity. Often these flaws show no indication on the surface of the material while having the potential of substantially degrading the integrity of the composite structure. For this reason it is important to have available inspection techniques that can reliably detect sub-surface defects such as inter-ply disbonds, inter-ply cracks, porosity, and density changes caused by variations in fiber volume content. Many non-destructive evaluation techniques (NDE) are capable of detecting sub-surface flaws in composite materials. These include shearography, video image correlation, ultrasonic, acoustic emissions, and X-ray. The difficulty with most of these techniques is that they are time consuming and often difficult to apply to full scale structures. An NDE technique that appears to have the capability to quickly and easily detect flaws in composite structure is thermography. This technique uses heat to detect flaws. Heat is applied to the surface of a structure with the use of a heat lamp or heat gun. A thermographic camera is then pointed at the surface and records the surface temperature as the composite structure cools. Flaws in the material will cause the thermal-mechanical material response to change. Thus, the surface over an area where a flaw is present will cool differently than regions where flaws do not exist. This paper discusses the effort made to thermo-mechanically model the thermography process. First the material properties and physical parameters used in the model will be explained. This will be followed by a detailed discussion of the finite element model used. Finally, the result of the model will be summarized along with
Finite Element Analysis of an Underground Structure.
1988-01-01
Determine the scaling relationships. The i-term . for scaling explosive quantities is given by (Nielsen, 1983): G (W)1~ 1Q () 1/3 where, Q = heat of detonation /unit...1/ Q- UI- ) 0 g Q (6) 1/3)1- 1/3 60 Q (6) 1/3)6- (G (W) The initial density of the explosive 6, and the heat of detonation /unit mass of explosive Q
A finite element approach to x-ray optics design
NASA Astrophysics Data System (ADS)
Honkanen, A. P.; Ferrero, C.; Guigay, J. P.; Mocella, V.
2017-05-01
Dynamical diffraction in a deformed (often bent) crystal is described by the Takagi equations 1 which, in general, have to be solved numerically on a regular 2-D grid of points representing a planar cross section of the crystal in which the diffraction of an incident X-ray wavefront occurs . Presently, the majority of numerical approaches are based on a finite difference solving scheme2-4 which can be easily implemented on a regular Cartesian grid but is not suitable for deformed meshes. In this case, the inner deformed crystal structure can be taken into account, but not the shape of the crystal surface if this differs substantially from a planar profile 5,6. Conversely, a finite element method (FEM) can be easily applied to a deformed mesh and serves very well to the purpose of modelling any incident wave on an arbitrarily shaped entrance surface 7 e.g. that of a bent crystal or a crystal submitted to a strong heat load 8-10. For instance, the cylindrical shape of the surface of a strongly bent crystal plate can easily be taken into account in a FEM calculation. Bent crystals are often used as focusing optical elements in Xray beamlines 11-13. In the following, we show the implementation of a general numerical framework for describing the propagation of X-rays inside a crystal based on the solution of the Takagi equations via the COMSOL Multiphysics FEM software package (www.comsol.com). A cylindrically bent crystal will be taken as an example to illustrate the capabilities of the new approach.
An adaptive discontinuous finite element method for the transport equation
Lang, J.; Walter, A.
1995-03-01
In this paper we introduce a discontinuous finite element method. In our approach, it is possible to combine the advantages of finite element and finite difference methods. The main ingredients are numerical flux approximation and local orthogonal basis functions. The scheme is defined on arbitrary triangulations and two different error indicators are derived. Especially the second one is closely connected to our approach and able to handle arbitrary varying flow directions. Numerical results are given for boundary value problems in two dimensions. They demonstrate the performance of the scheme, combined with the two error indicators.
3D finite element simulation of TIG weld pool
NASA Astrophysics Data System (ADS)
Kong, X.; Asserin, O.; Gounand, S.; Gilles, P.; Bergheau, J. M.; Medale, M.
2012-07-01
The aim of this paper is to propose a three-dimensional weld pool model for the moving gas tungsten arc welding (GTAW) process, in order to understand the main factors that limit the weld quality and improve the productivity, especially with respect to the welding speed. Simulation is a very powerful tool to help in understanding the physical phenomena in the weld process. A 3D finite element model of heat and fluid flow in weld pool considering free surface of the pool and traveling speed has been developed for the GTAW process. Cast3M software is used to compute all the governing equations. The free surface of the weld pool is calculated by minimizing the total surface energy. The combined effects of surface tension gradient, buoyancy force, arc pressure, arc drag force to drive the fluid flow is included in our model. The deformation of the weld pool surface and the welding speed affect fluid flow, heat flow and thus temperature gradients and molten pool dimensions. Welding trials study is presented to compare our numerical results with macrograph of the molten pool.
Endovascular nonthermal irreversible electroporation: a finite element analysis.
Maor, Elad; Rubinsky, Boris
2010-03-01
Tissue ablation finds an increasing use in modern medicine. Nonthermal irreversible electroporation (NTIRE) is a biophysical phenomenon and an emerging novel tissue ablation modality, in which electric fields are applied in a pulsed mode to produce nanoscale defects to the cell membrane phospholipid bilayer, in such a way that Joule heating is minimized and thermal damage to other molecules in the treated volume is reduced while the cells die. Here we present a two-dimensional transient finite element model to simulate the electric field and thermal damage to the arterial wall due to an endovascular NTIRE novel device. The electric field was used to calculate the Joule heating effect, and a transient solution of the temperature is presented using the Pennes bioheat equation. This is followed by a kinetic model of the thermal damage based on the Arrhenius formulation and calculation of the Henriques and Moritz thermal damage integral. The analysis shows that the endovascular application of 90, 100 mus pulses with a potential difference of 600 V can induce electric fields of 1000 V/cm and above across the entire arterial wall, which are sufficient for irreversible electroporation. The temperature in the arterial wall reached a maximum of 66.7 degrees C with a pulse frequency of 4 Hz. Thermal damage integral showed that this protocol will thermally damage less than 2% of the molecules around the electrodes. In conclusion, endovascular NTIRE is possible. Our study sets the theoretical basis for further preclinical and clinical trials with endovascular NTIRE.
Least-squares finite element methods for compressible Euler equations
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan; Carey, G. F.
1990-01-01
A method based on backward finite differencing in time and a least-squares finite element scheme for first-order systems of partial differential equations in space is applied to the Euler equations for gas dynamics. The scheme minimizes the L-sq-norm of the residual within each time step. The method naturally generates numerical dissipation proportional to the time step size. An implicit method employing linear elements has been implemented and proves robust. For high-order elements, computed solutions based on the L-sq method may have oscillations for calculations at similar time step sizes. To overcome this difficulty, a scheme which minimizes the weighted H1-norm of the residual is proposed and leads to a successful scheme with high-degree elements. Finally, a conservative least-squares finite element method is also developed. Numerical results for two-dimensional problems are given to demonstrate the shock resolution of the methods and compare different approaches.
Automatic data generation scheme for finite-element method /FEDGE/ - Computer program
NASA Technical Reports Server (NTRS)
Akyuz, F.
1970-01-01
Algorithm provides for automatic input data preparation for the analysis of continuous domains in the fields of structural analysis, heat transfer, and fluid mechanics. The computer program utilizes the natural coordinate systems concept and the finite element method for data generation.
Nonlinear finite element analysis: An alternative formulation
NASA Technical Reports Server (NTRS)
Merazzi, S.; Stehlin, P.
1980-01-01
A geometrical nonlinear analysis based on an alternative definition of strain is presented. Expressions for strain are obtained by computing the change in length of the base vectors in the curvilinear element coordinate system. The isoparametric element formulation is assumed in the global Cartesian coordinate system. The approach is based on the minimization of the strain energy, and the resulting nonlinear equations are solved by the modified Newton method. Integration of the first and second variation of the strain energy is performed numerically in the case of two and three dimensional elements. Application is made to a simple long cantilever beam.
Recent developments in finite element analysis for transonic airfoils
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Murman, E. M.
1979-01-01
The prediction of aerodynamic forces in the transonic regime generally requires a flow field calculation to solve the governing non-linear mixed elliptic-hyperbolic partial differential equations. Finite difference techniques were developed to the point that design and analysis application are routine, and continual improvements are being made by various research groups. The principal limitation in extending finite difference methods to complex three-dimensional geometries is the construction of a suitable mesh system. Finite element techniques are attractive since their application to other problems have permitted irregular mesh elements to be employed. The purpose of this paper is to review the recent developments in the application of finite element methods to transonic flow problems and to report some recent results.
Dynamical observer for a flexible beam via finite element approximations
NASA Technical Reports Server (NTRS)
Manitius, Andre; Xia, Hong-Xing
1994-01-01
The purpose of this view-graph presentation is a computational investigation of the closed-loop output feedback control of a Euler-Bernoulli beam based on finite element approximation. The observer is part of the classical observer plus state feedback control, but it is finite-dimensional. In the theoretical work on the subject it is assumed (and sometimes proved) that increasing the number of finite elements will improve accuracy of the control. In applications, this may be difficult to achieve because of numerical problems. The main difficulty in computing the observer and simulating its work is the presence of high frequency eigenvalues in the finite-element model and poor numerical conditioning of some of the system matrices (e.g. poor observability properties) when the dimension of the approximating system increases. This work dealt with some of these difficulties.
Nonlinear Finite Element Analysis of Sandwich Composites.
1981-03-01
to the element midsurface z - z(x,y) at all points. An additional coordinate r is used to describe the distance away from the midsurface at any point...It is assumed that on the element level, the shell is shallow, so that z2 2 (56) ,y everywhere. The unit vector normal to the shell midsurface at a...relations above do not involve the orientation of the displaced midsurface normal, and, therefore, apply to arbitrarily large displacements and rotations
Geometrical nonlinearity of 14-node brick finite element
NASA Astrophysics Data System (ADS)
Chandan, Swet; Chauhan, Alok P. S.
2017-01-01
The present work depicts the geometrical nonlinearity analysis for the finite element, PN5X1. Here, the general problem of elasticity is numerically solved using iteration method. The proposed element is passed through different tests in order to prove that it works not only for modeling sheet metal forming process but also for other large deformation problems.
Large deformations of reconfigurable active membranes: a finite element model
NASA Astrophysics Data System (ADS)
Son, Seyul; Goulbourne, N. C.
2010-04-01
In this paper, a finite element model is used to describe the inhomogeneous deformations of dielectric elastomers (DE). In our previous work, inhomogeneous deformations of the DE with simple boundary conditions represented by a system of highly nonlinear coupled differential equations (ordinary and partial) were solved using numerical approaches [1-3]. To solve for the electromechanical response for complex shapes (asymmetric), nonuniform loading, and complex boundary conditions a finite element scheme is required. This paper describes a finite element implementation of the DE material model proposed in our previous work in a commercial FE code (ABAQUS 6.8-1, PAWTUCKET, R.I, USA). The total stress is postulated as the summation of the elastic stress tensor and the Maxwell stress tensor, or more generally the electrostatic stress tensor. The finite element model is verified by analytical solutions and experimental results for planar membrane extensions subject to mechanical loads and an electric field: (i) equibiaxial extension and (ii) generalized biaxial extension. Specifically, the analytical solutions for equibiaxial extension of the DE is obtained by combining a modified large deformation membrane theory that accounts for the electromechanical coupling effect in actuation commonly referred to as the Maxwell stress [4]. A Mooney-Rivlin strain energy function is employed to describe the constitutive stress strain behavior of the DE. For the finite element implementation, the constitutive relationships from our previously proposed mathematical model [4] are implemented into the finite element code. Experimentally, a 250% equibiaxially prestretched DE sample is attached to a rigid joint frame and inhomogeneous deformations of the reconfigurable DE are observed with respect to mechanical loads and an applied electric field. The computational result for the reconfigurable DE is compared with the test result to validate the accuracy and robustness of the finite
Finite Element Model Development For Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.
Preconditioned CG-solvers and finite element grids
Bauer, R.; Selberherr, S.
1994-12-31
To extract parasitic capacitances in wiring structures of integrated circuits the authors developed the two- and three-dimensional finite element program SCAP (Smart Capacitance Analysis Program). The program computes the task of the electrostatic field from a solution of Poisson`s equation via finite elements and calculates the energies from which the capacitance matrix is extracted. The unknown potential vector, which has for three-dimensional applications 5000-50000 unknowns, is computed by a ICCG solver. Currently three- and six-node triangular, four- and ten-node tetrahedronal elements are supported.
Radiosity algorithms using higher order finite element methods
Troutman, R.; Max, N.
1993-08-01
Many of the current radiosity algorithms create a piecewise constant approximation to the actual radiosity. Through interpolation and extrapolation, a continuous solution is obtained. An accurate solution is found by increasing the number of patches which describe the scene. This has the effect of increasing the computation time as well as the memory requirements. By using techniques found in the finite element method, we can incorporate an interpolation function directly into our form factor computation. We can then use less elements to achieve a more accurate solution. Two algorithms, derived from the finite element method, are described and analyzed.
Finite element analysis of two disk rotor system
Dixit, Harsh Kumar
2016-05-06
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
Finite element analysis of shear deformable laminated composite plates
Kam, T.Y.; Chang, R.R. )
1993-03-01
A shear deformable finite element is developed for the analysis of thick laminated composite plates. The finite element formulation is based on Mindlin's plate theory in which shear correction factors are derived from the exact expressions for orthotropic materials. The element is used to solve a variety of problems on deflection, stress distribution, natural frequency and buckling of laminated composite plates. The effects of material properties, plate aspect ratio, length-to-thickness ratio, number of layers and lamination angle on the mechanical behaviors of laminated composite plates are investigated. Optimal lamination arrangements of layers for laminated composite plates of particular applications are determined.
Time domain finite element analysis of multimode microwave applicators
Dibben, D.C.; Metaxas, R.
1996-05-01
Analysis of multimode applicators in the frequency domain via the finite element technique produces a set of very ill-conditioned equations. This paper outlines a time domain finite element method (TDFE) for analyzing three dimensional microwave applicators where this ill-conditioning is avoided. Edge elements are used in order to handle sharp metal edges and to avoid spurious solutions. Analysis in the time domain allows field distributions at a range of different frequencies to be obtained with a single calculation. Lumping is investigated as a means of reducing the time taken for the calculation. The reflection coefficient is also obtained.
