Using Finite Element Method to Estimate the Material Properties of a Bearing Cage
2018-02-01
UNCLASSIFIED UNCLASSIFIED AD-E403 988 Technical Report ARMET-TR-17035 USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL...TITLE AND SUBTITLE USING FINITE ELEMENT METHOD TO ESTIMATE THE MATERIAL PROPERTIES OF A BEARING CAGE 5a. CONTRACT NUMBER 5b. GRANT...specifications of non-metallic bearing cages are typically not supplied by the manufacturer. In order to setup a finite element analysis of a
Global-Local Finite Element Analysis of Bonded Single-Lap Joints
NASA Technical Reports Server (NTRS)
Kilic, Bahattin; Madenci, Erdogan; Ambur, Damodar R.
2004-01-01
Adhesively bonded lap joints involve dissimilar material junctions and sharp changes in geometry, possibly leading to premature failure. Although the finite element method is well suited to model the bonded lap joints, traditional finite elements are incapable of correctly resolving the stress state at junctions of dissimilar materials because of the unbounded nature of the stresses. In order to facilitate the use of bonded lap joints in future structures, this study presents a finite element technique utilizing a global (special) element coupled with traditional elements. The global element includes the singular behavior at the junction of dissimilar materials with or without traction-free surfaces.
Second order tensor finite element
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, J.; Berry, C.; Tworzydlo, W.; Vadaketh, S.; Bass, J.
1990-01-01
The results of a research and software development effort are presented for the finite element modeling of the static and dynamic behavior of anisotropic materials, with emphasis on single crystal alloys. Various versions of two dimensional and three dimensional hybrid finite elements were implemented and compared with displacement-based elements. Both static and dynamic cases are considered. The hybrid elements developed in the project were incorporated into the SPAR finite element code. In an extension of the first phase of the project, optimization of experimental tests for anisotropic materials was addressed. In particular, the problem of calculating material properties from tensile tests and of calculating stresses from strain measurements were considered. For both cases, numerical procedures and software for the optimization of strain gauge and material axes orientation were developed.
Studies of finite element analysis of composite material structures
NASA Technical Reports Server (NTRS)
Douglas, D. O.; Holzmacher, D. E.; Lane, Z. C.; Thornton, E. A.
1975-01-01
Research in the area of finite element analysis is summarized. Topics discussed include finite element analysis of a picture frame shear test, BANSAP (a bandwidth reduction program for SAP IV), FEMESH (a finite element mesh generation program based on isoparametric zones), and finite element analysis of a composite bolted joint specimens.
Nikkhoo, Mohammad; Hsu, Yu-Chun; Haghpanahi, Mohammad; Parnianpour, Mohamad; Wang, Jaw-Lin
2013-06-01
Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The meta-model analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the anulus fibrosus and nucleus pulposus is critical for the quality of the simulation. We developed a material property updating protocol, which is basically a fitting algorithm consisted of finite element simulations and a quadratic response surface regression. This protocol was used to find the material properties, such as the hydraulic permeability, elastic modulus, and Poisson's ratio, of intact and degenerated porcine discs. The results showed that the in vitro disc experimental deformations were well fitted with limited finite element simulations and a quadratic response surface regression. The comparison of material properties of intact and degenerated discs showed that the hydraulic permeability significantly decreased but Poisson's ratio significantly increased for the degenerated discs. This study shows that the developed protocol is efficient and effective in defining material properties of a complex structure such as the intervertebral disc.
Vande Geest, Jonathan P; Simon, B R; Rigby, Paul H; Newberg, Tyler P
2011-04-01
Finite element models (FEMs) including characteristic large deformations in highly nonlinear materials (hyperelasticity and coupled diffusive/convective transport of neutral mobile species) will allow quantitative study of in vivo tissues. Such FEMs will provide basic understanding of normal and pathological tissue responses and lead to optimization of local drug delivery strategies. We present a coupled porohyperelastic mass transport (PHEXPT) finite element approach developed using a commercially available ABAQUS finite element software. The PHEXPT transient simulations are based on sequential solution of the porohyperelastic (PHE) and mass transport (XPT) problems where an Eulerian PHE FEM is coupled to a Lagrangian XPT FEM using a custom-written FORTRAN program. The PHEXPT theoretical background is derived in the context of porous media transport theory and extended to ABAQUS finite element formulations. The essential assumptions needed in order to use ABAQUS are clearly identified in the derivation. Representative benchmark finite element simulations are provided along with analytical solutions (when appropriate). These simulations demonstrate the differences in transient and steady state responses including finite deformations, total stress, fluid pressure, relative fluid, and mobile species flux. A detailed description of important model considerations (e.g., material property functions and jump discontinuities at material interfaces) is also presented in the context of finite deformations. The ABAQUS-based PHEXPT approach enables the use of the available ABAQUS capabilities (interactive FEM mesh generation, finite element libraries, nonlinear material laws, pre- and postprocessing, etc.). PHEXPT FEMs can be used to simulate the transport of a relatively large neutral species (negligible osmotic fluid flux) in highly deformable hydrated soft tissues and tissue-engineered materials.
Establishing the 3-D finite element solid model of femurs in partial by volume rendering.
Zhang, Yinwang; Zhong, Wuxue; Zhu, Haibo; Chen, Yun; Xu, Lingjun; Zhu, Jianmin
2013-01-01
It remains rare to report three-dimensional (3-D) finite element solid model of femurs in partial by volume rendering method, though several methods of femoral 3-D finite element modeling are already available. We aim to analyze the advantages of the modeling method by establishing the 3-D finite element solid model of femurs in partial by volume rendering. A 3-D finite element model of the normal human femurs, made up of three anatomic structures: cortical bone, cancellous bone and pulp cavity, was constructed followed by pretreatment of the CT original image. Moreover, the finite-element analysis was carried on different material properties, three types of materials given for cortical bone, six assigned for cancellous bone, and single for pulp cavity. The established 3-D finite element of femurs contains three anatomical structures: cortical bone, cancellous bone, and pulp cavity. The compressive stress primarily concentrated in the medial surfaces of femur, especially in the calcar femorale. Compared with whole modeling by volume rendering method, the 3-D finite element solid model created in partial is more real and fit for finite element analysis. Copyright © 2013 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.
Nonlinear solid finite element analysis of mitral valves with heterogeneous leaflet layers
NASA Astrophysics Data System (ADS)
Prot, V.; Skallerud, B.
2009-02-01
An incompressible transversely isotropic hyperelastic material for solid finite element analysis of a porcine mitral valve response is described. The material model implementation is checked in single element tests and compared with a membrane implementation in an out-of-plane loading test to study how the layered structures modify the stress response for a simple geometry. Three different collagen layer arrangements are used in finite element analysis of the mitral valve. When the leaflets are arranged in two layers with the collagen on the ventricular side, the stress in the fibre direction through the thickness in the central part of the anterior leaflet is homogenized and the peak stress is reduced. A simulation using membrane elements is also carried out for comparison with the solid finite element results. Compared to echocardiographic measurements, the finite element models bulge too much in the left atrium. This may be due to evidence of active muscle fibres in some parts of the anterior leaflet, whereas our constitutive modelling is based on passive material.
The Elastic Behaviour of Sintered Metallic Fibre Networks: A Finite Element Study by Beam Theory
Bosbach, Wolfram A.
2015-01-01
Background The finite element method has complimented research in the field of network mechanics in the past years in numerous studies about various materials. Numerical predictions and the planning efficiency of experimental procedures are two of the motivational aspects for these numerical studies. The widespread availability of high performance computing facilities has been the enabler for the simulation of sufficiently large systems. Objectives and Motivation In the present study, finite element models were built for sintered, metallic fibre networks and validated by previously published experimental stiffness measurements. The validated models were the basis for predictions about so far unknown properties. Materials and Methods The finite element models were built by transferring previously published skeletons of fibre networks into finite element models. Beam theory was applied as simplification method. Results and Conclusions The obtained material stiffness isn’t a constant but rather a function of variables such as sample size and boundary conditions. Beam theory offers an efficient finite element method for the simulated fibre networks. The experimental results can be approximated by the simulated systems. Two worthwhile aspects for future work will be the influence of size and shape and the mechanical interaction with matrix materials. PMID:26569603
NASA Technical Reports Server (NTRS)
Lang, Christapher G.; Bey, Kim S. (Technical Monitor)
2002-01-01
This research investigates residual-based a posteriori error estimates for finite element approximations of heat conduction in single-layer and multi-layered materials. The finite element approximation, based upon hierarchical modelling combined with p-version finite elements, is described with specific application to a two-dimensional, steady state, heat-conduction problem. Element error indicators are determined by solving an element equation for the error with the element residual as a source, and a global error estimate in the energy norm is computed by collecting the element contributions. Numerical results of the performance of the error estimate are presented by comparisons to the actual error. Two methods are discussed and compared for approximating the element boundary flux. The equilibrated flux method provides more accurate results for estimating the error than the average flux method. The error estimation is applied to multi-layered materials with a modification to the equilibrated flux method to approximate the discontinuous flux along a boundary at the material interfaces. A directional error indicator is developed which distinguishes between the hierarchical modeling error and the finite element error. Numerical results are presented for single-layered materials which show that the directional indicators accurately determine which contribution to the total error dominates.
Finite element modelling of aluminum alloy 2024-T3 under transverse impact loading
NASA Astrophysics Data System (ADS)
Abdullah, Ahmad Sufian; Kuntjoro, Wahyu; Yamin, A. F. M.
2017-12-01
Fiber metal laminate named GLARE is a new aerospace material which has great potential to be widely used in future lightweight aircraft. It consists of aluminum alloy 2024-T3 and glass-fiber reinforced laminate. In order to produce reliable finite element model of impact response or crashworthiness of structure made of GLARE, one can initially model and validate the finite element model of the impact response of its constituents separately. The objective of this study was to develop a reliable finite element model of aluminum alloy 2024-T3 under low velocity transverse impact loading using commercial software ABAQUS. Johnson-Cook plasticity and damage models were used to predict the alloy's material properties and impact behavior. The results of the finite element analysis were compared to the experiment that has similar material and impact conditions. Results showed good correlations in terms of impact forces, deformation and failure progressions which concluded that the finite element model of 2024-T3 aluminum alloy under low velocity transverse impact condition using Johnson-Cook plastic and damage models was reliable.
NASA Astrophysics Data System (ADS)
Singh, Gurdeep; Saxena, Ravindra K.; Pandey, Sunil
2018-04-01
The aim of this study to developed a 3-D thermal finite element model for dissimilar material welding of AISI-304 stainless steel and copper. Welding of similar material is widely studied using experimental and numerical methods but the problem becomes trivial for the welding of dissimilar materials especially in ferrous and nonferrous materials. Finite element analysis of dissimilar material welding is a cost-effective method for the understanding and analysis of the process. The finite element analysis has been performed to predict the heat affected zone and temperature distribution in AISI-304 stainless steel and copper dissimilar weldment using MSC Marc 2017®. Due to the difference in physical properties of these materials the behavior of heat affected zone and temperature distribution are perceived to be different. To verify the accuracy of the thermal finite element model, the welding process was simulated with butt-welded joints having same dimensions and parameters from Attarha and Far [1]. It is found from the study that the heat affected zone is larger in copper weld pads than in AISI 304 stainless steel due to large difference in thermal conductivity of these two weld pads.
NASA Astrophysics Data System (ADS)
Lossa, Geoffrey; Deblecker, Olivier; Grève, Zacharie De
2018-05-01
In this work, we highlight the influence of the material uncertainties (magnetic permeability, electric conductivity of a Mn-Zn ferrite core, and electric permittivity of wire insulation) on the RLC parameters of a wound inductor extracted from the finite element method. To that end, the finite element method is embedded in a Monte Carlo simulation. We show that considering mentioned different material properties as real random variables, leads to significant variations in the distributions of the RLC parameters.
Numerical Assessment of Rockbursting.
1987-05-27
static equilibrium, nonlinear elasticity, strain-softening • material , unstable propagation of pre-existing cracks , and finally - surface...structure of LINOS, which is common to most of the large finite element codes, the library of element and material subroutines can be easily expanded... material model subroutines , are tested by comparing finite element results with analytical or numerical results derived for hypo-elastic and
Shear-flexible finite-element models of laminated composite plates and shells
NASA Technical Reports Server (NTRS)
Noor, A. K.; Mathers, M. D.
1975-01-01
Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters.
Structural Acoustic Physics Based Modeling of Curved Composite Shells
2017-09-19
Results show that the finite element computational models accurately match analytical calculations, and that the composite material studied in this...products. 15. SUBJECT TERMS Finite Element Analysis, Structural Acoustics, Fiber-Reinforced Composites, Physics-Based Modeling 16. SECURITY...2 4 FINITE ELEMENT MODEL DESCRIPTION
Finite Element Analysis of a Dynamically Loaded Flat Laminated Plate
1980-07-01
and the elements are stacked in the thickness direction to represent various material layers. This analysis allows for orthotropic, elastic- plastic or...INCREMENTS 27 V. PLASTICITY 34 Orthotropic Elastic- Plastic Yielding 34 Orthotropic Elastic-Viscoplastic Yielding 37 VI. ELEMENT EQUILIBRIUM...with time, consequently the materials are assumed to be represented by elastic- plastic and elastic-viscoplastic models. The finite element model
Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F
2015-08-01
Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Verification of a Finite Element Model for Pyrolyzing Ablative Materials
NASA Technical Reports Server (NTRS)
Risch, Timothy K.
2017-01-01
Ablating thermal protection system (TPS) materials have been used in many reentering spacecraft and in other applications such as rocket nozzle linings, fire protection materials, and as countermeasures for directed energy weapons. The introduction of the finite element model to the analysis of ablation has arguably resulted in improved computational capabilities due the flexibility and extended applicability of the method, especially to complex geometries. Commercial finite element codes often provide enhanced capability compared to custom, specially written programs based on versatility, usability, pre- and post-processing, grid generation, total life-cycle costs, and speed.
Nonlinear finite element modeling of corrugated board
A. C. Gilchrist; J. C. Suhling; T. J. Urbanik
1999-01-01
In this research, an investigation on the mechanical behavior of corrugated board has been performed using finite element analysis. Numerical finite element models for corrugated board geometries have been created and executed. Both geometric (large deformation) and material nonlinearities were included in the models. The analyses were performed using the commercial...
A 3/D finite element approach for metal matrix composites based on micromechanical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less
Finite element calculation of residual stress in dental restorative material
NASA Astrophysics Data System (ADS)
Grassia, Luigi; D'Amore, Alberto
2012-07-01
A finite element methodology for residual stresses calculation in dental restorative materials is proposed. The material under concern is a multifunctional methacrylate-based composite for dental restorations, activated by visible light. Reaction kinetics, curing shrinkage, and viscoelastic relaxation functions were required as input data on a structural finite element solver. Post cure effects were considered in order to quantify the residual stresses coming out from natural contraction with respect to those debited to the chemical shrinkage. The analysis showed for a given test case that residual stresses frozen in the dental restoration at uniform temperature of 37°C are of the same order of magnitude of the strength of the dental composite material per se.
NASA Technical Reports Server (NTRS)
Noor, A. K. (Editor); Hayduk, R. J. (Editor)
1985-01-01
Among the topics discussed are developments in structural engineering hardware and software, computation for fracture mechanics, trends in numerical analysis and parallel algorithms, mechanics of materials, advances in finite element methods, composite materials and structures, determinations of random motion and dynamic response, optimization theory, automotive tire modeling methods and contact problems, the damping and control of aircraft structures, and advanced structural applications. Specific topics covered include structural design expert systems, the evaluation of finite element system architectures, systolic arrays for finite element analyses, nonlinear finite element computations, hierarchical boundary elements, adaptive substructuring techniques in elastoplastic finite element analyses, automatic tracking of crack propagation, a theory of rate-dependent plasticity, the torsional stability of nonlinear eccentric structures, a computation method for fluid-structure interaction, the seismic analysis of three-dimensional soil-structure interaction, a stress analysis for a composite sandwich panel, toughness criterion identification for unidirectional composite laminates, the modeling of submerged cable dynamics, and damping synthesis for flexible spacecraft structures.
Finite element modeling of truss structures with frequency-dependent material damping
NASA Technical Reports Server (NTRS)
Lesieutre, George A.
1991-01-01
A physically motivated modelling technique for structural dynamic analysis that accommodates frequency dependent material damping was developed. Key features of the technique are the introduction of augmenting thermodynamic fields (AFT) to interact with the usual mechanical displacement field, and the treatment of the resulting coupled governing equations using finite element analysis methods. The AFT method is fully compatible with current structural finite element analysis techniques. The method is demonstrated in the dynamic analysis of a 10-bay planar truss structure, a structure representative of those contemplated for use in future space systems.
Finite Element Models and Properties of a Stiffened Floor-Equipped Composite Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.
2010-01-01
Finite element models were developed of a floor-equipped, frame and stringer stiffened composite cylinder including a coarse finite element model of the structural components, a coarse finite element model of the acoustic cavities above and below the beam-supported plywood floor, and two dense models consisting of only the structural components. The report summarizes the geometry, the element properties, the material and mechanical properties, the beam cross-section characteristics, the beam element representations and the boundary conditions of the composite cylinder models. The expressions used to calculate the group speeds for the cylinder components are presented.
NASA Technical Reports Server (NTRS)
Saleeb, A. F.; Chang, T. Y. P.; Wilt, T.; Iskovitz, I.
1989-01-01
The research work performed during the past year on finite element implementation and computational techniques pertaining to high temperature composites is outlined. In the present research, two main issues are addressed: efficient geometric modeling of composite structures and expedient numerical integration techniques dealing with constitutive rate equations. In the first issue, mixed finite elements for modeling laminated plates and shells were examined in terms of numerical accuracy, locking property and computational efficiency. Element applications include (currently available) linearly elastic analysis and future extension to material nonlinearity for damage predictions and large deformations. On the material level, various integration methods to integrate nonlinear constitutive rate equations for finite element implementation were studied. These include explicit, implicit and automatic subincrementing schemes. In all cases, examples are included to illustrate the numerical characteristics of various methods that were considered.
Plane stress analysis of wood members using isoparametric finite elements, a computer program
Gary D. Gerhardt
1983-01-01
A finite element program is presented which computes displacements, strains, and stresses in wood members of arbitrary shape which are subjected to plane strain/stressloading conditions. This report extends a program developed by R. L. Taylor in 1977, by adding both the cubic isoparametric finite element and the capability to analyze nonisotropic materials. The...
Nonlocal and Mixed-Locality Multiscale Finite Element Methods
Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.
2018-03-27
In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less
Nonlocal and Mixed-Locality Multiscale Finite Element Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Timothy B.; Bond, Stephen D.; Littlewood, David J.
In many applications the resolution of small-scale heterogeneities remains a significant hurdle to robust and reliable predictive simulations. In particular, while material variability at the mesoscale plays a fundamental role in processes such as material failure, the resolution required to capture mechanisms at this scale is often computationally intractable. Multiscale methods aim to overcome this difficulty through judicious choice of a subscale problem and a robust manner of passing information between scales. One promising approach is the multiscale finite element method, which increases the fidelity of macroscale simulations by solving lower-scale problems that produce enriched multiscale basis functions. Here, inmore » this study, we present the first work toward application of the multiscale finite element method to the nonlocal peridynamic theory of solid mechanics. This is achieved within the context of a discontinuous Galerkin framework that facilitates the description of material discontinuities and does not assume the existence of spatial derivatives. Analysis of the resulting nonlocal multiscale finite element method is achieved using the ambulant Galerkin method, developed here with sufficient generality to allow for application to multiscale finite element methods for both local and nonlocal models that satisfy minimal assumptions. Finally, we conclude with preliminary results on a mixed-locality multiscale finite element method in which a nonlocal model is applied at the fine scale and a local model at the coarse scale.« less
Factors Influencing Progressive Failure Analysis Predictions for Laminated Composite Structure
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2008-01-01
Progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model for use with a nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details are described in the present paper. Parametric studies for laminated composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented and to demonstrate their influence on progressive failure analysis predictions.
Probabilistic finite elements for fracture mechanics
NASA Technical Reports Server (NTRS)
Besterfield, Glen
1988-01-01
The probabilistic finite element method (PFEM) is developed for probabilistic fracture mechanics (PFM). A finite element which has the near crack-tip singular strain embedded in the element is used. Probabilistic distributions, such as expectation, covariance and correlation stress intensity factors, are calculated for random load, random material and random crack length. The method is computationally quite efficient and can be expected to determine the probability of fracture or reliability.
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.
2017-01-01
This research presents the new size-dependent models of piezoelectric materials oriented to finite element applications. The proposed models include the facilities of taking into account different mechanisms of damping for mechanical and electric fields. The coupled models also incorporate the equations of the theory of acoustics for viscous fluids. In particular cases, these models permit to use the mode superposition method with full separation of the finite element systems into independent equations for the independent modes for transient and harmonic problems. The main boundary conditions were supplemented with the facilities of taking into account the coupled surface effects, allowing to explore the nanoscale piezoelectric materials in the framework of theories of continuous media with surface stresses and their generalizations. For the considered problems we have implemented the finite element technologies and various numerical algorithms to maintain a symmetrical structure of the finite element quasi-definite matrices (matrix structure for the problems with a saddle point).
Plasticity - Theory and finite element applications.
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H. S.
1972-01-01
A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.
User-defined Material Model for Thermo-mechanical Progressive Failure Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F., Jr.
2008-01-01
Previously a user-defined material model for orthotropic bimodulus materials was developed for linear and nonlinear stress analysis of composite structures using either shell or solid finite elements within a nonlinear finite element analysis tool. Extensions of this user-defined material model to thermo-mechanical progressive failure analysis are described, and the required input data are documented. The extensions include providing for temperature-dependent material properties, archival of the elastic strains, and a thermal strain calculation for materials exhibiting a stress-free temperature.
Applications of discrete element method in modeling of grain postharvest operations
USDA-ARS?s Scientific Manuscript database
Grain kernels are finite and discrete materials. Although flowing grain can behave like a continuum fluid at times, the discontinuous behavior exhibited by grain kernels cannot be simulated solely with conventional continuum-based computer modeling such as finite-element or finite-difference methods...
Material Models and Properties in the Finite Element Analysis of Knee Ligaments: A Literature Review
Galbusera, Fabio; Freutel, Maren; Dürselen, Lutz; D’Aiuto, Marta; Croce, Davide; Villa, Tomaso; Sansone, Valerio; Innocenti, Bernardo
2014-01-01
Knee ligaments are elastic bands of soft tissue with a complex microstructure and biomechanics, which are critical to determine the kinematics as well as the stress bearing behavior of the knee joint. Their correct implementation in terms of material models and properties is therefore necessary in the development of finite element models of the knee, which has been performed for decades for the investigation of both its basic biomechanics and the development of replacement implants and repair strategies for degenerative and traumatic pathologies. Indeed, a wide range of element types and material models has been used to represent knee ligaments, ranging from elastic unidimensional elements to complex hyperelastic three-dimensional structures with anatomically realistic shapes. This paper systematically reviews literature studies, which described finite element models of the knee, and summarizes the approaches, which have been used to model the ligaments highlighting their strengths and weaknesses. PMID:25478560
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
NASA Technical Reports Server (NTRS)
Averill, Ronald C.
2002-01-01
An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.
Nanoengineering Testbed for Nanosolar Cell and Piezoelectric Compounds
2012-02-29
element mesh. The third model was a 3D finite element mesh that included complete geometric representation of Berkovich tip. This model allows for a...height of the specimen. These simulations suggest the proper specimen size to approximate a body of semi-infinite extent for a given indentation depth...tip nanoindentation model was the third and final finite element mesh created for analysis and comparison. The material model and the finite element
User-Defined Material Model for Progressive Failure Analysis
NASA Technical Reports Server (NTRS)
Knight, Norman F. Jr.; Reeder, James R. (Technical Monitor)
2006-01-01
An overview of different types of composite material system architectures and a brief review of progressive failure material modeling methods used for structural analysis including failure initiation and material degradation are presented. Different failure initiation criteria and material degradation models are described that define progressive failure formulations. These progressive failure formulations are implemented in a user-defined material model (or UMAT) for use with the ABAQUS/Standard1 nonlinear finite element analysis tool. The failure initiation criteria include the maximum stress criteria, maximum strain criteria, the Tsai-Wu failure polynomial, and the Hashin criteria. The material degradation model is based on the ply-discounting approach where the local material constitutive coefficients are degraded. Applications and extensions of the progressive failure analysis material model address two-dimensional plate and shell finite elements and three-dimensional solid finite elements. Implementation details and use of the UMAT subroutine are described in the present paper. Parametric studies for composite structures are discussed to illustrate the features of the progressive failure modeling methods that have been implemented.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism.
Liu, Donghuan; Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model.
Numerical simulation of high-temperature thermal contact resistance and its reduction mechanism
Zhang, Jing
2018-01-01
High-temperature thermal contact resistance (TCR) plays an important role in heat-pipe-cooled thermal protection structures due to the existence of contact interface between the embedded heat pipe and the heat resistive structure, and the reduction mechanism of thermal contact resistance is of special interests in the design of such structures. The present paper proposed a finite element model of the high-temperature thermal contact resistance based on the multi-point contact model with the consideration of temperature-dependent material properties, heat radiation through the cavities at the interface and the effect of thermal interface material (TIM), and the geometry parameters of the finite element model are determined by simple surface roughness test and experimental data fitting. The experimental results of high-temperature thermal contact resistance between superalloy GH600 and C/C composite material are employed to validate the present finite element model. The effect of the crucial parameters on the thermal contact resistance with and without TIM are also investigated with the proposed finite element model. PMID:29547651
NASA Technical Reports Server (NTRS)
Dorris, William J.; Hairr, John W.; Huang, Jui-Tien; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
Non-linear analysis methods were adapted and incorporated in a finite element based DIAL code. These methods are necessary to evaluate the global response of a stiffened structure under combined in-plane and out-of-plane loading. These methods include the Arc Length method and target point analysis procedure. A new interface material model was implemented that can model elastic-plastic behavior of the bond adhesive. Direct application of this method is in skin/stiffener interface failure assessment. Addition of the AML (angle minus longitudinal or load) failure procedure and Hasin's failure criteria provides added capability in the failure predictions. Interactive Stiffened Panel Analysis modules were developed as interactive pre-and post-processors. Each module provides the means of performing self-initiated finite elements based analysis of primary structures such as a flat or curved stiffened panel; a corrugated flat sandwich panel; and a curved geodesic fuselage panel. This module brings finite element analysis into the design of composite structures without the requirement for the user to know much about the techniques and procedures needed to actually perform a finite element analysis from scratch. An interactive finite element code was developed to predict bolted joint strength considering material and geometrical non-linearity. The developed method conducts an ultimate strength failure analysis using a set of material degradation models.
Dong, Jing; Zhang, Zhe-chen; Zhou, Guo-liang
2015-06-01
To analyze the stress distribution in periodontal ligament of maxillary first molar during distal movement with nonlinear finite element analysis, and to compare it with the result of linear finite element analysis, consequently to provide biomechanical evidence for clinical application. The 3-D finite element model including a maxillary first molar, periodontal ligament, alveolar bone, cancellous bone, cortical bone and a buccal tube was built up by using Mimics, Geomagic, ProE and Ansys Workbench. The material of periodontal ligament was set as nonlinear material and linear elastic material, respectively. Loads of different combinations were applied to simulate the clinical situation of distalizing the maxillary first molar. There were channels of low stress in peak distribution of Von Mises equivalent stress and compressive stress of periodontal ligament in nonlinear finite element model. The peak of Von Mises equivalent stress was lower when it was satisfied that Mt/F minus Mr/F approximately equals 2. The peak of compressive stress was lower when it was satisfied that Mt/F was approximately equal to Mr/F. The relative stress of periodontal ligament was higher and violent in linear finite element model and there were no channels of low stress in peak distribution. There are channels in which stress of periodontal ligament is lower. The condition of low stress should be satisfied by applied M/F during the course of distalizing the maxillary first molar.
[Finite Element Modelling of the Eye for the Investigation of Accommodation].
Martin, H; Stachs, O; Guthoff, R; Grabow, N
2016-12-01
Background: Accommodation research increasingly uses engineering methods. This article presents the use of the finite element method in accommodation research. Material and Methods: Geometry, material data and boundary conditions are prerequisites for the application of the finite element method. Published data on geometry and materials are reviewed. It is shown how boundary conditions are important and how they influence the results. Results: Two dimensional and three dimensional models of the anterior chamber of the eye are presented. With simple two dimensional models, it is shown that realistic results for the accommodation amplitude can always be achieved. More complex three dimensional models of the accommodation mechanism - including the ciliary muscle - require further investigations of the material data and of the morphology of the ciliary muscle, if they are to achieve realistic results for accommodation. Discussion and Conclusion: The efficiency and the limitations of the finite element method are especially clear for accommodation. Application of the method requires extensive preparation, including acquisition of geometric and material data and experimental validation. However, a validated model can be used as a basis for parametric studies, by systematically varying material data and geometric dimensions. This allows systematic investigation of how essential input parameters influence the results. Georg Thieme Verlag KG Stuttgart · New York.
Adhesive in the buckling failure of corrugated fiberboard : a finite element investigation
Adeeb A. Rahman; Said M. Abubakr
1998-01-01
This research study proposed to include the glue material in a finite element model that represents the actual geometry and material properties of a corrugated fiberboard. The model is a detailed representation of the different components of the structure (adhesive, linerboard, medium) to perform buckling analysis of corrugated structures under compressive loads. The...
Scalable Implementation of Finite Elements by NASA _ Implicit (ScIFEi)
NASA Technical Reports Server (NTRS)
Warner, James E.; Bomarito, Geoffrey F.; Heber, Gerd; Hochhalter, Jacob D.
2016-01-01
Scalable Implementation of Finite Elements by NASA (ScIFEN) is a parallel finite element analysis code written in C++. ScIFEN is designed to provide scalable solutions to computational mechanics problems. It supports a variety of finite element types, nonlinear material models, and boundary conditions. This report provides an overview of ScIFEi (\\Sci-Fi"), the implicit solid mechanics driver within ScIFEN. A description of ScIFEi's capabilities is provided, including an overview of the tools and features that accompany the software as well as a description of the input and output le formats. Results from several problems are included, demonstrating the efficiency and scalability of ScIFEi by comparing to finite element analysis using a commercial code.
Transient analysis of 1D inhomogeneous media by dynamic inhomogeneous finite element method
NASA Astrophysics Data System (ADS)
Yang, Zailin; Wang, Yao; Hei, Baoping
2013-12-01
The dynamic inhomogeneous finite element method is studied for use in the transient analysis of onedimensional inhomogeneous media. The general formula of the inhomogeneous consistent mass matrix is established based on the shape function. In order to research the advantages of this method, it is compared with the general finite element method. A linear bar element is chosen for the discretization tests of material parameters with two fictitious distributions. And, a numerical example is solved to observe the differences in the results between these two methods. Some characteristics of the dynamic inhomogeneous finite element method that demonstrate its advantages are obtained through comparison with the general finite element method. It is found that the method can be used to solve elastic wave motion problems with a large element scale and a large number of iteration steps.
Finite element analysis of fretting contact for nonhomogenous materials
NASA Astrophysics Data System (ADS)
Korkmaz, Y. M.; Coker, D.
2018-01-01
Fretting problem arises in the case of relatively small sliding motion between contacting surfaces. Fatigue life of the components that are in contact with each other, especially in rotorcraft may be significantly reduced due to fretting. The purpose of this study is to investigate material inhomogeneity near the contact region on the fretting problem in a cylindrical on flat contact configuration. A finite element (FE) model was constructed by using commercial finite element package ABAQUSTMto study partial sliding and stress concentrations. In order to investigate the effect of material inhomogeneity, the fretting contact is analyzed by introducing voids near the contact region. The void size and an array of voids is introduced into the substrate. The results are compared in terms of pressure, shear traction, tangential stress magnitudes and relative slip between the contacting materials.
Finite element analysis on the bending condition of truck frame before and after opening
NASA Astrophysics Data System (ADS)
Cai, Kaiwu; Cheng, Wei; Lu, Jifu
2018-05-01
Based on the design parameters of a truck frame, the structure design and model of the truck frame are built. Based on the finite element theory, the load, the type of fatigue and the material parameters of the frame are combined with the semi-trailer. Using finite element analysis software, after a truck frame hole in bending condition for the finite element analysis of comparison, through the analysis found that the truck frame hole under bending condition can meet the strength requirements are very helpful for improving the design of the truck frame.
Structure and conformational dynamics of scaffolded DNA origami nanoparticles
2017-05-08
all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conforma... finite element (FE) modeling approach CanDo is also routinely used to predict the 3D equilibrium conformation of programmed DNA assemblies based on a...model with both experimental cryo-electron microscopy (cryo-EM) data and all-atom modeling. MATERIALS AND METHODS Lattice-free finite element model
Numerical model of glulam beam delamination in dependence on cohesive strength
NASA Astrophysics Data System (ADS)
Kawecki, Bartosz; Podgórski, Jerzy
2018-01-01
This paper presents an attempt of using a finite element method for predicting delamination of a glue laminated timber beam through a cohesive layer. There were used cohesive finite elements, quadratic stress damage initiation criterion and mixed mode energy release rate failure model. Finite element damage was equal to its complete stiffness degradation. Timber material was considered to be an orthotropic with plastic behaviour after reaching bending limit.
Ultrasound finite element simulation sensitivity to anisotropic titanium microstructures
NASA Astrophysics Data System (ADS)
Freed, Shaun; Blackshire, James L.; Na, Jeong K.
2016-02-01
Analytical wave models are inadequate to describe complex metallic microstructure interactions especially for near field anisotropic property effects and through geometric features smaller than the wavelength. In contrast, finite element ultrasound simulations inherently capture microstructure influences due to their reliance on material definitions rather than wave descriptions. To better understand and quantify heterogeneous crystal orientation effects to ultrasonic wave propagation, a finite element modeling case study has been performed with anisotropic titanium grain structures. A parameterized model has been developed utilizing anisotropic spheres within a bulk material. The resulting wave parameters are analyzed as functions of both wavelength and sphere to bulk crystal mismatch angle.
Impact of solids on composite materials
NASA Technical Reports Server (NTRS)
Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.
1987-01-01
The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.
Highly Accurate Beam Torsion Solutions Using the p-Version Finite Element Method
NASA Technical Reports Server (NTRS)
Smith, James P.
1996-01-01
A new treatment of the classical beam torsion boundary value problem is applied. Using the p-version finite element method with shape functions based on Legendre polynomials, torsion solutions for generic cross-sections comprised of isotropic materials are developed. Element shape functions for quadrilateral and triangular elements are discussed, and numerical examples are provided.
Papageorgiou, Spyridon N.; Keilig, Ludger; Hasan, Istabrak; Jäger, Andreas
2016-01-01
Summary Introduction: Biomechanical analysis of orthodontic tooth movement is complex, as many different tissues and appliance components are involved. The aim of this finite element study was to assess the relative effect of material alteration of the various components of the orthodontic appliance on the biomechanical behaviour of tooth movement. Methods: A three-dimensional finite element solid model was constructed. The model consisted of a canine, a first, and a second premolar, including the surrounding tooth-supporting structures and fixed appliances. The materials of the orthodontic appliances were alternated between: (1) composite resin or resin-modified glass ionomer cement for the adhesive, (2) steel, titanium, ceramic, or plastic for the bracket, and (3) β-titanium or steel for the wire. After vertical activation of the first premolar by 0.5mm in occlusal direction, stress and strain calculations were performed at the periodontal ligament and the orthodontic appliance. Results: The finite element analysis indicated that strains developed at the periodontal ligament were mainly influenced by the orthodontic wire (up to +63 per cent), followed by the bracket (up to +44 per cent) and the adhesive (up to +4 per cent). As far as developed stresses at the orthodontic appliance are concerned, wire material had the greatest influence (up to +155 per cent), followed by bracket material (up to +148 per cent) and adhesive material (up to +8 per cent). Limitations: The results of this in silico study need to be validated by in vivo studies before they can be extrapolated to clinical practice. Conclusion: According to the results of this finite element study, all components of the orthodontic fixed appliance, including wire, bracket, and adhesive, seem to influence, to some extent, the biomechanics of tooth movement. PMID:26174769
Investigation of a Macromechanical Approach to Analyzing Triaxially-Braided Polymer Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.
2010-01-01
A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The material stiffness and strength values required for the constitutive model are determined based on coupon level tests on the braided composite. Simulations of quasi-static coupon tests of a representative braided composite are conducted. Varying the strength values that are input to the material model is found to have a significant influence on the effective material response predicted by the finite element analysis, sometimes in ways that at first glance appear non-intuitive. A parametric study involving the input strength parameters provides guidance on how the analysis model can be improved.
Chawla, A; Mukherjee, S; Karthikeyan, B
2009-02-01
The objective of this study is to identify the dynamic material properties of human passive muscle tissues for the strain rates relevant to automobile crashes. A novel methodology involving genetic algorithm (GA) and finite element method is implemented to estimate the material parameters by inverse mapping the impact test data. Isolated unconfined impact tests for average strain rates ranging from 136 s(-1) to 262 s(-1) are performed on muscle tissues. Passive muscle tissues are modelled as isotropic, linear and viscoelastic material using three-element Zener model available in PAMCRASH(TM) explicit finite element software. In the GA based identification process, fitness values are calculated by comparing the estimated finite element forces with the measured experimental forces. Linear viscoelastic material parameters (bulk modulus, short term shear modulus and long term shear modulus) are thus identified at strain rates 136 s(-1), 183 s(-1) and 262 s(-1) for modelling muscles. Extracted optimal parameters from this study are comparable with reported parameters in literature. Bulk modulus and short term shear modulus are found to be more influential in predicting the stress-strain response than long term shear modulus for the considered strain rates. Variations within the set of parameters identified at different strain rates indicate the need for new or improved material model, which is capable of capturing the strain rate dependency of passive muscle response with single set of material parameters for wide range of strain rates.
Optimal vibration control of a rotating plate with self-sensing active constrained layer damping
NASA Astrophysics Data System (ADS)
Xie, Zhengchao; Wong, Pak Kin; Lo, Kin Heng
2012-04-01
This paper proposes a finite element model for optimally controlled constrained layer damped (CLD) rotating plate with self-sensing technique and frequency-dependent material property in both the time and frequency domain. Constrained layer damping with viscoelastic material can effectively reduce the vibration in rotating structures. However, most existing research models use complex modulus approach to model viscoelastic material, and an additional iterative approach which is only available in frequency domain has to be used to include the material's frequency dependency. It is meaningful to model the viscoelastic damping layer in rotating part by using the anelastic displacement fields (ADF) in order to include the frequency dependency in both the time and frequency domain. Also, unlike previous ones, this finite element model treats all three layers as having the both shear and extension strains, so all types of damping are taken into account. Thus, in this work, a single layer finite element is adopted to model a three-layer active constrained layer damped rotating plate in which the constraining layer is made of piezoelectric material to work as both the self-sensing sensor and actuator under an linear quadratic regulation (LQR) controller. After being compared with verified data, this newly proposed finite element model is validated and could be used for future research.
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Takahashi, Kazuhisa
2014-11-01
Distal radius fracture, which often occurs in the setting of osteoporosis, can lead to permanent deformity and disability. Great effort has been directed toward developing noninvasive methods for evaluating the distal radius strength, with the goal of assessing fracture risk. The aim of this study was to evaluate distal radius strength using a finite element model and to gauge the accuracy of finite element model measurement using cadaver material. Ten wrists were obtained from cadavers with a mean age of 89.5 years at death. CT images of each wrist in an extended position were obtained. CT-based finite element models were prepared with Mechanical Finder software. Fracture on the models was simulated by applying a mechanical load to the palm in a direction parallel to the forearm axis, after which the fracture load and the site at which the fracture began were identified. For comparison, the wrists were fractured using a universal testing machine and the fracture load and the site of fracture were identified. The fracture load was 970.9 N in the finite element model group and 990.0 N in the actual measurement group. The site of the initial fracture was extra-articular to the distal radius in both groups. The finite element model was predictive for distal radius fracture when compared to the actual measurement. In this study, a finite element model for evaluation of distal radius strength was validated and can be used to predict fracture risk. We conclude that a finite element model is useful for the evaluation of distal radius strength. Knowing distal radius strength might avoid distal radius fracture because appropriate antiosteoporotic treatment can be initiated.
Scaling in biomechanical experimentation: a finite similitude approach.
Ochoa-Cabrero, Raul; Alonso-Rasgado, Teresa; Davey, Keith
2018-06-01
Biological experimentation has many obstacles: resource limitations, unavailability of materials, manufacturing complexities and ethical compliance issues; any approach that resolves all or some of these is of some interest. The aim of this study is applying the recently discovered concept of finite similitude as a novel approach for the design of scaled biomechanical experiments supported with analysis using a commercial finite-element package and validated by means of image correlation software. The study of isotropic scaling of synthetic bones leads to the selection of three-dimensional (3D) printed materials for the trial-space materials. These materials conforming to the theory are analysed in finite-element models of a cylinder and femur geometries undergoing compression, tension, torsion and bending tests to assess the efficacy of the approach using reverse scaling of the approach. The finite-element results show similar strain patterns in the surface for the cylinder with a maximum difference of less than 10% and for the femur with a maximum difference of less than 4% across all tests. Finally, the trial-space, physical-trial experimentation using 3D printed materials for compression and bending testing provides a good agreement in a Bland-Altman statistical analysis, providing good supporting evidence for the practicality of the approach. © 2018 The Author(s).
NASA Technical Reports Server (NTRS)
Marr, W. A., Jr.
1972-01-01
The behavior of finite element models employing different constitutive relations to describe the stress-strain behavior of soils is investigated. Three models, which assume small strain theory is applicable, include a nondilatant, a dilatant and a strain hardening constitutive relation. Two models are formulated using large strain theory and include a hyperbolic and a Tresca elastic perfectly plastic constitutive relation. These finite element models are used to analyze retaining walls and footings. Methods of improving the finite element solutions are investigated. For nonlinear problems better solutions can be obtained by using smaller load increment sizes and more iterations per load increment than by increasing the number of elements. Suitable methods of treating tension stresses and stresses which exceed the yield criteria are discussed.
NASA Astrophysics Data System (ADS)
Papagiannis, P.; Azariadis, P.; Papanikos, P.
2017-10-01
Footwear is subject to bending and torsion deformations that affect comfort perception. Following review of Finite Element Analysis studies of sole rigidity and comfort, a three-dimensional, linear multi-material finite element sole model for quasi-static bending and torsion simulation, overcoming boundary and optimisation limitations, is described. Common footwear materials properties and boundary conditions from gait biomechanics are used. The use of normalised strain energy for product benchmarking is demonstrated along with comfort level determination through strain energy density stratification. Sensitivity of strain energy against material thickness is greater for bending than for torsion, with results of both deformations showing positive correlation. Optimization for a targeted performance level and given layer thickness is demonstrated with bending simulations sufficing for overall comfort assessment. An algorithm for comfort optimization w.r.t. bending is presented, based on a discrete approach with thickness values set in line with practical manufacturing accuracy. This work illustrates the potential of the developed finite element analysis applications to offer viable and proven aids to modern footwear sole design assessment and optimization.
Panagiotopoulou, O.; Wilshin, S. D.; Rayfield, E. J.; Shefelbine, S. J.; Hutchinson, J. R.
2012-01-01
Finite element modelling is well entrenched in comparative vertebrate biomechanics as a tool to assess the mechanical design of skeletal structures and to better comprehend the complex interaction of their form–function relationships. But what makes a reliable subject-specific finite element model? To approach this question, we here present a set of convergence and sensitivity analyses and a validation study as an example, for finite element analysis (FEA) in general, of ways to ensure a reliable model. We detail how choices of element size, type and material properties in FEA influence the results of simulations. We also present an empirical model for estimating heterogeneous material properties throughout an elephant femur (but of broad applicability to FEA). We then use an ex vivo experimental validation test of a cadaveric femur to check our FEA results and find that the heterogeneous model matches the experimental results extremely well, and far better than the homogeneous model. We emphasize how considering heterogeneous material properties in FEA may be critical, so this should become standard practice in comparative FEA studies along with convergence analyses, consideration of element size, type and experimental validation. These steps may be required to obtain accurate models and derive reliable conclusions from them. PMID:21752810
Better Finite-Element Analysis of Composite Shell Structures
NASA Technical Reports Server (NTRS)
Clarke, Gregory
2007-01-01
A computer program implements a finite-element-based method of predicting the deformations of thin aerospace structures made of isotropic materials or anisotropic fiber-reinforced composite materials. The technique and corresponding software are applicable to thin shell structures in general and are particularly useful for analysis of thin beamlike members having open cross-sections (e.g. I-beams and C-channels) in which significant warping can occur.
Slave finite elements: The temporal element approach to nonlinear analysis
NASA Technical Reports Server (NTRS)
Gellin, S.
1984-01-01
A formulation method for finite elements in space and time incorporating nonlinear geometric and material behavior is presented. The method uses interpolation polynomials for approximating the behavior of various quantities over the element domain, and only explicit integration over space and time. While applications are general, the plate and shell elements that are currently being programmed are appropriate to model turbine blades, vanes, and combustor liners.
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, C. M.; Tanner, John A.
1989-01-01
A computational procedure is presented for reducing the size of the analysis models of tires having unsymmetric material, geometry and/or loading. The two key elements of the procedure when applied to anisotropic tires are: (1) decomposition of the stiffness matrix into the sum of an orthotropic and nonorthotropic parts; and (2) successive application of the finite-element method and the classical Rayleigh-Ritz technique. The finite-element method is first used to generate few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The proposed technique has high potential for handling practical tire problems with anisotropic materials, unsymmetric imperfections and asymmetric loading. It is also particularly useful for use with three-dimensional finite-element models of tires.
NASA Technical Reports Server (NTRS)
Lai, Steven H.-Y.
1992-01-01
A variational principle and a finite element discretization technique were used to derive the dynamic equations for a high speed rotating flexible beam-mass system embedded with piezo-electric materials. The dynamic equation thus obtained allows the development of finite element models which accommodate both the original structural element and the piezoelectric element. The solutions of finite element models provide system dynamics needed to design a sensing system. The characterization of gyroscopic effect and damping capacity of smart rotating devices are addressed. Several simulation examples are presented to validate the analytical solution.
Ouyang, Shao-bo; Wang, Jun; Zhang, Hong-bin; Liao, Lan; Zhu, Hong-shui
2014-04-01
To investigate the stress distributions under load in 3 types of all-ceramic continuous crowns of the lower anterior teeth with differential shoulder thickness. Cone-beam CT (CBCT) was used to scan the in vitro mandibular central incisors, and achieve three-dimensional finite element model of all-ceramic continuous crowns with different shoulder width by using Mimics, Abaqus software. Different load conditions were simulated based on this model to study the effect of shoulder width variation on finite element analysis of 3 kinds of different all-ceramic materials of incisors fixed continuous crowns of the mandibular. Using CBCT, Mimics10.01 software and Abaqus 6.11 software, three-dimensional finite element model of all-ceramic continuous crowns of the mandibular incisor, abutment, periodontal ligament and alveolar bone was established. Different ceramic materials and various shoulder width had minor no impact on the equivalent stress peak of periodontal membrane, as well as alveolar bone. With the same shoulder width and large area of vertical loading of 120 N, the tensile stress was the largest in In-Ceram Alumina, followed by In-Ceram Zirconia and the minimum was IPS.Empress II. Under large area loading of 120 N 45° labially, when the material was IPS.Empress II, with the shoulder width increased, the porcelain plate edge of the maximum tensile stress value increased, while the other 2 materials had no obvious change. Finite element model has good geometric similarity. In the setting range of this study, when the elastic modulus of ceramic materials is bigger, the tensile stress of the continuous crown is larger. Supported by Research Project of Department of Education, Jiangxi Province (GJJ09130).
Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siefert, Christopher; Bochev, Pavel Blagoveston; Kramer, Richard Michael Jack
Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these modelsmore » can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.« less
Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures
NASA Technical Reports Server (NTRS)
Vlahopoulos, Nickolas; Schiller, Noah H.
2011-01-01
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations. The global system of EFEA equations is solved numerically and the vibration levels within the entire system can be computed. The new EFEA formulation for modeling composite laminate structures is validated through comparison to test data collected from a representative composite aircraft fuselage that is made out of a composite outer shell and composite frames and stiffeners. NASA Langley constructed the composite cylinder and conducted the test measurements utilized in this work.
Validation Assessment of a Glass-to-Metal Seal Finite-Element Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jamison, Ryan Dale; Buchheit, Thomas E.; Emery, John M
Sealing glasses are ubiquitous in high pressure and temperature engineering applications, such as hermetic feed-through electrical connectors. A common connector technology are glass-to-metal seals where a metal shell compresses a sealing glass to create a hermetic seal. Though finite-element analysis has been used to understand and design glass-to-metal seals for many years, there has been little validation of these models. An indentation technique was employed to measure the residual stress on the surface of a simple glass-to-metal seal. Recently developed rate- dependent material models of both Schott 8061 and 304L VAR stainless steel have been applied to a finite-element modelmore » of the simple glass-to-metal seal. Model predictions of residual stress based on the evolution of material models are shown. These model predictions are compared to measured data. Validity of the finite- element predictions is discussed. It will be shown that the finite-element model of the glass-to-metal seal accurately predicts the mean residual stress in the glass near the glass-to-metal interface and is valid for this quantity of interest.« less
Study on Edge Thickening Flow Forming Using the Finite Elements Analysis
NASA Astrophysics Data System (ADS)
Kim, Young Jin; Park, Jin Sung; Cho, Chongdu
2011-08-01
This study is to examine the forming features of flow stress property and the incremental forming method with increasing the thickness of material. Recently, the optimized forming method is widely studied through the finite element analysis to optimize forming process conditions in many different forming fields. The optimal forming method should be adopted to meet geometric requirements as the reduction in volume per unit length of material such as forging, rolling, spinning etc. However conventional studies have not dealt with issue regarding volume per unit length. For the study we use the finite element method and model a gear part of an automotive engine flywheel as the study model, which is a weld assembly of a plate and a gear with respective different thickness. In simulation of the present study, a optimized forming condition for gear machining, considering the thickness of the outer edge of flywheel is studied using the finite elements analysis for the increasing thickness of the forming method. It is concluded from the study that forming method to increase the thickness per unit length for gear machining is reasonable using the finite elements analysis and forming test.
Dynamic modulus estimation and structural vibration analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, A.
1998-11-18
Often the dynamic elastic modulus of a material with frequency dependent properties is difficult to estimate. These uncertainties are compounded in any structural vibration analysis using the material properties. Here, different experimental techniques are used to estimate the properties of a particular elastomeric material over a broad frequency range. Once the properties are determined, various structures incorporating the elastomer are analyzed by an interactive finite element method to determine natural frequencies and mode shapes. Then, the finite element results are correlated with results obtained by experimental modal analysis.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Zagidulin, Dmitri; Rauser, Richard W.