Probabilistic finite elements for fatigue and fracture analysis
NASA Technical Reports Server (NTRS)
Belytschko, Ted; Liu, Wing Kam
1992-01-01
Attenuation is focused on the development of Probabilistic Finite Element Method (PFEM), which combines the finite element method with statistics and reliability methods, and its application to linear, nonlinear structural mechanics problems and fracture mechanics problems. The computational tool based on the Stochastic Boundary Element Method is also given for the reliability analysis of a curvilinear fatigue crack growth. The existing PFEM's have been applied to solve for two types of problems: (1) determination of the response uncertainty in terms of the means, variance and correlation coefficients; and (2) determination the probability of failure associated with prescribed limit states.
Adaptive grid finite element model of the tokamak scrapeoff layer
Kuprat, A.P.; Glasser, A.H.
1995-07-01
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
Finite element analysis of two disk rotor system
NASA Astrophysics Data System (ADS)
Dixit, Harsh Kumar
2016-05-01
A finite element model of simple horizontal rotor system is developed for evaluating its dynamic behaviour. The model is based on Timoshenko beam element and accounts for the effect of gyroscopic couple and other rotational forces. Present rotor system consists of single shaft which is supported by bearings at both ends and two disks are mounted at different locations. The natural frequencies, mode shapes and orbits of rotating system for a specific range of rotation speed are obtained by developing a MATLAB code for solving the finite element equations of rotary system. Consequently, Campbell diagram is plotted for finding a relationship between natural whirl frequencies and rotation of the rotor.
A finite element method to study multimaterial wind towers
NASA Astrophysics Data System (ADS)
Pascoal-Faria, P.; Dias, C.; Oliveira, M.; Alves, N.
2017-07-01
Wind towers are used to produce electrical energy from the wind. A significant number of towers is manufactured using tubular separately steel or concrete, having limitations such as maximum diameter and height imposed essentially by transportation limitations. Developed computational studies on structural design of towers have been mainly focused on a single material. This investigation aims to develop a finite element method able to study structural design of wind towers combining different materials. The finite element model combines solid and shell elements encompassing different geometries. Several case studies are considered to validate the proposed method and accurate results are obtained.
Numerical Differentiation for Adaptively Refined Finite Element Meshes
NASA Technical Reports Server (NTRS)
Borgioli, Andrea; Cwik, Tom
1998-01-01
Postprocessing of point-wise data is a fundamental process in many fields of research. Numerical differentiation is a key operation in computational electromagnetics. In the case of data obtained from a finite element method with automatic mesh refinement much work needs still to be done. This paper addresses some issues in differentiating data obtained from a finite element electromagnetic code with adaptive mesh refinement, and it proposes a methodology for deriving the electric field given the magnetic field on a mesh of linear triangular elements. The procedure itself is nevertheless more general and might be extended for numerically differentiating any point-wise solution based on triangular meshes.
Footbridge between finite volumes and finite elements with applications to CFD
NASA Astrophysics Data System (ADS)
Pascal, Frédéric; Ghidaglia, Jean-Michel
2001-12-01
The aim of this paper is to introduce a new algorithm for the discretization of second-order elliptic operators in the context of finite volume schemes on unstructured meshes. We are strongly motivated by partial differential equations (PDEs) arising in computational fluid dynamics (CFD), like the compressible Navier-Stokes equations. Our technique consists of matching up a finite volume discretization based on a given mesh with a finite element representation on the same mesh. An inverse operator is also built, which has the desirable property that in the absence of diffusion, one recovers exactly the finite volume solution. Numerical results are also provided. Copyright
Design and finite element analysis of oval man way
Hari, Y.; Gryder, B.
1996-12-01
This paper presents the design of an oval man way in the side wall of a cylindrical pressure vessel. ASME Code Section 8 is used to obtain the design parameters of the oval man way, man way cover and bolts. The code calculations require some assumptions which may not be valid. A typical design example is taken. STAAD III finite element code with plate elements is used to model the oval man way, man way cover and bolts. The stresses calculated using ASME Code Section 8 and other analytical formulas for plate and shells are compared with the stresses obtained by Finite Element Modeling. This paper gives the designer of oval man way the ability to perform a finite element analysis and compare it with the analytical calculations and assumptions made. This gives added confidence to the designer as to the validity of his calculations and assumptions.
A finite element simulation scheme for biological muscular hydrostats.
Liang, Y; McMeeking, R M; Evans, A G
2006-09-07
An explicit finite element scheme is developed for biological muscular hydrostats such as squid tentacles, octopus arms and elephant trunks. The scheme is implemented by embedding muscle fibers in finite elements. In any given element, the fiber orientation can be assigned arbitrarily and multiple muscle directions can be simulated. The mechanical stress in each muscle fiber is the sum of active and passive parts. The active stress is taken to be a function of activation state, muscle fiber shortening velocity and fiber strain; while the passive stress depends only on the strain. This scheme is tested by simulating extension of a squid tentacle during prey capture; our numerical predictions are in close correspondence with existing experimental results. It is shown that the present finite element scheme can successfully simulate more complex behaviors such as torsion of a squid tentacle and the bending behavior of octopus arms or elephant trunks.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
Finite element analysis for acoustic characteristics of a magnetostrictive transducer
NASA Astrophysics Data System (ADS)
Kim, Jaehwan; Jung, Eunmi
2005-12-01
This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.
Solution Techniques in Finite Element Analysis.
1983-05-01
7. we show a plane strain rubber block subjected to large deforma- tion. We employ a 4-node element and a Mooney - Rivlin material as described in...0 Rubber Block U: 0.30 Figure 7. Large Deformation Analysis of the R ubber Block with Mooney - Rivlin Material Model. GEOMETRY node iE 10 4 -0.3 1.0 1
Guo, Hongqiang; Shah, Mitul; Spilker, Robert L.
2014-01-01
The study of biphasic soft tissues contact is fundamental to understanding the biomechanical behavior of human diarthrodial joints. However, to date, few biphasic finite element contact analysis for 3D physiological geometries under finite deformation has been developed. The objective of this paper is to develop a hyperelastic biphasic contact implementation for finite deformation and sliding problem. An augmented Lagrangian method was used to enforce the continuity of contact traction and fluid pressure across the contact interface. The finite element implementation was based on a general purpose software, COMSOL Multiphysics. The accuracy of the implementation is verified using example problems, for which solutions are available by alternative analyses. The implementation was proven to be robust and able to handle finite deformation and sliding. PMID:24496915
Coupled finite-difference/finite-element approach for wing-body aeroelasticity
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.
1992-01-01
Computational methods using finite-difference approaches for fluids and finite-element approaches for structures have individually advanced to solve almost full-aircraft configurations. However, coupled approaches to solve fluid/structural interaction problems are still in their early stages of development, particularly for complex geometries using complete equations such as the Euler/Navier-Stokes equations. Earlier work demonstrated the success of coupling finite-difference and finite-element methods for simple wing configurations using the Euler/Navier-Stokes equations. In this paper, the same approach is extended for general wing-body configurations. The structural properties are represented by beam-type finite elements. The flow is modeled using the Euler/Navier-Stokes equations. A general procedure to fully couple structural finite-element boundary conditions with fluid finite-difference boundary conditions is developed for wing-body configurations. Computations are made using moving grids that adapt to wing-body structural deformations. Results are illustrated for a typical wing-body configuration.
Inversion of Robin coefficient by a spectral stochastic finite element approach
Jin Bangti Zou Jun
2008-03-01
This paper investigates a variational approach to the nonlinear stochastic inverse problem of probabilistically calibrating the Robin coefficient from boundary measurements for the steady-state heat conduction. The problem is formulated into an optimization problem, and mathematical properties relevant to its numerical computations are investigated. The spectral stochastic finite element method using polynomial chaos is utilized for the discretization of the optimization problem, and its convergence is analyzed. The nonlinear conjugate gradient method is derived for the optimization system. Numerical results for several two-dimensional problems are presented to illustrate the accuracy and efficiency of the stochastic finite element method.
New triangular and quadrilateral plate-bending finite elements
NASA Technical Reports Server (NTRS)
Narayanaswami, R.
1974-01-01
A nonconforming plate-bending finite element of triangular shape and associated quadrilateral elements are developed. The transverse displacement is approximated within the element by a quintic polynomial. The formulation takes into account the effects of transverse shear deformation. Results of the static and dynamic analysis of a square plate, with edges simply supported or clamped, are compared with exact solutions. Good accuracy is obtained in all calculations.
Variational formulation of high performance finite elements: Parametrized variational principles
NASA Technical Reports Server (NTRS)
Felippa, Carlos A.; Militello, Carmello
1991-01-01
High performance elements are simple finite elements constructed to deliver engineering accuracy with coarse arbitrary grids. This is part of a series on the variational basis of high-performance elements, with emphasis on those constructed with the free formulation (FF) and assumed natural strain (ANS) methods. Parametrized variational principles that provide a foundation for the FF and ANS methods, as well as for a combination of both are presented.
Effective Finite Elements for Shell Analysis.
1984-02-20
important mode of deformation , and when an element is not capable of representing inextensional bending, parasitic membrane energy is generated in many modes...of deformation . In the same manner that parasitic shear causes shear locking, this spurious membrane energy causes membrane locking. Membrane locking...dominant mode of deformation . (cont.) 20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIEO/UNLIMITEO X SAME AS
The Mathematics of Finite Elements and Applications
1993-04-30
suitable geometrical mapping between the parametric u,v-plane and the physical xy- plane. In the u,v-plane the geometry of the elements is linear. In...the plate. For thin plates there may be a boundary layer, the existence and structure of which depends on the boundary conditions, the plate geometry ...exhibits a boundary layer except for very special data or plate geometry . The bending moment tensor and shear force vector have more pronounced boundary
Spectral finite-element methods for parametric constrained optimization problems.
Anitescu, M.; Mathematics and Computer Science
2009-01-01
We present a method to approximate the solution mapping of parametric constrained optimization problems. The approximation, which is of the spectral finite element type, is represented as a linear combination of orthogonal polynomials. Its coefficients are determined by solving an appropriate finite-dimensional constrained optimization problem. We show that, under certain conditions, the latter problem is solvable because it is feasible for a sufficiently large degree of the polynomial approximation and has an objective function with bounded level sets. In addition, the solutions of the finite-dimensional problems converge for an increasing degree of the polynomials considered, provided that the solutions exhibit a sufficiently large and uniform degree of smoothness. Our approach solves, in the case of optimization problems with uncertain parameters, the most computationally intensive part of stochastic finite-element approaches. We demonstrate that our framework is applicable to parametric eigenvalue problems.
Finite element modeling of syntactic foam.
Hobbs, Michael L.
2004-10-01
A decomposition model has been developed to predict the response of removable syntactic foam (RSF) exposed to fire-like heat fluxes. RSF consists of glass micro-balloons (GMB) in a cured epoxy polymer matrix. A chemistry model is presented based on the chemical structure of the epoxy polymer, mass transport of polymer fragments to the bulk gas, and vapor-liquid equilibrium. Thermophysical properties were estimated from measurements. A bubble nucleation, growth, and coalescence model was used to describe changes in properties with the extent of reaction. Decomposition of a strand of syntactic foam exposed to high temperatures was simulated.
Stabilized plane and axisymmetric Lobatto finite element models
NASA Astrophysics Data System (ADS)
Hu, Y. C.; Sze, K. Y.; Zhou, Y. X.
2015-11-01
High order elements are renowned for their high accuracy and convergence. Among them, Lobatto spectral finite elements are commonly used in explicit dynamic analyses as their mass matrices when evaluated by the Lobatto integration rule are diagonal. While there are numerous advanced first and second order elements, advanced high order elements are rarely seen. In this paper, generic stabilization schemes are devised for the reduced integrated plane and axisymmetric elements. Static and explicit dynamic tests are considered for evaluating the relatively merits of the stabilized and conventional elements. The displacement errors of the stabilized elements are less than those of the conventional Lobatto elements. When the material is nearly incompressible, the stabilized elements are also more accurate in terms of the energy error norm. This advantage is of practical importance for bio-tissue and hydrated soil analyses.
Finite Element Models for Electron Beam Freeform Fabrication Process
NASA Technical Reports Server (NTRS)
Chandra, Umesh
2012-01-01
Electron beam freeform fabrication (EBF3) is a member of an emerging class of direct manufacturing processes known as solid freeform fabrication (SFF); another member of the class is the laser deposition process. Successful application of the EBF3 process requires precise control of a number of process parameters such as the EB power, speed, and metal feed rate in order to ensure thermal management; good fusion between the substrate and the first layer and between successive layers; minimize part distortion and residual stresses; and control the microstructure of the finished product. This is the only effort thus far that has addressed computer simulation of the EBF3 process. The models developed in this effort can assist in reducing the number of trials in the laboratory or on the shop floor while making high-quality parts. With some modifications, their use can be further extended to the simulation of laser, TIG (tungsten inert gas), and other deposition processes. A solid mechanics-based finite element code, ABAQUS, was chosen as the primary engine in developing these models whereas a computational fluid dynamics (CFD) code, Fluent, was used in a support role. Several innovative concepts were developed, some of which are highlighted below. These concepts were implemented in a number of new computer models either in the form of stand-alone programs or as user subroutines for ABAQUS and Fluent codes. A database of thermo-physical, mechanical, fluid, and metallurgical properties of stainless steel 304 was developed. Computing models for Gaussian and raster modes of the electron beam heat input were developed. Also, new schemes were devised to account for the heat sink effect during the deposition process. These innovations, and others, lead to improved models for thermal management and prediction of transient/residual stresses and distortions. Two approaches for the prediction of microstructure were pursued. The first was an empirical approach involving the
Lamb's Hydrostatic Adjustment for Heating of Finite Duration.
NASA Astrophysics Data System (ADS)
Sotack, Timothy; Bannon, Peter R.
1999-01-01
Lamb's hydrostatic adjustment problem for the linear response of an infinite, isothermal atmosphere to an instantaneous heating of infinite horizontal extent is generalized to include the effects of heating of finite duration. Three different time sequences of the heating are considered: a top hat, a sine, and a sine-squared heating. The transient solution indicates that heating of finite duration generates broader but weaker acoustic wave fronts. However, it is shown that the final equilibrium is the same regardless of the heating sequence provided the net heating is the same.A Lagrangian formulation provides a simple interpretation of the adjustment. The heating generates an entropy anomaly that is initially realized completely as a pressure excess with no density perturbation. In the final state the entropy anomaly is realized as a density deficit with no pressure perturbation. Energetically the heating generates both available potential energy and available elastic energy. The former remains in the heated layer while the latter is carried off by the acoustic waves.The wave energy generation is compared for the various heating sequences. In the instantaneous case, 28.6% of the total energy generation is carried off by waves. This fraction is the ratio of the ideal gas constant R to the specific heat at constant pressure cp. For the heatings of finite duration considered, the amount of wave energy decreases monotonically as the heating duration increases and as the heating thickness decreases. The wave energy generation approaches zero when (i) the duration of the heating is comparable to or larger than the acoustic cutoff period, 2/NA 300 s, and (ii) the thickness of the heated layer approaches zero. The maximum wave energy occurs for a thick layer of heating of small duration and is the same as that for the instantaneous case.The effect of a lower boundary is also considered.
The Constraint Method for Solid Finite Elements.
1982-11-30
Sciences 13 . NUMBER S Bolling Air Force Base, DC 20332 - -Jfi’ 14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CVASS...1- 4)Q2 (n) (’+C) Higher degree elements add edge modes, face modes and internal modes. More details are given in [12, 13 ]. triangular prism A...23) N2 (L2 , L3)(l-z) edge u (31) N2 (L3 ’ L)(1-z) nodes s u s (45). N2 (L1, L2 )z uso (56) N2 (L2, L3 )z K - 13 - nodal variable shape function u
Finite Element Method for Capturing Ultra-relativistic Shocks
NASA Technical Reports Server (NTRS)
Richardson, G. A.; Chung, T. J.
2003-01-01
While finite element methods are used extensively by researchers solving computational fluid dynamics in fields other than astrophysics, their use in astrophysical fluid simulations has been predominantly overlooked. Current simulations using other methods such as finite difference and finite volume (based on finite difference) have shown remarkable results, but these methods are limited by their fundamental properties in aspects that are important for simulations with complex geometries and widely varying spatial and temporal scale differences. We have explored the use of finite element methods for astrophysical fluids in order to establish the validity of using such methods in astrophysical environments. We present our numerical technique applied to solving ultra-relativistic (Lorentz Factor Gamma >> 1) shocks which are prevalent in astrophysical studies including relativistic jets and gamma-ray burst studies. We show our finite element formulation applied to simulations where the Lorentz factor ranges up to 2236 and demonstrate its stability in solving ultra-relativistic flows. Our numerical method is based on the Flowfield Dependent Variation (FDV) Method, unique in that numerical diffusion is derived from physical parameters rather than traditional artificial viscosity methods. Numerical instabilities account for most of the difficulties when capturing shocks in this regime. Our method results in stable solutions and accurate results as compared with other methods.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Finite element methods for nonlinear acoustics in fluids.
Walsh, Timothy Francis
2005-06-01
In this paper, weak formulations and finite element discretizations of the governing partial differential equations of three-dimensional nonlinear acoustics in absorbing fluids are presented. The fluid equations are considered in an Eulerian framework, rather than a displacement framework, since in the latter case the corresponding finite element formulations suffer from spurious modes and numerical instabilities. When taken with the governing partial differential equations of a solid body and the continuity conditions, a coupled formulation is derived. The change in solid/fluid interface conditions when going from a linear acoustic fluid to a nonlinear acoustic fluid is demonstrated. Finite element discretizations of the coupled problem are then derived, and verification examples are presented that demonstrate the correctness of the implementations. We demonstrate that the time step size necessary to resolve the wave decreases as steepening occurs. Finally, simulation results are presented on a resonating acoustic cavity, and a coupled elastic/acoustic system consisting of a fluid-filled spherical tank.
Finite element methods on supercomputers - The scatter-problem
NASA Technical Reports Server (NTRS)
Loehner, R.; Morgan, K.
1985-01-01
Certain problems arise in connection with the use of supercomputers for the implementation of finite-element methods. These problems are related to the desirability of utilizing the power of the supercomputer as fully as possible for the rapid execution of the required computations, taking into account the gain in speed possible with the aid of pipelining operations. For the finite-element method, the time-consuming operations may be divided into three categories. The first two present no problems, while the third type of operation can be a reason for the inefficient performance of finite-element programs. Two possibilities for overcoming certain difficulties are proposed, giving attention to a scatter-process.
Finite element method for eigenvalue problems in electromagnetics
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, Manohar D.; Cockrell, C. R.; Beck, Fred B.
1994-01-01
Finite element method (FEM) has been a very powerful tool to solve many complex problems in electromagnetics. The goal of the current research at the Langley Research Center is to develop a combined FEM/method of moments approach to three-dimensional scattering/radiation problem for objects with arbitrary shape and filled with complex materials. As a first step toward that goal, an exercise is taken to establish the power of FEM, through closed boundary problems. This paper demonstrates the developed of FEM tools for two- and three-dimensional eigenvalue problems in electromagnetics. In section 2, both the scalar and vector finite elements have been used for various waveguide problems to demonstrate the flexibility of FEM. In section 3, vector finite element method has been extended to three-dimensional eigenvalue problems.
An Object Oriented, Finite Element Framework for Linear Wave Equations
Koning, Joseph M.
2004-03-01
This dissertation documents an object oriented framework which can be used to solve any linear wave equation. The linear wave equations are expressed in the differential forms language. This differential forms expression allows a strict discrete interpretation of the system. The framework is implemented using the Galerkin Finite Element Method to define the discrete differential forms and operators. Finite element basis functions including standard scalar Nodal and vector Nedelec basis functions are used to implement the discrete differential forms resulting in a mixed finite element system. Discretizations of scalar and vector wave equations in the time and frequency domains will be demonstrated in both differential forms and vector calculi. This framework conserves energy, maintains physical continuity, is valid on unstructured grids, conditionally stable and second order accurate. Examples including linear electrodynamics, acoustics, elasticity and magnetohydrodynamics are demonstrated.
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Probabilistic finite elements for transient analysis in nonlinear continua
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Mani, A.
1985-01-01
The probabilistic finite element method (PFEM), which is a combination of finite element methods and second-moment analysis, is formulated for linear and nonlinear continua with inhomogeneous random fields. Analogous to the discretization of the displacement field in finite element methods, the random field is also discretized. The formulation is simplified by transforming the correlated variables to a set of uncorrelated variables through an eigenvalue orthogonalization. Furthermore, it is shown that a reduced set of the uncorrelated variables is sufficient for the second-moment analysis. Based on the linear formulation of the PFEM, the method is then extended to transient analysis in nonlinear continua. The accuracy and efficiency of the method is demonstrated by application to a one-dimensional, elastic/plastic wave propagation problem. The moments calculated compare favorably with those obtained by Monte Carlo simulation. Also, the procedure is amenable to implementation in deterministic FEM based computer programs.
Optimal mapping of irregular finite element domains to parallel processors
NASA Technical Reports Server (NTRS)
Flower, J.; Otto, S.; Salama, M.
1987-01-01
Mapping the solution domain of n-finite elements into N-subdomains that may be processed in parallel by N-processors is an optimal one if the subdomain decomposition results in a well-balanced workload distribution among the processors. The problem is discussed in the context of irregular finite element domains as an important aspect of the efficient utilization of the capabilities of emerging multiprocessor computers. Finding the optimal mapping is an intractable combinatorial optimization problem, for which a satisfactory approximate solution is obtained here by analogy to a method used in statistical mechanics for simulating the annealing process in solids. The simulated annealing analogy and algorithm are described, and numerical results are given for mapping an irregular two-dimensional finite element domain containing a singularity onto the Hypercube computer.
Flow Applications of the Least Squares Finite Element Method
NASA Technical Reports Server (NTRS)
Jiang, Bo-Nan
1998-01-01
The main thrust of the effort has been towards the development, analysis and implementation of the least-squares finite element method (LSFEM) for fluid dynamics and electromagnetics applications. In the past year, there were four major accomplishments: 1) special treatments in computational fluid dynamics and computational electromagnetics, such as upwinding, numerical dissipation, staggered grid, non-equal order elements, operator splitting and preconditioning, edge elements, and vector potential are unnecessary; 2) the analysis of the LSFEM for most partial differential equations can be based on the bounded inverse theorem; 3) the finite difference and finite volume algorithms solve only two Maxwell equations and ignore the divergence equations; and 4) the first numerical simulation of three-dimensional Marangoni-Benard convection was performed using the LSFEM.
Finite element method for non-linear dispersive wave analysis
NASA Astrophysics Data System (ADS)
Cheng, Jung-Yu; Kawahara, Mutsuto
1993-09-01
This report presents the finite element method for the analysis of the short wave problem expressed by the Boussinesq equation. The Boussinesq equation considers the effect of wave crest curvature. The standard Galerkin finite element method is employed for the spatial discretization using the triangular finite element based on the linear interpolation function. The combination of the explicit and the quasi-explicit schemes-- i.e., the explicit scheme for the continuum equation and the quasi-explicit scheme for the momentum equation--is employed for the discretization in time. To show the applicability of the present method to the practical problem, the simulation of wave propagation in one-dimensional and two-dimensional channel flows is carried out. The numerical results are in good agreement with the experimental results being. The practical example for Miyako Bay is presented.
Parallel performance of a preconditioned CG solver for unstructured finite element applications
Shadid, J.N.; Hutchinson, S.A.; Moffat, H.K.
1994-12-31
A parallel unstructured finite element (FE) implementation designed for message passing MIMD machines is described. This implementation employs automated problem partitioning algorithms for load balancing unstructured grids, a distributed sparse matrix representation of the global finite element equations and a parallel conjugate gradient (CG) solver. In this paper a number of issues related to the efficient implementation of parallel unstructured mesh applications are presented. These include the differences between structured and unstructured mesh parallel applications, major communication kernels for unstructured CG solvers, automatic mesh partitioning algorithms, and the influence of mesh partitioning metrics on parallel performance. Initial results are presented for example finite element (FE) heat transfer analysis applications on a 1024 processor nCUBE 2 hypercube. Results indicate over 95% scaled efficiencies are obtained for some large problems despite the required unstructured data communication.
Derivation of a Tappered p-Version Beam Finite Element
NASA Technical Reports Server (NTRS)
Hinnant, Howard E.
1989-01-01
A tapered p-version beam finite element suitable for dynamic applications is derived. The taper in the element is represented by allowing the area moments of inertia to vary as quartic polynomials along the length of the beam, and the cross-sectional area to vary as a quadratic polynomial. The p-version finite-element characteristics are implemented through a set of polynomial shape functions. The lower-order shape functions are identical to the classical cubic and linear shape functions normally associated with a beam element. The higher-order shape functions are a hierarchical set of polynomials that are integrals of orthogonal polynomials. Explicit expressions for the mass and stiffness matrices are presented for an arbitrary value of p. The element has been verified to be numerically stable using shape functions through 22nd order.
FLASH: A finite element computer code for variably saturated flow
Baca, R.G.; Magnuson, S.O.
1992-05-01
A numerical model was developed for use in performance assessment studies at the INEL. The numerical model, referred to as the FLASH computer code, is designed to simulate two-dimensional fluid flow in fractured-porous media. The code is specifically designed to model variably saturated flow in an arid site vadose zone and saturated flow in an unconfined aquifer. In addition, the code also has the capability to simulate heat conduction in the vadose zone. This report presents the following: description of the conceptual frame-work and mathematical theory; derivations of the finite element techniques and algorithms; computational examples that illustrate the capability of the code; and input instructions for the general use of the code. The FLASH computer code is aimed at providing environmental scientists at the INEL with a predictive tool for the subsurface water pathway. This numerical model is expected to be widely used in performance assessments for: (1) the Remedial Investigation/Feasibility Study process and (2) compliance studies required by the US Department of Energy Order 5820.2A.
Finite-element model for endometrial ablation systems
NASA Astrophysics Data System (ADS)
Ryan, Thomas P.; Platt, Robert C.; Humphries, Stanley, Jr.
1998-04-01
Ablation of the endometrium has become a viable treatment for dysfunctional bleeding of the uterus in women. Surgical applications of thermal ablation utilized a rolling electrode to ablate the inner uterine lining, but required practiced surgical skills and made it difficult to assess subsurface damage. Recently, various energy systems have been applied to the endometrium such as lasers, microwaves, RF electrodes, hot water balloons, and cryotherapy. A finite element model is presented to compare a multi-electrode, multiplexed RF device with a balloon containing hot fluid. The temperature fields in the uterine wall are plotted over time for various blood flow values. Assumptions of constant electrical conductivity are compared to temperature- dependent electrical conductivity. Temperatures are shown to be a maximum of about 10 - 20 degree(s)C higher when varying electrical conductivity is used. Results are also shown for cases with a 2 mm blood vessel in the field and how each device adjusts its operation to compensate for this heat sink. Damage integral results will be shown according to the time and temperature of the treatments.
Life assessment of structural components using inelastic finite element analyses
NASA Astrophysics Data System (ADS)
Arya, Vinod K.; Halford, Gary R.
1993-10-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
Life assessment of structural components using inelastic finite element analyses
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Halford, Gary R.
1993-01-01
The need for enhanced and improved performance of structural components subject to severe cyclic thermal/mechanical loadings, such as in the aerospace industry, requires development of appropriate solution technologies involving time-dependent inelastic analyses. Such analyses are mandatory to predict local stress-strain response and to assess more accurately the cyclic life time of structural components. The NASA-Lewis Research Center is cognizant of this need. As a result of concerted efforts at Lewis during the last few years, several such finite element solution technologies (in conjunction with the finite element program MARC) were developed and successfully applied to numerous uniaxial and multiaxial problems. These solution technologies, although developed for use with MARC program, are general in nature and can easily be extended for adaptation with other finite element programs such as ABAQUS, ANSYS, etc. The description and results obtained from two such inelastic finite element solution technologies are presented. The first employs a classical (non-unified) creep-plasticity model. An application of this technology is presented for a hypersonic inlet cowl-lip problem. The second of these technologies uses a unified creep-plasticity model put forth by Freed. The structural component for which this finite element solution technology is illustrated, is a cylindrical rocket engine thrust chamber. The advantages of employing a viscoplastic model for nonlinear time-dependent structural analyses are demonstrated. The life analyses for cowl-lip and cylindrical thrust chambers are presented. These analyses are conducted by using the stress-strain response of these components obtained from the corresponding finite element analyses.
Application of the boundary element method to transient heat conduction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.
1991-01-01
An advanced boundary element method (BEM) is presented for the transient heat conduction analysis of engineering components. The numerical implementation necessarily includes higher-order conforming elements, self-adaptive integration and a multiregion capability. Planar, three-dimensional and axisymmetric analyses are all addressed with a consistent time-domain convolution approach, which completely eliminates the need for volume discretization for most practical analyses. The resulting general purpose algorithm establishes BEM as an attractive alternative to the more familiar finite difference and finite element methods for this class of problems. Several detailed numerical examples are included to emphasize the accuracy, stability and generality of the present BEM. Furthermore, a new efficient treatment is introduced for bodies with embedded holes. This development provides a powerful analytical tool for transient solutions of components, such as casting moulds and turbine blades, which are cumbersome to model when employing the conventional domain-based methods.