2000-01-01
Capabilities and expertise related to the development of links between nondestructive evaluation (NDE) and finite element analysis (FEA) at Glenn Research Center (GRC) are demonstrated. Current tools to analyze data produced by computed tomography (CT) scans are exercised to help assess the damage state in high temperature structural composite materials. A utility translator was written to convert velocity (an image processing software) STL data file to a suitable CAD-FEA type file. Finite element analyses are carried out with MARC, a commercial nonlinear finite element code, and the analytical results are discussed. Modeling was established by building MSC/Patran (a pre and post processing finite element package) generated model and comparing it to a model generated by Velocity in conjunction with MSC/Patran Graphics. Modeling issues and results are discussed in this paper. The entire process that outlines the tie between the data extracted via NDE and the finite element modeling and analysis is fully described.
Global-Local Finite Element Analysis for Thermo-Mechanical Stresses in Bonded Joints
NASA Technical Reports Server (NTRS)
Shkarayev, S.; Madenci, Erdogan; Camarda, C. J.
1997-01-01
An analysis of adhesively bonded joints using conventional finite elements does not capture the singular behavior of the stress field in regions where two or three dissimilar materials form a junction with or without free edges. However, these regions are characteristic of the bonded joints and are prone to failure initiation. This study presents a method to capture the singular stress field arising from the geometric and material discontinuities in bonded composites. It is achieved by coupling the local (conventional) elements with global (special) elements whose interpolation functions are constructed from the asymptotic solution.
Chalal, Hocine; Abed-Meraim, Farid
2018-06-20
In the current contribution, prismatic and hexahedral quadratic solid⁻shell (SHB) finite elements are proposed for the geometrically nonlinear analysis of thin structures made of functionally graded material (FGM). The proposed SHB finite elements are developed within a purely 3D framework, with displacements as the only degrees of freedom. Also, the in-plane reduced-integration technique is combined with the assumed-strain method to alleviate various locking phenomena. Furthermore, an arbitrary number of integration points are placed along a special direction, which represents the thickness. The developed elements are coupled with functionally graded behavior for the modeling of thin FGM plates. To this end, the Young modulus of the FGM plate is assumed to vary gradually in the thickness direction, according to a volume fraction distribution. The resulting formulations are implemented into the quasi-static ABAQUS/Standard finite element software in the framework of large displacements and rotations. Popular nonlinear benchmark problems are considered to assess the performance and accuracy of the proposed SHB elements. Comparisons with reference solutions from the literature demonstrate the good capabilities of the developed SHB elements for the 3D simulation of thin FGM plates.
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.
1986-01-01
A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.
Bredbenner, Todd L.; Eliason, Travis D.; Francis, W. Loren; McFarland, John M.; Merkle, Andrew C.; Nicolella, Daniel P.
2014-01-01
Cervical spinal injuries are a significant concern in all trauma injuries. Recent military conflicts have demonstrated the substantial risk of spinal injury for the modern warfighter. Finite element models used to investigate injury mechanisms often fail to examine the effects of variation in geometry or material properties on mechanical behavior. The goals of this study were to model geometric variation for a set of cervical spines, to extend this model to a parametric finite element model, and, as a first step, to validate the parametric model against experimental data for low-loading conditions. Individual finite element models were created using cervical spine (C3–T1) computed tomography data for five male cadavers. Statistical shape modeling (SSM) was used to generate a parametric finite element model incorporating variability of spine geometry, and soft-tissue material property variation was also included. The probabilistic loading response of the parametric model was determined under flexion-extension, axial rotation, and lateral bending and validated by comparison to experimental data. Based on qualitative and quantitative comparison of the experimental loading response and model simulations, we suggest that the model performs adequately under relatively low-level loading conditions in multiple loading directions. In conclusion, SSM methods coupled with finite element analyses within a probabilistic framework, along with the ability to statistically validate the overall model performance, provide innovative and important steps toward describing the differences in vertebral morphology, spinal curvature, and variation in material properties. We suggest that these methods, with additional investigation and validation under injurious loading conditions, will lead to understanding and mitigating the risks of injury in the spine and other musculoskeletal structures. PMID:25506051
Finotello, Alice; Morganti, Simone; Auricchio, Ferdinando
2017-09-01
In the last few years, several studies, each with different aim and modeling detail, have been proposed to investigate transcatheter aortic valve implantation (TAVI) with finite elements. The present work focuses on the patient-specific finite element modeling of the aortic valve complex. In particular, we aim at investigating how different modeling strategies in terms of material models/properties and discretization procedures can impact analysis results. Four different choices both for the mesh size (from 20 k elements to 200 k elements) and for the material model (from rigid to hyperelastic anisotropic) are considered. Different approaches for modeling calcifications are also taken into account. Post-operative CT data of the real implant are used as reference solution with the aim of outlining a trade-off between computational model complexity and reliability of the results. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Nazzal, M. A.
2018-04-01
It is established that some superplastic materials undergo significant cavitation during deformation. In this work, stability analysis for the superplastic copper based alloy Coronze-638 at 550 °C based on Hart's definition of stable plastic deformation and finite element simulations for the balanced biaxial loading case are carried out to study the effects of hydrostatic pressure on cavitation evolution during superplastic forming. The finite element results show that imposing hydrostatic pressure yields to a reduction in cavitation growth.
Finite element analysis of the end notched flexure specimen for measuring Mode II fracture toughness
NASA Technical Reports Server (NTRS)
Gillespie, J. W., Jr.; Carlsson, L. A.; Pipes, R. B.
1986-01-01
The paper presents a finite element analysis of the end-notched flexure (ENF) test specimen for Mode II interlaminar fracture testing of composite materials. Virtual crack closure and compliance techniques employed to calculate strain energy release rates from linear elastic two-dimensional analysis indicate that the ENF specimen is a pure Mode II fracture test within the constraints of small deflection theory. Furthermore, the ENF fracture specimen is shown to be relatively insensitive to process-induced cracks, offset from the laminate midplane. Frictional effects are investigated by including the contact problem in the finite element model. A parametric study investigating the influence of delamination length, span, thickness, and material properties assessed the accuracy of beam theory expressions for compliance and strain energy release rate, GII. Finite element results indicate that data reduction schemes based upon beam theory underestimate GII by approximately 20-40 percent for typical unidirectional graphite fiber composite test specimen geometries. Consequently, an improved data reduction scheme is proposed.
Computing Reliabilities Of Ceramic Components Subject To Fracture
NASA Technical Reports Server (NTRS)
Nemeth, N. N.; Gyekenyesi, J. P.; Manderscheid, J. M.
1992-01-01
CARES calculates fast-fracture reliability or failure probability of macroscopically isotropic ceramic components. Program uses results from commercial structural-analysis program (MSC/NASTRAN or ANSYS) to evaluate reliability of component in presence of inherent surface- and/or volume-type flaws. Computes measure of reliability by use of finite-element mathematical model applicable to multiple materials in sense model made function of statistical characterizations of many ceramic materials. Reliability analysis uses element stress, temperature, area, and volume outputs, obtained from two-dimensional shell and three-dimensional solid isoparametric or axisymmetric finite elements. Written in FORTRAN 77.
Application of Probability Methods to Assess Crash Modeling Uncertainty
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.
2003-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.
Application of Probability Methods to Assess Crash Modeling Uncertainty
NASA Technical Reports Server (NTRS)
Lyle, Karen H.; Stockwell, Alan E.; Hardy, Robin C.
2007-01-01
Full-scale aircraft crash simulations performed with nonlinear, transient dynamic, finite element codes can incorporate structural complexities such as: geometrically accurate models; human occupant models; and advanced material models to include nonlinear stress-strain behaviors, and material failure. Validation of these crash simulations is difficult due to a lack of sufficient information to adequately determine the uncertainty in the experimental data and the appropriateness of modeling assumptions. This paper evaluates probabilistic approaches to quantify the effects of finite element modeling assumptions on the predicted responses. The vertical drop test of a Fokker F28 fuselage section will be the focus of this paper. The results of a probabilistic analysis using finite element simulations will be compared with experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barham, M; White, D; Steigmann, D
2009-04-08
Recently a new class of biocompatible elastic polymers loaded with small ferrous particles (magnetoelastomer) was developed at Lawrence Livermore National Laboratory. This new material was formed as a thin film using spin casting. The deformation of this material using a magnetic field has many possible applications to microfluidics. Two methods will be used to calculate the deformation of a circular magneto-elastomeric film subjected to a magnetic field. The first method is an arbitrary Lagrangian-Eulerian (ALE) finite element method (FEM) and the second is based on nonlinear continuum electromagnetism and continuum elasticity in the membrane limit. The comparison of these twomore » methods is used to test/validate the finite element method.« less
Post-Crazing Stress Analysis of Glass-Epoxy Laminates.
1979-05-01
element Stress concentrations Thick-shell element b. Identiflers/Open-Ended Terms Thick-plate element Glass-epoxy Laminates Composite materials Failure...number) / Glass-Epoxy Angle Plys Finite Elements’ Laminates Shear Testing Isoparametric.,lement Composite Materials Compression Testing Doubly-Curved...with light weight. This favorable strength- weight ratio makes the material attractive for some flight structures as well as other machines and
Evaluation of the use of a singularity element in finite element analysis of center-cracked plates
NASA Technical Reports Server (NTRS)
Mendelson, A.; Gross, B.; Srawley, J., E.
1972-01-01
Two different methods are applied to the analyses of finite width linear elastic plates with central cracks. Both methods give displacements as a primary part of the solution. One method makes use of Fourier transforms. The second method employs a coarse mesh of triangular second-order finite elements in conjunction with a single singularity element subjected to appropriate additional constraints. The displacements obtained by these two methods are in very good agreement. The results suggest considerable potential for the use of a cracked element for related crack problems, particularly in connection with the extension to nonlinear material behavior.
Mesnard, Michel; Ramos, Antonio; Ballu, Alex; Morlier, Julien; Cid, M; Simoes, J A
2011-04-01
Prosthetic materials and bone present quite different mechanical properties. Consequently, mandible reconstruction with metallic materials (or a mandible condyle implant) modifies the physiologic behavior of the mandible (stress, strain patterns, and condyle displacements). The changing of bone strain distribution results in an adaptation of the temporomandibular joint, including articular contacts. Using a validated finite element model, the natural mandible strains and condyle displacements were evaluated. Modifications of strains and displacements were then assessed for 2 different temporomandibular joint implants. Because materials and geometry play important key roles, mechanical properties of cortical bone were taken into account in models used in finite element analysis. The finite element model allowed verification of the worst loading configuration of the mandibular condyle. Replacing the natural condyle by 1 of the 2 tested implants, the results also show the importance of the implant geometry concerning biomechanical mandibular behavior. The implant geometry and stiffness influenced mainly strain distribution. The different forces applied to the mandible by the elevator muscles, teeth, and joint loads indicate that the finite element model is a relevant tool to optimize implant geometry or, in a subsequent study, to choose a more suitable distribution of the screws. Bone screws (number and position) have a significant influence on mandibular behavior and on implant stress pattern. Stress concentration and implant fracture must be avoided. Copyright © 2011 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling
NASA Astrophysics Data System (ADS)
Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo
2017-06-01
Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.
Heat transfer model and finite element formulation for simulation of selective laser melting
NASA Astrophysics Data System (ADS)
Roy, Souvik; Juha, Mario; Shephard, Mark S.; Maniatty, Antoinette M.
2017-10-01
A novel approach and finite element formulation for modeling the melting, consolidation, and re-solidification process that occurs in selective laser melting additive manufacturing is presented. Two state variables are introduced to track the phase (melt/solid) and the degree of consolidation (powder/fully dense). The effect of the consolidation on the absorption of the laser energy into the material as it transforms from a porous powder to a dense melt is considered. A Lagrangian finite element formulation, which solves the governing equations on the unconsolidated reference configuration is derived, which naturally considers the effect of the changing geometry as the powder melts without needing to update the simulation domain. The finite element model is implemented into a general-purpose parallel finite element solver. Results are presented comparing to experimental results in the literature for a single laser track with good agreement. Predictions for a spiral laser pattern are also shown.
Papageorgiou, Spyridon N; Keilig, Ludger; Hasan, Istabrak; Jäger, Andreas; Bourauel, Christoph
2016-06-01
Biomechanical analysis of orthodontic tooth movement is complex, as many different tissues and appliance components are involved. The aim of this finite element study was to assess the relative effect of material alteration of the various components of the orthodontic appliance on the biomechanical behaviour of tooth movement. A three-dimensional finite element solid model was constructed. The model consisted of a canine, a first, and a second premolar, including the surrounding tooth-supporting structures and fixed appliances. The materials of the orthodontic appliances were alternated between: (1) composite resin or resin-modified glass ionomer cement for the adhesive, (2) steel, titanium, ceramic, or plastic for the bracket, and (3) β-titanium or steel for the wire. After vertical activation of the first premolar by 0.5mm in occlusal direction, stress and strain calculations were performed at the periodontal ligament and the orthodontic appliance. The finite element analysis indicated that strains developed at the periodontal ligament were mainly influenced by the orthodontic wire (up to +63 per cent), followed by the bracket (up to +44 per cent) and the adhesive (up to +4 per cent). As far as developed stresses at the orthodontic appliance are concerned, wire material had the greatest influence (up to +155 per cent), followed by bracket material (up to +148 per cent) and adhesive material (up to +8 per cent). The results of this in silico study need to be validated by in vivo studies before they can be extrapolated to clinical practice. According to the results of this finite element study, all components of the orthodontic fixed appliance, including wire, bracket, and adhesive, seem to influence, to some extent, the biomechanics of tooth movement. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
An inverse method to determine the mechanical properties of the iris in vivo
2014-01-01
Background Understanding the mechanical properties of the iris can help to have an insight into the eye diseases with abnormalities of the iris morphology. Material parameters of the iris were simply calculated relying on the ex vivo experiment. However, the mechanical response of the iris in vivo is different from that ex vivo, therefore, a method was put forward to determine the material parameters of the iris using the optimization method in combination with the finite element method based on the in vivo experiment. Material and methods Ocular hypertension was induced by rapid perfusion to the anterior chamber, during perfusion intraocular pressures in the anterior and posterior chamber were record by sensors, images of the anterior segment were captured by the ultrasonic system. The displacement of the characteristic points on the surface of the iris was calculated. A finite element model of the anterior chamber was developed using the ultrasonic image before perfusion, the multi-island genetic algorithm was employed to determine the material parameters of the iris by minimizing the difference between the finite element simulation and the experimental measurements. Results Material parameters of the iris in vivo were identified as the iris was taken as a nearly incompressible second-order Ogden solid. Values of the parameters μ1, α1, μ2 and α2 were 0.0861 ± 0.0080 MPa, 54.2546 ± 12.7180, 0.0754 ± 0.0200 MPa, and 48.0716 ± 15.7796 respectively. The stability of the inverse finite element method was verified, the sensitivity of the model parameters was investigated. Conclusion Material properties of the iris in vivo could be determined using the multi-island genetic algorithm coupled with the finite element method based on the experiment. PMID:24886660
Homogenization of periodic bi-isotropic composite materials
NASA Astrophysics Data System (ADS)
Ouchetto, Ouail; Essakhi, Brahim
2018-07-01
In this paper, we present a new method for homogenizing the bi-periodic materials with bi-isotropic components phases. The presented method is a numerical method based on the finite element method to compute the local electromagnetic properties. The homogenized constitutive parameters are expressed as a function of the macroscopic electromagnetic properties which are obtained from the local properties. The obtained results are compared to Unfolding Finite Element Method and Maxwell-Garnett formulas.
Development of Composite Materials with High Passive Damping Properties
2006-05-15
frequency response function analysis. Sound transmission through sandwich panels was studied using the statistical energy analysis (SEA). Modal density...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of...sheets and the core. 2.2.4 Statistical energy analysis method Finite element models are generally only efficient for problems at low and middle frequencies
A collocation--Galerkin finite element model of cardiac action potential propagation.
Rogers, J M; McCulloch, A D
1994-08-01
A new computational method was developed for modeling the effects of the geometric complexity, nonuniform muscle fiber orientation, and material inhomogeneity of the ventricular wall on cardiac impulse propagation. The method was used to solve a modification to the FitzHugh-Nagumo system of equations. The geometry, local muscle fiber orientation, and material parameters of the domain were defined using linear Lagrange or cubic Hermite finite element interpolation. Spatial variations of time-dependent excitation and recovery variables were approximated using cubic Hermite finite element interpolation, and the governing finite element equations were assembled using the collocation method. To overcome the deficiencies of conventional collocation methods on irregular domains, Galerkin equations for the no-flux boundary conditions were used instead of collocation equations for the boundary degrees-of-freedom. The resulting system was evolved using an adaptive Runge-Kutta method. Converged two-dimensional simulations of normal propagation showed that this method requires less CPU time than a traditional finite difference discretization. The model also reproduced several other physiologic phenomena known to be important in arrhythmogenesis including: Wenckebach periodicity, slowed propagation and unidirectional block due to wavefront curvature, reentry around a fixed obstacle, and spiral wave reentry. In a new result, we observed wavespeed variations and block due to nonuniform muscle fiber orientation. The findings suggest that the finite element method is suitable for studying normal and pathological cardiac activation and has significant advantages over existing techniques.
Deformation of two-phase aggregates using standard numerical methods
NASA Astrophysics Data System (ADS)
Duretz, Thibault; Yamato, Philippe; Schmalholz, Stefan M.
2013-04-01
Geodynamic problems often involve the large deformation of material encompassing material boundaries. In geophysical fluids, such boundaries often coincide with a discontinuity in the viscosity (or effective viscosity) field and subsequently in the pressure field. Here, we employ popular implementations of the finite difference and finite element methods for solving viscous flow problems. On one hand, we implemented finite difference method coupled with a Lagrangian marker-in-cell technique to represent the deforming fluid. Thanks to it Eulerian nature, this method has a limited geometric flexibility but is characterized by a light and stable discretization. On the other hand, we employ the Lagrangian finite element method which offers full geometric flexibility at the cost of relatively heavier discretization. In order to test the accuracy of the finite difference scheme, we ran large strain simple shear deformation of aggregates containing either weak of strong circular inclusion (1e6 viscosity ratio). The results, obtained for different grid resolutions, are compared to Lagrangian finite element results which are considered as reference solution. The comparison is then used to establish up to which strain can finite difference simulations be run given the nature of the inclusions (dimensions, viscosity) and the resolution of the Eulerian mesh.
Bringing Science Research into Secondary Schools
ERIC Educational Resources Information Center
Allwood, Dan A.; Dean, Julian; Bryan, Matthew T.; Baker, Alan
2009-01-01
Finite element modelling software has been used to allow secondary school students to study nanoscale magnetic materials for hard drive recording applications. The students were introduced to the basic concepts of finite element modelling using a freely available internet game before modelling the magnetization reversal of single magnetic grains.…
NASA Astrophysics Data System (ADS)
Rymarczyk, Joanna; Kowalczyk, Piotr; Czerwosz, Elzbieta; Bielski, Włodzimierz
2011-09-01
The nanomechanical properties of nanostructural carbonaceous-palladium films are studied. The nanoindentation experiments are numerically using the Finite Element Method. The homogenization theory is applied to compute the properties of the composite material used as the input data for nanoindentation calculations.
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
Aquilina, Peter; Chamoli, Uphar; Parr, William C H; Clausen, Philip D; Wroe, Stephen
2013-06-01
The most stable pattern of internal fixation for fractures of the mandibular condyle is a matter for ongoing discussion. In this study we investigated the stability of three commonly used patterns of plate fixation, and constructed finite element models of a simulated mandibular condylar fracture. The completed models were heterogeneous in the distribution of bony material properties, contained about 1.2 million elements, and incorporated simulated jaw-adducting musculature. Models were run assuming linear elasticity and isotropic material properties for bone. This model was considerably larger and more complex than previous finite element models that have been used to analyse the biomechanical behaviour of differing plating techniques. The use of two parallel 2.0 titanium miniplates gave a more stable configuration with lower mean element stresses and displacements over the use of a single miniplate. In addition, a parallel orientation of two miniplates resulted in lower stresses and displacements than did the use of two miniplates in an offset pattern. The use of two parallel titanium plates resulted in a superior biomechanical result as defined by mean element stresses and relative movement between the fractured fragments in these finite element models. Copyright © 2012 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Influence of different materials on the thermal behavior of a CDIP-8 ceramic package
NASA Astrophysics Data System (ADS)
Weide, Kirsten; Keck, Christian
1999-08-01
The temperature distribution inside a package is determined by the heat transfer from the package to the ambient, depending on the heat conductivities of the different used materials. With the help of finite element simulations the thermal behavior of the package can be characterized. In precise simulations convection and radiation effects have to be taken into account. In this paper the influence of different materials like the ceramic, the pin and die attach material and adhesive material between the chip and the die attach on the thermal resistance of the ceramic package will be investigated. A finite element model of the ceramic package including a voltage regulator on the chip was created. The simulations were carried out with the finite element program ANSYS. An easy way to take the radiation effect into account, which normally is difficult to handle in the simulation, will be shown. The results of the simulations are verified by infrared measurements. A comparison of the thermal resistance between the best case and worst case for different package materials was done. The thermal conductivity of the ceramic material shows the strongest influence on the thermal resistance.
Development of non-linear finite element computer code
NASA Technical Reports Server (NTRS)
Becker, E. B.; Miller, T.
1985-01-01
Recent work has shown that the use of separable symmetric functions of the principal stretches can adequately describe the response of certain propellant materials and, further, that a data reduction scheme gives a convenient way of obtaining the values of the functions from experimental data. Based on representation of the energy, a computational scheme was developed that allows finite element analysis of boundary value problems of arbitrary shape and loading. The computational procedure was implemental in a three-dimensional finite element code, TEXLESP-S, which is documented herein.
The effect of loading time on flexible pavement dynamic response: a finite element analysis
NASA Astrophysics Data System (ADS)
Yin, Hao; Solaimanian, Mansour; Kumar, Tanmay; Stoffels, Shelley
2007-12-01
Dynamic response of asphalt concrete (AC) pavements under moving load is a key component for accurate prediction of flexible pavement performance. The time and temperature dependency of AC materials calls for utilizing advanced material characterization and mechanistic theories, such as viscoelasticity and stress/strain analysis. In layered elastic analysis, as implemented in the new Mechanistic-Empirical Pavement Design Guide (MEPDG), the time dependency is accounted for by calculating the loading times at different AC layer depths. In this study, the time effect on pavement response was evaluated by means of the concept of “pseudo temperature.” With the pavement temperature measured from instrumented thermocouples, the time and temperature dependency of AC materials was integrated into one single factor, termed “effective temperature.” Via this effective temperature, pavement responses under a transient load were predicted through finite element analysis. In the finite element model, viscoelastic behavior of AC materials was characterized through relaxation moduli, while the layers with unbound granular material were assumed to be in an elastic mode. The analysis was conducted for two different AC mixtures in a simplified flexible pavement structure at two different seasons. Finite element analysis results reveal that the loading time has a more pronounced impact on pavement response in the summer for both asphalt types. The results indicate that for reasonable prediction of dynamic response in flexible pavements, the effect of the depth-dependent loading time on pavement temperature should be considered.
Finite element modeling of mitral leaflet tissue using a layered shell approximation
Ratcliffe, Mark B.; Guccione, Julius M.
2012-01-01
The current study presents a finite element model of mitral leaflet tissue, which incorporates the anisotropic material response and approximates the layered structure. First, continuum mechanics and the theory of layered composites are used to develop an analytical representation of membrane stress in the leaflet material. This is done with an existing anisotropic constitutive law from literature. Then, the concept is implemented in a finite element (FE) model by overlapping and merging two layers of transversely isotropic membrane elements in LS-DYNA, which homogenizes the response. The FE model is then used to simulate various biaxial extension tests and out-of-plane pressure loading. Both the analytical and FE model show good agreement with experimental biaxial extension data, and show good mutual agreement. This confirms that the layered composite approximation presented in the current study is able to capture the exponential stiffening seen in both the circumferential and radial directions of mitral leaflets. PMID:22971896
Finite element analysis of a composite crash box subjected to low velocity impact
NASA Astrophysics Data System (ADS)
Shaik Dawood, M. S. I.; Ghazilan, A. L. Ahmad; Shah, Q. H.
2017-03-01
In this work, finite element analyses using LS-DYNA had been carried out to investigate the energy absorption capability of a composite crash box. The analysed design incorporates grooves to the cross sectional shape and E-Glass/Epoxy as design material. The effects of groove depth, ridge lines, plane width, material properties, wall thickness and fibre orientation had been quantitatively analysed and found to significantly enhance the energy absorption capability of the crash box.
Nonlinear transient analysis via energy minimization
NASA Technical Reports Server (NTRS)
Kamat, M. P.; Knight, N. F., Jr.
1978-01-01
The formulation basis for nonlinear transient analysis of finite element models of structures using energy minimization is provided. Geometric and material nonlinearities are included. The development is restricted to simple one and two dimensional finite elements which are regarded as being the basic elements for modeling full aircraft-like structures under crash conditions. The results indicate the effectiveness of the technique as a viable tool for this purpose.
NASA Astrophysics Data System (ADS)
Bueschel, A.; Klinkel, S.; Wagner, W.
2011-04-01
Smart materials are active and multifunctional materials, which play an important part for sensor and actuator applications. These materials have the potential to transform passive structures into adaptive systems. However, a prerequisite for the design and the optimization of these materials is, that reliable models exist, which incorporate the interaction between the different combinations of thermal, electrical, magnetic, optical and mechanical effects. Polymeric electroelastic materials, so-called electroactive polymer (EAP), own the characteristic to deform if an electric field is applied. EAP's possesses the benefit that they share the characteristic of polymers, these are lightweight, inexpensive, fracture tolerant, elastic, and the chemical and physical structure is well understood. However, the description "electroactive polymer" is a generic term for many kinds of different microscopic mechanisms and polymeric materials. Based on the laws of electromagnetism and elasticity, a visco-electroelastic model is developed and implemented into the finite element method (FEM). The presented three-dimensional solid element has eight nodes and trilinear interpolation functions for the displacement and the electric potential. The continuum mechanics model contains finite deformations, the time dependency and the nearly incompressible behavior of the material. To describe the possible, large time dependent deformations, a finite viscoelastic model with a split of the deformation gradient is used. Thereby the time dependent characteristic of polymeric materials is incorporated through the free energy function. The electromechanical interactions are considered by the electrostatic forces and inside the energy function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weiss, Chester J
Software solves the three-dimensional Poisson equation div(k(grad(u)) = f, by the finite element method for the case when material properties, k, are distributed over hierarchy of edges, facets and tetrahedra in the finite element mesh. Method is described in Weiss, CJ, Finite element analysis for model parameters distributed on a hierarchy of geometric simplices, Geophysics, v82, E155-167, doi:10.1190/GEO2017-0058.1 (2017). A standard finite element method for solving Poisson’s equation is augmented by including in the 3D stiffness matrix additional 2D and 1D stiffness matrices representing the contributions from material properties associated with mesh faces and edges, respectively. The resulting linear systemmore » is solved iteratively using the conjugate gradient method with Jacobi preconditioning. To minimize computer storage for program execution, the linear solver computes matrix-vector contractions element-by-element over the mesh, without explicit storage of the global stiffness matrix. Program output vtk compliant for visualization and rendering by 3rd party software. Program uses dynamic memory allocation and as such there are no hard limits on problem size outside of those imposed by the operating system and configuration on which the software is run. Dimension, N, of the finite element solution vector is constrained by the the addressable space in 32-vs-64 bit operating systems. Total storage requirements for the problem. Total working space required for the program is approximately 13*N double precision words.« less
Finite element model for brittle fracture and fragmentation
Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...
2016-06-01
A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.
Finite element model for brittle fracture and fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin
A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.
Finite element modeling of frictionally restrained composite interfaces
NASA Technical Reports Server (NTRS)
Ballarini, Roberto; Ahmed, Shamim
1989-01-01
The use of special interface finite elements to model frictional restraint in composite interfaces is described. These elements simulate Coulomb friction at the interface, and are incorporated into a standard finite element analysis of a two-dimensional isolated fiber pullout test. Various interfacial characteristics, such as the distribution of stresses at the interface, the extent of slip and delamination, load diffusion from fiber to matrix, and the amount of fiber extraction or depression are studied for different friction coefficients. The results are compared to those obtained analytically using a singular integral equation approach, and those obtained by assuming a constant interface shear strength. The usefulness of these elements in micromechanical modeling of fiber-reinforced composite materials is highlighted.
NASA Technical Reports Server (NTRS)
Salpekar, S. A.; Raju, I. S.; Obrien, T. K.
1987-01-01
Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtural crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q.; Sprague, M. A.; Jonkman, J.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less
[Progression on finite element modeling method in scoliosis].
Fan, Ning; Zang, Lei; Hai, Yong; Du, Peng; Yuan, Shuo
2018-04-25
Scoliosis is a complex spinal three-dimensional malformation with complicated pathogenesis, often associated with complications as thoracic deformity and shoulder imbalance. Because the acquisition of specimen or animal models are difficult, the biomechanical study of scoliosis is limited. In recent years, along with the development of the computer technology, software and image, the technology of establishing a finite element model of human spine is maturing and it has been providing strong support for the research of pathogenesis of scoliosis, the design and application of brace, and the selection of surgical methods. The finite element model method is gradually becoming an important tool in the biomechanical study of scoliosis. Establishing a high quality finite element model is the basis of analysis and future study. However, the finite element modeling process can be complex and modeling methods are greatly varied. Choosing the appropriate modeling method according to research objectives has become researchers' primary task. In this paper, the author reviews the national and international literature in recent years and concludes the finite element modeling methods in scoliosis, including data acquisition, establishment of the geometric model, the material properties, parameters setting, the validity of the finite element model validation and so on. Copyright© 2018 by the China Journal of Orthopaedics and Traumatology Press.
2003-09-01
application .................................................. 5-42 5.10 Different materials within crack-block...5-30 Figure 5-29 - Application of required user edge node sets... applications . Users have at their disposal all of the capabilities within these finite element programs and may, if desired, include any number of
Finite element corroboration of buckling phenomena observed in corrugated boxes
Thomas J. Urbanik; Edmond P. Saliklis
2003-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study combines a finite element model with a parametric design of the...
Nonlinear probabilistic finite element models of laminated composite shells
NASA Technical Reports Server (NTRS)
Engelstad, S. P.; Reddy, J. N.
1993-01-01
A probabilistic finite element analysis procedure for laminated composite shells has been developed. A total Lagrangian finite element formulation, employing a degenerated 3-D laminated composite shell with the full Green-Lagrange strains and first-order shear deformable kinematics, forms the modeling foundation. The first-order second-moment technique for probabilistic finite element analysis of random fields is employed and results are presented in the form of mean and variance of the structural response. The effects of material nonlinearity are included through the use of a rate-independent anisotropic plasticity formulation with the macroscopic point of view. Both ply-level and micromechanics-level random variables can be selected, the latter by means of the Aboudi micromechanics model. A number of sample problems are solved to verify the accuracy of the procedures developed and to quantify the variability of certain material type/structure combinations. Experimental data is compared in many cases, and the Monte Carlo simulation method is used to check the probabilistic results. In general, the procedure is quite effective in modeling the mean and variance response of the linear and nonlinear behavior of laminated composite shells.
Finite Element-Based Mechanical Assessment of Bone Quality on the Basis of In Vivo Images.
Pahr, Dieter H; Zysset, Philippe K
2016-12-01
Beyond bone mineral density (BMD), bone quality designates the mechanical integrity of bone tissue. In vivo images based on X-ray attenuation, such as CT reconstructions, provide size, shape, and local BMD distribution and may be exploited as input for finite element analysis (FEA) to assess bone fragility. Further key input parameters of FEA are the material properties of bone tissue. This review discusses the main determinants of bone mechanical properties and emphasizes the added value, as well as the important assumptions underlying finite element analysis. Bone tissue is a sophisticated, multiscale composite material that undergoes remodeling but exhibits a rather narrow band of tissue mineralization. Mechanically, bone tissue behaves elastically under physiologic loads and yields by cracking beyond critical strain levels. Through adequate cell-orchestrated modeling, trabecular bone tunes its mechanical properties by volume fraction and fabric. With proper calibration, these mechanical properties may be incorporated in quantitative CT-based finite element analysis that has been validated extensively with ex vivo experiments and has been applied increasingly in clinical trials to assess treatment efficacy against osteoporosis.
Varga, Peter; Schwiedrzik, Jakob; Zysset, Philippe K; Fliri-Hofmann, Ladina; Widmer, Daniel; Gueorguiev, Boyko; Blauth, Michael; Windolf, Markus
2016-04-01
Osteoporotic proximal femur fractures are caused by low energy trauma, typically when falling on the hip from standing height. Finite element simulations, widely used to predict the fracture load of femora in fall, usually include neither mass-related inertial effects, nor the viscous part of bone׳s material behavior. The aim of this study was to elucidate if quasi-static non-linear homogenized finite element analyses can predict in vitro mechanical properties of proximal femora assessed in dynamic drop tower experiments. The case-specific numerical models of 13 femora predicted the strength (R(2)=0.84, SEE=540N, 16.2%), stiffness (R(2)=0.82, SEE=233N/mm, 18.0%) and fracture energy (R(2)=0.72, SEE=3.85J, 39.6%); and provided fair qualitative matches with the fracture patterns. The influence of material anisotropy was negligible for all predictions. These results suggest that quasi-static homogenized finite element analysis may be used to predict mechanical properties of proximal femora in the dynamic sideways fall situation. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Dunn, Patrick
1995-01-01
A comparison is presented between the predictions of the finite-element analysis and a recently developed higher-order theory for functionally graded materials subjected to a thorough-thickness temperature gradient. In contrast to existing micromechanical theories that utilize classical (i.e., uncoupled) homogenization schemes to calculate micro-level and macro-level stress and displacement fields in materials with uniform or nonuniform fiber spacing (i.e., functionally graded materials), the new theory explicitly couples the microstructural details with the macrostructure of the composite. Previous thermo-elastic analysis has demonstrated that such coupling is necessary when: the temperature gradient is large with respect to the dimension of the reinforcement; the characteristic dimension of the reinforcement is large relative to the global dimensions of the composite and the number of reinforcing fibers or inclusions is small. In these circumstances, the standard micromechanical analyses based on the concept of the representative volume element used to determine average composite properties produce questionable results. The comparison between the predictions of the finite-element method and the higher-order theory presented herein establish the theory's accuracy in predicting thermal and stress fields within composites with a finite number of fibers in the thickness direction subjected to a thorough-thickness thermal gradient.
Failure analysis of various monolithic posterior aesthetic dental crowns using finite element method
NASA Astrophysics Data System (ADS)
Porojan, Liliana; Topală, Florin
2017-08-01
The aim of the study was to assess the effect of material stiffness and load on the biomechanical performance of the monolithic full-coverage posterior aesthetic dental crowns using finite element analysis. Three restorative materials for monolithic dental crowns were selected for the study: zirconia; lithium disilicate glass-ceramic, and resin-based composite. Stresses were calculated in the crowns for all materials and in the teeth structures, under different load values. The experiments show that dental crowns made from all this new aesthetic materials processed by CAD/CAM technologies would be indicated as monolithic dental crowns for posterior areas.
Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2000-01-01
"Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).
Sensitivity analysis on the effective stiffness properties of 3-D orthotropic honeycomb cores
NASA Astrophysics Data System (ADS)
Karakoç, Alp
2018-01-01
The present study investigates the influences of representative volume element RVE mesh and material parameters, here cell wall elastic moduli, on the effective stiffness properties of three dimensional orthotropic honeycomb cores through strain driven computational homogenization in the finite element framework. For this purpose, case studies were carried out, for which hexagonal cellular RVEs were generated, meshed with eight node linear brick finite elements of varying numbers. Periodic boundary conditions were then implemented on the RVE boundaries by using one-to-one nodal match for the corresponding corners, edges and surfaces for the imposed macroscopic strains. As a novelty, orthotropic material properties were assigned for each cell wall by means of the transformation matrices following the cell wall orientations. Thereafter, simulations were conducted and volume averaged macroscopic stresses were obtained. Eventually, effective stiffness properties were obtained, through which RVE sensitivity analysis was carried out. The investigations indicate that there is a strong relation between number of finite elements and most of the effective stiffness parameters. In addition to this, cell wall elastic moduli also play critical role on the effective properties of the investigated materials.
NASA Astrophysics Data System (ADS)
Turkova, Vera; Stepanova, Larisa
2018-03-01
For elastistoplastic structure elements under cyclic loading three types of asymptotic behavior are well known: shakedown, cyclic plasticity or ratcheting. In structure elements operating in real conditions ratcheting must always be excluded since it caused the incremental fracture of structure by means of the accumulation of plastic strains. In the present study results of finite-element (FEM) calculations of the asymptotical behavior of an elastoplastic plate with the central circular and elliptic holes under the biaxial cyclic loading for three different materials are presented. Incremental cyclic loading of the sample with stress concentrator (the central hole) is performed in the multifunctional finite-element package SIMULIA Abaqus. The ranges of loads found for shakedown, cyclic plasticity and ratcheting are presented. The results obtained are generalized and analyzed. Convenient normalization is suggested. The chosen normalization allows us to present all computed results, corresponding to separate materials, within one common curve with minimum scattering of the points. Convenience of the generalized diagram consists in a possibility to find an asymptotical behavior of an inelastic structure for materials for which computer calculations were not made.
A class of hybrid finite element methods for electromagnetics: A review
NASA Technical Reports Server (NTRS)
Volakis, J. L.; Chatterjee, A.; Gong, J.
1993-01-01
Integral equation methods have generally been the workhorse for antenna and scattering computations. In the case of antennas, they continue to be the prominent computational approach, but for scattering applications the requirement for large-scale computations has turned researchers' attention to near neighbor methods such as the finite element method, which has low O(N) storage requirements and is readily adaptable in modeling complex geometrical features and material inhomogeneities. In this paper, we review three hybrid finite element methods for simulating composite scatterers, conformal microstrip antennas, and finite periodic arrays. Specifically, we discuss the finite element method and its application to electromagnetic problems when combined with the boundary integral, absorbing boundary conditions, and artificial absorbers for terminating the mesh. Particular attention is given to large-scale simulations, methods, and solvers for achieving low memory requirements and code performance on parallel computing architectures.
Simulation of Hypervelocity Impact on Aluminum-Nextel-Kevlar Orbital Debris Shields
NASA Technical Reports Server (NTRS)
Fahrenthold, Eric P.
2000-01-01
An improved hybrid particle-finite element method has been developed for hypervelocity impact simulation. The method combines the general contact-impact capabilities of particle codes with the true Lagrangian kinematics of large strain finite element formulations. Unlike some alternative schemes which couple Lagrangian finite element models with smooth particle hydrodynamics, the present formulation makes no use of slidelines or penalty forces. The method has been implemented in a parallel, three dimensional computer code. Simulations of three dimensional orbital debris impact problems using this parallel hybrid particle-finite element code, show good agreement with experiment and good speedup in parallel computation. The simulations included single and multi-plate shields as well as aluminum and composite shielding materials. at an impact velocity of eleven kilometers per second.
Begum, M. Sameena; Dinesh, M. R.; Tan, Kenneth F. H.; Jairaj, Vani; Md Khalid, K.; Singh, Varun Pratap
2015-01-01
The finite element method (FEM) is a powerful computational tool for solving stress-strain problems; its ability to handle material inhomogeneity and complex shapes makes the FEM, the most suitable method for the analysis of internal stress levels in the tooth, periodontium, and alveolar bone. This article intends to explain the steps involved in the generation of a three-dimensional finite element model of tooth, periodontal ligament (PDL) and alveolar bone, as the procedure of modeling is most important because the result is based on the nature of the modeling systems. Finite element analysis offers a means of determining strain-stress levels in the tooth, ligament, and bone structures for a broad range of orthodontic loading scenarios without producing tissue damage. PMID:26538895
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compressive strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compressive loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
NASA Technical Reports Server (NTRS)
Ratcliffe, James G.; Jackson, Wade C.
2008-01-01
A simple analysis method has been developed for predicting the residual compression strength of impact-damaged sandwich panels. The method is tailored for honeycomb core-based sandwich specimens that exhibit an indentation growth failure mode under axial compression loading, which is driven largely by the crushing behavior of the core material. The analysis method is in the form of a finite element model, where the impact-damaged facesheet is represented using shell elements and the core material is represented using spring elements, aligned in the thickness direction of the core. The nonlinear crush response of the core material used in the analysis is based on data from flatwise compression tests. A comparison with a previous analysis method and some experimental data shows good agreement with results from this new approach.
Characterization and modeling of a highly-oriented thin film for composite forming
NASA Astrophysics Data System (ADS)
White, K. D.; Sherwood, J. A.
2018-05-01
Ultra High Molecular Weight Polyethylene (UHMWPE) materials exhibit high impact strength, excellent abrasion resistance and high chemical resistance, making them attractive for a number of impact applications for automotive, marine and medical industries. One format of this class of materials that is being considered for the thermoforming process is a highly-oriented extruded thin film. Parts are made using a two-step manufacturing process that involves first producing a set of preforms and then consolidating these preforms into a final shaped part. To assist in the design of the processing parameters, simulations of the preforming and compression molding steps can be completed using the finite element method. Such simulations require material input data as developed through a comprehensive characterization test program, e.g. shear, tensile and bending, over the range of potential processing temperatures. The current research investigates the challenges associated with the characterization of thin, highly-oriented UHMWPE films. Variations in grip type, sample size and testing rates are explored to achieve convergence of the characterization data. Material characterization results are then used in finite element simulations of the tension test to explore element formulations that work well with the mechanical behavior. Comparisons of the results from the material characterization tests to results of simulations of the same test are performed to validate the finite element method parameters and the credibility of the user-defined material model.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
Pal, Saikat; Lindsey, Derek P.; Besier, Thor F.; Beaupre, Gary S.
2013-01-01
Cartilage material properties provide important insights into joint health, and cartilage material models are used in whole-joint finite element models. Although the biphasic model representing experimental creep indentation tests is commonly used to characterize cartilage, cartilage short-term response to loading is generally not characterized using the biphasic model. The purpose of this study was to determine the short-term and equilibrium material properties of human patella cartilage using a viscoelastic model representation of creep indentation tests. We performed 24 experimental creep indentation tests from 14 human patellar specimens ranging in age from 20 to 90 years (median age 61 years). We used a finite element model to reproduce the experimental tests and determined cartilage material properties from viscoelastic and biphasic representations of cartilage. The viscoelastic model consistently provided excellent representation of the short-term and equilibrium creep displacements. We determined initial elastic modulus, equilibrium elastic modulus, and equilibrium Poisson’s ratio using the viscoelastic model. The viscoelastic model can represent the short-term and equilibrium response of cartilage and may easily be implemented in whole-joint finite element models. PMID:23027200
MHOST: An efficient finite element program for inelastic analysis of solids and structures
NASA Technical Reports Server (NTRS)
Nakazawa, S.
1988-01-01
An efficient finite element program for 3-D inelastic analysis of gas turbine hot section components was constructed and validated. A novel mixed iterative solution strategy is derived from the augmented Hu-Washizu variational principle in order to nodally interpolate coordinates, displacements, deformation, strains, stresses and material properties. A series of increasingly sophisticated material models incorporated in MHOST include elasticity, secant plasticity, infinitesimal and finite deformation plasticity, creep and unified viscoplastic constitutive model proposed by Walker. A library of high performance elements is built into this computer program utilizing the concepts of selective reduced integrations and independent strain interpolations. A family of efficient solution algorithms is implemented in MHOST for linear and nonlinear equation solution including the classical Newton-Raphson, modified, quasi and secant Newton methods with optional line search and the conjugate gradient method.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Carden, Huey D.; Noor, Ahmed K.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modeled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frame. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a non-dimensional thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
Free vibrations of thin-walled semicircular graphite-epoxy composite frames
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Carden, Huey D.; Peters, Jeanne M.
1990-01-01
A detailed study is made of the effects of variations in lamination and material parameters of thin walled composite frames on their vibrational characteristics. The structures considered are semicircular thin walled frames with I and J sections. The flanges and webs of the frames are modelled by using 2-D shell and plate finite elements. A mixed formulation is used with the fundamental unknowns consisting of both the generalized displacements and stress resultants in the frames. The frequencies and modes predicted by the 2-D finite element model are compared with those obtained from experiments, as well as with the predictions of a 1-D thin walled beam finite element model. A detailed study is made of the sensitivity of the vibrational response to variations in the fiber orientation, material properties of the individual layers, and boundary conditions.
Finite Element Analysis and Optimization of Flexure Bearing for Linear Motor Compressor
NASA Astrophysics Data System (ADS)
Khot, Maruti; Gawali, Bajirao
Nowadays linear motor compressors are commonly used in miniature cryocoolers instead of rotary compressors because rotary compressors apply large radial forces to the piston, which provide no useful work, cause large amount of wear and usually require lubrication. Recent trends favour flexure supported configurations for long life. The present work aims at designing and geometrical optimization of flexure bearings using finite element analysis and the development of design charts for selection purposes. The work also covers the manufacturing of flexures using different materials and the validation of the experimental finite element analysis results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.
Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.
Jin, Tao; Mourad, Hashem M.; Bronkhorst, Curt A.; ...
2017-09-13
Here, we present an explicit finite element formulation designed for the treatment of strain localization under highly dynamic conditions. We also used a material stability analysis to detect the onset of localization behavior. Finite elements with embedded weak discontinuities are employed with the aim of representing subsequent localized deformation accurately. The formulation and its algorithmic implementation are described in detail. Numerical results are presented to illustrate the usefulness of this computational framework in the treatment of strain localization under highly dynamic conditions, and to examine its performance characteristics in the context of two-dimensional plane-strain problems.
Kumano, Hirokazu; Nakamura, Yoshinori; Kanbara, Ryo; Takada, Yukyo; Ochiai, Kent T; Tanaka, Yoshinobu
2014-01-01
The finite element method has been considered to be excellent evaluative technique to study magnetic circuit optimization. The present study analyzed and quantitatively evaluated the different effects of magnetic circuit on attractive force and magnetic flux density using a three-dimensional finite element method for comparative evaluation. The diameter of a non-magnetic material in the shield disk of a magnetic assembly was variably increased by 0.1 mm to a maximum 2.0 mm in this study design. The analysis results demonstrate that attractive force increases until the diameter of the non-magnetic spacing material reaches a diameter of 0.5 mm where it peaks and then decreases as the overall diameter increases over 0.5 mm. The present analysis suggested that the attractive force for a magnetic attachment is optimized with an appropriate magnetic assembly shield disk diameter using a non-magnetic material to effectively change the magnetic circuit efficiency and resulting retention.
3D hierarchical interface-enriched finite element method: Implementation and applications
NASA Astrophysics Data System (ADS)
Soghrati, Soheil; Ahmadian, Hossein
2015-10-01
A hierarchical interface-enriched finite element method (HIFEM) is proposed for the mesh-independent treatment of 3D problems with intricate morphologies. The HIFEM implements a recursive algorithm for creating enrichment functions that capture gradient discontinuities in nonconforming finite elements cut by arbitrary number and configuration of materials interfaces. The method enables the mesh-independent simulation of multiphase problems with materials interfaces that are in close proximity or contact while providing a straightforward general approach for evaluating the enrichments. In this manuscript, we present a detailed discussion on the implementation issues and required computational geometry considerations associated with the HIFEM approximation of thermal and mechanical responses of 3D problems. A convergence study is provided to investigate the accuracy and convergence rate of the HIFEM and compare them with standard FEM benchmark solutions. We will also demonstrate the application of this mesh-independent method for simulating the thermal and mechanical responses of two composite materials systems with complex microstructures.
Mass Efficiency Considerations for Thermally Insulated Structural Skin of an Aerospace Vehicle
NASA Technical Reports Server (NTRS)
Blosser, Max L.
2012-01-01
An approximate equation was derived to predict the mass of insulation required to limit the maximum temperature reached by an insulated structure subjected to a transient heating pulse. In the course of the derivation two figures of merit were identified. One figure of merit correlates to the effectiveness of the heat capacity of the underlying structural material in reducing the amount of required insulation. The second figure of merit provides an indicator of the mass efficiency of the insulator material. An iterative, one dimensional finite element analysis was used to size the external insulation required to protect the structure at a single location on the Space Shuttle Orbiter and a reusable launch vehicle. Required insulation masses were calculated for a range of different materials for both structure and insulator. The required insulation masses calculated using the approximate equation were shown to typically agree with finite element results within 10 to 20 percent over the range of parameters studied. Finite element results closely followed the trends indicated by both figures of merit.
Thomas J. Urbanik; Edmond P. Saliklis
2002-01-01
Conventional compression strength formulas for corrugated fiberboard boxes are limited to geometry and material that produce an elastic postbuckling failure. Inelastic postbuckling can occur in squatty boxes and trays, but a mechanistic rationale for unifying observed strength data is lacking. This study employs a finite element model, instead of actual experiments, to...
NASA Astrophysics Data System (ADS)
Kang, Yeon June
In this thesis an elastic-absorption finite element model of isotropic elastic porous noise control materials is first presented as a means of investigating the effects of finite dimension and edge constraints on the sound absorption by, and transmission through, layers of acoustical foams. Methods for coupling foam finite elements with conventional acoustic and structural finite elements are also described. The foam finite element model based on the Biot theory allows for the simultaneous propagation of the three types of waves known to exist in an elastic porous material. Various sets of boundary conditions appropriate for modeling open, membrane-sealed and panel-bonded foam surfaces are formulated and described. Good agreement was achieved when finite element predictions were compared with previously established analytical results for the plane wave absorption coefficient and transmission loss in the case of wave propagation both in foam-filled waveguides and through foam-lined double panel structures of infinite lateral extent. The primary effect of the edge constraints of a foam layer was found to be an acoustical stiffening of the foam. Constraining the ends of the facing panels in foam-lined double panel systems was also found to increase the sound transmission loss significantly in the low frequency range. In addition, a theoretical multi-dimensional model for wave propagation in anisotropic elastic porous materials was developed to study the effect of anisotropy on the sound transmission of foam-lined noise control treatments. The predictions of the theoretical anisotropic model have been compared with experimental measurements for the random incidence sound transmission through double panel structure lined with polyimide foam. The predictions were made by using the measured and estimated macroscopic physical parameters of polyimide foam samples which were known to be anisotropic. It has been found that the macroscopic physical parameters in the direction normal to the face of foam layer play the principal role in determining the acoustical behavior of polyimide foam layers, although more satisfactory agreement between experimental measurements and theoretical predictions of transmission loss is obtained when the anisotropic properties are allowed in the model.