Application of the boundary element method to transient heat conduction
NASA Technical Reports Server (NTRS)
Dargush, G. F.; Banerjee, P. K.
1991-01-01
An advanced boundary element method (BEM) is presented for the transient heat conduction analysis of engineering components. The numerical implementation necessarily includes higher-order conforming elements, self-adaptive integration and a multiregion capability. Planar, three-dimensional and axisymmetric analyses are all addressed with a consistent time-domain convolution approach, which completely eliminates the need for volume discretization for most practical analyses. The resulting general purpose algorithm establishes BEM as an attractive alternative to the more familiar finite difference and finite element methods for this class of problems. Several detailed numerical examples are included to emphasize the accuracy, stability and generality of the present BEM. Furthermore, a new efficient treatment is introduced for bodies with embedded holes. This development provides a powerful analytical tool for transient solutions of components, such as casting moulds and turbine blades, which are cumbersome to model when employing the conventional domain-based methods.
Finite Element Modelling and Analysis of Conventional Pultrusion Processes
NASA Astrophysics Data System (ADS)
Akishin, P.; Barkanov, E.; Bondarchuk, A.
2015-11-01
Pultrusion is one of many composite manufacturing techniques and one of the most efficient methods for producing fiber reinforced polymer composite parts with a constant cross-section. Numerical simulation is helpful for understanding the manufacturing process and developing scientific means for the pultrusion tooling design. Numerical technique based on the finite element method has been developed for the simulation of pultrusion processes. It uses the general purpose finite element software ANSYS Mechanical. It is shown that the developed technique predicts the temperature and cure profiles, which are in good agreement with those published in the open literature.
Predicting Rediated Noise With Power Flow Finite Element Analysis
2007-02-01
Defence R&D Canada – Atlantic DEFENCE DÉFENSE & Predicting Rediated Noise With Power Flow Finite Element Analysis D. Brennan T.S. Koko L. Jiang J...PREDICTING RADIATED NOISE WITH POWER FLOW FINITE ELEMENT ANALYSIS D.P. Brennan T.S. Koko L. Jiang J.C. Wallace Martec Limited Martec Limited...model- or full-scale data before it is available for general use. Brennan, D.P., Koko , T.S., Jiang, L., Wallace, J.C. 2007. Predicting Radiated
Correlation of composite material test results with finite element analysis
NASA Astrophysics Data System (ADS)
Guƫu, M.
2016-08-01
In this paper are presented some aspects regarding the method of simulation of composite materials testing with finite element analysis software. There were simulated tensile and shear tests of specimens manufactured from glass fiber reinforced polyester. For specimens manufacturing two types of fabrics were used: unidirectional and bidirectional. Experimentally determined elastic properties of composite material were used as input data. Modeling of composite architecture of the specimens was performed with ANSYS Composite PrepPost software. Finite element analysis stresses and strains on strain gauges bonding area were considered and compared with the real values in a diagram. After results comparison, potential causes of deviations were identified.
Finite element models of the space shuttle main engine
NASA Technical Reports Server (NTRS)
Muller, G. R.
1980-01-01
Finite element models were developed as input to dynamic simulations of the high pressure fuel turbopump (HPFTP), the high pressure oxidizer turbopump (HPOTP), and the space shuttle main engine (SSME). Descriptions are provided for the five basic finite element models: HPFTP rotor, HPFTP case, HPOTP rotor, HPOTP case, and SSME (excluding turbopumps). Modal results are presented for the HPFTP rotor, HPFTP case, HPOTP rotor, coupled HPFTP rotor and case, HPOTP case, coupled HPOTP rotor and case, SSME (excluding turbopumps), and SSME (including turbopumps). Results for the SSME (including turbopumps) model are compared to data from a SSME HPOTP modal survey.
Fourier analysis of finite element preconditioned collocation schemes
NASA Technical Reports Server (NTRS)
Deville, Michel O.; Mund, Ernest H.
1990-01-01
The spectrum of the iteration operator of some finite element preconditioned Fourier collocation schemes is investigated. The first part of the paper analyses one-dimensional elliptic and hyperbolic model problems and the advection-diffusion equation. Analytical expressions of the eigenvalues are obtained with use of symbolic computation. The second part of the paper considers the set of one-dimensional differential equations resulting from Fourier analysis (in the tranverse direction) of the 2-D Stokes problem. All results agree with previous conclusions on the numerical efficiency of finite element preconditioning schemes.
Development of non-linear finite element computer code
NASA Technical Reports Server (NTRS)
Becker, E. B.; Miller, T.
1985-01-01
Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.
Finite element methods for nonlinear elastostatic problems in rubber elasticity
NASA Technical Reports Server (NTRS)
Oden, J. T.; Becker, E. B.; Miller, T. H.; Endo, T.; Pires, E. B.
1983-01-01
A number of finite element methods for the analysis of nonlinear problems in rubber elasticity are outlined. Several different finite element schemes are discussed. These include the augmented Lagrangian method, continuation or incremental loading methods, and associated Riks-type methods which have the capability of incorporating limit point behavior and bifurcations. Algorithms for the analysis of limit point behavior and bifurcations are described and the results of several numerical experiments are presented. In addition, a brief survey of some recent work on modelling contact and friction in elasticity problems is given. These results pertain to the use of new nonlocal and nonlinear friction laws.
Engineering and Design: Geotechnical Analysis by the Finite Element Method
2007-11-02
used it to determine stresses and movements in embank- ments, and Reyes and Deer described its application to analysis of underground openings in rock...36 Hughes, T. J. R. (1987). The Finite Element Reyes , S. F., and Deene, D. K. (1966). “Elastic Method, Linear Static and Dynamic Finite Element...SM4), 1,435-1,457. Fernando Dams During the Earthquakes of February Davis, E. H., and Poulos, H. G. (1972). “Rate of Report EERC-73-2, Berkeley, CA
Discontinuous Galerkin finite element methods for gradient plasticity.
Garikipati, Krishna.; Ostien, Jakob T.
2010-10-01
In this report we apply discontinuous Galerkin finite element methods to the equations of an incompatibility based formulation of gradient plasticity. The presentation is motivated with a brief overview of the description of dislocations within a crystal lattice. A tensor representing a measure of the incompatibility with the lattice is used in the formulation of a gradient plasticity model. This model is cast in a variational formulation, and discontinuous Galerkin machinery is employed to implement the formulation into a finite element code. Finally numerical examples of the model are shown.
Verification of a Finite Element Model for Pyrolyzing Ablative Materials
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2017-01-01
Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.
Error analysis of finite element solutions for postbuckled plates
NASA Technical Reports Server (NTRS)
Sistla, Rajaram; Thurston, Gaylen A.
1988-01-01
An error analysis of results from finite-element solutions of problems in shell structures is further developed, incorporating the results of an additional numerical analysis by which oscillatory behavior is eliminated. The theory is extended to plates with initial geometric imperfections, and this novel analysis is programmed as a postprocessor for a general-purpose finite-element code. Numerical results are given for the case of a stiffened panel in compression and a plate loaded in shear by a 'picture-frame' test fixture.
Differentiating a Finite Element Biodegradation Simulation Model for Optimal Control
NASA Astrophysics Data System (ADS)
Minsker, Barbara S.; Shoemaker, Christine A.
1996-01-01
An optimal control model for improving the design of in situ bioremediation of groundwater has been developed. The model uses a finite element biodegradation simulation model called Bio2D to find optimal pumping strategies. Analytical derivatives of the bioremediation finite element model are derived; these derivatives must be computed for the optimal control algorithm. The derivatives are complex and nonlinear; the bulk of the computational effort in solving the optimal control problem is required to calculate the derivatives. An overview of the optimal control and simulation model formulations is also given.
Analysis of the Performance of Mixed Finite Element Methods.
1986-10-01
October 1986 SUMMARY The initial goal of this project is to analyze various mixed methods based on the p- and h-p versions of the finite element methods...The convergence of mixed methods depends on two factors: (1) Approximability of polynomial spaces used (2) Stability. In the past year, the question...significant portion of the research is geared towards the investigation of mixed methods based on the ’p’ and ’h-p’ versions of the finite element method
Chemically pre-strained dielectric elastomers finite element analysis
NASA Astrophysics Data System (ADS)
Newell, Brittany; Krutz, Gary; Stewart, Frank; Pascal, Kevin
2017-04-01
The applications and feasibility of utilizing dielectric elastomer electroactive polymers in the industrial and medical sectors has drastically increased in recent years due to significant improvements in actuation potential, manufacturing, the introduction of new materials and modeling capabilities. One such development is the introduction of chemical pre-strain as a method of providing enhanced actuation. The purpose of this study was to utilize finite element analysis to analyze the mechanical actuation of an industrial fluoropolymer with chemical induced pre-strain and validate the model with experiential results. Results generated from the finite element analysis showed similar trends to results produced experimentally.
Convergence of finite element approximations of large eddy motion.
Iliescu, T.; John, V.; Layton, W. J.; Mathematics and Computer Science; Otto-von-Guericke Univ.; Univ. of Pittsburgh
2002-11-01
This report considers 'numerical errors' in LES. Specifically, for one family of space filtered flow models, we show convergence of the finite element approximation of the model and give an estimate of the error. Keywords: Navier Stokes equations, large eddy simulation, finite element method I. INTRODUCTION Consider the (turbulent) flow of an incompressible fluid. One promising and common approach to the simulation of the motion of the large fluid structures is Large Eddy Simulation (LES). Various models are used in LES; a common one is to find (w, q), where w : {Omega}
A weak Galerkin generalized multiscale finite element method
Mu, Lin; Wang, Junping; Ye, Xiu
2016-03-31
In this study, we propose a general framework for weak Galerkin generalized multiscale (WG-GMS) finite element method for the elliptic problems with rapidly oscillating or high contrast coefficients. This general WG-GMS method features in high order accuracy on general meshes and can work with multiscale basis derived by different numerical schemes. A special case is studied under this WG-GMS framework in which the multiscale basis functions are obtained by solving local problem with the weak Galerkin finite element method. Convergence analysis and numerical experiments are obtained for the special case.
Using Finite-Element Analysis In Estimating Reliability
NASA Technical Reports Server (NTRS)
Zaretsky, Erwin V.; August, Richard
1994-01-01
Method of estimating design survivability of structural component incorporates finite-element and probabilistic properties of materials. Involves evaluation of design parameters through direct comparisons of survivability of component expressed in terms of percentages of like components that survive at various lifetimes. Probabilistic properties of materials, given in terms of Weibull parameters, coupled with stress field computed by finite-element analysis to determine fatigue life based on initiation of cracks. Method applied to rotating disk containing bolt holes, representative of disks used in aerospace propulsion turbines. Also used in early stages of design process to optimize life-based designs, reducing testing of full-sized components needed to validate designs.
Substructure System Identification for Finite Element Model Updating
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Blades, Eric L.
1997-01-01
This report summarizes research conducted under a NASA grant on the topic 'Substructure System Identification for Finite Element Model Updating.' The research concerns ongoing development of the Substructure System Identification Algorithm (SSID Algorithm), a system identification algorithm that can be used to obtain mathematical models of substructures, like Space Shuttle payloads. In the present study, particular attention was given to the following topics: making the algorithm robust to noisy test data, extending the algorithm to accept experimental FRF data that covers a broad frequency bandwidth, and developing a test analytical model (TAM) for use in relating test data to reduced-order finite element models.
Robust Hybrid Finite Element Methods for Antennas and Microwave Circuits
NASA Technical Reports Server (NTRS)
Gong, J.; Volakis, John L.
1996-01-01
One of the primary goals in this dissertation is concerned with the development of robust hybrid finite element-boundary integral (FE-BI) techniques for modeling and design of conformal antennas of arbitrary shape. Both the finite element and integral equation methods will be first overviewed in this chapter with an emphasis on recently developed hybrid FE-BI methodologies for antennas, microwave and millimeter wave applications. The structure of the dissertation is then outlined. We conclude the chapter with discussions of certain fundamental concepts and methods in electromagnetics, which are important to this study.
Diffusive mesh relaxation in ALE finite element numerical simulations
Dube, E.I.
1996-06-01
The theory for a diffusive mesh relaxation algorithm is developed for use in three-dimensional Arbitary Lagrange/Eulerian (ALE) finite element simulation techniques. This mesh relaxer is derived by a variational principle for an unstructured 3D grid using finite elements, and incorporates hourglass controls in the numerical implementation. The diffusive coefficients are based on the geometric properties of the existing mesh, and are chosen so as to allow for a smooth grid that retains the general shape of the original mesh. The diffusive mesh relaxation algorithm is then applied to an ALE code system, and results from several test cases are discussed.
NASA Technical Reports Server (NTRS)
1976-01-01
A survey of research efforts in the area of geometrically nonlinear finite elements is presented. The survey is intended to serve as a guide in the choice of nonlinear elements for specific problems, and as background to provide directions for new element developments. The elements are presented in a handbook format and are separated by type as beams, plates (or shallow shells), shells, and other elements. Within a given type, the elements are identified by the assumed displacement shapes and the forms of the nonlinear strain equations. Solution procedures are not discussed except when a particular element formulation poses special problems or capabilities in this regard. The main goal of the format is to provide quick access to a wide variety of element types, in a consistent presentation format, and to facilitate comparison and evaluation of different elements with regard to features, probable accuracy, and complexity.
Element-by-element factorization algorithms for heat conduction
NASA Technical Reports Server (NTRS)
Hughes, T. J. R.; Winget, J. M.; Park, K. C.
1983-01-01
Element-by-element solution strategies are developed for transient heat conduction problems. Results of numerical tests indicate the effectiveness of the procedures proposed. The small database requirements and attractive architectural features of the algorithms suggest considerable potential for solving large scale problems.
Finite Element Model Development and Validation for Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2015-12-21
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying a series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.
Modal Substructuring of Geometrically Nonlinear Finite-Element Models
Kuether, Robert J.; Allen, Matthew S.; Hollkamp, Joseph J.
2015-12-21
The efficiency of a modal substructuring method depends on the component modes used to reduce each subcomponent model. Methods such as Craig–Bampton have been used extensively to reduce linear finite-element models with thousands or even millions of degrees of freedom down orders of magnitude while maintaining acceptable accuracy. A novel reduction method is proposed here for geometrically nonlinear finite-element models using the fixed-interface and constraint modes of the linearized system to reduce each subcomponent model. The geometric nonlinearity requires an additional cubic and quadratic polynomial function in the modal equations, and the nonlinear stiffness coefficients are determined by applying amore » series of static loads and using the finite-element code to compute the response. The geometrically nonlinear, reduced modal equations for each subcomponent are then coupled by satisfying compatibility and force equilibrium. This modal substructuring approach is an extension of the Craig–Bampton method and is readily applied to geometrically nonlinear models built directly within commercial finite-element packages. The efficiency of this new approach is demonstrated on two example problems: one that couples two geometrically nonlinear beams at a shared rotational degree of freedom, and another that couples an axial spring element to the axial degree of freedom of a geometrically nonlinear beam. The nonlinear normal modes of the assembled models are compared with those of a truth model to assess the accuracy of the novel modal substructuring approach.« less
Rapid mesh generation for finite element analysis of investment castings
Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.
1992-11-01
FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.
Rapid mesh generation for finite element analysis of investment castings
Lober, R.R.; Bohnhoff, W.J.; Meyers, R.J.
1992-01-01
FASTCAST is a Sandia National Laboratories program to produce investment cast prototypical hardware faster by integrating experimental and computational technologies into the casting process. FASTCAST uses the finite element method to characterize the metal flow and solidification processes to reduce uncertainty in the mold design. For the casting process to benefit from finite element analysis, analysis results must be available in a very short time frame. By focusing on the bottleneck of finite element model creation, automated mesh generation can drastically reduce the time span between geometry definition (design) and accurate analysis results. The increased availability of analysis results will diminish the need for trial and error approaches to acquiring production worthy mold and gating systems for investment casting. The CUBIT meshing tool kit is being developed to address the need for rapid mesh generation. CUBIT is being designed to effectively automate the generation of quadrilateral and hexahedral elements. It is a solid-modeler based, two- and three-dimensional preprocessor that prepares solid models for finite element analysis. CUBIT contains several meshing algorithms including two- and three-dimensional mapping, two- and three-dimensional paving (patented), and a general two and one-half dimensional sweeper based upon the plastering algorithm. This paper describes progress in the development of the CUBIT meshing toolkit.
a Finite Element Method for Flow Problems with Free Surfaces and Moving Fronts.
NASA Astrophysics Data System (ADS)
Westerberg, Kenneth William
A finite element technique to model a fluid flow with a liquid-gas free surface and/or a solid-liquid phase -change boundary has been developed. These types of problems are difficult because in addition to the flow and temperature fields, the domain boundaries are also unknown. Two specific applications where such a technique is needed are formulated and discussed. The first is the development of a model for the thermal printing of bar code labels. Thermal printer paper is heated by a moving print head and a heat-activated chemical reaction takes place to change the color of the paper. The extent of the region that has reacted is governed by the same equations that govern the melting of a pure material. The second application is building a model of an electron beam metal vaporizer. A beam of electrons strikes the surface of a pool of liquid metal causing the metal to vaporize. A pool of liquid metal forms in the vicinity of the beam impact area. The problem involves both a liquid-gas free surface and a solid-liquid phase -change front as well as a tri-junction point where solid, liquid and gas phases all meet. Both models two-dimensional and time-dependent. The technique is based on a deformable finite element mesh designed to keep the interfaces on element boundaries. There is a singularity in the force balance along the liquid-gas free interface due to surface tension and a singularity in the heat balance along the solid-liquid phase-change front due to the latent heat of the phase-change. These singularities are easily handled by the finite element method provided they are kept on element boundaries. The positions of the free and moving boundaries are tracked using spines. Special linear algebra techniques are developed to solve the equation system resulting from our finite element discretization of the free or moving boundary problem.
Finite Element Aircraft Simulation of Turbulence
NASA Technical Reports Server (NTRS)
McFarland, R. E.
1997-01-01
A turbulence model has been developed for realtime aircraft simulation that accommodates stochastic turbulence and distributed discrete gusts as a function of the terrain. This model is applicable to conventional aircraft, V/STOL aircraft, and disc rotor model helicopter simulations. Vehicle angular activity in response to turbulence is computed from geometrical and temporal relationships rather than by using the conventional continuum approximations that assume uniform gust immersion and low frequency responses. By using techniques similar to those recently developed for blade-element rotor models, the angular-rate filters of conventional turbulence models are not required. The model produces rotational rates as well as air mass translational velocities in response to both stochastic and deterministic disturbances, where the discrete gusts and turbulence magnitudes may be correlated with significant terrain features or ship models. Assuming isotropy, a two-dimensional vertical turbulence field is created. A novel Gaussian interpolation technique is used to distribute vertical turbulence on the wing span or lateral rotor disc, and this distribution is used to compute roll responses. Air mass velocities are applied at significant centers of pressure in the computation of the aircraft's pitch and roll responses.
A variational method for finite element stress recovery: Applications in one-dimension
NASA Technical Reports Server (NTRS)
Riggs, H. Ronald
1992-01-01
It is well-known that stresses (and strains) calculated by a displacement-based finite element analysis are generally not as accurate as the displacements. In addition, the calculated stress field is typically discontinuous at element interfaces. Because the stresses are typically of more interest than the displacements, several procedures have been proposed to obtain a smooth stress field, given the finite element stresses, and to improve the accuracy. Hinton and Irons introduced global least squares smoothing of discrete data defined on a plane using a finite element formulation. Tessler and co-workers recently developed a conceptually similar formulation for smoothing of two-dimensional data based on a discrete least square approximation with a penalty constraint. The penalty constraint results in a stress field which is C(exp 1)-continuous, a result not previously obtained. The approach requires additional, 'smoothing' finite element analysis and for their two-dimensional application, they used a conforming C(exp 0)-continuous triangular finite element based on a conforming plate element. This paper presents the results of a detailed investigation into the application of Tessler's smoothing procedure to the smoothing of finite element stresses from one-dimensional problems. Although the one-dimensional formulation has some practical applicability, such as in truss, beam, axisymmetric mechanics, and one-dimensional heat conduction, the primary motivation for developing the one-dimensional smoothing case is to explore the characteristics of the general smoothing strategy. In particular, it is used to describe the behavior of the method and to explore the suitability of criteria proposed for the smoothing analysis. Prior to presenting numerical results, the variational formulation of the smoothing strategy is presented and a criterion for the smoothing analysis is described.
New hybrid quadrilateral finite element for Mindlin plate
NASA Astrophysics Data System (ADS)
Chin, Yi; Zhang, Jingyu
1994-02-01
A new quadrilateral plate element concerning the effect of transverse shear strain was presented. It was derived from the hybrid finite element model based on the principles of virtual work. The outstanding advantage of this element was to use more rational trial functions of the displacements. For this reason, every variety of plate deformation can be simulated really while the least degrees of freedom was employed. A wide range of numerical tests was conducted and the results illustrate that this element has a very wide application scope to the thickness of plates and satisfactory accuracy can be obtained by coarse mesh for all kinds of examples.
Finite element approach for transient analysis of multibody systems
NASA Technical Reports Server (NTRS)
Wu, Shih-Chin; Chang, Che-Wei; Housner, Jerrold M.
1992-01-01
A three-dimensional, finite element based formulation for the transient dynamics of constrained multibody systems with trusslike configurations is presented. A convected coordinate system is used to define the rigid-body motion of individual elements in the system. Deformation of each element is defined relative to its convected coordinate system. The formulation is oriented toward joint-dominated structures. Through a series of sequential transformations, the joint degree of freedom is built into the equations of motion of the element to reduce geometric constraints. Based on the derivation, a general-purpose code has been developed. Two examples are presented to illustrate the application of the code.
A new formulation of hybrid/mixed finite element
NASA Technical Reports Server (NTRS)
Pian, T. H. H.; Kang, D.; Chen, D.-P.
1983-01-01
A new formulation of finite element method is accomplished by the Hellinger-Reissner principle for which the stress equilibrium conditions are not introduced initially but are brought-in through the use of additional internal displacement parameters. The method can lead to the same result as the assumed stress hybrid model. However, it is more general and more flexible. The use of natural coordinates for stress assumptions leads to elements which are less sensitive to the choice of reference coordinates. Numerical solutions by 3-D solid element indicate that more efficient elements can be constructed by assumed stresses which only partially satisfy the equilibrium conditions.
Numerical techniques in linear duct acoustics. [finite difference and finite element analyses
NASA Technical Reports Server (NTRS)
Baumeister, K. J.
1980-01-01
Both finite difference and finite element analyses of small amplitude (linear) sound propagation in straight and variable area ducts with flow, as might be found in a typical turboject engine duct, muffler, or industrial ventilation system, are reviewed. Both steady state and transient theories are discussed. Emphasis is placed on the advantages and limitations associated with the various numerical techniques. Examples of practical problems are given for which the numerical techniques have been applied.
NASA Technical Reports Server (NTRS)
Atluri, S. N.
1986-01-01
Computational finite-element and boundary-element methods are reviewed, and their application to the mechanics of solids is discussed. Stability conditions for general FEMs are considered in addition to the use of least-order, stable, invariant, or hybrid/mixed isoparametric elements as alternatives to the displacement-based isoparametric elements. The use of symbolic manipulation, adaptive mesh refinement, transient dynamic response, and boundary-element methods for linear elaslticity and finite-strain problems of inelastic materials are also discussed.
A Demonstration of the Method of Stochastic Finite Element Analysis
1989-03-01
Lfl A DENONSTATION OF THE METHO -D OF DTIC STOCHASTIC FINITE ELEMENT ANALYSIS At LECTE S APR 0418 THESIS Paul R. Bryant Captain, USAF - AFIT/GA/A.A...Sample ASTROS Output) ....................... 78 Appendix D (Random Element Selection) .................... 83 Appendix E ( Weight Estimation...ensuring satisfactory performance? If weight is a concern, then the answer is yes. In the quest for higher performance aircraft and greater useful
A finite element code for electric motor design
NASA Technical Reports Server (NTRS)
Campbell, C. Warren
1994-01-01
FEMOT is a finite element program for solving the nonlinear magnetostatic problem. This version uses nonlinear, Newton first order elements. The code can be used for electric motor design and analysis. FEMOT can be embedded within an optimization code that will vary nodal coordinates to optimize the motor design. The output from FEMOT can be used to determine motor back EMF, torque, cogging, and magnet saturation. It will run on a PC and will be available to anyone who wants to use it.
Finite Element Modeling of the Buckling Response of Sandwich Panels
NASA Technical Reports Server (NTRS)
Rose, Cheryl A.; Moore, David F.; Knight, Norman F., Jr.; Rankin, Charles C.
2002-01-01
A comparative study of different modeling approaches for predicting sandwich panel buckling response is described. The study considers sandwich panels with anisotropic face sheets and a very thick core. Results from conventional analytical solutions for sandwich panel overall buckling and face-sheet-wrinkling type modes are compared with solutions obtained using different finite element modeling approaches. Finite element solutions are obtained using layered shell element models, with and without transverse shear flexibility, layered shell/solid element models, with shell elements for the face sheets and solid elements for the core, and sandwich models using a recently developed specialty sandwich element. Convergence characteristics of the shell/solid and sandwich element modeling approaches with respect to in-plane and through-the-thickness discretization, are demonstrated. Results of the study indicate that the specialty sandwich element provides an accurate and effective modeling approach for predicting both overall and localized sandwich panel buckling response. Furthermore, results indicate that anisotropy of the face sheets, along with the ratio of principle elastic moduli, affect the buckling response and these effects may not be represented accurately by analytical solutions. Modeling recommendations are also provided.
Finite element modeling of the deformation of magnetoelastic film
Barham, Matthew I.; White, Daniel A.; Steigmann, David J.
2010-09-01
Recently a new class of biocompatible elastic polymers loaded with small ferrous particles, a magnetoelastic polymer, has been developed. This engineered material is formed into a thin film using spin casting. An applied magnetic field will deform the film. The magnetic deformation of this film has many possible applications, particularly in microfluidic pumps and pressure regulators. In this paper a finite element method suitable for the transient simulation of arbitrarily shaped three-dimensional magnetoelastic polymers subjected to time-varying magnetic fields is developed. The approach is similar to that employed in finite elment magnetohydrodynamic simulations, the key difference is a more complex hyperelastic material model. In order to confirm the validity of the approach, finite element solutions for an axially symmetric thin film are compared to an analytical solution based on the membrane (infinitely thin) approximation. For this particular problem the two approaches give qualitatively similar results and converge as the film thickness approaches zero.
Dedicated finite elements for electrode thin films on quartz resonators.
Srivastava, Sonal A; Yong, Yook-Kong; Tanaka, Masako; Imai, Tsutomu
2008-08-01
The accuracy of the finite element analysis for thickness shear quartz resonators is a function of the mesh resolution; the finer the mesh resolution, the more accurate the finite element solution. A certain minimum number of elements are required in each direction for the solution to converge. This places a high demand on memory for computation, and often the available memory is insufficient. Typically the thickness of the electrode films is very small compared with the thickness of the resonator itself; as a result, electrode elements have very poor aspect ratios, and this is detrimental to the accuracy of the result. In this paper, we propose special methods to model the electrodes at the crystal interface of an AT cut crystal. This reduces the overall problem size and eliminates electrode elements having poor aspect ratios. First, experimental data are presented to demonstrate the effects of electrode film boundary conditions on the frequency-temperature curves of an AT cut plate. Finite element analysis is performed on a mesh representing the resonator, and the results are compared for testing the accuracy of the analysis itself and thus validating the results of analysis. Approximations such as lumping and Guyan reduction are then used to model the electrode thin films at the electrode interface and their results are studied. In addition, a new approximation called merging is proposed to model electrodes at the electrode interface.
Finite-element analysis of end-notch flexure specimens
NASA Technical Reports Server (NTRS)
Mall, S.; Kochhar, N. K.
1986-01-01
A finite-element analysis of the end-notch flexure specimen for Mode II interlaminar fracture toughness measurement was conducted. The effects of friction between the crack faces and large deflection on the evaluation of G(IIc) from this specimen were investigated. Results of this study are presented in this paper.
Finite element analysis of end notch flexure specimen
NASA Technical Reports Server (NTRS)
Mall, S.; Kochhar, N. K.
1986-01-01
A finite element analysis of the end notch flexure specimen for mode II interlaminar fracture toughness measurement was conducted. The effect of friction between the crack faces and large deflection on the evaluation of G sub IIc from this specimen were investigated. Results of this study are presented in this paper.
Finite element corroboration of buckling phenomena observed in corrugated boxes
Thomas J. Urbanik; Edmond P. Saliklis
2003-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study combines a finite element model with a parametric design of the...
Design, development and use of the finite element machine
NASA Technical Reports Server (NTRS)
Adams, L. M.; Voigt, R. C.
1983-01-01
Some of the considerations that went into the design of the Finite Element Machine, a research asynchronous parallel computer are described. The present status of the system is also discussed along with some indication of the type of results that were obtained.