Nonlinear finite element simulation of non-local tension softening for high strength steel material
NASA Astrophysics Data System (ADS)
Tong, F. M.
The capability of current finite element softwares in simulating the stress-strain relation beyond the elastic-plastic region has been limited by the inability for non- positivity in the computational finite elements' stiffness matrixes. Although analysis up to the peak stress has been proved adequate for analysis and design, it provides no indication of the possible failure predicament that is to follow. Therefore an attempt was made to develop a modelling technique capable of capturing the complete stress-deformation response in an analysis beyond the limit point. This proposed model characterizes a cyclic loading and unloading procedure, as observed in a typical laboratory uniaxial cyclic test, along with a series of material properties updates. The Voce equation and a polynomial function were proposed to define the monotonic elastoplastic hardening and softening behaviour respectively. A modified form of the Voce equation was used to capture the reloading response in the softening region. To accommodate the reduced load capacity of the material at each subsequent softening point, an optimization macro was written to control this optimum load at which the material could withstand. This preliminary study has ignored geometrical effect and is thus incapable of capturing the localized necking phenomenon that accompanies many ductile materials. The current softening model is sufficient if a global measure is considered. Several validation cases were performed to investigate the feasibility of the modelling technique and the results have been proved satisfactory. The ANSYS finite element software is used as the platform at which the modelling technique operates.
Benchmark model correction of monitoring system based on Dynamic Load Test of Bridge
NASA Astrophysics Data System (ADS)
Shi, Jing-xian; Fan, Jiang
2018-03-01
Structural health monitoring (SHM) is a field of research in the area, and it’s designed to achieve bridge safety and reliability assessment, which needs to be carried out on the basis of the accurate simulation of the finite element model. Bridge finite element model is simplified of the structural section form, support conditions, material properties and boundary condition, which is based on the design and construction drawings, and it gets the calculation models and the results.But according to the design and specification requirements established finite element model due to its cannot fully reflect the true state of the bridge, so need to modify the finite element model to obtain the more accurate finite element model. Based on Da-guan river crossing of Ma - Zhao highway in Yunnan province as the background to do the dynamic load test test, we find that the impact coefficient of the theoretical model of the bridge is very different from the coefficient of the actual test, and the change is different; according to the actual situation, the calculation model is adjusted to get the correct frequency of the bridge, the revised impact coefficient found that the modified finite element model is closer to the real state, and provides the basis for the correction of the finite model.
NASA Astrophysics Data System (ADS)
Martins, J. M. P.; Thuillier, S.; Andrade-Campos, A.
2018-05-01
The identification of material parameters, for a given constitutive model, can be seen as the first step before any practical application. In the last years, the field of material parameters identification received an important boost with the development of full-field measurement techniques, such as Digital Image Correlation. These techniques enable the use of heterogeneous displacement/strain fields, which contain more information than the classical homogeneous tests. Consequently, different techniques have been developed to extract material parameters from full-field measurements. In this study, two of these techniques are addressed, the Finite Element Model Updating (FEMU) and the Virtual Fields Method (VFM). The main idea behind FEMU is to update the parameters of a constitutive model implemented in a finite element model until both numerical and experimental results match, whereas VFM makes use of the Principle of Virtual Work and does not require any finite element simulation. Though both techniques proved their feasibility in linear and non-linear constitutive models, it is rather difficult to rank their robustness in plasticity. The purpose of this work is to perform a comparative study in the case of elasto-plastic models. Details concerning the implementation of each strategy are presented. Moreover, a dedicated code for VFM within a large strain framework is developed. The reconstruction of the stress field is performed through a user subroutine. A heterogeneous tensile test is considered to compare FEMU and VFM strategies.
Finite element normal mode analysis of resistance welding jointed of dissimilar plate hat structure
NASA Astrophysics Data System (ADS)
Nazri, N. A.; Sani, M. S. M.
2017-10-01
Structural joints offer connection between structural element (beam, plate, solid etc.) in order to build a whole assembled structure. The complex behaviour of connecting elements plays a valuable role in characteristics of dynamic such as natural frequencies and mode shapes. In automotive structures, the trustworthiness arrangement of the structure extremely depends on joints. In this paper, top hat structure is modelled and designed with spot welding joint using dissimilar materials which is mild steel 1010 and stainless steel 304, using finite element software. Different types of connector elements such as rigid body element (RBE2), welding joint element (CWELD), and bar element (CBAR) are applied to represent real connection between two dissimilar plates. Normal mode analysis is simulated with different types of joining element in order to determine modal properties. Natural frequencies using RBE2, CBAR and CWELD are compared to equivalent rigid body method. Connection that gives the lowest percentage error among these three will be selected as the most reliable joining for resistance spot weld. From the analysis, it is shown that CWELD is better compared to others in term of weld joining among dissimilar plate materials. It is expected that joint modelling of finite element plays significant role in structural dynamics.
Chen, Wen-Ming; Lee, Sung-Jae; Lee, Peter Vee Sin
2014-12-01
Material properties of the plantar soft tissue have not been well quantified in vivo (i.e., from life subjects) nor for areas other than the heel pad. This study explored an in vivo investigation of the plantar soft tissue material behavior under the metatarsal head (MTH). We used a novel device collecting indentation data at controlled metatarsophalangeal joint angles. Combined with inverse analysis, tissues׳ joint-angle dependent material properties were identified. The results showed that the soft tissue under MTH exhibited joint-angle dependent material responses, and the computed parameters using the Ogden material model were 51.3% and 30.9% larger in the dorsiflexed than in the neutral positions, respectively. Using derived parameters in subject-specific foot finite element models revealed only those models that used tissues׳ joint-dependent responses could reproduce the known plantar pressure pattern under the MTH. It is suggested that, to further improve specificity of the personalized foot finite element models, quantitative mechanical properties of the tissue inclusive of the effects of metatarsophalangeal joint dorsiflexion are needed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Initial dynamic load estimates during configuration design
NASA Technical Reports Server (NTRS)
Schiff, Daniel
1987-01-01
This analysis includes the structural response to shock and vibration and evaluates the maximum deflections and material stresses and the potential for the occurrence of elastic instability, fatigue and fracture. The required computations are often performed by means of finite element analysis (FEA) computer programs in which the structure is simulated by a finite element model which may contain thousands of elements. The formulation of a finite element model can be time consuming, and substantial additional modeling effort may be necessary if the structure requires significant changes after initial analysis. Rapid methods for obtaining rough estimates of the structural response to shock and vibration are presented for the purpose of providing guidance during the initial mechanical design configuration stage.
Computer aided stress analysis of long bones utilizing computer tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marom, S.A.
1986-01-01
A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less
NASA Technical Reports Server (NTRS)
Young, David P.; Melvin, Robin G.; Bieterman, Michael B.; Johnson, Forrester T.; Samant, Satish S.
1991-01-01
The present FEM technique addresses both linear and nonlinear boundary value problems encountered in computational physics by handling general three-dimensional regions, boundary conditions, and material properties. The box finite elements used are defined by a Cartesian grid independent of the boundary definition, and local refinements proceed by dividing a given box element into eight subelements. Discretization employs trilinear approximations on the box elements; special element stiffness matrices are included for boxes cut by any boundary surface. Illustrative results are presented for representative aerodynamics problems involving up to 400,000 elements.
A design pathfinder with material correlation points for inflatable systems
NASA Astrophysics Data System (ADS)
Fulcher, Jared Terrell
The incorporation of inflatable structures into aerospace systems can produce significant advantages in stowed volume to mechanical effectiveness and overall weight. Many applications of these ultra-lightweight systems are designed to precisely control internal or external surfaces, or both, to achieve desired performance. The modeling of these structures becomes complex due to the material nonlinearities inherent to the majority of construction materials used in inflatable structures. Furthermore, accurately modeling the response and behavior of the interfacing boundaries that are common to many inflatable systems will lead to better understanding of the entire class of structures. The research presented involved using nonlinear finite element simulations correlated with photogrammetry testing to develop a procedure for defining material properties for commercially available polyurethane-coated woven nylon fabric, which is representative of coated materials that have been proven materials for use in many inflatable systems. Further, the new material model was used to design and develop an inflatable pathfinder system which employs only internal pressure to control an assembly of internal membranes. This canonical inflatable system will be used for exploration and development of general understanding of efficient design methodology and analysis of future systems. Canonical structures are incorporated into the design of the phased pathfinder system to allow for more universal insight. Nonlinear finite element simulations were performed to evaluate the effect of various boundary conditions, loading configurations, and material orientations on the geometric precision of geometries representing typical internal/external surfaces commonly incorporated into inflatable pathfinder system. The response of the inflatable system to possible damage was also studied using nonlinear finite element simulations. Development of a correlated material model for analysis of the inflatable pathfinder system has improved the efficiency of design and analysis techniques of future inflatable structures. KEYWORDS: Nonlinear Finite Element, Inflatable Structures, Gossamer Space Systems, Photogrammetry Measurements, Coated Woven Fabric.
NASA Technical Reports Server (NTRS)
Littell, Justin D.; Binienda, Wieslaw K.; Arnold, William A.; Roberts, Gary D.; Goldberg, Robert K.
2010-01-01
The reliability of impact simulations for aircraft components made with triaxial-braided carbon-fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Methods to characterize the material properties used in the analytical models from a systematically obtained set of test data are also lacking. A macroscopic finite element based analytical model to analyze the impact response of these materials has been developed. The stiffness and strength properties utilized in the material model are obtained from a set of quasi-static in-plane tension, compression and shear coupon level tests. Full-field optical strain measurement techniques are applied in the testing, and the results are used to help in characterizing the model. The unit cell of the braided composite is modeled as a series of shell elements, where each element is modeled as a laminated composite. The braided architecture can thus be approximated within the analytical model. The transient dynamic finite element code LS-DYNA is utilized to conduct the finite element simulations, and an internal LS-DYNA constitutive model is utilized in the analysis. Methods to obtain the stiffness and strength properties required by the constitutive model from the available test data are developed. Simulations of quasi-static coupon tests and impact tests of a represented braided composite are conducted. Overall, the developed method shows promise, but improvements that are needed in test and analysis methods for better predictive capability are examined.
Campbell, J Q; Coombs, D J; Rao, M; Rullkoetter, P J; Petrella, A J
2016-09-06
The purpose of this study was to seek broad verification and validation of human lumbar spine finite element models created using a previously published automated algorithm. The automated algorithm takes segmented CT scans of lumbar vertebrae, automatically identifies important landmarks and contact surfaces, and creates a finite element model. Mesh convergence was evaluated by examining changes in key output variables in response to mesh density. Semi-direct validation was performed by comparing experimental results for a single specimen to the automated finite element model results for that specimen with calibrated material properties from a prior study. Indirect validation was based on a comparison of results from automated finite element models of 18 individual specimens, all using one set of generalized material properties, to a range of data from the literature. A total of 216 simulations were run and compared to 186 experimental data ranges in all six primary bending modes up to 7.8Nm with follower loads up to 1000N. Mesh convergence results showed less than a 5% difference in key variables when the original mesh density was doubled. The semi-direct validation results showed that the automated method produced results comparable to manual finite element modeling methods. The indirect validation results showed a wide range of outcomes due to variations in the geometry alone. The studies showed that the automated models can be used to reliably evaluate lumbar spine biomechanics, specifically within our intended context of use: in pure bending modes, under relatively low non-injurious simulated in vivo loads, to predict torque rotation response, disc pressures, and facet forces. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Osias, J. R.
1974-01-01
Computer programs are presented which provide incremental finite-element analysis capability for problems of quasi-static, finite, elastoplastic deformation in two spatial dimensions (plane strain, plane stress, axisymmetric). Monotonic or cyclic loading of isotropic hardening materials is considered. The only restriction on the form of the stress-strain curve is that the rate of work hardening exceed some small positive value. The user's guide assumes familiarity with both finite-element analysis and FORTRAN IV programming for the CDC 6600. Sufficient information is provided to support problem solving ultization of the programs.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
NASA Technical Reports Server (NTRS)
Saether, Erik; Glaessgen, Edward H.
2009-01-01
Atomistic simulations of intergranular fracture have indicated that grain-scale crack growth in polycrystalline metals can be direction dependent. At these material length scales, the atomic environment greatly influences the nature of intergranular crack propagation, through either brittle or ductile mechanisms, that are a function of adjacent grain orientation and direction of crack propagation. Methods have been developed to obtain cohesive zone models (CZM) directly from molecular dynamics simulations. These CZMs may be incorporated into decohesion finite element formulations to simulate fracture at larger length scales. A new directional decohesion element is presented that calculates the direction of Mode I opening and incorporates a material criterion for dislocation emission based on the local crystallographic environment to automatically select the CZM that best represents crack growth. The simulation of fracture in 2-D and 3-D aluminum polycrystals is used to illustrate the effect of parameterized CZMs and the effectiveness of directional decohesion finite elements.
Elements of Mathematics, Book 11: Finite Probability Spaces.
ERIC Educational Resources Information Center
Exner, Robert; And Others
One of 12 books developed for use with the core material (Book O) of the Elements of Mathematics Program, this text covers material well beyond the scope of the usual secondary mathematics sequences. These materials are designed for highly motivated students with strong verbal abilities; mathematical theories and ideas are developed through…
Deng, Yongbo; Korvink, Jan G
2016-05-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable.
Korvink, Jan G.
2016-01-01
This paper develops a topology optimization procedure for three-dimensional electromagnetic waves with an edge element-based finite-element method. In contrast to the two-dimensional case, three-dimensional electromagnetic waves must include an additional divergence-free condition for the field variables. The edge element-based finite-element method is used to both discretize the wave equations and enforce the divergence-free condition. For wave propagation described in terms of the magnetic field in the widely used class of non-magnetic materials, the divergence-free condition is imposed on the magnetic field. This naturally leads to a nodal topology optimization method. When wave propagation is described using the electric field, the divergence-free condition must be imposed on the electric displacement. In this case, the material in the design domain is assumed to be piecewise homogeneous to impose the divergence-free condition on the electric field. This results in an element-wise topology optimization algorithm. The topology optimization problems are regularized using a Helmholtz filter and a threshold projection method and are analysed using a continuous adjoint method. In order to ensure the applicability of the filter in the element-wise topology optimization version, a regularization method is presented to project the nodal into an element-wise physical density variable. PMID:27279766
Kleinbach, Christian; Martynenko, Oleksandr; Promies, Janik; Haeufle, Daniel F B; Fehr, Jörg; Schmitt, Syn
2017-09-02
In the state of the art finite element AHBMs for car crash analysis in the LS-DYNA software material named *MAT_MUSCLE (*MAT_156) is used for active muscles modeling. It has three elements in parallel configuration, which has several major drawbacks: restraint approximation of the physical reality, complicated parameterization and absence of the integrated activation dynamics. This study presents implementation of the extended four element Hill-type muscle model with serial damping and eccentric force-velocity relation including [Formula: see text] dependent activation dynamics and internal method for physiological muscle routing. Proposed model was implemented into the general-purpose finite element (FE) simulation software LSDYNA as a user material for truss elements. This material model is verified and validated with three different sets of mammalian experimental data, taken from the literature. It is compared to the *MAT_MUSCLE (*MAT_156) Hill-type muscle model already existing in LS-DYNA, which is currently used in finite element human body models (HBMs). An application example with an arm model extracted from the FE ViVA OpenHBM is given, taking into account physiological muscle paths. The simulation results show better material model accuracy, calculation robustness and improved muscle routing capability compared to *MAT_156. The FORTRAN source code for the user material subroutine dyn21.f and the muscle parameters for all simulations, conducted in the study, are given at https://zenodo.org/record/826209 under an open source license. This enables a quick application of the proposed material model in LS-DYNA, especially in active human body models (AHBMs) for applications in automotive safety.
Miles, Brad; Kolos, Elizabeth; Walter, William L; Appleyard, Richard; Shi, Angela; Li, Qing; Ruys, Andrew J
2015-06-01
Subject-specific finite element (FE) modeling methodology could predict peri-prosthetic femoral fracture (PFF) for cementless hip arthoplasty in the early postoperative period. This study develops methodology for subject-specific finite element modeling by using the element deactivation technique to simulate bone failure and validate with experimental testing, thereby predicting peri-prosthetic femoral fracture in the early postoperative period. Material assignments for biphasic and triphasic models were undertaken. Failure modeling with the element deactivation feature available in ABAQUS 6.9 was used to simulate a crack initiation and propagation in the bony tissue based upon a threshold of fracture strain. The crack mode for the biphasic models was very similar to the experimental testing crack mode, with a similar shape and path of the crack. The fracture load is sensitive to the friction coefficient at the implant-bony interface. The development of a novel technique to simulate bone failure by element deactivation of subject-specific finite element models could aid prediction of fracture load in addition to fracture risk characterization for PFF. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Finite-element modeling and micromagnetic modeling of perpendicular writers
NASA Astrophysics Data System (ADS)
Heinonen, Olle; Bozeman, Steven P.
2006-04-01
We compare finite-element modeling (FEM) and fully micromagnetic modeling results of four prototypical writers for perpendicular recording. In general, the agreement between the two models is quite good in the vicinity of saturated or near-saturated magnetic material, such as the pole tip, for quantities such as the magnetic field, the gradient of the magnetic field and the write width. However, in the vicinity of magnetic material far from saturation, e.g., return pole or trailing edge write shield, there can be large qualitative and quantitative differences.
Material nonlinear analysis via mixed-iterative finite element method
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1992-01-01
The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1987-01-01
A specialized, microstructural lattice model, termed MCFET for combined Monte Carlo Finite Element Technique, was developed which simulates microstructural evolution in material systems where modulated phases occur and the directionality of the modulation is influenced by internal and external stresses. In this approach, the microstructure is discretized onto a fine lattice. Each element in the lattice is labelled in accordance with its microstructural identity. Diffusion of material at elevated temperatures is simulated by allowing exchanges of neighboring elements if the exchange lowers the total energy of the system. A Monte Carlo approach is used to select the exchange site while the change in energy associated with stress fields is computed using a finite element technique. The MCFET analysis was validated by comparing this approach with a closed form, analytical method for stress assisted, shape changes of a single particle in an infinite matrix. Sample MCFET analytical for multiparticle problems were also run and in general the resulting microstructural changes associated with the application of an external stress are similar to that observed in Ni-Al-Cr alloys at elevated temperature.
Numerical modeling on carbon fiber composite material in Gaussian beam laser based on ANSYS
NASA Astrophysics Data System (ADS)
Luo, Ji-jun; Hou, Su-xia; Xu, Jun; Yang, Wei-jun; Zhao, Yun-fang
2014-02-01
Based on the heat transfer theory and finite element method, the macroscopic ablation model of Gaussian beam laser irradiated surface is built and the value of temperature field and thermal ablation development is calculated and analyzed rationally by using finite element software of ANSYS. Calculation results show that the ablating form of the materials in different irritation is of diversity. The laser irradiated surface is a camber surface rather than a flat surface, which is on the lowest point and owns the highest power density. Research shows that the higher laser power density absorbed by material surface, the faster the irritation surface regressed.
Fiber-reinforced materials: finite elements for the treatment of the inextensibility constraint
NASA Astrophysics Data System (ADS)
Auricchio, Ferdinando; Scalet, Giulia; Wriggers, Peter
2017-12-01
The present paper proposes a numerical framework for the analysis of problems involving fiber-reinforced anisotropic materials. Specifically, isotropic linear elastic solids, reinforced by a single family of inextensible fibers, are considered. The kinematic constraint equation of inextensibility in the fiber direction leads to the presence of an undetermined fiber stress in the constitutive equations. To avoid locking-phenomena in the numerical solution due to the presence of the constraint, mixed finite elements based on the Lagrange multiplier, perturbed Lagrangian, and penalty method are proposed. Several boundary-value problems under plane strain conditions are solved and numerical results are compared to analytical solutions, whenever the derivation is possible. The performed simulations allow to assess the performance of the proposed finite elements and to discuss several features of the developed formulations concerning the effective approximation for the displacement and fiber stress fields, mesh convergence, and sensitivity to penalty parameters.
An internal variable constitutive model for the large deformation of metals at high temperatures
NASA Technical Reports Server (NTRS)
Brown, Stuart; Anand, Lallit
1988-01-01
The advent of large deformation finite element methodologies is beginning to permit the numerical simulation of hot working processes whose design until recently has been based on prior industrial experience. Proper application of such finite element techniques requires realistic constitutive equations which more accurately model material behavior during hot working. A simple constitutive model for hot working is the single scalar internal variable model for isotropic thermal elastoplasticity proposed by Anand. The model is recalled and the specific scalar functions, for the equivalent plastic strain rate and the evolution equation for the internal variable, presented are slight modifications of those proposed by Anand. The modified functions are better able to represent high temperature material behavior. The monotonic constant true strain rate and strain rate jump compression experiments on a 2 percent silicon iron is briefly described. The model is implemented in the general purpose finite element program ABAQUS.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali
1996-01-01
Thermal and structural finite-element analyses were performed on the first high pressure fuel turbopump turbine blade of the space shuttle main engine (SSME). A two-dimensional (2-D) finite-element model of the blade and firtree disk attachment was analyzed using the general purpose MARC (finite-element) code. The loading history applied is a typical test stand engine cycle mission, which consists of a startup condition with two thermal spikes, a steady state and a shutdown transient. The blade material is a directionally solidified (DS) Mar-M 246 alloy, the blade rotor is forged with waspalloy material. Thermal responses under steady-state and transient conditions were calculated. The stresses and strains under the influence of mechanical and thermal loadings were also determined. The critical regions that exhibited high stresses and severe localized plastic deformation were the blade-rotor gaps.
Finite element analysis on a medical implant.
Semenescu, Augustin; Radu-Ioniță, Florentina; Mateș, Ileana Mariana; Bădică, Petre; Batalu, Nicolae Dan; Negoita, Olivia Doina; Purcarea, Victor Lorin
2016-01-01
Several studies have shown a tight connection between several ocular pathologies and an increased risk of hip fractures due to falling, especially among elderly patients. The total replacement of the hip joint is a major surgical intervention that aims to restore the function of the affected hip by various factors, such as arthritis, injures, and others. A corkscrew-like femoral stem was designed in order to preserve the bone stock and to prevent the occurrence of iatrogenic fractures during the hammering of the implant. In this paper, the finite element analysis for the proposed design was applied, considering different loads and three types of materials. A finite element analysis is a powerful tool to simulate, optimize, design, and select suitable materials for new medical implants. The results showed that the best scenario was for Ti6Al4V alloy, although Ti and 316L stainless steel had a reasonable high safety factor.
A new technique for simulating composite material
NASA Technical Reports Server (NTRS)
Volakis, John L.
1991-01-01
This project dealt with the development on new methodologies and algorithms for the multi-spectrum electromagnetic characterization of large scale nonmetallic airborne vehicles and structures. A robust, low memory, and accurate methodology was developed which is particularly suited for modern machine architectures. This is a hybrid finite element method that combines two well known numerical solution approaches. That of the finite element method for modeling volumes and the boundary integral method which yields exact boundary conditions for terminating the finite element mesh. In addition, a variety of high frequency results were generated (such as diffraction coefficients for impedance surfaces and material layers) and a class of boundary conditions were developed which hold promise for more efficient simulations. During the course of this project, nearly 25 detailed research reports were generated along with an equal number of journal papers. The reports, papers, and journal articles are listed in the appendices along with their abstracts.
Finite cover method with mortar elements for elastoplasticity problems
NASA Astrophysics Data System (ADS)
Kurumatani, M.; Terada, K.
2005-06-01
Finite cover method (FCM) is extended to elastoplasticity problems. The FCM, which was originally developed under the name of manifold method, has recently been recognized as one of the generalized versions of finite element methods (FEM). Since the mesh for the FCM can be regular and squared regardless of the geometry of structures to be analyzed, structural analysts are released from a burdensome task of generating meshes conforming to physical boundaries. Numerical experiments are carried out to assess the performance of the FCM with such discretization in elastoplasticity problems. Particularly to achieve this accurately, the so-called mortar elements are introduced to impose displacement boundary conditions on the essential boundaries, and displacement compatibility conditions on material interfaces of two-phase materials or on joint surfaces between mutually incompatible meshes. The validity of the mortar approximation is also demonstrated in the elastic-plastic FCM.
An Improved Correlation between Impression and Uniaxial Creep
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsueh, Chun-Hway; Miranda, Pedro; Becher, Paul F
2006-01-01
A semiempirical correlation between impression and uniaxial creep has been established by Hyde et al. [Int. J. Mech. Sci. 35, 451 (1993) ] using finite element results for materials exhibiting general power-law creep with the stress exponent n in the range 2 {<=} n {<=} 15. Here, we derive the closed-form solution for a special case of viscoelastic materials, i.e., n = 1, subjected to impression creep and obtain the exact correlation between impression and uniaxial creep. This analytical solution serves as a checkpoint for the finite element results. We then perform finite element analyses for the general case tomore » derive a semiempirical correlation, which agrees well with both analytical viscoelastic results and the existing experimental data. Our improved correlation agrees with the correlation of Hyde et al. for n {>=} 4, and the difference increases with decreasing n for n<4.« less
NASA Astrophysics Data System (ADS)
Dave, Eshan V.
Asphalt concrete pavements are inherently graded viscoelastic structures. Oxidative aging of asphalt binder and temperature cycling due to climatic conditions being the major cause of non-homogeneity. Current pavement analysis and simulation procedures dwell on the use of layered approach to account for these non-homogeneities. The conventional finite-element modeling (FEM) technique discretizes the problem domain into smaller elements, each with a unique constitutive property. However the assignment of unique material property description to an element in the FEM approach makes it an unattractive choice for simulation of problems with material non-homogeneities. Specialized elements such as "graded elements" allow for non-homogenous material property definitions within an element. This dissertation describes the development of graded viscoelastic finite element analysis method and its application for analysis of asphalt concrete pavements. Results show that the present research improves efficiency and accuracy of simulations for asphalt pavement systems. Some of the practical implications of this work include the new technique's capability for accurate analysis and design of asphalt pavements and overlay systems and for the determination of pavement performance with varying climatic conditions and amount of in-service age. Other application areas include simulation of functionally graded fiber-reinforced concrete, geotechnical materials, metal and metal composites at high temperatures, polymers, and several other naturally existing and engineered materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, G.; Belouettar, S.
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less
NASA Technical Reports Server (NTRS)
Freed, Alan D.; Diethelm, Kai; Gray, Hugh R. (Technical Monitor)
2002-01-01
Fraction-order viscoelastic (FOV) material models have been proposed and studied in 1D since the 1930's, and were extended into three dimensions in the 1970's under the assumption of infinitesimal straining. It was not until 1997 that Drozdov introduced the first finite-strain FOV constitutive equations. In our presentation, we shall continue in this tradition by extending the standard, FOV, fluid and solid, material models introduced in 1971 by Caputo and Mainardi into 3D constitutive formula applicable for finite-strain analyses. To achieve this, we generalize both the convected and co-rotational derivatives of tensor fields to fractional order. This is accomplished by defining them first as body tensor fields and then mapping them into space as objective Cartesian tensor fields. Constitutive equations are constructed using both variants for fractional rate, and their responses are contrasted in simple shear. After five years of research and development, we now possess a basic suite of numerical tools necessary to study finite-strain FOV constitutive equations and their iterative refinement into a mature collection of material models. Numerical methods still need to be developed for efficiently solving fraction al-order integrals, derivatives, and differential equations in a finite element setting where such constitutive formulae would need to be solved at each Gauss point in each element of a finite model, which can number into the millions in today's analysis.
NASA Technical Reports Server (NTRS)
Hua, Chongyu; Volakis, John L.
1990-01-01
AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.
A particle finite element method for machining simulations
NASA Astrophysics Data System (ADS)
Sabel, Matthias; Sator, Christian; Müller, Ralf
2014-07-01
The particle finite element method (PFEM) appears to be a convenient technique for machining simulations, since the geometry and topology of the problem can undergo severe changes. In this work, a short outline of the PFEM-algorithm is given, which is followed by a detailed description of the involved operations. The -shape method, which is used to track the topology, is explained and tested by a simple example. Also the kinematics and a suitable finite element formulation are introduced. To validate the method simple settings without topological changes are considered and compared to the standard finite element method for large deformations. To examine the performance of the method, when dealing with separating material, a tensile loading is applied to a notched plate. This investigation includes a numerical analysis of the different meshing parameters, and the numerical convergence is studied. With regard to the cutting simulation it is found that only a sufficiently large number of particles (and thus a rather fine finite element discretisation) leads to converged results of process parameters, such as the cutting force.
Kumar, Neelesh
2014-10-01
Finite element analysis has been universally employed for the stress and strain analysis in lower extremity prosthetics. The socket adapter was the principal subject of interest due to its importance in deciding the knee motion range. This article focused on the static and dynamic stress analysis of the designed hybrid adapter developed by the authors. A standard mechanical design validation approach using von Mises was followed. Four materials were considered for the analysis, namely, carbon fiber, oil-filled nylon, Al-6061, and mild steel. The paper analyses the static and dynamic stress on designed hybrid adapter which incorporates features of conventional male and female socket adapters. The finite element analysis was carried out for possible different angles of knee flexion simulating static and dynamic gait situation. Research was carried out on available design of socket adapter. Mechanical design of hybrid adapter was conceptualized and a CAD model was generated using Inventor modelling software. Static and dynamic stress analysis was carried out on different materials for optimization. The finite element analysis was carried out on the software Autodesk Inventor Professional Ver. 2011. The peak value of von Mises stress occurred in the neck region of the adapter and in the lower face region at rod eye-adapter junction in static and dynamic analyses, respectively. Oil-filled nylon was found to be the best material among the four with respect to strength, weight, and cost. Research investigations on newer materials for development of improved prosthesis will immensely benefit the amputees. The study analyze the static and dynamic stress on the knee joint adapter to provide better material used for hybrid design of adapter. © The International Society for Prosthetics and Orthotics 2013.
Bitter, Thom; Khan, Imran; Marriott, Tim; Lovelady, Elaine; Verdonschot, Nico; Janssen, Dennis
2017-09-01
Fretting corrosion at the taper interface of modular hip implants has been implicated as a possible cause of implant failure. This study was set up to gain more insight in the taper mechanics that lead to fretting corrosion. The objectives of this study therefore were (1) to select experimental loading conditions to reproduce clinically relevant fretting corrosion features observed in retrieved components, (2) to develop a finite element model consistent with the fretting experiments and (3) to apply more complicated loading conditions of activities of daily living to the finite element model to study the taper mechanics. The experiments showed similar wear patterns on the taper surface as observed in retrievals. The finite element wear score based on Archard's law did not correlate well with the amount of material loss measured in the experiments. However, similar patterns were observed between the simulated micromotions and the experimental wear measurements. Although the finite element model could not be validated, the loading conditions based on activities of daily living demonstrate the importance of assembly load on the wear potential. These findings suggest that finite element models that do not incorporate geometry updates to account for wear loss may not be appropriate to predict wear volumes of taper connections.
Modeling and analysis of visual digital impact model for a Chinese human thorax.
Zhu, Jin; Wang, Kai-Ming; Li, Shu; Liu, Hai-Yan; Jing, Xiao; Li, Xiao-Fang; Liu, Yi-He
2017-01-01
To establish a three-dimensional finite element model of the human chest for engineering research on individual protection. Computed tomography (CT) scanning data were used for three-dimensional reconstruction with the medical image reconstruction software Mimics. The finite element method (FEM) preprocessing software ANSYS ICEM CFD was used for cell mesh generation, and the relevant material behavior parameters of all of the model's parts were specified. The finite element model was constructed with the FEM software, and the model availability was verified based on previous cadaver experimental data. A finite element model approximating the anatomical structure of the human chest was established, and the model's simulation results conformed to the results of the cadaver experiment overall. Segment data of the human body and specialized software can be utilized for FEM model reconstruction to satisfy the need for numerical analysis of shocks to the human chest in engineering research on body mechanics.
Savonnet, Léo; Wang, Xuguang; Duprey, Sonia
2018-03-01
Being seated for long periods, while part of many leisure or occupational activities, can lead to discomfort, pain and sometimes health issues. The impact of prolonged sitting on the body has been widely studied in the literature, with a large number of human-body finite element models developed to simulate sitting and assess seat-induced discomfort or to investigate the biomechanical factors involved. Here, we review the finite element models developed to investigate sitting discomfort or risk of pressure sores. Our study examines finite element models from twenty-seven papers, seventeen dedicated to assessing seating discomfort and ten dedicated to investigating pressure ulcers caused by prolonged sitting. The models' mesh composition and material properties are found to differ widely. These models share a lack of validation and generally make little allowance for anthropometric diversity.
Probabilistic Structural Analysis Theory Development
NASA Technical Reports Server (NTRS)
Burnside, O. H.
1985-01-01
The objective of the Probabilistic Structural Analysis Methods (PSAM) project is to develop analysis techniques and computer programs for predicting the probabilistic response of critical structural components for current and future space propulsion systems. This technology will play a central role in establishing system performance and durability. The first year's technical activity is concentrating on probabilistic finite element formulation strategy and code development. Work is also in progress to survey critical materials and space shuttle mian engine components. The probabilistic finite element computer program NESSUS (Numerical Evaluation of Stochastic Structures Under Stress) is being developed. The final probabilistic code will have, in the general case, the capability of performing nonlinear dynamic of stochastic structures. It is the goal of the approximate methods effort to increase problem solving efficiency relative to finite element methods by using energy methods to generate trial solutions which satisfy the structural boundary conditions. These approximate methods will be less computer intensive relative to the finite element approach.
A critical examination of stresses in an elastic single lap joint
NASA Technical Reports Server (NTRS)
Cooper, P. A.; Sawyer, J. W.
1979-01-01
The results of an approximate nonlinear finite-element analysis of a single lap joint are presented and compared with the results of a linear finite-element analysis, and the geometric nonlinear effects caused by the load-path eccentricity on the adhesive stress distributions are determined. The results from finite-element, Goland-Reissner, and photoelastic analyses show that for a single lap joint the effect of the geometric nonlinear behavior of the joint has a sizable effect on the stresses in the adhesive. The Goland-Reissner analysis is sufficiently accurate in the prediction of stresses along the midsurface of the adhesive bond to be used for qualitative evaluation of the influence of geometric or material parametric variations. Detailed stress distributions in both the adherend and adhesive obtained from the finite-element analysis are presented to provide a basis for comparison with other solution techniques.
Crack Turning and Arrest Mechanisms for Integral Structure
NASA Technical Reports Server (NTRS)
Pettit, Richard; Ingraffea, Anthony
1999-01-01
In the course of several years of research efforts to predict crack turning and flapping in aircraft fuselage structures and other problems related to crack turning, the 2nd order maximum tangential stress theory has been identified as the theory most capable of predicting the observed test results. This theory requires knowledge of a material specific characteristic length, and also a computation of the stress intensity factors and the T-stress, or second order term in the asymptotic stress field in the vicinity of the crack tip. A characteristic length, r(sub c), is proposed for ductile materials pertaining to the onset of plastic instability, as opposed to the void spacing theories espoused by previous investigators. For the plane stress case, an approximate estimate of r(sub c), is obtained from the asymptotic field for strain hardening materials given by Hutchinson, Rice and Rosengren (HRR). A previous study using of high order finite element methods to calculate T-stresses by contour integrals resulted in extremely high accuracy values obtained for selected test specimen geometries, and a theoretical error estimation parameter was defined. In the present study, it is shown that a large portion of the error in finite element computations of both K and T are systematic, and can be corrected after the initial solution if the finite element implementation utilizes a similar crack tip discretization scheme for all problems. This scheme is applied for two-dimensional problems to a both a p-version finite element code, showing that sufficiently accurate values of both K(sub I) and T can be obtained with fairly low order elements if correction is used. T-stress correction coefficients are also developed for the singular crack tip rosette utilized in the adaptive mesh finite element code FRANC2D, and shown to reduce the error in the computed T-stress significantly. Stress intensity factor correction was not attempted for FRANC2D because it employs a highly accurate quarter-point scheme to obtain stress intensity factors.
Nanoscale Transport Optimization
2008-12-04
could be argued that the advantage of using ABAQUS for this modeling construct has more to do with its ability to impose a user-defined subroutine that...finite element analysis. This is accomplished by employing a user defined subroutine for fluid properties at the interface within the finite element...package ABAQUS . Model Components: As noted above the governing equation for the material system is given as, ( ) ( ) 4484476444 8444 76
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
The objective of this study is to develop a finite element continuum damage model suitable for modeling deformation, cracking, and crack bridging for W-Cu, W-Ni-Fe, and other ductile phase toughened W-composites, or more generally, any multi-phase composite structure where two or more phases undergo cooperative deformation in a composite system.
Finite Element Model to Reduce Fire and Blast Vulnerability
2013-01-01
4 Figure 4. Scapula, Clavicle and Arm Models Attached to the Larger Model .............................. 5 Figure 5. The Full Body...Finite Element Model of the Lower Limbs UNCLASSIFIED 4 UNCLASSIFIED Anatomical surfaces of the scapula and clavicle were obtained and...ulna and hand bones. For the arms, hands, scapula and clavicle , the materials were made to be rigid and joints created using computational constraints
NASA Astrophysics Data System (ADS)
Wang, Z. P.; Hayhurst, D. R.
1994-07-01
The creep deformation and damage evolution in a pipe weldment has been modeled by using the finite-element continuum damage mechanics (CDM) method. The finite-element CDM computer program DAMAGE XX has been adapted to run with increased speed on a Cray XMP/416 supercomputer. Run times are sufficiently short (20 min) to permit many parametric studies to be carried out on vessel lifetimes for different weld and heat affected zone (HAZ) materials. Finite-element mesh sensitivity was studied first in order to select a mesh capable of correctly predicting experimentally observed results using at least possible computer time. A study was then made of the effect on the lifetime of a butt welded vessel of each of the commomly measured material parameters for the weld and HAZ materials. Forty different ferritic steel welded vessels were analyzed for a constant internal pressure of 45.5 MPa at a temperature of 565 C; each vessel having the same parent pipe material but different weld and HAZ materials. A lifetime improvement has been demonstrated of 30% over that obtained for the initial materials property data. A methodology for weldment design has been established which uses supercomputer-based CDM analysis techniques; it is quick to use, provides accurate results, and is a viable design tool.
Townsend, Molly T; Sarigul-Klijn, Nesrin
2016-01-01
Simplified material models are commonly used in computational simulation of biological soft tissue as an approximation of the complicated material response and to minimize computational resources. However, the simulation of complex loadings, such as long-duration tissue swelling, necessitates complex models that are not easy to formulate. This paper strives to offer the updated Lagrangian formulation comprehensive procedure of various non-linear material models for the application of finite element analysis of biological soft tissues including a definition of the Cauchy stress and the spatial tangential stiffness. The relationships between water content, osmotic pressure, ionic concentration and the pore pressure stress of the tissue are discussed with the merits of these models and their applications.
NASA Astrophysics Data System (ADS)
Langer, P.; Sepahvand, K.; Guist, C.; Bär, J.; Peplow, A.; Marburg, S.
2018-03-01
The simulation model which examines the dynamic behavior of real structures needs to address the impact of uncertainty in both geometry and material parameters. This article investigates three-dimensional finite element models for structural dynamics problems with respect to both model and parameter uncertainties. The parameter uncertainties are determined via laboratory measurements on several beam-like samples. The parameters are then considered as random variables to the finite element model for exploring the uncertainty effects on the quality of the model outputs, i.e. natural frequencies. The accuracy of the output predictions from the model is compared with the experimental results. To this end, the non-contact experimental modal analysis is conducted to identify the natural frequency of the samples. The results show a good agreement compared with experimental data. Furthermore, it is demonstrated that geometrical uncertainties have more influence on the natural frequencies compared to material parameters and material uncertainties are about two times higher than geometrical uncertainties. This gives valuable insights for improving the finite element model due to various parameter ranges required in a modeling process involving uncertainty.
NASA Astrophysics Data System (ADS)
Zhao, Jifeng; Kontsevoi, Oleg Y.; Xiong, Wei; Smith, Jacob
2017-05-01
In this work, a multi-scale computational framework has been established in order to investigate, refine and validate constitutive behaviors in the context of the Gurson-Tvergaard-Needleman (GTN) void mechanics model. The eXtended Finite Element Method (XFEM) has been implemented in order to (1) develop statistical volume elements (SVE) of a matrix material with subscale inclusions and (2) to simulate the multi-void nucleation process due to interface debonding between the matrix and particle phases. Our analyses strongly suggest that under low stress triaxiality the nucleation rate of the voids f˙ can be well described by a normal distribution function with respect to the matrix equivalent stress (σe), as opposed to that proposed (σbar + 1 / 3σkk) in the original form of the single void GTN model. The modified form of the multi-void nucleation model has been validated based on a series of numerical experiments with different loading conditions, material properties, particle shape/size and spatial distributions. The utilization of XFEM allows for an invariant finite element mesh to represent varying microstructures, which implies suitability for drastically reducing complexity in generating the finite element discretizations for large stochastic arrays of microstructure configurations. The modified form of the multi-void nucleation model is further applied to study high strength steels by incorporating first principles calculations. The necessity of using a phenomenological interface separation law has been fully eliminated and replaced by the physics-based cohesive relationship obtained from Density Functional Theory (DFT) calculations in order to provide an accurate macroscopic material response.
The use of functionally graded dental crowns to improve biocompatibility: a finite element analysis.
Mahmoudi, Mojtaba; Saidi, Ali Reza; Hashemipour, Maryam Alsadat; Amini, Parviz
2018-02-01
In post-core crown restorations, the significant mismatch between stiffness of artificial crowns and dental tissues leads to stress concentration at the interfaces. The aim of the present study was to reduce the destructive stresses by using a class of inhomogeneous materials called functionally graded materials (FGMs). For the purpose of the study, a 3-dimentional computer model of a premolar tooth and its surrounding tissues were generated. A post-core crown restoration with various crown materials, homogenous and FGM materials, were simulated and analyzed by finite element method. Finite element and statistical analysis showed that, in case of oblique loading, a significant difference (p < 0.05) was found at the maximum von Mises stresses of the crown margin between FGM and homogeneous crowns. The maximum von Mises stresses of the crown margin generated by FGM crowns were lower than those generated by homogenous crowns (70.8 vs. 46.3 MPa) and alumina crown resulted in the highest von Mises stress at the crown margin (77.7 MPa). Crown materials of high modulus of elasticity produced high stresses at the cervical region. FGM crowns may reduce the stress concentration at the cervical margins and consequently reduce the possibility of fracture.
NASA Astrophysics Data System (ADS)
Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh
2018-02-01
The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.
DOUAR: A new three-dimensional creeping flow numerical model for the solution of geological problems
NASA Astrophysics Data System (ADS)
Braun, Jean; Thieulot, Cédric; Fullsack, Philippe; DeKool, Marthijn; Beaumont, Christopher; Huismans, Ritske
2008-12-01
We present a new finite element code for the solution of the Stokes and energy (or heat transport) equations that has been purposely designed to address crustal-scale to mantle-scale flow problems in three dimensions. Although it is based on an Eulerian description of deformation and flow, the code, which we named DOUAR ('Earth' in Breton language), has the ability to track interfaces and, in particular, the free surface, by using a dual representation based on a set of particles placed on the interface and the computation of a level set function on the nodes of the finite element grid, thus ensuring accuracy and efficiency. The code also makes use of a new method to compute the dynamic Delaunay triangulation connecting the particles based on non-Euclidian, curvilinear measure of distance, ensuring that the density of particles remains uniform and/or dynamically adapted to the curvature of the interface. The finite element discretization is based on a non-uniform, yet regular octree division of space within a unit cube that allows efficient adaptation of the finite element discretization, i.e. in regions of strong velocity gradient or high interface curvature. The finite elements are cubes (the leaves of the octree) in which a q1- p0 interpolation scheme is used. Nodal incompatibilities across faces separating elements of differing size are dealt with by introducing linear constraints among nodal degrees of freedom. Discontinuities in material properties across the interfaces are accommodated by the use of a novel method (which we called divFEM) to integrate the finite element equations in which the elemental volume is divided by a local octree to an appropriate depth (resolution). A variety of rheologies have been implemented including linear, non-linear and thermally activated creep and brittle (or plastic) frictional deformation. A simple smoothing operator has been defined to avoid checkerboard oscillations in pressure that tend to develop when using a highly irregular octree discretization and the tri-linear (or q1- p0) finite element. A three-dimensional cloud of particles is used to track material properties that depend on the integrated history of deformation (the integrated strain, for example); its density is variable and dynamically adapted to the computed flow. The large system of algebraic equations that results from the finite element discretization and linearization of the basic partial differential equations is solved using a multi-frontal massively parallel direct solver that can efficiently factorize poorly conditioned systems resulting from the highly non-linear rheology and the presence of the free surface. The code is almost entirely parallelized. We present example results including the onset of a Rayleigh-Taylor instability, the indentation of a rigid-plastic material and the formation of a fold beneath a free eroding surface, that demonstrate the accuracy, efficiency and appropriateness of the new code to solve complex geodynamical problems in three dimensions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crapps, Justin M.; Clarke, Kester D.; Katz, Joel D.
2012-06-06
We use experimentation and finite element modeling to study a Hot Isostatic Press (HIP) manufacturing process for U-10Mo Monolithic Fuel Plates. Finite element simulations are used to identify the material properties affecting the process and improve the process geometry. Accounting for the high temperature material properties and plasticity is important to obtain qualitative agreement between model and experimental results. The model allows us to improve the process geometry and provide guidance on selection of material and finish conditions for the process strongbacks. We conclude that the HIP can must be fully filled to provide uniform normal stress across the bondingmore » interface.« less
Joo, Hyun-Woo; Lee, Chang-Hwan; Rho, Jong-Seok; Jung, Hyun-Kyo
2003-08-01
In this paper, an inversion scheme for piezoelectric constants of piezoelectric transformers is proposed. The impedance of piezoelectric transducers is calculated using a three-dimensional finite element method. The validity of this is confirmed experimentally. The effects of material coefficients on piezoelectric transformers are investigated numerically. Six material coefficient variables for piezoelectric transformers were selected, and a design sensitivity method was adopted as an inversion scheme. The validity of the proposed method was confirmed by step-up ratio calculations. The proposed method is applied to the analysis of a sample piezoelectric transformer, and its resonance characteristics are obtained by numerically combined equivalent circuit method.
Lin, Ying-he; Man, Yi; Liang, Xing; Qu, Yi-li; Lu, Xuan
2004-11-01
To study the stress distribution and displacement of edentulous alveolar ridge of removable partial denture which is retained by using conical telescope. An ideal three dimensional finite element model was constructed by using SCT image reconstruction technique, self-programming and ANSYS software. The static load was applied. The stress and displacement characteristics of these different types of materials which form the metal part of the conical telescope were compared and analyzed. Generally, the four materials produced almost the same stress and displacement at the site of the edentulous alveolar ridge. From the viewpoint of dynamics, the application of different materials in making the metal part of conical telescope is feasible.
Finite element solutions for crack-tip behavior in small-scale yielding
NASA Technical Reports Server (NTRS)
Tracey, D. M.
1976-01-01
The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.
NASA Technical Reports Server (NTRS)
Melis, M. E.
1994-01-01
A significant percentage of time spent in a typical finite element analysis is taken up in the modeling and assignment of loads and constraints. This process not only requires the analyst to be well-versed in the art of finite element modeling, but also demands familiarity with some sort of preprocessing software in order to complete the task expediently. COMGEN (COmposite Model GENerator) is an interactive FORTRAN program which can be used to create a wide variety of finite element models of continuous fiber composite materials at the micro level. It quickly generates batch or "session files" to be submitted to the finite element pre- and post-processor program, PATRAN. (PDA Engineering, Costa Mesa, CA.) In modeling a composite material, COMGEN assumes that its constituents can be represented by a "unit cell" of a fiber surrounded by matrix material. Two basic cell types are available. The first is a square packing arrangement where the fiber is positioned in the center of a square matrix cell. The second type, hexagonal packing, has the fiber centered in a hexagonal matrix cell. Different models can be created using combinations of square and hexagonal packing schemes. Variations include two- and three- dimensional cases, models with a fiber-matrix interface, and different constructions of unit cells. User inputs include fiber diameter and percent fiber-volume of the composite to be analyzed. In addition, various mesh densities, boundary conditions, and loads can be assigned to the models within COMGEN. The PATRAN program then uses a COMGEN session file to generate finite element models and their associated loads which can then be translated to virtually any finite element analysis code such as NASTRAN or MARC. COMGEN is written in FORTRAN 77 and has been implemented on DEC VAX series computers under VMS and SGI IRIS series workstations under IRIX. If the user has the PATRAN package available, the output can be graphically displayed. Without PATRAN, the output is tabular. The VAX VMS version is available on a 5.25 inch 360K MS-DOS format diskette (standard distribution media) or a 9-track 1600 BPI DEC VAX FILES-11 format magnetic tape, and it requires about 124K of main memory. The standard distribution media for the IRIS version is a .25 inch streaming magnetic tape cartridge in UNIX tar format. The memory requirement for the IRIS version is 627K. COMGEN was developed in 1990. DEC, VAX and VMS are trademarks of Digital Equipment Corporation. PATRAN is a registered trademark of PDA Engineering. SGI IRIS and IRIX are trademarks of Silicon Graphics, Inc. MS-DOS is a registered trademark of Microsoft Corporation. UNIX is a registered trademark of AT&T.
Indentation-Induced Shear Band Formation in Thin-Film Multilayers
NASA Astrophysics Data System (ADS)
Bigelow, Shannon; Shen, Yu-Lin
2017-08-01
We report an exploratory investigation into the cause of shear band formation in multilayer thin-films subject to nanoindentation. The material system considered here is composed of alternating aluminum (Al) and silicon carbide (SiC) nanolayers, atop a silicon (Si) substrate. Finite element models are developed in an attempt to reproduce the shear banding phenomenon observed experimentally. By introducing strain softening into the material model for the hard SiC layers, shear bands can be seen to emerge from the indentation site in the finite element analysis. Broad implications, along with possible directions for future work, are discussed.
Measuring the nonlinear elastic properties of tissue-like phantoms.
Erkamp, Ramon Q; Skovoroda, Andrei R; Emelianov, Stanislav Y; O'Donnell, Matthew
2004-04-01
A direct mechanical system simultaneously measuring external force and deformation of samples over a wide dynamic range is used to obtain force-displacement curves of tissue-like phantoms under plain strain deformation. These measurements, covering a wide deformation range, then are used to characterize the nonlinear elastic properties of the phantom materials. The model assumes incompressible media, in which several strain energy potentials are considered. Finite-element analysis is used to evaluate the performance of this material characterization procedure. The procedures developed allow calibration of nonlinear elastic phantoms for elasticity imaging experiments and finite-element simulations.