Modeling of resistive sheets in finite element solutions
NASA Astrophysics Data System (ADS)
Jin, J. M.; Volakis, John L.; Yu, C. L.; Woo, Alex C.
1992-01-01
A formulation is presented for modeling a resistive card in the context of the finite element method. The appropriate variational function is derived and for variational purposes results are presented for the scattering by a metal-backed cavity loaded with a resistive card.
Modeling of resistive sheets in finite element solutions
NASA Astrophysics Data System (ADS)
Jin, J. M.; Volakis, J. L.; Yu, C. L.; Woo, A. C.
1992-06-01
A formulation is presented for modeling a resistive card in the context of the finite element method. The appropriate variational function is derived and for variational purposes results are presented for the scattering by metal-backed cavity loaded with a resistive card.
Finite element analysis of aeroelasticity of plates and shells
Bismarck-Nasr, M.N.
1992-12-01
A review of the finite element method applied to the problem of supersonic aeroelastic stability of plates and shells is presented. The review is limited to linear models. Some new contributions in the field are presented and future trends are discussed. 105 refs., 18 figs., 6 tabs.
Implicit extrapolation methods for multilevel finite element computations
Jung, M.; Ruede, U.
1994-12-31
The finite element package FEMGP has been developed to solve elliptic and parabolic problems arising in the computation of magnetic and thermomechanical fields. FEMGP implements various methods for the construction of hierarchical finite element meshes, a variety of efficient multilevel solvers, including multigrid and preconditioned conjugate gradient iterations, as well as pre- and post-processing software. Within FEMGP, multigrid {tau}-extrapolation can be employed to improve the finite element solution iteratively to higher order. This algorithm is based on an implicit extrapolation, so that the algorithm differs from a regular multigrid algorithm only by a slightly modified computation of the residuals on the finest mesh. Another advantage of this technique is, that in contrast to explicit extrapolation methods, it does not rely on the existence of global error expansions, and therefore neither requires uniform meshes nor global regularity assumptions. In the paper the authors will analyse the {tau}-extrapolation algorithm and present experimental results in the context of the FEMGP package. Furthermore, the {tau}-extrapolation results will be compared to higher order finite element solutions.
Finite-Element Analysis of Multiphase Immiscible Flow Through Soils
NASA Astrophysics Data System (ADS)
Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.
1987-04-01
A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.
Finite element analyses of wood laminated composite poles
Cheng Piao; Todd F. Shupe; R.C. Tang; Chung Y. Hse
2005-01-01
Finite element analyses using ANSYS were conducted on orthotropic, polygonal, wood laminated composite poles subjected to a body force and a concentrated load at the free end. Deflections and stress distributions of small-scale and full-size composite poles were analyzed and compared to the results obtained in an experimental study. The predicted deflection for both...
Three Dimensional Finite Element Simulation of the Fretting Wear Problems
NASA Astrophysics Data System (ADS)
Lee, Choon Yeol; Bae, Joon Woo; Choi, Byung Sun; Chai, Young Suck
The structural integrity of steam generators in nuclear power plants is very much dependent upon the fretting wear characteristics of Inconel 690 U-tubes. In this study, a finite element analysis was used to investigate fretting wear on the secondary side of the steam generator, which arises from flow-induced vibrations (FIV) between the U-tubes and supports or foreign objects. Two-dimensional and three-dimensional finite element analyses were adopted to investigate the fretting wear problems. The purpose of the two-dimensional analysis, which simulated the contact between a punch and a plate, was to demonstrate the validity of using finite element analysis to analyze fretting wear problems. This was achieved by controlling the value of the wear constant and the number of cycles. The two-dimensional solutions obtained from this study were in good agreement with previous results reported by Strömberg. In the three-dimensional finite element analysis, a quarterly symmetric model was used to simulate tubes contacting at right angles. The results of the analyses showed donut-shaped wear along the contacting boundary, which is a typical feature of fretting wear.
Coupling finite element and spectral methods: First results
NASA Technical Reports Server (NTRS)
Bernardi, Christine; Debit, Naima; Maday, Yvon
1987-01-01
A Poisson equation on a rectangular domain is solved by coupling two methods: the domain is divided in two squares, a finite element approximation is used on the first square and a spectral discretization is used on the second one. Two kinds of matching conditions on the interface are presented and compared. In both cases, error estimates are proved.
2-D Finite Element Cable and Box IEMP Analysis
Scivner, G.J.; Turner, C.D.
1998-12-17
A 2-D finite element code has been developed for the solution of arbitrary geometry cable SGEMP and box IEMP problems. The quasi- static electric field equations with radiation- induced charge deposition and radiation-induced conductivity y are numerically solved on a triangular mesh. Multiple regions of different dielectric materials and multiple conductors are permitted.
Finite-element analysis of an epoxy-curing process
Gartling, D K; Hickox, C E; Nunziato, J W
1983-01-01
A finite element numerical procedure is used to study the curing of an epoxy compound. The problem involves the gelation of an incompressible liquid due to an exothermic chemical reaction. Nonuniform temperature fields produce buoyancy-driven fluid motions that interact with the solidifying material. The numerical simulations provide temperature histories and the progression of the gel front that are compared with experimental data.
SUPG Finite Element Simulations of Compressible Flows for Aerothermodynamic Applications
NASA Technical Reports Server (NTRS)
Kirk, Benjamin S.
2007-01-01
This viewgraph presentation reviews the Streamline-Upwind Petrov-Galerkin (SUPG) Finite Element Simulation. It covers the background, governing equations, weak formulation, shock capturing, inviscid flux discretization, time discretization, linearization, and implicit solution strategies. It also reviews some applications such as Type IV Shock Interaction, Forward-Facing Cavity and AEDC Sharp Double Cone.
Coupling of Peridynamics and Finite Element Formulation for Multiscale Simulations
2012-10-16
state-based peridynamic method, Warren et al. [46] studied the elastic deformation and fracture of a bar. Littlewood [47] presented fragmentation of an...Journal of Solids and Structures 46 (2009) 1186-1195. [47] D. J. Littlewood , Simulation of dynamic fracture using peridynamics, finite element modeling
Finite-Element Fracture Analysis of Pins and Bolts
NASA Technical Reports Server (NTRS)
Nord, K. J.
1986-01-01
Stress intensities calculated in bending and tension. Finite-element stress-analysis method gives stress-intensity estimates for surface flaws on smooth and threaded round bars. Calculations done for purely tensile and purely bending loads. Results, presented in dimensionless form, useful for determining fatigue lives of bolts and pins.
Finite Element Analysis of Adaptive-Stiffening and Shape-Control SMA Hybrid Composites
NASA Technical Reports Server (NTRS)
Gao, Xiujie; Burton, Deborah; Turner, Travis L.; Brinson, Catherine
2005-01-01
Shape memory alloy hybrid composites with adaptive-stiffening or morphing functions are simulated using finite element analysis. The composite structure is a laminated fiber-polymer composite beam with embedded SMA ribbons at various positions with respect to the neutral axis of the beam. Adaptive stiffening or morphing is activated via selective resistance heating of the SMA ribbons or uniform thermal loads on the beam. The thermomechanical behavior of these composites was simulated in ABAQUS using user-defined SMA elements. The examples demonstrate the usefulness of the methods for the design and simulation of SMA hybrid composites. Keywords: shape memory alloys, Nitinol, ABAQUS, finite element analysis, post-buckling control, shape control, deflection control, adaptive stiffening, morphing, constitutive modeling, user element
A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains
NASA Technical Reports Server (NTRS)
Kandil, Osama A.
1998-01-01
Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.
Modelling of orbital deformation using finite-element analysis
Al-Sukhun, Jehad; Lindqvist, Christian; Kontio, Risto
2005-01-01
The purpose of this study was to develop a three-dimensional finite-element model (FEM) of the human orbit, containing the globe, to predict orbital deformation in subjects following a blunt injury. This study investigated the hypothesis that such deformation could be modelled using finite-element techniques. One patient who had CT-scan examination to the maxillofacial skeleton including the orbits, as part of her treatment, was selected for this study. A FEM of one of the orbits containing the globe was constructed, based on CT-scan images. Simulations were performed with a computer using the finite-element software NISA (EMRC, Troy, USA). The orbit was subjected to a blunt injury of a 0.5 kg missile with 30 m s−1 velocity. The FEM was then used to predict principal and shear stresses or strains at each node position. Two types of orbital deformation were predicted during different impact simulations: (i) horizontal distortion and (ii) rotational distortion. Stress values ranged from 213.4 to 363.3 MPa for the maximum principal stress, from −327.8 to −653.1 MPa for the minimum principal stress, and from 212.3 to 444.3 MPa for the maximum shear stress. This is the first finite-element study, which demonstrates different and concurrent patterns of orbital deformation in a subject following a blunt injury. Finite element modelling is a powerful and invaluable tool to study the multifaceted phenomenon of orbital deformation. PMID:16849235
Advance finite element modeling of rotor blade aeroelasticity
NASA Technical Reports Server (NTRS)
Straub, F. K.; Sangha, K. B.; Panda, B.
1994-01-01
An advanced beam finite element has been developed for modeling rotor blade dynamics and aeroelasticity. This element is part of the Element Library of the Second Generation Comprehensive Helicopter Analysis System (2GCHAS). The element allows modeling of arbitrary rotor systems, including bearingless rotors. It accounts for moderately large elastic deflections, anisotropic properties, large frame motion for maneuver simulation, and allows for variable order shape functions. The effects of gravity, mechanically applied and aerodynamic loads are included. All kinematic quantities required to compute airloads are provided. In this paper, the fundamental assumptions and derivation of the element matrices are presented. Numerical results are shown to verify the formulation and illustrate several features of the element.
High-order Finite Element Analysis of Boundary Layer Flows
NASA Astrophysics Data System (ADS)
Zhang, Alvin; Sahni, Onkar
2014-11-01
Numerical analysis of boundary layer flows requires careful approximations, specifically the use of a mesh with layered and graded elements near the (viscous) walls. This is referred to as a boundary layer mesh, which for complex geometries is composed of triangular elements on the walls that are inflated or extruded into the volume along the wall-normal direction up to a desired height while the rest of the domain is filled with unstructured tetrahedral elements. Linear elements with C0 inter-element continuity are employed and in some situations higher order C0 elements are also used. However, these elements only enforce continuity whereas high-order smoothness is not attained as will be the case with C1 inter-element continuity and higher. As a result, C0 elements result in a poor approximation of the high-order boundary layer behavior. To achieve greater inter-element continuity in boundary layer region, we employ B-spline basis functions along the wall-normal direction (i.e., only in the layered portion of the mesh). In the rest of the fully unstructured mesh, linear or higher order C0 elements are used as appropriate. In this study we demonstrate the benefits of finite-element analysis based on such higher order and continuity basis functions for boundary layer flows.
Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.
2002-01-01
The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.
Discontinuous dual-primal mixed finite elements for elliptic problems
NASA Technical Reports Server (NTRS)
Bottasso, Carlo L.; Micheletti, Stefano; Sacco, Riccardo
2000-01-01
We propose a novel discontinuous mixed finite element formulation for the solution of second-order elliptic problems. Fully discontinuous piecewise polynomial finite element spaces are used for the trial and test functions. The discontinuous nature of the test functions at the element interfaces allows to introduce new boundary unknowns that, on the one hand enforce the weak continuity of the trial functions, and on the other avoid the need to define a priori algorithmic fluxes as in standard discontinuous Galerkin methods. Static condensation is performed at the element level, leading to a solution procedure based on the sole interface unknowns. The resulting family of discontinuous dual-primal mixed finite element methods is presented in the one and two-dimensional cases. In the one-dimensional case, we show the equivalence of the method with implicit Runge-Kutta schemes of the collocation type exhibiting optimal behavior. Numerical experiments in one and two dimensions demonstrate the order accuracy of the new method, confirming the results of the analysis.
Dynamic quasistatic characterization of finite elements for shell structures.
Thomas, Jesse David
2010-11-01
Finite elements for shell structures have been investigated extensively, with numerous formulations offered in the literature. These elements are vital in modern computational solid mechanics due to their computational efficiency and accuracy for thin and moderately thick shell structures, allowing larger and more comprehensive (e.g. multi-scale and multi-physics) simulations. Problems now of interest in the research and development community are routinely pushing our computational capabilities, and thus shell finite elements are being used to deliver efficient yet high quality computations. Much work in the literature is devoted to the formulation of shell elements and their numerical accuracy, but there is little published work on the computational characterization and comparison of shell elements for modern solid mechanics problems. The present study is a comparison of three disparate shell element formulations in the Sandia National Laboratories massively parallel Sierra Solid Mechanics code. A constant membrane and bending stress shell element (Key and Hoff, 1995), a thick shell hex element (Key et al., 2004) and a 7-parameter shell element (Buechter et al., 1994) are available in Sierra Solid Mechanics for explicit transient dynamic, implicit transient dynamic and quasistatic calculations. Herein these three elements are applied to a set of canonical dynamic and quasistatic problems, and their numerical accuracy, computational efficiency and scalability are investigated. The results show the trade-off between the relative inefficiency and improved accuracy of the latter two high quality element types when compared with the highly optimized and more widely used constant membrane and bending stress shell element.
Visualization of transient finite element analyses on large unstructured grids
Dovey, D.
1995-03-22
Three-dimensional transient finite element analysis is performed on unstructured grids. A trend toward running larger analysis problems, combined with a desire for interactive animation of analysis results, demands efficient visualization techniques. This paper discusses a set of data structures and algorithms for visualizing transient analysis results on unstructured grids and introduces some modifications in order to better support large grids. In particular, an element grouping approach is used to reduce the amount of memory needed for external surface determination and to speed up ``point in element`` tests. The techniques described lend themselves to visualization of analyses carried out in parallel on a massively parallel computer (MPC).
PWSCC Assessment by Using Extended Finite Element Method
NASA Astrophysics Data System (ADS)
Lee, Sung-Jun; Lee, Sang-Hwan; Chang, Yoon-Suk
2015-12-01
The head penetration nozzle of control rod driving mechanism (CRDM) is known to be susceptible to primary water stress corrosion cracking (PWSCC) due to the welding-induced residual stress. Especially, the J-groove dissimilar metal weld regions have received many attentions in the previous studies. However, even though several advanced techniques such as weight function and finite element alternating methods have been introduced to predict the occurrence of PWSCC, there are still difficulties in respect of applicability and efficiency. In this study, the extended finite element method (XFEM), which allows convenient crack element modeling by enriching degree of freedom (DOF) with special displacement function, was employed to evaluate structural integrity of the CRDM head penetration nozzle. The resulting stress intensity factors of surface cracks were verified for the reliability of proposed method through the comparison with those suggested in the American Society of Mechanical Engineering (ASME) code. The detailed results from the FE analyses are fully discussed in the manuscript.