Finite element simulation of cutting grey iron HT250 by self-prepared Si3N4 ceramic insert
NASA Astrophysics Data System (ADS)
Wang, Bo; Wang, Li; Zhang, Enguang
2017-04-01
The finite element method has been able to simulate and solve practical machining problems, achieve the required accuracy and the highly reliability. In this paper, the simulation models based on the material properties of the self-prepared Si3N4 insert and HT250 were created. Using these models, the results of cutting force, cutting temperature and tool wear rate were obtained, and tool wear mode was predicted after cutting simulation. These approaches may develop as the new method for testing new cutting-tool materials, shortening development cycle and reducing the cost.
Pull-out fibers from composite materials at high rate of loading
NASA Technical Reports Server (NTRS)
Amijima, S.; Fujii, T.
1981-01-01
Numerical and experimental results are presented on the pullout phenomenon in composite materials at a high rate of loading. The finite element method was used, taking into account the existence of a virtual shear deformation layer as the interface between fiber and matrix. Experimental results agree well with those obtained by the finite element method. Numerical results show that the interlaminar shear stress is time dependent, in addition, it is shown to depend on the applied load time history. Under step pulse loading, the interlaminar shear stress fluctuates, finally decaying to its value under static loading.
A three-dimensional inverse finite element analysis of the heel pad.
Chokhandre, Snehal; Halloran, Jason P; van den Bogert, Antonie J; Erdemir, Ahmet
2012-03-01
Quantification of plantar tissue behavior of the heel pad is essential in developing computational models for predictive analysis of preventive treatment options such as footwear for patients with diabetes. Simulation based studies in the past have generally adopted heel pad properties from the literature, in return using heel-specific geometry with material properties of a different heel. In exceptional cases, patient-specific material characterization was performed with simplified two-dimensional models, without further evaluation of a heel-specific response under different loading conditions. The aim of this study was to conduct an inverse finite element analysis of the heel in order to calculate heel-specific material properties in situ. Multidimensional experimental data available from a previous cadaver study by Erdemir et al. ("An Elaborate Data Set Characterizing the Mechanical Response of the Foot," ASME J. Biomech. Eng., 131(9), pp. 094502) was used for model development, optimization, and evaluation of material properties. A specimen-specific three-dimensional finite element representation was developed. Heel pad material properties were determined using inverse finite element analysis by fitting the model behavior to the experimental data. Compression dominant loading, applied using a spherical indenter, was used for optimization of the material properties. The optimized material properties were evaluated through simulations representative of a combined loading scenario (compression and anterior-posterior shear) with a spherical indenter and also of a compression dominant loading applied using an elevated platform. Optimized heel pad material coefficients were 0.001084 MPa (μ), 9.780 (α) (with an effective Poisson's ratio (ν) of 0.475), for a first-order nearly incompressible Ogden material model. The model predicted structural response of the heel pad was in good agreement for both the optimization (<1.05% maximum tool force, 0.9% maximum tool displacement) and validation cases (6.5% maximum tool force, 15% maximum tool displacement). The inverse analysis successfully predicted the material properties for the given specimen-specific heel pad using the experimental data for the specimen. The modeling framework and results can be used for accurate predictions of the three-dimensional interaction of the heel pad with its surroundings.
Predicting Print-thru for the Sub-scale Beryllium Mirror Demonstrator (SBMD)
NASA Technical Reports Server (NTRS)
Craig, Larry; J. Kevin Russell (Technical Monitor)
2002-01-01
This document presents a finite element method for predicting print-thru or quilting for a lightweight mirror in a low temperature environment. The mirror is represented with quadrilateral and triangular plate finite elements. The SBMD (Sub-scale Beryllium Mirror Demonstrator) is circular with a diameter of 50 cm and one flat side. The mirror structure is a thin-wall triangular cell core with a single facesheet. There is a 4 mm radius fillet between the facesheet and cell walls. It is made entirely of Beryllium. It is assumed that polishing the mirror surface creates a thin surface layer with different material properties. Finite element results are compared with measured values at cryogenic temperatures.
NASA Technical Reports Server (NTRS)
Kenigsberg, I. J.; Dean, M. W.; Malatino, R.
1974-01-01
The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter.
Studies on vibration characteristics of a pear using finite element method*
Song, Hui-zhi; Wang, Jun; Li, Yong-hui
2006-01-01
The variation of the vibration characteristics of a Huanghua pear was investigated using finite element simulations. A new image processing technique was used to obtain the unsymmetrical and un-spherical geometrical model of a pear. The vibration characteristics of this type of pear with the correlation of its behavior with geometrical configurations and material characteristics were investigated using numerical modal analysis. The results showed that the eigenfrequency increased with the increasing pear Young’s modulus, while decreased with increasing pear density, and decreased with increasing pear volume. The results of this study provided foundation for further investigations of the physical characteristics of fruits and vegetables by using finite element simulations. PMID:16691644
Structural weights analysis of advanced aerospace vehicles using finite element analysis
NASA Technical Reports Server (NTRS)
Bush, Lance B.; Lentz, Christopher A.; Rehder, John J.; Naftel, J. Chris; Cerro, Jeffrey A.
1989-01-01
A conceptual/preliminary level structural design system has been developed for structural integrity analysis and weight estimation of advanced space transportation vehicles. The system includes a three-dimensional interactive geometry modeler, a finite element pre- and post-processor, a finite element analyzer, and a structural sizing program. Inputs to the system include the geometry, surface temperature, material constants, construction methods, and aerodynamic and inertial loads. The results are a sized vehicle structure capable of withstanding the static loads incurred during assembly, transportation, operations, and missions, and a corresponding structural weight. An analysis of the Space Shuttle external tank is included in this paper as a validation and benchmark case of the system.
NASA Astrophysics Data System (ADS)
Germain, Norbert; Besson, Jacques; Feyel, Frédéric
2007-07-01
Simulating damage and failure of laminate composites structures often fails when using the standard finite element procedure. The difficulties arise from an uncontrolled mesh dependence caused by damage localization and an increase in computational costs. One of the solutions to the first problem, widely used to predict the failure of metallic materials, consists of using non-local damage constitutive equations. The second difficulty can then be solved using specific finite element formulations, such as shell element, which decrease the number of degrees of freedom. The main contribution of this paper consists of extending these techniques to layered materials such as polymer matrix composites. An extension of the non-local implicit gradient formulation, accounting for anisotropy and stratification, and an original layered shell element, based on a new partition of the unity, are proposed. Finally the efficiency of the resulting numerical scheme is studied by comparing simulation with experimental results.
An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Saether, E.; Glaessgen, E.H.; Yamakov, V.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.; Littell, Justin D.
2017-01-01
This paper describes the development of input properties for a continuum damage mechanics based material model, Mat 58, within LS-DYNA(Registered Trademark) to simulate the response of a graphite-Kevlar(Registered Trademark) hybrid plain weave fabric. A limited set of material characterization tests were performed on the hybrid graphite-Kevlar(Registered Trademark) fabric. Simple finite element models were executed in LS-DYNA(Registered Trademark) to simulate the material characterization tests and to verify the Mat 58 material model. Once verified, the Mat 58 model was used in finite element models of two composite energy absorbers: a conical-shaped design, designated the "conusoid," fabricated of four layers of hybrid graphite-Kevlar(Registered Trademark) fabric; and, a sinusoidal-shaped foam sandwich design, designated the "sinusoid," fabricated of the same hybrid fabric face sheets with a foam core. Dynamic crush tests were performed on components of the two energy absorbers, which were designed to limit average vertical accelerations to 25- to 40-g, to minimize peak crush loads, and to generate relatively long crush stroke values under dynamic loading conditions. Finite element models of the two energy absorbers utilized the Mat 58 model that had been verified through material characterization testing. Excellent predictions of the dynamic crushing response were obtained.
Application of Finite Element to Evaluate Material with Small Modulus of Elasticity
2013-03-01
14 Figure 8: Cross-sectional diagram of thorax highlighting the various muscle groups in the Hawkmoth and the interaction with Exoskeleton ...44 Figure 26: Partially Dissected Moth highlighting the point of incision of the exoskeleton (wings are removed...applications to the exoskeleton of the hawkmoth are examined. The formulation of these equations is discussed in Chapter 2 and the finite element model is
NASA Technical Reports Server (NTRS)
OBrien, T. Kevin; Krueger, Ronald
2001-01-01
Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.
NASA Astrophysics Data System (ADS)
Wu, Jie; Yan, Quan-sheng; Li, Jian; Hu, Min-yi
2016-04-01
In bridge construction, geometry control is critical to ensure that the final constructed bridge has the consistent shape as design. A common method is by predicting the deflections of the bridge during each construction phase through the associated finite element models. Therefore, the cambers of the bridge during different construction phases can be determined beforehand. These finite element models are mostly based on the design drawings and nominal material properties. However, the accuracy of these bridge models can be large due to significant uncertainties of the actual properties of the materials used in construction. Therefore, the predicted cambers may not be accurate to ensure agreement of bridge geometry with design, especially for long-span bridges. In this paper, an improved geometry control method is described, which incorporates finite element (FE) model updating during the construction process based on measured bridge deflections. A method based on the Kriging model and Latin hypercube sampling is proposed to perform the FE model updating due to its simplicity and efficiency. The proposed method has been applied to a long-span continuous girder concrete bridge during its construction. Results show that the method is effective in reducing construction error and ensuring the accuracy of the geometry of the final constructed bridge.
Predoi, Mihai Valentin
2014-09-01
The dispersion curves for hollow multilayered cylinders are prerequisites in any practical guided waves application on such structures. The equations for homogeneous isotropic materials have been established more than 120 years ago. The difficulties in finding numerical solutions to analytic expressions remain considerable, especially if the materials are orthotropic visco-elastic as in the composites used for pipes in the last decades. Among other numerical techniques, the semi-analytical finite elements method has proven its capability of solving this problem. Two possibilities exist to model a finite elements eigenvalue problem: a two-dimensional cross-section model of the pipe or a radial segment model, intersecting the layers between the inner and the outer radius of the pipe. The last possibility is here adopted and distinct differential problems are deduced for longitudinal L(0,n), torsional T(0,n) and flexural F(m,n) modes. Eigenvalue problems are deduced for the three modes classes, offering explicit forms of each coefficient for the matrices used in an available general purpose finite elements code. Comparisons with existing solutions for pipes filled with non-linear viscoelastic fluid or visco-elastic coatings as well as for a fully orthotropic hollow cylinder are all proving the reliability and ease of use of this method. Copyright © 2014 Elsevier B.V. All rights reserved.
Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol
2010-12-01
Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.
Galerkin finite element scheme for magnetostrictive structures and composites
NASA Astrophysics Data System (ADS)
Kannan, Kidambi Srinivasan
The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin, on the response of magnetostrictive structures to complex mechanical and magnetic loading conditions, is carefully examined. While monolithic magnetostrictive materials have been commercially-available since the late eighties, attention in the smart structures research community has recently focussed upon building and using magnetostrictive particulate composite structures for conventional actuation applications and novel sensing methodologies in structural health monitoring. A particulate magnetostrictive composite element has been developed in the present work to model such structures. This composite element incorporates interactions between magnetostrictive particles by combining a numerical micromechanical analysis based on magneto-mechanical Green's functions, with a homogenization scheme based upon the Mori-Tanaka approach. This element has been applied to the simulation of particulate actuators and sensors reported in the literature. Simulation results are compared to experimental data for validation purposes. The computational schemes developed, for bulk materials and for composites, are expected to be of great value to researchers and designers of novel applications based on magnetostrictives.
NASA Technical Reports Server (NTRS)
Salpekar, S. A.; Raju, I. S.; O'Brien, T. K.
1988-01-01
Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain energy release rates, G sub II. The G sub II values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain energy release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G sub II values calculated using the compliance derivative method compared extremely well with those calculated using the VCCT. The G sub II values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain energy release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G sub II values for one material system calculated from the finte-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Blinzler, Brina J.; Binienda, Wieslaw K.
2010-01-01
A macro level finite element-based model has been developed to simulate the mechanical and impact response of triaxially-braided polymer matrix composites. In the analytical model, the triaxial braid architecture is simulated by using four parallel shell elements, each of which is modeled as a laminated composite. For the current analytical approach, each shell element is considered to be a smeared homogeneous material. The commercial transient dynamic finite element code LS-DYNA is used to conduct the simulations, and a continuum damage mechanics model internal to LS-DYNA is used as the material constitutive model. The constitutive model requires stiffness and strength properties of an equivalent unidirectional composite. Simplified micromechanics methods are used to determine the equivalent stiffness properties, and results from coupon level tests on the braided composite are utilized to back out the required strength properties. Simulations of quasi-static coupon tests of several representative braided composites are conducted to demonstrate the correlation of the model. Impact simulations of a represented braided composites are conducted to demonstrate the capability of the model to predict the penetration velocity and damage patterns obtained experimentally.
Application of NASTRAN to TFTR toroidal field coil structures
NASA Technical Reports Server (NTRS)
Chen, S. J.; Lee, E.
1978-01-01
The primary applied loads on the TF coils were electromagnetic and thermal. The complex structure and the tremendous applied loads necessitated computer type of solutions for the design problems. In the early stage of the TF coil design, many simplified finite element models were developed for the purpose of investigating the effects of material properties, supporting schemes, and coil case material on the stress levels in the case and in the copper coil. In the more sophisticated models that followed the parametric and scoping studies, the isoparametric elements, such as QUAD4, HEX8, and HEXA, were used. The analysis results from using these finite element models and the NASTRAN system were considered accurate enough to provide timely design information.
Analysis for Material Behavior of Sabot/Rods During Launch by Finite Element Method
NASA Astrophysics Data System (ADS)
Kim, Jin Bong; Kim, Man Geun
This study has been investigated to predict the deformation and states of stress and strain by axial and lateral acceleration during launch. Because a gun tube is not perfectly straight at its initial state while under gravity loading, the projectile deforms due to the change of contacts points with the flexible gun tube. Numerical simulations were used for gravity loading and the other type is initial shape and gravity loading. The ANSYS engineering analysis code was used to generate a parametric model of the projectile and conduct finite element analyses. Four types of nonlinear material and contact elements were incorporated into the model to account for the plastic deformation and contact between the penetrator, sabot, and tube.
Processing and Modeling of Porous Copper Using Sintering Dissolution Process
NASA Astrophysics Data System (ADS)
Salih, Mustafa Abualgasim Abdalhakam
The growth of porous metal has produced materials with improved properties as compared to non-metals and solid metals. Porous metal can be classified as either open cell or closed cell. Open cell allows a fluid media to pass through it. Closed cell is made up of adjacent sealed pores with shared cell walls. Metal foams offer higher strength to weight ratios, increased impact energy absorption, and a greater tolerance to high temperatures and adverse environmental conditions when compared to bulk materials. Copper and its alloys are examples of these, well known for high strength and good mechanical, thermal and electrical properties. In the present study, the porous Cu was made by a powder metallurgy process, using three different space holders, sodium chloride, sodium carbonate and potassium carbonate. Several different samples have been produced, using different ratios of volume fraction. The densities of the porous metals have been measured and compared to the theoretical density calculated using an equation developed for these foams. The porous structure was determined with the removal of spacer materials through sintering process. The sintering process of each spacer material depends on the melting point of the spacer material. Processing, characterization, and mechanical properties were completed. These tests include density measurements, compression tests, computed tomography (CT) and scanning electron microscopy (SEM). The captured morphological images are utilized to generate the object-oriented finite element (OOF) analysis for the porous copper. Porous copper was formed with porosities in the range of 40-66% with density ranges from 3 to 5.2 g/cm3. A study of two different methods to measure porosity was completed. OOF (Object Oriented Finite Elements) is a desktop software application for studying the relationship between the microstructure of a material and its overall mechanical, dielectric, or thermal properties using finite element models based on real or simulated micrographs. OOF provides methods for segmenting images, creating meshes and solving of complex geometries using finite element models, and visualizing 2D results.
Optimal design of composite hip implants using NASA technology
NASA Technical Reports Server (NTRS)
Blake, T. A.; Saravanos, D. A.; Davy, D. T.; Waters, S. A.; Hopkins, D. A.
1993-01-01
Using an adaptation of NASA software, we have investigated the use of numerical optimization techniques for the shape and material optimization of fiber composite hip implants. The original NASA inhouse codes, were originally developed for the optimization of aerospace structures. The adapted code, which was called OPORIM, couples numerical optimization algorithms with finite element analysis and composite laminate theory to perform design optimization using both shape and material design variables. The external and internal geometry of the implant and the surrounding bone is described with quintic spline curves. This geometric representation is then used to create an equivalent 2-D finite element model of the structure. Using laminate theory and the 3-D geometric information, equivalent stiffnesses are generated for each element of the 2-D finite element model, so that the 3-D stiffness of the structure can be approximated. The geometric information to construct the model of the femur was obtained from a CT scan. A variety of test cases were examined, incorporating several implant constructions and design variable sets. Typically the code was able to produce optimized shape and/or material parameters which substantially reduced stress concentrations in the bone adjacent of the implant. The results indicate that this technology can provide meaningful insight into the design of fiber composite hip implants.
NASA Technical Reports Server (NTRS)
Foye, R. L.
1993-01-01
This report concerns the prediction of the elastic moduli and the internal stresses within the unit cell of a fabric reinforced composite. In the proposed analysis no restrictions or assumptions are necessary concerning yarn or tow cross-sectional shapes or paths through the unit cell but the unit cell itself must be a right hexagonal parallelepiped. All the unit cell dimensions are assumed to be small with respect to the thickness of the composite structure that it models. The finite element analysis of a unit cell is usually complicated by the mesh generation problems and the non-standard, adjacent-cell boundary conditions. This analysis avoids these problems through the use of preprogrammed boundary conditions and replacement materials (or elements). With replacement elements it is not necessary to match all the constitutional material interfaces with finite element boundaries. Simple brick-shaped elements can be used to model the unit cell structure. The analysis predicts the elastic constants and the average stresses within each constituent material of each brick element. The application and results of this analysis are demonstrated through several example problems which include a number of composite microstructures.
Study on validation method for femur finite element model under multiple loading conditions
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu
2018-03-01
Acquisition of accurate and reliable constitutive parameters related to bio-tissue materials was beneficial to improve biological fidelity of a Finite Element (FE) model and predict impact damages more effectively. In this paper, a femur FE model was established under multiple loading conditions with diverse impact positions. Then, based on sequential response surface method and genetic algorithms, the material parameters identification was transformed to a multi-response optimization problem. Finally, the simulation results successfully coincided with force-displacement curves obtained by numerous experiments. Thus, computational accuracy and efficiency of the entire inverse calculation process were enhanced. This method was able to effectively reduce the computation time in the inverse process of material parameters. Meanwhile, the material parameters obtained by the proposed method achieved higher accuracy.
NASA Astrophysics Data System (ADS)
Szczepanik, M.; Poteralski, A.
2016-11-01
The paper is devoted to an application of the evolutionary methods and the finite element method to the optimization of shell structures. Optimization of thickness of a car wheel (shell) by minimization of stress functional is considered. A car wheel geometry is built from three surfaces of revolution: the central surface with the holes destined for the fastening bolts, the surface of the ring of the wheel and the surface connecting the two mentioned earlier. The last one is subjected to the optimization process. The structures are discretized by triangular finite elements and subjected to the volume constraints. Using proposed method, material properties or thickness of finite elements are changing evolutionally and some of them are eliminated. As a result the optimal shape, topology and material or thickness of the structures are obtained. The numerical examples demonstrate that the method based on evolutionary computation is an effective technique for solving computer aided optimal design.
NASA Astrophysics Data System (ADS)
Islam, Muhammad Rabiul; Sakib-Ul-Alam, Md.; Nazat, Kazi Kaarima; Hassan, M. Munir
2017-12-01
FEA results greatly depend on analysis parameters. MSC NASTRAN nonlinear implicit analysis code has been used in large deformation finite element analysis of pitted marine SM490A steel rectangular plate. The effect of two types actual pit shape on parameters of integrity of structure has been analyzed. For 3-D modeling, a proposed method for simulation of pitted surface by probabilistic corrosion model has been used. The result has been verified with the empirical formula proposed by finite element analysis of steel surface generated with different pitted data where analyses have been carried out by the code of LS-DYNA 971. In the both solver, an elasto-plastic material has been used where an arbitrary stress versus strain curve can be defined. In the later one, the material model is based on the J2 flow theory with isotropic hardening where a radial return algorithm is used. The comparison shows good agreement between the two results which ensures successful simulation with comparatively less energy and time.
Towards mechanism-based simulation of impact damage using exascale computing
NASA Astrophysics Data System (ADS)
Shterenlikht, Anton; Margetts, Lee; McDonald, Samuel; Bourne, Neil K.
2017-01-01
Over the past 60 years, the finite element method has been very successful in modelling deformation in engineering structures. However the method requires the definition of constitutive models that represent the response of the material to applied loads. There are two issues. Firstly, the models are often difficult to define. Secondly, there is often no physical connection between the models and the mechanisms that accommodate deformation. In this paper, we present a potentially disruptive two-level strategy which couples the finite element method at the macroscale with cellular automata at the mesoscale. The cellular automata are used to simulate mechanisms, such as crack propagation. The stress-strain relationship emerges as a continuum mechanics scale interpretation of changes at the micro- and meso-scales. Iterative two-way updating between the cellular automata and finite elements drives the simulation forward as the material undergoes progressive damage at high strain rates. The strategy is particularly attractive on large-scale computing platforms as both methods scale well on tens of thousands of CPUs.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2011-01-01
Detailed two-dimensional finite element analyses of the cross-sections of a model CVI (chemical vapor infiltrated) SiC/SiC (silicon carbide fiber in a silicon carbide matrix) ceramic matrix composites are performed. High resolution images of the cross-section of this composite material are generated using serial sectioning of the test specimens. These images are then used to develop very detailed finite element models of the cross-sections using the public domain software OOF2 (Object Oriented Analysis of Material Microstructures). Examination of these images shows that these microstructures have significant variability and irregularity. How these variabilities manifest themselves in the variability in effective properties as well as the stress distribution, damage initiation and damage progression is the overall objective of this work. Results indicate that even though the macroscopic stress-strain behavior of various sections analyzed is very similar, each section has a very distinct damage pattern when subjected to in-plane tensile loads and this damage pattern seems to follow the unique architectural and microstructural details of the analyzed sections.
NASA Astrophysics Data System (ADS)
Jansen Van Rensburg, G. J.; Kok, S.; Wilke, D. N.
2017-10-01
Different roll pass reduction schedules have different effects on the through-thickness properties of hot-rolled metal slabs. In order to assess or improve a reduction schedule using the finite element method, a material model is required that captures the relevant deformation mechanisms and physics. The model should also report relevant field quantities to assess variations in material state through the thickness of a simulated rolled metal slab. In this paper, a dislocation density-based material model with recrystallization is presented and calibrated on the material response of a high-strength low-alloy steel. The model has the ability to replicate and predict material response to a fair degree thanks to the physically motivated mechanisms it is built on. An example study is also presented to illustrate the possible effect different reduction schedules could have on the through-thickness material state and the ability to assess these effects based on finite element simulations.
NASA Astrophysics Data System (ADS)
Xu, Guanshui
2000-12-01
A direct finite-element model is developed for the full-scale analysis of the electromechanical phenomena involved in surface acoustic wave (SAW) devices. The equations of wave propagation in piezoelectric materials are discretized using the Galerkin method, in which an implicit algorithm of the Newmark family with unconditional stability is implemented. The Rayleigh damping coefficients are included in the elements near the boundary to reduce the influence of the reflection of waves. The performance of the model is demonstrated by the analysis of the frequency response of a Y-Z lithium niobate filter with two uniform ports, with emphasis on the influence of the number of electrodes. The frequency response of the filter is obtained through the Fourier transform of the impulse response, which is solved directly from the finite-element simulation. It shows that the finite-element results are in good agreement with the characteristic frequency response of the filter predicted by the simple phase-matching argument. The ability of the method to evaluate the influence of the bulk waves at the high-frequency end of the filter passband and the influence of the number of electrodes on insertion loss is noteworthy. We conclude that the direct finite-element analysis of SAW devices can be used as an effective tool for the design of high-performance SAW devices. Some practical computational challenges of finite-element modeling of SAW devices are discussed.
Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G
2004-02-01
The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2001-01-01
Analytical formulations are developed to account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. The coupled response is captured at the material level through the thermopiezoelectric constitutive equations and leads to the inherent capability to model both the sensory and active responses of piezoelectric materials. A layerwise laminate theory is incorporated to provide more accurate analysis of the displacements, strains, stresses, electric fields, and thermal fields through-the-thickness. Thermal effects which arise from coefficient of thermal expansion mismatch, pyroelectric effects, and temperature dependent material properties are explicitly accounted for in the formulation. Corresponding finite element formulations are developed for piezoelectric beam, plate, and shell elements to provide a more generalized capability for the analysis of arbitrary piezoelectric composite structures. The accuracy of the current formulation is verified with comparisons from published experimental data and other analytical models. Additional numerical studies are also conducted to demonstrate additional capabilities of the formulation to represent the sensory and active behaviors. A future plan of experimental studies is provided to characterize the high temperature dynamic response of piezoelectric composite materials.
NASA Astrophysics Data System (ADS)
Borovkov, Alexei I.; Avdeev, Ilya V.; Artemyev, A.
1999-05-01
In present work, the stress, vibration and buckling finite element analysis of laminated beams is performed. Review of the equivalent single-layer (ESL) laminate theories is done. Finite element algorithms and procedures integrated into the original FEA program system and based on the classical laminated plate theory (CLPT), first-order shear deformation theory (FSDT), third-order theory of Reddy (TSDT-R) and third- order theory of Kant (TSDT-K) with the use of the Lanczos method for solving of the eigenproblem are developed. Several numerical tests and examples of bending, free vibration and buckling of multilayered and sandwich beams with various material, geometry properties and boundary conditions are solved. New effective higher-order hierarchical element for the accurate calculation of transverse shear stress is proposed. The comparative analysis of results obtained by the considered models and solutions of 2D problems of the heterogeneous anisotropic elasticity is fulfilled.
Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang
2017-09-01
Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2 = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2 = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2 = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.
Air Vehicles Division Computational Structural Analysis Facilities Policy and Guidelines for Users
2005-05-01
34 Thermal " as appropriate and the tolerance set to "default". b) Create the model geometry. c) Create the finite elements. d) Create the...linear, non-linear, dynamic, thermal , acoustic analysis. The modelling of composite materials, creep, fatigue and plasticity are also covered...perform professional, high quality finite element analysis (FEA). FE analysts from many tasks within AVD are using the facilities to conduct FEA with
NASA Technical Reports Server (NTRS)
Yamakov, V.; Saether, E.; Glaessgen, E. H.
2008-01-01
Intergranular fracture is a dominant mode of failure in ultrafine grained materials. In the present study, the atomistic mechanisms of grain-boundary debonding during intergranular fracture in aluminum are modeled using a coupled molecular dynamics finite element simulation. Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship, characterizing the load transfer across the plane of a growing edge crack, is extracted from atomistic simulations and then recast in a form suitable for inclusion within a continuum finite element model. The cohesive-zone law derived by the presented technique is free of finite size effects and is statistically representative for describing the interfacial debonding of a grain boundary (GB) interface examined at atomic length scales. By incorporating the cohesive-zone law in cohesive-zone finite elements, the debonding of a GB interface can be simulated in a coupled continuum-atomistic model, in which a crack starts in the continuum environment, smoothly penetrates the continuum-atomistic interface, and continues its propagation in the atomistic environment. This study is a step towards relating atomistically derived decohesion laws to macroscopic predictions of fracture and constructing multiscale models for nanocrystalline and ultrafine grained materials.
Chen, Yen-Ju; Lee, Yen-I; Chang, Wen-Cheng; Hsiao, Po-Jen; You, Jr-Shian; Wang, Chun-Chieh; Wei, Chia-Min
2017-01-01
Abstract Hot deformation of Nd-Fe-B magnets has been studied for more than three decades. With a good combination of forming processing parameters, the remanence and (BH)max values of Nd-Fe-B magnets could be greatly increased due to the formation of anisotropic microstructures during hot deformation. In this work, a methodology is proposed for visualizing the material flow in hot-deformed Nd-Fe-B magnets via finite element simulation. Material flow in hot-deformed Nd-Fe-B magnets could be predicted by simulation, which fitted with experimental results. By utilizing this methodology, the correlation between strain distribution and magnetic properties enhancement could be better understood. PMID:28970869
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-01-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Astrophysics Data System (ADS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1991-08-01
Probabilistic finite element methods (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Variational approach to probabilistic finite elements
NASA Technical Reports Server (NTRS)
Belytschko, T.; Liu, W. K.; Mani, A.; Besterfield, G.
1987-01-01
Probabilistic finite element method (PFEM), synthesizing the power of finite element methods with second-moment techniques, are formulated for various classes of problems in structural and solid mechanics. Time-invariant random materials, geometric properties, and loads are incorporated in terms of their fundamental statistics viz. second-moments. Analogous to the discretization of the displacement field in finite element methods, the random fields are also discretized. Preserving the conceptual simplicity, the response moments are calculated with minimal computations. By incorporating certain computational techniques, these methods are shown to be capable of handling large systems with many sources of uncertainties. By construction, these methods are applicable when the scale of randomness is not very large and when the probabilistic density functions have decaying tails. The accuracy and efficiency of these methods, along with their limitations, are demonstrated by various applications. Results obtained are compared with those of Monte Carlo simulation and it is shown that good accuracy can be obtained for both linear and nonlinear problems. The methods are amenable to implementation in deterministic FEM based computer codes.
Coupled thermomechanical behavior of graphene using the spring-based finite element approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr; Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr
The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations aremore » analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.« less
Gleadall, Andrew; Pan, Jingzhe; Ding, Lifeng; Kruft, Marc-Anton; Curcó, David
2015-11-01
Molecular dynamics (MD) simulations are widely used to analyse materials at the atomic scale. However, MD has high computational demands, which may inhibit its use for simulations of structures involving large numbers of atoms such as amorphous polymer structures. An atomic-scale finite element method (AFEM) is presented in this study with significantly lower computational demands than MD. Due to the reduced computational demands, AFEM is suitable for the analysis of Young's modulus of amorphous polymer structures. This is of particular interest when studying the degradation of bioresorbable polymers, which is the topic of an accompanying paper. AFEM is derived from the inter-atomic potential energy functions of an MD force field. The nonlinear MD functions were adapted to enable static linear analysis. Finite element formulations were derived to represent interatomic potential energy functions between two, three and four atoms. Validation of the AFEM was conducted through its application to atomic structures for crystalline and amorphous poly(lactide). Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Sharifi, Hamid; Larouche, Daniel
2015-09-01
The quality of cast metal products depends on the capacity of the semi-solid metal to sustain the stresses generated during the casting. Predicting the evolution of these stresses with accuracy in the solidification interval should be highly helpful to avoid the formation of defects like hot tearing. This task is however very difficult because of the heterogeneous nature of the material. In this paper, we propose to evaluate the mechanical behaviour of a metal during solidification using a mesh generation technique of the heterogeneous semi-solid material for a finite element analysis at the microscopic level. This task is done on a two-dimensional (2D) domain in which the granular structure of the solid phase is generated surrounded by an intergranular and interdendritc liquid phase. Some basic solid grains are first constructed and projected in the 2D domain with random orientations and scale factors. Depending on their orientation, the basic grains are combined to produce larger grains or separated by a liquid film. Different basic grain shapes can produce different granular structures of the mushy zone. As a result, using this automatic grain generation procedure, we can investigate the effect of grain shapes and sizes on the thermo-mechanical behaviour of the semi-solid material. The granular models are automatically converted to the finite element meshes. The solid grains and the liquid phase are meshed properly using quadrilateral elements. This method has been used to simulate the microstructure of a binary aluminium-copper alloy (Al-5.8 wt% Cu) when the fraction solid is 0.92. Using the finite element method and the Mie-Grüneisen equation of state for the liquid phase, the transient mechanical behaviour of the mushy zone under tensile loading has been investigated. The stress distribution and the bridges, which are formed during the tensile loading, have been detected.
Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R
2011-08-11
Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation. Copyright © 2011. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Khechai, Abdelhak; Tati, Abdelouahab; Belarbi, Mohamed Ouejdi; Guettala, Abdelhamid
2018-03-01
The design of high-performance composite structures frequently includes discontinuities to reduce the weight and fastener holes for joining. Understanding the behavior of perforated laminates is necessary for structural design. In the current work, stress concentrations taking place in laminated and isotropic plates subjected to tensile load are investigated. The stress concentrations are obtained using a recent quadrilateral finite element of four nodes with 32 DOFs. The present finite element (PE) is a combination of two finite elements. The first finite element is a linear isoparametric membrane element and the second is a high precision Hermitian element. One of the essential objectives of the current investigation is to confirm the capability and efficiency of the PE for stress determination in perforated laminates. Different geometric parameters, such as the cutout form, sizes and cutout orientations, which have a considerable effect on the stress values, are studied. Using the present finite element formulation, the obtained results are found to be in good agreement with the analytical findings, which validates the capability and the efficiency of the proposed formulation. Finally, to understand the material parameters effect such as the orientation of fibers and degree of orthotropy ratio on the stress values, many figures are presented using different ellipse major to minor axis ratio. The stress concentration values are considerably affected by increasing the orientation angle of the fibers and degree of orthotropy.
Probalistic Finite Elements (PFEM) structural dynamics and fracture mechanics
NASA Technical Reports Server (NTRS)
Liu, Wing-Kam; Belytschko, Ted; Mani, A.; Besterfield, G.
1989-01-01
The purpose of this work is to develop computationally efficient methodologies for assessing the effects of randomness in loads, material properties, and other aspects of a problem by a finite element analysis. The resulting group of methods is called probabilistic finite elements (PFEM). The overall objective of this work is to develop methodologies whereby the lifetime of a component can be predicted, accounting for the variability in the material and geometry of the component, the loads, and other aspects of the environment; and the range of response expected in a particular scenario can be presented to the analyst in addition to the response itself. Emphasis has been placed on methods which are not statistical in character; that is, they do not involve Monte Carlo simulations. The reason for this choice of direction is that Monte Carlo simulations of complex nonlinear response require a tremendous amount of computation. The focus of efforts so far has been on nonlinear structural dynamics. However, in the continuation of this project, emphasis will be shifted to probabilistic fracture mechanics so that the effect of randomness in crack geometry and material properties can be studied interactively with the effect of random load and environment.
NASA Astrophysics Data System (ADS)
Shamshuddin, MD.; Anwar Bég, O.; Sunder Ram, M.; Kadir, A.
2018-02-01
Non-Newtonian flows arise in numerous industrial transport processes including materials fabrication systems. Micropolar theory offers an excellent mechanism for exploring the fluid dynamics of new non-Newtonian materials which possess internal microstructure. Magnetic fields may also be used for controlling electrically-conducting polymeric flows. To explore numerical simulation of transport in rheological materials processing, in the current paper, a finite element computational solution is presented for magnetohydrodynamic, incompressible, dissipative, radiative and chemically-reacting micropolar fluid flow, heat and mass transfer adjacent to an inclined porous plate embedded in a saturated homogenous porous medium. Heat generation/absorption effects are included. Rosseland's diffusion approximation is used to describe the radiative heat flux in the energy equation. A Darcy model is employed to simulate drag effects in the porous medium. The governing transport equations are rendered into non-dimensional form under the assumption of low Reynolds number and also low magnetic Reynolds number. Using a Galerkin formulation with a weighted residual scheme, finite element solutions are presented to the boundary value problem. The influence of plate inclination, Eringen coupling number, radiation-conduction number, heat absorption/generation parameter, chemical reaction parameter, plate moving velocity parameter, magnetic parameter, thermal Grashof number, species (solutal) Grashof number, permeability parameter, Eckert number on linear velocity, micro-rotation, temperature and concentration profiles. Furthermore, the influence of selected thermo-physical parameters on friction factor, surface heat transfer and mass transfer rate is also tabulated. The finite element solutions are verified with solutions from several limiting cases in the literature. Interesting features in the flow are identified and interpreted.
Merei, Bilal; Badel, Pierre; Davis, Lindsey; Sutton, Michael A; Avril, Stéphane; Lessner, Susan M
2017-03-01
Finite element analyses using cohesive zone models (CZM) can be used to predict the fracture of atherosclerotic plaques but this requires setting appropriate values of the model parameters. In this study, material parameters of a CZM were identified for the first time on two groups of mice (ApoE -/- and ApoE -/- Col8 -/- ) using the measured force-displacement curves acquired during delamination tests. To this end, a 2D finite-element model of each plaque was solved using an explicit integration scheme. Each constituent of the plaque was modeled with a neo-Hookean strain energy density function and a CZM was used for the interface. The model parameters were calibrated by minimizing the quadratic deviation between the experimental force displacement curves and the model predictions. The elastic parameter of the plaque and the CZM interfacial parameter were successfully identified for a cohort of 11 mice. The results revealed that only the elastic parameter was significantly different between the two groups, ApoE -/- Col8 -/- plaques being less stiff than ApoE -/- plaques. Finally, this study demonstrated that a simple 2D finite element model with cohesive elements can reproduce fairly well the plaque peeling global response. Future work will focus on understanding the main biological determinants of regional and inter-individual variations of the material parameters used in the model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hedenstierna, S; Halldin, P; Brolin, K
2008-12-01
The numerical method of finite elements (FE) is a powerful tool for analysing stresses and strains in the human body. One area of increasing interest is the skeletal musculature. This study evaluated modelling of skeletal muscle tissue using a combination of passive non-linear, viscoelastic solid elements and active Hill-type truss elements, the super-positioned muscle finite element (SMFE). The performance of the combined materials and elements was evaluated for eccentric motions by simulating a tensile experiment from a published study on a stimulated rabbit muscle including three different strain rates. It was also evaluated for isometric and concentric contractions. The resulting stress-strain curves had the same overall pattern as the experiments, with the main limitation being sensitivity to the active force-length relation. It was concluded that the SMFE could model active and passive muscle tissue at constant rate elongations for strains below failure, as well as isometric and concentric contractions.
Using Response Surface Methods to Correlate the Modal Test of an Inflatable Test Article
NASA Technical Reports Server (NTRS)
Gupta, Anju
2013-01-01
This paper presents a practical application of response surface methods (RSM) to correlate a finite element model of a structural modal test. The test article is a quasi-cylindrical inflatable structure which primarily consists of a fabric weave, with an internal bladder and metallic bulkheads on either end. To mitigate model size, the fabric weave was simplified by representing it with shell elements. The task at hand is to represent the material behavior of the weave. The success of the model correlation is measured by comparing the four major modal frequencies of the analysis model to the four major modal frequencies of the test article. Given that only individual strap material properties were provided and material properties of the overall weave were not available, defining the material properties of the finite element model became very complex. First it was necessary to determine which material properties (modulus of elasticity in the hoop and longitudinal directions, shear modulus, Poisson's ratio, etc.) affected the modal frequencies. Then a Latin Hypercube of the parameter space was created to form an efficiently distributed finite case set. Each case was then analyzed with the results input into RSM. In the resulting response surface it was possible to see how each material parameter affected the modal frequencies of the analysis model. If the modal frequencies of the analysis model and its corresponding parameters match the test with acceptable accuracy, it can be said that the model correlation is successful.
Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)
NASA Astrophysics Data System (ADS)
Ergin, M. Fatih; Aydin, Ismail
2013-12-01
Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.
A partially penalty immersed Crouzeix-Raviart finite element method for interface problems.
An, Na; Yu, Xijun; Chen, Huanzhen; Huang, Chaobao; Liu, Zhongyan
2017-01-01
The elliptic equations with discontinuous coefficients are often used to describe the problems of the multiple materials or fluids with different densities or conductivities or diffusivities. In this paper we develop a partially penalty immersed finite element (PIFE) method on triangular grids for anisotropic flow models, in which the diffusion coefficient is a piecewise definite-positive matrix. The standard linear Crouzeix-Raviart type finite element space is used on non-interface elements and the piecewise linear Crouzeix-Raviart type immersed finite element (IFE) space is constructed on interface elements. The piecewise linear functions satisfying the interface jump conditions are uniquely determined by the integral averages on the edges as degrees of freedom. The PIFE scheme is given based on the symmetric, nonsymmetric or incomplete interior penalty discontinuous Galerkin formulation. The solvability of the method is proved and the optimal error estimates in the energy norm are obtained. Numerical experiments are presented to confirm our theoretical analysis and show that the newly developed PIFE method has optimal-order convergence in the [Formula: see text] norm as well. In addition, numerical examples also indicate that this method is valid for both the isotropic and the anisotropic elliptic interface problems.
Suzuki, Ryo; Ito, Kohta; Lee, Taeyong; Ogihara, Naomichi
2017-12-01
Identifying the viscous properties of the plantar soft tissue is crucial not only for understanding the dynamic interaction of the foot with the ground during locomotion, but also for development of improved footwear products and therapeutic footwear interventions. In the present study, the viscous and hyperelastic material properties of the plantar soft tissue were experimentally identified using a spherical indentation test and an analytical contact model of the spherical indentation test. Force-relaxation curves of the heel pads were obtained from the indentation experiment. The curves were fit to the contact model incorporating a five-element Maxwell model to identify the viscous material parameters. The finite element method with the experimentally identified viscoelastic parameters could successfully reproduce the measured force-relaxation curves, indicating the material parameters were correctly estimated using the proposed method. Although there are some methodological limitations, the proposed framework to identify the viscous material properties may facilitate the development of subject-specific finite element modeling of the foot and other biological materials. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
Atomistic Cohesive Zone Models for Interface Decohesion in Metals
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin I.; Saether, Erik; Glaessgen, Edward H.
2009-01-01
Using a statistical mechanics approach, a cohesive-zone law in the form of a traction-displacement constitutive relationship characterizing the load transfer across the plane of a growing edge crack is extracted from atomistic simulations for use within a continuum finite element model. The methodology for the atomistic derivation of a cohesive-zone law is presented. This procedure can be implemented to build cohesive-zone finite element models for simulating fracture in nanocrystalline or ultrafine grained materials.
Elastic-plastic analysis of a propagating crack under cyclic loading
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Armen, H., Jr.
1974-01-01
Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.
NASA Astrophysics Data System (ADS)
Zhang, B.; Yu, S.
2018-03-01
In this paper, a beam structure of composite materials with elastic foundation supports is established as the sensor model, which propagates moving sinusoidal wave loads. The inverse Finite Element Method (iFEM) is applied for reconstructing moving wave loads which are compared with true wave loads. The conclusion shows that iFEM is accurate and robust in the determination of wave propagation. This helps to seek a suitable new wave sensor method.
NASA Astrophysics Data System (ADS)
Zhao, L. G.; Tong, J.
Viscoplastic crack-tip deformation behaviour in a nickel-based superalloy at elevated temperature has been studied for both stationary and growing cracks in a compact tension (CT) specimen using the finite element method. The material behaviour was described by a unified viscoplastic constitutive model with non-linear kinematic and isotropic hardening rules, and implemented in the finite element software ABAQUS via a user-defined material subroutine (UMAT). Finite element analyses for stationary cracks showed distinctive strain ratchetting behaviour near the crack tip at selected load ratios, leading to progressive accumulation of tensile strain normal to the crack-growth plane. Results also showed that low frequencies and superimposed hold periods at peak loads significantly enhanced strain accumulation at crack tip. Finite element simulation of crack growth was carried out under a constant Δ K-controlled loading condition, again ratchetting was observed ahead of the crack tip, similar to that for stationary cracks. A crack-growth criterion based on strain accumulation is proposed where a crack is assumed to grow when the accumulated strain ahead of the crack tip reaches a critical value over a characteristic distance. The criterion has been utilized in the prediction of crack-growth rates in a CT specimen at selected loading ranges, frequencies and dwell periods, and the predictions were compared with the experimental results.
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Budrikis, Zoe; Zapperi, Stefano; Fernandez Castellanos, David
2015-02-01
Crystalline plasticity is strongly interlinked with dislocation mechanics and nowadays is relatively well understood. Concepts and physical models of plastic deformation in amorphous materials on the other hand—where the concept of linear lattice defects is not applicable—still are lagging behind. We introduce an eigenstrain-based finite element lattice model for simulations of shear band formation and strain avalanches. Our model allows us to study the influence of surfaces and finite size effects on the statistics of avalanches. We find that even with relatively complex loading conditions and open boundary conditions, critical exponents describing avalanche statistics are unchanged, which validates the use of simpler scalar lattice-based models to study these phenomena.
NASA Astrophysics Data System (ADS)
Kumar, P.; Singh, A.
2018-04-01
The present study deals with evaluation of low cycle fatigue (LCF) behavior of aluminum alloy 5754 (AA 5754) at different strain rates. This alloy has magnesium (Mg) as main alloying element (Al-Mg alloy) which makes this alloy suitable for Marines and Cryogenics applications. The testing procedure and specimen preparation are guided by ASTM E606 standard. The tests are performed at 0.5% strain amplitude with three different strain rates i.e. 0.5×10-3 sec-1, 1×10-3 sec-1 and 2×10-3 sec-1 thus the frequency of tests vary accordingly. The experimental results show that there is significant decrease in the fatigue life with the increase in strain rate. LCF behavior of AA 5754 is also simulated at different strain rates by finite element method. Chaboche kinematic hardening cyclic plasticity model is used for simulating the hardening behavior of the material. Axisymmetric finite element model is created to reduce the computational cost of the simulation. The material coefficients used for “Chaboche Model” are determined by experimentally obtained stabilized hysteresis loop. The results obtained from finite element simulation are compared with those obtained through LCF experiments.
Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan
2011-08-23
To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.
Optimized growth and reorientation of anisotropic material based on evolution equations
NASA Astrophysics Data System (ADS)
Jantos, Dustin R.; Junker, Philipp; Hackl, Klaus
2018-07-01
Modern high-performance materials have inherent anisotropic elastic properties. The local material orientation can thus be considered to be an additional design variable for the topology optimization of structures containing such materials. In our previous work, we introduced a variational growth approach to topology optimization for isotropic, linear-elastic materials. We solved the optimization problem purely by application of Hamilton's principle. In this way, we were able to determine an evolution equation for the spatial distribution of density mass, which can be evaluated in an iterative process within a solitary finite element environment. We now add the local material orientation described by a set of three Euler angles as additional design variables into the three-dimensional model. This leads to three additional evolution equations that can be separately evaluated for each (material) point. Thus, no additional field unknown within the finite element approach is needed, and the evolution of the spatial distribution of density mass and the evolution of the Euler angles can be evaluated simultaneously.
Finite element modeling of hyper-viscoelasticity of peripheral nerve ultrastructures.
Chang, Cheng-Tao; Chen, Yu-Hsing; Lin, Chou-Ching K; Ju, Ming-Shaung
2015-07-16
The mechanical characteristics of ultrastructures of rat sciatic nerves were investigated through animal experiments and finite element analyses. A custom-designed dynamic testing apparatus was used to conduct in vitro transverse compression experiments on the nerves. The optical coherence tomography (OCT) was utilized to record the cross-sectional images of nerve during the dynamic testing. Two-dimensional finite element models of the nerves were built based on their OCT images. A hyper-viscoelastic model was employed to describe the elastic and stress relaxation response of each ultrastructure of the nerve, namely the endoneurium, the perineurium and the epineurium. The first-order Ogden model was employed to describe the elasticity of each ultrastructure and a generalized Maxwell model for the relaxation. The inverse finite element analysis was used to estimate the material parameters of the ultrastructures. The results show the instantaneous shear modulus of the ultrastructures in decreasing order is perineurium, endoneurium, and epineurium. The FE model combined with the first-order Ogden model and the second-order Prony series is good enough for describing the compress-and-hold response of the nerve ultrastructures. The integration of OCT and the nonlinear finite element modeling may be applicable to study the viscoelasticity of peripheral nerve down to the ultrastructural level. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hemmatian, M.; Sedaghati, R.
2017-04-01
This study aims at developing a finite element model to predict the sound transmission loss (STL) of a multilayer panel partially treated with a Magnetorheological (MR) fluid core layer. MR fluids are smart materials with promising controllable rheological characteristics in which the application of an external magnetic field instantly changes their rheological properties. Partial treatment of sandwich panels with MR fluid core layer provides an opportunity to change stiffness and damping of the structure without significantly increasing the mass. The STL of a finite sandwich panel partially treated with MR fluid is modeled using the finite element (FE) method. Circular sandwich panels with clamped boundary condition and elastic face sheets in which the core layer is segmented circumferentially is considered. The MR fluid core layer is considered as a viscoelastic material with complex shear modulus with the magnetic field and frequency dependent storage and loss moduli. Neglecting the effect of the panel's vibration on the pressure forcing function, the work done by the acoustic pressure is expressed as a function of the blocked pressure in order to calculate the force vector in the equation of the motion of the panel. The governing finite element equation of motion of the MR sandwich panel is then developed to predict the transverse vibration of the panel which can then be utilized to obtain the radiated sound using Green's function. The developed model is used to conduct a systematic parametric study on the effect of different locations of MR fluid treatment on the natural frequencies and the STL.
NASA Technical Reports Server (NTRS)
Mitchell, William S.; Throckmorton, David (Technical Monitor)
2002-01-01
The purpose of this research was to further the understanding of a crack initiation problem in a highly strained pressure containment housing. Finite Element Analysis methods were used to model the behavior of shot peened materials undergoing plastic deformation. Analytical results are in agreement with laboratory tensile tests that simulated the actual housing load conditions. These results further validate the original investigation finding that the shot peened residual stress had reversed, changing from compressive to tensile, and demonstrate that analytical finite element methods can be used to predict this behavior.
Contact stresses in meshing spur gear teeth: Use of an incremental finite element procedure
NASA Technical Reports Server (NTRS)
Hsieh, Chih-Ming; Huston, Ronald L.; Oswald, Fred B.
1992-01-01
Contact stresses in meshing spur gear teeth are examined. The analysis is based upon an incremental finite element procedure that simultaneously determines the stresses in the contact region between the meshing teeth. The teeth themselves are modeled by two dimensional plain strain elements. Friction effects are included, with the friction forces assumed to obey Coulomb's law. The analysis assumes that the displacements are small and that the tooth materials are linearly elastic. The analysis procedure is validated by comparing its results with those for the classical two contacting semicylinders obtained from the Hertz method. Agreement is excellent.
The Overshoot Phenomenon in Geodynamics Codes
NASA Astrophysics Data System (ADS)
Kommu, R. K.; Heien, E. M.; Kellogg, L. H.; Bangerth, W.; Heister, T.; Studley, E. H.
2013-12-01
The overshoot phenomenon is a common occurrence in numerical software when a continuous function on a finite dimensional discretized space is used to approximate a discontinuous jump, in temperature and material concentration, for example. The resulting solution overshoots, and undershoots, the discontinuous jump. Numerical simulations play an extremely important role in mantle convection research. This is both due to the strong temperature and stress dependence of viscosity and also due to the inaccessibility of deep earth. Under these circumstances, it is essential that mantle convection simulations be extremely accurate and reliable. CitcomS and ASPECT are two finite element based mantle convection simulations developed and maintained by the Computational Infrastructure for Geodynamics. CitcomS is a finite element based mantle convection code that is designed to run on multiple high-performance computing platforms. ASPECT, an adaptive mesh refinement (AMR) code built on the Deal.II library, is also a finite element based mantle convection code that scales well on various HPC platforms. CitcomS and ASPECT both exhibit the overshoot phenomenon. One attempt at controlling the overshoot uses the Entropy Viscosity method, which introduces an artificial diffusion term in the energy equation of mantle convection. This artificial diffusion term is small where the temperature field is smooth. We present results from CitcomS and ASPECT that quantify the effect of the Entropy Viscosity method in reducing the overshoot phenomenon. In the discontinuous Galerkin (DG) finite element method, the test functions used in the method are continuous within each element but are discontinuous across inter-element boundaries. The solution space in the DG method is discontinuous. FEniCS is a collection of free software tools that automate the solution of differential equations using finite element methods. In this work we also present results from a finite element mantle convection simulation implemented in FEniCS that investigates the effect of using DG elements in reducing the overshoot problem.
Microstructure-based hyperelastic models for closed-cell solids
Wyatt, Hayley
2017-01-01
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson’s ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases. PMID:28484340
Microstructure-based hyperelastic models for closed-cell solids.
Mihai, L Angela; Wyatt, Hayley; Goriely, Alain
2017-04-01
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson's ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.
Microstructure-based hyperelastic models for closed-cell solids
NASA Astrophysics Data System (ADS)
Mihai, L. Angela; Wyatt, Hayley; Goriely, Alain
2017-04-01
For cellular bodies involving large elastic deformations, mesoscopic continuum models that take into account the interplay between the geometry and the microstructural responses of the constituents are developed, analysed and compared with finite-element simulations of cellular structures with different architecture. For these models, constitutive restrictions for the physical plausibility of the material responses are established, and global descriptors such as nonlinear elastic and shear moduli and Poisson's ratio are obtained from the material characteristics of the constituents. Numerical results show that these models capture well the mechanical responses of finite-element simulations for three-dimensional periodic structures of neo-Hookean material with closed cells under large tension. In particular, the mesoscopic models predict the macroscopic stiffening of the structure when the stiffness of the cell-core increases.
NASA Astrophysics Data System (ADS)
Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.
2007-04-01
In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.
Theoretical prediction on corrugated sandwich panels under bending loads
NASA Astrophysics Data System (ADS)
Shu, Chengfu; Hou, Shujuan
2018-05-01
In this paper, an aluminum corrugated sandwich panel with triangular core under bending loads was investigated. Firstly, the equivalent material parameters of the triangular corrugated core layer, which could be considered as an orthotropic panel, were obtained by using Castigliano's theorem and equivalent homogeneous model. Secondly, contributions of the corrugated core layer and two face panels were both considered to compute the equivalent material parameters of the whole structure through the classical lamination theory, and these equivalent material parameters were compared with finite element analysis solutions. Then, based on the Mindlin orthotropic plate theory, this study obtain the closed-form solutions of the displacement for a corrugated sandwich panel under bending loads in specified boundary conditions, and parameters study and comparison by the finite element method were executed simultaneously.
NASA Astrophysics Data System (ADS)
Karimi, Hossein; Nikmehr, Saeid; Khodapanah, Ehsan
2016-09-01
In this paper, we develop a B-spline finite-element method (FEM) based on a locally modal wave propagation with anisotropic perfectly matched layers (PMLs), for the first time, to simulate nonlinear and lossy plasmonic waveguides. Conventional approaches like beam propagation method, inherently omit the wave spectrum and do not provide physical insight into nonlinear modes especially in the plasmonic applications, where nonlinear modes are constructed by linear modes with very close propagation constant quantities. Our locally modal B-spline finite element method (LMBS-FEM) does not suffer from the weakness of the conventional approaches. To validate our method, first, propagation of wave for various kinds of linear, nonlinear, lossless and lossy materials of metal-insulator plasmonic structures are simulated using LMBS-FEM in MATLAB and the comparisons are made with FEM-BPM module of COMSOL Multiphysics simulator and B-spline finite-element finite-difference wide angle beam propagation method (BSFEFD-WABPM). The comparisons show that not only our developed numerical approach is computationally more accurate and efficient than conventional approaches but also it provides physical insight into the nonlinear nature of the propagation modes.
Hypervelocity Impact Behaviour of CFRP-A1/HC Sandwich Panel: Finite-Element Studies
NASA Astrophysics Data System (ADS)
Phadnis, Vaibhav A.; Roy, Anish; Silberschmidt, Vadim V.
2014-06-01
The mechanical response of CFRP-Al/HC (carbon fibre- reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact ( 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by the means of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria and delamination is modelled using cohesive-zone elements. The damage of Al/HC core is assessed on the basis of a Johnson-Cook dynamic failure model while its hydrodynamic response is captured using the Mie- Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing of HC core.
Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel
NASA Astrophysics Data System (ADS)
Phadnis, Vaibhav A.; Silberschmidt, Vadim V.
2015-09-01
The mechanical response of CFRP-Al/HC (carbon fibre-reinforced/epoxy composite face sheets with Al honeycomb core) sandwich panels to hyper-velocity impact (up to 1 km/s) is studied using a finite-element model developed in ABAQUS/Explicit. The intraply damage of CFRP face sheets is analysed by mean of a user-defined material model (VUMAT) employing a combination of Hashin and Puck criteria, delamination modelled using cohesive-zone elements. The damaged Al/HC core is assessed on the basis of a Johnson Cook dynamic failure model while its hydrodynamic response is captured using the Mie-Gruneisen equation of state. The results obtained with the developed finite-element model showed a reasonable correlation to experimental damage patterns. The surface peeling of both face sheets was evident, with a significant delamination around the impact location accompanied by crushing HC core.
An efficient structural finite element for inextensible flexible risers
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.
2017-12-01
A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.
1979-01-01
Additional information was added to a growing data base from which estimates of finite element model complexities can be made with respect to thermal stress analysis. The manner in which temperatures were smeared to the finite element grid points was examined from the point of view of the impact on thermal stress calculations. The general comparison of calculated and measured thermal stresses is guite good and there is little doubt that the finite element approach provided by NASTRAN results in correct thermal stress calculations. Discrepancies did exist between measured and calculated values in the skin and the skin/frame junctures. The problems with predicting skin thermal stress were attributed to inadequate temperature inputs to the structural model rather than modeling insufficiencies. The discrepancies occurring at the skin/frame juncture were most likely due to insufficient modeling elements rather than temperature problems.
NASA Technical Reports Server (NTRS)
Adams, D. F.; Mahishi, J. M.
1982-01-01
The axisymmetric finite element model and associated computer program developed for the analysis of crack propagation in a composite consisting of a single broken fiber in an annular sheath of matrix material was extended to include a constant displacement boundary condition during an increment of crack propagation. The constant displacement condition permits the growth of a stable crack, as opposed to the catastropic failure in an earlier version. The finite element model was refined to respond more accurately to the high stresses and steep stress gradients near the broken fiber end. The accuracy and effectiveness of the conventional constant strain axisymmetric element for crack problems was established by solving the classical problem of a penny-shaped crack in a thick cylindrical rod under axial tension. The stress intensity factors predicted by the present finite element model are compared with existing continuum results.
Real-time, haptics-enabled simulator for probing ex vivo liver tissue.
Lister, Kevin; Gao, Zhan; Desai, Jaydev P
2009-01-01
The advent of complex surgical procedures has driven the need for realistic surgical training simulators. Comprehensive simulators that provide realistic visual and haptic feedback during surgical tasks are required to familiarize surgeons with the procedures they are to perform. Complex organ geometry inherent to biological tissues and intricate material properties drive the need for finite element methods to assure accurate tissue displacement and force calculations. Advances in real-time finite element methods have not reached the state where they are applicable to soft tissue surgical simulation. Therefore a real-time, haptics-enabled simulator for probing of soft tissue has been developed which utilizes preprocessed finite element data (derived from accurate constitutive model of the soft-tissue obtained from carefully collected experimental data) to accurately replicate the probing task in real-time.
NASA Astrophysics Data System (ADS)
Morrev, P. G.; Gordon, V. A.
2018-03-01
Surface hardening by deep rolling can be considered as the axial symmetric problem in some special events (namely, when large R and small r radii of the deforming roller meet the requirement R>> r). An axisymmetric nodal averaged stabilized finite element is formulated. The formulation is based on a variational principle with a penalty (stabilizing) item in order to involve large elastic-plastic strain and near to incompressible materials. The deep rolling process for a steel rod is analyzed. Axial residual stress, yield stress, and Odkvist’s parameter are calculated. The residual stress is compared with the data obtained by other authors using a three-dimensional statement of the problem. The results obtained demonstrate essential advantages of the newly developed finite element.
NASA Technical Reports Server (NTRS)
Hairr, John W.; Dorris, William J.; Ingram, J. Edward; Shah, Bharat M.
1993-01-01
Interactive Stiffened Panel Analysis (ISPAN) modules, written in FORTRAN, were developed to provide an easy to use tool for creating finite element models of composite material stiffened panels. The modules allow the user to interactively construct, solve and post-process finite element models of four general types of structural panel configurations using only the panel dimensions and properties as input data. Linear, buckling and post-buckling solution capability is provided. This interactive input allows rapid model generation and solution by non finite element users. The results of a parametric study of a blade stiffened panel are presented to demonstrate the usefulness of the ISPAN modules. Also, a non-linear analysis of a test panel was conducted and the results compared to measured data and previous correlation analysis.
NASA Astrophysics Data System (ADS)
Shutova, M. N.; Skibin, G. M.; Evtushenko, S. I.
2017-11-01
The paper is devoted to the problem of definition of availability index of deforming building construction in atypical cases. The authors revealed a real applicability of the finite-elements analyses package, such as ANSYS, for engineering testing calculations of building constructions and determination of the sites of increased stresses. It was determined that stresses increased up to 7.75 times in the sites with mechanical defects (for steel crane girder); also, the authors revealed the convergence of the calculation results between the finite element method and a usual decision using the strength of materials (in the limits 2-14% for steel truss frame). The equivalent stresses don’t exceed the maximum permissible tension for this type of steel. The building constructions have a limited availability index.
A Strategy for Integrating a Large Finite Element Model: X-33 Lessons Learned
NASA Technical Reports Server (NTRS)
McGhee, David S.
2000-01-01
The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. For the past three years the Structural Dynamics & Loads Group of NASA's Marshall Space Flight Center has had the task of integrating the X-33 vehicle structural finite element model. In that time, five versions of the integrated vehicle model have been produced and a strategy has evolved that would benefit anyone given the task of integrating structural finite element models that have been generated by various modelers and companies. The strategy that has been presented here consists of six decisions that need to be made. These six decisions are: purpose of model, units, common material list, model numbering, interface control, and archive format. This strategy has been proved and expanded from experience on the X-33 vehicle.
Modeling of Impact Properties of Auxetic Materials Phase 2
2014-03-01
over the more conventional engineering materials, such as higher indentation resistance, higher fracture toughness and greater resistance to impact...entrant materials were fixed at L=H=1.0 mm from which the rib lengths and thickness for each test case could be calculated using Equations (5) and (6...specimen. In all finite element models, the horizontal (2h) and diagonal (l) ribs shown in Figure 2 were idealized by ten and five shell elements
Kuhn-Tucker optimization based reliability analysis for probabilistic finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Besterfield, G.; Lawrence, M.; Belytschko, T.
1988-01-01
The fusion of probability finite element method (PFEM) and reliability analysis for fracture mechanics is considered. Reliability analysis with specific application to fracture mechanics is presented, and computational procedures are discussed. Explicit expressions for the optimization procedure with regard to fracture mechanics are given. The results show the PFEM is a very powerful tool in determining the second-moment statistics. The method can determine the probability of failure or fracture subject to randomness in load, material properties and crack length, orientation, and location.
NASA Technical Reports Server (NTRS)
Taylor, C. M.
1977-01-01
A finite element computer program which enables the analysis of distortions and stresses occurring in compounds having a relative interference is presented. The program is limited to situations in which the loading is axisymmetric. Loads arising from the interference fit(s) and external, inertial, and thermal loadings are accommodated. The components comprise several different homogeneous isotropic materials whose properties may be a function of temperature. An example illustrating the data input and program output is given.
NASA Astrophysics Data System (ADS)
Voronin, S. V.; Chaplygin, K. K.
2017-12-01
Computer simulation of upsetting the finite element models (FEMs) of an isotropic 5056 aluminum alloy sample and a 5056 aluminum alloy sample with consideration of microstructure is carried out. The stress and strain distribution patterns at different process stages are obtained. The strain required for the deformation of the FEMs of 5056 alloy samples is determined. The influence of the material microstructure on the stress-strain behavior and technological parameters are demonstrated.
Lagrangian continuum dynamics in ALEGRA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Michael K. W.; Love, Edward
Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.
NASA Technical Reports Server (NTRS)
Gayda, J.; Srolovitz, D. J.
1989-01-01
This paper presents a specialized microstructural lattice model, MCFET (Monte Carlo finite element technique), which simulates microstructural evolution in materials in which strain energy has an important role in determining morphology. The model is capable of accounting for externally applied stress, surface tension, misfit, elastic inhomogeneity, elastic anisotropy, and arbitrary temperatures. The MCFET analysis was found to compare well with the results of analytical calculations of the equilibrium morphologies of isolated particles in an infinite matrix.
Finite element modelling of non-linear magnetic circuits using Cosmic NASTRAN
NASA Technical Reports Server (NTRS)
Sheerer, T. J.
1986-01-01
The general purpose Finite Element Program COSMIC NASTRAN currently has the ability to model magnetic circuits with constant permeablilities. An approach was developed which, through small modifications to the program, allows modelling of non-linear magnetic devices including soft magnetic materials, permanent magnets and coils. Use of the NASTRAN code resulted in output which can be used for subsequent mechanical analysis using a variation of the same computer model. Test problems were found to produce theoretically verifiable results.
Data Sciences Summer Institute Topology Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watts, Seth
DSSI_TOPOPT is a 2D topology optimization code that designs stiff structures made of a single linear elastic material and void space. The code generates a finite element mesh of a rectangular design domain on which the user specifies displacement and load boundary conditions. The code iteratively designs a structure that minimizes the compliance (maximizes the stiffness) of the structure under the given loading, subject to an upper bound on the amount of material used. Depending on user options, the code can evaluate the performance of a user-designed structure, or create a design from scratch. Output includes the finite element mesh,more » design, and visualizations of the design.« less
NASA Astrophysics Data System (ADS)
Ee, K. C.; Dillon, O. W.; Jawahir, I. S.
2004-06-01
This paper discusses the influence of major chip-groove parameters of a cutting tool on the chip formation process in orthogonal machining using finite element (FE) methods. In the FE formulation, a thermal elastic-viscoplastic material model is used together with a modified Johnson-Cook material law for the flow stress. The chip back-flow angle and the chip up-curl radius are calculated for a range of cutting conditions by varying the chip-groove parameters. The analysis provides greater understanding of the effectiveness of chip-groove configurations and points a way to correlate cutting conditions with tool-wear when machining with a grooved cutting tool.
Damage tolerance in filament-wound graphite/epoxy pressure vessels
NASA Technical Reports Server (NTRS)
Simon, William E.; Ngueyen, Vinh D.; Chenna, Ravi K.
1995-01-01
Graphite/epoxy composites are extensively used in the aerospace and sporting goods industries due to their superior engineering properties compared to those of metals. However, graphite/epoxy is extremely susceptible to impact damage which can cause considerable and sometimes undetected reduction in strength. An inelastic impact model was developed to predict damage due to low-velocity impact. A transient dynamic finite element formulation was used in conjunction with the 3D Tsai-Wu failure criterion to determine and incorporate failure in the materials during impact. Material degradation can be adjusted from no degradation to partial degradation to full degradation. The developed software is based on an object-oriented implementation framework called Extensible Implementation Framework for Finite Elements (EIFFE).
NASA Technical Reports Server (NTRS)
Mathison, Steven R.; Herakovich, Carl T.; Pindera, Marek-Jerzy; Shuart, Mark J.
1987-01-01
The objective was to determine the effect of nonlinear material behavior on the response and failure of unnotched and notched angle-ply laminates under uniaxial compressive loading. The endochronic theory was chosen as the constitutive theory to model the AS4/3502 graphite-epoxy material system. Three-dimensional finite element analysis incorporating the endochronic theory was used to determine the stresses and strains in the laminates. An incremental/iterative initial strain algorithm was used in the finite element program. To increase computational efficiency, a 180 deg rotational symmetry relationship was utilized and the finite element program was vectorized to run on a supercomputer. Laminate response was compared to experimentation revealing excellent agreement for both the unnotched and notched angle-ply laminates. Predicted stresses in the region of the hole were examined and are presented, comparing linear elastic analysis to the inelastic endochronic theory analysis. A failure analysis of the unnotched and notched laminates was performed using the quadratic tensor polynomial. Predicted fracture loads compared well with experimentation for the unnotched laminates, but were very conservative in comparison with experiments for the notched laminates.
NASA Astrophysics Data System (ADS)
Imbrogno, Stano; Rinaldi, Sergio; Raso, Antonio; Bordin, Alberto; Bruschi, Stefania; Umbrello, Domenico
2018-05-01
The Additive Manufacturing techniques are gaining more and more interest in various industrial fields due to the possibility of drastically reduce the material waste during the production processes, revolutionizing the standard scheme and strategies of the manufacturing processes. However, the metal parts shape produced, frequently do not satisfy the tolerances as well as the surface quality requirements. During the design phase, the finite element simulation results a fundamental tool to help the engineers in the correct decision of the most suitable process parameters, especially in manufacturing processes, in order to produce products of high quality. The aim of this work is to develop a 3D finite element model of semi-finishing turning operation of Ti6Al4V, produced via Direct Metal Laser Sintering (DMLS). A customized user sub-routine was built-up in order to model the mechanical behavior of the material under machining operations to predict the main fundamental variables as cutting forces and temperature. Moreover, the machining induced alterations are also studied by the finite element model developed.
Mendoza-Vazquez, Manuel; Davidsson, Johan; Brolin, Karin
2015-12-01
There is a need to improve the protection to the thorax of occupants in frontal car crashes. Finite element human body models are a more detailed representation of humans than anthropomorphic test devices (ATDs). On the other hand, there is no clear consensus on the injury criteria and the thresholds to use with finite element human body models to predict rib fractures. The objective of this study was to establish a set of injury risk curves to predict rib fractures using a modified Total HUman Model for Safety (THUMS). Injury criteria at the global, structural and material levels were computed with a modified THUMS in matched Post Mortem Human Subjects (PMHSs) tests. Finally, the quality of each injury risk curve was determined. For the included PMHS tests and the modified THUMS, DcTHOR and shear stress were the criteria at the global and material levels that reached an acceptable quality. The injury risk curves at the structural level did not reach an acceptable quality. Copyright © 2015 Elsevier Ltd. All rights reserved.
Strength Analysis on Ship Ladder Using Finite Element Method
NASA Astrophysics Data System (ADS)
Budianto; Wahyudi, M. T.; Dinata, U.; Ruddianto; Eko P., M. M.
2018-01-01
In designing the ship’s structure, it should refer to the rules in accordance with applicable classification standards. In this case, designing Ladder (Staircase) on a Ferry Ship which is set up, it must be reviewed based on the loads during ship operations, either during sailing or at port operations. The classification rules in ship design refer to the calculation of the structure components described in Classification calculation method and can be analysed using the Finite Element Method. Classification Regulations used in the design of Ferry Ships used BKI (Bureau of Classification Indonesia). So the rules for the provision of material composition in the mechanical properties of the material should refer to the classification of the used vessel. The analysis in this structure used program structure packages based on Finite Element Method. By using structural analysis on Ladder (Ladder), it obtained strength and simulation structure that can withstand load 140 kg both in static condition, dynamic, and impact. Therefore, the result of the analysis included values of safety factors in the ship is to keep the structure safe but the strength of the structure is not excessive.
Muscle-driven finite element simulation of human foot movements.
Spyrou, L A; Aravas, N
2012-01-01
This paper describes a finite element scheme for realistic muscle-driven simulation of human foot movements. The scheme is used to simulate human ankle plantar flexion. A three-dimensional anatomically detailed finite element model of human foot and lower leg is developed and the idea of generating natural foot movement based entirely on the contraction of the plantar flexor muscles is used. The bones, ligaments, articular cartilage, muscles, tendons, as well as the rest soft tissues of human foot and lower leg are included in the model. A realistic three-dimensional continuum constitutive model that describes the biomechanical behaviour of muscles and tendons is used. Both the active and passive properties of muscle tissue are accounted for. The materials for bones and ligaments are considered as homogeneous, isotropic and linearly elastic, whereas the articular cartilage and the rest soft tissues (mainly fat) are defined as hyperelastic materials. The model is used to estimate muscle tissue deformations as well as stresses and strains that develop in the lower leg muscles during plantar flexion of the ankle. Stresses and strains that develop in Achilles tendon during such a movement are also investigated.
Prediction of high temperature metal matrix composite ply properties
NASA Technical Reports Server (NTRS)
Caruso, J. J.; Chamis, C. C.
1988-01-01
The application of the finite element method (superelement technique) in conjunction with basic concepts from mechanics of materials theory is demonstrated to predict the thermomechanical behavior of high temperature metal matrix composites (HTMMC). The simulated behavior is used as a basis to establish characteristic properties of a unidirectional composite idealized an as equivalent homogeneous material. The ply properties predicted include: thermal properties (thermal conductivities and thermal expansion coefficients) and mechanical properties (moduli and Poisson's ratio). These properties are compared with those predicted by a simplified, analytical composite micromechanics model. The predictive capabilities of the finite element method and the simplified model are illustrated through the simulation of the thermomechanical behavior of a P100-graphite/copper unidirectional composite at room temperature and near matrix melting temperature. The advantage of the finite element analysis approach is its ability to more precisely represent the composite local geometry and hence capture the subtle effects that are dependent on this. The closed form micromechanics model does a good job at representing the average behavior of the constituents to predict composite behavior.
Finite element analysis of composites materials for aerospace applications
NASA Astrophysics Data System (ADS)
Nurhaniza, M.; Ariffin, M. K. A.; Ali, Aidy; Mustapha, F.; Noraini, A. W.
2010-05-01
Composites materials are intended to be used more extensively as an alternative of aluminum structure in aircraft and aerospace applications. This is due to their attractive properties as high strength-to-weight ratio and stiffness-to-weight ratio. Besides that it clarifies the growing interest for composites materials due to advantages of lightweight, high strength, high stiffness, superior fatigue life, tremendous corrosion resistance and low cost manufacturing. In this study, a finite element analysis (FEA) of fiberglass unidirectional E-type was analyzed in the framework of ABAQUS finite element commercial software. The analysis was done to quantify the mechanical properties and response of unidirectional E-glass in term of tensile, compression and thermal responses. From the analysis, the maximum and minimum values of stress and strain for E-glass 21xK43 Gevetex and Silenka E-glass 1200tex were obtained and stress-strain curve is presented. The ultimate load of failure, elastic behavior, tensile strength and other properties for each laminated plates under tensile and thermal-stress are determined from stress-strain curves. The simulation will run twice for each material where the first simulation based on orientation angles of 45° for ply-1, -45° for ply-2 and 90° for ply-3 while the second simulation, the orientation angles is 0° for all plies. The simulation is successfully conducted and verified by experimental data.
Finite Element Study on Continuous Rotating versus Reciprocating Nickel-Titanium Instruments.
El-Anwar, Mohamed I; Yousief, Salah A; Kataia, Engy M; El-Wahab, Tarek M Abd
2016-01-01
In the present study, GTX and ProTaper as continuous rotating endodontic files were numerically compared with WaveOne reciprocating file using finite element analysis, aiming at having a low cost, accurate/trustworthy comparison as well as finding out the effect of instrument design and manufacturing material on its lifespan. Two 3D finite element models were especially prepared for this comparison. Commercial engineering CAD/CAM package was used to model full detailed flute geometries of the instruments. Multi-linear materials were defined in analysis by using real strain-stress data of NiTi and M-Wire. Non-linear static analysis was performed to simulate the instrument inside root canal at a 45° angle in the apical portion and subjected to 0.3 N.cm torsion. The three simulations in this study showed that M-Wire is slightly more resistant to failure than conventional NiTi. On the other hand, both materials are fairly similar in case of severe locking conditions. For the same instrument geometry, M-Wire instruments may have longer lifespan than the conventional NiTi ones. In case of severe locking conditions both materials will fail similarly. Larger cross sectional area (function of instrument taper) resisted better to failure than the smaller ones, while the cross sectional shape and its cutting angles could affect instrument cutting efficiency.
Cho, Ah-Reum; Cho, Sang-Bong; Lee, Jae-Ho; Kim, Kyung-Hoon
2015-11-01
Vertebroplasty is an effective treatment for osteoporotic vertebral fractures, which are one of the most common fractures associated with osteoporosis. However, clinical observation has shown that the risk of adjacent vertebral body fractures may increase after vertebroplasty. The mechanism underlying adjacent vertebral body fracture after vertebroplasty is not clear; excessive stiffness resulting from polymethyl methacrylate has been suspected as an important mechanism. The aim of our study was to compare the effects of bone cement stiffness on adjacent vertebrae after osteoporotic vertebroplasty under load-controlled versus displacement-controlled conditions. An experimental computer study using a finite element analysis. Medical research institute, university hospital, Korean. A three-dimensional digital anatomic model of L1/2 bone structure was reconstructed from human computed tomographic images. The reconstructed three-dimensional geometry was processed for finite element analysis such as meshing elements and applying material properties. Two boundary conditions, load-controlled and displacement-controlled methods, were applied to each of 5 deformation modes: compression, flexion, extension, lateral bending, and torsion. The adjacent L1 vertebra, irrespective of augmentation, revealed nearly similar maximum von Mises stresses under the load-controlled condition. However, for the displacement-controlled condition, the maximum von Mises stresses in the cortical bone and inferior endplate of the adjacent L1 vertebra increased significantly after cement augmentation. This increase was more significant than that with stiffer bone cement under all modes, except the torsion mode. The finite element model was simplified, excluding muscular forces and incorporating a large volume of bone cement, to more clearly demonstrate effects of bone cement stiffness on adjacent vertebrae after vertebroplasty. Excessive stiffness of augmented bone cement increases the risk of adjacent vertebral fractures after vertebroplasty in an osteoporotic finite element model. This result was most prominently observed using the displacement-controlled method.
Finite element simulation of texture evolution and Swift effect in NiAl under torsion
NASA Astrophysics Data System (ADS)
Böhlke, Thomas; Glüge, Rainer; Klöden, Burghardt; Skrotzki, Werner; Bertram, Albrecht
2007-09-01
The texture evolution and the Swift effect in NiAl under torsion at 727 °C are studied by finite element simulations for two different initial textures. The material behaviour is modelled by an elastic-viscoplastic Taylor model. In order to overcome the well-known shortcomings of Taylor's approach, the texture evolution is also investigated by a representative volume element (RVE) with periodic boundary conditions and a compatible microstructure at the opposite faces of the RVE. Such a representative volume element takes into account the grain morphology and the grain interaction. The numerical results are compared with experimental data. It is shown that the modelling of a finite element based RVE leads to a better prediction of the final textures. However, the texture evolution path is not accounted for correctly. The simulated Swift effect depends much more on the initial orientation distribution than observed in experiment. Deviations between simulation and experiment may be due to continuous dynamic recrystallization.
Comparison of Finite Element Modeling and Experimental Pressure Distribution in a Diamond Anvil Cell
NASA Astrophysics Data System (ADS)
Kondrat'yev, Andreiy I.; Murphy, Michael J.; Weir, Samuel T.; Vohra, Yogesh K.
2002-10-01
Ultra high pressures can be obtained in a Diamond Anvil Cell (DAC) device by optimizing the geometrical shape of diamond anvil and by use of high strength gasket materials. Radial pressure distribution in a diamond-coated rhenium gasket was measured by the micro-collimated X-ray diffraction techniques at NSLS, Brookhaven National Laboratory up to peak pressure of 220 GPa. The process of DAC compression was described by finite element analysis using NIKE-2D software. The mechanical properties of the diamond-coated gasket material were modeled and radial pressure distribution obtained was in good agreement with the experimental data. The calculated shear stress in diamond in the axial direction was shown to depend strongly on the yield strength of the gasket material and may limit the ultimate pressure that can be obtained with the use of high strength gasket materials. Supported by the National Science Foundation (NSF) Grant No. DMR-0203779.
NASA Astrophysics Data System (ADS)
Taheri, H.; Koester, L.; Bigelow, T.; Bond, L. J.
2018-04-01
Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.
Investigation of Micro-Scale Architectural Effects on Damage of Composites
NASA Technical Reports Server (NTRS)
Stier, Bertram; Bednarcyk, Brett A.; Simon, Jaan W.; Reese, Stefanie
2015-01-01
This paper presents a three-dimensional, energy based, anisotropic, stiffness reduction, progressive damage model for composite materials and composite material constituents. The model has been implemented as a user-defined constitutive model within the Abaqus finite element software package and applied to simulate the nonlinear behavior of a damaging epoxy matrix within a unidirectional composite material. Three different composite microstructures were considered as finite element repeating unit cells, with appropriate periodicity conditions applied at the boundaries. Results representing predicted transverse tensile, longitudinal shear, and transverse shear stress-strain curves are presented, along with plots of the local fields indicating the damage progression within the microstructure. It is demonstrated that the damage model functions appropriately at the matrix scale, enabling localization of the damage to simulate failure of the composite material. The influence of the repeating unit cell geometry and the effect of the directionality of the applied loading are investigated and discussed.
Image-Based Macro-Micro Finite Element Models of a Canine Femur with Implant Design Implications
NASA Astrophysics Data System (ADS)
Ghosh, Somnath; Krishnan, Ganapathi; Dyce, Jonathan
2006-06-01
In this paper, a comprehensive model of a bone-cement-implant assembly is developed for a canine cemented femoral prosthesis system. Various steps in this development entail profiling the canine femur contours by computed tomography (CT) scanning, computer aided design (CAD) reconstruction of the canine femur from CT images, CAD modeling of the implant from implant blue prints and CAD modeling of the interface cement. Finite element analysis of the macroscopic assembly is conducted for stress analysis in individual components of the system, accounting for variation in density and material properties in the porous bone material. A sensitivity analysis is conducted with the macroscopic model to investigate the effect of implant design variables on the stress distribution in the assembly. Subsequently, rigorous microstructural analysis of the bone incorporating the morphological intricacies is conducted. Various steps in this development include acquisition of the bone microstructural data from histological serial sectioning, stacking of sections to obtain 3D renderings of void distributions, microstructural characterization and determination of properties and, finally, microstructural stress analysis using a 3D Voronoi cell finite element method. Generation of the simulated microstructure and analysis by the 3D Voronoi cell finite element model provides a new way of modeling complex microstructures and correlating to morphological characteristics. An inverse calculation of the material parameters of bone by combining macroscopic experiments with microstructural characterization and analysis provides a new approach to evaluating properties without having to do experiments at this scale. Finally, the microstructural stresses in the femur are computed using the 3D VCFEM to study the stress distribution at the scale of the bone porosity. Significant difference is observed between the macroscopic stresses and the peak microscopic stresses at different locations.
A viscoelastic higher-order beam finite element
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tressler, Alexander
1996-01-01
A viscoelastic internal variable constitutive theory is applied to a higher-order elastic beam theory and finite element formulation. The behavior of the viscous material in the beam is approximately modeled as a Maxwell solid. The finite element formulation requires additional sets of nodal variables for each relaxation time constant needed by the Maxwell solid. Recent developments in modeling viscoelastic material behavior with strain variables that are conjugate to the elastic strain measures are combined with advances in modeling through-the-thickness stresses and strains in thick beams. The result is a viscous thick-beam finite element that possesses superior characteristics for transient analysis since its nodal viscous forces are not linearly dependent an the nodal velocities, which is the case when damping matrices are used. Instead, the nodal viscous forces are directly dependent on the material's relaxation spectrum and the history of the nodal variables through a differential form of the constitutive law for a Maxwell solid. The thick beam quasistatic analysis is explored herein as a first step towards developing more complex viscoelastic models for thick plates and shells, and for dynamic analyses. The internal variable constitutive theory is derived directly from the Boltzmann superposition theorem. The mechanical strains and the conjugate internal strains are shown to be related through a system of first-order, ordinary differential equations. The total time-dependent stress is the superposition of its elastic and viscous components. Equations of motion for the solid are derived from the virtual work principle using the total time-dependent stress. Numerical examples for the problems of relaxation, creep, and cyclic creep are carried out for a beam made from an orthotropic Maxwell solid.
Analysis of frame structure of medium and small truck crane
NASA Astrophysics Data System (ADS)
Cao, Fuyi; Li, Jinlong; Cui, Mengkai
2018-03-01
Truck crane is an important part of hoisting machinery. Frame, as the support component of the quality of truck crane, determines the safety of crane jib load and the rationality of structural design. In this paper, the truck crane frame is a box structure, the three-dimensional model is established in CATIA software, and imported into Hyperworks software for finite element analysis. On the base of doing constraints and loads for the finite element model of the frame, the finite element static analysis is carried out. And the static stress test verifies whether the finite element model and the frame structure design are reasonable; then the free modal analysis of the frame and the analysis of the first 8 - order modal vibration deformation are carried out. The analysis results show that the maximum stress value of the frame is greater than the yield limit value of the material, and the low-order modal value is close to the excitation frequency value, which needs to be improved to provide theoretical reference for the structural design of the truck crane frame.
Hebaz, Salah-Eddine; Benmeddour, Farouk; Moulin, Emmanuel; Assaad, Jamal
2018-01-01
The development of reliable guided waves inspection systems is conditioned by an accurate knowledge of their dispersive properties. The semi-analytical finite element method has been proven to be very practical for modeling wave propagation in arbitrary cross-section waveguides. However, when it comes to computations on complex geometries to a given accuracy, it still has a major drawback: the high consumption of resources. Recently, discontinuous Galerkin finite element method (DG-FEM) has been found advantageous over the standard finite element method when applied as well in the frequency domain. In this work, a high-order method for the computation of Lamb mode characteristics in plates is proposed. The problem is discretised using a class of DG-FEM, namely, the interior penalty methods family. The analytical validation is performed through the homogeneous isotropic case with traction-free boundary conditions. Afterwards, functionally graded material plates are analysed and a numerical example is presented. It was found that the obtained results are in good agreement with those found in the literature.
Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.
Shang, Xituan; Yen, Michael R T; Gaber, M Waleed
2010-06-01
The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.
Analytical and Numerical Results for an Adhesively Bonded Joint Subjected to Pure Bending
NASA Technical Reports Server (NTRS)
Smeltzer, Stanley S., III; Lundgren, Eric
2006-01-01
A one-dimensional, semi-analytical methodology that was previously developed for evaluating adhesively bonded joints composed of anisotropic adherends and adhesives that exhibit inelastic material behavior is further verified in the present paper. A summary of the first-order differential equations and applied joint loading used to determine the adhesive response from the methodology are also presented. The method was previously verified against a variety of single-lap joint configurations from the literature that subjected the joints to cases of axial tension and pure bending. Using the same joint configuration and applied bending load presented in a study by Yang, the finite element analysis software ABAQUS was used to further verify the semi-analytical method. Linear static ABAQUS results are presented for two models, one with a coarse and one with a fine element meshing, that were used to verify convergence of the finite element analyses. Close agreement between the finite element results and the semi-analytical methodology were determined for both the shear and normal stress responses of the adhesive bondline. Thus, the semi-analytical methodology was successfully verified using the ABAQUS finite element software and a single-lap joint configuration subjected to pure bending.
Two-Dimensional Nonlinear Finite Element Analysis of CMC Microstructures
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
A research program has been developed to quantify the effects of the microstructure of a woven ceramic matrix composite and its variability on the effective properties and response of the material. In order to characterize and quantify the variations in the microstructure of a five harness satin weave, chemical vapor infiltrated (CVI) SiC/SiC composite material, specimens were serially sectioned and polished to capture images that detailed the fiber tows, matrix, and porosity. Open source quantitative image analysis tools were then used to isolate the constituents, from which two dimensional finite element models were generated which approximated the actual specimen section geometry. A simplified elastic-plastic model, wherein all stress above yield is redistributed to lower stress regions, is used to approximate the progressive damage behavior for each of the composite constituents. Finite element analyses under in-plane tensile loading were performed to examine how the variability in the local microstructure affected the macroscopic stress-strain response of the material as well as the local initiation and progression of damage. The macroscopic stress-strain response appeared to be minimally affected by the variation in local microstructure, but the locations where damage initiated and propagated appeared to be linked to specific aspects of the local microstructure.
Wang, Yawei; Wang, Lizhen; Du, Chengfei; Mo, Zhongjun; Fan, Yubo
2016-06-01
In contrast to numerous researches on static or quasi-static stiffness of cervical spine segments, very few investigations on their dynamic stiffness were published. Currently, scale factors and estimated coefficients were usually used in multi-body models for including viscoelastic properties and damping effects, meanwhile viscoelastic properties of some tissues were unavailable for establishing finite element models. Because dynamic stiffness of cervical spine segments in these models were difficult to validate because of lacking in experimental data, we tried to gain some insights on current modeling methods through studying dynamic stiffness differences between these models. A finite element model and a multi-body model of C6-C7 segment were developed through using available material data and typical modeling technologies. These two models were validated with quasi-static response data of the C6-C7 cervical spine segment. Dynamic stiffness differences were investigated through controlling motions of C6 vertebrae at different rates and then comparing their reaction forces or moments. Validation results showed that both the finite element model and the multi-body model could generate reasonable responses under quasi-static loads, but the finite element segment model exhibited more nonlinear characters. Dynamic response investigations indicated that dynamic stiffness of this finite element model might be underestimated because of the absence of dynamic stiffen effect and damping effects of annulus fibrous, while representation of these effects also need to be improved in current multi-body model. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Unnikrishnan, Ginu U.; Morgan, Elise F.
2011-01-01
Inaccuracies in the estimation of material properties and errors in the assignment of these properties into finite element models limit the reliability, accuracy, and precision of quantitative computed tomography (QCT)-based finite element analyses of the vertebra. In this work, a new mesh-independent, material mapping procedure was developed to improve the quality of predictions of vertebral mechanical behavior from QCT-based finite element models. In this procedure, an intermediate step, called the material block model, was introduced to determine the distribution of material properties based on bone mineral density, and these properties were then mapped onto the finite element mesh. A sensitivity study was first conducted on a calibration phantom to understand the influence of the size of the material blocks on the computed bone mineral density. It was observed that varying the material block size produced only marginal changes in the predictions of mineral density. Finite element (FE) analyses were then conducted on a square column-shaped region of the vertebra and also on the entire vertebra in order to study the effect of material block size on the FE-derived outcomes. The predicted values of stiffness for the column and the vertebra decreased with decreasing block size. When these results were compared to those of a mesh convergence analysis, it was found that the influence of element size on vertebral stiffness was less than that of the material block size. This mapping procedure allows the material properties in a finite element study to be determined based on the block size required for an accurate representation of the material field, while the size of the finite elements can be selected independently and based on the required numerical accuracy of the finite element solution. The mesh-independent, material mapping procedure developed in this study could be particularly helpful in improving the accuracy of finite element analyses of vertebroplasty and spine metastases, as these analyses typically require mesh refinement at the interfaces between distinct materials. Moreover, the mapping procedure is not specific to the vertebra and could thus be applied to many other anatomic sites. PMID:21823740
Specialty functions singularity mechanics problems
NASA Technical Reports Server (NTRS)
Sarigul, Nesrin
1989-01-01
The focus is in the development of more accurate and efficient advanced methods for solution of singular problems encountered in mechanics. At present, finite element methods in conjunction with special functions, boolean sum and blending interpolations are being considered. In dealing with systems which contain a singularity, special finite elements are being formulated to be used in singular regions. Further, special transition elements are being formulated to couple the special element to the mesh that models the rest of the system, and to be used in conjunction with 1-D, 2-D and 3-D elements within the same mesh. Computational simulation with a least squares fit is being utilized to construct special elements, if there is an unknown singularity in the system. A novel approach is taken in formulation of the elements in that: (1) the material properties are modified to include time, temperature, coordinate and stress dependant behavior within the element; (2) material properties vary at nodal points of the elements; (3) a hidden-symbolic computation scheme is developed and utilized in formulating the elements; and (4) special functions and boolean sum are utilized in order to interpolate the field variables and their derivatives along the boundary of the elements. It may be noted that the proposed methods are also applicable to fluids and coupled problems.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Roth, D. J.; Cotton, R.; Studor, George F.; Christiansen, Eric; Young, P. C.
2011-01-01
This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made.
NASA Technical Reports Server (NTRS)
Rodal, J. J. A.; Witmer, E. A.
1979-01-01
A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.
Finite Element Analysis of a Copper Single Crystal Shape Memory Alloy-Based Endodontic Instruments
NASA Astrophysics Data System (ADS)
Vincent, Marin; Thiebaud, Frédéric; Bel Haj Khalifa, Saifeddine; Engels-Deutsch, Marc; Ben Zineb, Tarak
2015-10-01
The aim of the present paper is the development of endodontic Cu-based single crystal Shape Memory Alloy (SMA) instruments in order to eliminate the antimicrobial and mechanical deficiencies observed with the conventional Nickel-Titane (NiTi) SMA files. A thermomechanical constitutive law, already developed and implemented in a finite element code by our research group, is adopted for the simulation of the single crystal SMA behavior. The corresponding material parameters were identified starting from experimental results for a tensile test at room temperature. A computer-aided design geometry has been achieved and considered for a finite element structural analysis of the endodontic Cu-based single crystal SMA files. They are meshed with tetrahedral continuum elements to improve the computation time and the accuracy of results. The geometric parameters tested in this study are the length of the active blade, the rod length, the pitch, the taper, the tip diameter, and the rod diameter. For each set of adopted parameters, a finite element model is built and tested in a combined bending-torsion loading in accordance with ISO 3630-1 norm. The numerical analysis based on finite element procedure allowed purposing an optimal geometry suitable for Cu-based single crystal SMA endodontic files. The same analysis was carried out for the classical NiTi SMA files and a comparison was made between the two kinds of files. It showed that Cu-based single crystal SMA files are less stiff than the NiTi files. The Cu-based endodontic files could be used to improve the root canal treatments. However, the finite element analysis brought out the need for further investigation based on experiments.
Pegg, Elise C; Gill, Harinderjit S
2016-09-06
A new software tool to assign the material properties of bone to an ABAQUS finite element mesh was created and compared with Bonemat, a similar tool originally designed to work with Ansys finite element models. Our software tool (py_bonemat_abaqus) was written in Python, which is the chosen scripting language for ABAQUS. The purpose of this study was to compare the software packages in terms of the material assignment calculation and processing speed. Three element types were compared (linear hexahedral (C3D8), linear tetrahedral (C3D4) and quadratic tetrahedral elements (C3D10)), both individually and as part of a mesh. Comparisons were made using a CT scan of a hemi-pelvis as a test case. A small difference, of -0.05kPa on average, was found between Bonemat version 3.1 (the current version) and our Python package. Errors were found in the previous release of Bonemat (version 3.0 downloaded from www.biomedtown.org) during calculation of the quadratic tetrahedron Jacobian, and conversion of the apparent density to modulus when integrating over the Young׳s modulus field. These issues caused up to 2GPa error in the modulus assignment. For these reasons, we recommend users upgrade to the most recent release of Bonemat. Processing speeds were assessed for the three different element types. Our Python package took significantly longer (110s on average) to perform the calculations compared with the Bonemat software (10s). Nevertheless, the workflow advantages of the package and added functionality makes 'py_bonemat_abaqus' a useful tool for ABAQUS users. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of microstructure on the static and dynamic behavior of recycled asphalt material
DOT National Transportation Integrated Search
2002-07-01
This report describes the research activities of a project dealing with theoretical/numerical modeling and experimental studies of the micromechanical behavior of recycled asphalt material. The theoretical work employed finite element techniques to d...
Non-integer viscoelastic constitutive law to model soft biological tissues to in-vivo indentation.
Demirci, Nagehan; Tönük, Ergin
2014-01-01
During the last decades, derivatives and integrals of non-integer orders are being more commonly used for the description of constitutive behavior of various viscoelastic materials including soft biological tissues. Compared to integer order constitutive relations, non-integer order viscoelastic material models of soft biological tissues are capable of capturing a wider range of viscoelastic behavior obtained from experiments. Although integer order models may yield comparably accurate results, non-integer order material models have less number of parameters to be identified in addition to description of an intermediate material that can monotonically and continuously be adjusted in between an ideal elastic solid and an ideal viscous fluid. In this work, starting with some preliminaries on non-integer (fractional) calculus, the "spring-pot", (intermediate mechanical element between a solid and a fluid), non-integer order three element (Zener) solid model, finally a user-defined large strain non-integer order viscoelastic constitutive model was constructed to be used in finite element simulations. Using the constitutive equation developed, by utilizing inverse finite element method and in vivo indentation experiments, soft tissue material identification was performed. The results indicate that material coefficients obtained from relaxation experiments, when optimized with creep experimental data could simulate relaxation, creep and cyclic loading and unloading experiments accurately. Non-integer calculus viscoelastic constitutive models, having physical interpretation and modeling experimental data accurately is a good alternative to classical phenomenological viscoelastic constitutive equations.
NASA Technical Reports Server (NTRS)
Bartos, Karen F.; Fite, E. Brian; Shalkhauser, Kurt A.; Sharp, G. Richard
1991-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/ mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
NASA Technical Reports Server (NTRS)
Allen, Phillip A.; Wells, Douglas N.
2013-01-01
No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
NASA Technical Reports Server (NTRS)
Shalkhauser, Kurt A.; Bartos, Karen F.; Fite, E. B.; Sharp, G. R.
1992-01-01
Current research in high-efficiency, high-performance traveling wave tubes (TWT's) has led to the development of novel thermal/mechanical computer models for use with helical slow-wave structures. A three-dimensional, finite element computer model and analytical technique used to study the structural integrity and thermal operation of a high-efficiency, diamond-rod, K-band TWT designed for use in advanced space communications systems. This analysis focused on the slow-wave circuit in the radiofrequency section of the TWT, where an inherent localized heating problem existed and where failures were observed during earlier cold compression, or 'coining' fabrication technique that shows great potential for future TWT development efforts. For this analysis, a three-dimensional, finite element model was used along with MARC, a commercially available finite element code, to simulate the fabrication of a diamond-rod TWT. This analysis was conducted by using component and material specifications consistent with actual TWT fabrication and was verified against empirical data. The analysis is nonlinear owing to material plasticity introduced by the forming process and also to geometric nonlinearities presented by the component assembly configuration. The computer model was developed by using the high efficiency, K-band TWT design but is general enough to permit similar analyses to be performed on a wide variety of TWT designs and styles. The results of the TWT operating condition and structural failure mode analysis, as well as a comparison of analytical results to test data are presented.
NASA Technical Reports Server (NTRS)
Squire, Thomas; Milos, Frank; Agrawal, Parul
2009-01-01
We performed finite element analyses on a model of the Phenolic Impregnated Carbon Ablator (PICA) heatshield from the Stardust sample return capsule (SRC) to predict the thermal stresses in the PICA material during reentry. The heatshield on the Stardust SRC was a 0.83 m sphere cone, fabricated from a single piece of 5.82 cm-thick PICA. The heatshield performed successfully during Earth reentry of the SRC in January 2006. Material response analyses of the full, axisymmetric PICA heatshield were run using the Two-Dimensional Implicit Ablation, Pyrolysis, and Thermal Response Program (TITAN). Peak surface temperatures were predicted to be 3385K, while the temperature at the PICA backface remained at the estimated initial cold-soak temperature of 278K. Surface recession and temperature distribution results from TITAN, at several points in the reentry trajectory, were mapped onto an axisymmetric finite element model of the heatshield. We used the finite element model to predict the thermal stresses in the PICA from differential thermal expansion. The predicted peak compressive stress in the PICA heatshield was 1.38 MPa. Although this level of stress exceeded the chosen design limit for compressive stresses in PICA tiles for the design of the Orion crew exploration vehicle heatshield, the Stardust heatshield exhibited no obvious mechanical failures from thermal stress. The analyses of the Stardust heatshield were used to assess and adjust the level of conservatism in the finite element analyses in support of the Orion heatshield design.
NASA Astrophysics Data System (ADS)
Ren, Xiaotao; Corcolle, Romain; Daniel, Laurent
2016-02-01
The use of soft magnetic composites (SMCs) in electrical engineering applications is growing. SMCs provide an effective alternative to laminated steels because they exhibit a high permeability with low eddy current losses. Losses are a critical feature in the design of electrical machines, and it is necessary to evaluate the role of microstructure and constitutive properties of SMCs during the predesign stage. In this paper we propose a simplified finite element approach to compute eddy current losses in these materials. The computations allow to quantify the role of exciting source and material properties on eddy current losses. This analysis can later be used in the development of homogenization models for SMC. Contribution to the topical issue "Numelec 2015 - Elected submissions", edited by Adel Razek
Defect characterization by inductive heated thermography
NASA Astrophysics Data System (ADS)
Noethen, Matthias; Meyendorf, Norbert
2012-05-01
During inductive-thermographic inspection, an eddy current of high intensity is induced into the inspected material and the thermal response is detected by an infrared camera. Anomalies in the surface temperature during and after inductive heating correspond to inhomogeneities in the material. A finite element simulation of the surface crack detection process using active thermography with inductive heating has been developed. The simulation model is based on the finite element software ANSYS. The simulation tool was tested and used for investigations on steel components with different longitudinal orientated cracks, varying in shape, width and height. This paper focuses on surface connected longitudinal orientated cracks in austenitic steel. The results show that depending on the excitation frequency the temperature distribution of the material under test are different and a possible way to measure the depth of the crack will be discussed.