Finite element dynamic analysis on CDC STAR-100 computer
NASA Technical Reports Server (NTRS)
Noor, A. K.; Lambiotte, J. J., Jr.
1978-01-01
Computational algorithms are presented for the finite element dynamic analysis of structures on the CDC STAR-100 computer. The spatial behavior is described using higher-order finite elements. The temporal behavior is approximated by using either the central difference explicit scheme or Newmark's implicit scheme. In each case the analysis is broken up into a number of basic macro-operations. Discussion is focused on the organization of the computation and the mode of storage of different arrays to take advantage of the STAR pipeline capability. The potential of the proposed algorithms is discussed and CPU times are given for performing the different macro-operations for a shell modeled by higher order composite shallow shell elements having 80 degrees of freedom.
Finite Element Modelling of Fluid Coupling in the Coiled Cochlea
NASA Astrophysics Data System (ADS)
Ni, Guangjian; Elliott, S. J.; Lineton, B.; Saba, R.
2011-11-01
A finite element model is first used to calculate the modal pressure difference for a box model of the cochlea, which shows that the number of fluid elements across the width of the cochlea determines the accuracy with which the near field, or short wavenumber, component of the fluid coupling is reproduced. Then results are compared with the analytic results to validate the accuracy of the FE model. It is, however, the far field, or long wavelength, component of the fluid coupling that is most affected by the geometry. A finite element model of the coiled cochlea is then used to calculate fluid coupling in this case, which has similar characteristics to the uncoiled model.
Edge-based finite element scheme for the Euler equations
NASA Astrophysics Data System (ADS)
Luo, Hong; Baum, Joseph D.; Loehner, Rainald
1994-06-01
This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of the upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.
Edge-based finite element scheme for the Euler equations
NASA Astrophysics Data System (ADS)
Luo, Hong; Baum, Joseph D.; Lohner, Rainald
1994-06-01
This paper describes the development, validation, and application of a new finite element scheme for the solution of the compressible Euler equations on unstructured grids. The implementation of the numerical scheme is based on an edge-based data structure, as opposed to a more traditional element-based data structure. The use of this edge-based data structure not only improves the efficiency of the algorithm but also enables a straightforward implementation of upwind schemes in the context of finite element methods. The algorithm has been tested and validated on some well-documented configurations. A flow solution about a complete F-18 fighter is shown to demonstrate the accuracy and robustness of the proposed algorithm.
Finite Volume Algorithms for Heat Conduction
2010-05-01
2010. TABLE OF CONTENTS Section Page 1.0 INTRODUCTION ...4 1.0 INTRODUCTION The transfer of heat has been of great interest within the engineering and scientific communities for...31 REFERENCES 1. Shames, Irving, Introduction to Solid Mechanics, Prentice Hall, Englewood Cliffs, N.J., 1975, pp.69-71
Modified finite-element model for application to terrain-induced mesoscale flows
Lee, R.L.; Leone, J.M. Jr.; Gresho, P.M.
1982-11-01
Terrain-induced mesoscale flows are localized atmospheric motions generated primarily by surface inhomogeneities such as differential heating and irregular terrain. Well-known examples of such flows are sea-and-land breeze circulations, mountain-valley flows, urban heat island circulations and mountain lee waves. A numerical model capable of capturing the details of these frequently complicated flow patterns must often contain a realistic and rather accurate representation of the relevant terrain. Over the last decade, mesoscale models have been developed in which various approaches were used to incorporate variable terrain. In this study, a somewhat unique approach, based on a modified finite element procedure, was used to solve the nonhydrostatic planetary boundary layer equations. The nonhydrostatic and finite element features of the model are particularly advantageous for modeling flows over complex topography. The numerical aspects of the model, the parameterizations currently used, and a few preliminary results are presented.
Finite Systems in a Heat Bath: Spectrum Perturbations and Thermodynamics.
de Miguel, Rodrigo; Rubi, J Miguel
2016-09-01
When a finite system is at equilibrium with a heat bath, the equilibrium temperature is dictated by the heat bath and not by the intrinsic thermostatistics of the finite system. If not sufficiently large, it may be necessary for the finite system to change its thermostatistics in order to be at equilibrium with the heat bath. We account for this process by invoking Landsberg's notion of temperature-dependent energy levels. We establish that the mismatch between the intrinsic temperature of the excited finite system and that of the heat bath drives a spectrum perturbation which enables thermal equilibrium. We show that the temperature-induced spectrum perturbation is equivalent to Hill's purely thermodynamic subdivision potential. The difference between intrinsic and equilibrium temperature provides us with a measure for how large a system can be before it no longer needs to be regarded as small. The theoretical framework proposed in this paper identifies the role of temperature in a bottom-up thermostatistical description of finite systems.
Hassanein, A.M.
1987-01-01
The time dependent heat conduction equation that is solved in different coordinate systems is solved subject to various boundary conditions. Boundary conditions include surface heat flux, energy to vaporization of target materials, radiation from surface to surrounding, and possible phase change of material. This system of equations is subject to two moving boundaries. One moving boundary being the melt-solid interface because the surface heat flux may result in melting the surface of the exposed material. Another moving boundary is the receding surface as a result of evaporation of the wall material due to the continuous heating of the melted surface. Finite difference and the finite element methods are used and compared in such solution to these problems. Physical applications to these problems include high energy deposition from electron or ion beams interaction with materials for space and weapons applications, plasma disruption and energy dump on the walls or components of a fusion reactor, and high energy laser welding and annealing of materials. 23 refs., 3 figs.
Finite element analysis of inviscid subsonic boattail flow
NASA Technical Reports Server (NTRS)
Chima, R. V.; Gerhart, P. M.
1981-01-01
A finite element code for analysis of inviscid subsonic flows over arbitrary nonlifting planar or axisymmetric bodies is described. The code solves a novel primitive variable formulation of the coupled irrotationality and compressible continuity equations. Results for flow over a cylinder, a sphere, and a NACA 0012 airfoil verify the code. Computed subcritical flows over an axisymmetric boattailed afterbody compare well with finite difference results and experimental data. Interative coupling with an integral turbulent boundary layer code shows strong viscous effects on the inviscid flow. Improvements in code efficiency and extensions to transonic flows are discussed.
Finite-size scaling for quantum criticality using the finite-element method.
Antillon, Edwin; Wehefritz-Kaufmann, Birgit; Kais, Sabre
2012-03-01
Finite size scaling for the Schrödinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite-element method was shown to be a powerful numerical method for ab initio electronic-structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite-element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, local density approximation, and an "exact" formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.
Finite element developments for two dimensional multiple-interface phase change problems
NASA Technical Reports Server (NTRS)
Ouyang, Tianhong; Tamma, Kumar K.
1992-01-01
Finite element developments for multiple phase change problems in two-dimensional models are presented for the first time. The enthalpy method is used to simulate latent heat release in conjunction with fixed grid techniques. An unconditionally stable implicit method is used for the time integration. The effects of boundary conditions and the different phase regions on the multiple phase front developments are examined for numerous examples. Discussions and conclusions are appropriately addressed.
A nonlinear viscoelastic finite element model of polyethylene.
Chen, P C; Colwell, C W; D'Lima, D D
2011-06-01
A nonlinear viscoelastic finite element model of ultra-high molecular weight polyethylene (UHMWPE) was developed in this study. Eight cylindrical specimens were machined from ram extruded UHMWPE bar stock (GUR 1020) and tested under constant compression at 7% strain for 100 sec. The stress strain data during the initial ramp up to 7% strain was utilized to model the "instantaneous" stress-strain response using a Mooney-Rivlin material model. The viscoelastic behavior was modeled using the time-dependent relaxation in stress seen after the initial maximum stress was achieved using a stored energy formulation. A cylindrical model of similar dimensions was created using a finite element analysis software program. The cylinder was made up of hexahedral elements, which were given the material properties utilizing the "instantaneous" stress-strain curve and the energy-relaxation curve obtained from the experimental data. The cylinder was compressed between two flat rigid bodies that simulated the fixtures of the testing machine. Experimental stress-relaxation, creep and dynamic testing data were then used to validate the model. The mean error for predicted versus experimental data for stress relaxation at different strain levels was 4.2%. The mean error for the creep test was 7% and for dynamic test was 5.4%. Finally, dynamic loading in a hip arthroplasty was modeled and validated experimentally with an error of 8%. This study establishes a working finite element material model of UHMWPE that can be utilized to simulate a variety of postoperative arthroplasty conditions.
Kharalkar, Nachiket M; Valvano, Jonathan W
2006-01-01
The objective of this research is to develop noninvasive techniques to determine thermal properties of layered biologic structures based on measurements from the surface. The self-heated thermistor technique is evaluated both numerically and experimentally. The finite element analyses, which confirm the experimental results, are used to study the temperature profiles occurring in the thermistor-tissue system. An in vitro tissue model was constructed by placing Teflon of varying thickness between the biologic tissue and the self-heated thermistor. The experiments were performed using two different-sized thermistors on six tissue samples. A self-heated thermistor was used to determine the thermal conductivity of tissue covered by a thin layer Teflon. The results from experimental data clearly indicate that this technique can penetrate below the thin layers of Teflon and thus is sensitive to the thermal properties of the underlying tissue. The factors which may introduce error in the experimental data are (i) poor thermal/physical contact between the thermistor probe and tissue sample, and (ii) water loss from tissue during the course of experimentation. The finite element analysis was used to simulate the experimental conditions and to calculate transient temperature profile generated by the thermistor bead. The results of finite element analysis are in accordance with the experimental data.
FECAP - FINITE ELEMENT COMPOSITE ANALYSIS PROGRAM FOR A MICROCOMPUTER
NASA Technical Reports Server (NTRS)
Bowles, D. E.
1994-01-01
Advanced composite materials have gained use in the aerospace industry over the last 20 years because of their high specific strength and stiffness, and low coefficient of thermal expansion. Design of composite structures requires the analysis of composite material behavior. The Finite Element Composite Analysis Program, FECAP, is a special purpose finite element analysis program for analyzing composite material behavior with a microcomputer. Composite materials, in regard to this program, are defined as the combination of at least two distinct materials to form one nonhomogeneous anisotropic material. FECAP assumes a state of generalized plane strain exists in a material consisting of two or more orthotropic phases, subjected to mechanical and/or thermal loading. The finite element formulation used in FECAP is displacement based and requires the minimization of the total potential energy for each element with respect to the unknown variables. This procedure leads to a set of linear simultaneous equations relating the unknown nodal displacements to the applied loads. The equations for each element are assembled into a global system, the boundary conditions are applied, and the system is solved for the nodal displacements. The analysis may be performed using either 4-mode linear or 8-mode quadratic isoparametric elements. Output includes the nodal displacements, and the element stresses and strains. FECAP was written for a Hewlett Packard HP9000 Series 200 Microcomputer with the HP Basic operating system. It was written in HP BASIC 3.0 and requires approximately 0.5 Mbytes of RAM in addition to what is required for the operating system. A math coprocessor card is highly recommended. FECAP was developed in 1988.
Microbuckle initiation in fibre composites : A finite element study
NASA Astrophysics Data System (ADS)
Fleck, Norman A.; Shu, John Y.
1995-12-01
A finite strain continuum theory is presented for unidirectional fibre reinforced composites under in-plane loading. The constitutive response is expressed in terms of couple stress theory, and is deduced from a unit cell of a linear elastic Timoshenko beam embedded in a non-linear elastic-plastic matrix. The continuum theory is implemented within a finite element framework and is used to analyse compressive failure of polymer matrix composites by fibre microbuckling. It is assumed that microbuckling initiates from an imperfection in the form of a finite elliptical region of fibre waviness. The calculations show that the compressive strength decreases with increasing imperfection spatial size from the elastic bifurcation value of Rosen (1965, Fibre Composite Materials, pp. 37-75, American Society Metals Seminar) to the imperfection-sensitive infinite band strength given by Fleck et al. [1995, J. Appl. Mech.62, 329-337.].
Finite element structural redesign by large admissible perturbations
NASA Technical Reports Server (NTRS)
Bernitsas, Michael M.; Beyko, E.; Rim, C. W.; Alzahabi, B.
1991-01-01
In structural redesign, two structural states are involved; the baseline (known) State S1 with unacceptable performance, and the objective (unknown) State S2 with given performance specifications. The difference between the two states in performance and design variables may be as high as 100 percent or more depending on the scale of the structure. A Perturbation Approach to Redesign (PAR) is presented to relate any two structural states S1 and S2 that are modeled by the same finite element model and represented by different values of the design variables. General perturbation equations are derived expressing implicitly the natural frequencies, dynamic modes, static deflections, static stresses, Euler buckling loads, and buckling modes of the objective S2 in terms of its performance specifications, and S1 data and Finite Element Analysis (FEA) results. Large Admissible Perturbation (LEAP) algorithms are implemented in code RESTRUCT to define the objective S2 incrementally without trial and error by postprocessing FEA results of S1 with no additional FEAs. Systematic numerical applications in redesign of a 10 element 48 degree of freedom (dof) beam, a 104 element 192 dof offshore tower, a 64 element 216 dof plate, and a 144 element 896 dof cylindrical shell show the accuracy, efficiency, and potential of PAR to find an objective state that may differ 100 percent from the baseline design.
Dynamic finite element implementation of nonlinear, anisotropic hyperelastic biological membranes.
Einstein, D R; Reinhall, P; Nicosia, M; Cochran, R P; Kunzelman, K
2003-02-01
We present a novel method for the implementation of hyperelastic finite strain, non-linear strain-energy functions for biological membranes in an explicit finite element environment. The technique is implemented in LS-DYNA but may also be implemented in any suitable non-linear explicit code. The constitutive equations are implemented on the foundation of a co-rotational uniformly reduced Hughes-Liu shell. This shell is based on an updated-Lagrangian formulation suitable for relating Cauchy stress to the rate-of-deformation, i.e. hypo-elasticity. To accommodate finite deformation hyper-elastic formulations, a co-rotational deformation gradient is assembled over time, resulting in a formulation suitable for pseudo-hyperelastic constitutive equations that are standard assumptions in biomechanics. Our method was validated by comparison with (1) an analytic solution to a spherically-symmetric dynamic membrane inflation problem, incorporating a Mooney-Rivlin hyperelastic equation and (2) with previously published finite element solutions to a non-linear transversely isotropic inflation problem. Finally, we implemented a transversely isotropic strain-energy function for mitral valve tissue. The method is simple and accurate and is believed to be generally useful for anyone who wishes to model biologic membranes with an experimentally driven strain-energy function.