Abyaneh, M H; Wildman, R D; Ashcroft, I A; Ruiz, P D
2013-11-01
An analysis of the material properties of porcine corneas has been performed. A simple stress relaxation test was performed to determine the viscoelastic properties and a rheological model was built based on the Generalized Maxwell (GM) approach. A validation experiment using nano-indentation showed that an isotropic GM model was insufficient for describing the corneal material behaviour when exposed to a complex stress state. A new technique was proposed for determining the properties, using a combination of nano-indentation experiment, an isotropic and orthotropic GM model and inverse finite element method. The good agreement using this method suggests that this is a promising technique for measuring material properties in vivo and further work should focus on the reliability of the approach in practice. © 2013 Elsevier Ltd. All rights reserved.
User's manual for GAMNAS: Geometric and Material Nonlinear Analysis of Structures
NASA Technical Reports Server (NTRS)
Whitcomb, J. D.; Dattaguru, B.
1984-01-01
GAMNAS (Geometric and Material Nonlinear Analysis of Structures) is a two dimensional finite-element stress analysis program. Options include linear, geometric nonlinear, material nonlinear, and combined geometric and material nonlinear analysis. The theory, organization, and use of GAMNAS are described. Required input data and results for several sample problems are included.
Elasto-Plastic Analysis of Tee Joints Using HOT-SMAC
NASA Technical Reports Server (NTRS)
Arnold, Steve M. (Technical Monitor); Bednarcyk, Brett A.; Yarrington, Phillip W.
2004-01-01
The Higher Order Theory - Structural/Micro Analysis Code (HOT-SMAC) software package is applied to analyze the linearly elastic and elasto-plastic response of adhesively bonded tee joints. Joints of this type are finding an increasing number of applications with the increased use of composite materials within advanced aerospace vehicles, and improved tools for the design and analysis of these joints are needed. The linearly elastic results of the code are validated vs. finite element analysis results from the literature under different loading and boundary conditions, and new results are generated to investigate the inelastic behavior of the tee joint. The comparison with the finite element results indicates that HOT-SMAC is an efficient and accurate alternative to the finite element method and has a great deal of potential as an analysis tool for a wide range of bonded joints.
Finite element design procedure for correcting the coining die profiles
NASA Astrophysics Data System (ADS)
Alexandrino, Paulo; Leitão, Paulo J.; Alves, Luis M.; Martins, Paulo A. F.
2018-05-01
This paper presents a new finite element based design procedure for correcting the coining die profiles in order to optimize the distribution of pressure and the alignment of the resultant vertical force at the end of the die stroke. The procedure avoids time consuming and costly try-outs, does not interfere with the creative process of the sculptors and extends the service life of the coining dies by significantly decreasing the applied pressure and bending moments. The numerical simulations were carried out in a computer program based on the finite element flow formulation that is currently being developed by the authors in collaboration with the Portuguese Mint. A new experimental procedure based on the stack compression test is also proposed for determining the stress-strain curve of the materials directly from the coin blanks.
Finite element predictions of active buckling control of stiffened panels
NASA Astrophysics Data System (ADS)
Thompson, Danniella M.; Griffin, O. H., Jr.
1993-04-01
Materials systems and structures that can respond 'intelligently' to their environment are currently being proposed and investigated. A series of finite element analyses was performed to investigate the potential for active buckling control of two different stiffened panels by embedded shape memory alloy (SMA) rods. Changes in the predicted buckling load increased with the magnitude of the actuation level for a given structural concept. Increasing the number of actuators for a given concept yielded greater predicted increases in buckling load. Considerable control authority was generated with a small number of actuators, with greater authority demonstrated for those structural concepts where the activated SMA rods could develop greater forces and moments on the structure. Relatively simple and inexpensive analyses were performed with standard finite elements to determine such information, indicating the viability of these types of models for design purposes.
NASA Technical Reports Server (NTRS)
McGhee, D. S.
1999-01-01
The X-33 vehicle is an advanced technology demonstrator sponsored by NASA. For the past 3 years the Structural Dynamics and Loads Branch of NASA's Marshall Space Flight Center has had the task of integrating the X-33 vehicle structural finite element model. In that time, five versions of the integrated vehicle model have been produced and a strategy has evolved that would benefit anyone given the task of integrating structural finite element models that have been generated by various modelers and companies. The strategy that has been presented here consists of six decisions that need to be made: purpose of models, units, common materials list, model numbering, interface control, and archive format. This strategy has been proven and expanded from experience on the X-33 vehicle.
Three-dimensional earthquake analysis of roller-compacted concrete dams
NASA Astrophysics Data System (ADS)
Kartal, M. E.
2012-07-01
Ground motion effect on a roller-compacted concrete (RCC) dams in the earthquake zone should be taken into account for the most critical conditions. This study presents three-dimensional earthquake response of a RCC dam considering geometrical non-linearity. Besides, material and connection non-linearity are also taken into consideration in the time-history analyses. Bilinear and multilinear kinematic hardening material models are utilized in the materially non-linear analyses for concrete and foundation rock respectively. The contraction joints inside the dam blocks and dam-foundation-reservoir interaction are modeled by the contact elements. The hydrostatic and hydrodynamic pressures of the reservoir water are modeled with the fluid finite elements based on the Lagrangian approach. The gravity and hydrostatic pressure effects are employed as initial condition before the strong ground motion. In the earthquake analyses, viscous dampers are defined in the finite element model to represent infinite boundary conditions. According to numerical solutions, horizontal displacements increase under hydrodynamic pressure. Besides, those also increase in the materially non-linear analyses of the dam. In addition, while the principle stress components by the hydrodynamic pressure effect the reservoir water, those decrease in the materially non-linear time-history analyses.
Elasto-plastic flow in cracked bodies using a new finite element model. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Karabin, M. E., Jr.
1977-01-01
Cracked geometries were studied by finite element techniques with the aid of a new special element embedded at the crack tip. This model seeked to accurately represent the singular stresses and strains associated with the elasto-plastic flow process. The present model was not restricted to a material type and did not predetermine a singularity. Rather the singularity was treated as an unknown. For each step of the incremental process the nodal degrees of freedom and the unknown singularity were found through minimization of an energy-like functional. The singularity and nodal degrees of freedom were determined by means of an iterative process.
Hierarchical Material Properties in Finite Element Analysis: The Oilfield Infrastructure Problem.
NASA Astrophysics Data System (ADS)
Weiss, C. J.; Wilson, G. A.
2017-12-01
Geophysical simulation of low-frequency electromagnetic signals within built environments such as urban centers and industrial landscapes facilities is a challenging computational problem because strong conductors (e.g., pipes, fences, rail lines, rebar, etc.) are not only highly conductive and/or magnetic relative to the surrounding geology, but they are very small in one or more of their physical length coordinates. Realistic modeling of such structures as idealized conductors has long been the standard approach; however this strategy carries with it computational burdens such as cumbersome implementation of internal boundary conditions, and limited flexibility for accommodating realistic geometries. Another standard approach is "brute force" discretization (often coupled with an equivalent medium model) whereby 100's of millions of voxels are used to represent these strong conductors, but at the cost of extreme computation times (and mesh design) for a simulation result when possible. To minimize these burdens, a new finite element scheme (Weiss, Geophysics, 2017) has been developed in which the material properties reside on a hierarchy of geometric simplicies (i.e., edges, facets and volumes) within an unstructured tetrahedral mesh. This allows thin sheet—like structures, such as subsurface fractures, to be economically represented by a connected set of triangular facets, for example, that freely conform to arbitrary "real world" geometries. The same holds thin pipe/wire-like structures, such as casings or pipelines. The hierarchical finite element scheme has been applied to problems in electro- and magnetostatics for oilfield problems where the elevated, but finite, conductivity and permeability of the steel-cased oil wells must be properly accounted for, yielding results that are otherwise unobtainable, with run times as low as a few 10s of seconds. Extension of the hierarchical finite element concept to broadband electromagnetics is presently underway, as are its implications for geophysical inversion.
Shock Wave Propagation in Cementitious Materials at Micro/Meso Scales
NASA Astrophysics Data System (ADS)
Rajendran, Arunachalam
2015-06-01
The mechanical and constitutive response of materials like cement, and bio materials like fish scale and abalone shell is very complex due to heterogeneities that are inherently present in the nano and microstructures. The intrinsic constitutive behaviors are driven by the chemical composition and the molecular, micro, and meso structures. Therefore, it becomes important to identify the material genome as the building block for the material. For instance, in cementitious materials, the genome of C-S-H phase (the glue or the paste) that holds the various clinkers, such as the dicalcium silicate, tricalcium silicate, calcium ferroaluminates, and others is extremely complex. Often mechanical behaviors of C-S-H type materials are influenced by the chemistry and the structures at all nano to micro length scales. By explicitly modeling the molecular structures using appropriate potentials, it is then possible to compute the elastic tensor from molecular dynamics simulations using all atom method. The elastic tensors for the C-S-H gel and other clinkers are determined using the software suite ``Accelrys Materials Studio.'' A strain rate dependent, fracture mechanics based tensile damage model has been incorporated into ABAQUS finite element code to model spall evolution in the heterogeneous cementitious material with all constituents explicitly modeled through one micron element resolution. This paper presents results from nano/micro/meso scale analyses of shock wave propagation in a heterogeneous cementitious material using both molecular dynamic and finite element codes.
Characterization of Meta-Materials Using Computational Electromagnetic Methods
NASA Technical Reports Server (NTRS)
Deshpande, Manohar; Shin, Joon
2005-01-01
An efficient and powerful computational method is presented to synthesize a meta-material to specified electromagnetic properties. Using the periodicity of meta-materials, the Finite Element Methodology (FEM) is developed to estimate the reflection and transmission through the meta-material structure for a normal plane wave incidence. For efficient computations of the reflection and transmission over a wide band frequency range through a meta-material a Finite Difference Time Domain (FDTD) approach is also developed. Using the Nicholson-Ross method and the Genetic Algorithms, a robust procedure to extract electromagnetic properties of meta-material from the knowledge of its reflection and transmission coefficients is described. Few numerical examples are also presented to validate the present approach.
Basic research on design analysis methods for rotorcraft vibrations
NASA Technical Reports Server (NTRS)
Hanagud, S.
1991-01-01
The objective of the present work was to develop a method for identifying physically plausible finite element system models of airframe structures from test data. The assumed models were based on linear elastic behavior with general (nonproportional) damping. Physical plausibility of the identified system matrices was insured by restricting the identification process to designated physical parameters only and not simply to the elements of the system matrices themselves. For example, in a large finite element model the identified parameters might be restricted to the moduli for each of the different materials used in the structure. In the case of damping, a restricted set of damping values might be assigned to finite elements based on the material type and on the fabrication processes used. In this case, different damping values might be associated with riveted, bolted and bonded elements. The method itself is developed first, and several approaches are outlined for computing the identified parameter values. The method is applied first to a simple structure for which the 'measured' response is actually synthesized from an assumed model. Both stiffness and damping parameter values are accurately identified. The true test, however, is the application to a full-scale airframe structure. In this case, a NASTRAN model and actual measured modal parameters formed the basis for the identification of a restricted set of physically plausible stiffness and damping parameters.
Lee, Ki-Sun; Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan; Lee, Jeong-Yol
2017-01-01
The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems.
Shin, Joo-Hee; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Won-Chang; Shin, Sang-Wan
2017-01-01
The aim of this study was to evaluate the biomechanical behavior and long-term safety of high performance polymer PEKK as an intraradicular dental post-core material through comparative finite element analysis (FEA) with other conventional post-core materials. A 3D FEA model of a maxillary central incisor was constructed. A cyclic loading force of 50 N was applied at an angle of 45° to the longitudinal axis of the tooth at the palatal surface of the crown. For comparison with traditionally used post-core materials, three materials (gold, fiberglass, and PEKK) were simulated to determine their post-core properties. PEKK, with a lower elastic modulus than root dentin, showed comparably high failure resistance and a more favorable stress distribution than conventional post-core material. However, the PEKK post-core system showed a higher probability of debonding and crown failure under long-term cyclic loading than the metal or fiberglass post-core systems. PMID:28386547
NASA Astrophysics Data System (ADS)
Jansen van Rensburg, Gerhardus J.; Kok, Schalk; Wilke, Daniel N.
2018-03-01
This paper presents the development and numerical implementation of a state variable based thermomechanical material model, intended for use within a fully implicit finite element formulation. Plastic hardening, thermal recovery and multiple cycles of recrystallisation can be tracked for single peak as well as multiple peak recrystallisation response. The numerical implementation of the state variable model extends on a J2 isotropic hypo-elastoplastic modelling framework. The complete numerical implementation is presented as an Abaqus UMAT and linked subroutines. Implementation is discussed with detailed explanation of the derivation and use of various sensitivities, internal state variable management and multiple recrystallisation cycle contributions. A flow chart explaining the proposed numerical implementation is provided as well as verification on the convergence of the material subroutine. The material model is characterised using two high temperature data sets for cobalt and copper. The results of finite element analyses using the material parameter values characterised on the copper data set are also presented.
NASA Astrophysics Data System (ADS)
Dhode, Trushant; Patil, Girish; Rajkumar, E.
2017-11-01
The components which are bound to impact are subjected to deformation even though it may be for a small scale. The efforts are always on for finding the best material to take impact that has no failure or moreover, less plastic deformation. A newly found material which is glass matrix steel named as ‘SAM2X5-630’ has astounding high elastic limit of 12.5GPa. Thus it can take powerful impact & regain its original shape avoiding the deformation of component under impact. The paper is focused on performing the Finite element analysis to assess the behaviour of ‘SAM2X5-630’ steel under impact loading of side door of car as well as impact of bullet on bulletproof jacket on which the material is assigned. The displacement or deformation occurred during impact is found to be lesser than known materials like Kevlar in bulletproof vest and Aluminium alloy in car door.
Construction and validation of a three-dimensional finite element model of degenerative scoliosis.
Zheng, Jie; Yang, Yonghong; Lou, Shuliang; Zhang, Dongsheng; Liao, Shenghui
2015-12-24
With the aging of the population, degenerative scoliosis (DS) incidence rate is increasing. In recent years, increasing research on this topic has been carried out, yet biomechanical research on the subject is seldom seen and in vitro biomechanical model of DS nearly cannot be available. The objective of this study was to develop and validate a complete three-dimensional finite element model of DS in order to build the digital platform for further biomechanical study. A 55-year-old female DS patient (Suer Pan, ID number was P141986) was selected for this study. This study was performed in accordance with the ethical standards of Declaration of Helsinki and its amendments and was approved by the local ethics committee (117 hospital of PLA ethics committee). Spiral computed tomography (CT) scanning was conducted on the patient's lumbar spine from the T12 to S1. CT images were then imported into a finite element modeling system. A three-dimensional solid model was then formed from segmentation of the CT scan. The three-dimensional model of each vertebra was then meshed, and material properties were assigned to each element according to the pathological characteristics of DS. Loads and boundary conditions were then applied in such a manner as to simulate in vitro biomechanical experiments conducted on lumbar segments. The results of the model were then compared with experimental results in order to validate the model. An integral three-dimensional finite element model of DS was built successfully, consisting of 113,682 solid elements, 686 cable elements, 33,329 shell elements, 4968 target elements, 4968 contact elements, totaling 157,635 elements, and 197,374 nodes. The model accurately described the physical features of DS and was geometrically similar to the object of study. The results of analysis with the finite element model agreed closely with in vitro experiments, validating the accuracy of the model. The three-dimensional finite element model of DS built in this study is clear, reliable, and effective for further biomechanical simulation study of DS.
NASA Technical Reports Server (NTRS)
Ranatunga, Vipul; Bednarcyk, Brett A.; Arnold, Steven M.
2010-01-01
A method for performing progressive damage modeling in composite materials and structures based on continuum level interfacial displacement discontinuities is presented. The proposed method enables the exponential evolution of the interfacial compliance, resulting in unloading of the tractions at the interface after delamination or failure occurs. In this paper, the proposed continuum displacement discontinuity model has been used to simulate failure within both isotropic and orthotropic materials efficiently and to explore the possibility of predicting the crack path, therein. Simulation results obtained from Mode-I and Mode-II fracture compare the proposed approach with the cohesive element approach and Virtual Crack Closure Techniques (VCCT) available within the ABAQUS (ABAQUS, Inc.) finite element software. Furthermore, an eccentrically loaded 3-point bend test has been simulated with the displacement discontinuity model, and the resulting crack path prediction has been compared with a prediction based on the extended finite element model (XFEM) approach.
NASA Astrophysics Data System (ADS)
Chang, Chia-Ming; Keefe, Andrew; Carter, William B.; Henry, Christopher P.; McKnight, Geoff P.
2014-04-01
Structural assemblies incorporating negative stiffness elements have been shown to provide both tunable damping properties and simultaneous high stiffness and damping over prescribed displacement regions. In this paper we explore the design space for negative stiffness based assemblies using analytical modeling combined with finite element analysis. A simplified spring model demonstrates the effects of element stiffness, geometry, and preloads on the damping and stiffness performance. Simplified analytical models were validated for realistic structural implementations through finite element analysis. A series of complementary experiments was conducted to compare with modeling and determine the effects of each element on the system response. The measured damping performance follows the theoretical predictions obtained by analytical modeling. We applied these concepts to a novel sandwich core structure that exhibited combined stiffness and damping properties 8 times greater than existing foam core technologies.
Manual for LS-DYNA Wood Material Model 143
DOT National Transportation Integrated Search
2007-08-01
An elastoplastic damage model with rate effects was developed for wood and was implemented into LS-DYNA, a commercially available finite element code. This manual documents the theory of the wood material model, describes the LS-DYNA input and output...
NASA Astrophysics Data System (ADS)
Wang, Xuntao; Feng, Jianhu; Wang, Hu; Hong, Shidi; Zheng, Supei
2018-03-01
A three-dimensional finite element box girder bridge and its asphalt concrete deck pavement were established by ANSYS software, and the interlayer bonding condition of asphalt concrete deck pavement was assumed to be contact bonding condition. Orthogonal experimental design is used to arrange the testing plans of material parameters, and an evaluation of the effect of different material parameters in the mechanical response of asphalt concrete surface layer was conducted by multiple linear regression model and using the results from the finite element analysis. Results indicated that stress regression equations can well predict the stress of the asphalt concrete surface layer, and elastic modulus of waterproof layer has a significant influence on stress values of asphalt concrete surface layer.
Modeling of a reinforced concrete beam using shape memory alloy as reinforcement bars
NASA Astrophysics Data System (ADS)
Bajoria, Kamal M.; Kaduskar, Shreya S.
2017-04-01
In this paper the structural behavior of reinforced concrete (RC) beams with smart rebars under three point loading system has been numerically studied, using Finite Element Method. The material used in this study is Superelastic Shape Memory Alloy (SE SMA) which contains nickel and titanium. Shape memory alloys (SMAs) are a unique class of materials which have ability to undergo large deformation and also regain their un-deformed shape by removal of stress or by heating. In this study, a uniaxial SMA model is able to reproduce the pseudo-elastic behavior for the reinforcing SMA wires. Finite element simulation is developed in order to study the load-deflection behavior of smart concrete beams subjected to three-point bending tests.
NASA Astrophysics Data System (ADS)
Barnard, Daniel; Chakrapani, Sunil Kishore; Dayal, Vinay
2013-01-01
Modern helicopter rotor blades constructed of composite materials offer significant inspection challenges, particularly at inner structures, where geometry and differing material properties and anisotropy make placement of the probing energy difficult. This paper presents an application of Lamb waves to these structures, where mode conversion occurs at internal geometric discontinuities. These additional modes were found to successfully propagate to the targeted regions inside the rotor and back out, allowing evaluation of the structure. A finite element model was developed to simulate wave propagation and mode conversion in the structure and aid in identifying the signals received in the laboratory experiment. A good correlation between numerical and experimental results was observed.
NASA Technical Reports Server (NTRS)
Winget, J. M.; Hughes, T. J. R.
1985-01-01
The particular problems investigated in the present study arise from nonlinear transient heat conduction. One of two types of nonlinearities considered is related to a material temperature dependence which is frequently needed to accurately model behavior over the range of temperature of engineering interest. The second nonlinearity is introduced by radiation boundary conditions. The finite element equations arising from the solution of nonlinear transient heat conduction problems are formulated. The finite element matrix equations are temporally discretized, and a nonlinear iterative solution algorithm is proposed. Algorithms for solving the linear problem are discussed, taking into account the form of the matrix equations, Gaussian elimination, cost, and iterative techniques. Attention is also given to approximate factorization, implementational aspects, and numerical results.
NASA Astrophysics Data System (ADS)
Hamim, Salah Uddin Ahmed
Nanoindentation involves probing a hard diamond tip into a material, where the load and the displacement experienced by the tip is recorded continuously. This load-displacement data is a direct function of material's innate stress-strain behavior. Thus, theoretically it is possible to extract mechanical properties of a material through nanoindentation. However, due to various nonlinearities associated with nanoindentation the process of interpreting load-displacement data into material properties is difficult. Although, simple elastic behavior can be characterized easily, a method to characterize complicated material behavior such as nonlinear viscoelasticity is still lacking. In this study, a nanoindentation-based material characterization technique is developed to characterize soft materials exhibiting nonlinear viscoelasticity. Nanoindentation experiment was modeled in finite element analysis software (ABAQUS), where a nonlinear viscoelastic behavior was incorporated using user-defined subroutine (UMAT). The model parameters were calibrated using a process called inverse analysis. In this study, a surrogate model-based approach was used for the inverse analysis. The different factors affecting the surrogate model performance are analyzed in order to optimize the performance with respect to the computational cost.
NASA Astrophysics Data System (ADS)
Guan, Fengjiao; Zhang, Guanjun; Liu, Jie; Wang, Shujing; Luo, Xu; Zhu, Feng
2017-10-01
Accurate material parameters are critical to construct the high biofidelity finite element (FE) models. However, it is hard to obtain the brain tissue parameters accurately because of the effects of irregular geometry and uncertain boundary conditions. Considering the complexity of material test and the uncertainty of friction coefficient, a computational inverse method for viscoelastic material parameters identification of brain tissue is presented based on the interval analysis method. Firstly, the intervals are used to quantify the friction coefficient in the boundary condition. And then the inverse problem of material parameters identification under uncertain friction coefficient is transformed into two types of deterministic inverse problem. Finally the intelligent optimization algorithm is used to solve the two types of deterministic inverse problems quickly and accurately, and the range of material parameters can be easily acquired with no need of a variety of samples. The efficiency and convergence of this method are demonstrated by the material parameters identification of thalamus. The proposed method provides a potential effective tool for building high biofidelity human finite element model in the study of traffic accident injury.
Research on simplified parametric finite element model of automobile frontal crash
NASA Astrophysics Data System (ADS)
Wu, Linan; Zhang, Xin; Yang, Changhai
2018-05-01
The modeling method and key technologies of the automobile frontal crash simplified parametric finite element model is studied in this paper. By establishing the auto body topological structure, extracting and parameterizing the stiffness properties of substructures, choosing appropriate material models for substructures, the simplified parametric FE model of M6 car is built. The comparison of the results indicates that the simplified parametric FE model can accurately calculate the automobile crash responses and the deformation of the key substructures, and the simulation time is reduced from 6 hours to 2 minutes.
The Crank Nicolson Time Integrator for EMPHASIS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGregor, Duncan Alisdair Odum; Love, Edward; Kramer, Richard Michael Jack
2018-03-01
We investigate the use of implicit time integrators for finite element time domain approxi- mations of Maxwell's equations in vacuum. We discretize Maxwell's equations in time using Crank-Nicolson and in 3D space using compatible finite elements. We solve the system by taking a single step of Newton's method and inverting the Eddy-Current Schur complement allowing for the use of standard preconditioning techniques. This approach also generalizes to more complex material models that can include the Unsplit PML. We present verification results and demonstrate performance at CFL numbers up to 1000.
User's Manual for FEM-BEM Method. 1.0
NASA Technical Reports Server (NTRS)
Butler, Theresa; Deshpande, M. D. (Technical Monitor)
2002-01-01
A user's manual for using FORTRAN code to perform electromagnetic analysis of arbitrarily shaped material cylinders using a hybrid method that combines the finite element method (FEM) and the boundary element method (BEM). In this method, the material cylinder is enclosed by a fictitious boundary and the Maxwell's equations are solved by FEM inside the boundary and by BEM outside the boundary. The electromagnetic scattering on several arbitrarily shaped material cylinders using this FORTRAN code is computed to as examples.
NASA Astrophysics Data System (ADS)
Youn, Dong Joon
This thesis presents the development and validation of an advanced hydro-mechanical coupled finite element program analyzing hydraulic fracture propagation within unconventional hydrocarbon formations under various conditions. The realistic modeling of hydraulic fracturing is necessarily required to improve the understanding and efficiency of the stimulation technique. Such modeling remains highly challenging, however, due to factors including the complexity of fracture propagation mechanisms, the coupled behavior of fracture displacement and fluid pressure, the interactions between pre-existing natural and initiated hydraulic fractures and the formation heterogeneity of the target reservoir. In this research, an eXtended Finite Element Method (XFEM) scheme is developed allowing for representation of single or multiple fracture propagations without any need for re-meshing. Also, the coupled flows through the fracture are considered in the program to account for their influence on stresses and deformations along the hydraulic fracture. In this research, a sequential coupling scheme is applied to estimate fracture aperture and fluid pressure with the XFEM. Later, the coupled XFEM program is used to estimate wellbore bottomhole pressure during fracture propagation, and the pressure variations are analyzed to determine the geometry and performance of the hydraulic fracturing as pressure leak-off test. Finally, material heterogeneity is included into the XFEM program to check the effect of random formation property distributions to the hydraulic fracture geometry. Random field theory is used to create the random realization of the material heterogeneity with the consideration of mean, standard deviation, and property correlation length. These analyses lead to probabilistic information on the response of unconventional reservoirs and offer a more scientific approach regarding risk management for the unconventional reservoir stimulation. The new stochastic approach combining XFEM and random field is named as eXtended Random Finite Element Method (XRFEM). All the numerical analysis codes in this thesis are written in Fortran 2003, and these codes are applicable as a series of sub-modules within a suite of finite element codes developed by Smith and Griffiths (2004).
Modeling of nanostructured porous thermoelastic composites with surface effects
NASA Astrophysics Data System (ADS)
Nasedkin, A. V.; Nasedkina, A. A.; Kornievsky, A. S.
2017-01-01
The paper presents an integrated approach for determination of effective properties of anisotropic porous thermoelastic materials with a nanoscale stochastic porosity structure. This approach includes the effective moduli method for composite me-chanics, the simulation of representative volumes and the finite element method. In order to take into account nanoscale sizes of pores, the Gurtin-Murdoch model of surface stresses and the highly conducting interface model are used at the borders between material and pores. The general methodology for determination of effective properties of porous composites is demonstrated for a two-phase composite with special conditions for stresses and heat flux discontinuities at the phase interfaces. The mathematical statements of boundary value problems and the resulting formulas to determine the complete set of effective constants of the two-phase composites with arbitrary anisotropy and with surface properties are described; the generalized statements are formulated and the finite element approximations are given. It is shown that the homogenization procedures for porous composites with surface effects can be considered as special cases of the corresponding procedures for the two-phase composites with interphase stresses and heat fluxes if the moduli of nanoinclusions are negligibly small. These approaches have been implemented in the finite element package ANSYS for a model of porous material with cubic crystal system for various values of surface moduli, porosity and number of pores. It has been noted that the magnitude of the area of the interphase boundaries has influence on the effective moduli of the porous materials with nanosized structure.
Seismic waves in heterogeneous material: subcell resolution of the discontinuous Galerkin method
NASA Astrophysics Data System (ADS)
Castro, Cristóbal E.; Käser, Martin; Brietzke, Gilbert B.
2010-07-01
We present an important extension of the arbitrary high-order discontinuous Galerkin (DG) finite-element method to model 2-D elastic wave propagation in highly heterogeneous material. In this new approach we include space-variable coefficients to describe smooth or discontinuous material variations inside each element using the same numerical approximation strategy as for the velocity-stress variables in the formulation of the elastic wave equation. The combination of the DG method with a time integration scheme based on the solution of arbitrary accuracy derivatives Riemann problems still provides an explicit, one-step scheme which achieves arbitrary high-order accuracy in space and time. Compared to previous formulations the new scheme contains two additional terms in the form of volume integrals. We show that the increasing computational cost per element can be overcompensated due to the improved material representation inside each element as coarser meshes can be used which reduces the total number of elements and therefore computational time to reach a desired error level. We confirm the accuracy of the proposed scheme performing convergence tests and several numerical experiments considering smooth and highly heterogeneous material. As the approximation of the velocity and stress variables in the wave equation and of the material properties in the model can be chosen independently, we investigate the influence of the polynomial material representation on the accuracy of the synthetic seismograms with respect to computational cost. Moreover, we study the behaviour of the new method on strong material discontinuities, in the case where the mesh is not aligned with such a material interface. In this case second-order linear material approximation seems to be the best choice, with higher-order intra-cell approximation leading to potential instable behaviour. For all test cases we validate our solution against the well-established standard fourth-order finite difference and spectral element method.
High mobility of large mass movements: a study by means of FEM/DEM simulations
NASA Astrophysics Data System (ADS)
Manzella, I.; Lisjak, A.; Grasselli, G.
2013-12-01
Large mass movements, such as rock avalanches and large volcanic debris avalanches are characterized by extremely long propagation, which cannot be modelled using normal sliding friction law. For this reason several studies and theories derived from field observation, physical theories and laboratory experiments, exist to try to explain their high mobility. In order to investigate more into deep some of the processes recalled by these theories, simulations have been run with a new numerical tool called Y-GUI based on the Finite Element-Discrete Element Method FEM/DEM. The FEM/DEM method is a numerical technique developed by Munjiza et al. (1995) where Discrete Element Method (DEM) algorithms are used to model the interaction between different solids, while Finite Element Method (FEM) principles are used to analyze their deformability being also able to explicitly simulate material sudden loss of cohesion (i.e. brittle failure). In particular numerical tests have been run, inspired by the small-scale experiments done by Manzella and Labiouse (2013). They consist of rectangular blocks released on a slope; each block is a rectangular discrete element made of a mesh of finite elements enabled to fragment. These simulations have highlighted the influence on the propagation of block packing, i.e. whether the elements are piled into geometrical ordinate structure before failure or they are chaotically disposed as a loose material, and of the topography, i.e. whether the slope break is smooth and regular or not. In addition the effect of fracturing, i.e. fragmentation, on the total runout have been studied and highlighted.
Bacchi, Ataís; Consani, Rafael L X; Mesquita, Marcelo F; dos Santos, Mateus B F
2013-09-01
The purpose of this study was to evaluate the influence of superstructure material and vertical misfits on the stresses created in an implant-supported partial prosthesis. A three-dimensional (3-D) finite element model was prepared based on common clinical data. The posterior part of a severely resorbed jaw with two osseointegrated implants at the second premolar and second molar regions was modeled using specific modeling software (SolidWorks 2010). Finite element models were created by importing the solid model into mechanical simulation software (ANSYS Workbench 11). The models were divided into groups according to the prosthesis framework material (type IV gold alloy, silver-palladium alloy, commercially pure titanium, cobalt-chromium alloy, or zirconia) and vertical misfit level (10 µm, 50 µm, and 100 µm) created at one implant-prosthesis interface. The gap of the vertical misfit was set to be closed and the stress values were measured in the framework, porcelain veneer, retention screw, and bone tissue. Stiffer materials led to higher stress concentration in the framework and increased stress values in the retention screw, while in the same circumstances, the porcelain veneer showed lower stress values, and there was no significant difference in stress in the peri-implant bone tissue. A considerable increase in stress concentration was observed in all the structures evaluated within the misfit amplification. The framework material influenced the stress concentration in the prosthetic structures and retention screw, but not that in bone tissue. All the structures were significantly influenced by the increase in the misfit levels.
Compressive mechanical characterization of non-human primate spinal cord white matter.
Jannesar, Shervin; Allen, Mark; Mills, Sarah; Gibbons, Anne; Bresnahan, Jacqueline C; Salegio, Ernesto A; Sparrey, Carolyn J
2018-05-02
The goal of developing computational models of spinal cord injury (SCI) is to better understand the human injury condition. However, finite element models of human SCI have used rodent spinal cord tissue properties due to a lack of experimental data. Central nervous system tissues in non human primates (NHP) closely resemble that of humans and therefore, it is expected that material constitutive models obtained from NHPs will increase the fidelity and the accuracy of human SCI models. Human SCI most often results from compressive loading and spinal cord white matter properties affect FE predicted patterns of injury; therefore, the objectives of this study were to characterize the unconfined compressive response of NHP spinal cord white matter and present an experimentally derived, finite element tractable constitutive model for the tissue. Cervical spinal cords were harvested from nine male adult NHPs (Macaca mulatta). White matter biopsy samples (3 mm in diameter) were taken from both lateral columns of the spinal cord and were divided into four strain rate groups for unconfined dynamic compression and stress relaxation (post-mortem <1-hour). The NHP spinal cord white matter compressive response was sensitive to strain rate and showed substantial stress relaxation confirming the viscoelastic behavior of the material. An Ogden 1st order model best captured the non-linear behavior of NHP white matter in a quasi-linear viscoelastic material model with 4-term Prony series. This study is the first to characterize NHP spinal cord white matter at high (>10/sec) strain rates typical of traumatic injury. The finite element derived material constitutive model of this study will increase the fidelity of SCI computational models and provide important insights for transferring pre-clinical findings to clinical treatments. Spinal cord injury (SCI) finite element (FE) models provide an important tool to bridge the gap between animal studies and human injury, assess injury prevention technologies (e.g. helmets, seatbelts), and provide insight into the mechanisms of injury. Although, FE model outcomes depend on the assumed material constitutive model, there is limited experimental data for fresh spinal cords and all was obtained from rodent, porcine or bovine tissues. Central nervous system tissues in non human primates (NHP) more closely resemble humans. This study characterizes fresh NHP spinal cord material properties at high strains rates and large deformations typical of SCI for the first time. A constitutive model was defined that can be readily implemented in finite strain FE analysis of SCI. Copyright © 2018. Published by Elsevier Ltd.
Modeling of Failure for Analysis of Triaxial Braided Carbon Fiber Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Littell, Justin D.; Binienda, Wieslaw K.
2010-01-01
In the development of advanced aircraft-engine fan cases and containment systems, composite materials are beginning to be used due to their low weight and high strength. The design of these structures must include the capability of withstanding impact loads from a released fan blade. Relatively complex triaxially braided fiber architectures have been found to yield the best performance for the fan cases. To properly work with and design these structures, robust analytical tools are required that can be used in the design process. A new analytical approach models triaxially braided carbon fiber composite materials within the environment of a transient dynamic finite-element code, specifically the commercially available transient dynamic finite-element code LS-DYNA. The geometry of the braided composites is approximated by a series of parallel laminated composites. The composite is modeled by using shell finite elements. The material property data are computed by examining test data from static tests on braided composites, where optical strain measurement techniques are used to examine the local strain variations within the material. These local strain data from the braided composite tests are used along with a judicious application of composite micromechanics- based methods to compute the stiffness properties of an equivalent unidirectional laminated composite required for the shell elements. The local strain data from the braided composite tests are also applied to back out strength and failure properties of the equivalent unidirectional composite. The properties utilized are geared towards the application of a continuum damage mechanics-based composite constitutive model available within LS-DYNA. The developed model can be applied to conduct impact simulations of structures composed of triaxially braided composites. The advantage of this technology is that it facilitates the analysis of the deformation and damage response of a triaxially braided polymer matrix composite within the environment of a transient dynamic finite-element code such as LS-DYNA in a manner which accounts for the local physical mechanisms but is still computationally efficient. This methodology is tightly coupled to experimental tests on the braided composite, which ensures that the material properties have physical significance. Aerospace or automotive companies interested in using triaxially braided composites in their structures, particularly for impact or crash applications, would find the technology useful. By the development of improved design tools, the amount of very expensive impact testing that will need to be performed can be significantly reduced.
3D Finite Element Analysis of Yixing CFRD Built on Inclined Mountain Slope
NASA Astrophysics Data System (ADS)
Sun, Da Wei; Zhang, Liang; Qing Yao, Hui; Wang, Kang Ping
2018-05-01
There are few CFRDs built on steep slope with dam height more than 50 m. So does the relative design and construction experience. The 75 m-high Yixing CFRD was built on steep mountain slope and the 45.9m-high gravity retaining wall was used to against dam sliding. Since the excessive deformation of dam body and perimetric joints would lead to failure of seal materials and cause water leakage, 3D nonlinear finite element stress-deformation analysis was carried out. 3D finite element mesh with 63875 elements including retaining wall and surrounding mountain was established by use of advanced grid discreteness technique. Large scales of equations solving method were adopted in the computer procedure and the calculation time was greatly reduced from former 40 hours to now 45 minutes. Therefore the behavior of the dam, retaining wall and the joint was obtained in a short time, and the results would be helpful to the design and construction of Yixing dam.
BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework
Wang, Qi; Sprague, Michael A.; Jonkman, Jason; ...
2017-03-14
Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less
Saravana Kumar, Gurunathan; George, Subin Philip
2017-02-01
This work proposes a methodology involving stiffness optimization for subject-specific cementless hip implant design based on finite element analysis for reducing stress-shielding effect. To assess the change in the stress-strain state of the femur and the resulting stress-shielding effect due to insertion of the implant, a finite element analysis of the resected femur with implant assembly is carried out for a clinically relevant loading condition. Selecting the von Mises stress as the criterion for discriminating regions for elastic modulus difference, a stiffness minimization method was employed by varying the elastic modulus distribution in custom implant stem. The stiffness minimization problem is formulated as material distribution problem without explicitly penalizing partial volume elements. This formulation enables designs that could be fabricated using additive manufacturing to make porous implant with varying levels of porosity. Stress-shielding effect, measured as difference between the von Mises stress in the intact and implanted femur, decreased as the elastic modulus distribution is optimized.
Exploiting symmetries in the modeling and analysis of tires
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Andersen, Carl M.; Tanner, John A.
1987-01-01
A simple and efficient computational strategy for reducing both the size of a tire model and the cost of the analysis of tires in the presence of symmetry-breaking conditions (unsymmetry in the tire material, geometry, or loading) is presented. The strategy is based on approximating the unsymmetric response of the tire with a linear combination of symmetric and antisymmetric global approximation vectors (or modes). Details are presented for the three main elements of the computational strategy, which include: use of special three-field mixed finite-element models, use of operator splitting, and substantial reduction in the number of degrees of freedom. The proposed computational stategy is applied to three quasi-symmetric problems of tires: linear analysis of anisotropic tires, through use of semianalytic finite elements, nonlinear analysis of anisotropic tires through use of two-dimensional shell finite elements, and nonlinear analysis of orthotropic tires subjected to unsymmetric loading. Three basic types of symmetry (and their combinations) exhibited by the tire response are identified.
BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Sprague, Michael A.; Jonkman, Jason
Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less
Numerical Analysis of Prefabricated Steel-Concrete Composite Floor in Typical Lipsk Building
NASA Astrophysics Data System (ADS)
Lacki, Piotr; Kasza, Przemysław; Derlatka, Anna
2017-12-01
The aim of the work was to perform numerical analysis of a steel-concrete composite floor located in a LIPSK type building. A numerical model of the analytically designed floor was performed. The floor was in a six-storey, retail and service building. The thickness of a prefabricated slab was 100 mm. The two-row, crisscrossed reinforcement of the slab was made from φ16 mm rods with a spacing of 150 x 200 mm. The span of the beams made of steel IPE 160 profiles was 6.00 m and they were spaced every 1.20 m. The steelconcrete composite was obtained using 80×16 Nelson fasteners. The numerical analysis was carried out using the ADINA System based on the Finite Element Method. The stresses and strains in the steel and concrete elements, the distribution of the forces in the reinforcement bars and cracking in concrete were evaluated. The FEM model was made from 3D-solid finite elements (IPE profile and concrete slab) and truss elements (reinforcement bars). The adopted steel material model takes into consideration the plastic state, while the adopted concrete material model takes into account material cracks.
Validation of a C2-C7 cervical spine finite element model using specimen-specific flexibility data.
Kallemeyn, Nicole; Gandhi, Anup; Kode, Swathi; Shivanna, Kiran; Smucker, Joseph; Grosland, Nicole
2010-06-01
This study presents a specimen-specific C2-C7 cervical spine finite element model that was developed using multiblock meshing techniques. The model was validated using in-house experimental flexibility data obtained from the cadaveric specimen used for mesh development. The C2-C7 specimen was subjected to pure continuous moments up to +/-1.0 N m in flexion, extension, lateral bending, and axial rotation, and the motions at each level were obtained. Additionally, the specimen was divided into C2-C3, C4-C5, and C6-C7 functional spinal units (FSUs) which were tested in the intact state as well as after sequential removal of the interspinous, ligamentum flavum, and capsular ligaments. The finite element model was initially assigned baseline material properties based on the literature, but was calibrated using the experimental motion data which was obtained in-house, while utlizing the ranges of material property values as reported in the literature. The calibrated model provided good agreement with the nonlinear experimental loading curves, and can be used to further study the response of the cervical spine to various biomechanical investigations. Copyright 2010 IPEM. Published by Elsevier Ltd. All rights reserved.
Yamaguchi, Satoshi; Tsutsui, Kihei; Satake, Koji; Morikawa, Shigehiro; Shirai, Yoshiaki; Tanaka, Hiromi T
2014-10-01
Our goal was to develop a three-dimensional finite element model that enables dynamic analysis of needle insertion for soft materials. To demonstrate large deformation and fracture, we used the arbitrary Lagrangian-Eulerian (ALE) method for fluid analysis. We performed ALE-based finite element analysis for 3% agar gel and three types of copper needle with bevel tips. To evaluate simulation results, we compared the needle deflection and insertion force with corresponding experimental results acquired with a uniaxial manipulator. We studied the shear stress distribution of agar gel on various time scales. For 30°, 45°, and 60°, differences in deflections of each needle between both sets of results were 2.424, 2.981, and 3.737mm, respectively. For the insertion force, there was no significant difference for mismatching area error (p<0.05) between simulation and experimental results. Our results have the potential to be a stepping stone to develop pre-operative surgical planning to estimate an optimal needle insertion path for MR image-guided microwave coagulation therapy and for analyzing large deformation and fracture in biological tissues. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mechanical modeling of self-expandable stent fabricated using braiding technology.
Kim, Ju Hyun; Kang, Tae Jin; Yu, Woong-Ryeol
2008-11-14
The mechanical behavior of a stent is one of the important factors involved in ensuring its opening within arterial conduits. This study aimed to develop a mechanical model for designing self-expandable stents fabricated using braiding technology. For this purpose, a finite element model was constructed by developing a preprocessing program for the three-dimensional geometrical modeling of the braiding structure inside stents, and validated for various stents with different braiding structures. The constituent wires (Nitinol) in the braided stents were assumed to be superelastic material and their mechanical behavior was incorporated into the finite element software through a user material subroutine (VUMAT in ABAQUS) employing a one-dimensional superelastic model. For the verification of the model, several braided stents were manufactured using an automated braiding machine and characterized focusing on their compressive behavior. It was observed that the braided stents showed a hysteresis between their loading and unloading behavior when a compressive load was applied to the braided tube. Through the finite element analysis, it was concluded that the current mechanical model can appropriately predict the mechanical behavior of braided stents including such hysteretic behavior, and that the hysteresis was caused by the slippage between the constituent wires and their superelastic property.
Stress and efficiency studies in EFG
NASA Technical Reports Server (NTRS)
1986-01-01
The goals of this program were: (1) to define minimum stress configurations for silicon sheet growth at high speeds; (2) to quantify dislocation electrical activity and their limits on minority carrier diffusion length in deformed silicon; and (3) to study reasons for degradation of lifetime with increases in doping level in edge-defined film-fed growth (EFG) materials. A finite element model was developed for calculating residual stress with plastic deformation. A finite element model was verified for EFG control variable relationships to temperature field of the sheet to permit prediction of profiles and stresses encountered in EFG systems. A residual stress measurement technique was developed for finite size EFG material blanks using shadow Moire interferometry. Transient creep response of silicon was investigated in the temperature range between 800 and 1400 C in strain and strain regimes of interest in stress analysis of sheet growth. Quantitative relationships were established between minority carrier diffusion length and dislocation densities using Electron Beam Induced Current (EBIC) measurement in FZ silicon deformed in four point bending tests.
NASA Technical Reports Server (NTRS)
Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.
In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct linkmore » between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.« less
Finite element thermal analysis of multispectral coatings for the ABL
NASA Astrophysics Data System (ADS)
Shah, Rashmi S.; Bettis, Jerry R.; Stewart, Alan F.; Bonsall, Lynn; Copland, James; Hughes, William; Echeverry, Juan C.
1999-04-01
The thermal response of a coated optical surface is an important consideration in the design of any high average power system. Finite element temperature distribution were calculated for both coating witness samples and calorimetry wafers and were compared to actual measured data under tightly controlled conditions. Coatings for ABL were deposited on various substrates including fused silica, ULE, Zerodur, and silicon. The witness samples were irradiate data high power levels at 1.315micrometers to evaluate laser damage thresholds and study absorption levels. Excellent agreement was obtained between temperature predictions and measured thermal response curves. When measured absorption values were not available, the code was used to predict coating absorption based on the measured temperature rise on the back surface. Using the finite element model, the damaging temperature rise can be predicted for a coating with known absorption based on run time, flux, and substrate material.
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Pineda, Evan J.; Bednarcyk, Brett A.; Arnold, Steven M.
2013-01-01
A multiscale modeling methodology, which incorporates a statistical distribution of fiber strengths into coupled micromechanics/ finite element analyses, is applied to unidirectional polymer matrix composites (PMCs) to analyze the effect of mesh discretization both at the micro- and macroscales on the predicted ultimate tensile (UTS) strength and failure behavior. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a PMC tensile specimen that initiates at the repeating unit cell (RUC) level. Three different finite element mesh densities were employed and each coupled with an appropriate RUC. Multiple simulations were performed in order to assess the effect of a statistical distribution of fiber strengths on the bulk composite failure and predicted strength. The coupled effects of both the micro- and macroscale discretizations were found to have a noticeable effect on the predicted UTS and computational efficiency of the simulations.
NASA Technical Reports Server (NTRS)
Oden, J. Tinsley; Fly, Gerald W.; Mahadevan, L.
1987-01-01
A hybrid stress finite element method is developed for accurate stress and vibration analysis of problems in linear anisotropic elasticity. A modified form of the Hellinger-Reissner principle is formulated for dynamic analysis and an algorithm for the determination of the anisotropic elastic and compliance constants from experimental data is developed. These schemes were implemented in a finite element program for static and dynamic analysis of linear anisotropic two dimensional elasticity problems. Specific numerical examples are considered to verify the accuracy of the hybrid stress approach and compare it with that of the standard displacement method, especially for highly anisotropic materials. It is that the hybrid stress approach gives much better results than the displacement method. Preliminary work on extensions of this method to three dimensional elasticity is discussed, and the stress shape functions necessary for this extension are included.
NASA Technical Reports Server (NTRS)
Jin, Jian-Ming; Volakis, John L.
1990-01-01
A numerical technique is proposed for the electromagnetic characterization of the scattering by a three-dimensional cavity-backed aperture in an infinite ground plane. The technique combines the finite element and boundary integral methods to formulate a system of equations for the solution of the aperture fields and those inside the cavity. Specifically, the finite element method is employed to formulate the fields in the cavity region and the boundary integral approach is used in conjunction with the equivalence principle to represent the fields above the ground plane. Unlike traditional approaches, the proposed technique does not require knowledge of the cavity's Green's function and is, therefore, applicable to arbitrary shape depressions and material fillings. Furthermore, the proposed formulation leads to a system having a partly full and partly sparse as well as symmetric and banded matrix which can be solved efficiently using special algorithms.
Three dimensional finite element methods: Their role in the design of DC accelerator systems
NASA Astrophysics Data System (ADS)
Podaru, Nicolae C.; Gottdang, A.; Mous, D. J. W.
2013-04-01
High Voltage Engineering has designed, built and tested a 2 MV dual irradiation system that will be applied for radiation damage studies and ion beam material modification. The system consists of two independent accelerators which support simultaneous proton and electron irradiation (energy range 100 keV - 2 MeV) of target sizes of up to 300 × 300 mm2. Three dimensional finite element methods were used in the design of various parts of the system. The electrostatic solver was used to quantify essential parameters of the solid-state power supply generating the DC high voltage. The magnetostatic solver and ray tracing were used to optimize the electron/ion beam transport. Close agreement between design and measurements of the accelerator characteristics as well as beam performance indicate the usefulness of three dimensional finite element methods during accelerator system design.
NASA Astrophysics Data System (ADS)
Sliseris, J.; Yan, L.; Kasal, B.
2017-09-01
Numerical methods for simulating hollow and foam-filled flax-fabric-reinforced epoxy tubular energy absorbers subjected to lateral crashing are presented. The crashing characteristics, such as the progressive failure, load-displacement response, absorbed energy, peak load, and failure modes, of the tubes were simulated and calculated numerically. A 3D nonlinear finite-element model that allows for the plasticity of materials using an isotropic hardening model with strain rate dependence and failure is proposed. An explicit finite-element solver is used to address the lateral crashing of the tubes considering large displacements and strains, plasticity, and damage. The experimental nonlinear crashing load vs. displacement data are successfully described by using the finite-element model proposed. The simulated peak loads and absorbed energy of the tubes are also in good agreement with experimental results.
ANSYS Modeling of Hydrostatic Stress Effects
NASA Technical Reports Server (NTRS)
Allen, Phillip A.
1999-01-01
Classical metal plasticity theory assumes that hydrostatic pressure has no effect on the yield and postyield behavior of metals. Plasticity textbooks, from the earliest to the most modem, infer that there is no hydrostatic effect on the yielding of metals, and even modem finite element programs direct the user to assume the same. The object of this study is to use the von Mises and Drucker-Prager failure theory constitutive models in the finite element program ANSYS to see how well they model conditions of varying hydrostatic pressure. Data is presented for notched round bar (NRB) and "L" shaped tensile specimens. Similar results from finite element models in ABAQUS are shown for comparison. It is shown that when dealing with geometries having a high hydrostatic stress influence, constitutive models that have a functional dependence on hydrostatic stress are more accurate in predicting material behavior than those that are independent of hydrostatic stress.
Zhao, Xuefeng; Liu, Yi; Zhang, Wei; Wang, Cong; Kassab, Ghassan S.
2011-01-01
Recently, a novel linearized constitutive model with a new strain measure that absorbs the material nonlinearity was validated for arteries. In this study, the linearized arterial stress-strain relationship is implemented into a finite element method package ANSYS, via the user subroutine USERMAT. The reference configuration is chosen to be the closed cylindrical tube (no-load state) rather than the open sector (zero-stress state). The residual strain is taken into account by analytic calculation and the incompressibility condition is enforced with Lagrange penalty method. Axisymmetric finite element analyses are conducted to demonstrate potential applications of this approach in a complex boundary value problem where angioplasty balloon interacts with the vessel wall. The model predictions of transmural circumferential and compressive radial stress distributions were also validated against an exponential-type Fung model, and the mean error was found to be within 6%. PMID:21689665
Stability analysis of internally damped rotating composite shafts using a finite element formulation
NASA Astrophysics Data System (ADS)
Ben Arab, Safa; Rodrigues, José Dias; Bouaziz, Slim; Haddar, Mohamed
2018-04-01
This paper deals with the stability analysis of internally damped rotating composite shafts. An Euler-Bernoulli shaft finite element formulation based on Equivalent Single Layer Theory (ESLT), including the hysteretic internal damping of composite material and transverse shear effects, is introduced and then used to evaluate the influence of various parameters: stacking sequences, fiber orientations and bearing properties on natural frequencies, critical speeds, and instability thresholds. The obtained results are compared with those available in the literature using different theories. The agreement in the obtained results show that the developed Euler-Bernoulli finite element based on ESLT including hysteretic internal damping and shear transverse effects can be effectively used for the stability analysis of internally damped rotating composite shafts. Furthermore, the results revealed that rotor stability is sensitive to the laminate parameters and to the properties of the bearings.
Aeroelastic behavior of composite rotor blades with swept tips
NASA Technical Reports Server (NTRS)
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
This paper presents an analytical study of the aeroelastic behavior of composite rotor blades with straight and swept tips. The blade is modeled by beam type finite elements. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. It is shown that composite ply orientation has a substantial effect on blade stability. At low thrust conditions, certain ply orientations can cause instability in the lag mode. The flap-torsion coupling associated with tip sweep can also induce aeroelastic instability in the blade. This instability can be removed by appropriate ply orientation in the composite construction.
A new aeroelastic model for composite rotor blades with straight and swept tips
NASA Technical Reports Server (NTRS)
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.
Dynamics of a 4x6-Meter Thin Film Elliptical Inflated Membrane for Space Applications
NASA Technical Reports Server (NTRS)
Casiano, Matthew J.; Hamidzadeh, Hamid R.; Tinker, Michael L.; McConnaughey, Paul R. (Technical Monitor)
2002-01-01
Dynamic characterization of a thin film inflatable elliptical structure is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large Hexameter lightweight inflatable arc identified, including considerable difficulty in obtaining convergence in the nonlinear finite element pressurization solution. It was found that the extremely thin polyimide film material (.001 in or 1 mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. Approaches utilized to overcome these difficulties are described. Comparison of finite element predictions for frequency and mode shapes of the inflated structure with closed-form solutions for a flat pre-tensioned membrane indicate reasonable agreement.
Sharp Refractory Composite Leading Edges on Hypersonic Vehicles
NASA Technical Reports Server (NTRS)
Walker, Sandra P.; Sullivan, Brian J.
2003-01-01
On-going research of advanced sharp refractory composite leading edges for use on hypersonic air-breathing vehicles is presented in this paper. Intense magnitudes of heating and of heating gradients on the leading edge lead to thermal stresses that challenge the survivability of current material systems. A fundamental understanding of the problem is needed to further design development. Methodology for furthering the technology along with the use of advanced fiber architectures to improve the thermal-structural response is explored in the current work. Thermal and structural finite element analyses are conducted for several advanced fiber architectures of interest. A tailored thermal shock parameter for sharp orthotropic leading edges is identified for evaluating composite material systems. The use of the tailored thermal shock parameter has the potential to eliminate the need for detailed thermal-structural finite element analyses for initial screening of material systems being considered for a leading edge component.
Effect of Geometric Parameters on Formability and Strain Path During Tube Hydrforming Process
NASA Astrophysics Data System (ADS)
Omar, A.; Harisankar, K. R.; Tewari, Asim; Narasimhan, K.
2016-08-01
Forming limit diagram (FLD) is an important tool to measure the material's formability for metal forming processes. In order to successfully manufacture a component through tube hydroforming process it is very important to know the effect of material properties, process and geometrical parameters on the outcome of finished product. This can be obtained by running a finite element code which not only saves time and money but also gives a result with considerable accuracy. Therefore, in this paper the mutual effect of diameter as well as thickness has been studied. Firstly the finite element based prediction is carried out to assess the formability of seamless and welded tubes with varying thickness. Later on, effect of varying diameter and thickness on strain path is predicted using statistical based regression analysis. Finally, the mutual effect of varying material property alongwith varying thickness and diameter on constraint factor is studied.
Computational homogenisation for thermoviscoplasticity: application to thermally sprayed coatings
NASA Astrophysics Data System (ADS)
Berthelsen, Rolf; Denzer, Ralf; Oppermann, Philip; Menzel, Andreas
2017-11-01
Metal forming processes require wear-resistant tool surfaces in order to ensure a long life cycle of the expensive tools together with a constant high quality of the produced components. Thermal spraying is a relatively widely applied coating technique for the deposit of wear protection coatings. During these coating processes, heterogeneous coatings are deployed at high temperatures followed by quenching where residual stresses occur which strongly influence the performance of the coated tools. The objective of this article is to discuss and apply a thermo-mechanically coupled simulation framework which captures the heterogeneity of the deposited coating material. Therefore, a two-scale finite element framework for the solution of nonlinear thermo-mechanically coupled problems is elaborated and applied to the simulation of thermoviscoplastic material behaviour including nonlinear thermal softening in a geometrically linearised setting. The finite element framework and material model is demonstrated by means of numerical examples.
Two-Dimensional Finite Element Ablative Thermal Response Analysis of an Arcjet Stagnation Test
NASA Technical Reports Server (NTRS)
Dec, John A.; Laub, Bernard; Braun, Robert D.
2011-01-01
The finite element ablation and thermal response (FEAtR, hence forth called FEAR) design and analysis program simulates the one, two, or three-dimensional ablation, internal heat conduction, thermal decomposition, and pyrolysis gas flow of thermal protection system materials. As part of a code validation study, two-dimensional axisymmetric results from FEAR are compared to thermal response data obtained from an arc-jet stagnation test in this paper. The results from FEAR are also compared to the two-dimensional axisymmetric computations from the two-dimensional implicit thermal response and ablation program under the same arcjet conditions. The ablating material being used in this arcjet test is phenolic impregnated carbon ablator with an LI-2200 insulator as backup material. The test is performed at the NASA, Ames Research Center Interaction Heating Facility. Spatially distributed computational fluid dynamics solutions for the flow field around the test article are used for the surface boundary conditions.
NASA Technical Reports Server (NTRS)
Hairr, John W.; Huang, Jui-Ten; Ingram, J. Edward; Shah, Bharat M.
1992-01-01
The ISPAN Program (Interactive Stiffened Panel Analysis) is an interactive design tool that is intended to provide a means of performing simple and self contained preliminary analysis of aircraft primary structures made of composite materials. The program combines a series of modules with the finite element code DIAL as its backbone. Four ISPAN Modules were developed and are documented. These include: (1) flat stiffened panel; (2) curved stiffened panel; (3) flat tubular panel; and (4) curved geodesic panel. Users are instructed to input geometric and material properties, load information and types of analysis (linear, bifurcation buckling, or post-buckling) interactively. The program utilizing this information will generate finite element mesh and perform analysis. The output in the form of summary tables of stress or margins of safety, contour plots of loads or stress, and deflected shape plots may be generalized and used to evaluate specific design.
Modelling the side impact of carbon fibre tubes
NASA Astrophysics Data System (ADS)
Sudharsan, Ms R.; Rolfe, B. F., Dr; Hodgson, P. D., Prof
2010-06-01
Metallic tubes have been extensively studied for their crashworthiness as they closely resemble automotive crash rails. Recently, the demand to improve fuel economy and reduce vehicle emissions has led automobile manufacturers to explore the crash properties of light weight materials such as fibre reinforced polymer composites, metallic foams and sandwich structures in order to use them as crash barriers. This paper discusses the response of carbon fibre reinforced polymer (CFRP) tubes and their failure mechanisms during side impact. The energy absorption of CFRP tubes is compared to similar Aluminium tubes. The response of the CFRP tubes during impact was modelled using Abaqus finite element software with a composite fabric material model. The material inputs were given based on standard tension and compression test results and the in-plane damage was defined based on cyclic shear tests. The failure modes and energy absorption observed during the tests were well represented by the finite element model.
Configuration-shape-size optimization of space structures by material redistribution
NASA Technical Reports Server (NTRS)
Vandenbelt, D. N.; Crivelli, L. A.; Felippa, C. A.
1993-01-01
This project investigates the configuration-shape-size optimization (CSSO) of orbiting and planetary space structures. The project embodies three phases. In the first one the material-removal CSSO method introduced by Kikuchi and Bendsoe (KB) is further developed to gain understanding of finite element homogenization techniques as well as associated constrained optimization algorithms that must carry along a very large number (thousands) of design variables. In the CSSO-KB method an optimal structure is 'carved out' of a design domain initially filled with finite elements, by allowing perforations (microholes) to develop, grow and merge. The second phase involves 'materialization' of space structures from the void, thus reversing the carving process. The third phase involves analysis of these structures for construction and operational constraints, with emphasis in packaging and deployment. The present paper describes progress in selected areas of the first project phase and the start of the second one.
NASA Technical Reports Server (NTRS)
Kaufman, A.; Laflen, J. H.; Lindholm, U. S.
1985-01-01
Unified constitutive material models were developed for structural analyses of aircraft gas turbine engine components with particular application to isotropic materials used for high-pressure stage turbine blades and vanes. Forms or combinations of models independently proposed by Bodner and Walker were considered. These theories combine time-dependent and time-independent aspects of inelasticity into a continuous spectrum of behavior. This is in sharp contrast to previous classical approaches that partition inelastic strain into uncoupled plastic and creep components. Predicted stress-strain responses from these models were evaluated against monotonic and cyclic test results for uniaxial specimens of two cast nickel-base alloys, B1900+Hf and Rene' 80. Previously obtained tension-torsion test results for Hastelloy X alloy were used to evaluate multiaxial stress-strain cycle predictions. The unified models, as well as appropriate algorithms for integrating the constitutive equations, were implemented in finite-element computer codes.
D'souza, Kathleen Manuela; Aras, Meena Ajay
2017-01-01
Badly broken or structurally compromised posterior teeth are frequently associated with crown/root fracture. Numerous restorative materials have been used to fabricate indirect full-coverage restorations for such teeth. This study aims to evaluate and compare the effect of restorative materials on the stress distribution pattern in a mandibular first molar tooth, under varying loading conditions and to compare the stress distribution pattern in five commonly used indirect restorative materials. Five three-dimensional finite element models representing a mandibular first molar tooth restored with crowns of gold, porcelain fused to metal, composite (Artglass), alumina-based zirconia (In-Ceram Zirconia [ICZ]), and double-layered zirconia-based materials (zirconia core veneered with porcelain, Lava) were constructed, using a Finite Element Analysis Software (ANSYS version 10; ANSYS Inc., Canonsburg, PA, USA). Two loading conditions were applied, simulating maximum bite force of 600 N axially and normal masticatory bite force of 225 N axially and nonaxially. Both all-ceramic crowns allowed the least amount of stress distribution to the surrounding tooth structure. In maximum bite force-simulation test, alumina-based all-ceramic crown displayed the highest von Mises stresses (123.745 MPa). In the masticatory bite force-simulation test, both all-ceramic crowns (122.503-133.13 MPa) displayed the highest von Mises stresses. ICZ crown displayed the highest peak von Mises stress values under maximum and masticatory bite forces. ICZ and Lava crowns also allowed the least amount of stress distribution to the surrounding tooth structure, which is indicative of a favorable response of the underlying tooth structure to the overlying full-coverage indirect restorative material. These results suggest that ICZ and Lava crowns can be recommended for clinical use in cases of badly damaged teeth.
Modal element method for scattering of sound by absorbing bodies
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Kreider, Kevin L.
1992-01-01
The modal element method for acoustic scattering from 2-D body is presented. The body may be acoustically soft (absorbing) or hard (reflecting). The infinite computational region is divided into two subdomains - the bounded finite element domain, which is characterized by complicated geometry and/or variable material properties, and the surrounding unbounded homogeneous domain. The acoustic pressure field is represented approximately in the finite element domain by a finite element solution, and is represented analytically by an eigenfunction expansion in the homogeneous domain. The two solutions are coupled by the continuity of pressure and velocity across the interface between the two subdomains. Also, for hard bodies, a compact modal ring grid system is introduced for which computing requirements are drastically reduced. Analysis for 2-D scattering from solid and coated (acoustically treated) bodies is presented, and several simple numerical examples are discussed. In addition, criteria are presented for determining the number of modes to accurately resolve the scattered pressure field from a solid cylinder as a function of the frequency of the incoming wave and the radius of the cylinder.
Numerical Analysis of the Bending Properties of Cathay Poplar Glulam
Gao, Ying; Wu, Yuxuan; Zhu, Xudong; Zhu, Lei; Yu, Zhiming; Wu, Yong
2015-01-01
This paper presents the formulae and finite element analysis models for predicting the Modulus of Elastic (MOE) and Modulus of Rupture (MOR) of Cathay poplar finger-jointed glulam. The formula of the MOE predicts the MOE of Cathay poplar glulam glued with one-component polyurethane precisely. Three formulae are used to predict the MOR, and Equation (12) predicts the MOR of Cathay poplar glulam precisely. The finite element analysis simulation results of both the MOE and MOR are similar to the experimental results. The predicted results of the finite element analysis are shown to be more accurate than those of the formulae, because the finite element analysis considers the glue layers, but the formulae do not. Three types of typical failure modes due to bending were summarized. The bending properties of Cathay poplar glulam were compared to those of Douglas fir glulam. The results show that Cathay poplar glulam has a lower stiffness, but a marginally higher strength. One-component polyurethane adhesive is shown to be more effective than resorcinol formaldehyde resin adhesive for Cathay poplar glulam. This study shows that Cathay poplar has the potential to be a glulam material in China. PMID:28793619
Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo
2017-01-01
Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process. PMID:29027925
Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo
2017-10-13
Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.
NASA Astrophysics Data System (ADS)
Gong, Chun-Lin; Fang, Zhe; Chen, Gang
A numerical approach based on the immersed boundary (IB), lattice Boltzmann and nonlinear finite element method (FEM) is proposed to simulate hydrodynamic interactions of very flexible objects. In the present simulation framework, the motion of fluid is obtained by solving the discrete lattice Boltzmann equations on Eulerian grid, the behaviors of flexible objects are calculated through nonlinear dynamic finite element method, and the interactive forces between them are implicitly obtained using velocity correction IB method which satisfies the no-slip conditions well at the boundary points. The efficiency and accuracy of the proposed Immersed Boundary-Lattice Boltzmann-Finite Element method is first validated by a fluid-structure interaction (F-SI) benchmark case, in which a flexible filament flaps behind a cylinder in channel flow, then the nonlinear vibration mechanism of the cylinder-filament system is investigated by altering the Reynolds number of flow and the material properties of filament. The interactions between two tandem and side-by-side identical objects in a uniform flow are also investigated, and the in-phase and out-of-phase flapping behaviors are captured by the proposed method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannetti, C.; Becker, R.
The software is an ABAQUS/Standard UMAT (user defined material behavior subroutine) that implements the constitutive model for shape-memory alloy materials developed by Jannetti et. al. (2003a) using a fully implicit time integration scheme to integrate the constitutive equations. The UMAT is used in conjunction with ABAQUS/Standard to perform a finite-element analysis of SMA materials.
Characteristics of shear damage for 60Sn-40Pb solder material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, H.E.; Chow, C.L.; Wei, Y.
This paper presents an investigation of the development of a continuum damage model capable of accurately analyzing shear damage in 60Sn-40Pb solder material. Based on the theory of damage mechanics, an internal state variable known as the damage variable is introduced to characterize material degradation caused by the change of material microstructures under load. A damage surface in stress space is proposed to quantify damage initiation and its successive expanding surfaces to represent damage hardening. With the aid of irreversible thermodynamics, the damage-coupled constitutive equations and the damage evolution equations are established. A failure criterion is proposed based on themore » accumulation of overall damage in the material. The damage model is implemented in a general purpose finite element program ABAQUS through its user-defined material subroutine UMAT. The program is applied to predict shear deformation in a notched specimen. The predicted failure mode and maximum load agree well with those measured experimentally. The effect of finite element meshing on the numerical results is also examined and discussed.« less
Lee, Chi-Seung; Lee, Jae-Myung; Youn, BuHyun; Kim, Hyung-Sik; Shin, Jong Ki; Goh, Tae Sik; Lee, Jung Sub
2017-01-01
A new type of constitutive model and its computational implementation procedure for the simulation of a trabecular bone are proposed in the present study. A yield surface-independent Frank-Brockman elasto-viscoplastic model is introduced to express the nonlinear material behavior such as softening beyond yield point, plateau, and densification under compressive loads. In particular, the hardening- and softening-dominant material functions are introduced and adopted in the plastic multiplier to describe each nonlinear material behavior separately. In addition, the elasto-viscoplastic model is transformed into an implicit type discrete model, and is programmed as a user-defined material subroutine in commercial finite element analysis code. In particular, the consistent tangent modulus method is proposed to improve the computational convergence and to save computational time during finite element analysis. Through the developed material library, the nonlinear stress-strain relationship is analyzed qualitatively and quantitatively, and the simulation results are compared with the results of compression test on the trabecular bone to validate the proposed constitutive model, computational method, and material library. Copyright © 2016 Elsevier Ltd. All rights reserved.
Finite Element Simulations of Micro Turning of Ti-6Al-4V using PCD and Coated Carbide tools
NASA Astrophysics Data System (ADS)
Jagadesh, Thangavel; Samuel, G. L.
2017-02-01
The demand for manufacturing axi-symmetric Ti-6Al-4V implants is increasing in biomedical applications and it involves micro turning process. To understand the micro turning process, in this work, a 3D finite element model has been developed for predicting the tool chip interface temperature, cutting, thrust and axial forces. Strain gradient effect has been included in the Johnson-Cook material model to represent the flow stress of the work material. To verify the simulation results, experiments have been conducted at four different feed rates and at three different cutting speeds. Since titanium alloy has low Young's modulus, spring back effect is predominant for higher edge radius coated carbide tool which leads to the increase in the forces. Whereas, polycrystalline diamond (PCD) tool has smaller edge radius that leads to lesser forces and decrease in tool chip interface temperature due to high thermal conductivity. Tool chip interface temperature increases by increasing the cutting speed, however the increase is less for PCD tool as compared to the coated carbide tool. When uncut chip thickness decreases, there is an increase in specific cutting energy due to material strengthening effects. Surface roughness is higher for coated carbide tool due to ploughing effect when compared with PCD tool. The average prediction error of finite element model for cutting and thrust forces are 11.45 and 14.87 % respectively.
Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics
Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.; ...
2016-04-27
We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less
Multi-Material Closure Model for High-Order Finite Element Lagrangian Hydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobrev, V. A.; Kolev, T. V.; Rieben, R. N.
We present a new closure model for single fluid, multi-material Lagrangian hydrodynamics and its application to high-order finite element discretizations of these equations [1]. The model is general with respect to the number of materials, dimension and space and time discretizations. Knowledge about exact material interfaces is not required. Material indicator functions are evolved by a closure computation at each quadrature point of mixed cells, which can be viewed as a high-order variational generalization of the method of Tipton [2]. This computation is defined by the notion of partial non-instantaneous pressure equilibration, while the full pressure equilibration is achieved bymore » both the closure model and the hydrodynamic motion. Exchange of internal energy between materials is derived through entropy considerations, that is, every material produces positive entropy, and the total entropy production is maximized in compression and minimized in expansion. Results are presented for standard one-dimensional two-material problems, followed by two-dimensional and three-dimensional multi-material high-velocity impact arbitrary Lagrangian–Eulerian calculations. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.« less
Phanphet, Suwattanarwong; Dechjarern, Surangsee; Jomjanyong, Sermkiat
2017-05-01
The main objective of this work is to improve the standard of the existing design of knee prosthesis developed by Thailand's Prostheses Foundation of Her Royal Highness The Princess Mother. The experimental structural tests, based on the ISO 10328, of the existing design showed that a few components failed due to fatigue under normal cyclic loading below the required number of cycles. The finite element (FE) simulations of structural tests on the knee prosthesis were carried out. Fatigue life predictions of knee component materials were modeled based on the Morrow's approach. The fatigue life prediction based on the FE model result was validated with the corresponding structural test and the results agreed well. The new designs of the failed components were studied using the design of experimental approach and finite element analysis of the ISO 10328 structural test of knee prostheses under two separated loading cases. Under ultimate loading, knee prosthesis peak von Mises stress must be less than the yield strength of knee component's material and the total knee deflection must be lower than 2.5mm. The fatigue life prediction of all knee components must be higher than 3,000,000 cycles under normal cyclic loading. The design parameters are the thickness of joint bars, the diameter of lower connector and the thickness of absorber-stopper. The optimized knee prosthesis design meeting all the requirements was recommended. Experimental ISO 10328 structural test of the fabricated knee prosthesis based on the optimized design confirmed the finite element prediction. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.
A finite element beam propagation method for simulation of liquid crystal devices.
Vanbrabant, Pieter J M; Beeckman, Jeroen; Neyts, Kristiaan; James, Richard; Fernandez, F Anibal
2009-06-22
An efficient full-vectorial finite element beam propagation method is presented that uses higher order vector elements to calculate the wide angle propagation of an optical field through inhomogeneous, anisotropic optical materials such as liquid crystals. The full dielectric permittivity tensor is considered in solving Maxwell's equations. The wide applicability of the method is illustrated with different examples: the propagation of a laser beam in a uniaxial medium, the tunability of a directional coupler based on liquid crystals and the near-field diffraction of a plane wave in a structure containing micrometer scale variations in the transverse refractive index, similar to the pixels of a spatial light modulator.
Parametric study of extended end-plate connection using finite element modeling
NASA Astrophysics Data System (ADS)
Mureşan, Ioana Cristina; Bâlc, Roxana
2017-07-01
End-plate connections with preloaded high strength bolts represent a convenient, fast and accurate solution for beam-to-column joints. The behavior of framework joints build up with this type of connection are sensitive dependent on geometrical and material characteristics of the elements connected. This paper presents results of parametric analyses on the behavior of a bolted extended end-plate connection using finite element modeling program Abaqus. This connection was experimentally tested in the Laboratory of Faculty of Civil Engineering from Cluj-Napoca and the results are briefly reviewed in this paper. The numerical model of the studied connection was described in detail in [1] and provides data for this parametric study.
Acoustic wave propagation in heterogeneous structures including experimental validation
NASA Technical Reports Server (NTRS)
Baumeister, Kenneth J.; Dahl, Milo D.
1989-01-01
A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.
DOT National Transportation Integrated Search
2011-12-01
Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement structures and/or materials. However, running an APT experiment is expensive. It requires costly accelerated loading devic...
Life Predicted in a Probabilistic Design Space for Brittle Materials With Transient Loads
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Palfi, Tamas; Reh, Stefan
2005-01-01
Analytical techniques have progressively become more sophisticated, and now we can consider the probabilistic nature of the entire space of random input variables on the lifetime reliability of brittle structures. This was demonstrated with NASA s CARES/Life (Ceramic Analysis and Reliability Evaluation of Structures/Life) code combined with the commercially available ANSYS/Probabilistic Design System (ANSYS/PDS), a probabilistic analysis tool that is an integral part of the ANSYS finite-element analysis program. ANSYS/PDS allows probabilistic loads, component geometry, and material properties to be considered in the finite-element analysis. CARES/Life predicts the time dependent probability of failure of brittle material structures under generalized thermomechanical loading--such as that found in a turbine engine hot-section. Glenn researchers coupled ANSYS/PDS with CARES/Life to assess the effects of the stochastic variables of component geometry, loading, and material properties on the predicted life of the component for fully transient thermomechanical loading and cyclic loading.
Structural kinematics based damage zone prediction in gradient structures using vibration database
NASA Astrophysics Data System (ADS)
Talha, Mohammad; Ashokkumar, Chimpalthradi R.
2014-05-01
To explore the applications of functionally graded materials (FGMs) in dynamic structures, structural kinematics based health monitoring technique becomes an important problem. Depending upon the displacements in three dimensions, the health of the material to withstand dynamic loads is inferred in this paper, which is based on the net compressive and tensile displacements that each structural degree of freedom takes. These net displacements at each finite element node predicts damage zones of the FGM where the material is likely to fail due to a vibration response which is categorized according to loading condition. The damage zone prediction of a dynamically active FGMs plate have been accomplished using Reddy's higher-order theory. The constituent material properties are assumed to vary in the thickness direction according to the power-law behavior. The proposed C0 finite element model (FEM) is applied to get net tensile and compressive displacement distributions across the structures. A plate made of Aluminum/Ziconia is considered to illustrate the concept of structural kinematics-based health monitoring aspects of FGMs.
NASA Astrophysics Data System (ADS)
Khebbab, Mohamed; Feliachi, Mouloud; El Hadi Latreche, Mohamed
2018-03-01
In this present paper, a simulation of eddy current non-destructive testing (EC NDT) on unidirectional carbon fiber reinforced polymer is performed; for this magneto-dynamic formulation in term of magnetic vector potential is solved using finite element heterogeneous multi-scale method (FE HMM). FE HMM has as goal to compute the homogenized solution without calculating the homogenized tensor explicitly, the solution is based only on the physical characteristic known in micro domain. This feature is well adapted to EC NDT to evaluate defect in carbon composite material in microscopic scale, where the defect detection is performed by coil impedance measurement; the measurement value is intimately linked to material characteristic in microscopic level. Based on this, our model can handle different defects such as: cracks, inclusion, internal electrical conductivity changes, heterogeneities, etc. The simulation results were compared with the solution obtained with homogenized material using mixture law, a good agreement was found.
Finite element analysis of the high strain rate testing of polymeric materials
NASA Astrophysics Data System (ADS)
Gorwade, C. V.; Alghamdi, A. S.; Ashcroft, I. A.; Silberschmidt, V. V.; Song, M.
2012-08-01
Advanced polymer materials are finding an increasing range of industrial and defence applications. Ultra-high molecular weight polymers (UHMWPE) are already used in lightweight body armour because of their good impact resistance with light weight. However, a broader use of such materials is limited by the complexity of the manufacturing processes and the lack of experimental data on their behaviour and failure evolution under high-strain rate loading conditions. The current study deals with an investigation of the internal heat generation during tensile of UHMWPE. A 3D finite element (FE) model of the tensile test is developed and validated the with experimental work. An elastic-plastic material model is used with adiabatic heat generation. The temperature and stresses obtained with FE analysis are found to be in a good agreement with the experimental results. The model can be used as a simple and cost effective tool to predict the thermo-mechanical behaviour of UHMWPE part under various loading conditions.
Matsuura, Yusuke; Kuniyoshi, Kazuki; Suzuki, Takane; Ogawa, Yasufumi; Sukegawa, Koji; Rokkaku, Tomoyuki; Thoreson, Andrew Ryan; An, Kai-Nan; Takahashi, Kazuhisa
2015-01-01
The feasibility of a user-specific finite element model for predicting the in situ strength of the radius after implantation of bone plates for open fracture reduction was established. The effect of metal artifact in CT imaging was characterized. The results were verified against biomechanical test data. Fourteen cadaveric radii were divided into two groups: (1) intact radii for evaluating the accuracy of radial diaphysis strength predictions with finite element analysis and (2) radii with a locking plate affixed for evaluating metal artifact. All bones were imaged with CT. In the plated group, radii were first imaged with the plates affixed (for simulating digital plate removal). They were then subsequently imaged with the locking plates and screws removed (actual plate removal). Fracture strength of the radius diaphysis under axial compression was predicted with a three-dimensional, specimen-specific, nonlinear finite element analysis for both the intact and plated bones (bones with and without the plate captured in the scan). Specimens were then loaded to failure using a universal testing machine to verify the actual fracture load. In the intact group, the physical and predicted fracture loads were strongly correlated. For radii with plates affixed, the physical and predicted (simulated plate removal and actual plate removal) fracture loads were strongly correlated. This study demonstrates that our specimen-specific finite element analysis can accurately predict the strength of the radial diaphysis. The metal artifact from CT imaging was shown to produce an overestimate of strength.
An RF phased array applicator designed for hyperthermia breast cancer treatments
Wu, Liyong; McGough, Robert J; Arabe, Omar Ali; Samulski, Thaddeus V
2007-01-01
An RF phased array applicator has been constructed for hyperthermia treatments in the intact breast. This RF phased array consists of four antennas mounted on a Lexan water tank, and geometric focusing is employed so that each antenna points in the direction of the intended target. The operating frequency for this phased array is 140 MHz. The RF array has been characterized both by electric field measurements in a water tank and by electric field simulations using the finite-element method. The finite-element simulations are performed with HFSS software, where the mesh defined for finite-element calculations includes the geometry of the tank enclosure and four end-loaded dipole antennas. The material properties of the water tank enclosure and the antennas are also included in each simulation. The results of the finite-element simulations are compared to the measured values for this configuration, and the results, which include the effects of amplitude shading and phase shifting, show that the electric field predicted by finite-element simulations is similar to the measured field. Simulations also show that the contributions from standing waves are significant, which is consistent with measurement results. Simulated electric field and bio-heat transfer results are also computed within a simple 3D breast model. Temperature simulations show that, although peak temperatures are generated outside the simulated tumour target, this RF phased array applicator is an effective device for regional hyperthermia in the intact breast. PMID:16357427
Lau, Stephan; Güllmar, Daniel; Flemming, Lars; Grayden, David B.; Cook, Mark J.; Wolters, Carsten H.; Haueisen, Jens
2016-01-01
Magnetoencephalography (MEG) signals are influenced by skull defects. However, there is a lack of evidence of this influence during source reconstruction. Our objectives are to characterize errors in source reconstruction from MEG signals due to ignoring skull defects and to assess the ability of an exact finite element head model to eliminate such errors. A detailed finite element model of the head of a rabbit used in a physical experiment was constructed from magnetic resonance and co-registered computer tomography imaging that differentiated nine tissue types. Sources of the MEG measurements above intact skull and above skull defects respectively were reconstructed using a finite element model with the intact skull and one incorporating the skull defects. The forward simulation of the MEG signals reproduced the experimentally observed characteristic magnitude and topography changes due to skull defects. Sources reconstructed from measured MEG signals above intact skull matched the known physical locations and orientations. Ignoring skull defects in the head model during reconstruction displaced sources under a skull defect away from that defect. Sources next to a defect were reoriented. When skull defects, with their physical conductivity, were incorporated in the head model, the location and orientation errors were mostly eliminated. The conductivity of the skull defect material non-uniformly modulated the influence on MEG signals. We propose concrete guidelines for taking into account conducting skull defects during MEG coil placement and modeling. Exact finite element head models can improve localization of brain function, specifically after surgery. PMID:27092044
Three-dimensional finite element analysis of the shear bond test.
DeHoff, P H; Anusavice, K J; Wang, Z
1995-03-01
The purpose of this study was to use finite element analyses to model the planar shear bond test and to evaluate the effects of modulus values, bonding agent thickness, and loading conditions on the stress distribution in the dentin adjacent to the bonding agent-dentin interface. All calculations were performed with the ANSYS finite element program. The planar shear bond test was modeled as a cylinder of resin-based composite bonded to a cylindrical dentin substrate. The effects of material, geometry and loading variables were determined primarily by use of a three-dimensional structural element. Several runs were also made using an axisymmetric element with harmonic loading and a plane strain element to determine whether two-dimensional analyses yield valid results. Stress calculations using three-dimensional finite element analyses confirmed the presence of large stress concentration effects for all stress components at the bonding agent-dentin interface near the application of the load. The maximum vertical shear stress generally occurs approximately 0.3 mm below the loading site and then decreases sharply in all directions. The stresses reach relatively uniform conditions within about 0.5 mm of the loading site and then increase again as the lower region of the interface is approached. Calculations using various loading conditions indicated that a wire-loop method of loading leads to smaller stress concentration effects, but a shear bond strength determined by dividing a failure load by the cross-sectional area grossly underestimates the true interfacial bond strength. Most dental researchers are using tensile and shear bond tests to predict the effects of process and material variables on the clinical performance of bonding systems but no evidence has yet shown that bond strength is relevant to clinical performance. A critical factor in assessing the usefulness of bond tests is a thorough understanding of the stress states that cause failure in the bond test and then to assess whether these stress states also exist in the clinical situation. Finite element analyses can help to answer this question but much additional work is needed to identify the failure modes in service and to relate these failures to particular loading conditions. The present study represents only a first step in understanding the stress states in the planar shear bond test.
A novel algorithm using an orthotropic material model for topology optimization
NASA Astrophysics Data System (ADS)
Tong, Liyong; Luo, Quantian
2017-09-01
This article presents a novel algorithm for topology optimization using an orthotropic material model. Based on the virtual work principle, mathematical formulations for effective orthotropic material properties of an element containing two materials are derived. An algorithm is developed for structural topology optimization using four orthotropic material properties, instead of one density or area ratio, in each element as design variables. As an illustrative example, minimum compliance problems for linear and nonlinear structures are solved using the present algorithm in conjunction with the moving iso-surface threshold method. The present numerical results reveal that: (1) chequerboards and single-node connections are not present even without filtering; (2) final topologies do not contain large grey areas even using a unity penalty factor; and (3) the well-known numerical issues caused by low-density material when considering geometric nonlinearity are resolved by eliminating low-density elements in finite element analyses.
Probabilistic fracture finite elements
NASA Technical Reports Server (NTRS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-01-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
Probabilistic fracture finite elements
NASA Astrophysics Data System (ADS)
Liu, W. K.; Belytschko, T.; Lua, Y. J.
1991-05-01
The Probabilistic Fracture Mechanics (PFM) is a promising method for estimating the fatigue life and inspection cycles for mechanical and structural components. The Probability Finite Element Method (PFEM), which is based on second moment analysis, has proved to be a promising, practical approach to handle problems with uncertainties. As the PFEM provides a powerful computational tool to determine first and second moment of random parameters, the second moment reliability method can be easily combined with PFEM to obtain measures of the reliability of the structural system. The method is also being applied to fatigue crack growth. Uncertainties in the material properties of advanced materials such as polycrystalline alloys, ceramics, and composites are commonly observed from experimental tests. This is mainly attributed to intrinsic microcracks, which are randomly distributed as a result of the applied load and the residual stress.
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G., E-mail: maginot1@llnl.gov; Ragusa, Jean C., E-mail: jean.ragusa@tamu.edu; Morel, Jim E., E-mail: morel@tamu.edu
This work presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
High-order solution methods for grey discrete ordinates thermal radiative transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
Finite Element Analysis of Plastic Deformation During Impression Creep
NASA Astrophysics Data System (ADS)
Naveena; Ganesh Kumar, J.; Mathew, M. D.
2015-04-01
Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.
High-order solution methods for grey discrete ordinates thermal radiative transfer
Maginot, Peter G.; Ragusa, Jean C.; Morel, Jim E.
2016-09-29
This paper presents a solution methodology for solving the grey radiative transfer equations that is both spatially and temporally more accurate than the canonical radiative transfer solution technique of linear discontinuous finite element discretization in space with implicit Euler integration in time. We solve the grey radiative transfer equations by fully converging the nonlinear temperature dependence of the material specific heat, material opacities, and Planck function. The grey radiative transfer equations are discretized in space using arbitrary-order self-lumping discontinuous finite elements and integrated in time with arbitrary-order diagonally implicit Runge–Kutta time integration techniques. Iterative convergence of the radiation equation ismore » accelerated using a modified interior penalty diffusion operator to precondition the full discrete ordinates transport operator.« less
Surface photovoltage measurements and finite element modeling of SAW devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, Christine
2012-03-01
Over the course of a Summer 2011 internship with the MEMS department of Sandia National Laboratories, work was completed on two major projects. The first and main project of the summer involved taking surface photovoltage measurements for silicon samples, and using these measurements to determine surface recombination velocities and minority carrier diffusion lengths of the materials. The SPV method was used to fill gaps in the knowledge of material parameters that had not been determined successfully by other characterization methods. The second project involved creating a 2D finite element model of a surface acoustic wave device. A basic form ofmore » the model with the expected impedance response curve was completed, and the model is ready to be further developed for analysis of MEMS photonic resonator devices.« less
NASA Technical Reports Server (NTRS)
Leone, Frank A., Jr.
2015-01-01
A method is presented to represent the large-deformation kinematics of intraply matrix cracks and delaminations in continuum damage mechanics (CDM) constitutive material models. The method involves the additive decomposition of the deformation gradient tensor into 'crack' and 'bulk material' components. The response of the intact bulk material is represented by a reduced deformation gradient tensor, and the opening of an embedded cohesive interface is represented by a normalized cohesive displacement-jump vector. The rotation of the embedded interface is tracked as the material deforms and as the crack opens. The distribution of the total local deformation between the bulk material and the cohesive interface components is determined by minimizing the difference between the cohesive stress and the bulk material stress projected onto the cohesive interface. The improvements to the accuracy of CDM models that incorporate the presented method over existing approaches are demonstrated for a single element subjected to simple shear deformation and for a finite element model of a unidirectional open-hole tension specimen. The material model is implemented as a VUMAT user subroutine for the Abaqus/Explicit finite element software. The presented deformation gradient decomposition method reduces the artificial load transfer across matrix cracks subjected to large shearing deformations, and avoids the spurious secondary failure modes that often occur in analyses based on conventional progressive damage models.
The Relation of Finite Element and Finite Difference Methods
NASA Technical Reports Server (NTRS)
Vinokur, M.
1976-01-01
Finite element and finite difference methods are examined in order to bring out their relationship. It is shown that both methods use two types of discrete representations of continuous functions. They differ in that finite difference methods emphasize the discretization of independent variable, while finite element methods emphasize the discretization of dependent variable (referred to as functional approximations). An important point is that finite element methods use global piecewise functional approximations, while finite difference methods normally use local functional approximations. A general conclusion is that finite element methods are best designed to handle complex boundaries, while finite difference methods are superior for complex equations. It is also shown that finite volume difference methods possess many of the advantages attributed to finite element methods.
NASA Astrophysics Data System (ADS)
Grujicic, M.; Bell, W. C.; Arakere, G.; He, T.; Xie, X.; Cheeseman, B. A.
2010-02-01
A meso-scale ballistic material model for a prototypical plain-woven single-ply flexible armor is developed and implemented in a material user subroutine for the use in commercial explicit finite element programs. The main intent of the model is to attain computational efficiency when calculating the mechanical response of the multi-ply fabric-based flexible-armor material during its impact with various projectiles without significantly sacrificing the key physical aspects of the fabric microstructure, architecture, and behavior. To validate the new model, a comparative finite element method analysis is carried out in which: (a) the plain-woven single-ply fabric is modeled using conventional shell elements and weaving is done in an explicit manner by snaking the yarns through the fabric and (b) the fabric is treated as a planar continuum surface composed of conventional shell elements to which the new meso-scale unit-cell based material model is assigned. The results obtained show that the material model provides a reasonably good description for the fabric deformation and fracture behavior under different combinations of fixed and free boundary conditions. Finally, the model is used in an investigation of the ability of a multi-ply soft-body armor vest to protect the wearer from impact by a 9-mm round nose projectile. The effects of inter-ply friction, projectile/yarn friction, and the far-field boundary conditions are revealed and the results explained using simple wave mechanics principles, high-deformation rate material behavior, and the role of various energy-absorbing mechanisms in the fabric-based armor systems.
XFEM-based modeling of successive resections for preoperative image updating
NASA Astrophysics Data System (ADS)
Vigneron, Lara M.; Robe, Pierre A.; Warfield, Simon K.; Verly, Jacques G.
2006-03-01
We present a new method for modeling organ deformations due to successive resections. We use a biomechanical model of the organ, compute its volume-displacement solution based on the eXtended Finite Element Method (XFEM). The key feature of XFEM is that material discontinuities induced by every new resection can be handled without remeshing or mesh adaptation, as would be required by the conventional Finite Element Method (FEM). We focus on the application of preoperative image updating for image-guided surgery. Proof-of-concept demonstrations are shown for synthetic and real data in the context of neurosurgery.
Nonlinear heat transfer and structural analyses of SSME turbine blades
NASA Technical Reports Server (NTRS)
Abdul-Aziz, A.; Kaufman, A.
1987-01-01
Three-dimensional nonlinear finite-element heat transfer and structural analyses were performed for the first stage high-pressure fuel turbopump blade of the space shuttle main engine (SSME). Directionally solidified (DS) MAR-M 246 material properties were considered for the analyses. Analytical conditions were based on a typical test stand engine cycle. Blade temperature and stress-strain histories were calculated using MARC finite-element computer code. The study was undertaken to assess the structural response of an SSME turbine blade and to gain greater understanding of blade damage mechanisms, convective cooling effects, and the thermal-mechanical effects.
Thermal-stress analysis for a wood composite blade
NASA Technical Reports Server (NTRS)
Fu, K. C.; Harb, A.
1984-01-01
A thermal-stress analysis of a wind turbine blade made of wood composite material is reported. First, the governing partial differential equation on heat conduction is derived, then, a finite element procedure using variational approach is developed for the solution of the governing equation. Thus, the temperature distribution throughout the blade is determined. Next, based on the temperature distribution, a finite element procedure using potential energy approach is applied to determine the thermal-stress distribution. A set of results is obtained through the use of a computer, which is considered to be satisfactory. All computer programs are contained in the report.
A finite element formulation for scattering from electrically large 2-dimensional structures
NASA Technical Reports Server (NTRS)
Ross, Daniel C.; Volakis, John L.
1992-01-01
A finite element formulation is given using the scattered field approach with a fictitious material absorber to truncate the mesh. The formulation includes the use of arbitrary approximation functions so that more accurate results can be achieved without any modification to the software. Additionally, non-polynomial approximation functions can be used, including complex approximation functions. The banded system that results is solved with an efficient sparse/banded iterative scheme and as a consequence, large structures can be analyzed. Results are given for simple cases to verify the formulation and also for large, complex geometries.
NASA Astrophysics Data System (ADS)
Kovalovs, A.; Rucevskis, S.; Akishin, P.; Kolupajevs, J.
2017-10-01
The paper presents numerical results of loss of prestress in the reinforced prestressed precast hollow core slabs by modal analysis. Loss of prestress is investigated by the 3D finite element method, using ANSYS software. In the numerical examples, variables initial stresses were introduced into seven-wire stress-relieved strands of the concrete slabs. The effects of span and material properties of concrete on the modal frequencies of the concrete structure under initial stress were studied. Modal parameters computed from the finite element models were compared. Applicability and effectiveness of the proposed method was investigated.
Stress analysis and buckling of J-stiffened graphite-epoxy panel
NASA Technical Reports Server (NTRS)
Davis, R. C.
1980-01-01
A graphite epoxy shear panel with bonded on J stiffeners was investigated. The panel, loaded to buckling in a picture frame shear test is described. Two finite element models, each of which included the doubler material bonded to the panel skin under the stiffeners and at the panel edges, were used to make a stress analysis of the panel. The shear load distributions in the panel from two commonly used boundary conditions, applied shear load and applied displacement, were compared with the results from one of the finite element models that included the picture frame test fixture.
The finite element simulation analysis research of 38CrSi cylindrical power spinning
NASA Astrophysics Data System (ADS)
Liang, Wei; Lv, Qiongying; Zhao, Yujuan; Lv, Yunxia
2018-01-01
In order to grope for the influence of the main cylindrical spinning process parameters on the spinning process, this paper combines with real tube power spinning process and uses ABAQUS finite element analysis software to simulate the tube power spinning process of 38CrSi steel materials, through the analysis of the stress, strain of the part forming process, analyzes the influence of the thickness reduction and the feed rate to the forming process, and analyzes the variation of the spinning force, finally determines the reasonable main spinning process parameters combination.
NASA Technical Reports Server (NTRS)
Noor, Ahmed K. (Editor)
1986-01-01
The papers contained in this volume provide an overview of the advances made in a number of aspects of computational mechanics, identify some of the anticipated industry needs in this area, discuss the opportunities provided by new hardware and parallel algorithms, and outline some of the current government programs in computational mechanics. Papers are included on advances and trends in parallel algorithms, supercomputers for engineering analysis, material modeling in nonlinear finite-element analysis, the Navier-Stokes computer, and future finite-element software systems.
An experimental and computational investigation of dynamic ductile fracture in stainless steel welds
NASA Astrophysics Data System (ADS)
Kothnur, Vasanth Srinivasa
The high strain rate viscoplastic flow and fracture behavior of NITRONIC-50 and AL6XN stainless steel weldments are studied under dynamic loading conditions. The study is primarily motivated by interest in modeling the micromechanics of dynamic ductile failure in heterogeneous weldments. The high strain rate response of specimens machined from the parent, weld and heat-affected zones of NITRONIC-50 and AL6XN weldments is reported here on the basis of experiments conducted in a compression Kolsky bar configuration. The failure response of specimens prepared from the various material zones is investigated under high rate loading conditions in a tension Kolsky bar set-up. The microstructure of voided fracture process zones in these weldments is studied using X-ray Computed Microtomography. To model the preferential evolution of damage near the heat-affected zone, a finite deformation elastic-viscoplastic constitutive model for porous materials is developed. The evolution of the macroscopic flow response and the porous microstructure have been analysed in two distinctive regimes: pre-coalescence and post-coalescence. The onset of void coalescence is analyzed on the basis of upper-bound models to obtain the limit-loads needed to sustain a localized mode of plastic flow in the inter-void ligament. A finite element framework for the integration of the porous material response under high rate loading conditions is implemented as a user-subroutine in ABAQUS/Explicit. To address the effect of mesh sensitivity of numerical simulations of ductile fracture, a microstructural length scale is used to discretize finite element models of test specimens. Results from a detailed finite element study of the deformation and damage evolution in AL6XN weldments are compared with experimental observations.
NASA Technical Reports Server (NTRS)
Clayton, J. Louie; Ehle, Curt; Saxon, Jeff (Technical Monitor)
2002-01-01
RSRM nozzle liner components have been analyzed and tested to explore the occurrence of anomalous material performance known as pocketing erosion. Primary physical factors that contribute to pocketing seem to include the geometric permeability, which governs pore pressure magnitudes and hence load, and carbon fiber high temperature tensile strength, which defines a material limiting capability. The study reports on the results of a coupled thermostructural finite element analysis of Carbon Cloth Phenolic (CCP) material tested at the Laser Hardened Material Evaluation Laboratory (the LHMEL facility). Modeled test configurations will be limited to the special case of where temperature gradients are oriented perpendicular to the composite material ply angle. Analyses were conducted using a transient, one-dimensional flow/thermal finite element code that models pore pressure and temperature distributions and in an explicitly coupled formulation, passes this information to a 2-dimensional finite element structural model for determination of the stress/deformation behavior of the orthotropic fiber/matrix CCP. Pore pressures are generated by thermal decomposition of the phenolic resin which evolve as a multi-component gas phase which is partially trapped in the porous microstructure of the composite. The nature of resultant pressures are described by using the Darcy relationships which have been modified to permit a multi-specie mass and momentum balance including water vapor condensation. Solution to the conjugate flow/thermal equations were performed using the SINDA code. Of particular importance to this problem was the implementation of a char and deformation state dependent (geometric) permeability as describing a first order interaction between the flow/thermal and structural models. Material property models are used to characterize the solid phase mechanical stiffness and failure. Structural calculations were performed using the ABAQUS code. Iterations were made between the two codes involving the dependent variables temperature, pressure and across-ply strain level. Model results comparisons are made for three different surface heat rates and dependent variable sensitivities discussed for the various cases.
Local mesh adaptation technique for front tracking problems
NASA Astrophysics Data System (ADS)
Lock, N.; Jaeger, M.; Medale, M.; Occelli, R.
1998-09-01
A numerical model is developed for the simulation of moving interfaces in viscous incompressible flows. The model is based on the finite element method with a pseudo-concentration technique to track the front. Since a Eulerian approach is chosen, the interface is advected by the flow through a fixed mesh. Therefore, material discontinuity across the interface cannot be described accurately. To remedy this problem, the model has been supplemented with a local mesh adaptation technique. This latter consists in updating the mesh at each time step to the interface position, such that element boundaries lie along the front. It has been implemented for unstructured triangular finite element meshes. The outcome of this technique is that it allows an accurate treatment of material discontinuity across the interface and, if necessary, a modelling of interface phenomena such as surface tension by using specific boundary elements. For illustration, two examples are computed and presented in this paper: the broken dam problem and the Rayleigh-Taylor instability. Good agreement has been obtained in the comparison of the numerical results with theory or available experimental data.
Effect of Bottoming on Material Property during Sheet Forming Process through Finite Element Method
NASA Astrophysics Data System (ADS)
Akinlabi, Stephen A.; Fatoba, Olawale S.; Mashinini, Peter M.; Akinlabi, Esther T.
2018-03-01
Metal forming is one of the conventional manufacturing processes of immense relevance till date even though modern manufacturing processes have evolved over the years. It is a known fact that material tends to return or spring back to its original form during forming or bending. The phenomena have been well managed through its application in various manufacturing processes by compensating for the spring back through overbending and bottoming. Overbending is bending the material beyond the desired shape to allow the material to spring back to the expected shape. Bottoming, on the other hand, is a process of undergoing plastic deformation at the point of bending. This study reports on the finite element analysis of the effect of bottoming on the material property during the sheet forming process with the aim of optimising the process. The result of the analysis revealed that the generated plastic strains are in the order between 1.750e00-1 at the peak of the bending and 3.604e00-2, which was at the early stage of the bending.
Arregui-Dalmases, Carlos; Del Pozo, Eduardo; Duprey, Sonia; Lopez-Valdes, Francisco J; Lau, Anthony; Subit, Damien; Kent, Richard
2010-06-01
The objectives of this study were to examine the axial response of the clavicle under quasistatic compressions replicating the body boundary conditions and to quantify the sensitivity of finite element-predicted fracture in the clavicle to several parameters. Clavicles were harvested from 14 donors (age range 14-56 years). Quasistatic axial compression tests were performed using a custom rig designed to replicate in situ boundary conditions. Prior to testing, high-resolution computed tomography (CT) scans were taken of each clavicle. From those images, finite element models were constructed. Factors varied parametrically included the density used to threshold cortical bone in the CT scans, the presence of trabecular bone, the mesh density, Young's modulus, the maximum stress, and the element type (shell vs. solid, triangular vs. quadrilateral surface elements). The experiments revealed significant variability in the peak force (2.41 +/- 0.72 kN) and displacement to peak force (4.9 +/- 1.1 mm), with age (p < .05) and with some geometrical traits of the specimens. In the finite element models, the failure force and location were moderately dependent upon the Young's modulus. The fracture force was highly sensitive to the yield stress (80-110 MPa). Neither fracture location nor force was strongly dependent on mesh density as long as the element size was less than 5 x 5 mm(2). Both the fracture location and force were strongly dependent upon the threshold density used to define the thickness of the cortical shell.