NASA Astrophysics Data System (ADS)
Wang, W.; Regueiro, R. A.
2014-12-01
The coupling between multiphase flow, heat transfer, and poromechanics in fractured geomaterials has aroused great interest in the areas of geomechanics, geoenvironmental engineering, and petroleum engineering. Relevant applications include nuclear waste repositories, geological sequestration of CO2, geothermal systems, and exploitation of shale gas reservoirs. The paper presents a fully coupled thermo-poro-mechanical (TPM) cohesive interface element (CIE) model, which can represent fluid and heat flow along and across the fracture, and shear/normal deformation of the fracture surfaces. The proposed model is then applied to analyze two popular geological engineering problems using the finite element method (FEM) with a small strain formulation. The first application is the fracturing process in organic-rich shale due to heating. In the finite element analysis, multiple horizontal microcracks parallel to the bedding plane are assumed to preexist in the porous source rock, and are represented by coupled TPM cohesive interface elements. The porous bulk rock is assumed to be homogeneous, isotropic (for the time being, with transverse isotropy a natural extension), and linearly elastic. The excess pore fluid pressure, which mainly causes the development of the fractures, is actually induced by the rapid decomposition of organic matter during heating according to the literature. However, the involved complex chemical reaction process is beyond the scope of the paper, and is therefore substituted by a fluid injection process within the cracks under room temperature (25C) and high temperature (400C) in the paper. We investigate the fracture propagation due to pore fluid pressure increase and the development of fracture-induced permeability. The second application is a nuclear waste repository in a partially saturated fractured rock. Multiphase transport of moisture and heat, thermally-induced stress, as well as the change of fracture apertures are investigated due to short
Finite-element modelling of multilayer X-ray optics.
Cheng, Xianchao; Zhang, Lin
2017-05-01
Multilayer optical elements for hard X-rays are an attractive alternative to crystals whenever high photon flux and moderate energy resolution are required. Prediction of the temperature, strain and stress distribution in the multilayer optics is essential in designing the cooling scheme and optimizing geometrical parameters for multilayer optics. The finite-element analysis (FEA) model of the multilayer optics is a well established tool for doing so. Multilayers used in X-ray optics typically consist of hundreds of periods of two types of materials. The thickness of one period is a few nanometers. Most multilayers are coated on silicon substrates of typical size 60 mm × 60 mm × 100-300 mm. The high aspect ratio between the size of the optics and the thickness of the multilayer (10(7)) can lead to a huge number of elements for the finite-element model. For instance, meshing by the size of the layers will require more than 10(16) elements, which is an impossible task for present-day computers. Conversely, meshing by the size of the substrate will produce a too high element shape ratio (element geometry width/height > 10(6)), which causes low solution accuracy; and the number of elements is still very large (10(6)). In this work, by use of ANSYS layer-functioned elements, a thermal-structural FEA model has been implemented for multilayer X-ray optics. The possible number of layers that can be computed by presently available computers is increased considerably.
Parallel, adaptive finite element methods for conservation laws
NASA Technical Reports Server (NTRS)
Biswas, Rupak; Devine, Karen D.; Flaherty, Joseph E.
1994-01-01
We construct parallel finite element methods for the solution of hyperbolic conservation laws in one and two dimensions. Spatial discretization is performed by a discontinuous Galerkin finite element method using a basis of piecewise Legendre polynomials. Temporal discretization utilizes a Runge-Kutta method. Dissipative fluxes and projection limiting prevent oscillations near solution discontinuities. A posteriori estimates of spatial errors are obtained by a p-refinement technique using superconvergence at Radau points. The resulting method is of high order and may be parallelized efficiently on MIMD computers. We compare results using different limiting schemes and demonstrate parallel efficiency through computations on an NCUBE/2 hypercube. We also present results using adaptive h- and p-refinement to reduce the computational cost of the method.
Compatibility conditions of structural mechanics for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.
1990-01-01
The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.
A finite element model of ferroelectric/ferroelastic polycrystals
HWANG,STEPHEN C.; MCMEEKING,ROBERT M.
2000-02-17
A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.
Finite Element Analysis of Electrically Excited Quartz Tuning Fork Devices
Oria, Roger; Otero, Jorge; González, Laura; Botaya, Luis; Carmona, Manuel; Puig-Vidal, Manel
2013-01-01
Quartz Tuning Fork (QTF)-based Scanning Probe Microscopy (SPM) is an important field of research. A suitable model for the QTF is important to obtain quantitative measurements with these devices. Analytical models have the limitation of being based on the double cantilever configuration. In this paper, we present an electromechanical finite element model of the QTF electrically excited with two free prongs. The model goes beyond the state-of-the-art of numerical simulations currently found in the literature for this QTF configuration. We present the first numerical analysis of both the electrical and mechanical behavior of QTF devices. Experimental measurements obtained with 10 units of the same model of QTF validate the finite element model with a good agreement. PMID:23722828
Finite element calculation of residual stress in dental restorative material
NASA Astrophysics Data System (ADS)
Grassia, Luigi; D'Amore, Alberto
2012-07-01
A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.
An emulator for minimizing finite element analysis implementation resources
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Utku, S.; Salama, M.; Islam, M.
1982-01-01
A finite element analysis emulator providing a basis for efficiently establishing an optimum computer implementation strategy when many calculations are involved is described. The SCOPE emulator determines computer resources required as a function of the structural model, structural load-deflection equation characteristics, the storage allocation plan, and computer hardware capabilities. Thereby, it provides data for trading analysis implementation options to arrive at a best strategy. The models contained in SCOPE lead to micro-operation computer counts of each finite element operation as well as overall computer resource cost estimates. Application of SCOPE to the Memphis-Arkansas bridge analysis provides measures of the accuracy of resource assessments. Data indicate that predictions are within 17.3 percent for calculation times and within 3.2 percent for peripheral storage resources for the ELAS code.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1989-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
A weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1990-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Finite Element Modeling of Micromachined MEMS Photon Devices
Datskos, P.G.; Evans, B.M.; Schonberger, D.
1999-09-20
The technology of microelectronics that has evolved over the past half century is one of great power and sophistication and can now be extended to many applications (MEMS and MOEMS) other than electronics. An interesting application of MEMS quantum devices is the detection of electromagnetic radiation. The operation principle of MEMS quantum devices is based on the photoinduced stress in semiconductors, and the photon detection results from the measurement of the photoinduced bending. These devices can be described as micromechanical photon detectors. In this work, we have developed a technique for simulating electronic stresses using finite element analysis. We have used our technique to model the response of micromechanical photon devices to external stimuli and compared these results with experimental data. Material properties, geometry, and bimaterial design play an important role in the performance of micromechanical photon detectors. We have modeled these effects using finite element analysis and included the effects of bimaterial thickness coating, effective length of the device, width, and thickness.
Compatibility conditions of structural mechanics for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Berke, L.; Gallagher, R. H.
1991-01-01
The equilibrium equations and the compatibility conditions are fundamental to the analyses of structures. However, anyone who undertakes even a cursory generic study of the compatibility conditions can discover, with little effort, that historically this facet of structural mechanics had not been adequately researched by the profession. Now the compatibility conditions (CC's) have been researched and are understood to a great extent. For finite element discretizations, the CC's are banded and can be divided into three distinct categories: (1) the interface CC's; (2) the cluster or field CC's; and (3) the external CC's. The generation of CC's requires the separating of a local region, then writing the deformation displacement relation (ddr) for the region, and finally, the eliminating of the displacements from the ddr. The procedure to generate all three types of CC's is presented and illustrated through examples of finite element models. The uniqueness of the CC's thus generated is shown.
An emulator for minimizing finite element analysis implementation resources
NASA Technical Reports Server (NTRS)
Melosh, R. J.; Utku, S.; Salama, M.; Islam, M.
1982-01-01
A finite element analysis emulator providing a basis for efficiently establishing an optimum computer implementation strategy when many calculations are involved is described. The SCOPE emulator determines computer resources required as a function of the structural model, structural load-deflection equation characteristics, the storage allocation plan, and computer hardware capabilities. Thereby, it provides data for trading analysis implementation options to arrive at a best strategy. The models contained in SCOPE lead to micro-operation computer counts of each finite element operation as well as overall computer resource cost estimates. Application of SCOPE to the Memphis-Arkansas bridge analysis provides measures of the accuracy of resource assessments. Data indicate that predictions are within 17.3 percent for calculation times and within 3.2 percent for peripheral storage resources for the ELAS code.
Finite element analysis applied to dentoalveolar trauma: methodology description.
da Silva, B R; Moreira Neto, J J S; da Silva, F I; de Aguiar, A S W
2011-01-01
Dentoalveolar traumatic injuries are among the clinical conditions most frequently treated in dental practice. However, few studies so far have addressed the biomechanical aspects of these events, probably as a result of difficulties in carrying out satisfactory experimental and clinical studies as well as the unavailability of truly scientific methodologies. The aim of this paper was to describe the use of finite element analysis applied to the biomechanical evaluation of dentoalveolar trauma. For didactic purposes, the methodological process was divided into steps that go from the creation of a geometric model to the evaluation of final results, always with a focus on methodological characteristics, advantages, and disadvantages, so as to allow the reader to customize the methodology according to specific needs. Our description shows that the finite element method can faithfully reproduce dentoalveolar trauma, provided the methodology is closely followed and thoroughly evaluated.
Finite Element Analysis Applied to Dentoalveolar Trauma: Methodology Description
da Silva, B. R.; Moreira Neto, J. J. S.; da Silva, F. I.; de Aguiar, A. S. W.
2011-01-01
Dentoalveolar traumatic injuries are among the clinical conditions most frequently treated in dental practice. However, few studies so far have addressed the biomechanical aspects of these events, probably as a result of difficulties in carrying out satisfactory experimental and clinical studies as well as the unavailability of truly scientific methodologies. The aim of this paper was to describe the use of finite element analysis applied to the biomechanical evaluation of dentoalveolar trauma. For didactic purposes, the methodological process was divided into steps that go from the creation of a geometric model to the evaluation of final results, always with a focus on methodological characteristics, advantages, and disadvantages, so as to allow the reader to customize the methodology according to specific needs. Our description shows that the finite element method can faithfully reproduce dentoalveolar trauma, provided the methodology is closely followed and thoroughly evaluated. PMID:21991463
Surface subsidence prediction by nonlinear finite-element analysis
Najjar, Y. . Dept. of Civil Engineering); Zaman, M. . School of Civil Engineering and Environmental Science)
1993-11-01
An improved two-dimensional plane-strain numerical procedure based on the incremental-iterative nonlinear finite-element is developed to predict ground subsidence caused by underground mining. The procedure emphasizes the use of the following features: (1) an appropriate constitutive model that can accurately describe the nonlinear behavior of geological strata; and (2) an accurate algorithm for simulation of excavation sequences consistent with the actual underground mining process. The computer code is used to analyze a collapse that occurred in the Blue Goose Lease [number sign]1 Mine in northeastern Oklahoma. A parametric study is conducted to investigate the effects of some selected factors on the shape and extent of subsidence profiles. Analyses of the numerical results indicate that the nonlinear finite-element technique can be employed to meaningfully predict and characterize the potential for ground subsidence due to underground mining.
Design Optimization of Coronary Stent Based on Finite Element Models
Qiu, Tianshuang; Zhu, Bao; Wu, Jinying
2013-01-01
This paper presents an effective optimization method using the Kriging surrogate model combing with modified rectangular grid sampling to reduce the stent dogboning effect in the expansion process. An infilling sampling criterion named expected improvement (EI) is used to balance local and global searches in the optimization iteration. Four commonly used finite element models of stent dilation were used to investigate stent dogboning rate. Thrombosis models of three typical shapes are built to test the effectiveness of optimization results. Numerical results show that two finite element models dilated by pressure applied inside the balloon are available, one of which with the artery and plaque can give an optimal stent with better expansion behavior, while the artery and plaque unincluded model is more efficient and takes a smaller amount of computation. PMID:24222743
Weak Hamiltonian finite element method for optimal control problems
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Bless, Robert R.
1991-01-01
A temporal finite element method based on a mixed form of the Hamiltonian weak principle is developed for dynamics and optimal control problems. The mixed form of Hamilton's weak principle contains both displacements and momenta as primary variables that are expanded in terms of nodal values and simple polynomial shape functions. Unlike other forms of Hamilton's principle, however, time derivatives of the momenta and displacements do not appear therein; instead, only the virtual momenta and virtual displacements are differentiated with respect to time. Based on the duality that is observed to exist between the mixed form of Hamilton's weak principle and variational principles governing classical optimal control problems, a temporal finite element formulation of the latter can be developed in a rather straightforward manner. Several well-known problems in dynamics and optimal control are illustrated. The example dynamics problem involves a time-marching problem. As optimal control examples, elementary trajectory optimization problems are treated.
Pavement nondestructive evaluation using finite-element dynamic simulation
NASA Astrophysics Data System (ADS)
Uddin, W.; Hackett, R. M.
1996-11-01
This paper describes the nondestructive evaluation devices, visual distress survey and coring used to investigate jointed concrete pavement performance in northern Mississippi. 3D finite-element models were developed to simulate in-service conditions and to characterize in-situ material properties. Reasonable good agreement is found between in-situ moduli backcalculated from the dynamic analysis of falling weight deflectometer (FWD) deflections measured on selected pavements and laboratory moduli. Effects of load pulse shape, cracking, and discontinuities on the surface deflection response of pavements subjected to FWD load wee also investigated. It is shown that 3D analysis of temperature distribution and resulting thermal stresses play a significant role int he performance of concrete pavements. The study results demonstrated the extensive usefulness of the finite-element dynamic analysis and limitations of the static multilayered analysis and other pavement analysis programs which do not allow for crack modeling and dynamic analysis.
Cyclic creep analysis from elastic finite-element solutions
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hwang, S. Y.
1986-01-01
A uniaxial approach was developed for calculating cyclic creep and stress relaxation at the critical location of a structure subjected to cyclic thermomechanical loading. This approach was incorporated into a simplified analytical procedure for predicting the stress-strain history at a crack initiation site for life prediction purposes. An elastic finite-element solution for the problem was used as input for the simplified procedure. The creep analysis includes a self-adaptive time incrementing scheme. Cumulative creep is the sum of the initial creep, the recovery from the stress relaxation and the incremental creep. The simplified analysis was exercised for four cases involving a benchmark notched plate problem. Comparisons were made with elastic-plastic-creep solutions for these cases using the MARC nonlinear finite-element computer code.