Wood, Sarah A; Strait, David S; Dumont, Elizabeth R; Ross, Callum F; Grosse, Ian R
2011-07-07
Several finite element models of a primate cranium were used to investigate the biomechanical effects of the tooth sockets and the material behavior of the periodontal ligament (PDL) on stress and strain patterns associated with feeding. For examining the effect of tooth sockets, the unloaded sockets were modeled as devoid of teeth and PDL, filled with teeth and PDLs, or simply filled with cortical bone. The third premolar on the left side of the cranium was loaded and the PDL was treated as an isotropic, linear elastic material using published values for Young's modulus and Poisson's ratio. The remaining models, along with one of the socket models, were used to determine the effect of the PDL's material behavior on stress and strain distributions under static premolar biting and dynamic tooth loading conditions. Two models (one static and the other dynamic) treated the PDL as cortical bone. The other two models treated it as a ligament with isotropic, linear elastic material properties. Two models treated the PDL as a ligament with hyperelastic properties, and the other two as a ligament with viscoelastic properties. Both behaviors were defined using published stress-strain data obtained from in vitro experiments on porcine ligament specimens. Von Mises stress and strain contour plots indicate that the effects of the sockets and PDL material behavior are local. Results from this study suggest that modeling the sockets and the PDL in finite element analyses of skulls is project dependent and can be ignored if values of stress and strain within the alveolar region are not required. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kiliclar, Yalin; Laurischkat, Roman; Vladimirov, Ivaylo N.; Reese, Stefanie
2011-08-01
The presented project deals with a robot based incremental sheet metal forming process, which is called roboforming and has been developed at the Chair of Production Systems. It is characterized by flexible shaping using a freely programmable path-synchronous movement of two industrial robots. The final shape is produced by the incremental infeed of the forming tool in depth direction and its movement along the part contour in lateral direction. However, the resulting geometries formed in roboforming deviate several millimeters from the reference geometry. This results from the compliance of the involved machine structures and the springback effects of the workpiece. The project aims to predict these deviations caused by resiliences and to carry out a compensative path planning based on this prediction. Therefore a planning tool is implemented which compensates the robots's compliance and the springback effects of the sheet metal. The forming process is simulated by means of a finite element analysis using a material model developed at the Institute of Applied Mechanics (IFAM). It is based on the multiplicative split of the deformation gradient in the context of hyperelasticity and combines nonlinear kinematic and isotropic hardening. Low-order finite elements used to simulate thin sheet structures, such as used for the experiments, have the major problem of locking, a nonphysical stiffening effect. For an efficient finite element analysis a special solid-shell finite element formulation based on reduced integration with hourglass stabilization has been developed. To circumvent different locking effects, the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concepts are included in this formulation. Having such powerful tools available we obtain more accurate geometries.
NASA Astrophysics Data System (ADS)
Gassmöller, Rene; Bangerth, Wolfgang
2016-04-01
Particle-in-cell methods have a long history and many applications in geodynamic modelling of mantle convection, lithospheric deformation and crustal dynamics. They are primarily used to track material information, the strain a material has undergone, the pressure-temperature history a certain material region has experienced, or the amount of volatiles or partial melt present in a region. However, their efficient parallel implementation - in particular combined with adaptive finite-element meshes - is complicated due to the complex communication patterns and frequent reassignment of particles to cells. Consequently, many current scientific software packages accomplish this efficient implementation by specifically designing particle methods for a single purpose, like the advection of scalar material properties that do not evolve over time (e.g., for chemical heterogeneities). Design choices for particle integration, data storage, and parallel communication are then optimized for this single purpose, making the code relatively rigid to changing requirements. Here, we present the implementation of a flexible, scalable and efficient particle-in-cell method for massively parallel finite-element codes with adaptively changing meshes. Using a modular plugin structure, we allow maximum flexibility of the generation of particles, the carried tracer properties, the advection and output algorithms, and the projection of properties to the finite-element mesh. We present scaling tests ranging up to tens of thousands of cores and tens of billions of particles. Additionally, we discuss efficient load-balancing strategies for particles in adaptive meshes with their strengths and weaknesses, local particle-transfer between parallel subdomains utilizing existing communication patterns from the finite element mesh, and the use of established parallel output algorithms like the HDF5 library. Finally, we show some relevant particle application cases, compare our implementation to a modern advection-field approach, and demonstrate under which conditions which method is more efficient. We implemented the presented methods in ASPECT (aspect.dealii.org), a freely available open-source community code for geodynamic simulations. The structure of the particle code is highly modular, and segregated from the PDE solver, and can thus be easily transferred to other programs, or adapted for various application cases.
Chen, G; Fan, W; Mishra, S; El-Atem, A; Schuetz, M A; Xiao, Y
2012-10-01
The finite element (FE) analysis is an effective method to study the strength and predict the fracture risk of endodontically-treated teeth. This paper presents a rapid method developed to generate a comprehensive tooth FE model using data retrieved from micro-computed tomography (μCT). With this method, the inhomogeneity of material properties of teeth was included into the model without dividing the tooth model into different regions. The material properties of the tooth were assumed to be related to the mineral density. The fracture risk at different tooth portions was assessed for root canal treatments. The micro-CT images of a tooth were processed by a Matlab software programme and the CT numbers were retrieved. The tooth contours were obtained with thresholding segmentation using Amira. The inner and outer surfaces of the tooth were imported into Solidworks and a three-dimensional (3D) tooth model was constructed. An assembly of the tooth model with the periodontal ligament (PDL) layer and surrounding bone was imported into ABAQUS. The material properties of the tooth were calculated from the retrieved CT numbers via ABAQUS user's subroutines. Three root canal geometries (original and two enlargements) were investigated. The proposed method in this study can generate detailed 3D finite element models of a tooth with different root canal enlargements and filling materials, and would be very useful for the assessment of the fracture risk at different tooth portions after root canal treatments. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.
Identification of elastic, dielectric, and piezoelectric constants in piezoceramic disks.
Perez, Nicolas; Andrade, Marco A B; Buiochi, Flavio; Adamowski, Julio C
2010-12-01
Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.
Development of an orthotropic hole element
NASA Technical Reports Server (NTRS)
Smith, C. V.; Markham, J. W.; Kelley, J. W.; Kathiresan, K.
1981-01-01
A finite element was developed which adequately represents the state of stress in the region around a circular hole in orthotropic material experiencing reasonably general loading. This was achieved with a complementary virtual work formulation of the stiffness and stress matrices for a square element with center circular hole. The assumed stress state provides zero shearing stress on the hole boundary, so the element is suitable for problems involving load transfer without friction. The element has been implemented in the NASTRAN computer program, and sample problem results are presented.
Selection of finite-element mesh parameters in modeling the growth of hydraulic fracturing cracks
NASA Astrophysics Data System (ADS)
Kurguzov, V. D.
2016-12-01
The effect of the mesh geometry on the accuracy of solutions obtained by the finite-element method for problems of linear fracture mechanics is investigated. The guidelines have been formulated for constructing an optimum mesh for several routine problems involving elements with linear and quadratic approximation of displacements. The accuracy of finite-element solutions is estimated based on the degree of the difference between the calculated stress-intensity factor (SIF) and its value obtained analytically. In problems of hydrofracturing of oil-bearing formation, the pump-in pressure of injected water produces a distributed load on crack flanks as opposed to standard fracture mechanics problems that have analytical solutions, where a load is applied to the external boundaries of the computational region and the cracks themselves are kept free from stresses. Some model pressure profiles, as well as pressure profiles taken from real hydrodynamic computations, have been considered. Computer models of cracks with allowance for the pre-stressed state, fracture toughness, and elastic properties of materials are developed in the MSC.Marc 2012 finite-element analysis software. The Irwin force criterion is used as a criterion of brittle fracture and the SIFs are computed using the Cherepanov-Rice invariant J-integral. The process of crack propagation in a linearly elastic isotropic body is described in terms of the elastic energy release rate G and modeled using the VCCT (Virtual Crack Closure Technique) approach. It has been found that the solution accuracy is sensitive to the mesh configuration. Several parameters that are decisive in constructing effective finite-element meshes, namely, the minimum element size, the distance between mesh nodes in the vicinity of a crack tip, and the ratio of the height of an element to its length, have been established. It has been shown that a mesh that consists of only small elements does not improve the accuracy of the solution.
Problems with heterogeneous and non-isotropic media or distorted grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyman, J.; Shashkov, M.; Steinberg, S.
1996-08-01
This paper defines discretizations of the divergence and flux operators that produce symmetric, positive-definite, and accurate approximations to steady-state diffusion problems. Because discontinuous material properties and highly distorted grids are allowed, the flux operator, rather than the gradient, is used as a fundamental operator to be discretized. Resulting finite-difference scheme is similar to those obtained from the mixed finite-element method.
ANSYS duplicate finite-element checker routine
NASA Technical Reports Server (NTRS)
Ortega, R.
1995-01-01
An ANSYS finite-element code routine to check for duplicated elements within the volume of a three-dimensional (3D) finite-element mesh was developed. The routine developed is used for checking floating elements within a mesh, identically duplicated elements, and intersecting elements with a common face. A space shuttle main engine alternate turbopump development high pressure oxidizer turbopump finite-element model check using the developed subroutine is discussed. Finally, recommendations are provided for duplicate element checking of 3D finite-element models.
PAFAC- PLASTIC AND FAILURE ANALYSIS OF COMPOSITES
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1994-01-01
The increasing number of applications of fiber-reinforced composites in industry demands a detailed understanding of their material properties and behavior. A three-dimensional finite-element computer program called PAFAC (Plastic and Failure Analysis of Composites) has been developed for the elastic-plastic analysis of fiber-reinforced composite materials and structures. The evaluation of stresses and deformations at edges, cut-outs, and joints is essential in understanding the strength and failure for metal-matrix composites since the onset of plastic yielding starts very early in the loading process as compared to the composite's ultimate strength. Such comprehensive analysis can only be achieved by a finite-element program like PAFAC. PAFAC is particularly suited for the analysis of laminated metal-matrix composites. It can model the elastic-plastic behavior of the matrix phase while the fibers remain elastic. Since the PAFAC program uses a three-dimensional element, the program can also model the individual layers of the laminate to account for thickness effects. In PAFAC, the composite is modeled as a continuum reinforced by cylindrical fibers of vanishingly small diameter which occupy a finite volume fraction of the composite. In this way, the essential axial constraint of the phases is retained. Furthermore, the local stress and strain fields are uniform. The PAFAC finite-element solution is obtained using the displacement method. Solution of the nonlinear equilibrium equations is obtained with a Newton-Raphson iteration technique. The elastic-plastic behavior of composites consisting of aligned, continuous elastic filaments and an elastic-plastic matrix is described in terms of the constituent properties, their volume fractions, and mutual constraints between phases indicated by the geometry of the microstructure. The program uses an iterative procedure to determine the overall response of the laminate, then from the overall response determines the stress state in each phase of the composite material. Failure of the fibers or matrix within an element can also be modeled by PAFAC. PAFAC is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with a segmented memory requirement of approximately 66K (octal) of 60 bit words. PAFAC was developed in 1982.
Correlating PMC-MMC Bonded Joint 3D FEA with Test
NASA Technical Reports Server (NTRS)
Jacobson, Mindy; Rodini, Benjamin; Chen, Wayne C.; Flom, Yury A.; Posey, Alan J.
2005-01-01
A viewgraph presentation on the correlation of Polymer Matrix Composites (PMC) and Metal Matrix Composites (MMC) bonded joints using three dimensional finite element analyses with materials tests is shown.
Huang, Zheng; Chen, Zhi
2013-10-01
This study describes the details of how to construct a three-dimensional (3D) finite element model of a maxillary first premolar tooth based on micro-CT data acquisition technique, MIMICS software and ANSYS software. The tooth was scanned by micro-CT, in which 1295 slices were obtained and then 648 slices were selected for modeling. The 3D surface mesh models of enamel and dentin were created by MIMICS (STL file). The solid mesh model was constructed by ANSYS. After the material properties and boundary conditions were set, a loading analysis was performed to demonstrate the applicableness of the resulting model. The first and third principal stresses were then evaluated. The results showed that the number of nodes and elements of the finite element model were 56 618 and 311801, respectively. The geometric form of the model was highly consistent with that of the true tooth, and the deviation between them was -0.28%. The loading analysis revealed the typical stress patterns in the contour map. The maximum compressive stress existed in the contact points and the maximum tensile stress existed in the deep fissure between the two cusps. It is concluded that by using the micro-CT and highly integrated software, construction of the 3D finite element model with high quality will not be difficult for clinical researchers.
Djoudi, Farid
2013-01-01
Two separate themes are presented in this paper. The first theme is to present a graphical modeling approach of human anatomical structures namely, the femur and the tibia. The second theme involves making a finite element analysis of stresses, displacements and deformations in prosthetic implants (the femoral implant and the polyethylene insert). The graphical modeling approach comes in two parts. The first is the segmentation of MRI scanned images, retrieved in DICOM format for edge detection. In the second part, 3D-CAD models are generated from the results of the segmentation stage. The finite element analysis is done by first extracting the prosthetic implants from the reconstructed 3D-CAD model, then do a finite element analysis of these implants under objectively determined conditions such as; forces, allowed displacements, the materials composing implant, and the coefficient of friction. The objective of this work is to implement an interface for exchanging data between 2D MRI images obtained from a medical diagnosis of a patient and the 3D-CAD model used in various applications, such as; the extraction of the implants, stress analysis at the knee joint and can serve as an aid to surgery, also predict the behavior of the prosthetic implants vis-a-vis the forces acting on the knee joints.
Maminskas, Julius; Puisys, Algirdas; Kuoppala, Ritva; Raustia, Aune; Juodzbalys, Gintaras
2016-01-01
To systematically review risks of mechanical impact on peri-implant strain and prosthetic influence on stability across finite element studies. An online literature search was performed on MEDLINE and EMBASE databases published between 2011 and 2016. Following keywords tiered screening and selection of the title, abstract and full-text were performed. Studies of finite element analysis (FEA) were considered for inclusion that were written in English and revealed stress concentrations or strain at peri-implant bone level. There were included 20 FEA studies in total. Data were organized according to the following topics: bone layers, type of bone, osseointegration level, bone level, design of implant, diameter and length of implant, implant-abutment connection, type of supra-construction, loading axis, measurement units. The stress or strain at implant-bone contact was measured over all studies and numerical values estimated. Risks of overloading were accented as non-axial loading, misfits, cantilevers and the stability of peri-implant bone was related with the usage of platform switch connection of abutment. Peri-implant area could be affected by non-axial loading, cantilever prosthetic elements, crown/implant ratio, type of implant-abutment connection, misfits, properties of restoration materials and antagonistic tooth. The heterogeneity of finite element analysis studies limits systematization of data. Results of these studies are comparable with other findings of in vitro , in vivo , prospective and retrospective studies.
NASA Astrophysics Data System (ADS)
Court, Sébastien; Fournié, Michel
2015-05-01
The paper extends a stabilized fictitious domain finite element method initially developed for the Stokes problem to the incompressible Navier-Stokes equations coupled with a moving solid. This method presents the advantage to predict an optimal approximation of the normal stress tensor at the interface. The dynamics of the solid is governed by the Newton's laws and the interface between the fluid and the structure is materialized by a level-set which cuts the elements of the mesh. An algorithm is proposed in order to treat the time evolution of the geometry and numerical results are presented on a classical benchmark of the motion of a disk falling in a channel.
Analysis of aircraft tires via semianalytic finite elements
NASA Technical Reports Server (NTRS)
Noor, Ahmed K.; Kim, Kyun O.; Tanner, John A.
1990-01-01
A computational procedure is presented for the geometrically nonlinear analysis of aircraft tires. The tire was modeled by using a two-dimensional laminated anisotropic shell theory with the effects of variation in material and geometric parameters included. The four key elements of the procedure are: (1) semianalytic finite elements in which the shell variables are represented by Fourier series in the circumferential direction and piecewise polynomials in the meridional direction; (2) a mixed formulation with the fundamental unknowns consisting of strain parameters, stress-resultant parameters, and generalized displacements; (3) multilevel operator splitting to effect successive simplifications, and to uncouple the equations associated with different Fourier harmonics; and (4) multilevel iterative procedures and reduction techniques to generate the response of the shell.
Finite Element Modeling of the NASA Langley Aluminum Testbed Cylinder
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Pritchard, Joselyn I.; Buehrle, Ralph D.; Pappa, Richard S.
2002-01-01
The NASA Langley Aluminum Testbed Cylinder (ATC) was designed to serve as a universal structure for evaluating structural acoustic codes, modeling techniques and optimization methods used in the prediction of aircraft interior noise. Finite element models were developed for the components of the ATC based on the geometric, structural and material properties of the physical test structure. Numerically predicted modal frequencies for the longitudinal stringer, ring frame and dome component models, and six assembled ATC configurations were compared with experimental modal survey data. The finite element models were updated and refined, using physical parameters, to increase correlation with the measured modal data. Excellent agreement, within an average 1.5% to 2.9%, was obtained between the predicted and measured modal frequencies of the stringer, frame and dome components. The predictions for the modal frequencies of the assembled component Configurations I through V were within an average 2.9% and 9.1%. Finite element modal analyses were performed for comparison with 3 psi and 6 psi internal pressurization conditions in Configuration VI. The modal frequencies were predicted by applying differential stiffness to the elements with pressure loading and creating reduced matrices for beam elements with offsets inside external superelements. The average disagreement between the measured and predicted differences for the 0 psi and 6 psi internal pressure conditions was less than 0.5%. Comparably good agreement was obtained for the differences between the 0 psi and 3 psi measured and predicted internal pressure conditions.
Lecture Notes on Multigrid Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vassilevski, P S
The Lecture Notes are primarily based on a sequence of lectures given by the author while been a Fulbright scholar at 'St. Kliment Ohridski' University of Sofia, Sofia, Bulgaria during the winter semester of 2009-2010 academic year. The notes are somewhat expanded version of the actual one semester class he taught there. The material covered is slightly modified and adapted version of similar topics covered in the author's monograph 'Multilevel Block-Factorization Preconditioners' published in 2008 by Springer. The author tried to keep the notes as self-contained as possible. That is why the lecture notes begin with some basic introductory matrix-vectormore » linear algebra, numerical PDEs (finite element) facts emphasizing the relations between functions in finite dimensional spaces and their coefficient vectors and respective norms. Then, some additional facts on the implementation of finite elements based on relation tables using the popular compressed sparse row (CSR) format are given. Also, typical condition number estimates of stiffness and mass matrices, the global matrix assembly from local element matrices are given as well. Finally, some basic introductory facts about stationary iterative methods, such as Gauss-Seidel and its symmetrized version are presented. The introductory material ends up with the smoothing property of the classical iterative methods and the main definition of two-grid iterative methods. From here on, the second part of the notes begins which deals with the various aspects of the principal TG and the numerous versions of the MG cycles. At the end, in part III, we briefly introduce algebraic versions of MG referred to as AMG, focusing on classes of AMG specialized for finite element matrices.« less
Edge delamination of composite laminates subject to combined tension and torsional loading
NASA Technical Reports Server (NTRS)
Hooper, Steven J.
1990-01-01
Delamination is a common failure mode of laminated composite materials. Edge delamination is important since it results in reduced stiffness and strength of the laminate. The tension/torsion load condition is of particular significance to the structural integrity of composite helicopter rotor systems. Material coupons can easily be tested under this type of loading in servo-hydraulic tension/torsion test stands using techniques very similar to those used for the Edge Delamination Tensile Test (EDT) delamination specimen. Edge delamination of specimens loaded in tension was successfully analyzed by several investigators using both classical laminate theory and quasi-three dimensional (Q3D) finite element techniques. The former analysis technique can be used to predict the total strain energy release rate, while the latter technique enables the calculation of the mixed-mode strain energy release rates. The Q3D analysis is very efficient since it produces a three-dimensional solution to a two-dimensional domain. A computer program was developed which generates PATRAN commands to generate the finite element model. PATRAN is a pre- and post-processor which is commonly used with a variety of finite element programs such as MCS/NASTRAN. The program creates a sufficiently dense mesh at the delamination crack tips to support a mixed-mode fracture mechanics analysis. The program creates a coarse mesh in those regions where the gradients in the stress field are low (away from the delamination regions). A transition mesh is defined between these regions. This program is capable of generating a mesh for an arbitrarily oriented matrix crack. This program significantly reduces the modeling time required to generate these finite element meshes, thus providing a realistic tool with which to investigate the tension torsion problem.
Finite element modelling of fibre Bragg grating strain sensors and experimental validation
NASA Astrophysics Data System (ADS)
Malik, Shoaib A.; Mahendran, Ramani S.; Harris, Dee; Paget, Mark; Pandita, Surya D.; Machavaram, Venkata R.; Collins, David; Burns, Jonathan M.; Wang, Liwei; Fernando, Gerard F.
2009-03-01
Fibre Bragg grating (FBG) sensors continue to be used extensively for monitoring strain and temperature in and on engineering materials and structures. Previous researchers have also developed analytical models to predict the loadtransfer characteristics of FBG sensors as a function of applied strain. The general properties of the coating or adhesive that is used to surface-bond the FBG sensor to the substrate has also been modelled using finite element analysis. In this current paper, a technique was developed to surface-mount FBG sensors with a known volume and thickness of adhesive. The substrates used were aluminium dog-bone tensile test specimens. The FBG sensors were tensile tested in a series of ramp-hold sequences until failure. The reflected FBG spectra were recorded using a commercial instrument. Finite element analysis was performed to model the response of the surface-mounted FBG sensors. In the first instance, the effect of the mechanical properties of the adhesive and substrate were modelled. This was followed by modelling the volume of adhesive used to bond the FBG sensor to the substrate. Finally, the predicted values obtained via finite element modelling were correlated to the experimental results. In addition to the FBG sensors, the tensile test specimens were instrumented with surface-mounted electrical resistance strain gauges.
Design, analysis and verification of a knee joint oncological prosthesis finite element model.
Zach, Lukáš; Kunčická, Lenka; Růžička, Pavel; Kocich, Radim
2014-11-01
The aim of this paper was to design a finite element model for a hinged PROSPON oncological knee endoprosthesis and to verify the model by comparison with ankle flexion angle using knee-bending experimental data obtained previously. Visible Human Project CT scans were used to create a general lower extremity bones model and to compose a 3D CAD knee joint model to which muscles and ligaments were added. Into the assembly the designed finite element PROSPON prosthesis model was integrated and an analysis focused on the PEEK-OPTIMA hinge pin bushing stress state was carried out. To confirm the stress state analysis results, contact pressure was investigated. The analysis was performed in the knee-bending position within 15.4-69.4° hip joint flexion range. The results showed that the maximum stress achieved during the analysis (46.6 MPa) did not exceed the yield strength of the material (90 MPa); the condition of plastic stability was therefore met. The stress state analysis results were confirmed by the distribution of contact pressure during knee-bending. The applicability of our designed finite element model for the real implant behaviour prediction was proven on the basis of good correlation of the analytical and experimental ankle flexion angle data. Copyright © 2014 Elsevier Ltd. All rights reserved.
Alimonti, Luca; Atalla, Noureddine; Berry, Alain; Sgard, Franck
2014-05-01
Modeling complex vibroacoustic systems including poroelastic materials using finite element based methods can be unfeasible for practical applications. For this reason, analytical approaches such as the transfer matrix method are often preferred to obtain a quick estimation of the vibroacoustic parameters. However, the strong assumptions inherent within the transfer matrix method lead to a lack of accuracy in the description of the geometry of the system. As a result, the transfer matrix method is inherently limited to the high frequency range. Nowadays, hybrid substructuring procedures have become quite popular. Indeed, different modeling techniques are typically sought to describe complex vibroacoustic systems over the widest possible frequency range. As a result, the flexibility and accuracy of the finite element method and the efficiency of the transfer matrix method could be coupled in a hybrid technique to obtain a reduction of the computational burden. In this work, a hybrid methodology is proposed. The performances of the method in predicting the vibroacoutic indicators of flat structures with attached homogeneous acoustic treatments are assessed. The results prove that, under certain conditions, the hybrid model allows for a reduction of the computational effort while preserving enough accuracy with respect to the full finite element solution.
Numerical computation of transonic flows by finite-element and finite-difference methods
NASA Technical Reports Server (NTRS)
Hafez, M. M.; Wellford, L. C.; Merkle, C. L.; Murman, E. M.
1978-01-01
Studies on applications of the finite element approach to transonic flow calculations are reported. Different discretization techniques of the differential equations and boundary conditions are compared. Finite element analogs of Murman's mixed type finite difference operators for small disturbance formulations were constructed and the time dependent approach (using finite differences in time and finite elements in space) was examined.
NASA Technical Reports Server (NTRS)
Smalley, Kurt B.; Tinker, Michael L.
2001-01-01
Dynamic characterization of a non-rigidized thin film inflatable antenna/solar concentrator structure with rigidized composite support struts is described in detail. A two-step finite element modeling approach in MSC/NASTRAN is utilized, consisting of: (1) a nonlinear static pressurization procedure used to obtain the updated stiffness matrix, and (2) a modal "restart" eigen solution that uses the modified stiffness matrix. Unique problems encountered in modeling of this large 5-m lightweight inflatable are identified, including considerable difficulty in obtaining convergence in the nonlinear pressurization solution. It was found that the extremely thin polyimide film material (.001 in or I mil) presents tremendous problems in obtaining a converged solution when internal pressure loading is applied. It was concluded that the ratios of film thickness to other geometric dimensions such as torus cross-sectional and ring diameter and lenticular diameter are the critical parameters for convergence of the pressurization procedure. Comparison of finite element predictions for frequency and mode shapes with experimental results indicated reasonable agreement considering the complexity of the structure, the film-to-air interaction, and the nonlinear material properties of the film. It was also concluded that analysis should be done using different finite element to codes to determine if a more robust and stable solution can be obtained.
Finite element simulation of core inspection in helicopter rotor blades using guided waves.
Chakrapani, Sunil Kishore; Barnard, Daniel; Dayal, Vinay
2015-09-01
This paper extends the work presented earlier on inspection of helicopter rotor blades using guided Lamb modes by focusing on inspecting the spar-core bond. In particular, this research focuses on structures which employ high stiffness, high density core materials. Wave propagation in such structures deviate from the generic Lamb wave propagation in sandwich panels. To understand the various mode conversions, finite element models of a generalized helicopter rotor blade were created and subjected to transient analysis using a commercial finite element code; ANSYS. Numerical simulations showed that a Lamb wave excited in the spar section of the blade gets converted into Rayleigh wave which travels across the spar-core section and mode converts back into Lamb wave. Dispersion of Rayleigh waves in multi-layered half-space was also explored. Damage was modeled in the form of a notch in the core section to simulate a cracked core, and delamination was modeled between the spar and core material to simulate spar-core disbond. Mode conversions under these damaged conditions were examined numerically. The numerical models help in assessing the difficulty of using nondestructive evaluation for complex structures and also highlight the physics behind the mode conversions which occur at various discontinuities. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdelmoula, Nouha; Harthong, Barthélémy; Imbault, Didier; Dorémus, Pierre
2017-12-01
The multi-particle finite element method involving assemblies of meshed particles interacting through finite-element contact conditions is adopted to study the plastic flow of a granular material with highly deformable elastic-plastic grains. In particular, it is investigated whether the flow rule postulate applies for such materials. Using a spherical stress probing method, the influence of incremental stress on plastic strain increment vectors was assessed for numerical samples compacted along two different loading paths up to different values of relative density. Results show that the numerical samples studied behave reasonably well according to an associated flow rule, except in the vicinity of the loading point where the influence of the stress increment proved to be very significant. A plausible explanation for the non-uniqueness of the direction of plastic flow is proposed, based on the idea that the resistance of the numerical sample to plastic straining can vary by an order of magnitude depending on the direction of the accumulated stress. The above-mentioned dependency of the direction of plastic flow on the direction of the stress increment was related to the difference in strength between shearing and normal stressing at the scale of contact surfaces between particles.
Revisiting of Multiscale Static Analysis of Notched Laminates Using the Generalized Method of Cells
NASA Technical Reports Server (NTRS)
Naghipour Ghezeljeh, Paria; Arnold, Steven M.; Pineda, Evan J.
2016-01-01
Composite material systems generally exhibit a range of behavior on different length scales (from constituent level to macro); therefore, a multiscale framework is beneficial for the design and engineering of these material systems. The complex nature of the observed composite failure during experiments suggests the need for a three-dimensional (3D) multiscale model to attain a reliable prediction. However, the size of a multiscale three-dimensional finite element model can become prohibitively large and computationally costly. Two-dimensional (2D) models are preferred due to computational efficiency, especially if many different configurations have to be analyzed for an in-depth damage tolerance and durability design study. In this study, various 2D and 3D multiscale analyses will be employed to conduct a detailed investigation into the tensile failure of a given multidirectional, notched carbon fiber reinforced polymer laminate. Threedimensional finite element analysis is typically considered more accurate than a 2D finite element model, as compared with experiments. Nevertheless, in the absence of adequate mesh refinement, large differences may be observed between a 2D and 3D analysis, especially for a shear-dominated layup. This observed difference has not been widely addressed in previous literature and is the main focus of this paper.
Piezoelectric Nanostructures for Mechanical Energy Harvesting
NASA Astrophysics Data System (ADS)
Ardila, G.; Hinchet, R.; Montès, L.; Mouis, M.
2013-05-01
We present the most studied piezoelectric materials at the nanoscale and discuss their vertical integration into harvesting devices. Finite element method (FEM) simulations are used to obtain optimization guidelines rules of a specific design.
Mixed-Mode Decohesion Finite Elements for the Simulation of Delamination in Composite Materials
NASA Technical Reports Server (NTRS)
Camanho, Pedro P.; Davila, Carlos G.
2002-01-01
A new decohesion element with mixed-mode capability is proposed and demonstrated. The element is used at the interface between solid finite elements to model the initiation and non-self-similar growth of delaminations. A single relative displacement-based damage parameter is applied in a softening law to track the damage state of the interface and to prevent the restoration of the cohesive state during unloading. The softening law for mixed-mode delamination propagation can be applied to any mode interaction criterion such as the two-parameter power law or the three-parameter Benzeggagh-Kenane criterion. To demonstrate the accuracy of the predictions and the irreversibility capability of the constitutive law, steady-state delamination growth is simulated for quasistatic loading-unloading cycles of various single mode and mixed-mode delamination test specimens.
NASA Astrophysics Data System (ADS)
Gorwade, Chandragupt V.; Ashcroft, Ian A.; Silberschmidt, Vadim V.; Hughes, Foz T. R.; Swallowe, Gerry M.
2012-12-01
Advanced polymeric materials are finding an increasing range of industrial and defence applications. These materials have the potential to improve combat survivability, whilst reducing the cost and weight of armour systems. In this paper the results from a split Hopkinson pressure bar (SHPB) test of a high density polyethylene (HDPE) sample involving multiple stress waves is discussed with aid of a finite element model of the test. It is seen that the phenomenon of impedance mismatch at interfaces plays an important role in the levels of stress and deformation seen in the sample. A multi-layer armour system is then investigated using the finite element model. This case study illustrates the role of impedance mismatch and interface engineering in the design and optimisation of armour solutions.
NASA Astrophysics Data System (ADS)
Handa, Danish; Sekhar Dondapati, Raja; Kumar, Abhinav
2017-08-01
Ductile to brittle transition (DTBT) is extensively observed in materials under cryogenic temperatures, thereby observing brittle failure due to the non-resistance of crack propagation. Owing to its outstanding mechanical and thermal properties, Kevlar 49 composites are widely used in aerospace applications under cryogenic temperatures. Therefore, in this paper, involving the assumption of linear elastic fracture mechanics (LEFM), mechanical characterization of Kevlar 49 composite is done using Extended Finite Element Method (X-FEM) technique in Abaqus/CAE software. Further, the failure of Kevlar 49 composites due to the propagation of crack at room temperature and the cryogenic temperature is investigated. Stress, strain and strain energy density as a function of the width of the Kevlar specimen is predicted, indicates that Kevlar 49 composites are suitable for use under cryogenic temperatures.
Collapse of composite tubes under end moments
NASA Technical Reports Server (NTRS)
Stockwell, Alan E.; Cooper, Paul A.
1992-01-01
Cylindrical tubes of moderate wall thickness such as those proposed for the original space station truss, may fail due to the gradual collapse of the tube cross section as it distorts under load. Sometimes referred to as the Brazier instability, it is a nonlinear phenomenon. This paper presents an extension of an approximate closed form solution of the collapse of isotropic tubes subject to end moments developed by Reissner in 1959 to include specially orthotropic material. The closed form solution was verified by an extensive nonlinear finite element analysis of the collapse of long tubes under applied end moments for radius to thickness ratios and composite layups in the range proposed for recent space station truss framework designs. The finite element analysis validated the assumption of inextensional deformation of the cylindrical cross section and the approximation of the material as specially orthotropic.
Modeling of heterogeneous elastic materials by the multiscale hp-adaptive finite element method
NASA Astrophysics Data System (ADS)
Klimczak, Marek; Cecot, Witold
2018-01-01
We present an enhancement of the multiscale finite element method (MsFEM) by combining it with the hp-adaptive FEM. Such a discretization-based homogenization technique is a versatile tool for modeling heterogeneous materials with fast oscillating elasticity coefficients. No assumption on periodicity of the domain is required. In order to avoid direct, so-called overkill mesh computations, a coarse mesh with effective stiffness matrices is used and special shape functions are constructed to account for the local heterogeneities at the micro resolution. The automatic adaptivity (hp-type at the macro resolution and h-type at the micro resolution) increases efficiency of computation. In this paper details of the modified MsFEM are presented and a numerical test performed on a Fichera corner domain is presented in order to validate the proposed approach.
Advanced Main Combustion Chamber structural jacket strength analysis
NASA Astrophysics Data System (ADS)
Johnston, L. M.; Perkins, L. A.; Denniston, C. L.; Price, J. M.
1993-04-01
The structural analysis of the Advanced Main Combustion Chamber (AMCC) is presented. The AMCC is an advanced fabrication concept of the Space Shuttle Main Engine main combustion chamber (MCC). Reduced cost and fabrication time of up to 75 percent were the goals of the AMCC with cast jacket with vacuum plasma sprayed or platelet liner. Since the cast material for the AMCC is much weaker than the wrought material for the MCC, the AMCC is heavier and strength margins much lower in some areas. Proven hand solutions were used to size the manifolds cutout tee areas for combined pressure and applied loads. Detailed finite element strength analyses were used to size the manifolds, longitudinal ribs, and jacket for combined pressure and applied local loads. The design of the gimbal actuator strut attachment lugs were determined by finite element analyses and hand solutions.
Zhao, Xin; Chosa, Etsuo; Yamako, Go; Watanabe, Shinji; Deng, Gang; Totoribe, Koji
2013-12-01
The objective of this study was to biomechanically determine the effect of the severity of acetabular dysplasia, number and positions of screws and type of bone graft material used on the initial fixation strength of the acetabular reinforcement ring with hook (Ganz ring) using the finite element method. Relative micromotion increased as the severity of acetabular dysplasia increased and tended to decrease as the number of screws increased, but varied according to screw placement position. Increased strength of the bone graft material led to decreased relative micromotion. Biomechanically, the Ganz ring can be placed securely using 3 screws in patients with Crowe 1 dysplasia. However, in patients with Crowe 2 or higher dysplasia, it is necessary to spread at least 4 screws across an area of good host bone. © 2013.
NASA Astrophysics Data System (ADS)
Rachmat, Haris; Ibrahim, M. Rasidi; Hasan, Sulaiman bin
2017-04-01
On of high technology in machining is ultrasonic vibration assisted turning. The design of tool holder was a crucial step to make sure the tool holder is enough to handle all forces on turning process. Because of the direct experimental approach is expensive, the paper studied to predict feasibility of tool holder displacement and effective stress was used the computational in finite element simulation. SS201 and AISI 1045 materials were used with sharp and ramp corners flexure hinges on design. The result shows that AISI 1045 material and which has ramp corner flexure hinge was the best choice to be produced. The displacement is around 11.3 micron and effective stress is 1.71e+008 N/m2 and also the factor of safety is 3.10.
Hortin, Mitchell S; Bowden, Anton E
2016-11-01
Data has been published that quantifies the nonlinear, anisotropic material behaviour and pre-strain behaviour of the anterior longitudinal, supraspinous (SSL), and interspinous ligaments of the human lumbar spine. Additionally, data has been published on localized material properties of the SSL. These results have been incrementally incorporated into a previously validated finite element model of the human lumbar spine. Results suggest that the effects of increased ligament model fidelity on bone strain energy were moderate and the effects on disc pressure were slight, and do not justify a change in modelling strategy for most clinical applications. There were significant effects on the ligament stresses of the ligaments that were directly modified, suggesting that these phenomena should be included in FE models where ligament stresses are the desired metric.
Fixation strength analysis of cup to bone material using finite element simulation
NASA Astrophysics Data System (ADS)
Anwar, Iwan Budiwan; Saputra, Eko; Ismail, Rifky; Jamari, J.; van der Heide, Emile
2016-04-01
Fixation of acetabular cup to bone material is an important initial stability for artificial hip joint. In general, the fixation in cement less-type acetabular cup uses press-fit and screw methods. These methods can be applied alone or together. Based on literature survey, the additional screw inside of cup is effective; however, it has little effect in whole fixation. Therefore, an acetabular cup with good fixation, easy manufacture and easy installation is required. This paper is aiming at evaluating and proposing a new cup fixation design. To prove the strength of the present cup fixation design, the finite element simulation of three dimensional cup with new fixation design was performed. The present cup design was examined with twist axial and radial rotation. Results showed that the proposed cup design was better than the general version.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Killian, D.E.; Yoon, K.K.
1996-12-01
Flaws on the inside surface of cladded reactor vessels are often analyzed by modelling the carbon steel base metal without consideration of a layer of stainless steel cladding material, thus ignoring the effects of this bimetallic discontinuity. Adding cladding material to the inside surface of a finite element model of a vessel raises concerns regarding adequate mesh refinement in the vicinity of the base metal/cladding interface. This paper presents results of three-dimensional linear stress analysis that has been performed to obtain stress intensity factors for clad and unclad reactor vessels subjected to internal pressure loading. The study concentrates on semi-ellipticalmore » longitudinal surface flaws with a 6 to 1 length-to-depth ratio and flaw depths of 1/8 and 1/4 of the base metal thickness. Various meshing schemes are evaluated for modelling the crack front profile, with particular emphasis on the region near the inside surface and at the base metal/cladding interface. The shape of the crack front profile through the cladding layer and the number of finite elements used to discretize the cladding thickness are found to have a significant influence on typical fracture mechanic measures of the crack tip stress fields. Results suggest that the stress intensity factor at the inner surface of a cladded vessel may be affected as much by the finite element mesh near the surface as by the material discontinuity between the two parts of the structure.« less
Thermal mechanical analysis of sprag clutches
NASA Technical Reports Server (NTRS)
Mullen, Robert L.; Zab, Ronald Joseph; Kurniawan, Antonius S.
1992-01-01
Work done at Case Western Reserve University on the Thermal Mechanical analysis of sprag helicopter clutches is reported. The report is presented in two parts. The first part is a description of a test rig for the measurement of the heat generated by high speed sprag clutch assemblies during cyclic torsional loading. The second part describes a finite element modeling procedure for sliding contact. The test rig provides a cyclic torsional load of 756 inch-pounds at 5000 rpm using a four-square arrangement. The sprag clutch test unit was placed between the high speed pinions of the circulating power loop. The test unit was designed to have replaceable inner ad outer races, which contain the instrumentation to monitor the sprag clutch. The torque loading device was chosen to be a water cooled magnetic clutch, which is controlled either manually or through a computer. In the second part, a Generalized Eulerian-Lagrangian formulation for non-linear dynamic problems is developed for solid materials. This formulation is derived from the basic laws and axioms of continuum mechanics. The novel aspect of this method is that we are able to investigate the physics in the spatial region of interest as material flows through it without having to follow material points. A finite element approximation to the governing equations is developed. Iterative Methods for the solution of the discrete finite element equations are explored. A FORTRAN program to implement this formulation is developed and a number of solutions to problems of sliding contact are presented.
NASA Technical Reports Server (NTRS)
Schweikhard, W. G.; Singnoi, W. N.
1985-01-01
A two axis thrust measuring system was analyzed by using a finite a element computer program to determine the sensitivities of the thrust vectoring nozzle system to misalignment of the load cells and applied loads, and the stiffness of the structural members. Three models were evaluated: (1) the basic measuring element and its internal calibration load cells; (2) the basic measuring element and its external load calibration equipment; and (3) the basic measuring element, external calibration load frame and the altitude facility support structure. Alignment of calibration loads was the greatest source of error for multiaxis thrust measuring systems. Uniform increases or decreases in stiffness of the members, which might be caused by the selection of the materials, have little effect on the accuracy of the measurements. It is found that the POLO-FINITE program is a viable tool for designing and analyzing multiaxis thrust measurement systems. The response of the test stand to step inputs that might be encountered with thrust vectoring tests was determined. The dynamic analysis show a potential problem for measuring the dynamic response characteristics of thrust vectoring systems because of the inherently light damping of the test stand.
Finite element modelling of the foot for clinical application: A systematic review.
Behforootan, Sara; Chatzistergos, Panagiotis; Naemi, Roozbeh; Chockalingam, Nachiappan
2017-01-01
Over the last two decades finite element modelling has been widely used to give new insight on foot and footwear biomechanics. However its actual contribution for the improvement of the therapeutic outcome of different pathological conditions of the foot, such as the diabetic foot, remains relatively limited. This is mainly because finite element modelling has only been used within the research domain. Clinically applicable finite element modelling can open the way for novel diagnostic techniques and novel methods for treatment planning/optimisation which would significantly enhance clinical practice. In this context this review aims to provide an overview of modelling techniques in the field of foot and footwear biomechanics and to investigate their applicability in a clinical setting. Even though no integrated modelling system exists that could be directly used in the clinic and considerable progress is still required, current literature includes a comprehensive toolbox for future work towards clinically applicable finite element modelling. The key challenges include collecting the information that is needed for geometry design, the assignment of material properties and loading on a patient-specific basis and in a cost-effective and non-invasive way. The ultimate challenge for the implementation of any computational system into clinical practice is to ensure that it can produce reliable results for any person that belongs in the population for which it was developed. Consequently this highlights the need for thorough and extensive validation of each individual step of the modelling process as well as for the overall validation of the final integrated system. Copyright © 2016 IPEM. Published by Elsevier Ltd. All rights reserved.
Evaluation of Solid Modeling Software for Finite Element Analysis of Woven Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Mital, Subodh; Lang, Jerry
2010-01-01
Three computer programs, used for the purpose of generating 3-D finite element models of the Repeating Unit Cell (RUC) of a textile, were examined for suitability to model woven Ceramic Matrix Composites (CMCs). The programs evaluated were the open-source available TexGen, the commercially available WiseTex, and the proprietary Composite Material Evaluator (COMATE). A five-harness-satin (5HS) weave for a melt-infiltrated (MI) silicon carbide matrix and silicon carbide fiber was selected as an example problem and the programs were tested for their ability to generate a finite element model of the RUC. The programs were also evaluated for ease-of-use and capability, particularly for the capability to introduce various defect types such as porosity, ply shifting, and nesting of a laminate. Overall, it was found that TexGen and WiseTex were useful for generating solid models of the tow geometry; however, there was a lack of consistency in generating well-conditioned finite element meshes of the tows and matrix. TexGen and WiseTex were both capable of allowing collective and individual shifting of tows within a ply and WiseTex also had a ply nesting capability. TexGen and WiseTex were sufficiently userfriendly and both included a Graphical User Interface (GUI). COMATE was satisfactory in generating a 5HS finite element mesh of an idealized weave geometry but COMATE lacked a GUI and was limited to only 5HS and 8HS weaves compared to the larger amount of weave selections available with TexGen and WiseTex.
Building Finite Element Models to Investigate Zebrafish Jaw Biomechanics.
Brunt, Lucy H; Roddy, Karen A; Rayfield, Emily J; Hammond, Chrissy L
2016-12-03
Skeletal morphogenesis occurs through tightly regulated cell behaviors during development; many cell types alter their behavior in response to mechanical strain. Skeletal joints are subjected to dynamic mechanical loading. Finite element analysis (FEA) is a computational method, frequently used in engineering that can predict how a material or structure will respond to mechanical input. By dividing a whole system (in this case the zebrafish jaw skeleton) into a mesh of smaller 'finite elements', FEA can be used to calculate the mechanical response of the structure to external loads. The results can be visualized in many ways including as a 'heat map' showing the position of maximum and minimum principal strains (a positive principal strain indicates tension while a negative indicates compression. The maximum and minimum refer the largest and smallest strain). These can be used to identify which regions of the jaw and therefore which cells are likely to be under particularly high tensional or compressional loads during jaw movement and can therefore be used to identify relationships between mechanical strain and cell behavior. This protocol describes the steps to generate Finite Element models from confocal image data on the musculoskeletal system, using the zebrafish lower jaw as a practical example. The protocol leads the reader through a series of steps: 1) staining of the musculoskeletal components, 2) imaging the musculoskeletal components, 3) building a 3 dimensional (3D) surface, 4) generating a mesh of Finite Elements, 5) solving the FEA and finally 6) validating the results by comparison to real displacements seen in movements of the fish jaw.
An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, S.W.; Heinstein, M.W.; Stone, C.M.
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less
NASA Astrophysics Data System (ADS)
Zhao, W. N.; Yang, X. J.; Yao, C.; Ma, D. G.; Tang, H. J.
2017-10-01
Inductive power transfer (IPT) is a practical and preferable method for wireless electric vehicle (EV) charging which proved to be safe, convenient and reliable. Due to the air gap between the magnetic coupler, the magnetic field coupling decreases and the magnetic leakage increases significantly compared to traditional transformer, and this may lead to the magnetic flux density around the coupler more than the safety limit for human. So magnetic shielding should be adding to the winding made from litz wire to enhance the magnetic field coupling effect in the working area and reduce magnetic field strength in non-working area. Magnetic shielding can be achieved by adding high-permeability material or high-conductivity material. For high-permeability material its magnetic reluctance is much lower than the surrounding air medium so most of the magnetic line goes through the high-permeability material rather than surrounding air. For high-conductivity material the eddy current in the material can produce reverse magnetic field to achieve magnetic shielding. This paper studies the effect of the two types of shielding material on coupler for wireless EV charging and designs combination shielding made from high-permeability material and high-conductivity material. The investigation of the paper is done with the help of finite element analysis.
Possibilities of the particle finite element method for fluid-soil-structure interaction problems
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín
2011-09-01
We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.
FEM simulation of single beard hair cutting with foil-blade-shaving system.
Fang, Gang; Köppl, Alois
2015-06-01
The performance of dry-shavers depends on the interaction of the shaving components, hair and skin. Finite element models on the ABAQUS/Explicit platform are established to simulate the process of beard hair cutting. The skin is modelled as three-layer structure with a single cylindrical hair inserted into the skin. The material properties of skin are considered as Neo-Hookean hyper-elastic (epidermis) and Prony visco-elastic (dermis and hypodermis) with finite deformations. The hair is modelled as elastic-plastic material with shear damage. The cutting system is composed of a blade and a foil of shaver. The simulation results of cutting processes are analyzed, including the skin compression, hair bending, hair cutting and hair severance. Calculations of cutting loads, skin stress, and hair damage show the impact of clearance, skin bulge height, blade dimension and shape on cutting results. The details show the build-up of finite element models for hair cutting, and highlight the challenges arising during model construction and numerical simulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Failure mechanisms in energy-absorbing composite structures
NASA Astrophysics Data System (ADS)
Johnson, Alastair F.; David, Matthew
2010-11-01
Quasi-static tests are described for determination of the energy-absorption properties of composite crash energy-absorbing segment elements under axial loads. Detailed computer tomography scans of failed specimens were used to identify local compression crush failure mechanisms at the crush front. These mechanisms are important for selecting composite materials for energy-absorbing structures, such as helicopter and aircraft sub-floors. Finite element models of the failure processes are described that could be the basis for materials selection and future design procedures for crashworthy structures.
Modeling of Damage Initiation and Progression in a SiC/SiC Woven Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Goldberg, Robert K.; Bonacuse, Peter J.
2012-01-01
The goal of an ongoing project at NASA Glenn is to investigate the effects of the complex microstructure of a woven ceramic matrix composite and its variability on the effective properties and the durability of the material. Detailed analysis of these complex microstructures may provide clues for the material scientists who `design the material? or to structural analysts and designers who `design with the material? regarding damage initiation and damage propagation. A model material system, specifically a five-harness satin weave architecture CVI SiC/SiC composite composed of Sylramic-iBN fibers and a SiC matrix, has been analyzed. Specimens of the material were serially sectioned and polished to capture the detailed images of fiber tows, matrix and porosity. Open source analysis tools were used to isolate various constituents and finite elements models were then generated from simplified models of those images. Detailed finite element analyses were performed that examine how the variability in the local microstructure affected the macroscopic behavior as well as the local damage initiation and progression. Results indicate that the locations where damage initiated and propagated is linked to specific microstructural features.
On the Use of Biaxial Properties in Modeling Annulus as a Holzapfel–Gasser–Ogden Material
Momeni Shahraki, Narjes; Fatemi, Ali; Goel, Vijay K.; Agarwal, Anand
2015-01-01
Besides the biology, stresses and strains within the tissue greatly influence the location of damage initiation and mode of failure in an intervertebral disk. Finite element models of a functional spinal unit (FSU) that incorporate reasonably accurate geometry and appropriate material properties are suitable to investigate such issues. Different material models and techniques have been used to model the anisotropic annulus fibrosus, but the abilities of these models to predict damage initiation in the annulus and to explain clinically observed phenomena are unclear. In this study, a hyperelastic anisotropic material model for the annulus with two different sets of material constants, experimentally determined using uniaxial and biaxial loading conditions, were incorporated in a 3D finite element model of a ligamentous FSU. The purpose of the study was to highlight the biomechanical differences (e.g., intradiscal pressure, motion, forces, stresses, strains, etc.) due to the dissimilarity between the two sets of material properties (uniaxial and biaxial). Based on the analyses, the biaxial constants simulations resulted in better agreements with the in vitro and in vivo data, and thus are more suitable for future damage analysis and failure prediction of the annulus under complex multiaxial loading conditions. PMID:26090359